Bug Summary

File:lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp
Warning:line 3179, column 33
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name TypeSystemClang.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -isystem /usr/include/libxml2 -D HAVE_ROUND -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/lldb/source/Plugins/TypeSystem/Clang -I /build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/lldb/source/Plugins/TypeSystem/Clang -I /build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/lldb/include -I tools/lldb/include -I include -I /build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/llvm/include -I /usr/include/python3.9 -I /build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/clang/include -I tools/lldb/../clang/include -I /build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/lldb/source -I tools/lldb/source -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-deprecated-declarations -Wno-unknown-pragmas -Wno-strict-aliasing -Wno-deprecated-register -Wno-vla-extension -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-01-29-125859-152791-1 -x c++ /build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp

/build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp

1//===-- TypeSystemClang.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "TypeSystemClang.h"
10
11#include "llvm/Support/FormatAdapters.h"
12#include "llvm/Support/FormatVariadic.h"
13
14#include <mutex>
15#include <string>
16#include <vector>
17
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTImporter.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Mangle.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/Type.h"
27#include "clang/AST/VTableBuilder.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/Diagnostic.h"
30#include "clang/Basic/FileManager.h"
31#include "clang/Basic/FileSystemOptions.h"
32#include "clang/Basic/LangStandard.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Basic/TargetOptions.h"
36#include "clang/Frontend/FrontendOptions.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "clang/Lex/HeaderSearchOptions.h"
39#include "clang/Lex/ModuleMap.h"
40#include "clang/Sema/Sema.h"
41
42#include "llvm/Support/Signals.h"
43#include "llvm/Support/Threading.h"
44
45#include "Plugins/ExpressionParser/Clang/ClangASTImporter.h"
46#include "Plugins/ExpressionParser/Clang/ClangASTMetadata.h"
47#include "Plugins/ExpressionParser/Clang/ClangExternalASTSourceCallbacks.h"
48#include "Plugins/ExpressionParser/Clang/ClangFunctionCaller.h"
49#include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h"
50#include "Plugins/ExpressionParser/Clang/ClangUserExpression.h"
51#include "Plugins/ExpressionParser/Clang/ClangUtil.h"
52#include "Plugins/ExpressionParser/Clang/ClangUtilityFunction.h"
53#include "lldb/Utility/ArchSpec.h"
54#include "lldb/Utility/Flags.h"
55
56#include "lldb/Core/DumpDataExtractor.h"
57#include "lldb/Core/Module.h"
58#include "lldb/Core/PluginManager.h"
59#include "lldb/Core/StreamFile.h"
60#include "lldb/Core/ThreadSafeDenseMap.h"
61#include "lldb/Core/UniqueCStringMap.h"
62#include "lldb/Symbol/ObjectFile.h"
63#include "lldb/Symbol/SymbolFile.h"
64#include "lldb/Target/ExecutionContext.h"
65#include "lldb/Target/Language.h"
66#include "lldb/Target/Process.h"
67#include "lldb/Target/Target.h"
68#include "lldb/Utility/DataExtractor.h"
69#include "lldb/Utility/LLDBAssert.h"
70#include "lldb/Utility/Log.h"
71#include "lldb/Utility/RegularExpression.h"
72#include "lldb/Utility/Scalar.h"
73
74#include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
75#include "Plugins/SymbolFile/DWARF/DWARFASTParserClang.h"
76#include "Plugins/SymbolFile/PDB/PDBASTParser.h"
77
78#include <cstdio>
79
80#include <mutex>
81
82using namespace lldb;
83using namespace lldb_private;
84using namespace clang;
85using llvm::StringSwitch;
86
87LLDB_PLUGIN_DEFINE(TypeSystemClang)namespace lldb_private { void lldb_initialize_TypeSystemClang
() { TypeSystemClang::Initialize(); } void lldb_terminate_TypeSystemClang
() { TypeSystemClang::Terminate(); } }
88
89namespace {
90static void VerifyDecl(clang::Decl *decl) {
91 assert(decl && "VerifyDecl called with nullptr?")(static_cast <bool> (decl && "VerifyDecl called with nullptr?"
) ? void (0) : __assert_fail ("decl && \"VerifyDecl called with nullptr?\""
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
91, __extension__ __PRETTY_FUNCTION__))
;
92#ifndef NDEBUG
93 // We don't care about the actual access value here but only want to trigger
94 // that Clang calls its internal Decl::AccessDeclContextCheck validation.
95 decl->getAccess();
96#endif
97}
98
99static inline bool
100TypeSystemClangSupportsLanguage(lldb::LanguageType language) {
101 return language == eLanguageTypeUnknown || // Clang is the default type system
102 lldb_private::Language::LanguageIsC(language) ||
103 lldb_private::Language::LanguageIsCPlusPlus(language) ||
104 lldb_private::Language::LanguageIsObjC(language) ||
105 lldb_private::Language::LanguageIsPascal(language) ||
106 // Use Clang for Rust until there is a proper language plugin for it
107 language == eLanguageTypeRust ||
108 language == eLanguageTypeExtRenderScript ||
109 // Use Clang for D until there is a proper language plugin for it
110 language == eLanguageTypeD ||
111 // Open Dylan compiler debug info is designed to be Clang-compatible
112 language == eLanguageTypeDylan;
113}
114
115// Checks whether m1 is an overload of m2 (as opposed to an override). This is
116// called by addOverridesForMethod to distinguish overrides (which share a
117// vtable entry) from overloads (which require distinct entries).
118bool isOverload(clang::CXXMethodDecl *m1, clang::CXXMethodDecl *m2) {
119 // FIXME: This should detect covariant return types, but currently doesn't.
120 lldbassert(&m1->getASTContext() == &m2->getASTContext() &&lldb_private::lldb_assert(static_cast<bool>(&m1->
getASTContext() == &m2->getASTContext() && "Methods should have the same AST context"
), "&m1->getASTContext() == &m2->getASTContext() && \"Methods should have the same AST context\""
, __FUNCTION__, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 121)
121 "Methods should have the same AST context")lldb_private::lldb_assert(static_cast<bool>(&m1->
getASTContext() == &m2->getASTContext() && "Methods should have the same AST context"
), "&m1->getASTContext() == &m2->getASTContext() && \"Methods should have the same AST context\""
, __FUNCTION__, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 121)
;
122 clang::ASTContext &context = m1->getASTContext();
123
124 const auto *m1Type = llvm::cast<clang::FunctionProtoType>(
125 context.getCanonicalType(m1->getType()));
126
127 const auto *m2Type = llvm::cast<clang::FunctionProtoType>(
128 context.getCanonicalType(m2->getType()));
129
130 auto compareArgTypes = [&context](const clang::QualType &m1p,
131 const clang::QualType &m2p) {
132 return context.hasSameType(m1p.getUnqualifiedType(),
133 m2p.getUnqualifiedType());
134 };
135
136 // FIXME: In C++14 and later, we can just pass m2Type->param_type_end()
137 // as a fourth parameter to std::equal().
138 return (m1->getNumParams() != m2->getNumParams()) ||
139 !std::equal(m1Type->param_type_begin(), m1Type->param_type_end(),
140 m2Type->param_type_begin(), compareArgTypes);
141}
142
143// If decl is a virtual method, walk the base classes looking for methods that
144// decl overrides. This table of overridden methods is used by IRGen to
145// determine the vtable layout for decl's parent class.
146void addOverridesForMethod(clang::CXXMethodDecl *decl) {
147 if (!decl->isVirtual())
148 return;
149
150 clang::CXXBasePaths paths;
151 llvm::SmallVector<clang::NamedDecl *, 4> decls;
152
153 auto find_overridden_methods =
154 [&decls, decl](const clang::CXXBaseSpecifier *specifier,
155 clang::CXXBasePath &path) {
156 if (auto *base_record = llvm::dyn_cast<clang::CXXRecordDecl>(
157 specifier->getType()->getAs<clang::RecordType>()->getDecl())) {
158
159 clang::DeclarationName name = decl->getDeclName();
160
161 // If this is a destructor, check whether the base class destructor is
162 // virtual.
163 if (name.getNameKind() == clang::DeclarationName::CXXDestructorName)
164 if (auto *baseDtorDecl = base_record->getDestructor()) {
165 if (baseDtorDecl->isVirtual()) {
166 decls.push_back(baseDtorDecl);
167 return true;
168 } else
169 return false;
170 }
171
172 // Otherwise, search for name in the base class.
