Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include/llvm/ADT/Twine.h
Warning:line 272, column 11
Array access (from variable 'Str') results in a null pointer dereference

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name Driver.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Driver -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Driver -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Driver/Driver.cpp

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Driver/Driver.cpp

1//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "clang/Driver/Driver.h"
10#include "ToolChains/AIX.h"
11#include "ToolChains/AMDGPU.h"
12#include "ToolChains/AMDGPUOpenMP.h"
13#include "ToolChains/AVR.h"
14#include "ToolChains/Ananas.h"
15#include "ToolChains/BareMetal.h"
16#include "ToolChains/CSKYToolChain.h"
17#include "ToolChains/Clang.h"
18#include "ToolChains/CloudABI.h"
19#include "ToolChains/Contiki.h"
20#include "ToolChains/CrossWindows.h"
21#include "ToolChains/Cuda.h"
22#include "ToolChains/Darwin.h"
23#include "ToolChains/DragonFly.h"
24#include "ToolChains/FreeBSD.h"
25#include "ToolChains/Fuchsia.h"
26#include "ToolChains/Gnu.h"
27#include "ToolChains/HIPAMD.h"
28#include "ToolChains/HIPSPV.h"
29#include "ToolChains/HLSL.h"
30#include "ToolChains/Haiku.h"
31#include "ToolChains/Hexagon.h"
32#include "ToolChains/Hurd.h"
33#include "ToolChains/Lanai.h"
34#include "ToolChains/Linux.h"
35#include "ToolChains/MSP430.h"
36#include "ToolChains/MSVC.h"
37#include "ToolChains/MinGW.h"
38#include "ToolChains/Minix.h"
39#include "ToolChains/MipsLinux.h"
40#include "ToolChains/Myriad.h"
41#include "ToolChains/NaCl.h"
42#include "ToolChains/NetBSD.h"
43#include "ToolChains/OpenBSD.h"
44#include "ToolChains/PPCFreeBSD.h"
45#include "ToolChains/PPCLinux.h"
46#include "ToolChains/PS4CPU.h"
47#include "ToolChains/RISCVToolchain.h"
48#include "ToolChains/SPIRV.h"
49#include "ToolChains/Solaris.h"
50#include "ToolChains/TCE.h"
51#include "ToolChains/VEToolchain.h"
52#include "ToolChains/WebAssembly.h"
53#include "ToolChains/XCore.h"
54#include "ToolChains/ZOS.h"
55#include "clang/Basic/TargetID.h"
56#include "clang/Basic/Version.h"
57#include "clang/Config/config.h"
58#include "clang/Driver/Action.h"
59#include "clang/Driver/Compilation.h"
60#include "clang/Driver/DriverDiagnostic.h"
61#include "clang/Driver/InputInfo.h"
62#include "clang/Driver/Job.h"
63#include "clang/Driver/Options.h"
64#include "clang/Driver/Phases.h"
65#include "clang/Driver/SanitizerArgs.h"
66#include "clang/Driver/Tool.h"
67#include "clang/Driver/ToolChain.h"
68#include "clang/Driver/Types.h"
69#include "llvm/ADT/ArrayRef.h"
70#include "llvm/ADT/STLExtras.h"
71#include "llvm/ADT/SmallSet.h"
72#include "llvm/ADT/StringExtras.h"
73#include "llvm/ADT/StringRef.h"
74#include "llvm/ADT/StringSet.h"
75#include "llvm/ADT/StringSwitch.h"
76#include "llvm/Config/llvm-config.h"
77#include "llvm/MC/TargetRegistry.h"
78#include "llvm/Option/Arg.h"
79#include "llvm/Option/ArgList.h"
80#include "llvm/Option/OptSpecifier.h"
81#include "llvm/Option/OptTable.h"
82#include "llvm/Option/Option.h"
83#include "llvm/Support/CommandLine.h"
84#include "llvm/Support/ErrorHandling.h"
85#include "llvm/Support/ExitCodes.h"
86#include "llvm/Support/FileSystem.h"
87#include "llvm/Support/FormatVariadic.h"
88#include "llvm/Support/Host.h"
89#include "llvm/Support/MD5.h"
90#include "llvm/Support/Path.h"
91#include "llvm/Support/PrettyStackTrace.h"
92#include "llvm/Support/Process.h"
93#include "llvm/Support/Program.h"
94#include "llvm/Support/StringSaver.h"
95#include "llvm/Support/VirtualFileSystem.h"
96#include "llvm/Support/raw_ostream.h"
97#include <map>
98#include <memory>
99#include <utility>
100#if LLVM_ON_UNIX1
101#include <unistd.h> // getpid
102#endif
103
104using namespace clang::driver;
105using namespace clang;
106using namespace llvm::opt;
107
108static llvm::Optional<llvm::Triple>
109getOffloadTargetTriple(const Driver &D, const ArgList &Args) {
110 auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
111 // Offload compilation flow does not support multiple targets for now. We
112 // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
113 // to support multiple tool chains first.
114 switch (OffloadTargets.size()) {
115 default:
116 D.Diag(diag::err_drv_only_one_offload_target_supported);
117 return llvm::None;
118 case 0:
119 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
120 return llvm::None;
121 case 1:
122 break;
123 }
124 return llvm::Triple(OffloadTargets[0]);
125}
126
127static llvm::Optional<llvm::Triple>
128getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
129 const llvm::Triple &HostTriple) {
130 if (!Args.hasArg(options::OPT_offload_EQ)) {
131 return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
132 : "nvptx-nvidia-cuda");
133 }
134 auto TT = getOffloadTargetTriple(D, Args);
135 if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
136 TT->getArch() == llvm::Triple::spirv64)) {
137 if (Args.hasArg(options::OPT_emit_llvm))
138 return TT;
139 D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
140 return llvm::None;
141 }
142 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
143 return llvm::None;
144}
145static llvm::Optional<llvm::Triple>
146getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
147 if (!Args.hasArg(options::OPT_offload_EQ)) {
148 return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
149 }
150 auto TT = getOffloadTargetTriple(D, Args);
151 if (!TT)
152 return llvm::None;
153 if (TT->getArch() == llvm::Triple::amdgcn &&
154 TT->getVendor() == llvm::Triple::AMD &&
155 TT->getOS() == llvm::Triple::AMDHSA)
156 return TT;
157 if (TT->getArch() == llvm::Triple::spirv64)
158 return TT;
159 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
160 return llvm::None;
161}
162
163// static
164std::string Driver::GetResourcesPath(StringRef BinaryPath,
165 StringRef CustomResourceDir) {
166 // Since the resource directory is embedded in the module hash, it's important
167 // that all places that need it call this function, so that they get the
168 // exact same string ("a/../b/" and "b/" get different hashes, for example).
169
170 // Dir is bin/ or lib/, depending on where BinaryPath is.
171 std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
172
173 SmallString<128> P(Dir);
174 if (CustomResourceDir != "") {
175 llvm::sys::path::append(P, CustomResourceDir);
176 } else {
177 // On Windows, libclang.dll is in bin/.
178 // On non-Windows, libclang.so/.dylib is in lib/.
179 // With a static-library build of libclang, LibClangPath will contain the
180 // path of the embedding binary, which for LLVM binaries will be in bin/.
181 // ../lib gets us to lib/ in both cases.
182 P = llvm::sys::path::parent_path(Dir);
183 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX"", "clang",
184 CLANG_VERSION_STRING"15.0.0");
185 }
186
187 return std::string(P.str());
188}
189
190Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
191 DiagnosticsEngine &Diags, std::string Title,
192 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
193 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
194 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
195 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT""),
196 DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
197 CCPrintHeaders(false), CCLogDiagnostics(false), CCGenDiagnostics(false),
198 CCPrintProcessStats(false), TargetTriple(TargetTriple), Saver(Alloc),
199 CheckInputsExist(true), GenReproducer(false),
200 SuppressMissingInputWarning(false) {
201 // Provide a sane fallback if no VFS is specified.
202 if (!this->VFS)
203 this->VFS = llvm::vfs::getRealFileSystem();
204
205 Name = std::string(llvm::sys::path::filename(ClangExecutable));
206 Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
207 InstalledDir = Dir; // Provide a sensible default installed dir.
208
209 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
210 // Prepend InstalledDir if SysRoot is relative
211 SmallString<128> P(InstalledDir);
212 llvm::sys::path::append(P, SysRoot);
213 SysRoot = std::string(P);
214 }
215
216#if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
217 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
218#endif
219#if defined(CLANG_CONFIG_FILE_USER_DIR)
220 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
221#endif
222
223 // Compute the path to the resource directory.
224 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR"");
225}
226
227void Driver::setDriverMode(StringRef Value) {
228 static const std::string OptName =
229 getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
230 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
231 .Case("gcc", GCCMode)
232 .Case("g++", GXXMode)
233 .Case("cpp", CPPMode)
234 .Case("cl", CLMode)
235 .Case("flang", FlangMode)
236 .Case("dxc", DXCMode)
237 .Default(None))
238 Mode = *M;
239 else
240 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
241}
242
243InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
244 bool IsClCompatMode,
245 bool &ContainsError) {
246 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
247 ContainsError = false;
248
249 unsigned IncludedFlagsBitmask;
250 unsigned ExcludedFlagsBitmask;
251 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
252 getIncludeExcludeOptionFlagMasks(IsClCompatMode);
253
254 // Make sure that Flang-only options don't pollute the Clang output
255 // TODO: Make sure that Clang-only options don't pollute Flang output
256 if (!IsFlangMode())
257 ExcludedFlagsBitmask |= options::FlangOnlyOption;
258
259 unsigned MissingArgIndex, MissingArgCount;
260 InputArgList Args =
261 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
262 IncludedFlagsBitmask, ExcludedFlagsBitmask);
263
264 // Check for missing argument error.
265 if (MissingArgCount) {
266 Diag(diag::err_drv_missing_argument)
267 << Args.getArgString(MissingArgIndex) << MissingArgCount;
268 ContainsError |=
269 Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
270 SourceLocation()) > DiagnosticsEngine::Warning;
271 }
272
273 // Check for unsupported options.
274 for (const Arg *A : Args) {
275 if (A->getOption().hasFlag(options::Unsupported)) {
276 unsigned DiagID;
277 auto ArgString = A->getAsString(Args);
278 std::string Nearest;
279 if (getOpts().findNearest(
280 ArgString, Nearest, IncludedFlagsBitmask,
281 ExcludedFlagsBitmask | options::Unsupported) > 1) {
282 DiagID = diag::err_drv_unsupported_opt;
283 Diag(DiagID) << ArgString;
284 } else {
285 DiagID = diag::err_drv_unsupported_opt_with_suggestion;
286 Diag(DiagID) << ArgString << Nearest;
287 }
288 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
289 DiagnosticsEngine::Warning;
290 continue;
291 }
292
293 // Warn about -mcpu= without an argument.
294 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
295 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
296 ContainsError |= Diags.getDiagnosticLevel(
297 diag::warn_drv_empty_joined_argument,
298 SourceLocation()) > DiagnosticsEngine::Warning;
299 }
300 }
301
302 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
303 unsigned DiagID;
304 auto ArgString = A->getAsString(Args);
305 std::string Nearest;
306 if (getOpts().findNearest(
307 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
308 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
309 : diag::err_drv_unknown_argument;
310 Diags.Report(DiagID) << ArgString;
311 } else {
312 DiagID = IsCLMode()
313 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
314 : diag::err_drv_unknown_argument_with_suggestion;
315 Diags.Report(DiagID) << ArgString << Nearest;
316 }
317 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
318 DiagnosticsEngine::Warning;
319 }
320
321 return Args;
322}
323
324// Determine which compilation mode we are in. We look for options which
325// affect the phase, starting with the earliest phases, and record which
326// option we used to determine the final phase.
327phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
328 Arg **FinalPhaseArg) const {
329 Arg *PhaseArg = nullptr;
330 phases::ID FinalPhase;
331
332 // -{E,EP,P,M,MM} only run the preprocessor.
333 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
334 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
335 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
336 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
337 CCGenDiagnostics) {
338 FinalPhase = phases::Preprocess;
339
340 // --precompile only runs up to precompilation.
341 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
342 (PhaseArg = DAL.getLastArg(options::OPT_extract_api))) {
343 FinalPhase = phases::Precompile;
344 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
345 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
346 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
347 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
348 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
349 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
350 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
351 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
352 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
353 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
354 FinalPhase = phases::Compile;
355
356 // -S only runs up to the backend.
357 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
358 FinalPhase = phases::Backend;
359
360 // -c compilation only runs up to the assembler.
361 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
362 FinalPhase = phases::Assemble;
363
364 } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
365 FinalPhase = phases::IfsMerge;
366
367 // Otherwise do everything.
368 } else
369 FinalPhase = phases::Link;
370
371 if (FinalPhaseArg)
372 *FinalPhaseArg = PhaseArg;
373
374 return FinalPhase;
375}
376
377static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
378 StringRef Value, bool Claim = true) {
379 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
380 Args.getBaseArgs().MakeIndex(Value), Value.data());
381 Args.AddSynthesizedArg(A);
382 if (Claim)
383 A->claim();
384 return A;
385}
386
387DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
388 const llvm::opt::OptTable &Opts = getOpts();
389 DerivedArgList *DAL = new DerivedArgList(Args);
390
391 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
392 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
393 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
394 bool IgnoreUnused = false;
395 for (Arg *A : Args) {
396 if (IgnoreUnused)
397 A->claim();
398
399 if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
400 IgnoreUnused = true;
401 continue;
402 }
403 if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
404 IgnoreUnused = false;
405 continue;
406 }
407
408 // Unfortunately, we have to parse some forwarding options (-Xassembler,
409 // -Xlinker, -Xpreprocessor) because we either integrate their functionality
410 // (assembler and preprocessor), or bypass a previous driver ('collect2').
411
412 // Rewrite linker options, to replace --no-demangle with a custom internal
413 // option.
414 if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
415 A->getOption().matches(options::OPT_Xlinker)) &&
416 A->containsValue("--no-demangle")) {
417 // Add the rewritten no-demangle argument.
418 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
419
420 // Add the remaining values as Xlinker arguments.
421 for (StringRef Val : A->getValues())
422 if (Val != "--no-demangle")
423 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
424
425 continue;
426 }
427
428 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
429 // some build systems. We don't try to be complete here because we don't
430 // care to encourage this usage model.
431 if (A->getOption().matches(options::OPT_Wp_COMMA) &&
432 (A->getValue(0) == StringRef("-MD") ||
433 A->getValue(0) == StringRef("-MMD"))) {
434 // Rewrite to -MD/-MMD along with -MF.
435 if (A->getValue(0) == StringRef("-MD"))
436 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
437 else
438 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
439 if (A->getNumValues() == 2)
440 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
441 continue;
442 }
443
444 // Rewrite reserved library names.
445 if (A->getOption().matches(options::OPT_l)) {
446 StringRef Value = A->getValue();
447
448 // Rewrite unless -nostdlib is present.
449 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
450 Value == "stdc++") {
451 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
452 continue;
453 }
454
455 // Rewrite unconditionally.
456 if (Value == "cc_kext") {
457 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
458 continue;
459 }
460 }
461
462 // Pick up inputs via the -- option.
463 if (A->getOption().matches(options::OPT__DASH_DASH)) {
464 A->claim();
465 for (StringRef Val : A->getValues())
466 DAL->append(MakeInputArg(*DAL, Opts, Val, false));
467 continue;
468 }
469
470 DAL->append(A);
471 }
472
473 // Enforce -static if -miamcu is present.
474 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
475 DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
476
477// Add a default value of -mlinker-version=, if one was given and the user
478// didn't specify one.
479#if defined(HOST_LINK_VERSION)
480 if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
481 strlen(HOST_LINK_VERSION) > 0) {
482 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
483 HOST_LINK_VERSION);
484 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
485 }
486#endif
487
488 return DAL;
489}
490
491/// Compute target triple from args.
492///
493/// This routine provides the logic to compute a target triple from various
494/// args passed to the driver and the default triple string.
495static llvm::Triple computeTargetTriple(const Driver &D,
496 StringRef TargetTriple,
497 const ArgList &Args,
498 StringRef DarwinArchName = "") {
499 // FIXME: Already done in Compilation *Driver::BuildCompilation
500 if (const Arg *A = Args.getLastArg(options::OPT_target))
501 TargetTriple = A->getValue();
502
503 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
504
505 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
506 // -gnu* only, and we can not change this, so we have to detect that case as
507 // being the Hurd OS.
508 if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
509 Target.setOSName("hurd");
510
511 // Handle Apple-specific options available here.
512 if (Target.isOSBinFormatMachO()) {
513 // If an explicit Darwin arch name is given, that trumps all.
514 if (!DarwinArchName.empty()) {
515 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
516 return Target;
517 }
518
519 // Handle the Darwin '-arch' flag.
520 if (Arg *A = Args.getLastArg(options::OPT_arch)) {
521 StringRef ArchName = A->getValue();
522 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
523 }
524 }
525
526 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
527 // '-mbig-endian'/'-EB'.
528 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
529 options::OPT_mbig_endian)) {
530 if (A->getOption().matches(options::OPT_mlittle_endian)) {
531 llvm::Triple LE = Target.getLittleEndianArchVariant();
532 if (LE.getArch() != llvm::Triple::UnknownArch)
533 Target = std::move(LE);
534 } else {
535 llvm::Triple BE = Target.getBigEndianArchVariant();
536 if (BE.getArch() != llvm::Triple::UnknownArch)
537 Target = std::move(BE);
538 }
539 }
540
541 // Skip further flag support on OSes which don't support '-m32' or '-m64'.
542 if (Target.getArch() == llvm::Triple::tce ||
543 Target.getOS() == llvm::Triple::Minix)
544 return Target;
545
546 // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
547 if (Target.isOSAIX()) {
548 if (Optional<std::string> ObjectModeValue =
549 llvm::sys::Process::GetEnv("OBJECT_MODE")) {
550 StringRef ObjectMode = *ObjectModeValue;
551 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
552
553 if (ObjectMode.equals("64")) {
554 AT = Target.get64BitArchVariant().getArch();
555 } else if (ObjectMode.equals("32")) {
556 AT = Target.get32BitArchVariant().getArch();
557 } else {
558 D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
559 }
560
561 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
562 Target.setArch(AT);
563 }
564 }
565
566 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
567 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
568 options::OPT_m32, options::OPT_m16);
569 if (A) {
570 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
571
572 if (A->getOption().matches(options::OPT_m64)) {
573 AT = Target.get64BitArchVariant().getArch();
574 if (Target.getEnvironment() == llvm::Triple::GNUX32)
575 Target.setEnvironment(llvm::Triple::GNU);
576 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
577 Target.setEnvironment(llvm::Triple::Musl);
578 } else if (A->getOption().matches(options::OPT_mx32) &&
579 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
580 AT = llvm::Triple::x86_64;
581 if (Target.getEnvironment() == llvm::Triple::Musl)
582 Target.setEnvironment(llvm::Triple::MuslX32);
583 else
584 Target.setEnvironment(llvm::Triple::GNUX32);
585 } else if (A->getOption().matches(options::OPT_m32)) {
586 AT = Target.get32BitArchVariant().getArch();
587 if (Target.getEnvironment() == llvm::Triple::GNUX32)
588 Target.setEnvironment(llvm::Triple::GNU);
589 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
590 Target.setEnvironment(llvm::Triple::Musl);
591 } else if (A->getOption().matches(options::OPT_m16) &&
592 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
593 AT = llvm::Triple::x86;
594 Target.setEnvironment(llvm::Triple::CODE16);
595 }
596
597 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
598 Target.setArch(AT);
599 if (Target.isWindowsGNUEnvironment())
600 toolchains::MinGW::fixTripleArch(D, Target, Args);
601 }
602 }
603
604 // Handle -miamcu flag.
605 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
606 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
607 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
608 << Target.str();
609
610 if (A && !A->getOption().matches(options::OPT_m32))
611 D.Diag(diag::err_drv_argument_not_allowed_with)
612 << "-miamcu" << A->getBaseArg().getAsString(Args);
613
614 Target.setArch(llvm::Triple::x86);
615 Target.setArchName("i586");
616 Target.setEnvironment(llvm::Triple::UnknownEnvironment);
617 Target.setEnvironmentName("");
618 Target.setOS(llvm::Triple::ELFIAMCU);
619 Target.setVendor(llvm::Triple::UnknownVendor);
620 Target.setVendorName("intel");
621 }
622
623 // If target is MIPS adjust the target triple
624 // accordingly to provided ABI name.
625 A = Args.getLastArg(options::OPT_mabi_EQ);
626 if (A && Target.isMIPS()) {
627 StringRef ABIName = A->getValue();
628 if (ABIName == "32") {
629 Target = Target.get32BitArchVariant();
630 if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
631 Target.getEnvironment() == llvm::Triple::GNUABIN32)
632 Target.setEnvironment(llvm::Triple::GNU);
633 } else if (ABIName == "n32") {
634 Target = Target.get64BitArchVariant();
635 if (Target.getEnvironment() == llvm::Triple::GNU ||
636 Target.getEnvironment() == llvm::Triple::GNUABI64)
637 Target.setEnvironment(llvm::Triple::GNUABIN32);
638 } else if (ABIName == "64") {
639 Target = Target.get64BitArchVariant();
640 if (Target.getEnvironment() == llvm::Triple::GNU ||
641 Target.getEnvironment() == llvm::Triple::GNUABIN32)
642 Target.setEnvironment(llvm::Triple::GNUABI64);
643 }
644 }
645
646 // If target is RISC-V adjust the target triple according to
647 // provided architecture name
648 A = Args.getLastArg(options::OPT_march_EQ);
649 if (A && Target.isRISCV()) {
650 StringRef ArchName = A->getValue();
651 if (ArchName.startswith_insensitive("rv32"))
652 Target.setArch(llvm::Triple::riscv32);
653 else if (ArchName.startswith_insensitive("rv64"))
654 Target.setArch(llvm::Triple::riscv64);
655 }
656
657 return Target;
658}
659
660// Parse the LTO options and record the type of LTO compilation
661// based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
662// option occurs last.
663static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
664 OptSpecifier OptEq, OptSpecifier OptNeg) {
665 if (!Args.hasFlag(OptEq, OptNeg, false))
666 return LTOK_None;
667
668 const Arg *A = Args.getLastArg(OptEq);
669 StringRef LTOName = A->getValue();
670
671 driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
672 .Case("full", LTOK_Full)
673 .Case("thin", LTOK_Thin)
674 .Default(LTOK_Unknown);
675
676 if (LTOMode == LTOK_Unknown) {
677 D.Diag(diag::err_drv_unsupported_option_argument)
678 << A->getOption().getName() << A->getValue();
679 return LTOK_None;
680 }
681 return LTOMode;
682}
683
684// Parse the LTO options.
685void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
686 LTOMode =
687 parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
688
689 OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
690 options::OPT_fno_offload_lto);
691}
692
693/// Compute the desired OpenMP runtime from the flags provided.
694Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
695 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME"libomp");
696
697 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
698 if (A)
699 RuntimeName = A->getValue();
700
701 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
702 .Case("libomp", OMPRT_OMP)
703 .Case("libgomp", OMPRT_GOMP)
704 .Case("libiomp5", OMPRT_IOMP5)
705 .Default(OMPRT_Unknown);
706
707 if (RT == OMPRT_Unknown) {
708 if (A)
709 Diag(diag::err_drv_unsupported_option_argument)
710 << A->getOption().getName() << A->getValue();
711 else
712 // FIXME: We could use a nicer diagnostic here.
713 Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
714 }
715
716 return RT;
717}
718
719void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
720 InputList &Inputs) {
721
722 //
723 // CUDA/HIP
724 //
725 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
726 // or HIP type. However, mixed CUDA/HIP compilation is not supported.
727 bool IsCuda =
728 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
729 return types::isCuda(I.first);
730 });
731 bool IsHIP =
732 llvm::any_of(Inputs,
733 [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
734 return types::isHIP(I.first);
735 }) ||
736 C.getInputArgs().hasArg(options::OPT_hip_link);
737 if (IsCuda && IsHIP) {
738 Diag(clang::diag::err_drv_mix_cuda_hip);
739 return;
740 }
741 if (IsCuda) {
742 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
743 const llvm::Triple &HostTriple = HostTC->getTriple();
744 auto OFK = Action::OFK_Cuda;
745 auto CudaTriple =
746 getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
747 if (!CudaTriple)
748 return;
749 // Use the CUDA and host triples as the key into the ToolChains map,
750 // because the device toolchain we create depends on both.
751 auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
752 if (!CudaTC) {
753 CudaTC = std::make_unique<toolchains::CudaToolChain>(
754 *this, *CudaTriple, *HostTC, C.getInputArgs(), OFK);
755 }
756 C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
757 } else if (IsHIP) {
758 if (auto *OMPTargetArg =
759 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
760 Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
761 << OMPTargetArg->getSpelling() << "HIP";
762 return;
763 }
764 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
765 auto OFK = Action::OFK_HIP;
766 auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
767 if (!HIPTriple)
768 return;
769 auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
770 *HostTC, OFK);
771 assert(HIPTC && "Could not create offloading device tool chain.")(static_cast <bool> (HIPTC && "Could not create offloading device tool chain."
) ? void (0) : __assert_fail ("HIPTC && \"Could not create offloading device tool chain.\""
, "clang/lib/Driver/Driver.cpp", 771, __extension__ __PRETTY_FUNCTION__
))
;
772 C.addOffloadDeviceToolChain(HIPTC, OFK);
773 }
774
775 //
776 // OpenMP
777 //
778 // We need to generate an OpenMP toolchain if the user specified targets with
779 // the -fopenmp-targets option.
780 if (Arg *OpenMPTargets =
781 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
782 if (OpenMPTargets->getNumValues()) {
783 // We expect that -fopenmp-targets is always used in conjunction with the
784 // option -fopenmp specifying a valid runtime with offloading support,
785 // i.e. libomp or libiomp.
786 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
787 options::OPT_fopenmp, options::OPT_fopenmp_EQ,
788 options::OPT_fno_openmp, false);
789 if (HasValidOpenMPRuntime) {
790 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
791 HasValidOpenMPRuntime =
792 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
793 }
794
795 if (HasValidOpenMPRuntime) {
796 llvm::StringMap<const char *> FoundNormalizedTriples;
797 for (const char *Val : OpenMPTargets->getValues()) {
798 llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
799 std::string NormalizedName = TT.normalize();
800
801 // Make sure we don't have a duplicate triple.
802 auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
803 if (Duplicate != FoundNormalizedTriples.end()) {
804 Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
805 << Val << Duplicate->second;
806 continue;
807 }
808
809 // Store the current triple so that we can check for duplicates in the
810 // following iterations.
811 FoundNormalizedTriples[NormalizedName] = Val;
812
813 // If the specified target is invalid, emit a diagnostic.
814 if (TT.getArch() == llvm::Triple::UnknownArch)
815 Diag(clang::diag::err_drv_invalid_omp_target) << Val;
816 else {
817 const ToolChain *TC;
818 // Device toolchains have to be selected differently. They pair host
819 // and device in their implementation.
820 if (TT.isNVPTX() || TT.isAMDGCN()) {
821 const ToolChain *HostTC =
822 C.getSingleOffloadToolChain<Action::OFK_Host>();
823 assert(HostTC && "Host toolchain should be always defined.")(static_cast <bool> (HostTC && "Host toolchain should be always defined."
) ? void (0) : __assert_fail ("HostTC && \"Host toolchain should be always defined.\""
, "clang/lib/Driver/Driver.cpp", 823, __extension__ __PRETTY_FUNCTION__
))
;
824 auto &DeviceTC =
825 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
826 if (!DeviceTC) {
827 if (TT.isNVPTX())
828 DeviceTC = std::make_unique<toolchains::CudaToolChain>(
829 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
830 else if (TT.isAMDGCN())
831 DeviceTC =
832 std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
833 *this, TT, *HostTC, C.getInputArgs());
834 else
835 assert(DeviceTC && "Device toolchain not defined.")(static_cast <bool> (DeviceTC && "Device toolchain not defined."
) ? void (0) : __assert_fail ("DeviceTC && \"Device toolchain not defined.\""
, "clang/lib/Driver/Driver.cpp", 835, __extension__ __PRETTY_FUNCTION__
))
;
836 }
837
838 TC = DeviceTC.get();
839 } else
840 TC = &getToolChain(C.getInputArgs(), TT);
841 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
842 }
843 }
844 } else
845 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
846 } else
847 Diag(clang::diag::warn_drv_empty_joined_argument)
848 << OpenMPTargets->getAsString(C.getInputArgs());
849 }
850
851 //
852 // TODO: Add support for other offloading programming models here.
853 //
854}
855
856/// Looks the given directories for the specified file.
857///
858/// \param[out] FilePath File path, if the file was found.
859/// \param[in] Dirs Directories used for the search.
860/// \param[in] FileName Name of the file to search for.
861/// \return True if file was found.
862///
863/// Looks for file specified by FileName sequentially in directories specified
864/// by Dirs.
865///
866static bool searchForFile(SmallVectorImpl<char> &FilePath,
867 ArrayRef<StringRef> Dirs, StringRef FileName) {
868 SmallString<128> WPath;
869 for (const StringRef &Dir : Dirs) {
870 if (Dir.empty())
871 continue;
872 WPath.clear();
873 llvm::sys::path::append(WPath, Dir, FileName);
874 llvm::sys::path::native(WPath);
875 if (llvm::sys::fs::is_regular_file(WPath)) {
876 FilePath = std::move(WPath);
877 return true;
878 }
879 }
880 return false;
881}
882
883bool Driver::readConfigFile(StringRef FileName) {
884 // Try reading the given file.
885 SmallVector<const char *, 32> NewCfgArgs;
886 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
887 Diag(diag::err_drv_cannot_read_config_file) << FileName;
888 return true;
889 }
890
891 // Read options from config file.
892 llvm::SmallString<128> CfgFileName(FileName);
893 llvm::sys::path::native(CfgFileName);
894 ConfigFile = std::string(CfgFileName);
895 bool ContainErrors;
896 CfgOptions = std::make_unique<InputArgList>(
897 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
898 if (ContainErrors) {
899 CfgOptions.reset();
900 return true;
901 }
902
903 if (CfgOptions->hasArg(options::OPT_config)) {
904 CfgOptions.reset();
905 Diag(diag::err_drv_nested_config_file);
906 return true;
907 }
908
909 // Claim all arguments that come from a configuration file so that the driver
910 // does not warn on any that is unused.
911 for (Arg *A : *CfgOptions)
912 A->claim();
913 return false;
914}
915
916bool Driver::loadConfigFile() {
917 std::string CfgFileName;
918 bool FileSpecifiedExplicitly = false;
919
920 // Process options that change search path for config files.
921 if (CLOptions) {
922 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
923 SmallString<128> CfgDir;
924 CfgDir.append(
925 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
926 if (!CfgDir.empty()) {
927 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
928 SystemConfigDir.clear();
929 else
930 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
931 }
932 }
933 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
934 SmallString<128> CfgDir;
935 CfgDir.append(
936 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
937 if (!CfgDir.empty()) {
938 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
939 UserConfigDir.clear();
940 else
941 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
942 }
943 }
944 }
945
946 // First try to find config file specified in command line.
947 if (CLOptions) {
948 std::vector<std::string> ConfigFiles =
949 CLOptions->getAllArgValues(options::OPT_config);
950 if (ConfigFiles.size() > 1) {
951 if (!llvm::all_of(ConfigFiles, [ConfigFiles](const std::string &s) {
952 return s == ConfigFiles[0];
953 })) {
954 Diag(diag::err_drv_duplicate_config);
955 return true;
956 }
957 }
958
959 if (!ConfigFiles.empty()) {
960 CfgFileName = ConfigFiles.front();
961 assert(!CfgFileName.empty())(static_cast <bool> (!CfgFileName.empty()) ? void (0) :
__assert_fail ("!CfgFileName.empty()", "clang/lib/Driver/Driver.cpp"
, 961, __extension__ __PRETTY_FUNCTION__))
;
962
963 // If argument contains directory separator, treat it as a path to
964 // configuration file.
965 if (llvm::sys::path::has_parent_path(CfgFileName)) {
966 SmallString<128> CfgFilePath;
967 if (llvm::sys::path::is_relative(CfgFileName))
968 llvm::sys::fs::current_path(CfgFilePath);
969 llvm::sys::path::append(CfgFilePath, CfgFileName);
970 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
971 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
972 return true;
973 }
974 return readConfigFile(CfgFilePath);
975 }
976
977 FileSpecifiedExplicitly = true;
978 }
979 }
980
981 // If config file is not specified explicitly, try to deduce configuration
982 // from executable name. For instance, an executable 'armv7l-clang' will
983 // search for config file 'armv7l-clang.cfg'.
984 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
985 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
986
987 if (CfgFileName.empty())
988 return false;
989
990 // Determine architecture part of the file name, if it is present.
991 StringRef CfgFileArch = CfgFileName;
992 size_t ArchPrefixLen = CfgFileArch.find('-');
993 if (ArchPrefixLen == StringRef::npos)
994 ArchPrefixLen = CfgFileArch.size();
995 llvm::Triple CfgTriple;
996 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
997 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
998 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
999 ArchPrefixLen = 0;
1000
1001 if (!StringRef(CfgFileName).endswith(".cfg"))
1002 CfgFileName += ".cfg";
1003
1004 // If config file starts with architecture name and command line options
1005 // redefine architecture (with options like -m32 -LE etc), try finding new
1006 // config file with that architecture.
1007 SmallString<128> FixedConfigFile;
1008 size_t FixedArchPrefixLen = 0;
1009 if (ArchPrefixLen) {
1010 // Get architecture name from config file name like 'i386.cfg' or
1011 // 'armv7l-clang.cfg'.
1012 // Check if command line options changes effective triple.
1013 llvm::Triple EffectiveTriple = computeTargetTriple(*this,
1014 CfgTriple.getTriple(), *CLOptions);
1015 if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
1016 FixedConfigFile = EffectiveTriple.getArchName();
1017 FixedArchPrefixLen = FixedConfigFile.size();
1018 // Append the rest of original file name so that file name transforms
1019 // like: i386-clang.cfg -> x86_64-clang.cfg.
1020 if (ArchPrefixLen < CfgFileName.size())
1021 FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
1022 }
1023 }
1024
1025 // Prepare list of directories where config file is searched for.
1026 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1027
1028 // Try to find config file. First try file with corrected architecture.
1029 llvm::SmallString<128> CfgFilePath;
1030 if (!FixedConfigFile.empty()) {
1031 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
1032 return readConfigFile(CfgFilePath);
1033 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
1034 FixedConfigFile.resize(FixedArchPrefixLen);
1035 FixedConfigFile.append(".cfg");
1036 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
1037 return readConfigFile(CfgFilePath);
1038 }
1039
1040 // Then try original file name.
1041 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
1042 return readConfigFile(CfgFilePath);
1043
1044 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
1045 if (!ClangNameParts.ModeSuffix.empty() &&
1046 !ClangNameParts.TargetPrefix.empty()) {
1047 CfgFileName.assign(ClangNameParts.TargetPrefix);
1048 CfgFileName.append(".cfg");
1049 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
1050 return readConfigFile(CfgFilePath);
1051 }
1052
1053 // Report error but only if config file was specified explicitly, by option
1054 // --config. If it was deduced from executable name, it is not an error.
1055 if (FileSpecifiedExplicitly) {
1056 Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1057 for (const StringRef &SearchDir : CfgFileSearchDirs)
1058 if (!SearchDir.empty())
1059 Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1060 return true;
1061 }
1062
1063 return false;
1064}
1065
1066Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1067 llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1068
1069 // FIXME: Handle environment options which affect driver behavior, somewhere
1070 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1071
1072 // We look for the driver mode option early, because the mode can affect
1073 // how other options are parsed.
1074
1075 auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1076 if (!DriverMode.empty())
1077 setDriverMode(DriverMode);
1078
1079 // FIXME: What are we going to do with -V and -b?
1080
1081 // Arguments specified in command line.
1082 bool ContainsError;
1083 CLOptions = std::make_unique<InputArgList>(
1084 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
1085
1086 // Try parsing configuration file.
1087 if (!ContainsError)
1088 ContainsError = loadConfigFile();
1089 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1090
1091 // All arguments, from both config file and command line.
1092 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1093 : std::move(*CLOptions));
1094
1095 // The args for config files or /clang: flags belong to different InputArgList
1096 // objects than Args. This copies an Arg from one of those other InputArgLists
1097 // to the ownership of Args.
1098 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
1099 unsigned Index = Args.MakeIndex(Opt->getSpelling());
1100 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
1101 Index, BaseArg);
1102 Copy->getValues() = Opt->getValues();
1103 if (Opt->isClaimed())
1104 Copy->claim();
1105 Copy->setOwnsValues(Opt->getOwnsValues());
1106 Opt->setOwnsValues(false);
1107 Args.append(Copy);
1108 };
1109
1110 if (HasConfigFile)
1111 for (auto *Opt : *CLOptions) {
1112 if (Opt->getOption().matches(options::OPT_config))
1113 continue;
1114 const Arg *BaseArg = &Opt->getBaseArg();
1115 if (BaseArg == Opt)
1116 BaseArg = nullptr;
1117 appendOneArg(Opt, BaseArg);
1118 }
1119
1120 // In CL mode, look for any pass-through arguments
1121 if (IsCLMode() && !ContainsError) {
1122 SmallVector<const char *, 16> CLModePassThroughArgList;
1123 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1124 A->claim();
1125 CLModePassThroughArgList.push_back(A->getValue());
1126 }
1127
1128 if (!CLModePassThroughArgList.empty()) {
1129 // Parse any pass through args using default clang processing rather
1130 // than clang-cl processing.
1131 auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1132 ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1133
1134 if (!ContainsError)
1135 for (auto *Opt : *CLModePassThroughOptions) {
1136 appendOneArg(Opt, nullptr);
1137 }
1138 }
1139 }
1140
1141 // Check for working directory option before accessing any files
1142 if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1143 if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1144 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1145
1146 // FIXME: This stuff needs to go into the Compilation, not the driver.
1147 bool CCCPrintPhases;
1148
1149 // Silence driver warnings if requested
1150 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1151
1152 // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1153 Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1154 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1155
1156 // f(no-)integated-cc1 is also used very early in main.
1157 Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1158 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1159
1160 // Ignore -pipe.
1161 Args.ClaimAllArgs(options::OPT_pipe);
1162
1163 // Extract -ccc args.
1164 //
1165 // FIXME: We need to figure out where this behavior should live. Most of it
1166 // should be outside in the client; the parts that aren't should have proper
1167 // options, either by introducing new ones or by overloading gcc ones like -V
1168 // or -b.
1169 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1170 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1171 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1172 CCCGenericGCCName = A->getValue();
1173 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1174 options::OPT_fno_crash_diagnostics,
1175 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1176
1177 // Process -fproc-stat-report options.
1178 if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1179 CCPrintProcessStats = true;
1180 CCPrintStatReportFilename = A->getValue();
1181 }
1182 if (Args.hasArg(options::OPT_fproc_stat_report))
1183 CCPrintProcessStats = true;
1184
1185 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1186 // and getToolChain is const.
1187 if (IsCLMode()) {
1188 // clang-cl targets MSVC-style Win32.
1189 llvm::Triple T(TargetTriple);
1190 T.setOS(llvm::Triple::Win32);
1191 T.setVendor(llvm::Triple::PC);
1192 T.setEnvironment(llvm::Triple::MSVC);
1193 T.setObjectFormat(llvm::Triple::COFF);
1194 TargetTriple = T.str();
1195 } else if (IsDXCMode()) {
1196 // clang-dxc target is build from target_profile option.
1197 // Just set OS to shader model to select HLSLToolChain.
1198 llvm::Triple T(TargetTriple);
1199 T.setOS(llvm::Triple::ShaderModel);
1200 TargetTriple = T.str();
1201 }
1202
1203 if (const Arg *A = Args.getLastArg(options::OPT_target))
1204 TargetTriple = A->getValue();
1205 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1206 Dir = InstalledDir = A->getValue();
1207 for (const Arg *A : Args.filtered(options::OPT_B)) {
1208 A->claim();
1209 PrefixDirs.push_back(A->getValue(0));
1210 }
1211 if (Optional<std::string> CompilerPathValue =
1212 llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1213 StringRef CompilerPath = *CompilerPathValue;
1214 while (!CompilerPath.empty()) {
1215 std::pair<StringRef, StringRef> Split =
1216 CompilerPath.split(llvm::sys::EnvPathSeparator);
1217 PrefixDirs.push_back(std::string(Split.first));
1218 CompilerPath = Split.second;
1219 }
1220 }
1221 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1222 SysRoot = A->getValue();
1223 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1224 DyldPrefix = A->getValue();
1225
1226 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1227 ResourceDir = A->getValue();
1228
1229 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1230 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1231 .Case("cwd", SaveTempsCwd)
1232 .Case("obj", SaveTempsObj)
1233 .Default(SaveTempsCwd);
1234 }
1235
1236 setLTOMode(Args);
1237
1238 // Process -fembed-bitcode= flags.
1239 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1240 StringRef Name = A->getValue();
1241 unsigned Model = llvm::StringSwitch<unsigned>(Name)
1242 .Case("off", EmbedNone)
1243 .Case("all", EmbedBitcode)
1244 .Case("bitcode", EmbedBitcode)
1245 .Case("marker", EmbedMarker)
1246 .Default(~0U);
1247 if (Model == ~0U) {
1248 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1249 << Name;
1250 } else
1251 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1252 }
1253
1254 std::unique_ptr<llvm::opt::InputArgList> UArgs =
1255 std::make_unique<InputArgList>(std::move(Args));
1256
1257 // Perform the default argument translations.
1258 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1259
1260 // Owned by the host.
1261 const ToolChain &TC = getToolChain(
1262 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1263
1264 // The compilation takes ownership of Args.
1265 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1266 ContainsError);
1267
1268 if (!HandleImmediateArgs(*C))
1269 return C;
1270
1271 // Construct the list of inputs.
1272 InputList Inputs;
1273 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1274
1275 // Populate the tool chains for the offloading devices, if any.
1276 CreateOffloadingDeviceToolChains(*C, Inputs);
1277
1278 // Construct the list of abstract actions to perform for this compilation. On
1279 // MachO targets this uses the driver-driver and universal actions.
1280 if (TC.getTriple().isOSBinFormatMachO())
1281 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1282 else
1283 BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1284
1285 if (CCCPrintPhases) {
1286 PrintActions(*C);
1287 return C;
1288 }
1289
1290 BuildJobs(*C);
1291
1292 return C;
1293}
1294
1295static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1296 llvm::opt::ArgStringList ASL;
1297 for (const auto *A : Args) {
1298 // Use user's original spelling of flags. For example, use
1299 // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1300 // wrote the former.
1301 while (A->getAlias())
1302 A = A->getAlias();
1303 A->render(Args, ASL);
1304 }
1305
1306 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1307 if (I != ASL.begin())
1308 OS << ' ';
1309 llvm::sys::printArg(OS, *I, true);
1310 }
1311 OS << '\n';
1312}
1313
1314bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1315 SmallString<128> &CrashDiagDir) {
1316 using namespace llvm::sys;
1317 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&(static_cast <bool> (llvm::Triple(llvm::sys::getProcessTriple
()).isOSDarwin() && "Only knows about .crash files on Darwin"
) ? void (0) : __assert_fail ("llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && \"Only knows about .crash files on Darwin\""
, "clang/lib/Driver/Driver.cpp", 1318, __extension__ __PRETTY_FUNCTION__
))
1318 "Only knows about .crash files on Darwin")(static_cast <bool> (llvm::Triple(llvm::sys::getProcessTriple
()).isOSDarwin() && "Only knows about .crash files on Darwin"
) ? void (0) : __assert_fail ("llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && \"Only knows about .crash files on Darwin\""
, "clang/lib/Driver/Driver.cpp", 1318, __extension__ __PRETTY_FUNCTION__
))
;
1319
1320 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1321 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1322 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1323 path::home_directory(CrashDiagDir);
1324 if (CrashDiagDir.startswith("/var/root"))
1325 CrashDiagDir = "/";
1326 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1327 int PID =
1328#if LLVM_ON_UNIX1
1329 getpid();
1330#else
1331 0;
1332#endif
1333 std::error_code EC;
1334 fs::file_status FileStatus;
1335 TimePoint<> LastAccessTime;
1336 SmallString<128> CrashFilePath;
1337 // Lookup the .crash files and get the one generated by a subprocess spawned
1338 // by this driver invocation.
1339 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1340 File != FileEnd && !EC; File.increment(EC)) {
1341 StringRef FileName = path::filename(File->path());
1342 if (!FileName.startswith(Name))
1343 continue;
1344 if (fs::status(File->path(), FileStatus))
1345 continue;
1346 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1347 llvm::MemoryBuffer::getFile(File->path());
1348 if (!CrashFile)
1349 continue;
1350 // The first line should start with "Process:", otherwise this isn't a real
1351 // .crash file.
1352 StringRef Data = CrashFile.get()->getBuffer();
1353 if (!Data.startswith("Process:"))
1354 continue;
1355 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1356 size_t ParentProcPos = Data.find("Parent Process:");
1357 if (ParentProcPos == StringRef::npos)
1358 continue;
1359 size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1360 if (LineEnd == StringRef::npos)
1361 continue;
1362 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1363 int OpenBracket = -1, CloseBracket = -1;
1364 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1365 if (ParentProcess[i] == '[')
1366 OpenBracket = i;
1367 if (ParentProcess[i] == ']')
1368 CloseBracket = i;
1369 }
1370 // Extract the parent process PID from the .crash file and check whether
1371 // it matches this driver invocation pid.
1372 int CrashPID;
1373 if (OpenBracket < 0 || CloseBracket < 0 ||
1374 ParentProcess.slice(OpenBracket + 1, CloseBracket)
1375 .getAsInteger(10, CrashPID) || CrashPID != PID) {
1376 continue;
1377 }
1378
1379 // Found a .crash file matching the driver pid. To avoid getting an older
1380 // and misleading crash file, continue looking for the most recent.
1381 // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1382 // multiple crashes poiting to the same parent process. Since the driver
1383 // does not collect pid information for the dispatched invocation there's
1384 // currently no way to distinguish among them.
1385 const auto FileAccessTime = FileStatus.getLastModificationTime();
1386 if (FileAccessTime > LastAccessTime) {
1387 CrashFilePath.assign(File->path());
1388 LastAccessTime = FileAccessTime;
1389 }
1390 }
1391
1392 // If found, copy it over to the location of other reproducer files.
1393 if (!CrashFilePath.empty()) {
1394 EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1395 if (EC)
1396 return false;
1397 return true;
1398 }
1399
1400 return false;
1401}
1402
1403// When clang crashes, produce diagnostic information including the fully
1404// preprocessed source file(s). Request that the developer attach the
1405// diagnostic information to a bug report.
1406void Driver::generateCompilationDiagnostics(
1407 Compilation &C, const Command &FailingCommand,
1408 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1409 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1410 return;
1411
1412 // Don't try to generate diagnostics for link or dsymutil jobs.
1413 if (FailingCommand.getCreator().isLinkJob() ||
1414 FailingCommand.getCreator().isDsymutilJob())
1415 return;
1416
1417 // Print the version of the compiler.
1418 PrintVersion(C, llvm::errs());
1419
1420 // Suppress driver output and emit preprocessor output to temp file.
1421 CCGenDiagnostics = true;
1422
1423 // Save the original job command(s).
1424 Command Cmd = FailingCommand;
1425
1426 // Keep track of whether we produce any errors while trying to produce
1427 // preprocessed sources.
1428 DiagnosticErrorTrap Trap(Diags);
1429
1430 // Suppress tool output.
1431 C.initCompilationForDiagnostics();
1432
1433 // Construct the list of inputs.
1434 InputList Inputs;
1435 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1436
1437 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1438 bool IgnoreInput = false;
1439
1440 // Ignore input from stdin or any inputs that cannot be preprocessed.
1441 // Check type first as not all linker inputs have a value.
1442 if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1443 IgnoreInput = true;
1444 } else if (!strcmp(it->second->getValue(), "-")) {
1445 Diag(clang::diag::note_drv_command_failed_diag_msg)
1446 << "Error generating preprocessed source(s) - "
1447 "ignoring input from stdin.";
1448 IgnoreInput = true;
1449 }
1450
1451 if (IgnoreInput) {
1452 it = Inputs.erase(it);
1453 ie = Inputs.end();
1454 } else {
1455 ++it;
1456 }
1457 }
1458
1459 if (Inputs.empty()) {
1460 Diag(clang::diag::note_drv_command_failed_diag_msg)
1461 << "Error generating preprocessed source(s) - "
1462 "no preprocessable inputs.";
1463 return;
1464 }
1465
1466 // Don't attempt to generate preprocessed files if multiple -arch options are
1467 // used, unless they're all duplicates.
1468 llvm::StringSet<> ArchNames;
1469 for (const Arg *A : C.getArgs()) {
1470 if (A->getOption().matches(options::OPT_arch)) {
1471 StringRef ArchName = A->getValue();
1472 ArchNames.insert(ArchName);
1473 }
1474 }
1475 if (ArchNames.size() > 1) {
1476 Diag(clang::diag::note_drv_command_failed_diag_msg)
1477 << "Error generating preprocessed source(s) - cannot generate "
1478 "preprocessed source with multiple -arch options.";
1479 return;
1480 }
1481
1482 // Construct the list of abstract actions to perform for this compilation. On
1483 // Darwin OSes this uses the driver-driver and builds universal actions.
1484 const ToolChain &TC = C.getDefaultToolChain();
1485 if (TC.getTriple().isOSBinFormatMachO())
1486 BuildUniversalActions(C, TC, Inputs);
1487 else
1488 BuildActions(C, C.getArgs(), Inputs, C.getActions());
1489
1490 BuildJobs(C);
1491
1492 // If there were errors building the compilation, quit now.
1493 if (Trap.hasErrorOccurred()) {
1494 Diag(clang::diag::note_drv_command_failed_diag_msg)
1495 << "Error generating preprocessed source(s).";
1496 return;
1497 }
1498
1499 // Generate preprocessed output.
1500 SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1501 C.ExecuteJobs(C.getJobs(), FailingCommands);
1502
1503 // If any of the preprocessing commands failed, clean up and exit.
1504 if (!FailingCommands.empty()) {
1505 Diag(clang::diag::note_drv_command_failed_diag_msg)
1506 << "Error generating preprocessed source(s).";
1507 return;
1508 }
1509
1510 const ArgStringList &TempFiles = C.getTempFiles();
1511 if (TempFiles.empty()) {
1512 Diag(clang::diag::note_drv_command_failed_diag_msg)
1513 << "Error generating preprocessed source(s).";
1514 return;
1515 }
1516
1517 Diag(clang::diag::note_drv_command_failed_diag_msg)
1518 << "\n********************\n\n"
1519 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1520 "Preprocessed source(s) and associated run script(s) are located at:";
1521
1522 SmallString<128> VFS;
1523 SmallString<128> ReproCrashFilename;
1524 for (const char *TempFile : TempFiles) {
1525 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1526 if (Report)
1527 Report->TemporaryFiles.push_back(TempFile);
1528 if (ReproCrashFilename.empty()) {
1529 ReproCrashFilename = TempFile;
1530 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1531 }
1532 if (StringRef(TempFile).endswith(".cache")) {
1533 // In some cases (modules) we'll dump extra data to help with reproducing
1534 // the crash into a directory next to the output.
1535 VFS = llvm::sys::path::filename(TempFile);
1536 llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1537 }
1538 }
1539
1540 // Assume associated files are based off of the first temporary file.
1541 CrashReportInfo CrashInfo(TempFiles[0], VFS);
1542
1543 llvm::SmallString<128> Script(CrashInfo.Filename);
1544 llvm::sys::path::replace_extension(Script, "sh");
1545 std::error_code EC;
1546 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1547 llvm::sys::fs::FA_Write,
1548 llvm::sys::fs::OF_Text);
1549 if (EC) {
1550 Diag(clang::diag::note_drv_command_failed_diag_msg)
1551 << "Error generating run script: " << Script << " " << EC.message();
1552 } else {
1553 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1554 << "# Driver args: ";
1555 printArgList(ScriptOS, C.getInputArgs());
1556 ScriptOS << "# Original command: ";
1557 Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1558 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1559 if (!AdditionalInformation.empty())
1560 ScriptOS << "\n# Additional information: " << AdditionalInformation
1561 << "\n";
1562 if (Report)
1563 Report->TemporaryFiles.push_back(std::string(Script.str()));
1564 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1565 }
1566
1567 // On darwin, provide information about the .crash diagnostic report.
1568 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1569 SmallString<128> CrashDiagDir;
1570 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1571 Diag(clang::diag::note_drv_command_failed_diag_msg)
1572 << ReproCrashFilename.str();
1573 } else { // Suggest a directory for the user to look for .crash files.
1574 llvm::sys::path::append(CrashDiagDir, Name);
1575 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1576 Diag(clang::diag::note_drv_command_failed_diag_msg)
1577 << "Crash backtrace is located in";
1578 Diag(clang::diag::note_drv_command_failed_diag_msg)
1579 << CrashDiagDir.str();
1580 Diag(clang::diag::note_drv_command_failed_diag_msg)
1581 << "(choose the .crash file that corresponds to your crash)";
1582 }
1583 }
1584
1585 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
1586 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1587
1588 Diag(clang::diag::note_drv_command_failed_diag_msg)
1589 << "\n\n********************";
1590}
1591
1592void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1593 // Since commandLineFitsWithinSystemLimits() may underestimate system's
1594 // capacity if the tool does not support response files, there is a chance/
1595 // that things will just work without a response file, so we silently just
1596 // skip it.
1597 if (Cmd.getResponseFileSupport().ResponseKind ==
1598 ResponseFileSupport::RF_None ||
1599 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1600 Cmd.getArguments()))
1601 return;
1602
1603 std::string TmpName = GetTemporaryPath("response", "txt");
1604 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1605}
1606
1607int Driver::ExecuteCompilation(
1608 Compilation &C,
1609 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1610 // Just print if -### was present.
1611 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1612 C.getJobs().Print(llvm::errs(), "\n", true);
1613 return 0;
1614 }
1615
1616 // If there were errors building the compilation, quit now.
1617 if (Diags.hasErrorOccurred())
1618 return 1;
1619
1620 // Set up response file names for each command, if necessary.
1621 for (auto &Job : C.getJobs())
1622 setUpResponseFiles(C, Job);
1623
1624 C.ExecuteJobs(C.getJobs(), FailingCommands);
1625
1626 // If the command succeeded, we are done.
1627 if (FailingCommands.empty())
1628 return 0;
1629
1630 // Otherwise, remove result files and print extra information about abnormal
1631 // failures.
1632 int Res = 0;
1633 for (const auto &CmdPair : FailingCommands) {
1634 int CommandRes = CmdPair.first;
1635 const Command *FailingCommand = CmdPair.second;
1636
1637 // Remove result files if we're not saving temps.
1638 if (!isSaveTempsEnabled()) {
1639 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1640 C.CleanupFileMap(C.getResultFiles(), JA, true);
1641
1642 // Failure result files are valid unless we crashed.
1643 if (CommandRes < 0)
1644 C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1645 }
1646
1647#if LLVM_ON_UNIX1
1648 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1649 // for SIGPIPE. Do not print diagnostics for this case.
1650 if (CommandRes == EX_IOERR74) {
1651 Res = CommandRes;
1652 continue;
1653 }
1654#endif
1655
1656 // Print extra information about abnormal failures, if possible.
1657 //
1658 // This is ad-hoc, but we don't want to be excessively noisy. If the result
1659 // status was 1, assume the command failed normally. In particular, if it
1660 // was the compiler then assume it gave a reasonable error code. Failures
1661 // in other tools are less common, and they generally have worse
1662 // diagnostics, so always print the diagnostic there.
1663 const Tool &FailingTool = FailingCommand->getCreator();
1664
1665 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1666 // FIXME: See FIXME above regarding result code interpretation.
1667 if (CommandRes < 0)
1668 Diag(clang::diag::err_drv_command_signalled)
1669 << FailingTool.getShortName();
1670 else
1671 Diag(clang::diag::err_drv_command_failed)
1672 << FailingTool.getShortName() << CommandRes;
1673 }
1674 }
1675 return Res;
1676}
1677
1678void Driver::PrintHelp(bool ShowHidden) const {
1679 unsigned IncludedFlagsBitmask;
1680 unsigned ExcludedFlagsBitmask;
1681 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1682 getIncludeExcludeOptionFlagMasks(IsCLMode());
1683
1684 ExcludedFlagsBitmask |= options::NoDriverOption;
1685 if (!ShowHidden)
1686 ExcludedFlagsBitmask |= HelpHidden;
1687
1688 if (IsFlangMode())
1689 IncludedFlagsBitmask |= options::FlangOption;
1690 else
1691 ExcludedFlagsBitmask |= options::FlangOnlyOption;
1692
1693 std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1694 getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1695 IncludedFlagsBitmask, ExcludedFlagsBitmask,
1696 /*ShowAllAliases=*/false);
1697}
1698
1699void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1700 if (IsFlangMode()) {
1701 OS << getClangToolFullVersion("flang-new") << '\n';
1702 } else {
1703 // FIXME: The following handlers should use a callback mechanism, we don't
1704 // know what the client would like to do.
1705 OS << getClangFullVersion() << '\n';
1706 }
1707 const ToolChain &TC = C.getDefaultToolChain();
1708 OS << "Target: " << TC.getTripleString() << '\n';
1709
1710 // Print the threading model.
1711 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1712 // Don't print if the ToolChain would have barfed on it already
1713 if (TC.isThreadModelSupported(A->getValue()))
1714 OS << "Thread model: " << A->getValue();
1715 } else
1716 OS << "Thread model: " << TC.getThreadModel();
1717 OS << '\n';
1718
1719 // Print out the install directory.
1720 OS << "InstalledDir: " << InstalledDir << '\n';
1721
1722 // If configuration file was used, print its path.
1723 if (!ConfigFile.empty())
1724 OS << "Configuration file: " << ConfigFile << '\n';
1725}
1726
1727/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1728/// option.
1729static void PrintDiagnosticCategories(raw_ostream &OS) {
1730 // Skip the empty category.
1731 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1732 ++i)
1733 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1734}
1735
1736void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1737 if (PassedFlags == "")
1738 return;
1739 // Print out all options that start with a given argument. This is used for
1740 // shell autocompletion.
1741 std::vector<std::string> SuggestedCompletions;
1742 std::vector<std::string> Flags;
1743
1744 unsigned int DisableFlags =
1745 options::NoDriverOption | options::Unsupported | options::Ignored;
1746
1747 // Make sure that Flang-only options don't pollute the Clang output
1748 // TODO: Make sure that Clang-only options don't pollute Flang output
1749 if (!IsFlangMode())
1750 DisableFlags |= options::FlangOnlyOption;
1751
1752 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1753 // because the latter indicates that the user put space before pushing tab
1754 // which should end up in a file completion.
1755 const bool HasSpace = PassedFlags.endswith(",");
1756
1757 // Parse PassedFlags by "," as all the command-line flags are passed to this
1758 // function separated by ","
1759 StringRef TargetFlags = PassedFlags;
1760 while (TargetFlags != "") {
1761 StringRef CurFlag;
1762 std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1763 Flags.push_back(std::string(CurFlag));
1764 }
1765
1766 // We want to show cc1-only options only when clang is invoked with -cc1 or
1767 // -Xclang.
1768 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1769 DisableFlags &= ~options::NoDriverOption;
1770
1771 const llvm::opt::OptTable &Opts = getOpts();
1772 StringRef Cur;
1773 Cur = Flags.at(Flags.size() - 1);
1774 StringRef Prev;
1775 if (Flags.size() >= 2) {
1776 Prev = Flags.at(Flags.size() - 2);
1777 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1778 }
1779
1780 if (SuggestedCompletions.empty())
1781 SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1782
1783 // If Flags were empty, it means the user typed `clang [tab]` where we should
1784 // list all possible flags. If there was no value completion and the user
1785 // pressed tab after a space, we should fall back to a file completion.
1786 // We're printing a newline to be consistent with what we print at the end of
1787 // this function.
1788 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1789 llvm::outs() << '\n';
1790 return;
1791 }
1792
1793 // When flag ends with '=' and there was no value completion, return empty
1794 // string and fall back to the file autocompletion.
1795 if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1796 // If the flag is in the form of "--autocomplete=-foo",
1797 // we were requested to print out all option names that start with "-foo".
1798 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1799 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1800
1801 // We have to query the -W flags manually as they're not in the OptTable.
1802 // TODO: Find a good way to add them to OptTable instead and them remove
1803 // this code.