173 for (path.Decls = base_record->lookup(name).begin();
174 path.Decls != path.Decls.end(); ++path.Decls) {
175 if (auto *method_decl =
176 llvm::dyn_cast<clang::CXXMethodDecl>(*path.Decls))
177 if (method_decl->isVirtual() && !isOverload(decl, method_decl)) {
178 decls.push_back(method_decl);
179 return true;
180 }
181 }
182 }
183
184 return false;
185 };
186
187 if (decl->getParent()->lookupInBases(find_overridden_methods, paths)) {
188 for (auto *overridden_decl : decls)
189 decl->addOverriddenMethod(
190 llvm::cast<clang::CXXMethodDecl>(overridden_decl));
191 }
192}
193}
194
195static lldb::addr_t GetVTableAddress(Process &process,
196 VTableContextBase &vtable_ctx,
197 ValueObject &valobj,
198 const ASTRecordLayout &record_layout) {
199 // Retrieve type info
200 CompilerType pointee_type;
201 CompilerType this_type(valobj.GetCompilerType());
202 uint32_t type_info = this_type.GetTypeInfo(&pointee_type);
203 if (!type_info)
204 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
205
206 // Check if it's a pointer or reference
207 bool ptr_or_ref = false;
208 if (type_info & (eTypeIsPointer | eTypeIsReference)) {
209 ptr_or_ref = true;
210 type_info = pointee_type.GetTypeInfo();
211 }
212
213 // We process only C++ classes
214 const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus;
215 if ((type_info & cpp_class) != cpp_class)
216 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
217
218 // Calculate offset to VTable pointer
219 lldb::offset_t vbtable_ptr_offset =
220 vtable_ctx.isMicrosoft() ? record_layout.getVBPtrOffset().getQuantity()
221 : 0;
222
223 if (ptr_or_ref) {
224 // We have a pointer / ref to object, so read
225 // VTable pointer from process memory
226
227 if (valobj.GetAddressTypeOfChildren() != eAddressTypeLoad)
228 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
229
230 auto vbtable_ptr_addr = valobj.GetValueAsUnsigned(LLDB_INVALID_ADDRESS(18446744073709551615UL));
231 if (vbtable_ptr_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL))
232 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
233
234 vbtable_ptr_addr += vbtable_ptr_offset;
235
236 Status err;
237 return process.ReadPointerFromMemory(vbtable_ptr_addr, err);
238 }
239
240 // We have an object already read from process memory,
241 // so just extract VTable pointer from it
242
243 DataExtractor data;
244 Status err;
245 auto size = valobj.GetData(data, err);
246 if (err.Fail() || vbtable_ptr_offset + data.GetAddressByteSize() > size)
247 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
248
249 return data.GetAddress(&vbtable_ptr_offset);
250}
251
252static int64_t ReadVBaseOffsetFromVTable(Process &process,
253 VTableContextBase &vtable_ctx,
254 lldb::addr_t vtable_ptr,
255 const CXXRecordDecl *cxx_record_decl,
256 const CXXRecordDecl *base_class_decl) {
257 if (vtable_ctx.isMicrosoft()) {
258 clang::MicrosoftVTableContext &msoft_vtable_ctx =
259 static_cast<clang::MicrosoftVTableContext &>(vtable_ctx);
260
261 // Get the index into the virtual base table. The
262 // index is the index in uint32_t from vbtable_ptr
263 const unsigned vbtable_index =
264 msoft_vtable_ctx.getVBTableIndex(cxx_record_decl, base_class_decl);
265 const lldb::addr_t base_offset_addr = vtable_ptr + vbtable_index * 4;
266 Status err;
267 return process.ReadSignedIntegerFromMemory(base_offset_addr, 4, INT64_MAX(9223372036854775807L),
268 err);
269 }
270
271 clang::ItaniumVTableContext &itanium_vtable_ctx =
272 static_cast<clang::ItaniumVTableContext &>(vtable_ctx);
273
274 clang::CharUnits base_offset_offset =
275 itanium_vtable_ctx.getVirtualBaseOffsetOffset(cxx_record_decl,
276 base_class_decl);
277 const lldb::addr_t base_offset_addr =
278 vtable_ptr + base_offset_offset.getQuantity();
279 const uint32_t base_offset_size = process.GetAddressByteSize();
280 Status err;
281 return process.ReadSignedIntegerFromMemory(base_offset_addr, base_offset_size,
282 INT64_MAX(9223372036854775807L), err);
283}
284
285static bool GetVBaseBitOffset(VTableContextBase &vtable_ctx,
286 ValueObject &valobj,
287 const ASTRecordLayout &record_layout,
288 const CXXRecordDecl *cxx_record_decl,
289 const CXXRecordDecl *base_class_decl,
290 int32_t &bit_offset) {
291 ExecutionContext exe_ctx(valobj.GetExecutionContextRef());
292 Process *process = exe_ctx.GetProcessPtr();
293 if (!process)
294 return false;
295
296 lldb::addr_t vtable_ptr =
297 GetVTableAddress(*process, vtable_ctx, valobj, record_layout);
298 if (vtable_ptr == LLDB_INVALID_ADDRESS(18446744073709551615UL))
299 return false;
300
301 auto base_offset = ReadVBaseOffsetFromVTable(
302 *process, vtable_ctx, vtable_ptr, cxx_record_decl, base_class_decl);
303 if (base_offset == INT64_MAX(9223372036854775807L))
304 return false;
305
306 bit_offset = base_offset * 8;
307
308 return true;
309}
310
311typedef lldb_private::ThreadSafeDenseMap<clang::ASTContext *, TypeSystemClang *>
312 ClangASTMap;
313
314static ClangASTMap &GetASTMap() {
315 static ClangASTMap *g_map_ptr = nullptr;
316 static llvm::once_flag g_once_flag;
317 llvm::call_once(g_once_flag, []() {
318 g_map_ptr = new ClangASTMap(); // leaked on purpose to avoid spins
319 });
320 return *g_map_ptr;
321}
322
323TypePayloadClang::TypePayloadClang(OptionalClangModuleID owning_module,
324 bool is_complete_objc_class)
325 : m_payload(owning_module.GetValue()) {
326 SetIsCompleteObjCClass(is_complete_objc_class);
327}
328
329void TypePayloadClang::SetOwningModule(OptionalClangModuleID id) {
330 assert(id.GetValue() < ObjCClassBit)(static_cast <bool> (id.GetValue() < ObjCClassBit) ?
void (0) : __assert_fail ("id.GetValue() < ObjCClassBit",
"lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp", 330
, __extension__ __PRETTY_FUNCTION__))
;
331 bool is_complete = IsCompleteObjCClass();
332 m_payload = id.GetValue();
333 SetIsCompleteObjCClass(is_complete);
334}
335
336static void SetMemberOwningModule(clang::Decl *member,
337 const clang::Decl *parent) {
338 if (!member || !parent)
339 return;
340
341 OptionalClangModuleID id(parent->getOwningModuleID());
342 if (!id.HasValue())
343 return;
344
345 member->setFromASTFile();
346 member->setOwningModuleID(id.GetValue());
347 member->setModuleOwnershipKind(clang::Decl::ModuleOwnershipKind::Visible);
348 if (llvm::isa<clang::NamedDecl>(member))
349 if (auto *dc = llvm::dyn_cast<clang::DeclContext>(parent)) {
350 dc->setHasExternalVisibleStorage(true);
351 // This triggers ExternalASTSource::FindExternalVisibleDeclsByName() to be
352 // called when searching for members.
353 dc->setHasExternalLexicalStorage(true);
354 }
355}
356
357char TypeSystemClang::ID;
358
359bool TypeSystemClang::IsOperator(llvm::StringRef name,
360 clang::OverloadedOperatorKind &op_kind) {
361 // All operators have to start with "operator".
362 if (!name.consume_front("operator"))
363 return false;
364
365 // Remember if there was a space after "operator". This is necessary to
366 // check for collisions with strangely named functions like "operatorint()".
367 bool space_after_operator = name.consume_front(" ");
368
369 op_kind = StringSwitch<clang::OverloadedOperatorKind>(name)
370 .Case("+", clang::OO_Plus)
371 .Case("+=", clang::OO_PlusEqual)
372 .Case("++", clang::OO_PlusPlus)
373 .Case("-", clang::OO_Minus)
374 .Case("-=", clang::OO_MinusEqual)
375 .Case("--", clang::OO_MinusMinus)
376 .Case("->", clang::OO_Arrow)
377 .Case("->*", clang::OO_ArrowStar)
378 .Case("*", clang::OO_Star)
379 .Case("*=", clang::OO_StarEqual)
380 .Case("/", clang::OO_Slash)
381 .Case("/=", clang::OO_SlashEqual)
382 .Case("%", clang::OO_Percent)
383 .Case("%=", clang::OO_PercentEqual)
384 .Case("^", clang::OO_Caret)
385 .Case("^=", clang::OO_CaretEqual)
386 .Case("&", clang::OO_Amp)
387 .Case("&=", clang::OO_AmpEqual)
388 .Case("&&", clang::OO_AmpAmp)
389 .Case("|", clang::OO_Pipe)
390 .Case("|=", clang::OO_PipeEqual)
391 .Case("||", clang::OO_PipePipe)
392 .Case("~", clang::OO_Tilde)
393 .Case("!", clang::OO_Exclaim)
394 .Case("!=", clang::OO_ExclaimEqual)
395 .Case("=", clang::OO_Equal)
396 .Case("==", clang::OO_EqualEqual)
397 .Case("<", clang::OO_Less)
398 .Case("<<", clang::OO_LessLess)
399 .Case("<<=", clang::OO_LessLessEqual)
400 .Case("<=", clang::OO_LessEqual)
401 .Case(">", clang::OO_Greater)
402 .Case(">>", clang::OO_GreaterGreater)
403 .Case(">>=", clang::OO_GreaterGreaterEqual)
404 .Case(">=", clang::OO_GreaterEqual)
405 .Case("()", clang::OO_Call)
406 .Case("[]", clang::OO_Subscript)
407 .Case(",", clang::OO_Comma)
408 .Default(clang::NUM_OVERLOADED_OPERATORS);
409
410 // We found a fitting operator, so we can exit now.
411 if (op_kind != clang::NUM_OVERLOADED_OPERATORS)
412 return true;
413
414 // After the "operator " or "operator" part is something unknown. This means
415 // it's either one of the named operators (new/delete), a conversion operator
416 // (e.g. operator bool) or a function which name starts with "operator"
417 // (e.g. void operatorbool).
418
419 // If it's a function that starts with operator it can't have a space after
420 // "operator" because identifiers can't contain spaces.
421 // E.g. "operator int" (conversion operator)
422 // vs. "operatorint" (function with colliding name).
423 if (!space_after_operator)
424 return false; // not an operator.
425
426 // Now the operator is either one of the named operators or a conversion
427 // operator.
428 op_kind = StringSwitch<clang::OverloadedOperatorKind>(name)
429 .Case("new", clang::OO_New)
430 .Case("new[]", clang::OO_Array_New)
431 .Case("delete", clang::OO_Delete)
432 .Case("delete[]", clang::OO_Array_Delete)
433 // conversion operators hit this case.