1804 for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1805 if (S.startswith(Cur))
1806 SuggestedCompletions.push_back(std::string(S));
1807 }
1808
1809 // Sort the autocomplete candidates so that shells print them out in a
1810 // deterministic order. We could sort in any way, but we chose
1811 // case-insensitive sorting for consistency with the -help option
1812 // which prints out options in the case-insensitive alphabetical order.
1813 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1814 if (int X = A.compare_insensitive(B))
1815 return X < 0;
1816 return A.compare(B) > 0;
1817 });
1818
1819 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1820}
1821
1822bool Driver::HandleImmediateArgs(const Compilation &C) {
1823 // The order these options are handled in gcc is all over the place, but we
1824 // don't expect inconsistencies w.r.t. that to matter in practice.
1825
1826 if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1827 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1828 return false;
1829 }
1830
1831 if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1832 // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1833 // return an answer which matches our definition of __VERSION__.
1834 llvm::outs() << CLANG_VERSION_STRING"15.0.0" << "\n";
1835 return false;
1836 }
1837
1838 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1839 PrintDiagnosticCategories(llvm::outs());
1840 return false;
1841 }
1842
1843 if (C.getArgs().hasArg(options::OPT_help) ||
1844 C.getArgs().hasArg(options::OPT__help_hidden)) {
1845 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1846 return false;
1847 }
1848
1849 if (C.getArgs().hasArg(options::OPT__version)) {
1850 // Follow gcc behavior and use stdout for --version and stderr for -v.
1851 PrintVersion(C, llvm::outs());
1852 return false;
1853 }
1854
1855 if (C.getArgs().hasArg(options::OPT_v) ||
1856 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1857 C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1858 PrintVersion(C, llvm::errs());
1859 SuppressMissingInputWarning = true;
1860 }
1861
1862 if (C.getArgs().hasArg(options::OPT_v)) {
1863 if (!SystemConfigDir.empty())
1864 llvm::errs() << "System configuration file directory: "
1865 << SystemConfigDir << "\n";
1866 if (!UserConfigDir.empty())
1867 llvm::errs() << "User configuration file directory: "
1868 << UserConfigDir << "\n";
1869 }
1870
1871 const ToolChain &TC = C.getDefaultToolChain();
1872
1873 if (C.getArgs().hasArg(options::OPT_v))
1874 TC.printVerboseInfo(llvm::errs());
1875
1876 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1877 llvm::outs() << ResourceDir << '\n';
1878 return false;
1879 }
1880
1881 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1882 llvm::outs() << "programs: =";
1883 bool separator = false;
1884 // Print -B and COMPILER_PATH.
1885 for (const std::string &Path : PrefixDirs) {
1886 if (separator)
1887 llvm::outs() << llvm::sys::EnvPathSeparator;
1888 llvm::outs() << Path;
1889 separator = true;
1890 }
1891 for (const std::string &Path : TC.getProgramPaths()) {
1892 if (separator)
1893 llvm::outs() << llvm::sys::EnvPathSeparator;
1894 llvm::outs() << Path;
1895 separator = true;
1896 }
1897 llvm::outs() << "\n";
1898 llvm::outs() << "libraries: =" << ResourceDir;
1899
1900 StringRef sysroot = C.getSysRoot();
1901
1902 for (const std::string &Path : TC.getFilePaths()) {
1903 // Always print a separator. ResourceDir was the first item shown.
1904 llvm::outs() << llvm::sys::EnvPathSeparator;
1905 // Interpretation of leading '=' is needed only for NetBSD.
1906 if (Path[0] == '=')
1907 llvm::outs() << sysroot << Path.substr(1);
1908 else
1909 llvm::outs() << Path;
1910 }
1911 llvm::outs() << "\n";
1912 return false;
1913 }
1914
1915 if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
1916 std::string RuntimePath;
1917 // Get the first existing path, if any.
1918 for (auto Path : TC.getRuntimePaths()) {
1919 if (getVFS().exists(Path)) {
1920 RuntimePath = Path;
1921 break;
1922 }
1923 }
1924 if (!RuntimePath.empty())
1925 llvm::outs() << RuntimePath << '\n';
1926 else
1927 llvm::outs() << TC.getCompilerRTPath() << '\n';
1928 return false;
1929 }
1930
1931 // FIXME: The following handlers should use a callback mechanism, we don't
1932 // know what the client would like to do.
1933 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1934 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1935 return false;
1936 }
1937
1938 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1939 StringRef ProgName = A->getValue();
1940
1941 // Null program name cannot have a path.
1942 if (! ProgName.empty())
1943 llvm::outs() << GetProgramPath(ProgName, TC);
1944
1945 llvm::outs() << "\n";
1946 return false;
1947 }
1948
1949 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1950 StringRef PassedFlags = A->getValue();
1951 HandleAutocompletions(PassedFlags);
1952 return false;
1953 }
1954
1955 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1956 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1957 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1958 RegisterEffectiveTriple TripleRAII(TC, Triple);
1959 switch (RLT) {
1960 case ToolChain::RLT_CompilerRT:
1961 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1962 break;
1963 case ToolChain::RLT_Libgcc:
1964 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1965 break;
1966 }
1967 return false;
1968 }
1969
1970 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1971 for (const Multilib &Multilib : TC.getMultilibs())
1972 llvm::outs() << Multilib << "\n";
1973 return false;
1974 }
1975
1976 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1977 const Multilib &Multilib = TC.getMultilib();
1978 if (Multilib.gccSuffix().empty())
1979 llvm::outs() << ".\n";
1980 else {
1981 StringRef Suffix(Multilib.gccSuffix());
1982 assert(Suffix.front() == '/')(static_cast <bool> (Suffix.front() == '/') ? void (0) :
__assert_fail ("Suffix.front() == '/'", "clang/lib/Driver/Driver.cpp"
, 1982, __extension__ __PRETTY_FUNCTION__))
;
1983 llvm::outs() << Suffix.substr(1) << "\n";
1984 }
1985 return false;
1986 }
1987
1988 if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1989 llvm::outs() << TC.getTripleString() << "\n";
1990 return false;
1991 }
1992
1993 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1994 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1995 llvm::outs() << Triple.getTriple() << "\n";
1996 return false;
1997 }
1998
1999 if (C.getArgs().hasArg(options::OPT_print_multiarch)) {
2000 llvm::outs() << TC.getMultiarchTriple(*this, TC.getTriple(), SysRoot)
2001 << "\n";
2002 return false;
2003 }
2004
2005 if (C.getArgs().hasArg(options::OPT_print_targets)) {
2006 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2007 return false;
2008 }
2009
2010 return true;
2011}
2012
2013enum {
2014 TopLevelAction = 0,
2015 HeadSibAction = 1,
2016 OtherSibAction = 2,
2017};
2018
2019// Display an action graph human-readably. Action A is the "sink" node
2020// and latest-occuring action. Traversal is in pre-order, visiting the
2021// inputs to each action before printing the action itself.
2022static unsigned PrintActions1(const Compilation &C, Action *A,
2023 std::map<Action *, unsigned> &Ids,
2024 Twine Indent = {}, int Kind = TopLevelAction) {
2025 if (Ids.count(A)) // A was already visited.
2026 return Ids[A];
2027
2028 std::string str;
2029 llvm::raw_string_ostream os(str);
2030
2031 auto getSibIndent = [](int K) -> Twine {
2032 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
2033 };
2034
2035 Twine SibIndent = Indent + getSibIndent(Kind);
2036 int SibKind = HeadSibAction;
2037 os << Action::getClassName(A->getKind()) << ", ";
2038 if (InputAction *IA = dyn_cast<InputAction>(A)) {
2039 os << "\"" << IA->getInputArg().getValue() << "\"";
2040 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2041 os << '"' << BIA->getArchName() << '"' << ", {"
2042 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2043 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2044 bool IsFirst = true;
2045 OA->doOnEachDependence(
2046 [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2047 assert(TC && "Unknown host toolchain")(static_cast <bool> (TC && "Unknown host toolchain"
) ? void (0) : __assert_fail ("TC && \"Unknown host toolchain\""
, "clang/lib/Driver/Driver.cpp", 2047, __extension__ __PRETTY_FUNCTION__
))
;
2048 // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2049 // sm_35 this will generate:
2050 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2051 // (nvptx64-nvidia-cuda:sm_35) {#ID}
2052 if (!IsFirst)
2053 os << ", ";
2054 os << '"';
2055 os << A->getOffloadingKindPrefix();
2056 os << " (";
2057 os << TC->getTriple().normalize();
2058 if (BoundArch)
2059 os << ":" << BoundArch;
2060 os << ")";
2061 os << '"';
2062 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2063 IsFirst = false;
2064 SibKind = OtherSibAction;
2065 });
2066 } else {
2067 const ActionList *AL = &A->getInputs();
2068
2069 if (AL->size()) {
2070 const char *Prefix = "{";
2071 for (Action *PreRequisite : *AL) {
2072 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2073 Prefix = ", ";
2074 SibKind = OtherSibAction;
2075 }
2076 os << "}";
2077 } else
2078 os << "{}";
2079 }
2080
2081 // Append offload info for all options other than the offloading action
2082 // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2083 std::string offload_str;
2084 llvm::raw_string_ostream offload_os(offload_str);
2085 if (!isa<OffloadAction>(A)) {
2086 auto S = A->getOffloadingKindPrefix();
2087 if (!S.empty()) {
2088 offload_os << ", (" << S;
2089 if (A->getOffloadingArch())
2090 offload_os << ", " << A->getOffloadingArch();
2091 offload_os << ")";
2092 }
2093 }
2094
2095 auto getSelfIndent = [](int K) -> Twine {
2096 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2097 };
2098
2099 unsigned Id = Ids.size();
2100 Ids[A] = Id;
2101 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2102 << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2103
2104 return Id;
2105}
2106
2107// Print the action graphs in a compilation C.
2108// For example "clang -c file1.c file2.c" is composed of two subgraphs.
2109void Driver::PrintActions(const Compilation &C) const {
2110 std::map<Action *, unsigned> Ids;
2111 for (Action *A : C.getActions())
2112 PrintActions1(C, A, Ids);
2113}
2114
2115/// Check whether the given input tree contains any compilation or
2116/// assembly actions.
2117static bool ContainsCompileOrAssembleAction(const Action *A) {
2118 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2119 isa<AssembleJobAction>(A))
2120 return true;
2121
2122 return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2123}
2124
2125void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2126 const InputList &BAInputs) const {
2127 DerivedArgList &Args = C.getArgs();
2128 ActionList &Actions = C.getActions();
2129 llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2130 // Collect the list of architectures. Duplicates are allowed, but should only
2131 // be handled once (in the order seen).
2132 llvm::StringSet<> ArchNames;
2133 SmallVector<const char *, 4> Archs;
2134 for (Arg *A : Args) {
2135 if (A->getOption().matches(options::OPT_arch)) {
2136 // Validate the option here; we don't save the type here because its
2137 // particular spelling may participate in other driver choices.
2138 llvm::Triple::ArchType Arch =
2139 tools::darwin::getArchTypeForMachOArchName(A->getValue());
2140 if (Arch == llvm::Triple::UnknownArch) {
2141 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2142 continue;
2143 }
2144
2145 A->claim();
2146 if (ArchNames.insert(A->getValue()).second)
2147 Archs.push_back(A->getValue());
2148 }
2149 }
2150
2151 // When there is no explicit arch for this platform, make sure we still bind
2152 // the architecture (to the default) so that -Xarch_ is handled correctly.
2153 if (!Archs.size())
2154 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2155
2156 ActionList SingleActions;
2157 BuildActions(C, Args, BAInputs, SingleActions);
2158
2159 // Add in arch bindings for every top level action, as well as lipo and
2160 // dsymutil steps if needed.
2161 for (Action* Act : SingleActions) {
2162 // Make sure we can lipo this kind of output. If not (and it is an actual
2163 // output) then we disallow, since we can't create an output file with the
2164 // right name without overwriting it. We could remove this oddity by just
2165 // changing the output names to include the arch, which would also fix
2166 // -save-temps. Compatibility wins for now.
2167
2168 if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2169 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2170 << types::getTypeName(Act->getType());
2171
2172 ActionList Inputs;
2173 for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2174 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2175
2176 // Lipo if necessary, we do it this way because we need to set the arch flag
2177 // so that -Xarch_ gets overwritten.
2178 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2179 Actions.append(Inputs.begin(), Inputs.end());
2180 else
2181 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2182
2183 // Handle debug info queries.
2184 Arg *A = Args.getLastArg(options::OPT_g_Group);
2185 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2186 !A->getOption().matches(options::OPT_gstabs);
2187 if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2188 ContainsCompileOrAssembleAction(Actions.back())) {
2189
2190 // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2191 // have a compile input. We need to run 'dsymutil' ourselves in such cases
2192 // because the debug info will refer to a temporary object file which
2193 // will be removed at the end of the compilation process.
2194 if (Act->getType() == types::TY_Image) {
2195 ActionList Inputs;
2196 Inputs.push_back(Actions.back());
2197 Actions.pop_back();
2198 Actions.push_back(
2199 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2200 }
2201
2202 // Verify the debug info output.
2203 if (Args.hasArg(options::OPT_verify_debug_info)) {
2204 Action* LastAction = Actions.back();
2205 Actions.pop_back();
2206 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2207 LastAction, types::TY_Nothing));
2208 }
2209 }
2210 }
2211}
2212
2213bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2214 types::ID Ty, bool TypoCorrect) const {
2215 if (!getCheckInputsExist())
2216 return true;
2217
2218 // stdin always exists.
2219 if (Value == "-")
2220 return true;
2221
2222 if (getVFS().exists(Value))
2223 return true;
2224
2225 if (TypoCorrect) {
2226 // Check if the filename is a typo for an option flag. OptTable thinks
2227 // that all args that are not known options and that start with / are
2228 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2229 // the option `/diagnostics:caret` than a reference to a file in the root
2230 // directory.
2231 unsigned IncludedFlagsBitmask;
2232 unsigned ExcludedFlagsBitmask;
2233 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2234 getIncludeExcludeOptionFlagMasks(IsCLMode());
2235 std::string Nearest;
2236 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2237 ExcludedFlagsBitmask) <= 1) {
2238 Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2239 << Value << Nearest;
2240 return false;
2241 }
2242 }
2243
2244 // In CL mode, don't error on apparently non-existent linker inputs, because
2245 // they can be influenced by linker flags the clang driver might not
2246 // understand.
2247 // Examples:
2248 // - `clang-cl main.cc ole32.lib` in a a non-MSVC shell will make the driver
2249 // module look for an MSVC installation in the registry. (We could ask
2250 // the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2251 // look in the registry might move into lld-link in the future so that
2252 // lld-link invocations in non-MSVC shells just work too.)
2253 // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2254 // including /libpath:, which is used to find .lib and .obj files.
2255 // So do not diagnose this on the driver level. Rely on the linker diagnosing
2256 // it. (If we don't end up invoking the linker, this means we'll emit a
2257 // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2258 // of an error.)
2259 //
2260 // Only do this skip after the typo correction step above. `/Brepo` is treated
2261 // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2262 // an error if we have a flag that's within an edit distance of 1 from a
2263 // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2264 // driver in the unlikely case they run into this.)
2265 //
2266 // Don't do this for inputs that start with a '/', else we'd pass options
2267 // like /libpath: through to the linker silently.
2268 //
2269 // Emitting an error for linker inputs can also cause incorrect diagnostics
2270 // with the gcc driver. The command
2271 // clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2272 // will make lld look for some/dir/file.o, while we will diagnose here that
2273 // `/file.o` does not exist. However, configure scripts check if
2274 // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2275 // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2276 // in cc mode. (We can in cl mode because cl.exe itself only warns on
2277 // unknown flags.)
2278 if (IsCLMode() && Ty == types::TY_Object && !Value.startswith("/"))
2279 return true;
2280
2281 Diag(clang::diag::err_drv_no_such_file) << Value;
2282 return false;
2283}
2284
2285// Construct a the list of inputs and their types.
2286void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2287 InputList &Inputs) const {
2288 const llvm::opt::OptTable &Opts = getOpts();
2289 // Track the current user specified (-x) input. We also explicitly track the
2290 // argument used to set the type; we only want to claim the type when we
2291 // actually use it, so we warn about unused -x arguments.
2292 types::ID InputType = types::TY_Nothing;
2293 Arg *InputTypeArg = nullptr;
2294
2295 // The last /TC or /TP option sets the input type to C or C++ globally.
2296 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2297 options::OPT__SLASH_TP)) {
2298 InputTypeArg = TCTP;
2299 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2300 ? types::TY_C
2301 : types::TY_CXX;
2302
2303 Arg *Previous = nullptr;
2304 bool ShowNote = false;
2305 for (Arg *A :
2306 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2307 if (Previous) {
2308 Diag(clang::diag::warn_drv_overriding_flag_option)
2309 << Previous->getSpelling() << A->getSpelling();
2310 ShowNote = true;
2311 }
2312 Previous = A;
2313 }
2314 if (ShowNote)
2315 Diag(clang::diag::note_drv_t_option_is_global);
2316
2317 // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2318 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed")(static_cast <bool> (!Args.hasArg(options::OPT_x) &&
"-x and /TC or /TP is not allowed") ? void (0) : __assert_fail
("!Args.hasArg(options::OPT_x) && \"-x and /TC or /TP is not allowed\""
, "clang/lib/Driver/Driver.cpp", 2318, __extension__ __PRETTY_FUNCTION__
))
;
2319 }
2320
2321 // Warn -x after last input file has no effect
2322 {
2323 Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2324 Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2325 if (LastXArg && LastInputArg && LastInputArg->getIndex() < LastXArg->getIndex())
2326 Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2327 }
2328
2329 for (Arg *A : Args) {
2330 if (A->getOption().getKind() == Option::InputClass) {
2331 const char *Value = A->getValue();
2332 types::ID Ty = types::TY_INVALID;
2333
2334 // Infer the input type if necessary.
2335 if (InputType == types::TY_Nothing) {
2336 // If there was an explicit arg for this, claim it.
2337 if (InputTypeArg)
2338 InputTypeArg->claim();
2339
2340 // stdin must be handled specially.
2341 if (memcmp(Value, "-", 2) == 0) {
2342 if (IsFlangMode()) {
2343 Ty = types::TY_Fortran;
2344 } else {
2345 // If running with -E, treat as a C input (this changes the
2346 // builtin macros, for example). This may be overridden by -ObjC
2347 // below.
2348 //
2349 // Otherwise emit an error but still use a valid type to avoid
2350 // spurious errors (e.g., no inputs).
2351 assert(!CCGenDiagnostics && "stdin produces no crash reproducer")(static_cast <bool> (!CCGenDiagnostics && "stdin produces no crash reproducer"
) ? void (0) : __assert_fail ("!CCGenDiagnostics && \"stdin produces no crash reproducer\""
, "clang/lib/Driver/Driver.cpp", 2351, __extension__ __PRETTY_FUNCTION__
))
;
2352 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2353 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2354 : clang::diag::err_drv_unknown_stdin_type);
2355 Ty = types::TY_C;
2356 }
2357 } else {
2358 // Otherwise lookup by extension.
2359 // Fallback is C if invoked as C preprocessor, C++ if invoked with
2360 // clang-cl /E, or Object otherwise.
2361 // We use a host hook here because Darwin at least has its own
2362 // idea of what .s is.
2363 if (const char *Ext = strrchr(Value, '.'))
2364 Ty = TC.LookupTypeForExtension(Ext + 1);
2365
2366 if (Ty == types::TY_INVALID) {
2367 if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2368 Ty = types::TY_CXX;
2369 else if (CCCIsCPP() || CCGenDiagnostics)
2370 Ty = types::TY_C;
2371 else
2372 Ty = types::TY_Object;
2373 }
2374
2375 // If the driver is invoked as C++ compiler (like clang++ or c++) it
2376 // should autodetect some input files as C++ for g++ compatibility.
2377 if (CCCIsCXX()) {
2378 types::ID OldTy = Ty;
2379 Ty = types::lookupCXXTypeForCType(Ty);
2380
2381 if (Ty != OldTy)
2382 Diag(clang::diag::warn_drv_treating_input_as_cxx)
2383 << getTypeName(OldTy) << getTypeName(Ty);
2384 }
2385
2386 // If running with -fthinlto-index=, extensions that normally identify
2387 // native object files actually identify LLVM bitcode files.
2388 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2389 Ty == types::TY_Object)
2390 Ty = types::TY_LLVM_BC;
2391 }
2392
2393 // -ObjC and -ObjC++ override the default language, but only for "source
2394 // files". We just treat everything that isn't a linker input as a
2395 // source file.
2396 //
2397 // FIXME: Clean this up if we move the phase sequence into the type.
2398 if (Ty != types::TY_Object) {
2399 if (Args.hasArg(options::OPT_ObjC))
2400 Ty = types::TY_ObjC;
2401 else if (Args.hasArg(options::OPT_ObjCXX))
2402 Ty = types::TY_ObjCXX;
2403 }
2404 } else {
2405 assert(InputTypeArg && "InputType set w/o InputTypeArg")(static_cast <bool> (InputTypeArg && "InputType set w/o InputTypeArg"
) ? void (0) : __assert_fail ("InputTypeArg && \"InputType set w/o InputTypeArg\""
, "clang/lib/Driver/Driver.cpp", 2405, __extension__ __PRETTY_FUNCTION__
))
;
2406 if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2407 // If emulating cl.exe, make sure that /TC and /TP don't affect input
2408 // object files.
2409 const char *Ext = strrchr(Value, '.');
2410 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2411 Ty = types::TY_Object;
2412 }
2413 if (Ty == types::TY_INVALID) {
2414 Ty = InputType;
2415 InputTypeArg->claim();
2416 }
2417 }
2418
2419 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2420 Inputs.push_back(std::make_pair(Ty, A));
2421
2422 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2423 StringRef Value = A->getValue();
2424 if (DiagnoseInputExistence(Args, Value, types::TY_C,
2425 /*TypoCorrect=*/false)) {
2426 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2427 Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2428 }
2429 A->claim();
2430 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2431 StringRef Value = A->getValue();
2432 if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2433 /*TypoCorrect=*/false)) {
2434 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2435 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2436 }
2437 A->claim();
2438 } else if (A->getOption().hasFlag(options::LinkerInput)) {
2439 // Just treat as object type, we could make a special type for this if
2440 // necessary.
2441 Inputs.push_back(std::make_pair(types::TY_Object, A));
2442
2443 } else if (A->getOption().matches(options::OPT_x)) {
2444 InputTypeArg = A;
2445 InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2446 A->claim();
2447
2448 // Follow gcc behavior and treat as linker input for invalid -x
2449 // options. Its not clear why we shouldn't just revert to unknown; but
2450 // this isn't very important, we might as well be bug compatible.
2451 if (!InputType) {
2452 Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2453 InputType = types::TY_Object;
2454 }
2455 } else if (A->getOption().getID() == options::OPT_U) {
2456 assert(A->getNumValues() == 1 && "The /U option has one value.")(static_cast <bool> (A->getNumValues() == 1 &&
"The /U option has one value.") ? void (0) : __assert_fail (
"A->getNumValues() == 1 && \"The /U option has one value.\""
, "clang/lib/Driver/Driver.cpp", 2456, __extension__ __PRETTY_FUNCTION__
))
;
2457 StringRef Val = A->getValue(0);
2458 if (Val.find_first_of("/\\") != StringRef::npos) {
2459 // Warn about e.g. "/Users/me/myfile.c".
2460 Diag(diag::warn_slash_u_filename) << Val;
2461 Diag(diag::note_use_dashdash);
2462 }
2463 }
2464 }
2465 if (CCCIsCPP() && Inputs.empty()) {
2466 // If called as standalone preprocessor, stdin is processed
2467 // if no other input is present.
2468 Arg *A = MakeInputArg(Args, Opts, "-");
2469 Inputs.push_back(std::make_pair(types::TY_C, A));
2470 }
2471}
2472
2473namespace {
2474/// Provides a convenient interface for different programming models to generate
2475/// the required device actions.
2476class OffloadingActionBuilder final {
2477 /// Flag used to trace errors in the builder.
2478 bool IsValid = false;
2479
2480 /// The compilation that is using this builder.
2481 Compilation &C;
2482
2483 /// Map between an input argument and the offload kinds used to process it.
2484 std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2485
2486 /// Map between a host action and its originating input argument.
2487 std::map<Action *, const Arg *> HostActionToInputArgMap;
2488
2489 /// Builder interface. It doesn't build anything or keep any state.
2490 class DeviceActionBuilder {
2491 public:
2492 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2493
2494 enum ActionBuilderReturnCode {
2495 // The builder acted successfully on the current action.
2496 ABRT_Success,
2497 // The builder didn't have to act on the current action.
2498 ABRT_Inactive,
2499 // The builder was successful and requested the host action to not be
2500 // generated.
2501 ABRT_Ignore_Host,
2502 };
2503
2504 protected:
2505 /// Compilation associated with this builder.
2506 Compilation &C;
2507
2508 /// Tool chains associated with this builder. The same programming
2509 /// model may have associated one or more tool chains.
2510 SmallVector<const ToolChain *, 2> ToolChains;
2511
2512 /// The derived arguments associated with this builder.
2513 DerivedArgList &Args;
2514
2515 /// The inputs associated with this builder.
2516 const Driver::InputList &Inputs;
2517
2518 /// The associated offload kind.
2519 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2520
2521 public:
2522 DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2523 const Driver::InputList &Inputs,
2524 Action::OffloadKind AssociatedOffloadKind)
2525 : C(C), Args(Args), Inputs(Inputs),
2526 AssociatedOffloadKind(AssociatedOffloadKind) {}
2527 virtual ~DeviceActionBuilder() {}
2528
2529 /// Fill up the array \a DA with all the device dependences that should be
2530 /// added to the provided host action \a HostAction. By default it is
2531 /// inactive.
2532 virtual ActionBuilderReturnCode
2533 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2534 phases::ID CurPhase, phases::ID FinalPhase,
2535 PhasesTy &Phases) {
2536 return ABRT_Inactive;
2537 }
2538
2539 /// Update the state to include the provided host action \a HostAction as a
2540 /// dependency of the current device action. By default it is inactive.
2541 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2542 return ABRT_Inactive;
2543 }
2544
2545 /// Append top level actions generated by the builder.
2546 virtual void appendTopLevelActions(ActionList &AL) {}
2547
2548 /// Append linker device actions generated by the builder.
2549 virtual void appendLinkDeviceActions(ActionList &AL) {}
2550
2551 /// Append linker host action generated by the builder.
2552 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2553
2554 /// Append linker actions generated by the builder.
2555 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2556
2557 /// Initialize the builder. Return true if any initialization errors are
2558 /// found.
2559 virtual bool initialize() { return false; }
2560
2561 /// Return true if the builder can use bundling/unbundling.
2562 virtual bool canUseBundlerUnbundler() const { return false; }
2563
2564 /// Return true if this builder is valid. We have a valid builder if we have
2565 /// associated device tool chains.
2566 bool isValid() { return !ToolChains.empty(); }
2567
2568 /// Return the associated offload kind.
2569 Action::OffloadKind getAssociatedOffloadKind() {
2570 return AssociatedOffloadKind;
2571 }
2572 };
2573
2574 /// Base class for CUDA/HIP action builder. It injects device code in
2575 /// the host backend action.
2576 class CudaActionBuilderBase : public DeviceActionBuilder {
2577 protected:
2578 /// Flags to signal if the user requested host-only or device-only
2579 /// compilation.
2580 bool CompileHostOnly = false;
2581 bool CompileDeviceOnly = false;
2582 bool EmitLLVM = false;
2583 bool EmitAsm = false;
2584
2585 /// ID to identify each device compilation. For CUDA it is simply the
2586 /// GPU arch string. For HIP it is either the GPU arch string or GPU
2587 /// arch string plus feature strings delimited by a plus sign, e.g.
2588 /// gfx906+xnack.
2589 struct TargetID {
2590 /// Target ID string which is persistent throughout the compilation.
2591 const char *ID;
2592 TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
2593 TargetID(const char *ID) : ID(ID) {}
2594 operator const char *() { return ID; }
2595 operator StringRef() { return StringRef(ID); }
2596 };
2597 /// List of GPU architectures to use in this compilation.
2598 SmallVector<TargetID, 4> GpuArchList;
2599
2600 /// The CUDA actions for the current input.
2601 ActionList CudaDeviceActions;
2602
2603 /// The CUDA fat binary if it was generated for the current input.
2604 Action *CudaFatBinary = nullptr;
2605
2606 /// Flag that is set to true if this builder acted on the current input.
2607 bool IsActive = false;
2608
2609 /// Flag for -fgpu-rdc.
2610 bool Relocatable = false;
2611
2612 /// Default GPU architecture if there's no one specified.
2613 CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2614
2615 /// Method to generate compilation unit ID specified by option
2616 /// '-fuse-cuid='.
2617 enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2618 UseCUIDKind UseCUID = CUID_Hash;
2619
2620 /// Compilation unit ID specified by option '-cuid='.
2621 StringRef FixedCUID;
2622
2623 public:
2624 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2625 const Driver::InputList &Inputs,
2626 Action::OffloadKind OFKind)
2627 : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2628
2629 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2630 // While generating code for CUDA, we only depend on the host input action
2631 // to trigger the creation of all the CUDA device actions.
2632
2633 // If we are dealing with an input action, replicate it for each GPU
2634 // architecture. If we are in host-only mode we return 'success' so that
2635 // the host uses the CUDA offload kind.
2636 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2637 assert(!GpuArchList.empty() &&(static_cast <bool> (!GpuArchList.empty() && "We should have at least one GPU architecture."
) ? void (0) : __assert_fail ("!GpuArchList.empty() && \"We should have at least one GPU architecture.\""
, "clang/lib/Driver/Driver.cpp", 2638, __extension__ __PRETTY_FUNCTION__
))
2638 "We should have at least one GPU architecture.")(static_cast <bool> (!GpuArchList.empty() && "We should have at least one GPU architecture."
) ? void (0) : __assert_fail ("!GpuArchList.empty() && \"We should have at least one GPU architecture.\""
, "clang/lib/Driver/Driver.cpp", 2638, __extension__ __PRETTY_FUNCTION__
))
;
2639
2640 // If the host input is not CUDA or HIP, we don't need to bother about
2641 // this input.
2642 if (!(IA->getType() == types::TY_CUDA ||
2643 IA->getType() == types::TY_HIP ||
2644 IA->getType() == types::TY_PP_HIP)) {
2645 // The builder will ignore this input.
2646 IsActive = false;
2647 return ABRT_Inactive;
2648 }
2649
2650 // Set the flag to true, so that the builder acts on the current input.