434 .Default(clang::NUM_OVERLOADED_OPERATORS);
435
436 return true;
437}
438
439clang::AccessSpecifier
440TypeSystemClang::ConvertAccessTypeToAccessSpecifier(AccessType access) {
441 switch (access) {
442 default:
443 break;
444 case eAccessNone:
445 return AS_none;
446 case eAccessPublic:
447 return AS_public;
448 case eAccessPrivate:
449 return AS_private;
450 case eAccessProtected:
451 return AS_protected;
452 }
453 return AS_none;
454}
455
456static void ParseLangArgs(LangOptions &Opts, InputKind IK, const char *triple) {
457 // FIXME: Cleanup per-file based stuff.
458
459 // Set some properties which depend solely on the input kind; it would be
460 // nice to move these to the language standard, and have the driver resolve
461 // the input kind + language standard.
462 if (IK.getLanguage() == clang::Language::Asm) {
463 Opts.AsmPreprocessor = 1;
464 } else if (IK.isObjectiveC()) {
465 Opts.ObjC = 1;
466 }
467
468 LangStandard::Kind LangStd = LangStandard::lang_unspecified;
469
470 if (LangStd == LangStandard::lang_unspecified) {
471 // Based on the base language, pick one.
472 switch (IK.getLanguage()) {
473 case clang::Language::Unknown:
474 case clang::Language::LLVM_IR:
475 case clang::Language::RenderScript:
476 llvm_unreachable("Invalid input kind!")::llvm::llvm_unreachable_internal("Invalid input kind!", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 476)
;
477 case clang::Language::OpenCL:
478 LangStd = LangStandard::lang_opencl10;
479 break;
480 case clang::Language::OpenCLCXX:
481 LangStd = LangStandard::lang_openclcpp10;
482 break;
483 case clang::Language::CUDA:
484 LangStd = LangStandard::lang_cuda;
485 break;
486 case clang::Language::Asm:
487 case clang::Language::C:
488 case clang::Language::ObjC:
489 LangStd = LangStandard::lang_gnu99;
490 break;
491 case clang::Language::CXX:
492 case clang::Language::ObjCXX:
493 LangStd = LangStandard::lang_gnucxx98;
494 break;
495 case clang::Language::HIP:
496 LangStd = LangStandard::lang_hip;
497 break;
498 }
499 }
500
501 const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd);
502 Opts.LineComment = Std.hasLineComments();
503 Opts.C99 = Std.isC99();
504 Opts.CPlusPlus = Std.isCPlusPlus();
505 Opts.CPlusPlus11 = Std.isCPlusPlus11();
506 Opts.Digraphs = Std.hasDigraphs();
507 Opts.GNUMode = Std.isGNUMode();
508 Opts.GNUInline = !Std.isC99();
509 Opts.HexFloats = Std.hasHexFloats();
510 Opts.ImplicitInt = Std.hasImplicitInt();
511
512 Opts.WChar = true;
513
514 // OpenCL has some additional defaults.
515 if (LangStd == LangStandard::lang_opencl10) {
516 Opts.OpenCL = 1;
517 Opts.AltiVec = 1;
518 Opts.CXXOperatorNames = 1;
519 Opts.setLaxVectorConversions(LangOptions::LaxVectorConversionKind::All);
520 }
521
522 // OpenCL and C++ both have bool, true, false keywords.
523 Opts.Bool = Opts.OpenCL || Opts.CPlusPlus;
524
525 Opts.setValueVisibilityMode(DefaultVisibility);
526
527 // Mimicing gcc's behavior, trigraphs are only enabled if -trigraphs is
528 // specified, or -std is set to a conforming mode.
529 Opts.Trigraphs = !Opts.GNUMode;
530 Opts.CharIsSigned = ArchSpec(triple).CharIsSignedByDefault();
531 Opts.OptimizeSize = 0;
532
533 // FIXME: Eliminate this dependency.
534 // unsigned Opt =
535 // Args.hasArg(OPT_Os) ? 2 : getLastArgIntValue(Args, OPT_O, 0, Diags);
536 // Opts.Optimize = Opt != 0;
537 unsigned Opt = 0;
538
539 // This is the __NO_INLINE__ define, which just depends on things like the
540 // optimization level and -fno-inline, not actually whether the backend has
541 // inlining enabled.
542 //
543 // FIXME: This is affected by other options (-fno-inline).
544 Opts.NoInlineDefine = !Opt;
545
546 // This is needed to allocate the extra space for the owning module
547 // on each decl.
548 Opts.ModulesLocalVisibility = 1;
549}
550
551TypeSystemClang::TypeSystemClang(llvm::StringRef name,
552 llvm::Triple target_triple) {
553 m_display_name = name.str();
554 if (!target_triple.str().empty())
555 SetTargetTriple(target_triple.str());
556 // The caller didn't pass an ASTContext so create a new one for this
557 // TypeSystemClang.
558 CreateASTContext();
559}
560
561TypeSystemClang::TypeSystemClang(llvm::StringRef name,
562 ASTContext &existing_ctxt) {
563 m_display_name = name.str();
564 SetTargetTriple(existing_ctxt.getTargetInfo().getTriple().str());
565
566 m_ast_up.reset(&existing_ctxt);
567 GetASTMap().Insert(&existing_ctxt, this);
568}
569
570// Destructor
571TypeSystemClang::~TypeSystemClang() { Finalize(); }
572
573lldb::TypeSystemSP TypeSystemClang::CreateInstance(lldb::LanguageType language,
574 lldb_private::Module *module,
575 Target *target) {
576 if (!TypeSystemClangSupportsLanguage(language))
577 return lldb::TypeSystemSP();
578 ArchSpec arch;
579 if (module)
580 arch = module->GetArchitecture();
581 else if (target)
582 arch = target->GetArchitecture();
583
584 if (!arch.IsValid())
585 return lldb::TypeSystemSP();
586
587 llvm::Triple triple = arch.GetTriple();
588 // LLVM wants this to be set to iOS or MacOSX; if we're working on
589 // a bare-boards type image, change the triple for llvm's benefit.
590 if (triple.getVendor() == llvm::Triple::Apple &&
591 triple.getOS() == llvm::Triple::UnknownOS) {
592 if (triple.getArch() == llvm::Triple::arm ||
593 triple.getArch() == llvm::Triple::aarch64 ||
594 triple.getArch() == llvm::Triple::aarch64_32 ||
595 triple.getArch() == llvm::Triple::thumb) {
596 triple.setOS(llvm::Triple::IOS);
597 } else {
598 triple.setOS(llvm::Triple::MacOSX);
599 }
600 }
601
602 if (module) {
603 std::string ast_name =
604 "ASTContext for '" + module->GetFileSpec().GetPath() + "'";
605 return std::make_shared<TypeSystemClang>(ast_name, triple);
606 } else if (target && target->IsValid())
607 return std::make_shared<ScratchTypeSystemClang>(*target, triple);
608 return lldb::TypeSystemSP();
609}
610
611LanguageSet TypeSystemClang::GetSupportedLanguagesForTypes() {
612 LanguageSet languages;
613 languages.Insert(lldb::eLanguageTypeC89);
614 languages.Insert(lldb::eLanguageTypeC);
615 languages.Insert(lldb::eLanguageTypeC11);
616 languages.Insert(lldb::eLanguageTypeC_plus_plus);
617 languages.Insert(lldb::eLanguageTypeC99);
618 languages.Insert(lldb::eLanguageTypeObjC);
619 languages.Insert(lldb::eLanguageTypeObjC_plus_plus);
620 languages.Insert(lldb::eLanguageTypeC_plus_plus_03);
621 languages.Insert(lldb::eLanguageTypeC_plus_plus_11);
622 languages.Insert(lldb::eLanguageTypeC11);
623 languages.Insert(lldb::eLanguageTypeC_plus_plus_14);
624 return languages;
625}
626
627LanguageSet TypeSystemClang::GetSupportedLanguagesForExpressions() {
628 LanguageSet languages;
629 languages.Insert(lldb::eLanguageTypeC_plus_plus);
630 languages.Insert(lldb::eLanguageTypeObjC_plus_plus);
631 languages.Insert(lldb::eLanguageTypeC_plus_plus_03);
632 languages.Insert(lldb::eLanguageTypeC_plus_plus_11);
633 languages.Insert(lldb::eLanguageTypeC_plus_plus_14);
634 return languages;
635}
636
637void TypeSystemClang::Initialize() {
638 PluginManager::RegisterPlugin(
639 GetPluginNameStatic(), "clang base AST context plug-in", CreateInstance,
640 GetSupportedLanguagesForTypes(), GetSupportedLanguagesForExpressions());
641}
642
643void TypeSystemClang::Terminate() {
644 PluginManager::UnregisterPlugin(CreateInstance);
645}
646
647void TypeSystemClang::Finalize() {
648 assert(m_ast_up)(static_cast <bool> (m_ast_up) ? void (0) : __assert_fail
("m_ast_up", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 648, __extension__ __PRETTY_FUNCTION__))
;
649 GetASTMap().Erase(m_ast_up.get());
650 if (!m_ast_owned)
651 m_ast_up.release();
652
653 m_builtins_up.reset();
654 m_selector_table_up.reset();
655 m_identifier_table_up.reset();
656 m_target_info_up.reset();
657 m_target_options_rp.reset();
658 m_diagnostics_engine_up.reset();
659 m_source_manager_up.reset();
660 m_language_options_up.reset();
661}
662
663void TypeSystemClang::setSema(Sema *s) {
664 // Ensure that the new sema actually belongs to our ASTContext.