2651 IsActive = true;
2652
2653 if (CompileHostOnly)
2654 return ABRT_Success;
2655
2656 // Replicate inputs for each GPU architecture.
2657 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2658 : types::TY_CUDA_DEVICE;
2659 std::string CUID = FixedCUID.str();
2660 if (CUID.empty()) {
2661 if (UseCUID == CUID_Random)
2662 CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2663 /*LowerCase=*/true);
2664 else if (UseCUID == CUID_Hash) {
2665 llvm::MD5 Hasher;
2666 llvm::MD5::MD5Result Hash;
2667 SmallString<256> RealPath;
2668 llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2669 /*expand_tilde=*/true);
2670 Hasher.update(RealPath);
2671 for (auto *A : Args) {
2672 if (A->getOption().matches(options::OPT_INPUT))
2673 continue;
2674 Hasher.update(A->getAsString(Args));
2675 }
2676 Hasher.final(Hash);
2677 CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2678 }
2679 }
2680 IA->setId(CUID);
2681
2682 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2683 CudaDeviceActions.push_back(
2684 C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
2685 }
2686
2687 return ABRT_Success;
2688 }
2689
2690 // If this is an unbundling action use it as is for each CUDA toolchain.
2691 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2692
2693 // If -fgpu-rdc is disabled, should not unbundle since there is no
2694 // device code to link.
2695 if (UA->getType() == types::TY_Object && !Relocatable)
2696 return ABRT_Inactive;
2697
2698 CudaDeviceActions.clear();
2699 auto *IA = cast<InputAction>(UA->getInputs().back());
2700 std::string FileName = IA->getInputArg().getAsString(Args);
2701 // Check if the type of the file is the same as the action. Do not
2702 // unbundle it if it is not. Do not unbundle .so files, for example,
2703 // which are not object files.
2704 if (IA->getType() == types::TY_Object &&
2705 (!llvm::sys::path::has_extension(FileName) ||
2706 types::lookupTypeForExtension(
2707 llvm::sys::path::extension(FileName).drop_front()) !=
2708 types::TY_Object))
2709 return ABRT_Inactive;
2710
2711 for (auto Arch : GpuArchList) {
2712 CudaDeviceActions.push_back(UA);
2713 UA->registerDependentActionInfo(ToolChains[0], Arch,
2714 AssociatedOffloadKind);
2715 }
2716 IsActive = true;
2717 return ABRT_Success;
2718 }
2719
2720 return IsActive ? ABRT_Success : ABRT_Inactive;
2721 }
2722
2723 void appendTopLevelActions(ActionList &AL) override {
2724 // Utility to append actions to the top level list.
2725 auto AddTopLevel = [&](Action *A, TargetID TargetID) {
2726 OffloadAction::DeviceDependences Dep;
2727 Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
2728 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2729 };
2730
2731 // If we have a fat binary, add it to the list.
2732 if (CudaFatBinary) {
2733 AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
2734 CudaDeviceActions.clear();
2735 CudaFatBinary = nullptr;
2736 return;
2737 }
2738
2739 if (CudaDeviceActions.empty())
2740 return;
2741
2742 // If we have CUDA actions at this point, that's because we have a have
2743 // partial compilation, so we should have an action for each GPU
2744 // architecture.
2745 assert(CudaDeviceActions.size() == GpuArchList.size() &&(static_cast <bool> (CudaDeviceActions.size() == GpuArchList
.size() && "Expecting one action per GPU architecture."
) ? void (0) : __assert_fail ("CudaDeviceActions.size() == GpuArchList.size() && \"Expecting one action per GPU architecture.\""
, "clang/lib/Driver/Driver.cpp", 2746, __extension__ __PRETTY_FUNCTION__
))
2746 "Expecting one action per GPU architecture.")(static_cast <bool> (CudaDeviceActions.size() == GpuArchList
.size() && "Expecting one action per GPU architecture."
) ? void (0) : __assert_fail ("CudaDeviceActions.size() == GpuArchList.size() && \"Expecting one action per GPU architecture.\""
, "clang/lib/Driver/Driver.cpp", 2746, __extension__ __PRETTY_FUNCTION__
))
;
2747 assert(ToolChains.size() == 1 &&(static_cast <bool> (ToolChains.size() == 1 && "Expecting to have a single CUDA toolchain."
) ? void (0) : __assert_fail ("ToolChains.size() == 1 && \"Expecting to have a single CUDA toolchain.\""
, "clang/lib/Driver/Driver.cpp", 2748, __extension__ __PRETTY_FUNCTION__
))
2748 "Expecting to have a single CUDA toolchain.")(static_cast <bool> (ToolChains.size() == 1 && "Expecting to have a single CUDA toolchain."
) ? void (0) : __assert_fail ("ToolChains.size() == 1 && \"Expecting to have a single CUDA toolchain.\""
, "clang/lib/Driver/Driver.cpp", 2748, __extension__ __PRETTY_FUNCTION__
))
;
2749 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2750 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2751
2752 CudaDeviceActions.clear();
2753 }
2754
2755 /// Get canonicalized offload arch option. \returns empty StringRef if the
2756 /// option is invalid.
2757 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
2758
2759 virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2760 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
2761
2762 bool initialize() override {
2763 assert(AssociatedOffloadKind == Action::OFK_Cuda ||(static_cast <bool> (AssociatedOffloadKind == Action::OFK_Cuda
|| AssociatedOffloadKind == Action::OFK_HIP) ? void (0) : __assert_fail
("AssociatedOffloadKind == Action::OFK_Cuda || AssociatedOffloadKind == Action::OFK_HIP"
, "clang/lib/Driver/Driver.cpp", 2764, __extension__ __PRETTY_FUNCTION__
))
2764 AssociatedOffloadKind == Action::OFK_HIP)(static_cast <bool> (AssociatedOffloadKind == Action::OFK_Cuda
|| AssociatedOffloadKind == Action::OFK_HIP) ? void (0) : __assert_fail
("AssociatedOffloadKind == Action::OFK_Cuda || AssociatedOffloadKind == Action::OFK_HIP"
, "clang/lib/Driver/Driver.cpp", 2764, __extension__ __PRETTY_FUNCTION__
))
;
2765
2766 // We don't need to support CUDA.
2767 if (AssociatedOffloadKind == Action::OFK_Cuda &&
2768 !C.hasOffloadToolChain<Action::OFK_Cuda>())
2769 return false;
2770
2771 // We don't need to support HIP.
2772 if (AssociatedOffloadKind == Action::OFK_HIP &&
2773 !C.hasOffloadToolChain<Action::OFK_HIP>())
2774 return false;
2775
2776 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2777 options::OPT_fno_gpu_rdc, /*Default=*/false);
2778
2779 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2780 assert(HostTC && "No toolchain for host compilation.")(static_cast <bool> (HostTC && "No toolchain for host compilation."
) ? void (0) : __assert_fail ("HostTC && \"No toolchain for host compilation.\""
, "clang/lib/Driver/Driver.cpp", 2780, __extension__ __PRETTY_FUNCTION__
))
;
2781 if (HostTC->getTriple().isNVPTX() ||
2782 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2783 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2784 // an error and abort pipeline construction early so we don't trip
2785 // asserts that assume device-side compilation.
2786 C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2787 << HostTC->getTriple().getArchName();
2788 return true;
2789 }
2790
2791 ToolChains.push_back(
2792 AssociatedOffloadKind == Action::OFK_Cuda
2793 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2794 : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2795
2796 Arg *PartialCompilationArg = Args.getLastArg(
2797 options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2798 options::OPT_cuda_compile_host_device);
2799 CompileHostOnly = PartialCompilationArg &&
2800 PartialCompilationArg->getOption().matches(
2801 options::OPT_cuda_host_only);
2802 CompileDeviceOnly = PartialCompilationArg &&
2803 PartialCompilationArg->getOption().matches(
2804 options::OPT_cuda_device_only);
2805 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2806 EmitAsm = Args.getLastArg(options::OPT_S);
2807 FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
2808 if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
2809 StringRef UseCUIDStr = A->getValue();
2810 UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
2811 .Case("hash", CUID_Hash)
2812 .Case("random", CUID_Random)
2813 .Case("none", CUID_None)
2814 .Default(CUID_Invalid);
2815 if (UseCUID == CUID_Invalid) {
2816 C.getDriver().Diag(diag::err_drv_invalid_value)
2817 << A->getAsString(Args) << UseCUIDStr;
2818 C.setContainsError();
2819 return true;
2820 }
2821 }
2822
2823 // --offload and --offload-arch options are mutually exclusive.
2824 if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
2825 Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
2826 options::OPT_no_offload_arch_EQ)) {
2827 C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
2828 << "--offload";
2829 }
2830
2831 // Collect all cuda_gpu_arch parameters, removing duplicates.
2832 std::set<StringRef> GpuArchs;
2833 bool Error = false;
2834 for (Arg *A : Args) {
2835 if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
2836 A->getOption().matches(options::OPT_no_offload_arch_EQ)))
2837 continue;
2838 A->claim();
2839
2840 StringRef ArchStr = A->getValue();
2841 if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
2842 ArchStr == "all") {
2843 GpuArchs.clear();
2844 continue;
2845 }
2846 ArchStr = getCanonicalOffloadArch(ArchStr);
2847 if (ArchStr.empty()) {
2848 Error = true;
2849 } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
2850 GpuArchs.insert(ArchStr);
2851 else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
2852 GpuArchs.erase(ArchStr);
2853 else
2854 llvm_unreachable("Unexpected option.")::llvm::llvm_unreachable_internal("Unexpected option.", "clang/lib/Driver/Driver.cpp"
, 2854)
;
2855 }
2856
2857 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
2858 if (ConflictingArchs) {
2859 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
2860 << ConflictingArchs.getValue().first
2861 << ConflictingArchs.getValue().second;
2862 C.setContainsError();
2863 return true;
2864 }
2865
2866 // Collect list of GPUs remaining in the set.
2867 for (auto Arch : GpuArchs)
2868 GpuArchList.push_back(Arch.data());
2869
2870 // Default to sm_20 which is the lowest common denominator for
2871 // supported GPUs. sm_20 code should work correctly, if
2872 // suboptimally, on all newer GPUs.
2873 if (GpuArchList.empty()) {
2874 if (ToolChains.front()->getTriple().isSPIRV())
2875 GpuArchList.push_back(CudaArch::Generic);
2876 else
2877 GpuArchList.push_back(DefaultCudaArch);
2878 }
2879
2880 return Error;
2881 }
2882 };
2883
2884 /// \brief CUDA action builder. It injects device code in the host backend
2885 /// action.
2886 class CudaActionBuilder final : public CudaActionBuilderBase {
2887 public:
2888 CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2889 const Driver::InputList &Inputs)
2890 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
2891 DefaultCudaArch = CudaArch::SM_35;
2892 }
2893
2894 StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
2895 CudaArch Arch = StringToCudaArch(ArchStr);
2896 if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
2897 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2898 return StringRef();
2899 }
2900 return CudaArchToString(Arch);
2901 }
2902
2903 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2904 getConflictOffloadArchCombination(
2905 const std::set<StringRef> &GpuArchs) override {
2906 return llvm::None;
2907 }
2908
2909 ActionBuilderReturnCode
2910 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2911 phases::ID CurPhase, phases::ID FinalPhase,
2912 PhasesTy &Phases) override {
2913 if (!IsActive)
2914 return ABRT_Inactive;
2915
2916 // If we don't have more CUDA actions, we don't have any dependences to
2917 // create for the host.
2918 if (CudaDeviceActions.empty())
2919 return ABRT_Success;
2920
2921 assert(CudaDeviceActions.size() == GpuArchList.size() &&(static_cast <bool> (CudaDeviceActions.size() == GpuArchList
.size() && "Expecting one action per GPU architecture."
) ? void (0) : __assert_fail ("CudaDeviceActions.size() == GpuArchList.size() && \"Expecting one action per GPU architecture.\""
, "clang/lib/Driver/Driver.cpp", 2922, __extension__ __PRETTY_FUNCTION__
))
2922 "Expecting one action per GPU architecture.")(static_cast <bool> (CudaDeviceActions.size() == GpuArchList
.size() && "Expecting one action per GPU architecture."
) ? void (0) : __assert_fail ("CudaDeviceActions.size() == GpuArchList.size() && \"Expecting one action per GPU architecture.\""
, "clang/lib/Driver/Driver.cpp", 2922, __extension__ __PRETTY_FUNCTION__
))
;
2923 assert(!CompileHostOnly &&(static_cast <bool> (!CompileHostOnly && "Not expecting CUDA actions in host-only compilation."
) ? void (0) : __assert_fail ("!CompileHostOnly && \"Not expecting CUDA actions in host-only compilation.\""
, "clang/lib/Driver/Driver.cpp", 2924, __extension__ __PRETTY_FUNCTION__
))
2924 "Not expecting CUDA actions in host-only compilation.")(static_cast <bool> (!CompileHostOnly && "Not expecting CUDA actions in host-only compilation."
) ? void (0) : __assert_fail ("!CompileHostOnly && \"Not expecting CUDA actions in host-only compilation.\""
, "clang/lib/Driver/Driver.cpp", 2924, __extension__ __PRETTY_FUNCTION__
))
;
2925
2926 // If we are generating code for the device or we are in a backend phase,
2927 // we attempt to generate the fat binary. We compile each arch to ptx and
2928 // assemble to cubin, then feed the cubin *and* the ptx into a device
2929 // "link" action, which uses fatbinary to combine these cubins into one
2930 // fatbin. The fatbin is then an input to the host action if not in
2931 // device-only mode.
2932 if (CompileDeviceOnly || CurPhase == phases::Backend) {
2933 ActionList DeviceActions;
2934 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2935 // Produce the device action from the current phase up to the assemble
2936 // phase.
2937 for (auto Ph : Phases) {
2938 // Skip the phases that were already dealt with.
2939 if (Ph < CurPhase)
2940 continue;
2941 // We have to be consistent with the host final phase.
2942 if (Ph > FinalPhase)
2943 break;
2944
2945 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2946 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2947
2948 if (Ph == phases::Assemble)
2949 break;
2950 }
2951
2952 // If we didn't reach the assemble phase, we can't generate the fat
2953 // binary. We don't need to generate the fat binary if we are not in
2954 // device-only mode.
2955 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2956 CompileDeviceOnly)
2957 continue;
2958
2959 Action *AssembleAction = CudaDeviceActions[I];
2960 assert(AssembleAction->getType() == types::TY_Object)(static_cast <bool> (AssembleAction->getType() == types
::TY_Object) ? void (0) : __assert_fail ("AssembleAction->getType() == types::TY_Object"
, "clang/lib/Driver/Driver.cpp", 2960, __extension__ __PRETTY_FUNCTION__
))
;
2961 assert(AssembleAction->getInputs().size() == 1)(static_cast <bool> (AssembleAction->getInputs().size
() == 1) ? void (0) : __assert_fail ("AssembleAction->getInputs().size() == 1"
, "clang/lib/Driver/Driver.cpp", 2961, __extension__ __PRETTY_FUNCTION__
))
;
2962
2963 Action *BackendAction = AssembleAction->getInputs()[0];
2964 assert(BackendAction->getType() == types::TY_PP_Asm)(static_cast <bool> (BackendAction->getType() == types
::TY_PP_Asm) ? void (0) : __assert_fail ("BackendAction->getType() == types::TY_PP_Asm"
, "clang/lib/Driver/Driver.cpp", 2964, __extension__ __PRETTY_FUNCTION__
))
;
2965
2966 for (auto &A : {AssembleAction, BackendAction}) {
2967 OffloadAction::DeviceDependences DDep;
2968 DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
2969 DeviceActions.push_back(
2970 C.MakeAction<OffloadAction>(DDep, A->getType()));
2971 }
2972 }
2973
2974 // We generate the fat binary if we have device input actions.
2975 if (!DeviceActions.empty()) {
2976 CudaFatBinary =
2977 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2978
2979 if (!CompileDeviceOnly) {
2980 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2981 Action::OFK_Cuda);
2982 // Clear the fat binary, it is already a dependence to an host
2983 // action.
2984 CudaFatBinary = nullptr;
2985 }
2986
2987 // Remove the CUDA actions as they are already connected to an host
2988 // action or fat binary.
2989 CudaDeviceActions.clear();
2990 }
2991
2992 // We avoid creating host action in device-only mode.
2993 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2994 } else if (CurPhase > phases::Backend) {
2995 // If we are past the backend phase and still have a device action, we
2996 // don't have to do anything as this action is already a device
2997 // top-level action.
2998 return ABRT_Success;
2999 }
3000
3001 assert(CurPhase < phases::Backend && "Generating single CUDA "(static_cast <bool> (CurPhase < phases::Backend &&
"Generating single CUDA " "instructions should only occur " "before the backend phase!"
) ? void (0) : __assert_fail ("CurPhase < phases::Backend && \"Generating single CUDA \" \"instructions should only occur \" \"before the backend phase!\""
, "clang/lib/Driver/Driver.cpp", 3003, __extension__ __PRETTY_FUNCTION__
))
3002 "instructions should only occur "(static_cast <bool> (CurPhase < phases::Backend &&
"Generating single CUDA " "instructions should only occur " "before the backend phase!"
) ? void (0) : __assert_fail ("CurPhase < phases::Backend && \"Generating single CUDA \" \"instructions should only occur \" \"before the backend phase!\""
, "clang/lib/Driver/Driver.cpp", 3003, __extension__ __PRETTY_FUNCTION__
))
3003 "before the backend phase!")(static_cast <bool> (CurPhase < phases::Backend &&
"Generating single CUDA " "instructions should only occur " "before the backend phase!"
) ? void (0) : __assert_fail ("CurPhase < phases::Backend && \"Generating single CUDA \" \"instructions should only occur \" \"before the backend phase!\""
, "clang/lib/Driver/Driver.cpp", 3003, __extension__ __PRETTY_FUNCTION__
))
;
3004
3005 // By default, we produce an action for each device arch.
3006 for (Action *&A : CudaDeviceActions)
3007 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3008
3009 return ABRT_Success;
3010 }
3011 };
3012 /// \brief HIP action builder. It injects device code in the host backend
3013 /// action.
3014 class HIPActionBuilder final : public CudaActionBuilderBase {
3015 /// The linker inputs obtained for each device arch.
3016 SmallVector<ActionList, 8> DeviceLinkerInputs;
3017 // The default bundling behavior depends on the type of output, therefore
3018 // BundleOutput needs to be tri-value: None, true, or false.
3019 // Bundle code objects except --no-gpu-output is specified for device
3020 // only compilation. Bundle other type of output files only if
3021 // --gpu-bundle-output is specified for device only compilation.
3022 Optional<bool> BundleOutput;
3023
3024 public:
3025 HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3026 const Driver::InputList &Inputs)
3027 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3028 DefaultCudaArch = CudaArch::GFX803;
3029 if (Args.hasArg(options::OPT_gpu_bundle_output,
3030 options::OPT_no_gpu_bundle_output))
3031 BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3032 options::OPT_no_gpu_bundle_output, true);
3033 }
3034
3035 bool canUseBundlerUnbundler() const override { return true; }
3036
3037 StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3038 llvm::StringMap<bool> Features;
3039 // getHIPOffloadTargetTriple() is known to return valid value as it has
3040 // been called successfully in the CreateOffloadingDeviceToolChains().
3041 auto ArchStr = parseTargetID(
3042 *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3043 &Features);
3044 if (!ArchStr) {
3045 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3046 C.setContainsError();
3047 return StringRef();
3048 }
3049 auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features);
3050 return Args.MakeArgStringRef(CanId);
3051 };
3052
3053 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
3054 getConflictOffloadArchCombination(
3055 const std::set<StringRef> &GpuArchs) override {
3056 return getConflictTargetIDCombination(GpuArchs);
3057 }
3058
3059 ActionBuilderReturnCode
3060 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3061 phases::ID CurPhase, phases::ID FinalPhase,
3062 PhasesTy &Phases) override {
3063 if (!IsActive)
3064 return ABRT_Inactive;
3065
3066 // amdgcn does not support linking of object files, therefore we skip
3067 // backend and assemble phases to output LLVM IR. Except for generating
3068 // non-relocatable device coee, where we generate fat binary for device
3069 // code and pass to host in Backend phase.
3070 if (CudaDeviceActions.empty())
3071 return ABRT_Success;
3072
3073 assert(((CurPhase == phases::Link && Relocatable) ||(static_cast <bool> (((CurPhase == phases::Link &&
Relocatable) || CudaDeviceActions.size() == GpuArchList.size
()) && "Expecting one action per GPU architecture.") ?
void (0) : __assert_fail ("((CurPhase == phases::Link && Relocatable) || CudaDeviceActions.size() == GpuArchList.size()) && \"Expecting one action per GPU architecture.\""
, "clang/lib/Driver/Driver.cpp", 3075, __extension__ __PRETTY_FUNCTION__
))
3074 CudaDeviceActions.size() == GpuArchList.size()) &&(static_cast <bool> (((CurPhase == phases::Link &&
Relocatable) || CudaDeviceActions.size() == GpuArchList.size
()) && "Expecting one action per GPU architecture.") ?
void (0) : __assert_fail ("((CurPhase == phases::Link && Relocatable) || CudaDeviceActions.size() == GpuArchList.size()) && \"Expecting one action per GPU architecture.\""
, "clang/lib/Driver/Driver.cpp", 3075, __extension__ __PRETTY_FUNCTION__
))
3075 "Expecting one action per GPU architecture.")(static_cast <bool> (((CurPhase == phases::Link &&
Relocatable) || CudaDeviceActions.size() == GpuArchList.size
()) && "Expecting one action per GPU architecture.") ?
void (0) : __assert_fail ("((CurPhase == phases::Link && Relocatable) || CudaDeviceActions.size() == GpuArchList.size()) && \"Expecting one action per GPU architecture.\""
, "clang/lib/Driver/Driver.cpp", 3075, __extension__ __PRETTY_FUNCTION__
))
;
3076 assert(!CompileHostOnly &&(static_cast <bool> (!CompileHostOnly && "Not expecting CUDA actions in host-only compilation."
) ? void (0) : __assert_fail ("!CompileHostOnly && \"Not expecting CUDA actions in host-only compilation.\""
, "clang/lib/Driver/Driver.cpp", 3077, __extension__ __PRETTY_FUNCTION__
))
3077 "Not expecting CUDA actions in host-only compilation.")(static_cast <bool> (!CompileHostOnly && "Not expecting CUDA actions in host-only compilation."
) ? void (0) : __assert_fail ("!CompileHostOnly && \"Not expecting CUDA actions in host-only compilation.\""
, "clang/lib/Driver/Driver.cpp", 3077, __extension__ __PRETTY_FUNCTION__
))
;
3078
3079 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3080 !EmitAsm) {
3081 // If we are in backend phase, we attempt to generate the fat binary.
3082 // We compile each arch to IR and use a link action to generate code
3083 // object containing ISA. Then we use a special "link" action to create
3084 // a fat binary containing all the code objects for different GPU's.
3085 // The fat binary is then an input to the host action.
3086 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3087 if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3088 // When LTO is enabled, skip the backend and assemble phases and
3089 // use lld to link the bitcode.
3090 ActionList AL;
3091 AL.push_back(CudaDeviceActions[I]);
3092 // Create a link action to link device IR with device library
3093 // and generate ISA.
3094 CudaDeviceActions[I] =
3095 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3096 } else {
3097 // When LTO is not enabled, we follow the conventional
3098 // compiler phases, including backend and assemble phases.
3099 ActionList AL;
3100 Action *BackendAction = nullptr;
3101 if (ToolChains.front()->getTriple().isSPIRV()) {
3102 // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3103 // (HIPSPVToolChain) runs post-link LLVM IR passes.
3104 types::ID Output = Args.hasArg(options::OPT_S)
3105 ? types::TY_LLVM_IR
3106 : types::TY_LLVM_BC;
3107 BackendAction =
3108 C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3109 } else
3110 BackendAction = C.getDriver().ConstructPhaseAction(
3111 C, Args, phases::Backend, CudaDeviceActions[I],
3112 AssociatedOffloadKind);
3113 auto AssembleAction = C.getDriver().ConstructPhaseAction(
3114 C, Args, phases::Assemble, BackendAction,
3115 AssociatedOffloadKind);
3116 AL.push_back(AssembleAction);
3117 // Create a link action to link device IR with device library
3118 // and generate ISA.
3119 CudaDeviceActions[I] =
3120 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3121 }
3122
3123 // OffloadingActionBuilder propagates device arch until an offload
3124 // action. Since the next action for creating fatbin does
3125 // not have device arch, whereas the above link action and its input
3126 // have device arch, an offload action is needed to stop the null
3127 // device arch of the next action being propagated to the above link
3128 // action.
3129 OffloadAction::DeviceDependences DDep;
3130 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3131 AssociatedOffloadKind);
3132 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3133 DDep, CudaDeviceActions[I]->getType());
3134 }
3135
3136 if (!CompileDeviceOnly || !BundleOutput.hasValue() ||
3137 BundleOutput.getValue()) {
3138 // Create HIP fat binary with a special "link" action.
3139 CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3140 types::TY_HIP_FATBIN);
3141
3142 if (!CompileDeviceOnly) {
3143 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3144 AssociatedOffloadKind);
3145 // Clear the fat binary, it is already a dependence to an host
3146 // action.
3147 CudaFatBinary = nullptr;
3148 }
3149
3150 // Remove the CUDA actions as they are already connected to an host
3151 // action or fat binary.
3152 CudaDeviceActions.clear();
3153 }
3154
3155 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3156 } else if (CurPhase == phases::Link) {
3157 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3158 // This happens to each device action originated from each input file.
3159 // Later on, device actions in DeviceLinkerInputs are used to create
3160 // device link actions in appendLinkDependences and the created device
3161 // link actions are passed to the offload action as device dependence.
3162 DeviceLinkerInputs.resize(CudaDeviceActions.size());
3163 auto LI = DeviceLinkerInputs.begin();
3164 for (auto *A : CudaDeviceActions) {
3165 LI->push_back(A);
3166 ++LI;
3167 }
3168
3169 // We will pass the device action as a host dependence, so we don't
3170 // need to do anything else with them.
3171 CudaDeviceActions.clear();
3172 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3173 }
3174
3175 // By default, we produce an action for each device arch.
3176 for (Action *&A : CudaDeviceActions)
3177 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3178 AssociatedOffloadKind);
3179
3180 if (CompileDeviceOnly && CurPhase == FinalPhase &&
3181 BundleOutput.hasValue() && BundleOutput.getValue()) {
3182 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3183 OffloadAction::DeviceDependences DDep;
3184 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3185 AssociatedOffloadKind);
3186 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3187 DDep, CudaDeviceActions[I]->getType());
3188 }
3189 CudaFatBinary =
3190 C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3191 CudaDeviceActions.clear();
3192 }
3193
3194 return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
3195 : ABRT_Success;
3196 }
3197
3198 void appendLinkDeviceActions(ActionList &AL) override {
3199 if (DeviceLinkerInputs.size() == 0)
3200 return;
3201
3202 assert(DeviceLinkerInputs.size() == GpuArchList.size() &&(static_cast <bool> (DeviceLinkerInputs.size() == GpuArchList
.size() && "Linker inputs and GPU arch list sizes do not match."
) ? void (0) : __assert_fail ("DeviceLinkerInputs.size() == GpuArchList.size() && \"Linker inputs and GPU arch list sizes do not match.\""
, "clang/lib/Driver/Driver.cpp", 3203, __extension__ __PRETTY_FUNCTION__
))
3203 "Linker inputs and GPU arch list sizes do not match.")(static_cast <bool> (DeviceLinkerInputs.size() == GpuArchList
.size() && "Linker inputs and GPU arch list sizes do not match."
) ? void (0) : __assert_fail ("DeviceLinkerInputs.size() == GpuArchList.size() && \"Linker inputs and GPU arch list sizes do not match.\""
, "clang/lib/Driver/Driver.cpp", 3203, __extension__ __PRETTY_FUNCTION__
))
;
3204
3205 ActionList Actions;
3206 // Append a new link action for each device.
3207 unsigned I = 0;
3208 for (auto &LI : DeviceLinkerInputs) {
3209 // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3210 auto *DeviceLinkAction =
3211 C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3212 // Linking all inputs for the current GPU arch.
3213 // LI contains all the inputs for the linker.
3214 OffloadAction::DeviceDependences DeviceLinkDeps;
3215 DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3216 GpuArchList[I], AssociatedOffloadKind);
3217 Actions.push_back(C.MakeAction<OffloadAction>(
3218 DeviceLinkDeps, DeviceLinkAction->getType()));
3219 ++I;
3220 }
3221 DeviceLinkerInputs.clear();
3222
3223 // Create a host object from all the device images by embedding them
3224 // in a fat binary for mixed host-device compilation. For device-only
3225 // compilation, creates a fat binary.
3226 OffloadAction::DeviceDependences DDeps;
3227 if (!CompileDeviceOnly || !BundleOutput.hasValue() ||
3228 BundleOutput.getValue()) {
3229 auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3230 Actions,
3231 CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3232 DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3233 AssociatedOffloadKind);
3234 // Offload the host object to the host linker.
3235 AL.push_back(
3236 C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3237 } else {
3238 AL.append(Actions);
3239 }
3240 }
3241
3242 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3243
3244 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3245 };
3246
3247 /// OpenMP action builder. The host bitcode is passed to the device frontend
3248 /// and all the device linked images are passed to the host link phase.
3249 class OpenMPActionBuilder final : public DeviceActionBuilder {
3250 /// The OpenMP actions for the current input.
3251 ActionList OpenMPDeviceActions;
3252
3253 /// The linker inputs obtained for each toolchain.
3254 SmallVector<ActionList, 8> DeviceLinkerInputs;
3255
3256 public:
3257 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
3258 const Driver::InputList &Inputs)
3259 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
3260
3261 ActionBuilderReturnCode
3262 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3263 phases::ID CurPhase, phases::ID FinalPhase,
3264 PhasesTy &Phases) override {
3265 if (OpenMPDeviceActions.empty())
3266 return ABRT_Inactive;
3267
3268 // We should always have an action for each input.
3269 assert(OpenMPDeviceActions.size() == ToolChains.size() &&(static_cast <bool> (OpenMPDeviceActions.size() == ToolChains
.size() && "Number of OpenMP actions and toolchains do not match."
) ? void (0) : __assert_fail ("OpenMPDeviceActions.size() == ToolChains.size() && \"Number of OpenMP actions and toolchains do not match.\""
, "clang/lib/Driver/Driver.cpp", 3270, __extension__ __PRETTY_FUNCTION__
))
3270 "Number of OpenMP actions and toolchains do not match.")(static_cast <bool> (OpenMPDeviceActions.size() == ToolChains
.size() && "Number of OpenMP actions and toolchains do not match."