665 assert(s == nullptr || &s->getASTContext() == m_ast_up.get())(static_cast <bool> (s == nullptr || &s->getASTContext
() == m_ast_up.get()) ? void (0) : __assert_fail ("s == nullptr || &s->getASTContext() == m_ast_up.get()"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
665, __extension__ __PRETTY_FUNCTION__))
;
666 m_sema = s;
667}
668
669const char *TypeSystemClang::GetTargetTriple() {
670 return m_target_triple.c_str();
671}
672
673void TypeSystemClang::SetTargetTriple(llvm::StringRef target_triple) {
674 m_target_triple = target_triple.str();
675}
676
677void TypeSystemClang::SetExternalSource(
678 llvm::IntrusiveRefCntPtr<ExternalASTSource> &ast_source_up) {
679 ASTContext &ast = getASTContext();
680 ast.getTranslationUnitDecl()->setHasExternalLexicalStorage(true);
681 ast.setExternalSource(ast_source_up);
682}
683
684ASTContext &TypeSystemClang::getASTContext() {
685 assert(m_ast_up)(static_cast <bool> (m_ast_up) ? void (0) : __assert_fail
("m_ast_up", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 685, __extension__ __PRETTY_FUNCTION__))
;
686 return *m_ast_up;
687}
688
689class NullDiagnosticConsumer : public DiagnosticConsumer {
690public:
691 NullDiagnosticConsumer() {
692 m_log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS::lldb_private::LLDBLog::Expressions);
693 }
694
695 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
696 const clang::Diagnostic &info) override {
697 if (m_log) {
698 llvm::SmallVector<char, 32> diag_str(10);
699 info.FormatDiagnostic(diag_str);
700 diag_str.push_back('\0');
701 LLDB_LOGF(m_log, "Compiler diagnostic: %s\n", diag_str.data())do { ::lldb_private::Log *log_private = (m_log); if (log_private
) log_private->Printf("Compiler diagnostic: %s\n", diag_str
.data()); } while (0)
;
702 }
703 }
704
705 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
706 return new NullDiagnosticConsumer();
707 }
708
709private:
710 Log *m_log;
711};
712
713void TypeSystemClang::CreateASTContext() {
714 assert(!m_ast_up)(static_cast <bool> (!m_ast_up) ? void (0) : __assert_fail
("!m_ast_up", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 714, __extension__ __PRETTY_FUNCTION__))
;
715 m_ast_owned = true;
716
717 m_language_options_up = std::make_unique<LangOptions>();
718 ParseLangArgs(*m_language_options_up, clang::Language::ObjCXX,
719 GetTargetTriple());
720
721 m_identifier_table_up =
722 std::make_unique<IdentifierTable>(*m_language_options_up, nullptr);
723 m_builtins_up = std::make_unique<Builtin::Context>();
724
725 m_selector_table_up = std::make_unique<SelectorTable>();
726
727 clang::FileSystemOptions file_system_options;
728 m_file_manager_up = std::make_unique<clang::FileManager>(
729 file_system_options, FileSystem::Instance().GetVirtualFileSystem());
730
731 llvm::IntrusiveRefCntPtr<DiagnosticIDs> diag_id_sp(new DiagnosticIDs());
732 m_diagnostics_engine_up =
733 std::make_unique<DiagnosticsEngine>(diag_id_sp, new DiagnosticOptions());
734
735 m_source_manager_up = std::make_unique<clang::SourceManager>(
736 *m_diagnostics_engine_up, *m_file_manager_up);
737 m_ast_up = std::make_unique<ASTContext>(
738 *m_language_options_up, *m_source_manager_up, *m_identifier_table_up,
739 *m_selector_table_up, *m_builtins_up, TU_Complete);
740
741 m_diagnostic_consumer_up = std::make_unique<NullDiagnosticConsumer>();
742 m_ast_up->getDiagnostics().setClient(m_diagnostic_consumer_up.get(), false);
743
744 // This can be NULL if we don't know anything about the architecture or if
745 // the target for an architecture isn't enabled in the llvm/clang that we
746 // built
747 TargetInfo *target_info = getTargetInfo();
748 if (target_info)
749 m_ast_up->InitBuiltinTypes(*target_info);
750
751 GetASTMap().Insert(m_ast_up.get(), this);
752
753 llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source_up(
754 new ClangExternalASTSourceCallbacks(*this));
755 SetExternalSource(ast_source_up);
756}
757
758TypeSystemClang *TypeSystemClang::GetASTContext(clang::ASTContext *ast) {
759 TypeSystemClang *clang_ast = GetASTMap().Lookup(ast);
760 return clang_ast;
761}
762
763clang::MangleContext *TypeSystemClang::getMangleContext() {
764 if (m_mangle_ctx_up == nullptr)
765 m_mangle_ctx_up.reset(getASTContext().createMangleContext());
766 return m_mangle_ctx_up.get();
767}
768
769std::shared_ptr<clang::TargetOptions> &TypeSystemClang::getTargetOptions() {
770 if (m_target_options_rp == nullptr && !m_target_triple.empty()) {
771 m_target_options_rp = std::make_shared<clang::TargetOptions>();
772 if (m_target_options_rp != nullptr)
773 m_target_options_rp->Triple = m_target_triple;
774 }
775 return m_target_options_rp;
776}
777
778TargetInfo *TypeSystemClang::getTargetInfo() {
779 // target_triple should be something like "x86_64-apple-macosx"
780 if (m_target_info_up == nullptr && !m_target_triple.empty())
781 m_target_info_up.reset(TargetInfo::CreateTargetInfo(
782 getASTContext().getDiagnostics(), getTargetOptions()));
783 return m_target_info_up.get();
784}
785
786#pragma mark Basic Types
787
788static inline bool QualTypeMatchesBitSize(const uint64_t bit_size,
789 ASTContext &ast, QualType qual_type) {
790 uint64_t qual_type_bit_size = ast.getTypeSize(qual_type);
791 return qual_type_bit_size == bit_size;
792}
793
794CompilerType
795TypeSystemClang::GetBuiltinTypeForEncodingAndBitSize(Encoding encoding,
796 size_t bit_size) {
797 ASTContext &ast = getASTContext();
798 switch (encoding) {
799 case eEncodingInvalid:
800 if (QualTypeMatchesBitSize(bit_size, ast, ast.VoidPtrTy))
801 return GetType(ast.VoidPtrTy);
802 break;
803
804 case eEncodingUint:
805 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
806 return GetType(ast.UnsignedCharTy);
807 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
808 return GetType(ast.UnsignedShortTy);
809 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
810 return GetType(ast.UnsignedIntTy);
811 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongTy))
812 return GetType(ast.UnsignedLongTy);
813 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongLongTy))
814 return GetType(ast.UnsignedLongLongTy);
815 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedInt128Ty))
816 return GetType(ast.UnsignedInt128Ty);
817 break;
818
819 case eEncodingSint:
820 if (QualTypeMatchesBitSize(bit_size, ast, ast.SignedCharTy))
821 return GetType(ast.SignedCharTy);
822 if (QualTypeMatchesBitSize(bit_size, ast, ast.ShortTy))
823 return GetType(ast.ShortTy);
824 if (QualTypeMatchesBitSize(bit_size, ast, ast.IntTy))
825 return GetType(ast.IntTy);
826 if (QualTypeMatchesBitSize(bit_size, ast, ast.LongTy))
827 return GetType(ast.LongTy);
828 if (QualTypeMatchesBitSize(bit_size, ast, ast.LongLongTy))
829 return GetType(ast.LongLongTy);
830 if (QualTypeMatchesBitSize(bit_size, ast, ast.Int128Ty))
831 return GetType(ast.Int128Ty);
832 break;
833
834 case eEncodingIEEE754:
835 if (QualTypeMatchesBitSize(bit_size, ast, ast.FloatTy))
836 return GetType(ast.FloatTy);
837 if (QualTypeMatchesBitSize(bit_size, ast, ast.DoubleTy))
838 return GetType(ast.DoubleTy);
839 if (QualTypeMatchesBitSize(bit_size, ast, ast.LongDoubleTy))
840 return GetType(ast.LongDoubleTy);
841 if (QualTypeMatchesBitSize(bit_size, ast, ast.HalfTy))
842 return GetType(ast.HalfTy);
843 break;
844
845 case eEncodingVector:
846 // Sanity check that bit_size is a multiple of 8's.
847 if (bit_size && !(bit_size & 0x7u))
848 return GetType(ast.getExtVectorType(ast.UnsignedCharTy, bit_size / 8));
849 break;
850 }
851
852 return CompilerType();
853}
854
855lldb::BasicType
856TypeSystemClang::GetBasicTypeEnumeration(ConstString name) {
857 if (name) {
858 typedef UniqueCStringMap<lldb::BasicType> TypeNameToBasicTypeMap;
859 static TypeNameToBasicTypeMap g_type_map;
860 static llvm::once_flag g_once_flag;
861 llvm::call_once(g_once_flag, []() {
862 // "void"
863 g_type_map.Append(ConstString("void"), eBasicTypeVoid);
864
865 // "char"
866 g_type_map.Append(ConstString("char"), eBasicTypeChar);
867 g_type_map.Append(ConstString("signed char"), eBasicTypeSignedChar);
868 g_type_map.Append(ConstString("unsigned char"), eBasicTypeUnsignedChar);
869 g_type_map.Append(ConstString("wchar_t"), eBasicTypeWChar);
870 g_type_map.Append(ConstString("signed wchar_t"), eBasicTypeSignedWChar);
871 g_type_map.Append(ConstString("unsigned wchar_t"),
872 eBasicTypeUnsignedWChar);
873 // "short"
874 g_type_map.Append(ConstString("short"), eBasicTypeShort);
875 g_type_map.Append(ConstString("short int"), eBasicTypeShort);
876 g_type_map.Append(ConstString("unsigned short"), eBasicTypeUnsignedShort);
877 g_type_map.Append(ConstString("unsigned short int"),
878 eBasicTypeUnsignedShort);
879
880 // "int"
881 g_type_map.Append(ConstString("int"), eBasicTypeInt);
882 g_type_map.Append(ConstString("signed int"), eBasicTypeInt);
883 g_type_map.Append(ConstString("unsigned int"), eBasicTypeUnsignedInt);
884 g_type_map.Append(ConstString("unsigned"), eBasicTypeUnsignedInt);
885
886 // "long"
887 g_type_map.Append(ConstString("long"), eBasicTypeLong);
888 g_type_map.Append(ConstString("long int"), eBasicTypeLong);
889 g_type_map.Append(ConstString("unsigned long"), eBasicTypeUnsignedLong);
890 g_type_map.Append(ConstString("unsigned long int"),
891 eBasicTypeUnsignedLong);
892
893 // "long long"
894 g_type_map.Append(ConstString("long long"), eBasicTypeLongLong);
895 g_type_map.Append(ConstString("long long int"), eBasicTypeLongLong);
896 g_type_map.Append(ConstString("unsigned long long"),
897 eBasicTypeUnsignedLongLong);
898 g_type_map.Append(ConstString("unsigned long long int"),
899 eBasicTypeUnsignedLongLong);
900
901 // "int128"
902 g_type_map.Append(ConstString("__int128_t"), eBasicTypeInt128);
903 g_type_map.Append(ConstString("__uint128_t"), eBasicTypeUnsignedInt128);
904
905 // Miscellaneous
906 g_type_map.Append(ConstString("bool"), eBasicTypeBool);
907 g_type_map.Append(ConstString("float"), eBasicTypeFloat);
908 g_type_map.Append(ConstString("double"), eBasicTypeDouble);
909 g_type_map.Append(ConstString("long double"), eBasicTypeLongDouble);
910 g_type_map.Append(ConstString("id"), eBasicTypeObjCID);
911 g_type_map.Append(ConstString("SEL"), eBasicTypeObjCSel);
912 g_type_map.Append(ConstString("nullptr"), eBasicTypeNullPtr);
913 g_type_map.Sort();
914 });
915
916 return g_type_map.Find(name, eBasicTypeInvalid);
917 }
918 return eBasicTypeInvalid;
919}
920
921uint32_t TypeSystemClang::GetPointerByteSize() {
922 if (m_pointer_byte_size == 0)
923 if (auto size = GetBasicType(lldb::eBasicTypeVoid)
924 .GetPointerType()
925 .GetByteSize(nullptr))
926 m_pointer_byte_size = *size;
927 return m_pointer_byte_size;
928}
929
930CompilerType TypeSystemClang::GetBasicType(lldb::BasicType basic_type) {
931 clang::ASTContext &ast = getASTContext();
932
933 lldb::opaque_compiler_type_t clang_type =
934 GetOpaqueCompilerType(&ast, basic_type);
935
936 if (clang_type)
937 return CompilerType(this, clang_type);
938 return CompilerType();
939}
940
941CompilerType TypeSystemClang::GetBuiltinTypeForDWARFEncodingAndBitSize(
942 llvm::StringRef type_name, uint32_t dw_ate, uint32_t bit_size) {
943 ASTContext &ast = getASTContext();
944
945 switch (dw_ate) {
946 default:
947 break;
948
949 case DW_ATE_address:
950 if (QualTypeMatchesBitSize(bit_size, ast, ast.VoidPtrTy))
951 return GetType(ast.VoidPtrTy);
952 break;
953
954 case DW_ATE_boolean:
955 if (QualTypeMatchesBitSize(bit_size, ast, ast.BoolTy))
956 return GetType(ast.BoolTy);
957 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
958 return GetType(ast.UnsignedCharTy);
959 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
960 return GetType(ast.UnsignedShortTy);
961 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
962 return GetType(ast.UnsignedIntTy);
963 break;
964
965 case DW_ATE_lo_user:
966 // This has been seen to mean DW_AT_complex_integer
967 if (type_name.contains("complex")) {
968 CompilerType complex_int_clang_type =
969 GetBuiltinTypeForDWARFEncodingAndBitSize("int", DW_ATE_signed,
970 bit_size / 2);
971 return GetType(
972 ast.getComplexType(ClangUtil::GetQualType(complex_int_clang_type)));
973 }
974 break;
975
976 case DW_ATE_complex_float: {
977 CanQualType FloatComplexTy = ast.getComplexType(ast.FloatTy);
978 if (QualTypeMatchesBitSize(bit_size, ast, FloatComplexTy))
979 return GetType(FloatComplexTy);
980
981 CanQualType DoubleComplexTy = ast.getComplexType(ast.DoubleTy);
982 if (QualTypeMatchesBitSize(bit_size, ast, DoubleComplexTy))
983 return GetType(DoubleComplexTy);
984
985 CanQualType LongDoubleComplexTy = ast.getComplexType(ast.LongDoubleTy);
986 if (QualTypeMatchesBitSize(bit_size, ast, LongDoubleComplexTy))
987 return GetType(LongDoubleComplexTy);
988
989 CompilerType complex_float_clang_type =
990 GetBuiltinTypeForDWARFEncodingAndBitSize("float", DW_ATE_float,
991 bit_size / 2);
992 return GetType(
993 ast.getComplexType(ClangUtil::GetQualType(complex_float_clang_type)));
994 }
995
996 case DW_ATE_float:
997 if (type_name == "float" &&
998 QualTypeMatchesBitSize(bit_size, ast, ast.FloatTy))
999 return GetType(ast.FloatTy);
1000 if (type_name == "double" &&
1001 QualTypeMatchesBitSize(bit_size, ast, ast.DoubleTy))
1002 return GetType(ast.DoubleTy);
1003 if (type_name == "long double" &&
1004 QualTypeMatchesBitSize(bit_size, ast, ast.LongDoubleTy))
1005 return GetType(ast.LongDoubleTy);
1006 // Fall back to not requiring a name match
1007 if (QualTypeMatchesBitSize(bit_size, ast, ast.FloatTy))
1008 return GetType(ast.FloatTy);
1009 if (QualTypeMatchesBitSize(bit_size, ast, ast.DoubleTy))
1010 return GetType(ast.DoubleTy);
1011 if (QualTypeMatchesBitSize(bit_size, ast, ast.LongDoubleTy))
1012 return GetType(ast.LongDoubleTy);
1013 if (QualTypeMatchesBitSize(bit_size, ast, ast.HalfTy))
1014 return GetType(ast.HalfTy);
1015 break;
1016
1017 case DW_ATE_signed:
1018 if (!type_name.empty()) {
1019 if (type_name == "wchar_t" &&
1020 QualTypeMatchesBitSize(bit_size, ast, ast.WCharTy) &&
1021 (getTargetInfo() &&
1022 TargetInfo::isTypeSigned(getTargetInfo()->getWCharType())))
1023 return GetType(ast.WCharTy);
1024 if (type_name == "void" &&
1025 QualTypeMatchesBitSize(bit_size, ast, ast.VoidTy))
1026 return GetType(ast.VoidTy);
1027 if (type_name.contains("long long") &&
1028 QualTypeMatchesBitSize(bit_size, ast, ast.LongLongTy))
1029 return GetType(ast.LongLongTy);
1030 if (type_name.contains("long") &&
1031 QualTypeMatchesBitSize(bit_size, ast, ast.LongTy))
1032 return GetType(ast.LongTy);
1033 if (type_name.contains("short") &&
1034 QualTypeMatchesBitSize(bit_size, ast, ast.ShortTy))
1035 return GetType(ast.ShortTy);
1036 if (type_name.contains("char")) {
1037 if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
1038 return GetType(ast.CharTy);
1039 if (QualTypeMatchesBitSize(bit_size, ast, ast.SignedCharTy))
1040 return GetType(ast.SignedCharTy);
1041 }
1042 if (type_name.contains("int")) {
1043 if (QualTypeMatchesBitSize(bit_size, ast, ast.IntTy))
1044 return GetType(ast.IntTy);
1045 if (QualTypeMatchesBitSize(bit_size, ast, ast.Int128Ty))
1046 return GetType(ast.Int128Ty);
1047 }
1048 }
1049 // We weren't able to match up a type name, just search by size
1050 if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
1051 return GetType(ast.CharTy);
1052 if (QualTypeMatchesBitSize(bit_size, ast, ast.ShortTy))
1053 return GetType(ast.ShortTy);
1054 if (QualTypeMatchesBitSize(bit_size, ast, ast.IntTy))
1055 return GetType(ast.IntTy);
1056 if (QualTypeMatchesBitSize(bit_size, ast, ast.LongTy))
1057 return GetType(ast.LongTy);
1058 if (QualTypeMatchesBitSize(bit_size, ast, ast.LongLongTy))
1059 return GetType(ast.LongLongTy);
1060 if (QualTypeMatchesBitSize(bit_size, ast, ast.Int128Ty))
1061 return GetType(ast.Int128Ty);
1062 break;
1063
1064 case DW_ATE_signed_char:
1065 if (ast.getLangOpts().CharIsSigned && type_name == "char") {
1066 if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
1067 return GetType(ast.CharTy);
1068 }
1069 if (QualTypeMatchesBitSize(bit_size, ast, ast.SignedCharTy))
1070 return GetType(ast.SignedCharTy);
1071 break;
1072
1073 case DW_ATE_unsigned:
1074 if (!type_name.empty()) {
1075 if (type_name == "wchar_t") {
1076 if (QualTypeMatchesBitSize(bit_size, ast, ast.WCharTy)) {
1077 if (!(getTargetInfo() &&
1078 TargetInfo::isTypeSigned(getTargetInfo()->getWCharType())))
1079 return GetType(ast.WCharTy);
1080 }
1081 }
1082 if (type_name.contains("long long")) {
1083 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongLongTy))
1084 return GetType(ast.UnsignedLongLongTy);
1085 } else if (type_name.contains("long")) {
1086 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongTy))
1087 return GetType(ast.UnsignedLongTy);
1088 } else if (type_name.contains("short")) {
1089 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
1090 return GetType(ast.UnsignedShortTy);
1091 } else if (type_name.contains("char")) {
1092 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
1093 return GetType(ast.UnsignedCharTy);
1094 } else if (type_name.contains("int")) {
1095 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
1096 return GetType(ast.UnsignedIntTy);