) ? void (0) : __assert_fail ("OpenMPDeviceActions.size() == ToolChains.size() && \"Number of OpenMP actions and toolchains do not match.\""
, "clang/lib/Driver/Driver.cpp", 3270, __extension__ __PRETTY_FUNCTION__
))
;
3271
3272 // The host only depends on device action in the linking phase, when all
3273 // the device images have to be embedded in the host image.
3274 if (CurPhase == phases::Link) {
3275 assert(ToolChains.size() == DeviceLinkerInputs.size() &&(static_cast <bool> (ToolChains.size() == DeviceLinkerInputs
.size() && "Toolchains and linker inputs sizes do not match."
) ? void (0) : __assert_fail ("ToolChains.size() == DeviceLinkerInputs.size() && \"Toolchains and linker inputs sizes do not match.\""
, "clang/lib/Driver/Driver.cpp", 3276, __extension__ __PRETTY_FUNCTION__
))
3276 "Toolchains and linker inputs sizes do not match.")(static_cast <bool> (ToolChains.size() == DeviceLinkerInputs
.size() && "Toolchains and linker inputs sizes do not match."
) ? void (0) : __assert_fail ("ToolChains.size() == DeviceLinkerInputs.size() && \"Toolchains and linker inputs sizes do not match.\""
, "clang/lib/Driver/Driver.cpp", 3276, __extension__ __PRETTY_FUNCTION__
))
;
3277 auto LI = DeviceLinkerInputs.begin();
3278 for (auto *A : OpenMPDeviceActions) {
3279 LI->push_back(A);
3280 ++LI;
3281 }
3282
3283 // We passed the device action as a host dependence, so we don't need to
3284 // do anything else with them.
3285 OpenMPDeviceActions.clear();
3286 return ABRT_Success;
3287 }
3288
3289 // By default, we produce an action for each device arch.
3290 for (Action *&A : OpenMPDeviceActions)
3291 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3292
3293 return ABRT_Success;
3294 }
3295
3296 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
3297
3298 // If this is an input action replicate it for each OpenMP toolchain.
3299 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3300 OpenMPDeviceActions.clear();
3301 for (unsigned I = 0; I < ToolChains.size(); ++I)
3302 OpenMPDeviceActions.push_back(
3303 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
3304 return ABRT_Success;
3305 }
3306
3307 // If this is an unbundling action use it as is for each OpenMP toolchain.
3308 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3309 OpenMPDeviceActions.clear();
3310 auto *IA = cast<InputAction>(UA->getInputs().back());
3311 std::string FileName = IA->getInputArg().getAsString(Args);
3312 // Check if the type of the file is the same as the action. Do not
3313 // unbundle it if it is not. Do not unbundle .so files, for example,
3314 // which are not object files.
3315 if (IA->getType() == types::TY_Object &&
3316 (!llvm::sys::path::has_extension(FileName) ||
3317 types::lookupTypeForExtension(
3318 llvm::sys::path::extension(FileName).drop_front()) !=
3319 types::TY_Object))
3320 return ABRT_Inactive;
3321 for (unsigned I = 0; I < ToolChains.size(); ++I) {
3322 OpenMPDeviceActions.push_back(UA);
3323 UA->registerDependentActionInfo(
3324 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
3325 }
3326 return ABRT_Success;
3327 }
3328
3329 // When generating code for OpenMP we use the host compile phase result as
3330 // a dependence to the device compile phase so that it can learn what
3331 // declarations should be emitted. However, this is not the only use for
3332 // the host action, so we prevent it from being collapsed.
3333 if (isa<CompileJobAction>(HostAction)) {
3334 HostAction->setCannotBeCollapsedWithNextDependentAction();
3335 assert(ToolChains.size() == OpenMPDeviceActions.size() &&(static_cast <bool> (ToolChains.size() == OpenMPDeviceActions
.size() && "Toolchains and device action sizes do not match."
) ? void (0) : __assert_fail ("ToolChains.size() == OpenMPDeviceActions.size() && \"Toolchains and device action sizes do not match.\""
, "clang/lib/Driver/Driver.cpp", 3336, __extension__ __PRETTY_FUNCTION__
))
3336 "Toolchains and device action sizes do not match.")(static_cast <bool> (ToolChains.size() == OpenMPDeviceActions
.size() && "Toolchains and device action sizes do not match."
) ? void (0) : __assert_fail ("ToolChains.size() == OpenMPDeviceActions.size() && \"Toolchains and device action sizes do not match.\""
, "clang/lib/Driver/Driver.cpp", 3336, __extension__ __PRETTY_FUNCTION__
))
;
3337 OffloadAction::HostDependence HDep(
3338 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3339 /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3340 auto TC = ToolChains.begin();
3341 for (Action *&A : OpenMPDeviceActions) {
3342 assert(isa<CompileJobAction>(A))(static_cast <bool> (isa<CompileJobAction>(A)) ? void
(0) : __assert_fail ("isa<CompileJobAction>(A)", "clang/lib/Driver/Driver.cpp"
, 3342, __extension__ __PRETTY_FUNCTION__))
;
3343 OffloadAction::DeviceDependences DDep;
3344 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3345 A = C.MakeAction<OffloadAction>(HDep, DDep);
3346 ++TC;
3347 }
3348 }
3349 return ABRT_Success;
3350 }
3351
3352 void appendTopLevelActions(ActionList &AL) override {
3353 if (OpenMPDeviceActions.empty())
3354 return;
3355
3356 // We should always have an action for each input.
3357 assert(OpenMPDeviceActions.size() == ToolChains.size() &&(static_cast <bool> (OpenMPDeviceActions.size() == ToolChains
.size() && "Number of OpenMP actions and toolchains do not match."
) ? void (0) : __assert_fail ("OpenMPDeviceActions.size() == ToolChains.size() && \"Number of OpenMP actions and toolchains do not match.\""
, "clang/lib/Driver/Driver.cpp", 3358, __extension__ __PRETTY_FUNCTION__
))
3358 "Number of OpenMP actions and toolchains do not match.")(static_cast <bool> (OpenMPDeviceActions.size() == ToolChains
.size() && "Number of OpenMP actions and toolchains do not match."
) ? void (0) : __assert_fail ("OpenMPDeviceActions.size() == ToolChains.size() && \"Number of OpenMP actions and toolchains do not match.\""
, "clang/lib/Driver/Driver.cpp", 3358, __extension__ __PRETTY_FUNCTION__
))
;
3359
3360 // Append all device actions followed by the proper offload action.
3361 auto TI = ToolChains.begin();
3362 for (auto *A : OpenMPDeviceActions) {
3363 OffloadAction::DeviceDependences Dep;
3364 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3365 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3366 ++TI;
3367 }
3368 // We no longer need the action stored in this builder.
3369 OpenMPDeviceActions.clear();
3370 }
3371
3372 void appendLinkDeviceActions(ActionList &AL) override {
3373 assert(ToolChains.size() == DeviceLinkerInputs.size() &&(static_cast <bool> (ToolChains.size() == DeviceLinkerInputs
.size() && "Toolchains and linker inputs sizes do not match."
) ? void (0) : __assert_fail ("ToolChains.size() == DeviceLinkerInputs.size() && \"Toolchains and linker inputs sizes do not match.\""
, "clang/lib/Driver/Driver.cpp", 3374, __extension__ __PRETTY_FUNCTION__
))
3374 "Toolchains and linker inputs sizes do not match.")(static_cast <bool> (ToolChains.size() == DeviceLinkerInputs
.size() && "Toolchains and linker inputs sizes do not match."
) ? void (0) : __assert_fail ("ToolChains.size() == DeviceLinkerInputs.size() && \"Toolchains and linker inputs sizes do not match.\""
, "clang/lib/Driver/Driver.cpp", 3374, __extension__ __PRETTY_FUNCTION__
))
;
3375
3376 // Append a new link action for each device.
3377 auto TC = ToolChains.begin();
3378 for (auto &LI : DeviceLinkerInputs) {
3379 auto *DeviceLinkAction =
3380 C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3381 OffloadAction::DeviceDependences DeviceLinkDeps;
3382 DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
3383 Action::OFK_OpenMP);
3384 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3385 DeviceLinkAction->getType()));
3386 ++TC;
3387 }
3388 DeviceLinkerInputs.clear();
3389 }
3390
3391 Action* appendLinkHostActions(ActionList &AL) override {
3392 // Create wrapper bitcode from the result of device link actions and compile
3393 // it to an object which will be added to the host link command.
3394 auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
3395 auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3396 return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3397 }
3398
3399 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3400
3401 bool initialize() override {
3402 // Get the OpenMP toolchains. If we don't get any, the action builder will
3403 // know there is nothing to do related to OpenMP offloading.
3404 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
3405 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
3406 ++TI)
3407 ToolChains.push_back(TI->second);
3408
3409 DeviceLinkerInputs.resize(ToolChains.size());
3410 return false;
3411 }
3412
3413 bool canUseBundlerUnbundler() const override {
3414 // OpenMP should use bundled files whenever possible.
3415 return true;
3416 }
3417 };
3418
3419 ///
3420 /// TODO: Add the implementation for other specialized builders here.
3421 ///
3422
3423 /// Specialized builders being used by this offloading action builder.
3424 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3425
3426 /// Flag set to true if all valid builders allow file bundling/unbundling.
3427 bool CanUseBundler;
3428
3429public:
3430 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3431 const Driver::InputList &Inputs)
3432 : C(C) {
3433 // Create a specialized builder for each device toolchain.
3434
3435 IsValid = true;
3436
3437 // Create a specialized builder for CUDA.
3438 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3439
3440 // Create a specialized builder for HIP.
3441 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3442
3443 // Create a specialized builder for OpenMP.
3444 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
3445
3446 //
3447 // TODO: Build other specialized builders here.
3448 //
3449
3450 // Initialize all the builders, keeping track of errors. If all valid
3451 // builders agree that we can use bundling, set the flag to true.
3452 unsigned ValidBuilders = 0u;
3453 unsigned ValidBuildersSupportingBundling = 0u;
3454 for (auto *SB : SpecializedBuilders) {
3455 IsValid = IsValid && !SB->initialize();
3456
3457 // Update the counters if the builder is valid.
3458 if (SB->isValid()) {
3459 ++ValidBuilders;
3460 if (SB->canUseBundlerUnbundler())
3461 ++ValidBuildersSupportingBundling;
3462 }
3463 }
3464 CanUseBundler =
3465 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3466 }
3467
3468 ~OffloadingActionBuilder() {
3469 for (auto *SB : SpecializedBuilders)
3470 delete SB;
3471 }
3472
3473 /// Record a host action and its originating input argument.
3474 void recordHostAction(Action *HostAction, const Arg *InputArg) {
3475 assert(HostAction && "Invalid host action")(static_cast <bool> (HostAction && "Invalid host action"
) ? void (0) : __assert_fail ("HostAction && \"Invalid host action\""
, "clang/lib/Driver/Driver.cpp", 3475, __extension__ __PRETTY_FUNCTION__
))
;
3476 assert(InputArg && "Invalid input argument")(static_cast <bool> (InputArg && "Invalid input argument"
) ? void (0) : __assert_fail ("InputArg && \"Invalid input argument\""
, "clang/lib/Driver/Driver.cpp", 3476, __extension__ __PRETTY_FUNCTION__
))
;
3477 auto Loc = HostActionToInputArgMap.find(HostAction);
3478 if (Loc == HostActionToInputArgMap.end())
3479 HostActionToInputArgMap[HostAction] = InputArg;
3480 assert(HostActionToInputArgMap[HostAction] == InputArg &&(static_cast <bool> (HostActionToInputArgMap[HostAction
] == InputArg && "host action mapped to multiple input arguments"
) ? void (0) : __assert_fail ("HostActionToInputArgMap[HostAction] == InputArg && \"host action mapped to multiple input arguments\""
, "clang/lib/Driver/Driver.cpp", 3481, __extension__ __PRETTY_FUNCTION__
))
3481 "host action mapped to multiple input arguments")(static_cast <bool> (HostActionToInputArgMap[HostAction
] == InputArg && "host action mapped to multiple input arguments"
) ? void (0) : __assert_fail ("HostActionToInputArgMap[HostAction] == InputArg && \"host action mapped to multiple input arguments\""
, "clang/lib/Driver/Driver.cpp", 3481, __extension__ __PRETTY_FUNCTION__
))
;
3482 }
3483
3484 /// Generate an action that adds device dependences (if any) to a host action.
3485 /// If no device dependence actions exist, just return the host action \a
3486 /// HostAction. If an error is found or if no builder requires the host action
3487 /// to be generated, return nullptr.
3488 Action *
3489 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3490 phases::ID CurPhase, phases::ID FinalPhase,
3491 DeviceActionBuilder::PhasesTy &Phases) {
3492 if (!IsValid)
3493 return nullptr;
3494
3495 if (SpecializedBuilders.empty())
3496 return HostAction;
3497
3498 assert(HostAction && "Invalid host action!")(static_cast <bool> (HostAction && "Invalid host action!"
) ? void (0) : __assert_fail ("HostAction && \"Invalid host action!\""
, "clang/lib/Driver/Driver.cpp", 3498, __extension__ __PRETTY_FUNCTION__
))
;
3499 recordHostAction(HostAction, InputArg);
3500
3501 OffloadAction::DeviceDependences DDeps;
3502 // Check if all the programming models agree we should not emit the host
3503 // action. Also, keep track of the offloading kinds employed.
3504 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3505 unsigned InactiveBuilders = 0u;
3506 unsigned IgnoringBuilders = 0u;
3507 for (auto *SB : SpecializedBuilders) {
3508 if (!SB->isValid()) {
3509 ++InactiveBuilders;
3510 continue;
3511 }
3512
3513 auto RetCode =
3514 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3515
3516 // If the builder explicitly says the host action should be ignored,
3517 // we need to increment the variable that tracks the builders that request
3518 // the host object to be ignored.
3519 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3520 ++IgnoringBuilders;
3521
3522 // Unless the builder was inactive for this action, we have to record the
3523 // offload kind because the host will have to use it.
3524 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3525 OffloadKind |= SB->getAssociatedOffloadKind();
3526 }
3527
3528 // If all builders agree that the host object should be ignored, just return
3529 // nullptr.
3530 if (IgnoringBuilders &&
3531 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3532 return nullptr;
3533
3534 if (DDeps.getActions().empty())
3535 return HostAction;
3536
3537 // We have dependences we need to bundle together. We use an offload action
3538 // for that.
3539 OffloadAction::HostDependence HDep(
3540 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3541 /*BoundArch=*/nullptr, DDeps);
3542 return C.MakeAction<OffloadAction>(HDep, DDeps);
3543 }
3544
3545 /// Generate an action that adds a host dependence to a device action. The
3546 /// results will be kept in this action builder. Return true if an error was
3547 /// found.
3548 bool addHostDependenceToDeviceActions(Action *&HostAction,
3549 const Arg *InputArg) {
3550 if (!IsValid)
3551 return true;
3552
3553 recordHostAction(HostAction, InputArg);
3554
3555 // If we are supporting bundling/unbundling and the current action is an
3556 // input action of non-source file, we replace the host action by the
3557 // unbundling action. The bundler tool has the logic to detect if an input
3558 // is a bundle or not and if the input is not a bundle it assumes it is a
3559 // host file. Therefore it is safe to create an unbundling action even if
3560 // the input is not a bundle.
3561 if (CanUseBundler && isa<InputAction>(HostAction) &&
3562 InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3563 (!types::isSrcFile(HostAction->getType()) ||
3564 HostAction->getType() == types::TY_PP_HIP)) {
3565 auto UnbundlingHostAction =
3566 C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3567 UnbundlingHostAction->registerDependentActionInfo(
3568 C.getSingleOffloadToolChain<Action::OFK_Host>(),
3569 /*BoundArch=*/StringRef(), Action::OFK_Host);
3570 HostAction = UnbundlingHostAction;
3571 recordHostAction(HostAction, InputArg);
3572 }
3573
3574 assert(HostAction && "Invalid host action!")(static_cast <bool> (HostAction && "Invalid host action!"
) ? void (0) : __assert_fail ("HostAction && \"Invalid host action!\""
, "clang/lib/Driver/Driver.cpp", 3574, __extension__ __PRETTY_FUNCTION__
))
;
3575
3576 // Register the offload kinds that are used.
3577 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3578 for (auto *SB : SpecializedBuilders) {
3579 if (!SB->isValid())
3580 continue;
3581
3582 auto RetCode = SB->addDeviceDepences(HostAction);
3583
3584 // Host dependences for device actions are not compatible with that same
3585 // action being ignored.
3586 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&(static_cast <bool> (RetCode != DeviceActionBuilder::ABRT_Ignore_Host
&& "Host dependence not expected to be ignored.!") ?
void (0) : __assert_fail ("RetCode != DeviceActionBuilder::ABRT_Ignore_Host && \"Host dependence not expected to be ignored.!\""
, "clang/lib/Driver/Driver.cpp", 3587, __extension__ __PRETTY_FUNCTION__
))
3587 "Host dependence not expected to be ignored.!")(static_cast <bool> (RetCode != DeviceActionBuilder::ABRT_Ignore_Host
&& "Host dependence not expected to be ignored.!") ?
void (0) : __assert_fail ("RetCode != DeviceActionBuilder::ABRT_Ignore_Host && \"Host dependence not expected to be ignored.!\""
, "clang/lib/Driver/Driver.cpp", 3587, __extension__ __PRETTY_FUNCTION__
))
;
3588
3589 // Unless the builder was inactive for this action, we have to record the
3590 // offload kind because the host will have to use it.
3591 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3592 OffloadKind |= SB->getAssociatedOffloadKind();
3593 }
3594
3595 // Do not use unbundler if the Host does not depend on device action.
3596 if (OffloadKind == Action::OFK_None && CanUseBundler)
3597 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3598 HostAction = UA->getInputs().back();
3599
3600 return false;
3601 }
3602
3603 /// Add the offloading top level actions to the provided action list. This
3604 /// function can replace the host action by a bundling action if the
3605 /// programming models allow it.
3606 bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3607 const Arg *InputArg) {
3608 if (HostAction)
3609 recordHostAction(HostAction, InputArg);
3610
3611 // Get the device actions to be appended.
3612 ActionList OffloadAL;
3613 for (auto *SB : SpecializedBuilders) {
3614 if (!SB->isValid())
3615 continue;
3616 SB->appendTopLevelActions(OffloadAL);
3617 }
3618
3619 // If we can use the bundler, replace the host action by the bundling one in
3620 // the resulting list. Otherwise, just append the device actions. For
3621 // device only compilation, HostAction is a null pointer, therefore only do
3622 // this when HostAction is not a null pointer.
3623 if (CanUseBundler && HostAction &&
3624 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3625 // Add the host action to the list in order to create the bundling action.
3626 OffloadAL.push_back(HostAction);
3627
3628 // We expect that the host action was just appended to the action list
3629 // before this method was called.
3630 assert(HostAction == AL.back() && "Host action not in the list??")(static_cast <bool> (HostAction == AL.back() &&
"Host action not in the list??") ? void (0) : __assert_fail (
"HostAction == AL.back() && \"Host action not in the list??\""
, "clang/lib/Driver/Driver.cpp", 3630, __extension__ __PRETTY_FUNCTION__
))
;
3631 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3632 recordHostAction(HostAction, InputArg);
3633 AL.back() = HostAction;
3634 } else
3635 AL.append(OffloadAL.begin(), OffloadAL.end());
3636
3637 // Propagate to the current host action (if any) the offload information
3638 // associated with the current input.
3639 if (HostAction)
3640 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3641 /*BoundArch=*/nullptr);
3642 return false;
3643 }
3644
3645 void appendDeviceLinkActions(ActionList &AL) {
3646 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3647 if (!SB->isValid())
3648 continue;
3649 SB->appendLinkDeviceActions(AL);
3650 }
3651 }
3652
3653 Action *makeHostLinkAction() {
3654 // Build a list of device linking actions.
3655 ActionList DeviceAL;
3656 appendDeviceLinkActions(DeviceAL);
3657 if (DeviceAL.empty())
3658 return nullptr;
3659
3660 // Let builders add host linking actions.
3661 Action* HA = nullptr;
3662 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3663 if (!SB->isValid())
3664 continue;
3665 HA = SB->appendLinkHostActions(DeviceAL);
3666 // This created host action has no originating input argument, therefore
3667 // needs to set its offloading kind directly.
3668 if (HA)
3669 HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3670 /*BoundArch=*/nullptr);
3671 }
3672 return HA;
3673 }
3674
3675 /// Processes the host linker action. This currently consists of replacing it
3676 /// with an offload action if there are device link objects and propagate to
3677 /// the host action all the offload kinds used in the current compilation. The
3678 /// resulting action is returned.
3679 Action *processHostLinkAction(Action *HostAction) {
3680 // Add all the dependences from the device linking actions.
3681 OffloadAction::DeviceDependences DDeps;
3682 for (auto *SB : SpecializedBuilders) {
3683 if (!SB->isValid())
3684 continue;
3685
3686 SB->appendLinkDependences(DDeps);
3687 }
3688
3689 // Calculate all the offload kinds used in the current compilation.
3690 unsigned ActiveOffloadKinds = 0u;
3691 for (auto &I : InputArgToOffloadKindMap)
3692 ActiveOffloadKinds |= I.second;
3693
3694 // If we don't have device dependencies, we don't have to create an offload
3695 // action.
3696 if (DDeps.getActions().empty()) {
3697 // Set all the active offloading kinds to the link action. Given that it
3698 // is a link action it is assumed to depend on all actions generated so
3699 // far.
3700 HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3701 /*BoundArch=*/nullptr);
3702 // Propagate active offloading kinds for each input to the link action.
3703 // Each input may have different active offloading kind.
3704 for (auto A : HostAction->inputs()) {
3705 auto ArgLoc = HostActionToInputArgMap.find(A);
3706 if (ArgLoc == HostActionToInputArgMap.end())
3707 continue;
3708 auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3709 if (OFKLoc == InputArgToOffloadKindMap.end())
3710 continue;
3711 A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3712 }
3713 return HostAction;
3714 }
3715
3716 // Create the offload action with all dependences. When an offload action
3717 // is created the kinds are propagated to the host action, so we don't have
3718 // to do that explicitly here.
3719 OffloadAction::HostDependence HDep(
3720 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3721 /*BoundArch*/ nullptr, ActiveOffloadKinds);
3722 return C.MakeAction<OffloadAction>(HDep, DDeps);
3723 }
3724};
3725} // anonymous namespace.
3726
3727void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3728 const InputList &Inputs,
3729 ActionList &Actions) const {
3730
3731 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3732 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3733 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3734 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3735 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3736 Args.eraseArg(options::OPT__SLASH_Yc);
3737 Args.eraseArg(options::OPT__SLASH_Yu);
3738 YcArg = YuArg = nullptr;
3739 }
3740 if (YcArg && Inputs.size() > 1) {
3741 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3742 Args.eraseArg(options::OPT__SLASH_Yc);
3743 YcArg = nullptr;
3744 }
3745
3746 Arg *FinalPhaseArg;
3747 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3748
3749 if (FinalPhase == phases::Link) {
3750 if (Args.hasArg(options::OPT_emit_llvm))
3751 Diag(clang::diag::err_drv_emit_llvm_link);
3752 if (IsCLMode() && LTOMode != LTOK_None &&
3753 !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3754 .equals_insensitive("lld"))
3755 Diag(clang::diag::err_drv_lto_without_lld);
3756 }
3757
3758 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3759 // If only preprocessing or /Y- is used, all pch handling is disabled.
3760 // Rather than check for it everywhere, just remove clang-cl pch-related
3761 // flags here.
3762 Args.eraseArg(options::OPT__SLASH_Fp);
3763 Args.eraseArg(options::OPT__SLASH_Yc);
3764 Args.eraseArg(options::OPT__SLASH_Yu);
3765 YcArg = YuArg = nullptr;
3766 }
3767
3768 unsigned LastPLSize = 0;
3769 for (auto &I : Inputs) {
3770 types::ID InputType = I.first;
3771 const Arg *InputArg = I.second;
3772
3773 auto PL = types::getCompilationPhases(InputType);
3774 LastPLSize = PL.size();
3775
3776 // If the first step comes after the final phase we are doing as part of
3777 // this compilation, warn the user about it.
3778 phases::ID InitialPhase = PL[0];
3779 if (InitialPhase > FinalPhase) {
3780 if (InputArg->isClaimed())
3781 continue;
3782
3783 // Claim here to avoid the more general unused warning.
3784 InputArg->claim();
3785
3786 // Suppress all unused style warnings with -Qunused-arguments
3787 if (Args.hasArg(options::OPT_Qunused_arguments))
3788 continue;
3789
3790 // Special case when final phase determined by binary name, rather than
3791 // by a command-line argument with a corresponding Arg.
3792 if (CCCIsCPP())
3793 Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3794 << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3795 // Special case '-E' warning on a previously preprocessed file to make
3796 // more sense.
3797 else if (InitialPhase == phases::Compile &&
3798 (Args.getLastArg(options::OPT__SLASH_EP,
3799 options::OPT__SLASH_P) ||
3800 Args.getLastArg(options::OPT_E) ||
3801 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3802 getPreprocessedType(InputType) == types::TY_INVALID)
3803 Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3804 << InputArg->getAsString(Args) << !!FinalPhaseArg
3805 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3806 else
3807 Diag(clang::diag::warn_drv_input_file_unused)
3808 << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3809 << !!FinalPhaseArg
3810 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3811 continue;
3812 }
3813
3814 if (YcArg) {
3815 // Add a separate precompile phase for the compile phase.
3816 if (FinalPhase >= phases::Compile) {
3817 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3818 // Build the pipeline for the pch file.
3819 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3820 for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3821 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3822 assert(ClangClPch)(static_cast <bool> (ClangClPch) ? void (0) : __assert_fail
("ClangClPch", "clang/lib/Driver/Driver.cpp", 3822, __extension__
__PRETTY_FUNCTION__))
;
3823 Actions.push_back(ClangClPch);
3824 // The driver currently exits after the first failed command. This
3825 // relies on that behavior, to make sure if the pch generation fails,
3826 // the main compilation won't run.
3827 // FIXME: If the main compilation fails, the PCH generation should
3828 // probably not be considered successful either.
3829 }
3830 }
3831 }
3832
3833 // If we are linking, claim any options which are obviously only used for
3834 // compilation.
3835 // FIXME: Understand why the last Phase List length is used here.
3836 if (FinalPhase == phases::Link && LastPLSize == 1) {
3837 Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3838 Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3839 }
3840}
3841
3842void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3843 const InputList &Inputs, ActionList &Actions) const {
3844 llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3845
3846 if (!SuppressMissingInputWarning && Inputs.empty()) {
3847 Diag(clang::diag::err_drv_no_input_files);
3848 return;
3849 }
3850
3851 // Reject -Z* at the top level, these options should never have been exposed
3852 // by gcc.
3853 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3854 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3855
3856 // Diagnose misuse of /Fo.
3857 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3858 StringRef V = A->getValue();
3859 if (Inputs.size() > 1 && !V.empty() &&
3860 !llvm::sys::path::is_separator(V.back())) {
3861 // Check whether /Fo tries to name an output file for multiple inputs.
3862 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3863 << A->getSpelling() << V;
3864 Args.eraseArg(options::OPT__SLASH_Fo);
3865 }
3866 }
3867
3868 // Diagnose misuse of /Fa.
3869 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3870 StringRef V = A->getValue();
3871 if (Inputs.size() > 1 && !V.empty() &&
3872 !llvm::sys::path::is_separator(V.back())) {
3873 // Check whether /Fa tries to name an asm file for multiple inputs.
3874 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3875 << A->getSpelling() << V;
3876 Args.eraseArg(options::OPT__SLASH_Fa);
3877 }
3878 }
3879
3880 // Diagnose misuse of /o.
3881 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3882 if (A->getValue()[0] == '\0') {
3883 // It has to have a value.
3884 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3885 Args.eraseArg(options::OPT__SLASH_o);
3886 }
3887 }
3888
3889 handleArguments(C, Args, Inputs, Actions);
3890
3891 // Builder to be used to build offloading actions.
3892 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3893
3894 // Construct the actions to perform.
3895 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3896 ExtractAPIJobAction *ExtractAPIAction = nullptr;
3897 ActionList LinkerInputs;
3898 ActionList MergerInputs;
3899
3900 bool UseNewOffloadingDriver =
3901 C.isOffloadingHostKind(Action::OFK_OpenMP) &&
3902 !Args.hasArg(options::OPT_fno_openmp_new_driver);
3903
3904 for (auto &I : Inputs) {
3905 types::ID InputType = I.first;
3906 const Arg *InputArg = I.second;
3907
3908 auto PL = types::getCompilationPhases(*this, Args, InputType);
3909 if (PL.empty())
3910 continue;
3911
3912 auto FullPL = types::getCompilationPhases(InputType);
3913
3914 // Build the pipeline for this file.
3915 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3916
3917 // Use the current host action in any of the offloading actions, if
3918 // required.
3919 if (!UseNewOffloadingDriver)
3920 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3921 break;
3922
3923 for (phases::ID Phase : PL) {
3924
3925 // Add any offload action the host action depends on.
3926 if (!UseNewOffloadingDriver)
3927 Current = OffloadBuilder.addDeviceDependencesToHostAction(
3928 Current, InputArg, Phase, PL.back(), FullPL);
3929 if (!Current)
3930 break;
3931
3932 // Queue linker inputs.
3933 if (Phase == phases::Link) {
3934 assert(Phase == PL.back() && "linking must be final compilation step.")(static_cast <bool> (Phase == PL.back() && "linking must be final compilation step."
) ? void (0) : __assert_fail ("Phase == PL.back() && \"linking must be final compilation step.\""
, "clang/lib/Driver/Driver.cpp", 3934, __extension__ __PRETTY_FUNCTION__
))
;
3935 LinkerInputs.push_back(Current);
3936 Current = nullptr;
3937 break;
3938 }
3939
3940 // TODO: Consider removing this because the merged may not end up being
3941 // the final Phase in the pipeline. Perhaps the merged could just merge
3942 // and then pass an artifact of some sort to the Link Phase.
3943 // Queue merger inputs.
3944 if (Phase == phases::IfsMerge) {
3945 assert(Phase == PL.back() && "merging must be final compilation step.")(static_cast <bool> (Phase == PL.back() && "merging must be final compilation step."