1097 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedInt128Ty))
1098 return GetType(ast.UnsignedInt128Ty);
1099 }
1100 }
1101 // We weren't able to match up a type name, just search by size
1102 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
1103 return GetType(ast.UnsignedCharTy);
1104 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
1105 return GetType(ast.UnsignedShortTy);
1106 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
1107 return GetType(ast.UnsignedIntTy);
1108 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongTy))
1109 return GetType(ast.UnsignedLongTy);
1110 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongLongTy))
1111 return GetType(ast.UnsignedLongLongTy);
1112 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedInt128Ty))
1113 return GetType(ast.UnsignedInt128Ty);
1114 break;
1115
1116 case DW_ATE_unsigned_char:
1117 if (!ast.getLangOpts().CharIsSigned && type_name == "char") {
1118 if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
1119 return GetType(ast.CharTy);
1120 }
1121 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
1122 return GetType(ast.UnsignedCharTy);
1123 if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
1124 return GetType(ast.UnsignedShortTy);
1125 break;
1126
1127 case DW_ATE_imaginary_float:
1128 break;
1129
1130 case DW_ATE_UTF:
1131 switch (bit_size) {
1132 case 8:
1133 return GetType(ast.Char8Ty);
1134 case 16:
1135 return GetType(ast.Char16Ty);
1136 case 32:
1137 return GetType(ast.Char32Ty);
1138 default:
1139 if (!type_name.empty()) {
1140 if (type_name == "char16_t")
1141 return GetType(ast.Char16Ty);
1142 if (type_name == "char32_t")
1143 return GetType(ast.Char32Ty);
1144 if (type_name == "char8_t")
1145 return GetType(ast.Char8Ty);
1146 }
1147 }
1148 break;
1149 }
1150
1151 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_TYPES::lldb_private::LLDBLog::Types);
1152 LLDB_LOG(log,do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Format("lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, __func__, "error: need to add support for DW_TAG_base_type '{0}' "
"encoded with DW_ATE = {1:x}, bit_size = {2}", type_name, dw_ate
, bit_size); } while (0)
1153 "error: need to add support for DW_TAG_base_type '{0}' "do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Format("lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, __func__, "error: need to add support for DW_TAG_base_type '{0}' "
"encoded with DW_ATE = {1:x}, bit_size = {2}", type_name, dw_ate
, bit_size); } while (0)
1154 "encoded with DW_ATE = {1:x}, bit_size = {2}",do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Format("lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, __func__, "error: need to add support for DW_TAG_base_type '{0}' "
"encoded with DW_ATE = {1:x}, bit_size = {2}", type_name, dw_ate
, bit_size); } while (0)
1155 type_name, dw_ate, bit_size)do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Format("lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, __func__, "error: need to add support for DW_TAG_base_type '{0}' "
"encoded with DW_ATE = {1:x}, bit_size = {2}", type_name, dw_ate
, bit_size); } while (0)
;
1156 return CompilerType();
1157}
1158
1159CompilerType TypeSystemClang::GetCStringType(bool is_const) {
1160 ASTContext &ast = getASTContext();
1161 QualType char_type(ast.CharTy);
1162
1163 if (is_const)
1164 char_type.addConst();
1165
1166 return GetType(ast.getPointerType(char_type));
1167}
1168
1169bool TypeSystemClang::AreTypesSame(CompilerType type1, CompilerType type2,
1170 bool ignore_qualifiers) {
1171 TypeSystemClang *ast =
1172 llvm::dyn_cast_or_null<TypeSystemClang>(type1.GetTypeSystem());
1173 if (!ast || ast != type2.GetTypeSystem())
1174 return false;
1175
1176 if (type1.GetOpaqueQualType() == type2.GetOpaqueQualType())
1177 return true;
1178
1179 QualType type1_qual = ClangUtil::GetQualType(type1);
1180 QualType type2_qual = ClangUtil::GetQualType(type2);
1181
1182 if (ignore_qualifiers) {
1183 type1_qual = type1_qual.getUnqualifiedType();
1184 type2_qual = type2_qual.getUnqualifiedType();
1185 }
1186
1187 return ast->getASTContext().hasSameType(type1_qual, type2_qual);
1188}
1189
1190CompilerType TypeSystemClang::GetTypeForDecl(void *opaque_decl) {
1191 if (!opaque_decl)
1192 return CompilerType();
1193
1194 clang::Decl *decl = static_cast<clang::Decl *>(opaque_decl);
1195 if (auto *named_decl = llvm::dyn_cast<clang::NamedDecl>(decl))
1196 return GetTypeForDecl(named_decl);
1197 return CompilerType();
1198}
1199
1200CompilerDeclContext TypeSystemClang::CreateDeclContext(DeclContext *ctx) {
1201 // Check that the DeclContext actually belongs to this ASTContext.
1202 assert(&ctx->getParentASTContext() == &getASTContext())(static_cast <bool> (&ctx->getParentASTContext()
== &getASTContext()) ? void (0) : __assert_fail ("&ctx->getParentASTContext() == &getASTContext()"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
1202, __extension__ __PRETTY_FUNCTION__))
;
1203 return CompilerDeclContext(this, ctx);
1204}
1205
1206CompilerType TypeSystemClang::GetTypeForDecl(clang::NamedDecl *decl) {
1207 if (clang::ObjCInterfaceDecl *interface_decl =
1208 llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl))
1209 return GetTypeForDecl(interface_decl);
1210 if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl))
1211 return GetTypeForDecl(tag_decl);
1212 return CompilerType();
1213}
1214
1215CompilerType TypeSystemClang::GetTypeForDecl(TagDecl *decl) {
1216 return GetType(getASTContext().getTagDeclType(decl));
1217}
1218
1219CompilerType TypeSystemClang::GetTypeForDecl(ObjCInterfaceDecl *decl) {
1220 return GetType(getASTContext().getObjCInterfaceType(decl));
1221}
1222
1223#pragma mark Structure, Unions, Classes
1224
1225void TypeSystemClang::SetOwningModule(clang::Decl *decl,
1226 OptionalClangModuleID owning_module) {
1227 if (!decl || !owning_module.HasValue())
1228 return;
1229
1230 decl->setFromASTFile();
1231 decl->setOwningModuleID(owning_module.GetValue());
1232 decl->setModuleOwnershipKind(clang::Decl::ModuleOwnershipKind::Visible);
1233}
1234
1235OptionalClangModuleID
1236TypeSystemClang::GetOrCreateClangModule(llvm::StringRef name,
1237 OptionalClangModuleID parent,
1238 bool is_framework, bool is_explicit) {
1239 // Get the external AST source which holds the modules.
1240 auto *ast_source = llvm::dyn_cast_or_null<ClangExternalASTSourceCallbacks>(
1241 getASTContext().getExternalSource());
1242 assert(ast_source && "external ast source was lost")(static_cast <bool> (ast_source && "external ast source was lost"
) ? void (0) : __assert_fail ("ast_source && \"external ast source was lost\""
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
1242, __extension__ __PRETTY_FUNCTION__))
;
1243 if (!ast_source)
1244 return {};
1245
1246 // Lazily initialize the module map.
1247 if (!m_header_search_up) {
1248 auto HSOpts = std::make_shared<clang::HeaderSearchOptions>();
1249 m_header_search_up = std::make_unique<clang::HeaderSearch>(
1250 HSOpts, *m_source_manager_up, *m_diagnostics_engine_up,
1251 *m_language_options_up, m_target_info_up.get());
1252 m_module_map_up = std::make_unique<clang::ModuleMap>(
1253 *m_source_manager_up, *m_diagnostics_engine_up, *m_language_options_up,
1254 m_target_info_up.get(), *m_header_search_up);
1255 }
1256
1257 // Get or create the module context.
1258 bool created;
1259 clang::Module *module;
1260 auto parent_desc = ast_source->getSourceDescriptor(parent.GetValue());
1261 std::tie(module, created) = m_module_map_up->findOrCreateModule(
1262 name, parent_desc ? parent_desc->getModuleOrNull() : nullptr,
1263 is_framework, is_explicit);
1264 if (!created)
1265 return ast_source->GetIDForModule(module);
1266
1267 return ast_source->RegisterModule(module);
1268}
1269
1270CompilerType TypeSystemClang::CreateRecordType(
1271 clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
1272 AccessType access_type, llvm::StringRef name, int kind,
1273 LanguageType language, ClangASTMetadata *metadata, bool exports_symbols) {
1274 ASTContext &ast = getASTContext();
1275
1276 if (decl_ctx == nullptr)
1277 decl_ctx = ast.getTranslationUnitDecl();
1278
1279 if (language == eLanguageTypeObjC ||
1280 language == eLanguageTypeObjC_plus_plus) {
1281 bool isForwardDecl = true;
1282 bool isInternal = false;
1283 return CreateObjCClass(name, decl_ctx, owning_module, isForwardDecl,
1284 isInternal, metadata);
1285 }
1286
1287 // NOTE: Eventually CXXRecordDecl will be merged back into RecordDecl and
1288 // we will need to update this code. I was told to currently always use the
1289 // CXXRecordDecl class since we often don't know from debug information if
1290 // something is struct or a class, so we default to always use the more
1291 // complete definition just in case.
1292
1293 bool has_name = !name.empty();
1294 CXXRecordDecl *decl = CXXRecordDecl::CreateDeserialized(ast, 0);
1295 decl->setTagKind(static_cast<TagDecl::TagKind>(kind));
1296 decl->setDeclContext(decl_ctx);
1297 if (has_name)
1298 decl->setDeclName(&ast.Idents.get(name));
1299 SetOwningModule(decl, owning_module);
1300
1301 if (!has_name) {
1302 // In C++ a lambda is also represented as an unnamed class. This is
1303 // different from an *anonymous class* that the user wrote:
1304 //
1305 // struct A {
1306 // // anonymous class (GNU/MSVC extension)
1307 // struct {
1308 // int x;
1309 // };
1310 // // unnamed class within a class
1311 // struct {
1312 // int y;
1313 // } B;
1314 // };
1315 //
1316 // void f() {
1317 // // unammed class outside of a class
1318 // struct {
1319 // int z;
1320 // } C;
1321 // }
1322 //
1323 // Anonymous classes is a GNU/MSVC extension that clang supports. It
1324 // requires the anonymous class be embedded within a class. So the new
1325 // heuristic verifies this condition.
1326 if (isa<CXXRecordDecl>(decl_ctx) && exports_symbols)
1327 decl->setAnonymousStructOrUnion(true);
1328 }
1329
1330 if (metadata)
1331 SetMetadata(decl, *metadata);
1332
1333 if (access_type != eAccessNone)
1334 decl->setAccess(ConvertAccessTypeToAccessSpecifier(access_type));
1335
1336 if (decl_ctx)
1337 decl_ctx->addDecl(decl);
1338
1339 return GetType(ast.getTagDeclType(decl));
1340}
1341
1342namespace {
1343/// Returns true iff the given TemplateArgument should be represented as an
1344/// NonTypeTemplateParmDecl in the AST.
1345bool IsValueParam(const clang::TemplateArgument &argument) {
1346 return argument.getKind() == TemplateArgument::Integral;
1347}
1348
1349void AddAccessSpecifierDecl(clang::CXXRecordDecl *cxx_record_decl,
1350 ASTContext &ct,
1351 clang::AccessSpecifier previous_access,
1352 clang::AccessSpecifier access_specifier) {
1353 if (!cxx_record_decl->isClass() && !cxx_record_decl->isStruct())
1354 return;
1355 if (previous_access != access_specifier) {
1356 // For struct, don't add AS_public if it's the first AccessSpecDecl.
1357 // For class, don't add AS_private if it's the first AccessSpecDecl.
1358 if ((cxx_record_decl->isStruct() &&
1359 previous_access == clang::AccessSpecifier::AS_none &&
1360 access_specifier == clang::AccessSpecifier::AS_public) ||
1361 (cxx_record_decl->isClass() &&
1362 previous_access == clang::AccessSpecifier::AS_none &&
1363 access_specifier == clang::AccessSpecifier::AS_private)) {
1364 return;
1365 }
1366 cxx_record_decl->addDecl(
1367 AccessSpecDecl::Create(ct, access_specifier, cxx_record_decl,
1368 SourceLocation(), SourceLocation()));
1369 }
1370}
1371} // namespace
1372
1373static TemplateParameterList *CreateTemplateParameterList(
1374 ASTContext &ast,
1375 const TypeSystemClang::TemplateParameterInfos &template_param_infos,
1376 llvm::SmallVector<NamedDecl *, 8> &template_param_decls) {
1377 const bool parameter_pack = false;
1378 const bool is_typename = false;
1379 const unsigned depth = 0;
1380 const size_t num_template_params = template_param_infos.args.size();
1381 DeclContext *const decl_context =
1382 ast.getTranslationUnitDecl(); // Is this the right decl context?,
1383 for (size_t i = 0; i < num_template_params; ++i) {
1384 const char *name = template_param_infos.names[i];
1385
1386 IdentifierInfo *identifier_info = nullptr;
1387 if (name && name[0])
1388 identifier_info = &ast.Idents.get(name);
1389 if (IsValueParam(template_param_infos.args[i])) {
1390 QualType template_param_type =
1391 template_param_infos.args[i].getIntegralType();
1392 template_param_decls.push_back(NonTypeTemplateParmDecl::Create(
1393 ast, decl_context, SourceLocation(), SourceLocation(), depth, i,
1394 identifier_info, template_param_type, parameter_pack,
1395 ast.getTrivialTypeSourceInfo(template_param_type)));
1396 } else {
1397 template_param_decls.push_back(TemplateTypeParmDecl::Create(
1398 ast, decl_context, SourceLocation(), SourceLocation(), depth, i,
1399 identifier_info, is_typename, parameter_pack));
1400 }
1401 }
1402
1403 if (template_param_infos.packed_args) {
1404 IdentifierInfo *identifier_info = nullptr;
1405 if (template_param_infos.pack_name && template_param_infos.pack_name[0])
1406 identifier_info = &ast.Idents.get(template_param_infos.pack_name);
1407 const bool parameter_pack_true = true;
1408
1409 if (!template_param_infos.packed_args->args.empty() &&
1410 IsValueParam(template_param_infos.packed_args->args[0])) {
1411 QualType template_param_type =
1412 template_param_infos.packed_args->args[0].getIntegralType();
1413 template_param_decls.push_back(NonTypeTemplateParmDecl::Create(
1414 ast, decl_context, SourceLocation(), SourceLocation(), depth,
1415 num_template_params, identifier_info, template_param_type,
1416 parameter_pack_true,
1417 ast.getTrivialTypeSourceInfo(template_param_type)));
1418 } else {
1419 template_param_decls.push_back(TemplateTypeParmDecl::Create(
1420 ast, decl_context, SourceLocation(), SourceLocation(), depth,
1421 num_template_params, identifier_info, is_typename,
1422 parameter_pack_true));
1423 }
1424 }
1425 clang::Expr *const requires_clause = nullptr; // TODO: Concepts
1426 TemplateParameterList *template_param_list = TemplateParameterList::Create(
1427 ast, SourceLocation(), SourceLocation(), template_param_decls,
1428 SourceLocation(), requires_clause);
1429 return template_param_list;
1430}
1431
1432clang::FunctionTemplateDecl *TypeSystemClang::CreateFunctionTemplateDecl(
1433 clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
1434 clang::FunctionDecl *func_decl,
1435 const TemplateParameterInfos &template_param_infos) {
1436 // /// Create a function template node.
1437 ASTContext &ast = getASTContext();
1438
1439 llvm::SmallVector<NamedDecl *, 8> template_param_decls;
1440 TemplateParameterList *template_param_list = CreateTemplateParameterList(
1441 ast, template_param_infos, template_param_decls);
1442 FunctionTemplateDecl *func_tmpl_decl =
1443 FunctionTemplateDecl::CreateDeserialized(ast, 0);
1444 func_tmpl_decl->setDeclContext(decl_ctx);
1445 func_tmpl_decl->setLocation(func_decl->getLocation());
1446 func_tmpl_decl->setDeclName(func_decl->getDeclName());
1447 func_tmpl_decl->init(func_decl, template_param_list);
1448 SetOwningModule(func_tmpl_decl, owning_module);
1449
1450 for (size_t i = 0, template_param_decl_count = template_param_decls.size();
1451 i < template_param_decl_count; ++i) {
1452 // TODO: verify which decl context we should put template_param_decls into..
1453 template_param_decls[i]->setDeclContext(func_decl);
1454 }
1455 // Function templates inside a record need to have an access specifier.
1456 // It doesn't matter what access specifier we give the template as LLDB
1457 // anyway allows accessing everything inside a record.
1458 if (decl_ctx->isRecord())
1459 func_tmpl_decl->setAccess(clang::AccessSpecifier::AS_public);
1460
1461 return func_tmpl_decl;
1462}
1463
1464void TypeSystemClang::CreateFunctionTemplateSpecializationInfo(
1465 FunctionDecl *func_decl, clang::FunctionTemplateDecl *func_tmpl_decl,
1466 const TemplateParameterInfos &infos) {
1467 TemplateArgumentList *template_args_ptr =
1468 TemplateArgumentList::CreateCopy(func_decl->getASTContext(), infos.args);
1469
1470 func_decl->setFunctionTemplateSpecialization(func_tmpl_decl,
1471 template_args_ptr, nullptr);
1472}
1473
1474/// Returns true if the given template parameter can represent the given value.
1475/// For example, `typename T` can represent `int` but not integral values such
1476/// as `int I = 3`.
1477static bool TemplateParameterAllowsValue(NamedDecl *param,
1478 const TemplateArgument &value) {
1479 if (llvm::isa<TemplateTypeParmDecl>(param)) {
1480 // Compare the argument kind, i.e. ensure that <typename> != <int>.
1481 if (value.getKind() != TemplateArgument::Type)
1482 return false;
1483 } else if (auto *type_param =
1484 llvm::dyn_cast<NonTypeTemplateParmDecl>(param)) {
1485 // Compare the argument kind, i.e. ensure that <typename> != <int>.
1486 if (!IsValueParam(value))
1487 return false;
1488 // Compare the integral type, i.e. ensure that <int> != <char>.
1489 if (type_param->getType() != value.getIntegralType())
1490 return false;
1491 } else {
1492 // There is no way to create other parameter decls at the moment, so we
1493 // can't reach this case during normal LLDB usage. Log that this happened
1494 // and assert.
1495 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS::lldb_private::LLDBLog::Expressions);
1496 LLDB_LOG(log,do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Format("lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, __func__, "Don't know how to compare template parameter to passed"
" value. Decl kind of parameter is: {0}", param->getDeclKindName
()); } while (0)
1497 "Don't know how to compare template parameter to passed"do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Format("lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, __func__, "Don't know how to compare template parameter to passed"
" value. Decl kind of parameter is: {0}", param->getDeclKindName
()); } while (0)
1498 " value. Decl kind of parameter is: {0}",do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Format("lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, __func__, "Don't know how to compare template parameter to passed"
" value. Decl kind of parameter is: {0}", param->getDeclKindName
()); } while (0)
1499 param->getDeclKindName())do { ::lldb_private::Log *log_private = (log); if (log_private
) log_private->Format("lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, __func__, "Don't know how to compare template parameter to passed"
" value. Decl kind of parameter is: {0}", param->getDeclKindName
()); } while (0)
;
1500 lldbassert(false && "Can't compare this TemplateParmDecl subclass")lldb_private::lldb_assert(static_cast<bool>(false &&
"Can't compare this TemplateParmDecl subclass"), "false && \"Can't compare this TemplateParmDecl subclass\""
, __FUNCTION__, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 1500)
;
1501 // In release builds just fall back to marking the parameter as not
1502 // accepting the value so that we don't try to fit an instantiation to a
1503 // template that doesn't fit. E.g., avoid that `S<1>` is being connected to
1504 // `template<typename T> struct S;`.