) ? void (0) : __assert_fail ("Phase == PL.back() && \"merging must be final compilation step.\""
, "clang/lib/Driver/Driver.cpp", 3945, __extension__ __PRETTY_FUNCTION__
))
;
3946 MergerInputs.push_back(Current);
3947 Current = nullptr;
3948 break;
3949 }
3950
3951 // Each precompiled header file after a module file action is a module
3952 // header of that same module file, rather than being compiled to a
3953 // separate PCH.
3954 if (Phase == phases::Precompile && HeaderModuleAction &&
3955 getPrecompiledType(InputType) == types::TY_PCH) {
3956 HeaderModuleAction->addModuleHeaderInput(Current);
3957 Current = nullptr;
3958 break;
3959 }
3960
3961 if (Phase == phases::Precompile && ExtractAPIAction) {
3962 ExtractAPIAction->addHeaderInput(Current);
3963 Current = nullptr;
3964 break;
3965 }
3966
3967 // Try to build the offloading actions and add the result as a dependency
3968 // to the host.
3969 if (UseNewOffloadingDriver)
3970 Current = BuildOffloadingActions(C, Args, I, Current);
3971
3972 // FIXME: Should we include any prior module file outputs as inputs of
3973 // later actions in the same command line?
3974
3975 // Otherwise construct the appropriate action.
3976 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3977
3978 // We didn't create a new action, so we will just move to the next phase.
3979 if (NewCurrent == Current)
3980 continue;
3981
3982 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3983 HeaderModuleAction = HMA;
3984 else if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
3985 ExtractAPIAction = EAA;
3986
3987 Current = NewCurrent;
3988
3989 // Use the current host action in any of the offloading actions, if
3990 // required.
3991 if (!UseNewOffloadingDriver)
3992 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3993 break;
3994
3995 if (Current->getType() == types::TY_Nothing)
3996 break;
3997 }
3998
3999 // If we ended with something, add to the output list.
4000 if (Current)
4001 Actions.push_back(Current);
4002
4003 // Add any top level actions generated for offloading.
4004 if (!UseNewOffloadingDriver)
4005 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
4006 else if (Current)
4007 Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4008 /*BoundArch=*/nullptr);
4009 }
4010
4011 // Add a link action if necessary.
4012
4013 if (LinkerInputs.empty()) {
4014 Arg *FinalPhaseArg;
4015 if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4016 OffloadBuilder.appendDeviceLinkActions(Actions);
4017 }
4018
4019 if (!LinkerInputs.empty()) {
4020 if (!UseNewOffloadingDriver)
4021 if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
4022 LinkerInputs.push_back(Wrapper);
4023 Action *LA;
4024 // Check if this Linker Job should emit a static library.
4025 if (ShouldEmitStaticLibrary(Args)) {
4026 LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4027 } else if (UseNewOffloadingDriver &&
4028 C.getActiveOffloadKinds() != Action::OFK_None) {
4029 LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4030 LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4031 /*BoundArch=*/nullptr);
4032 } else {
4033 LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4034 }
4035 if (!UseNewOffloadingDriver)
4036 LA = OffloadBuilder.processHostLinkAction(LA);
4037 Actions.push_back(LA);
4038 }
4039
4040 // Add an interface stubs merge action if necessary.
4041 if (!MergerInputs.empty())
4042 Actions.push_back(
4043 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4044
4045 if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4046 auto PhaseList = types::getCompilationPhases(
4047 types::TY_IFS_CPP,
4048 Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4049
4050 ActionList MergerInputs;
4051
4052 for (auto &I : Inputs) {
4053 types::ID InputType = I.first;
4054 const Arg *InputArg = I.second;
4055
4056 // Currently clang and the llvm assembler do not support generating symbol
4057 // stubs from assembly, so we skip the input on asm files. For ifs files
4058 // we rely on the normal pipeline setup in the pipeline setup code above.
4059 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4060 InputType == types::TY_Asm)
4061 continue;
4062
4063 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4064
4065 for (auto Phase : PhaseList) {
4066 switch (Phase) {
4067 default:
4068 llvm_unreachable(::llvm::llvm_unreachable_internal("IFS Pipeline can only consist of Compile followed by IfsMerge."
, "clang/lib/Driver/Driver.cpp", 4069)
4069 "IFS Pipeline can only consist of Compile followed by IfsMerge.")::llvm::llvm_unreachable_internal("IFS Pipeline can only consist of Compile followed by IfsMerge."
, "clang/lib/Driver/Driver.cpp", 4069)
;
4070 case phases::Compile: {
4071 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4072 // files where the .o file is located. The compile action can not
4073 // handle this.
4074 if (InputType == types::TY_Object)
4075 break;
4076
4077 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4078 break;
4079 }
4080 case phases::IfsMerge: {
4081 assert(Phase == PhaseList.back() &&(static_cast <bool> (Phase == PhaseList.back() &&
"merging must be final compilation step.") ? void (0) : __assert_fail
("Phase == PhaseList.back() && \"merging must be final compilation step.\""
, "clang/lib/Driver/Driver.cpp", 4082, __extension__ __PRETTY_FUNCTION__
))
4082 "merging must be final compilation step.")(static_cast <bool> (Phase == PhaseList.back() &&
"merging must be final compilation step.") ? void (0) : __assert_fail
("Phase == PhaseList.back() && \"merging must be final compilation step.\""
, "clang/lib/Driver/Driver.cpp", 4082, __extension__ __PRETTY_FUNCTION__
))
;
4083 MergerInputs.push_back(Current);
4084 Current = nullptr;
4085 break;
4086 }
4087 }
4088 }
4089
4090 // If we ended with something, add to the output list.
4091 if (Current)
4092 Actions.push_back(Current);
4093 }
4094
4095 // Add an interface stubs merge action if necessary.
4096 if (!MergerInputs.empty())
4097 Actions.push_back(
4098 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4099 }
4100
4101 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
4102 // Compile phase that prints out supported cpu models and quits.
4103 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
4104 // Use the -mcpu=? flag as the dummy input to cc1.
4105 Actions.clear();
4106 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4107 Actions.push_back(
4108 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4109 for (auto &I : Inputs)
4110 I.second->claim();
4111 }
4112
4113 // Claim ignored clang-cl options.
4114 Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4115
4116 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
4117 // to non-CUDA compilations and should not trigger warnings there.
4118 Args.ClaimAllArgs(options::OPT_cuda_host_only);
4119 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
4120}
4121
4122Action *Driver::BuildOffloadingActions(Compilation &C,
4123 llvm::opt::DerivedArgList &Args,
4124 const InputTy &Input,
4125 Action *HostAction) const {
4126 if (!isa<CompileJobAction>(HostAction))
4127 return HostAction;
4128
4129 OffloadAction::DeviceDependences DDeps;
4130
4131 types::ID InputType = Input.first;
4132 const Arg *InputArg = Input.second;
4133
4134 const Action::OffloadKind OffloadKinds[] = {Action::OFK_OpenMP};
4135
4136 for (Action::OffloadKind Kind : OffloadKinds) {
4137 SmallVector<const ToolChain *, 2> ToolChains;
4138 ActionList DeviceActions;
4139
4140 auto TCRange = C.getOffloadToolChains(Kind);
4141 for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4142 ToolChains.push_back(TI->second);
4143
4144 if (ToolChains.empty())
4145 continue;
4146
4147 for (unsigned I = 0; I < ToolChains.size(); ++I)
4148 DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4149
4150 if (DeviceActions.empty())
4151 return HostAction;
4152
4153 auto PL = types::getCompilationPhases(*this, Args, InputType);
4154
4155 for (phases::ID Phase : PL) {
4156 if (Phase == phases::Link) {
4157 assert(Phase == PL.back() && "linking must be final compilation step.")(static_cast <bool> (Phase == PL.back() && "linking must be final compilation step."
) ? void (0) : __assert_fail ("Phase == PL.back() && \"linking must be final compilation step.\""
, "clang/lib/Driver/Driver.cpp", 4157, __extension__ __PRETTY_FUNCTION__
))
;
4158 break;
4159 }
4160
4161 auto TC = ToolChains.begin();
4162 for (Action *&A : DeviceActions) {
4163 A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4164
4165 if (isa<CompileJobAction>(A) && Kind == Action::OFK_OpenMP) {
4166 HostAction->setCannotBeCollapsedWithNextDependentAction();
4167 OffloadAction::HostDependence HDep(
4168 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4169 /*BourdArch=*/nullptr, Action::OFK_OpenMP);
4170 OffloadAction::DeviceDependences DDep;
4171 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Kind);
4172 A = C.MakeAction<OffloadAction>(HDep, DDep);
4173 }
4174 ++TC;
4175 }
4176 }
4177
4178 auto TC = ToolChains.begin();
4179 for (Action *A : DeviceActions) {
4180 DDeps.add(*A, **TC, /*BoundArch=*/nullptr, Kind);
4181 TC++;
4182 }
4183 }
4184
4185 OffloadAction::HostDependence HDep(
4186 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4187 /*BoundArch=*/nullptr, DDeps);
4188 return C.MakeAction<OffloadAction>(HDep, DDeps);
4189}
4190
4191Action *Driver::ConstructPhaseAction(
4192 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4193 Action::OffloadKind TargetDeviceOffloadKind) const {
4194 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4195
4196 // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4197 // encode this in the steps because the intermediate type depends on
4198 // arguments. Just special case here.
4199 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4200 return Input;
4201
4202 // Build the appropriate action.
4203 switch (Phase) {
4204 case phases::Link:
4205 llvm_unreachable("link action invalid here.")::llvm::llvm_unreachable_internal("link action invalid here."
, "clang/lib/Driver/Driver.cpp", 4205)
;
4206 case phases::IfsMerge:
4207 llvm_unreachable("ifsmerge action invalid here.")::llvm::llvm_unreachable_internal("ifsmerge action invalid here."
, "clang/lib/Driver/Driver.cpp", 4207)
;
4208 case phases::Preprocess: {
4209 types::ID OutputTy;
4210 // -M and -MM specify the dependency file name by altering the output type,
4211 // -if -MD and -MMD are not specified.
4212 if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4213 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4214 OutputTy = types::TY_Dependencies;
4215 } else {
4216 OutputTy = Input->getType();
4217 if (!Args.hasFlag(options::OPT_frewrite_includes,
4218 options::OPT_fno_rewrite_includes, false) &&
4219 !Args.hasFlag(options::OPT_frewrite_imports,
4220 options::OPT_fno_rewrite_imports, false) &&
4221 !CCGenDiagnostics)
4222 OutputTy = types::getPreprocessedType(OutputTy);
4223 assert(OutputTy != types::TY_INVALID &&(static_cast <bool> (OutputTy != types::TY_INVALID &&
"Cannot preprocess this input type!") ? void (0) : __assert_fail
("OutputTy != types::TY_INVALID && \"Cannot preprocess this input type!\""
, "clang/lib/Driver/Driver.cpp", 4224, __extension__ __PRETTY_FUNCTION__
))
4224 "Cannot preprocess this input type!")(static_cast <bool> (OutputTy != types::TY_INVALID &&
"Cannot preprocess this input type!") ? void (0) : __assert_fail
("OutputTy != types::TY_INVALID && \"Cannot preprocess this input type!\""
, "clang/lib/Driver/Driver.cpp", 4224, __extension__ __PRETTY_FUNCTION__
))
;
4225 }
4226 return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4227 }
4228 case phases::Precompile: {
4229 // API extraction should not generate an actual precompilation action.
4230 if (Args.hasArg(options::OPT_extract_api))
4231 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4232
4233 types::ID OutputTy = getPrecompiledType(Input->getType());
4234 assert(OutputTy != types::TY_INVALID &&(static_cast <bool> (OutputTy != types::TY_INVALID &&
"Cannot precompile this input type!") ? void (0) : __assert_fail
("OutputTy != types::TY_INVALID && \"Cannot precompile this input type!\""
, "clang/lib/Driver/Driver.cpp", 4235, __extension__ __PRETTY_FUNCTION__
))
4235 "Cannot precompile this input type!")(static_cast <bool> (OutputTy != types::TY_INVALID &&
"Cannot precompile this input type!") ? void (0) : __assert_fail
("OutputTy != types::TY_INVALID && \"Cannot precompile this input type!\""
, "clang/lib/Driver/Driver.cpp", 4235, __extension__ __PRETTY_FUNCTION__
))
;
4236
4237 // If we're given a module name, precompile header file inputs as a
4238 // module, not as a precompiled header.
4239 const char *ModName = nullptr;
4240 if (OutputTy == types::TY_PCH) {
4241 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4242 ModName = A->getValue();
4243 if (ModName)
4244 OutputTy = types::TY_ModuleFile;
4245 }
4246
4247 if (Args.hasArg(options::OPT_fsyntax_only)) {
4248 // Syntax checks should not emit a PCH file
4249 OutputTy = types::TY_Nothing;
4250 }
4251
4252 if (ModName)
4253 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
4254 ModName);
4255 return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4256 }
4257 case phases::Compile: {
4258 if (Args.hasArg(options::OPT_fsyntax_only))
4259 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4260 if (Args.hasArg(options::OPT_rewrite_objc))
4261 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4262 if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4263 return C.MakeAction<CompileJobAction>(Input,
4264 types::TY_RewrittenLegacyObjC);
4265 if (Args.hasArg(options::OPT__analyze))
4266 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4267 if (Args.hasArg(options::OPT__migrate))
4268 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4269 if (Args.hasArg(options::OPT_emit_ast))
4270 return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4271 if (Args.hasArg(options::OPT_module_file_info))
4272 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4273 if (Args.hasArg(options::OPT_verify_pch))
4274 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4275 if (Args.hasArg(options::OPT_extract_api))
4276 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4277 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4278 }
4279 case phases::Backend: {
4280 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4281 types::ID Output =
4282 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4283 return C.MakeAction<BackendJobAction>(Input, Output);
4284 }
4285 if (isUsingLTO(/* IsOffload */ true) &&
4286 TargetDeviceOffloadKind == Action::OFK_OpenMP) {
4287 types::ID Output =
4288 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4289 return C.MakeAction<BackendJobAction>(Input, Output);
4290 }
4291 if (Args.hasArg(options::OPT_emit_llvm) ||
4292 (TargetDeviceOffloadKind == Action::OFK_HIP &&
4293 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4294 false))) {
4295 types::ID Output =
4296 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
4297 return C.MakeAction<BackendJobAction>(Input, Output);
4298 }
4299 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4300 }
4301 case phases::Assemble:
4302 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4303 }
4304
4305 llvm_unreachable("invalid phase in ConstructPhaseAction")::llvm::llvm_unreachable_internal("invalid phase in ConstructPhaseAction"
, "clang/lib/Driver/Driver.cpp", 4305)
;
4306}
4307
4308void Driver::BuildJobs(Compilation &C) const {
4309 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4310
4311 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4312
4313 // It is an error to provide a -o option if we are making multiple output
4314 // files. There are exceptions:
4315 //
4316 // IfsMergeJob: when generating interface stubs enabled we want to be able to
4317 // generate the stub file at the same time that we generate the real
4318 // library/a.out. So when a .o, .so, etc are the output, with clang interface
4319 // stubs there will also be a .ifs and .ifso at the same location.
4320 //
4321 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4322 // and -c is passed, we still want to be able to generate a .ifs file while
4323 // we are also generating .o files. So we allow more than one output file in
4324 // this case as well.
4325 //
4326 if (FinalOutput) {
4327 unsigned NumOutputs = 0;
4328 unsigned NumIfsOutputs = 0;
4329 for (const Action *A : C.getActions())
4330 if (A->getType() != types::TY_Nothing &&
4331 !(A->getKind() == Action::IfsMergeJobClass ||
4332 (A->getType() == clang::driver::types::TY_IFS_CPP &&
4333 A->getKind() == clang::driver::Action::CompileJobClass &&
4334 0 == NumIfsOutputs++) ||
4335 (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4336 A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4337 ++NumOutputs;
4338
4339 if (NumOutputs > 1) {
4340 Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4341 FinalOutput = nullptr;
4342 }
4343 }
4344
4345 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4346 if (RawTriple.isOSAIX()) {
4347 if (Arg *A = C.getArgs().getLastArg(options::OPT_G))
4348 Diag(diag::err_drv_unsupported_opt_for_target)
4349 << A->getSpelling() << RawTriple.str();
4350 if (LTOMode == LTOK_Thin)
4351 Diag(diag::err_drv_clang_unsupported) << "thinLTO on AIX";
4352 }
4353
4354 // Collect the list of architectures.
4355 llvm::StringSet<> ArchNames;
4356 if (RawTriple.isOSBinFormatMachO())
4357 for (const Arg *A : C.getArgs())
4358 if (A->getOption().matches(options::OPT_arch))
4359 ArchNames.insert(A->getValue());
4360
4361 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4362 std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4363 for (Action *A : C.getActions()) {
4364 // If we are linking an image for multiple archs then the linker wants
4365 // -arch_multiple and -final_output <final image name>. Unfortunately, this
4366 // doesn't fit in cleanly because we have to pass this information down.
4367 //
4368 // FIXME: This is a hack; find a cleaner way to integrate this into the
4369 // process.
4370 const char *LinkingOutput = nullptr;
4371 if (isa<LipoJobAction>(A)) {
4372 if (FinalOutput)
4373 LinkingOutput = FinalOutput->getValue();
4374 else
4375 LinkingOutput = getDefaultImageName();
4376 }
4377
4378 BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4379 /*BoundArch*/ StringRef(),
4380 /*AtTopLevel*/ true,
4381 /*MultipleArchs*/ ArchNames.size() > 1,
4382 /*LinkingOutput*/ LinkingOutput, CachedResults,
4383 /*TargetDeviceOffloadKind*/ Action::OFK_None);
4384 }
4385
4386 // If we have more than one job, then disable integrated-cc1 for now. Do this
4387 // also when we need to report process execution statistics.
4388 if (C.getJobs().size() > 1 || CCPrintProcessStats)
4389 for (auto &J : C.getJobs())
4390 J.InProcess = false;
4391
4392 if (CCPrintProcessStats) {
4393 C.setPostCallback([=](const Command &Cmd, int Res) {
4394 Optional<llvm::sys::ProcessStatistics> ProcStat =
4395 Cmd.getProcessStatistics();
4396 if (!ProcStat)
4397 return;
4398
4399 const char *LinkingOutput = nullptr;
4400 if (FinalOutput)
4401 LinkingOutput = FinalOutput->getValue();
4402 else if (!Cmd.getOutputFilenames().empty())
4403 LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4404 else
4405 LinkingOutput = getDefaultImageName();
4406
4407 if (CCPrintStatReportFilename.empty()) {
4408 using namespace llvm;
4409 // Human readable output.
4410 outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4411 << "output=" << LinkingOutput;
4412 outs() << ", total="
4413 << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4414 << ", user="
4415 << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4416 << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4417 } else {
4418 // CSV format.
4419 std::string Buffer;
4420 llvm::raw_string_ostream Out(Buffer);
4421 llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4422 /*Quote*/ true);
4423 Out << ',';
4424 llvm::sys::printArg(Out, LinkingOutput, true);
4425 Out << ',' << ProcStat->TotalTime.count() << ','
4426 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4427 << '\n';
4428 Out.flush();
4429 std::error_code EC;
4430 llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
4431 llvm::sys::fs::OF_Append |
4432 llvm::sys::fs::OF_Text);
4433 if (EC)
4434 return;
4435 auto L = OS.lock();
4436 if (!L) {
4437 llvm::errs() << "ERROR: Cannot lock file "
4438 << CCPrintStatReportFilename << ": "
4439 << toString(L.takeError()) << "\n";
4440 return;
4441 }
4442 OS << Buffer;
4443 OS.flush();
4444 }
4445 });
4446 }
4447
4448 // If the user passed -Qunused-arguments or there were errors, don't warn
4449 // about any unused arguments.
4450 if (Diags.hasErrorOccurred() ||
4451 C.getArgs().hasArg(options::OPT_Qunused_arguments))
4452 return;
4453
4454 // Claim -### here.
4455 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4456
4457 // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4458 (void)C.getArgs().hasArg(options::OPT_driver_mode);
4459 (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4460
4461 for (Arg *A : C.getArgs()) {
4462 // FIXME: It would be nice to be able to send the argument to the
4463 // DiagnosticsEngine, so that extra values, position, and so on could be
4464 // printed.
4465 if (!A->isClaimed()) {
4466 if (A->getOption().hasFlag(options::NoArgumentUnused))
4467 continue;
4468
4469 // Suppress the warning automatically if this is just a flag, and it is an
4470 // instance of an argument we already claimed.
4471 const Option &Opt = A->getOption();
4472 if (Opt.getKind() == Option::FlagClass) {
4473 bool DuplicateClaimed = false;
4474
4475 for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4476 if (AA->isClaimed()) {
4477 DuplicateClaimed = true;
4478 break;
4479 }
4480 }
4481
4482 if (DuplicateClaimed)
4483 continue;
4484 }
4485
4486 // In clang-cl, don't mention unknown arguments here since they have
4487 // already been warned about.
4488 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
4489 Diag(clang::diag::warn_drv_unused_argument)
4490 << A->getAsString(C.getArgs());
4491 }
4492 }
4493}
4494
4495namespace {
4496/// Utility class to control the collapse of dependent actions and select the
4497/// tools accordingly.
4498class ToolSelector final {
4499 /// The tool chain this selector refers to.
4500 const ToolChain &TC;
4501
4502 /// The compilation this selector refers to.
4503 const Compilation &C;
4504
4505 /// The base action this selector refers to.
4506 const JobAction *BaseAction;
4507
4508 /// Set to true if the current toolchain refers to host actions.
4509 bool IsHostSelector;
4510
4511 /// Set to true if save-temps and embed-bitcode functionalities are active.
4512 bool SaveTemps;
4513 bool EmbedBitcode;
4514
4515 /// Get previous dependent action or null if that does not exist. If
4516 /// \a CanBeCollapsed is false, that action must be legal to collapse or
4517 /// null will be returned.
4518 const JobAction *getPrevDependentAction(const ActionList &Inputs,
4519 ActionList &SavedOffloadAction,
4520 bool CanBeCollapsed = true) {
4521 // An option can be collapsed only if it has a single input.
4522 if (Inputs.size() != 1)
4523 return nullptr;
4524
4525 Action *CurAction = *Inputs.begin();
4526 if (CanBeCollapsed &&
4527 !CurAction->isCollapsingWithNextDependentActionLegal())
4528 return nullptr;
4529
4530 // If the input action is an offload action. Look through it and save any
4531 // offload action that can be dropped in the event of a collapse.
4532 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
4533 // If the dependent action is a device action, we will attempt to collapse
4534 // only with other device actions. Otherwise, we would do the same but
4535 // with host actions only.
4536 if (!IsHostSelector) {
4537 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4538 CurAction =
4539 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4540 if (CanBeCollapsed &&
4541 !CurAction->isCollapsingWithNextDependentActionLegal())
4542 return nullptr;
4543 SavedOffloadAction.push_back(OA);
4544 return dyn_cast<JobAction>(CurAction);
4545 }
4546 } else if (OA->hasHostDependence()) {
4547 CurAction = OA->getHostDependence();
4548 if (CanBeCollapsed &&
4549 !CurAction->isCollapsingWithNextDependentActionLegal())
4550 return nullptr;
4551 SavedOffloadAction.push_back(OA);
4552 return dyn_cast<JobAction>(CurAction);
4553 }
4554 return nullptr;
4555 }
4556
4557 return dyn_cast<JobAction>(CurAction);
4558 }
4559
4560 /// Return true if an assemble action can be collapsed.
4561 bool canCollapseAssembleAction() const {
4562 return TC.useIntegratedAs() && !SaveTemps &&
4563 !C.getArgs().hasArg(options::OPT_via_file_asm) &&
4564 !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
4565 !C.getArgs().hasArg(options::OPT__SLASH_Fa);
4566 }
4567
4568 /// Return true if a preprocessor action can be collapsed.
4569 bool canCollapsePreprocessorAction() const {
4570 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
4571 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
4572 !C.getArgs().hasArg(options::OPT_rewrite_objc);
4573 }
4574
4575 /// Struct that relates an action with the offload actions that would be
4576 /// collapsed with it.
4577 struct JobActionInfo final {
4578 /// The action this info refers to.
4579 const JobAction *JA = nullptr;
4580 /// The offload actions we need to take care off if this action is
4581 /// collapsed.
4582 ActionList SavedOffloadAction;
4583 };
4584
4585 /// Append collapsed offload actions from the give nnumber of elements in the
4586 /// action info array.
4587 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
4588 ArrayRef<JobActionInfo> &ActionInfo,
4589 unsigned ElementNum) {
4590 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.")(static_cast <bool> (ElementNum <= ActionInfo.size()
&& "Invalid number of elements.") ? void (0) : __assert_fail
("ElementNum <= ActionInfo.size() && \"Invalid number of elements.\""
, "clang/lib/Driver/Driver.cpp", 4590, __extension__ __PRETTY_FUNCTION__
))
;
4591 for (unsigned I = 0; I < ElementNum; ++I)
4592 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
4593 ActionInfo[I].SavedOffloadAction.end());
4594 }
4595
4596 /// Functions that attempt to perform the combining. They detect if that is
4597 /// legal, and if so they update the inputs \a Inputs and the offload action
4598 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4599 /// the combined action is returned. If the combining is not legal or if the
4600 /// tool does not exist, null is returned.
4601 /// Currently three kinds of collapsing are supported:
4602 /// - Assemble + Backend + Compile;
4603 /// - Assemble + Backend ;
4604 /// - Backend + Compile.
4605 const Tool *
4606 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4607 ActionList &Inputs,
4608 ActionList &CollapsedOffloadAction) {
4609 if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4610 return nullptr;
4611 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4612 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4613 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4614 if (!AJ || !BJ || !CJ)
4615 return nullptr;
4616
4617 // Get compiler tool.
4618 const Tool *T = TC.SelectTool(*CJ);
4619 if (!T)
4620 return nullptr;
4621
4622 // Can't collapse if we don't have codegen support unless we are
4623 // emitting LLVM IR.
4624 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
4625 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
4626 return nullptr;
4627
4628 // When using -fembed-bitcode, it is required to have the same tool (clang)
4629 // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4630 if (EmbedBitcode) {
4631 const Tool *BT = TC.SelectTool(*BJ);
4632 if (BT == T)
4633 return nullptr;
4634 }
4635
4636 if (!T->hasIntegratedAssembler())
4637 return nullptr;
4638
4639 Inputs = CJ->getInputs();
4640 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4641 /*NumElements=*/3);
4642 return T;
4643 }
4644 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
4645 ActionList &Inputs,
4646 ActionList &CollapsedOffloadAction) {
4647 if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
4648 return nullptr;
4649 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4650 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4651 if (!AJ || !BJ)
4652 return nullptr;
4653
4654 // Get backend tool.
4655 const Tool *T = TC.SelectTool(*BJ);
4656 if (!T)
4657 return nullptr;
4658
4659 if (!T->hasIntegratedAssembler())
4660 return nullptr;
4661
4662 Inputs = BJ->getInputs();
4663 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4664 /*NumElements=*/2);
4665 return T;
4666 }
4667 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4668 ActionList &Inputs,
4669 ActionList &CollapsedOffloadAction) {
4670 if (ActionInfo.size() < 2)
4671 return nullptr;
4672 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
4673 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
4674 if (!BJ || !CJ)
4675 return nullptr;
4676
4677 // Check if the initial input (to the compile job or its predessor if one
4678 // exists) is LLVM bitcode. In that case, no preprocessor step is required
4679 // and we can still collapse the compile and backend jobs when we have
4680 // -save-temps. I.e. there is no need for a separate compile job just to
4681 // emit unoptimized bitcode.
4682 bool InputIsBitcode = true;
4683 for (size_t i = 1; i < ActionInfo.size(); i++)
4684 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
4685 ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
4686 InputIsBitcode = false;
4687 break;
4688 }
4689 if (!InputIsBitcode && !canCollapsePreprocessorAction())
4690 return nullptr;
4691
4692 // Get compiler tool.
4693 const Tool *T = TC.SelectTool(*CJ);
4694 if (!T)
4695 return nullptr;
4696
4697 // Can't collapse if we don't have codegen support unless we are
4698 // emitting LLVM IR.
4699 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
4700 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
4701 return nullptr;
4702
4703 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
4704 return nullptr;
4705
4706 Inputs = CJ->getInputs();
4707 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4708 /*NumElements=*/2);
4709 return T;
4710 }
4711
4712 /// Updates the inputs if the obtained tool supports combining with
4713 /// preprocessor action, and the current input is indeed a preprocessor
4714 /// action. If combining results in the collapse of offloading actions, those
4715 /// are appended to \a CollapsedOffloadAction.
4716 void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
4717 ActionList &CollapsedOffloadAction) {
4718 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
4719 return;
4720
4721 // Attempt to get a preprocessor action dependence.
4722 ActionList PreprocessJobOffloadActions;
4723 ActionList NewInputs;
4724 for (Action *A : Inputs) {
4725 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
4726 if (!PJ || !isa<PreprocessJobAction>(PJ)) {
4727 NewInputs.push_back(A);
4728 continue;
4729 }
4730
4731 // This is legal to combine. Append any offload action we found and add the
4732 // current input to preprocessor inputs.
4733 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
4734 PreprocessJobOffloadActions.end());
4735 NewInputs.append(PJ->input_begin(), PJ->input_end());
4736 }
4737 Inputs = NewInputs;
4738 }
4739
4740public:
4741 ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
4742 const Compilation &C, bool SaveTemps, bool EmbedBitcode)
4743 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
4744 EmbedBitcode(EmbedBitcode) {
4745 assert(BaseAction && "Invalid base action.")(static_cast <bool> (BaseAction && "Invalid base action."
) ? void (0) : __assert_fail ("BaseAction && \"Invalid base action.\""
, "clang/lib/Driver/Driver.cpp", 4745, __extension__ __PRETTY_FUNCTION__
))
;
4746 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
4747 }
4748
4749 /// Check if a chain of actions can be combined and return the tool that can
4750 /// handle the combination of actions. The pointer to the current inputs \a
4751 /// Inputs and the list of offload actions \a CollapsedOffloadActions
4752 /// connected to collapsed actions are updated accordingly. The latter enables
4753 /// the caller of the selector to process them afterwards instead of just
4754 /// dropping them. If no suitable tool is found, null will be returned.
4755 const Tool *getTool(ActionList &Inputs,
4756 ActionList &CollapsedOffloadAction) {
4757 //
4758 // Get the largest chain of actions that we could combine.
4759 //
4760
4761 SmallVector<JobActionInfo, 5> ActionChain(1);
4762 ActionChain.back().JA = BaseAction;
4763 while (ActionChain.back().JA) {
4764 const Action *CurAction = ActionChain.back().JA;
4765
4766 // Grow the chain by one element.
4767 ActionChain.resize(ActionChain.size() + 1);
4768 JobActionInfo &AI = ActionChain.back();
4769
4770 // Attempt to fill it with the
4771 AI.JA =
4772 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
4773 }
4774
4775 // Pop the last action info as it could not be filled.
4776 ActionChain.pop_back();
4777
4778 //
4779 // Attempt to combine actions. If all combining attempts failed, just return
4780 // the tool of the provided action. At the end we attempt to combine the
4781 // action with any preprocessor action it may depend on.
4782 //
4783
4784 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
4785 CollapsedOffloadAction);
4786 if (!T)
4787 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
4788 if (!T)
4789 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
4790 if (!T) {
4791 Inputs = BaseAction->getInputs();
4792 T = TC.SelectTool(*BaseAction);
4793 }
4794
4795 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
4796 return T;
4797 }
4798};
4799}
4800
4801/// Return a string that uniquely identifies the result of a job. The bound arch
4802/// is not necessarily represented in the toolchain's triple -- for example,
4803/// armv7 and armv7s both map to the same triple -- so we need both in our map.
4804/// Also, we need to add the offloading device kind, as the same tool chain can
4805/// be used for host and device for some programming models, e.g. OpenMP.
4806static std::string GetTriplePlusArchString(const ToolChain *TC,
4807 StringRef BoundArch,
4808 Action::OffloadKind OffloadKind) {
4809 std::string TriplePlusArch = TC->getTriple().normalize();
4810 if (!BoundArch.empty()) {
4811 TriplePlusArch += "-";
4812 TriplePlusArch += BoundArch;
4813 }
4814 TriplePlusArch += "-";
4815 TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
4816 return TriplePlusArch;
4817}
4818
4819InputInfoList Driver::BuildJobsForAction(
4820 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4821 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4822 std::map<std::pair<const Action *, std::string>, InputInfoList>
4823 &CachedResults,
4824 Action::OffloadKind TargetDeviceOffloadKind) const {
4825 std::pair<const Action *, std::string> ActionTC = {
4826 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4827 auto CachedResult = CachedResults.find(ActionTC);
4828 if (CachedResult != CachedResults.end()) {
4829 return CachedResult->second;
4830 }
4831 InputInfoList Result = BuildJobsForActionNoCache(
4832 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
4833 CachedResults, TargetDeviceOffloadKind);
4834 CachedResults[ActionTC] = Result;
4835 return Result;
4836}
4837
4838InputInfoList Driver::BuildJobsForActionNoCache(
4839 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4840 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4841 std::map<std::pair<const Action *, std::string>, InputInfoList>
4842 &CachedResults,
4843 Action::OffloadKind TargetDeviceOffloadKind) const {
4844 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4845
4846 InputInfoList OffloadDependencesInputInfo;
4847 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
4848 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
4849 // The 'Darwin' toolchain is initialized only when its arguments are
4850 // computed. Get the default arguments for OFK_None to ensure that
4851 // initialization is performed before processing the offload action.
4852 // FIXME: Remove when darwin's toolchain is initialized during construction.
4853 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
4854
4855 // The offload action is expected to be used in four different situations.
4856 //
4857 // a) Set a toolchain/architecture/kind for a host action:
4858 // Host Action 1 -> OffloadAction -> Host Action 2
4859 //
4860 // b) Set a toolchain/architecture/kind for a device action;
4861 // Device Action 1 -> OffloadAction -> Device Action 2
4862 //
4863 // c) Specify a device dependence to a host action;
4864 // Device Action 1 _
4865 // \
4866 // Host Action 1 ---> OffloadAction -> Host Action 2
4867 //
4868 // d) Specify a host dependence to a device action.
4869 // Host Action 1 _
4870 // \
4871 // Device Action 1 ---> OffloadAction -> Device Action 2
4872 //
4873 // For a) and b), we just return the job generated for the dependence. For
4874 // c) and d) we override the current action with the host/device dependence
4875 // if the current toolchain is host/device and set the offload dependences
4876 // info with the jobs obtained from the device/host dependence(s).
4877
4878 // If there is a single device option, just generate the job for it.
4879 if (OA->hasSingleDeviceDependence()) {
4880 InputInfoList DevA;
4881 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4882 const char *DepBoundArch) {
4883 DevA =
4884 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4885 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4886 CachedResults, DepA->getOffloadingDeviceKind());
4887 });
4888 return DevA;
4889 }
4890
4891 // If 'Action 2' is host, we generate jobs for the device dependences and
4892 // override the current action with the host dependence. Otherwise, we
4893 // generate the host dependences and override the action with the device
4894 // dependence. The dependences can't therefore be a top-level action.
4895 OA->doOnEachDependence(
4896 /*IsHostDependence=*/BuildingForOffloadDevice,
4897 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4898 OffloadDependencesInputInfo.append(BuildJobsForAction(
4899 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4900 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4901 DepA->getOffloadingDeviceKind()));
4902 });
4903
4904 A = BuildingForOffloadDevice
4905 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4906 : OA->getHostDependence();
4907
4908 // We may have already built this action as a part of the offloading
4909 // toolchain, return the cached input if so.
4910 std::pair<const Action *, std::string> ActionTC = {
4911 OA->getHostDependence(),
4912 GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4913 if (CachedResults.find(ActionTC) != CachedResults.end()) {
4914 InputInfoList Inputs = CachedResults[ActionTC];
4915 Inputs.append(OffloadDependencesInputInfo);
4916 return Inputs;
4917 }
4918 }
4919
4920 if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4921 // FIXME: It would be nice to not claim this here; maybe the old scheme of
4922 // just using Args was better?
4923 const Arg &Input = IA->getInputArg();
4924 Input.claim();
4925 if (Input.getOption().matches(options::OPT_INPUT)) {
4926 const char *Name = Input.getValue();
4927 return {InputInfo(A, Name, /* _BaseInput = */ Name)};
4928 }
4929 return {InputInfo(A, &Input, /* _BaseInput = */ "")};
4930 }
4931
4932 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4933 const ToolChain *TC;
4934 StringRef ArchName = BAA->getArchName();
4935
4936 if (!ArchName.empty())
4937 TC = &getToolChain(C.getArgs(),
4938 computeTargetTriple(*this, TargetTriple,
4939 C.getArgs(), ArchName));
4940 else
4941 TC = &C.getDefaultToolChain();
4942
4943 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4944 MultipleArchs, LinkingOutput, CachedResults,
4945 TargetDeviceOffloadKind);
4946 }
4947
4948
4949 ActionList Inputs = A->getInputs();
4950
4951 const JobAction *JA = cast<JobAction>(A);
4952 ActionList CollapsedOffloadActions;
4953
4954 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4955 embedBitcodeInObject() && !isUsingLTO());
4956 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4957
4958 if (!T)
4959 return {InputInfo()};
4960
4961 if (BuildingForOffloadDevice &&
4962 A->getOffloadingDeviceKind() == Action::OFK_OpenMP) {
4963 if (TC->getTriple().isAMDGCN()) {
4964 // AMDGCN treats backend and assemble actions as no-op because
4965 // linker does not support object files.
4966 if (const BackendJobAction *BA = dyn_cast<BackendJobAction>(A)) {
4967 return BuildJobsForAction(C, *BA->input_begin(), TC, BoundArch,
4968 AtTopLevel, MultipleArchs, LinkingOutput,
4969 CachedResults, TargetDeviceOffloadKind);
4970 }
4971
4972 if (const AssembleJobAction *AA = dyn_cast<AssembleJobAction>(A)) {
4973 return BuildJobsForAction(C, *AA->input_begin(), TC, BoundArch,
4974 AtTopLevel, MultipleArchs, LinkingOutput,
4975 CachedResults, TargetDeviceOffloadKind);
4976 }
4977 }
4978 }
4979
4980 // If we've collapsed action list that contained OffloadAction we
4981 // need to build jobs for host/device-side inputs it may have held.
4982 for (const auto *OA : CollapsedOffloadActions)
4983 cast<OffloadAction>(OA)->doOnEachDependence(
4984 /*IsHostDependence=*/BuildingForOffloadDevice,
4985 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4986 OffloadDependencesInputInfo.append(BuildJobsForAction(
4987 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4988 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4989 DepA->getOffloadingDeviceKind()));
4990 });
4991
4992 // Only use pipes when there is exactly one input.
4993 InputInfoList InputInfos;
4994 for (const Action *Input : Inputs) {
4995 // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4996 // shouldn't get temporary output names.
4997 // FIXME: Clean this up.
4998 bool SubJobAtTopLevel =
4999 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5000 InputInfos.append(BuildJobsForAction(
5001 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5002 CachedResults, A->getOffloadingDeviceKind()));
5003 }
5004
5005 // Always use the first file input as the base input.
5006 const char *BaseInput = InputInfos[0].getBaseInput();
5007 for (auto &Info : InputInfos) {
5008 if (Info.isFilename()) {
5009 BaseInput = Info.getBaseInput();
5010 break;
5011 }
5012 }
5013
5014 // ... except dsymutil actions, which use their actual input as the base
5015 // input.
5016 if (JA->getType() == types::TY_dSYM)
5017 BaseInput = InputInfos[0].getFilename();
5018
5019 // ... and in header module compilations, which use the module name.
5020 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
5021 BaseInput = ModuleJA->getModuleName();
5022
5023 // Append outputs of offload device jobs to the input list
5024 if (!OffloadDependencesInputInfo.empty())
5025 InputInfos.append(OffloadDependencesInputInfo.begin(),
5026 OffloadDependencesInputInfo.end());
5027
5028 // Set the effective triple of the toolchain for the duration of this job.
5029 llvm::Triple EffectiveTriple;
5030 const ToolChain &ToolTC = T->getToolChain();
5031 const ArgList &Args =
5032 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5033 if (InputInfos.size() != 1) {
5034 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5035 } else {
5036 // Pass along the input type if it can be unambiguously determined.
5037 EffectiveTriple = llvm::Triple(
5038 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5039 }
5040 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5041
5042 // Determine the place to write output to, if any.
5043 InputInfo Result;
5044 InputInfoList UnbundlingResults;
5045 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5046 // If we have an unbundling job, we need to create results for all the
5047 // outputs. We also update the results cache so that other actions using
5048 // this unbundling action can get the right results.
5049 for (auto &UI : UA->getDependentActionsInfo()) {
5050 assert(UI.DependentOffloadKind != Action::OFK_None &&(static_cast <bool> (UI.DependentOffloadKind != Action::
OFK_None && "Unbundling with no offloading??") ? void
(0) : __assert_fail ("UI.DependentOffloadKind != Action::OFK_None && \"Unbundling with no offloading??\""
, "clang/lib/Driver/Driver.cpp", 5051, __extension__ __PRETTY_FUNCTION__
))
5051 "Unbundling with no offloading??")(static_cast <bool> (UI.DependentOffloadKind != Action::
OFK_None && "Unbundling with no offloading??") ? void
(0) : __assert_fail ("UI.DependentOffloadKind != Action::OFK_None && \"Unbundling with no offloading??\""
, "clang/lib/Driver/Driver.cpp", 5051, __extension__ __PRETTY_FUNCTION__
))
;
5052
5053 // Unbundling actions are never at the top level. When we generate the
5054 // offloading prefix, we also do that for the host file because the
5055 // unbundling action does not change the type of the output which can
5056 // cause a overwrite.
5057 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5058 UI.DependentOffloadKind,
5059 UI.DependentToolChain->getTriple().normalize(),
5060 /*CreatePrefixForHost=*/true);
5061 auto CurI = InputInfo(
5062 UA,
5063 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5064 /*AtTopLevel=*/false,
5065 MultipleArchs ||
5066 UI.DependentOffloadKind == Action::OFK_HIP,
5067 OffloadingPrefix),
5068 BaseInput);
5069 // Save the unbundling result.
5070 UnbundlingResults.push_back(CurI);
5071
5072 // Get the unique string identifier for this dependence and cache the
5073 // result.
5074 StringRef Arch;
5075 if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5076 if (UI.DependentOffloadKind == Action::OFK_Host)
5077 Arch = StringRef();
5078 else
5079 Arch = UI.DependentBoundArch;
5080 } else
5081 Arch = BoundArch;
5082
5083 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5084 UI.DependentOffloadKind)}] = {
5085 CurI};
5086 }
5087
5088 // Now that we have all the results generated, select the one that should be
5089 // returned for the current depending action.
5090 std::pair<const Action *, std::string> ActionTC = {
5091 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5092 assert(CachedResults.find(ActionTC) != CachedResults.end() &&(static_cast <bool> (CachedResults.find(ActionTC) != CachedResults
.end() && "Result does not exist??") ? void (0) : __assert_fail
("CachedResults.find(ActionTC) != CachedResults.end() && \"Result does not exist??\""
, "clang/lib/Driver/Driver.cpp", 5093, __extension__ __PRETTY_FUNCTION__
))
5093 "Result does not exist??")(static_cast <bool> (CachedResults.find(ActionTC) != CachedResults
.end() && "Result does not exist??") ? void (0) : __assert_fail
("CachedResults.find(ActionTC) != CachedResults.end() && \"Result does not exist??\""
, "clang/lib/Driver/Driver.cpp", 5093, __extension__ __PRETTY_FUNCTION__
))
;
5094 Result = CachedResults[ActionTC].front();
5095 } else if (JA->getType() == types::TY_Nothing)
5096 Result = {InputInfo(A, BaseInput)};
5097 else {
5098 // We only have to generate a prefix for the host if this is not a top-level
5099 // action.
5100 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5101 A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5102 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
5103 !AtTopLevel);
5104 if (isa<OffloadWrapperJobAction>(JA)) {
5105 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5106 BaseInput = FinalOutput->getValue();
5107 else
5108 BaseInput = getDefaultImageName();
5109 BaseInput =
5110 C.getArgs().MakeArgString(std::string(BaseInput) + "-wrapper");
5111 }
5112 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5113 AtTopLevel, MultipleArchs,
5114 OffloadingPrefix),
5115 BaseInput);
5116 }
5117
5118 if (CCCPrintBindings && !CCGenDiagnostics) {
5119 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5120 << " - \"" << T->getName() << "\", inputs: [";
5121 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5122 llvm::errs() << InputInfos[i].getAsString();
5123 if (i + 1 != e)
5124 llvm::errs() << ", ";
5125 }
5126 if (UnbundlingResults.empty())
5127 llvm::errs() << "], output: " << Result.getAsString() << "\n";
5128 else {
5129 llvm::errs() << "], outputs: [";
5130 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5131 llvm::errs() << UnbundlingResults[i].getAsString();
5132 if (i + 1 != e)
5133 llvm::errs() << ", ";
5134 }
5135 llvm::errs() << "] \n";
5136 }
5137 } else {
5138 if (UnbundlingResults.empty())
5139 T->ConstructJob(
5140 C, *JA, Result, InputInfos,
5141 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5142 LinkingOutput);
5143 else
5144 T->ConstructJobMultipleOutputs(
5145 C, *JA, UnbundlingResults, InputInfos,
5146 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5147 LinkingOutput);
5148 }
5149 return {Result};
5150}
5151
5152const char *Driver::getDefaultImageName() const {
5153 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5154 return Target.isOSWindows() ? "a.exe" : "a.out";
5155}
5156
5157/// Create output filename based on ArgValue, which could either be a
5158/// full filename, filename without extension, or a directory. If ArgValue
5159/// does not provide a filename, then use BaseName, and use the extension
5160/// suitable for FileType.
5161static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5162 StringRef BaseName,
5163 types::ID FileType) {
5164 SmallString<128> Filename = ArgValue;
5165
5166 if (ArgValue.empty()) {
5167 // If the argument is empty, output to BaseName in the current dir.
5168 Filename = BaseName;
5169 } else if (llvm::sys::path::is_separator(Filename.back())) {
5170 // If the argument is a directory, output to BaseName in that dir.
5171 llvm::sys::path::append(Filename, BaseName);
5172 }
5173
5174 if (!llvm::sys::path::has_extension(ArgValue)) {
5175 // If the argument didn't provide an extension, then set it.
5176 const char *Extension = types::getTypeTempSuffix(FileType, true);
5177
5178 if (FileType == types::TY_Image &&
5179 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5180 // The output file is a dll.
5181 Extension = "dll";
5182 }
5183
5184 llvm::sys::path::replace_extension(Filename, Extension);
5185 }
5186
5187 return Args.MakeArgString(Filename.c_str());
5188}
5189
5190static bool HasPreprocessOutput(const Action &JA) {
5191 if (isa<PreprocessJobAction>(JA))
5192 return true;
5193 if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5194 return true;
5195 if (isa<OffloadBundlingJobAction>(JA) &&
5196 HasPreprocessOutput(*(JA.getInputs()[0])))
5197 return true;
5198 return false;
5199}
5200
5201const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5202 const char *BaseInput,
5203 StringRef OrigBoundArch, bool AtTopLevel,
5204 bool MultipleArchs,
5205 StringRef OffloadingPrefix) const {
5206 std::string BoundArch = OrigBoundArch.str();
5207 if (is_style_windows(llvm::sys::path::Style::native)) {
1
Taking false branch
5208 // BoundArch may contains ':', which is invalid in file names on Windows,
5209 // therefore replace it with '%'.
5210 std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5211 }
5212
5213 llvm::PrettyStackTraceString CrashInfo("Computing output path");
5214 // Output to a user requested destination?
5215 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
2
Assuming 'AtTopLevel' is true
3
Assuming 'JA' is a 'DsymutilJobAction'
5216 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5217 return C.addResultFile(FinalOutput->getValue(), &JA);
5218 }
5219
5220 // For /P, preprocess to file named after BaseInput.
5221 if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4
Assuming the condition is false
5222 assert(AtTopLevel && isa<PreprocessJobAction>(JA))(static_cast <bool> (AtTopLevel && isa<PreprocessJobAction
>(JA)) ? void (0) : __assert_fail ("AtTopLevel && isa<PreprocessJobAction>(JA)"
, "clang/lib/Driver/Driver.cpp", 5222, __extension__ __PRETTY_FUNCTION__
))
;
5223 StringRef BaseName = llvm::sys::path::filename(BaseInput);
5224 StringRef NameArg;
5225 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5226 NameArg = A->getValue();
5227 return C.addResultFile(
5228 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5229 &JA);
5230 }
5231
5232 // Default to writing to stdout?
5233 if (AtTopLevel
4.1
'AtTopLevel' is true
4.1
'AtTopLevel' is true
&& !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5
Assuming field 'CCGenDiagnostics' is not equal to 0
5234 return "-";
5235 }
5236
5237 if (JA.getType() == types::TY_ModuleFile &&
6
Assuming the condition is false
5238 C.getArgs().getLastArg(options::OPT_module_file_info)) {
5239 return "-";
5240 }
5241
5242 // Is this the assembly listing for /FA?
5243 if (JA.getType() == types::TY_PP_Asm &&
7
Assuming the condition is false
5244 (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5245 C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5246 // Use /Fa and the input filename to determine the asm file name.
5247 StringRef BaseName = llvm::sys::path::filename(BaseInput);
5248 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5249 return C.addResultFile(
5250 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5251 &JA);
5252 }
5253
5254 // Output to a temporary file?
5255 if ((!AtTopLevel
7.1
'AtTopLevel' is true
7.1
'AtTopLevel' is true
&& !isSaveTempsEnabled() &&
8
Taking true branch
5256 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5257 CCGenDiagnostics
7.2
Field 'CCGenDiagnostics' is not equal to 0
7.2
Field 'CCGenDiagnostics' is not equal to 0
) {
5258 StringRef Name = llvm::sys::path::filename(BaseInput);
5259 std::pair<StringRef, StringRef> Split = Name.split('.');
5260 SmallString<128> TmpName;
5261 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
9
'Suffix' initialized here
5262 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5263 if (CCGenDiagnostics
9.1
Field 'CCGenDiagnostics' is not equal to 0
9.1
Field 'CCGenDiagnostics' is not equal to 0
&& A) {
10
Assuming 'A' is non-null
11
Taking true branch
5264 SmallString<128> CrashDirectory(A->getValue());
5265 if (!getVFS().exists(CrashDirectory))
12
Assuming the condition is false
13
Taking false branch
5266 llvm::sys::fs::create_directories(CrashDirectory);
5267 llvm::sys::path::append(CrashDirectory, Split.first);
5268 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
14
Assuming 'Suffix' is null
15
'?' condition is false
5269 std::error_code EC = llvm::sys::fs::createUniqueFile(
5270 CrashDirectory + Middle + Suffix, TmpName);
16
Passing null pointer value via 1st parameter 'Str'
17
Calling constructor for 'Twine'
5271 if (EC) {
5272 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5273 return "";
5274 }
5275 } else {
5276 if (MultipleArchs && !BoundArch.empty()) {
5277 TmpName = GetTemporaryDirectory(Split.first);
5278 llvm::sys::path::append(TmpName,
5279 Split.first + "-" + BoundArch + "." + Suffix);
5280 } else {
5281 TmpName = GetTemporaryPath(Split.first, Suffix);
5282 }
5283 }
5284 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5285 }
5286
5287 SmallString<128> BasePath(BaseInput);
5288 SmallString<128> ExternalPath("");
5289 StringRef BaseName;
5290
5291 // Dsymutil actions should use the full path.
5292 if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5293 ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5294 // We use posix style here because the tests (specifically
5295 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5296 // even on Windows and if we don't then the similar test covering this
5297 // fails.
5298 llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
5299 llvm::sys::path::filename(BasePath));
5300 BaseName = ExternalPath;
5301 } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
5302 BaseName = BasePath;
5303 else
5304 BaseName = llvm::sys::path::filename(BasePath);
5305
5306 // Determine what the derived output name should be.
5307 const char *NamedOutput;
5308
5309 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
5310 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
5311 // The /Fo or /o flag decides the object filename.
5312 StringRef Val =
5313 C.getArgs()
5314 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
5315 ->getValue();
5316 NamedOutput =
5317 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5318 } else if (JA.getType() == types::TY_Image &&
5319 C.getArgs().hasArg(options::OPT__SLASH_Fe,
5320 options::OPT__SLASH_o)) {
5321 // The /Fe or /o flag names the linked file.
5322 StringRef Val =
5323 C.getArgs()
5324 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
5325 ->getValue();
5326 NamedOutput =
5327 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
5328 } else if (JA.getType() == types::TY_Image) {
5329 if (IsCLMode()) {
5330 // clang-cl uses BaseName for the executable name.
5331 NamedOutput =
5332 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
5333 } else {
5334 SmallString<128> Output(getDefaultImageName());
5335 // HIP image for device compilation with -fno-gpu-rdc is per compilation
5336 // unit.
5337 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5338 !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
5339 options::OPT_fno_gpu_rdc, false);
5340 if (IsHIPNoRDC) {
5341 Output = BaseName;
5342 llvm::sys::path::replace_extension(Output, "");
5343 }
5344 Output += OffloadingPrefix;
5345 if (MultipleArchs && !BoundArch.empty()) {
5346 Output += "-";
5347 Output.append(BoundArch);
5348 }
5349 if (IsHIPNoRDC)
5350 Output += ".out";
5351 NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5352 }
5353 } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5354 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5355 } else {
5356 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5357 assert(Suffix && "All types used for output should have a suffix.")(static_cast <bool> (Suffix && "All types used for output should have a suffix."
) ? void (0) : __assert_fail ("Suffix && \"All types used for output should have a suffix.\""
, "clang/lib/Driver/Driver.cpp", 5357, __extension__ __PRETTY_FUNCTION__
))
;
5358
5359 std::string::size_type End = std::string::npos;
5360 if (!types::appendSuffixForType(JA.getType()))
5361 End = BaseName.rfind('.');
5362 SmallString<128> Suffixed(BaseName.substr(0, End));
5363 Suffixed += OffloadingPrefix;
5364 if (MultipleArchs && !BoundArch.empty()) {
5365 Suffixed += "-";
5366 Suffixed.append(BoundArch);
5367 }
5368 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5369 // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5370 // optimized bitcode output.
5371 auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
5372 const llvm::opt::DerivedArgList &Args) {
5373 // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
5374 // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
5375 // phase.)
5376 return isa<CompileJobAction>(JA) &&
5377 JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5378 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5379 false);
5380 };
5381 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5382 (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5383 IsHIPRDCInCompilePhase(JA, C.getArgs())))
5384 Suffixed += ".tmp";
5385 Suffixed += '.';
5386 Suffixed += Suffix;
5387 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5388 }
5389
5390 // Prepend object file path if -save-temps=obj
5391 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
5392 JA.getType() != types::TY_PCH) {
5393 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5394 SmallString<128> TempPath(FinalOutput->getValue());
5395 llvm::sys::path::remove_filename(TempPath);
5396 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
5397 llvm::sys::path::append(TempPath, OutputFileName);
5398 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
5399 }
5400
5401 // If we're saving temps and the temp file conflicts with the input file,
5402 // then avoid overwriting input file.
5403 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
5404 bool SameFile = false;
5405 SmallString<256> Result;
5406 llvm::sys::fs::current_path(Result);
5407 llvm::sys::path::append(Result, BaseName);
5408 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
5409 // Must share the same path to conflict.
5410 if (SameFile) {
5411 StringRef Name = llvm::sys::path::filename(BaseInput);
5412 std::pair<StringRef, StringRef> Split = Name.split('.');
5413 std::string TmpName = GetTemporaryPath(
5414 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
5415 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5416 }
5417 }
5418
5419 // As an annoying special case, PCH generation doesn't strip the pathname.
5420 if (JA.getType() == types::TY_PCH && !IsCLMode()) {
5421 llvm::sys::path::remove_filename(BasePath);
5422 if (BasePath.empty())
5423 BasePath = NamedOutput;
5424 else
5425 llvm::sys::path::append(BasePath, NamedOutput);
5426 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
5427 } else {
5428 return C.addResultFile(NamedOutput, &JA);
5429 }
5430}
5431
5432std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
5433 // Search for Name in a list of paths.
5434 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
5435 -> llvm::Optional<std::string> {
5436 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5437 // attempting to use this prefix when looking for file paths.
5438 for (const auto &Dir : P) {
5439 if (Dir.empty())
5440 continue;
5441 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
5442 llvm::sys::path::append(P, Name);
5443 if (llvm::sys::fs::exists(Twine(P)))
5444 return std::string(P);
5445 }
5446 return None;
5447 };
5448
5449 if (auto P = SearchPaths(PrefixDirs))
5450 return *P;
5451
5452 SmallString<128> R(ResourceDir);
5453 llvm::sys::path::append(R, Name);
5454 if (llvm::sys::fs::exists(Twine(R)))
5455 return std::string(R.str());
5456
5457 SmallString<128> P(TC.getCompilerRTPath());
5458 llvm::sys::path::append(P, Name);
5459 if (llvm::sys::fs::exists(Twine(P)))
5460 return std::string(P.str());
5461
5462 SmallString<128> D(Dir);
5463 llvm::sys::path::append(D, "..", Name);
5464 if (llvm::sys::fs::exists(Twine(D)))
5465 return std::string(D.str());
5466
5467 if (auto P = SearchPaths(TC.getLibraryPaths()))
5468 return *P;
5469
5470 if (auto P = SearchPaths(TC.getFilePaths()))
5471 return *P;
5472
5473 return std::string(Name);
5474}
5475
5476void Driver::generatePrefixedToolNames(
5477 StringRef Tool, const ToolChain &TC,
5478 SmallVectorImpl<std::string> &Names) const {
5479 // FIXME: Needs a better variable than TargetTriple
5480 Names.emplace_back((TargetTriple + "-" + Tool).str());
5481 Names.emplace_back(Tool);
5482}
5483
5484static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
5485 llvm::sys::path::append(Dir, Name);
5486 if (llvm::sys::fs::can_execute(Twine(Dir)))
5487 return true;
5488 llvm::sys::path::remove_filename(Dir);
5489 return false;
5490}
5491
5492std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
5493 SmallVector<std::string, 2> TargetSpecificExecutables;
5494 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
5495
5496 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5497 // attempting to use this prefix when looking for program paths.
5498 for (const auto &PrefixDir : PrefixDirs) {
5499 if (llvm::sys::fs::is_directory(PrefixDir)) {
5500 SmallString<128> P(PrefixDir);
5501 if (ScanDirForExecutable(P, Name))
5502 return std::string(P.str());
5503 } else {
5504 SmallString<128> P((PrefixDir + Name).str());
5505 if (llvm::sys::fs::can_execute(Twine(P)))
5506 return std::string(P.str());
5507 }
5508 }
5509
5510 const ToolChain::path_list &List = TC.getProgramPaths();
5511 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
5512 // For each possible name of the tool look for it in
5513 // program paths first, then the path.
5514 // Higher priority names will be first, meaning that
5515 // a higher priority name in the path will be found
5516 // instead of a lower priority name in the program path.
5517 // E.g. <triple>-gcc on the path will be found instead
5518 // of gcc in the program path
5519 for (const auto &Path : List) {
5520 SmallString<128> P(Path);
5521 if (ScanDirForExecutable(P, TargetSpecificExecutable))
5522 return std::string(P.str());
5523 }
5524
5525 // Fall back to the path
5526 if (llvm::ErrorOr<std::string> P =
5527 llvm::sys::findProgramByName(TargetSpecificExecutable))
5528 return *P;
5529 }
5530
5531 return std::string(Name);
5532}
5533
5534std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
5535 SmallString<128> Path;
5536 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
5537 if (EC) {
5538 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5539 return "";
5540 }
5541
5542 return std::string(Path.str());
5543}
5544
5545std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
5546 SmallString<128> Path;
5547 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
5548 if (EC) {
5549 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5550 return "";
5551 }
5552
5553 return std::string(Path.str());
5554}
5555
5556std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
5557 SmallString<128> Output;
5558 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
5559 // FIXME: If anybody needs it, implement this obscure rule:
5560 // "If you specify a directory without a file name, the default file name
5561 // is VCx0.pch., where x is the major version of Visual C++ in use."
5562 Output = FpArg->getValue();
5563
5564 // "If you do not specify an extension as part of the path name, an
5565 // extension of .pch is assumed. "
5566 if (!llvm::sys::path::has_extension(Output))
5567 Output += ".pch";
5568 } else {
5569 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
5570 Output = YcArg->getValue();
5571 if (Output.empty())
5572 Output = BaseName;
5573 llvm::sys::path::replace_extension(Output, ".pch");
5574 }
5575 return std::string(Output.str());
5576}
5577
5578const ToolChain &Driver::getToolChain(const ArgList &Args,
5579 const llvm::Triple &Target) const {
5580
5581 auto &TC = ToolChains[Target.str()];
5582 if (!TC) {
5583 switch (Target.getOS()) {
5584 case llvm::Triple::AIX:
5585 TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
5586 break;
5587 case llvm::Triple::Haiku:
5588 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
5589 break;
5590 case llvm::Triple::Ananas:
5591 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
5592 break;
5593 case llvm::Triple::CloudABI:
5594 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
5595 break;
5596 case llvm::Triple::Darwin:
5597 case llvm::Triple::MacOSX:
5598 case llvm::Triple::IOS:
5599 case llvm::Triple::TvOS:
5600 case llvm::Triple::WatchOS:
5601 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
5602 break;
5603 case llvm::Triple::DragonFly:
5604 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
5605 break;
5606 case llvm::Triple::OpenBSD:
5607 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
5608 break;
5609 case llvm::Triple::NetBSD:
5610 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
5611 break;
5612 case llvm::Triple::FreeBSD:
5613 if (Target.isPPC())
5614 TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
5615 Args);
5616 else
5617 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
5618 break;
5619 case llvm::Triple::Minix:
5620 TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
5621 break;
5622 case llvm::Triple::Linux:
5623 case llvm::Triple::ELFIAMCU:
5624 if (Target.getArch() == llvm::Triple::hexagon)
5625 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5626 Args);
5627 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
5628 !Target.hasEnvironment())
5629 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
5630 Args);
5631 else if (Target.isPPC())
5632 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
5633 Args);
5634 else if (Target.getArch() == llvm::Triple::ve)
5635 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5636
5637 else
5638 TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
5639 break;
5640 case llvm::Triple::NaCl:
5641 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
5642 break;
5643 case llvm::Triple::Fuchsia:
5644 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
5645 break;
5646 case llvm::Triple::Solaris:
5647 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
5648 break;
5649 case llvm::Triple::AMDHSA:
5650 TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
5651 break;
5652 case llvm::Triple::AMDPAL:
5653 case llvm::Triple::Mesa3D:
5654 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
5655 break;
5656 case llvm::Triple::Win32:
5657 switch (Target.getEnvironment()) {
5658 default:
5659 if (Target.isOSBinFormatELF())
5660 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5661 else if (Target.isOSBinFormatMachO())
5662 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5663 else
5664 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5665 break;
5666 case llvm::Triple::GNU:
5667 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
5668 break;
5669 case llvm::Triple::Itanium:
5670 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
5671 Args);
5672 break;
5673 case llvm::Triple::MSVC:
5674 case llvm::Triple::UnknownEnvironment:
5675 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
5676 .startswith_insensitive("bfd"))
5677 TC = std::make_unique<toolchains::CrossWindowsToolChain>(
5678 *this, Target, Args);
5679 else
5680 TC =
5681 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
5682 break;
5683 }
5684 break;
5685 case llvm::Triple::PS4:
5686 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
5687 break;
5688 case llvm::Triple::PS5:
5689 TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args);
5690 break;
5691 case llvm::Triple::Contiki:
5692 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
5693 break;
5694 case llvm::Triple::Hurd:
5695 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
5696 break;
5697 case llvm::Triple::ZOS:
5698 TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
5699 break;
5700 case llvm::Triple::ShaderModel:
5701 TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args);
5702 break;
5703 default:
5704 // Of these targets, Hexagon is the only one that might have
5705 // an OS of Linux, in which case it got handled above already.
5706 switch (Target.getArch()) {
5707 case llvm::Triple::tce:
5708 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
5709 break;
5710 case llvm::Triple::tcele:
5711 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
5712 break;
5713 case llvm::Triple::hexagon:
5714 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5715 Args);
5716 break;
5717 case llvm::Triple::lanai:
5718 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
5719 break;
5720 case llvm::Triple::xcore:
5721 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
5722 break;
5723 case llvm::Triple::wasm32:
5724 case llvm::Triple::wasm64:
5725 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
5726 break;
5727 case llvm::Triple::avr:
5728 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
5729 break;
5730 case llvm::Triple::msp430:
5731 TC =
5732 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
5733 break;
5734 case llvm::Triple::riscv32:
5735 case llvm::Triple::riscv64:
5736 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
5737 TC =
5738 std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
5739 else
5740 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5741 break;
5742 case llvm::Triple::ve:
5743 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5744 break;
5745 case llvm::Triple::spirv32:
5746 case llvm::Triple::spirv64:
5747 TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
5748 break;
5749 case llvm::Triple::csky:
5750 TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args);
5751 break;
5752 default:
5753 if (Target.getVendor() == llvm::Triple::Myriad)
5754 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
5755 Args);
5756 else if (toolchains::BareMetal::handlesTarget(Target))
5757 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5758 else if (Target.isOSBinFormatELF())
5759 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5760 else if (Target.isOSBinFormatMachO())
5761 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5762 else
5763 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5764 }
5765 }
5766 }
5767
5768 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
5769 // compiles always need two toolchains, the CUDA toolchain and the host
5770 // toolchain. So the only valid way to create a CUDA toolchain is via
5771 // CreateOffloadingDeviceToolChains.
5772
5773 return *TC;
5774}
5775
5776const ToolChain &Driver::getOffloadingDeviceToolChain(
5777 const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
5778 const Action::OffloadKind &TargetDeviceOffloadKind) const {
5779 // Use device / host triples as the key into the ToolChains map because the
5780 // device ToolChain we create depends on both.
5781 auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
5782 if (!TC) {
5783 // Categorized by offload kind > arch rather than OS > arch like
5784 // the normal getToolChain call, as it seems a reasonable way to categorize
5785 // things.
5786 switch (TargetDeviceOffloadKind) {
5787 case Action::OFK_HIP: {
5788 if (Target.getArch() == llvm::Triple::amdgcn &&
5789 Target.getVendor() == llvm::Triple::AMD &&
5790 Target.getOS() == llvm::Triple::AMDHSA)
5791 TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
5792 HostTC, Args);
5793 else if (Target.getArch() == llvm::Triple::spirv64 &&
5794 Target.getVendor() == llvm::Triple::UnknownVendor &&
5795 Target.getOS() == llvm::Triple::UnknownOS)
5796 TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
5797 HostTC, Args);
5798 break;
5799 }
5800 default:
5801 break;
5802 }
5803 }
5804
5805 return *TC;
5806}
5807
5808bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
5809 // Say "no" if there is not exactly one input of a type clang understands.
5810 if (JA.size() != 1 ||
5811 !types::isAcceptedByClang((*JA.input_begin())->getType()))
5812 return false;
5813
5814 // And say "no" if this is not a kind of action clang understands.
5815 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
5816 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) &&
5817 !isa<ExtractAPIJobAction>(JA))
5818 return false;
5819
5820 return true;
5821}
5822
5823bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
5824 // Say "no" if there is not exactly one input of a type flang understands.
5825 if (JA.size() != 1 ||
5826 !types::isFortran((*JA.input_begin())->getType()))
5827 return false;
5828
5829 // And say "no" if this is not a kind of action flang understands.
5830 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5831 return false;
5832
5833 return true;
5834}
5835
5836bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
5837 // Only emit static library if the flag is set explicitly.
5838 if (Args.hasArg(options::OPT_emit_static_lib))
5839 return true;
5840 return false;
5841}
5842
5843/// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
5844/// grouped values as integers. Numbers which are not provided are set to 0.
5845///
5846/// \return True if the entire string was parsed (9.2), or all groups were
5847/// parsed (10.3.5extrastuff).
5848bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
5849 unsigned &Micro, bool &HadExtra) {
5850 HadExtra = false;
5851
5852 Major = Minor = Micro = 0;
5853 if (Str.empty())
5854 return false;
5855
5856 if (Str.consumeInteger(10, Major))
5857 return false;
5858 if (Str.empty())
5859 return true;
5860 if (Str[0] != '.')
5861 return false;
5862
5863 Str = Str.drop_front(1);
5864
5865 if (Str.consumeInteger(10, Minor))
5866 return false;
5867 if (Str.empty())
5868 return true;
5869 if (Str[0] != '.')
5870 return false;
5871 Str = Str.drop_front(1);
5872
5873 if (Str.consumeInteger(10, Micro))
5874 return false;
5875 if (!Str.empty())
5876 HadExtra = true;
5877 return true;
5878}
5879
5880/// Parse digits from a string \p Str and fulfill \p Digits with
5881/// the parsed numbers. This method assumes that the max number of
5882/// digits to look for is equal to Digits.size().
5883///
5884/// \return True if the entire string was parsed and there are
5885/// no extra characters remaining at the end.
5886bool Driver::GetReleaseVersion(StringRef Str,
5887 MutableArrayRef<unsigned> Digits) {
5888 if (Str.empty())
5889 return false;
5890
5891 unsigned CurDigit = 0;
5892 while (CurDigit < Digits.size()) {
5893 unsigned Digit;
5894 if (Str.consumeInteger(10, Digit))
5895 return false;
5896 Digits[CurDigit] = Digit;
5897 if (Str.empty())
5898 return true;
5899 if (Str[0] != '.')
5900 return false;
5901 Str = Str.drop_front(1);
5902 CurDigit++;
5903 }
5904
5905 // More digits than requested, bail out...
5906 return false;
5907}
5908
5909std::pair<unsigned, unsigned>
5910Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
5911 unsigned IncludedFlagsBitmask = 0;
5912 unsigned ExcludedFlagsBitmask = options::NoDriverOption;
5913
5914 if (IsClCompatMode) {
5915 // Include CL and Core options.
5916 IncludedFlagsBitmask |= options::CLOption;
5917 IncludedFlagsBitmask |= options::CoreOption;
5918 } else {
5919 ExcludedFlagsBitmask |= options::CLOption;
5920 }
5921 if (IsDXCMode()) {
5922 // Include DXC and Core options.
5923 IncludedFlagsBitmask |= options::DXCOption;
5924 IncludedFlagsBitmask |= options::CoreOption;
5925 } else {
5926 ExcludedFlagsBitmask |= options::DXCOption;
5927 }
5928 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
5929}
5930
5931bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
5932 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
5933}
5934
5935bool clang::driver::willEmitRemarks(const ArgList &Args) {
5936 // -fsave-optimization-record enables it.
5937 if (Args.hasFlag(options::OPT_fsave_optimization_record,
5938 options::OPT_fno_save_optimization_record, false))
5939 return true;
5940
5941 // -fsave-optimization-record=<format> enables it as well.
5942 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
5943 options::OPT_fno_save_optimization_record, false))
5944 return true;
5945
5946 // -foptimization-record-file alone enables it too.
5947 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
5948 options::OPT_fno_save_optimization_record, false))
5949 return true;
5950
5951 // -foptimization-record-passes alone enables it too.
5952 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
5953 options::OPT_fno_save_optimization_record, false))
5954 return true;
5955 return false;
5956}
5957
5958llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
5959 ArrayRef<const char *> Args) {
5960 static const std::string OptName =
5961 getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
5962 llvm::StringRef Opt;
5963 for (StringRef Arg : Args) {
5964 if (!Arg.startswith(OptName))
5965 continue;
5966 Opt = Arg;
5967 }
5968 if (Opt.empty())
5969 Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
5970 return Opt.consume_front(OptName) ? Opt : "";
5971}
5972
5973bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include/llvm/ADT/Twine.h

1//===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_ADT_TWINE_H
10#define LLVM_ADT_TWINE_H
11
12#include "llvm/ADT/SmallVector.h"
13#include "llvm/ADT/StringRef.h"
14#include "llvm/Support/ErrorHandling.h"
15#include <cassert>
16#include <cstdint>
17#include <string>
18#if __cplusplus201402L > 201402L
19#include <string_view>
20#endif
21
22namespace llvm {
23
24 class formatv_object_base;
25 class raw_ostream;
26
27 /// Twine - A lightweight data structure for efficiently representing the
28 /// concatenation of temporary values as strings.
29 ///
30 /// A Twine is a kind of rope, it represents a concatenated string using a
31 /// binary-tree, where the string is the preorder of the nodes. Since the
32 /// Twine can be efficiently rendered into a buffer when its result is used,
33 /// it avoids the cost of generating temporary values for intermediate string
34 /// results -- particularly in cases when the Twine result is never
35 /// required. By explicitly tracking the type of leaf nodes, we can also avoid
36 /// the creation of temporary strings for conversions operations (such as
37 /// appending an integer to a string).
38 ///
39 /// A Twine is not intended for use directly and should not be stored, its
40 /// implementation relies on the ability to store pointers to temporary stack
41 /// objects which may be deallocated at the end of a statement. Twines should
42 /// only be used accepted as const references in arguments, when an API wishes
43 /// to accept possibly-concatenated strings.
44 ///
45 /// Twines support a special 'null' value, which always concatenates to form
46 /// itself, and renders as an empty string. This can be returned from APIs to
47 /// effectively nullify any concatenations performed on the result.
48 ///
49 /// \b Implementation
50 ///
51 /// Given the nature of a Twine, it is not possible for the Twine's
52 /// concatenation method to construct interior nodes; the result must be
53 /// represented inside the returned value. For this reason a Twine object
54 /// actually holds two values, the left- and right-hand sides of a
55 /// concatenation. We also have nullary Twine objects, which are effectively
56 /// sentinel values that represent empty strings.
57 ///
58 /// Thus, a Twine can effectively have zero, one, or two children. The \see
59 /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
60 /// testing the number of children.
61 ///
62 /// We maintain a number of invariants on Twine objects (FIXME: Why):
63 /// - Nullary twines are always represented with their Kind on the left-hand
64 /// side, and the Empty kind on the right-hand side.
65 /// - Unary twines are always represented with the value on the left-hand
66 /// side, and the Empty kind on the right-hand side.
67 /// - If a Twine has another Twine as a child, that child should always be
68 /// binary (otherwise it could have been folded into the parent).
69 ///
70 /// These invariants are check by \see isValid().
71 ///
72 /// \b Efficiency Considerations
73 ///
74 /// The Twine is designed to yield efficient and small code for common
75 /// situations. For this reason, the concat() method is inlined so that
76 /// concatenations of leaf nodes can be optimized into stores directly into a
77 /// single stack allocated object.
78 ///
79 /// In practice, not all compilers can be trusted to optimize concat() fully,
80 /// so we provide two additional methods (and accompanying operator+
81 /// overloads) to guarantee that particularly important cases (cstring plus
82 /// StringRef) codegen as desired.
83 class Twine {
84 /// NodeKind - Represent the type of an argument.
85 enum NodeKind : unsigned char {
86 /// An empty string; the result of concatenating anything with it is also
87 /// empty.
88 NullKind,
89
90 /// The empty string.
91 EmptyKind,
92
93 /// A pointer to a Twine instance.
94 TwineKind,
95
96 /// A pointer to a C string instance.
97 CStringKind,
98
99 /// A pointer to an std::string instance.
100 StdStringKind,
101
102 /// A Pointer and Length representation. Used for std::string_view,
103 /// StringRef, and SmallString. Can't use a StringRef here
104 /// because they are not trivally constructible.
105 PtrAndLengthKind,
106
107 /// A pointer to a formatv_object_base instance.
108 FormatvObjectKind,
109
110 /// A char value, to render as a character.
111 CharKind,
112
113 /// An unsigned int value, to render as an unsigned decimal integer.
114 DecUIKind,
115
116 /// An int value, to render as a signed decimal integer.
117 DecIKind,
118
119 /// A pointer to an unsigned long value, to render as an unsigned decimal
120 /// integer.
121 DecULKind,
122
123 /// A pointer to a long value, to render as a signed decimal integer.
124 DecLKind,
125
126 /// A pointer to an unsigned long long value, to render as an unsigned
127 /// decimal integer.
128 DecULLKind,
129
130 /// A pointer to a long long value, to render as a signed decimal integer.
131 DecLLKind,
132
133 /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
134 /// integer.
135 UHexKind
136 };
137
138 union Child
139 {
140 const Twine *twine;
141 const char *cString;
142 const std::string *stdString;
143 struct {
144 const char *ptr;
145 size_t length;
146 } ptrAndLength;
147 const formatv_object_base *formatvObject;
148 char character;
149 unsigned int decUI;
150 int decI;
151 const unsigned long *decUL;
152 const long *decL;
153 const unsigned long long *decULL;
154 const long long *decLL;
155 const uint64_t *uHex;
156 };
157
158 /// LHS - The prefix in the concatenation, which may be uninitialized for
159 /// Null or Empty kinds.
160 Child LHS;
161
162 /// RHS - The suffix in the concatenation, which may be uninitialized for
163 /// Null or Empty kinds.
164 Child RHS;
165
166 /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
167 NodeKind LHSKind = EmptyKind;
168
169 /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
170 NodeKind RHSKind = EmptyKind;
171
172 /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
173 explicit Twine(NodeKind Kind) : LHSKind(Kind) {
174 assert(isNullary() && "Invalid kind!")(static_cast <bool> (isNullary() && "Invalid kind!"
) ? void (0) : __assert_fail ("isNullary() && \"Invalid kind!\""
, "llvm/include/llvm/ADT/Twine.h", 174, __extension__ __PRETTY_FUNCTION__
))
;
175 }
176
177 /// Construct a binary twine.
178 explicit Twine(const Twine &LHS, const Twine &RHS)
179 : LHSKind(TwineKind), RHSKind(TwineKind) {
180 this->LHS.twine = &LHS;
181 this->RHS.twine = &RHS;
182 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 182, __extension__ __PRETTY_FUNCTION__
))
;
183 }
184
185 /// Construct a twine from explicit values.
186 explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
187 : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
188 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 188, __extension__ __PRETTY_FUNCTION__
))
;
189 }
190
191 /// Check for the null twine.
192 bool isNull() const {
193 return getLHSKind() == NullKind;
194 }
195
196 /// Check for the empty twine.
197 bool isEmpty() const {
198 return getLHSKind() == EmptyKind;
199 }
200
201 /// Check if this is a nullary twine (null or empty).
202 bool isNullary() const {
203 return isNull() || isEmpty();
204 }
205
206 /// Check if this is a unary twine.
207 bool isUnary() const {
208 return getRHSKind() == EmptyKind && !isNullary();
209 }
210
211 /// Check if this is a binary twine.
212 bool isBinary() const {
213 return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
214 }
215
216 /// Check if this is a valid twine (satisfying the invariants on
217 /// order and number of arguments).
218 bool isValid() const {
219 // Nullary twines always have Empty on the RHS.
220 if (isNullary() && getRHSKind() != EmptyKind)
221 return false;
222
223 // Null should never appear on the RHS.
224 if (getRHSKind() == NullKind)
225 return false;
226
227 // The RHS cannot be non-empty if the LHS is empty.
228 if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
229 return false;
230
231 // A twine child should always be binary.
232 if (getLHSKind() == TwineKind &&
233 !LHS.twine->isBinary())
234 return false;
235 if (getRHSKind() == TwineKind &&
236 !RHS.twine->isBinary())
237 return false;
238
239 return true;
240 }
241
242 /// Get the NodeKind of the left-hand side.
243 NodeKind getLHSKind() const { return LHSKind; }
244
245 /// Get the NodeKind of the right-hand side.
246 NodeKind getRHSKind() const { return RHSKind; }
247
248 /// Print one child from a twine.
249 void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
250
251 /// Print the representation of one child from a twine.
252 void printOneChildRepr(raw_ostream &OS, Child Ptr,
253 NodeKind Kind) const;
254
255 public:
256 /// @name Constructors
257 /// @{
258
259 /// Construct from an empty string.
260 /*implicit*/ Twine() {
261 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 261, __extension__ __PRETTY_FUNCTION__
))
;
262 }
263
264 Twine(const Twine &) = default;
265
266 /// Construct from a C string.
267 ///
268 /// We take care here to optimize "" into the empty twine -- this will be
269 /// optimized out for string constants. This allows Twine arguments have
270 /// default "" values, without introducing unnecessary string constants.
271 /*implicit*/ Twine(const char *Str) {
272 if (Str[0] != '\0') {
18
Array access (from variable 'Str') results in a null pointer dereference
273 LHS.cString = Str;
274 LHSKind = CStringKind;
275 } else
276 LHSKind = EmptyKind;
277
278 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 278, __extension__ __PRETTY_FUNCTION__
))
;
279 }
280 /// Delete the implicit conversion from nullptr as Twine(const char *)
281 /// cannot take nullptr.
282 /*implicit*/ Twine(std::nullptr_t) = delete;
283
284 /// Construct from an std::string.
285 /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) {
286 LHS.stdString = &Str;
287 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 287, __extension__ __PRETTY_FUNCTION__
))
;
288 }
289
290#if __cplusplus201402L > 201402L
291 /// Construct from an std::string_view by converting it to a pointer and
292 /// length. This handles string_views on a pure API basis, and avoids
293 /// storing one (or a pointer to one) inside a Twine, which avoids problems
294 /// when mixing code compiled under various C++ standards.
295 /*implicit*/ Twine(const std::string_view &Str)
296 : LHSKind(PtrAndLengthKind) {
297 LHS.ptrAndLength.ptr = Str.data();
298 LHS.ptrAndLength.length = Str.length();
299 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 299, __extension__ __PRETTY_FUNCTION__
))
;
300 }
301#endif
302
303 /// Construct from a StringRef.
304 /*implicit*/ Twine(const StringRef &Str) : LHSKind(PtrAndLengthKind) {
305 LHS.ptrAndLength.ptr = Str.data();
306 LHS.ptrAndLength.length = Str.size();
307 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 307, __extension__ __PRETTY_FUNCTION__
))
;
308 }
309
310 /// Construct from a SmallString.
311 /*implicit*/ Twine(const SmallVectorImpl<char> &Str)
312 : LHSKind(PtrAndLengthKind) {
313 LHS.ptrAndLength.ptr = Str.data();
314 LHS.ptrAndLength.length = Str.size();
315 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 315, __extension__ __PRETTY_FUNCTION__
))
;
316 }
317
318 /// Construct from a formatv_object_base.
319 /*implicit*/ Twine(const formatv_object_base &Fmt)
320 : LHSKind(FormatvObjectKind) {
321 LHS.formatvObject = &Fmt;
322 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 322, __extension__ __PRETTY_FUNCTION__
))
;
323 }
324
325 /// Construct from a char.
326 explicit Twine(char Val) : LHSKind(CharKind) {
327 LHS.character = Val;
328 }
329
330 /// Construct from a signed char.
331 explicit Twine(signed char Val) : LHSKind(CharKind) {
332 LHS.character = static_cast<char>(Val);
333 }
334
335 /// Construct from an unsigned char.
336 explicit Twine(unsigned char Val) : LHSKind(CharKind) {
337 LHS.character = static_cast<char>(Val);
338 }
339
340 /// Construct a twine to print \p Val as an unsigned decimal integer.
341 explicit Twine(unsigned Val) : LHSKind(DecUIKind) {
342 LHS.decUI = Val;
343 }
344
345 /// Construct a twine to print \p Val as a signed decimal integer.
346 explicit Twine(int Val) : LHSKind(DecIKind) {
347 LHS.decI = Val;
348 }
349
350 /// Construct a twine to print \p Val as an unsigned decimal integer.
351 explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) {
352 LHS.decUL = &Val;
353 }
354
355 /// Construct a twine to print \p Val as a signed decimal integer.
356 explicit Twine(const long &Val) : LHSKind(DecLKind) {
357 LHS.decL = &Val;
358 }
359
360 /// Construct a twine to print \p Val as an unsigned decimal integer.
361 explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) {
362 LHS.decULL = &Val;
363 }
364
365 /// Construct a twine to print \p Val as a signed decimal integer.
366 explicit Twine(const long long &Val) : LHSKind(DecLLKind) {
367 LHS.decLL = &Val;
368 }
369
370 // FIXME: Unfortunately, to make sure this is as efficient as possible we
371 // need extra binary constructors from particular types. We can't rely on
372 // the compiler to be smart enough to fold operator+()/concat() down to the
373 // right thing. Yet.
374
375 /// Construct as the concatenation of a C string and a StringRef.
376 /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
377 : LHSKind(CStringKind), RHSKind(PtrAndLengthKind) {
378 this->LHS.cString = LHS;
379 this->RHS.ptrAndLength.ptr = RHS.data();
380 this->RHS.ptrAndLength.length = RHS.size();
381 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 381, __extension__ __PRETTY_FUNCTION__
))
;
382 }
383
384 /// Construct as the concatenation of a StringRef and a C string.
385 /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
386 : LHSKind(PtrAndLengthKind), RHSKind(CStringKind) {
387 this->LHS.ptrAndLength.ptr = LHS.data();
388 this->LHS.ptrAndLength.length = LHS.size();
389 this->RHS.cString = RHS;
390 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "llvm/include/llvm/ADT/Twine.h", 390, __extension__ __PRETTY_FUNCTION__
))
;
391 }
392
393 /// Since the intended use of twines is as temporary objects, assignments
394 /// when concatenating might cause undefined behavior or stack corruptions
395 Twine &operator=(const Twine &) = delete;
396
397 /// Create a 'null' string, which is an empty string that always
398 /// concatenates to form another empty string.
399 static Twine createNull() {
400 return Twine(NullKind);
401 }
402
403 /// @}
404 /// @name Numeric Conversions
405 /// @{
406
407 // Construct a twine to print \p Val as an unsigned hexadecimal integer.
408 static Twine utohexstr(const uint64_t &Val) {
409 Child LHS, RHS;
410 LHS.uHex = &Val;
411 RHS.twine = nullptr;
412 return Twine(LHS, UHexKind, RHS, EmptyKind);
413 }
414
415 /// @}
416 /// @name Predicate Operations
417 /// @{
418
419 /// Check if this twine is trivially empty; a false return value does not
420 /// necessarily mean the twine is empty.
421 bool isTriviallyEmpty() const {
422 return isNullary();
423 }
424
425 /// Return true if this twine can be dynamically accessed as a single
426 /// StringRef value with getSingleStringRef().
427 bool isSingleStringRef() const {
428 if (getRHSKind() != EmptyKind) return false;
429
430 switch (getLHSKind()) {
431 case EmptyKind:
432 case CStringKind:
433 case StdStringKind:
434 case PtrAndLengthKind:
435 return true;
436 default:
437 return false;
438 }
439 }
440
441 /// @}
442 /// @name String Operations
443 /// @{
444
445 Twine concat(const Twine &Suffix) const;
446
447 /// @}
448 /// @name Output & Conversion.
449 /// @{
450
451 /// Return the twine contents as a std::string.
452 std::string str() const;
453
454 /// Append the concatenated string into the given SmallString or SmallVector.
455 void toVector(SmallVectorImpl<char> &Out) const;
456
457 /// This returns the twine as a single StringRef. This method is only valid
458 /// if isSingleStringRef() is true.
459 StringRef getSingleStringRef() const {
460 assert(isSingleStringRef() &&"This cannot be had as a single stringref!")(static_cast <bool> (isSingleStringRef() &&"This cannot be had as a single stringref!"
) ? void (0) : __assert_fail ("isSingleStringRef() &&\"This cannot be had as a single stringref!\""
, "llvm/include/llvm/ADT/Twine.h", 460, __extension__ __PRETTY_FUNCTION__
))
;
461 switch (getLHSKind()) {
462 default: llvm_unreachable("Out of sync with isSingleStringRef")::llvm::llvm_unreachable_internal("Out of sync with isSingleStringRef"
, "llvm/include/llvm/ADT/Twine.h", 462)
;
463 case EmptyKind:
464 return StringRef();
465 case CStringKind:
466 return StringRef(LHS.cString);
467 case StdStringKind:
468 return StringRef(*LHS.stdString);
469 case PtrAndLengthKind:
470 return StringRef(LHS.ptrAndLength.ptr, LHS.ptrAndLength.length);
471 }
472 }
473
474 /// This returns the twine as a single StringRef if it can be
475 /// represented as such. Otherwise the twine is written into the given
476 /// SmallVector and a StringRef to the SmallVector's data is returned.
477 StringRef toStringRef(SmallVectorImpl<char> &Out) const {
478 if (isSingleStringRef())
479 return getSingleStringRef();
480 toVector(Out);
481 return StringRef(Out.data(), Out.size());
482 }
483
484 /// This returns the twine as a single null terminated StringRef if it
485 /// can be represented as such. Otherwise the twine is written into the
486 /// given SmallVector and a StringRef to the SmallVector's data is returned.
487 ///
488 /// The returned StringRef's size does not include the null terminator.
489 StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
490
491 /// Write the concatenated string represented by this twine to the
492 /// stream \p OS.
493 void print(raw_ostream &OS) const;
494
495 /// Dump the concatenated string represented by this twine to stderr.
496 void dump() const;
497
498 /// Write the representation of this twine to the stream \p OS.
499 void printRepr(raw_ostream &OS) const;
500
501 /// Dump the representation of this twine to stderr.
502 void dumpRepr() const;
503
504 /// @}
505 };
506
507 /// @name Twine Inline Implementations
508 /// @{
509
510 inline Twine Twine::concat(const Twine &Suffix) const {
511 // Concatenation with null is null.
512 if (isNull() || Suffix.isNull())
513 return Twine(NullKind);
514
515 // Concatenation with empty yields the other side.
516 if (isEmpty())
517 return Suffix;
518 if (Suffix.isEmpty())
519 return *this;
520
521 // Otherwise we need to create a new node, taking care to fold in unary
522 // twines.
523 Child NewLHS, NewRHS;
524 NewLHS.twine = this;
525 NewRHS.twine = &Suffix;
526 NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
527 if (isUnary()) {
528 NewLHS = LHS;
529 NewLHSKind = getLHSKind();
530 }
531 if (Suffix.isUnary()) {
532 NewRHS = Suffix.LHS;
533 NewRHSKind = Suffix.getLHSKind();
534 }
535
536 return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
537 }
538
539 inline Twine operator+(const Twine &LHS, const Twine &RHS) {
540 return LHS.concat(RHS);
541 }
542
543 /// Additional overload to guarantee simplified codegen; this is equivalent to
544 /// concat().
545
546 inline Twine operator+(const char *LHS, const StringRef &RHS) {
547 return Twine(LHS, RHS);
548 }
549
550 /// Additional overload to guarantee simplified codegen; this is equivalent to
551 /// concat().
552
553 inline Twine operator+(const StringRef &LHS, const char *RHS) {
554 return Twine(LHS, RHS);
555 }
556
557 inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
558 RHS.print(OS);
559 return OS;
560 }
561
562 /// @}
563
564} // end namespace llvm
565
566#endif // LLVM_ADT_TWINE_H