1505 return false;
1506 }
1507 return true;
1508}
1509
1510/// Returns true if the given class template declaration could produce an
1511/// instantiation with the specified values.
1512/// For example, `<typename T>` allows the arguments `float`, but not for
1513/// example `bool, float` or `3` (as an integer parameter value).
1514static bool ClassTemplateAllowsToInstantiationArgs(
1515 ClassTemplateDecl *class_template_decl,
1516 const TypeSystemClang::TemplateParameterInfos &instantiation_values) {
1517
1518 TemplateParameterList &params = *class_template_decl->getTemplateParameters();
1519
1520 // Save some work by iterating only once over the found parameters and
1521 // calculate the information related to parameter packs.
1522
1523 // Contains the first pack parameter (or non if there are none).
1524 llvm::Optional<NamedDecl *> pack_parameter;
1525 // Contains the number of non-pack parameters.
1526 size_t non_pack_params = params.size();
1527 for (size_t i = 0; i < params.size(); ++i) {
1528 NamedDecl *param = params.getParam(i);
1529 if (param->isParameterPack()) {
1530 pack_parameter = param;
1531 non_pack_params = i;
1532 break;
1533 }
1534 }
1535
1536 // The found template needs to have compatible non-pack template arguments.
1537 // E.g., ensure that <typename, typename> != <typename>.
1538 // The pack parameters are compared later.
1539 if (non_pack_params != instantiation_values.args.size())
1540 return false;
1541
1542 // Ensure that <typename...> != <typename>.
1543 if (pack_parameter.hasValue() != instantiation_values.hasParameterPack())
1544 return false;
1545
1546 // Compare the first pack parameter that was found with the first pack
1547 // parameter value. The special case of having an empty parameter pack value
1548 // always fits to a pack parameter.
1549 // E.g., ensure that <int...> != <typename...>.
1550 if (pack_parameter && !instantiation_values.packed_args->args.empty() &&
1551 !TemplateParameterAllowsValue(
1552 *pack_parameter, instantiation_values.packed_args->args.front()))
1553 return false;
1554
1555 // Compare all the non-pack parameters now.
1556 // E.g., ensure that <int> != <long>.
1557 for (const auto pair : llvm::zip_first(instantiation_values.args, params)) {
1558 const TemplateArgument &passed_arg = std::get<0>(pair);
1559 NamedDecl *found_param = std::get<1>(pair);
1560 if (!TemplateParameterAllowsValue(found_param, passed_arg))
1561 return false;
1562 }
1563
1564 return class_template_decl;
1565}
1566
1567ClassTemplateDecl *TypeSystemClang::CreateClassTemplateDecl(
1568 DeclContext *decl_ctx, OptionalClangModuleID owning_module,
1569 lldb::AccessType access_type, llvm::StringRef class_name, int kind,
1570 const TemplateParameterInfos &template_param_infos) {
1571 ASTContext &ast = getASTContext();
1572
1573 ClassTemplateDecl *class_template_decl = nullptr;
1574 if (decl_ctx == nullptr)
1575 decl_ctx = ast.getTranslationUnitDecl();
1576
1577 IdentifierInfo &identifier_info = ast.Idents.get(class_name);
1578 DeclarationName decl_name(&identifier_info);
1579
1580 // Search the AST for an existing ClassTemplateDecl that could be reused.
1581 clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
1582 for (NamedDecl *decl : result) {
1583 class_template_decl = dyn_cast<clang::ClassTemplateDecl>(decl);
1584 if (!class_template_decl)
1585 continue;
1586 // The class template has to be able to represents the instantiation
1587 // values we received. Without this we might end up putting an instantiation
1588 // with arguments such as <int, int> to a template such as:
1589 // template<typename T> struct S;
1590 // Connecting the instantiation to an incompatible template could cause
1591 // problems later on.
1592 if (!ClassTemplateAllowsToInstantiationArgs(class_template_decl,
1593 template_param_infos))
1594 continue;
1595 return class_template_decl;
1596 }
1597
1598 llvm::SmallVector<NamedDecl *, 8> template_param_decls;
1599
1600 TemplateParameterList *template_param_list = CreateTemplateParameterList(
1601 ast, template_param_infos, template_param_decls);
1602
1603 CXXRecordDecl *template_cxx_decl = CXXRecordDecl::CreateDeserialized(ast, 0);
1604 template_cxx_decl->setTagKind(static_cast<TagDecl::TagKind>(kind));
1605 // What decl context do we use here? TU? The actual decl context?
1606 template_cxx_decl->setDeclContext(decl_ctx);
1607 template_cxx_decl->setDeclName(decl_name);
1608 SetOwningModule(template_cxx_decl, owning_module);
1609
1610 for (size_t i = 0, template_param_decl_count = template_param_decls.size();
1611 i < template_param_decl_count; ++i) {
1612 template_param_decls[i]->setDeclContext(template_cxx_decl);
1613 }
1614
1615 // With templated classes, we say that a class is templated with
1616 // specializations, but that the bare class has no functions.
1617 // template_cxx_decl->startDefinition();
1618 // template_cxx_decl->completeDefinition();
1619
1620 class_template_decl = ClassTemplateDecl::CreateDeserialized(ast, 0);
1621 // What decl context do we use here? TU? The actual decl context?
1622 class_template_decl->setDeclContext(decl_ctx);
1623 class_template_decl->setDeclName(decl_name);
1624 class_template_decl->init(template_cxx_decl, template_param_list);
1625 template_cxx_decl->setDescribedClassTemplate(class_template_decl);
1626 SetOwningModule(class_template_decl, owning_module);
1627
1628 if (access_type != eAccessNone)
1629 class_template_decl->setAccess(
1630 ConvertAccessTypeToAccessSpecifier(access_type));
1631
1632 decl_ctx->addDecl(class_template_decl);
1633
1634 VerifyDecl(class_template_decl);
1635
1636 return class_template_decl;
1637}
1638
1639TemplateTemplateParmDecl *
1640TypeSystemClang::CreateTemplateTemplateParmDecl(const char *template_name) {
1641 ASTContext &ast = getASTContext();
1642
1643 auto *decl_ctx = ast.getTranslationUnitDecl();
1644
1645 IdentifierInfo &identifier_info = ast.Idents.get(template_name);
1646 llvm::SmallVector<NamedDecl *, 8> template_param_decls;
1647
1648 TypeSystemClang::TemplateParameterInfos template_param_infos;
1649 TemplateParameterList *template_param_list = CreateTemplateParameterList(
1650 ast, template_param_infos, template_param_decls);
1651
1652 // LLDB needs to create those decls only to be able to display a
1653 // type that includes a template template argument. Only the name matters for
1654 // this purpose, so we use dummy values for the other characteristics of the
1655 // type.
1656 return TemplateTemplateParmDecl::Create(
1657 ast, decl_ctx, SourceLocation(),
1658 /*Depth*/ 0, /*Position*/ 0,
1659 /*IsParameterPack*/ false, &identifier_info, template_param_list);
1660}
1661
1662ClassTemplateSpecializationDecl *
1663TypeSystemClang::CreateClassTemplateSpecializationDecl(
1664 DeclContext *decl_ctx, OptionalClangModuleID owning_module,
1665 ClassTemplateDecl *class_template_decl, int kind,
1666 const TemplateParameterInfos &template_param_infos) {
1667 ASTContext &ast = getASTContext();
1668 llvm::SmallVector<clang::TemplateArgument, 2> args(
1669 template_param_infos.args.size() +
1670 (template_param_infos.packed_args ? 1 : 0));
1671 std::copy(template_param_infos.args.begin(), template_param_infos.args.end(),
1672 args.begin());
1673 if (template_param_infos.packed_args) {
1674 args[args.size() - 1] = TemplateArgument::CreatePackCopy(
1675 ast, template_param_infos.packed_args->args);
1676 }
1677 ClassTemplateSpecializationDecl *class_template_specialization_decl =
1678 ClassTemplateSpecializationDecl::CreateDeserialized(ast, 0);
1679 class_template_specialization_decl->setTagKind(
1680 static_cast<TagDecl::TagKind>(kind));
1681 class_template_specialization_decl->setDeclContext(decl_ctx);
1682 class_template_specialization_decl->setInstantiationOf(class_template_decl);
1683 class_template_specialization_decl->setTemplateArgs(
1684 TemplateArgumentList::CreateCopy(ast, args));
1685 ast.getTypeDeclType(class_template_specialization_decl, nullptr);
1686 class_template_specialization_decl->setDeclName(
1687 class_template_decl->getDeclName());
1688 SetOwningModule(class_template_specialization_decl, owning_module);
1689 decl_ctx->addDecl(class_template_specialization_decl);
1690
1691 class_template_specialization_decl->setSpecializationKind(
1692 TSK_ExplicitSpecialization);
1693
1694 return class_template_specialization_decl;
1695}
1696
1697CompilerType TypeSystemClang::CreateClassTemplateSpecializationType(
1698 ClassTemplateSpecializationDecl *class_template_specialization_decl) {
1699 if (class_template_specialization_decl) {
1700 ASTContext &ast = getASTContext();
1701 return GetType(ast.getTagDeclType(class_template_specialization_decl));
1702 }
1703 return CompilerType();
1704}
1705
1706static inline bool check_op_param(bool is_method,
1707 clang::OverloadedOperatorKind op_kind,
1708 bool unary, bool binary,
1709 uint32_t num_params) {
1710 // Special-case call since it can take any number of operands
1711 if (op_kind == OO_Call)
1712 return true;
1713
1714 // The parameter count doesn't include "this"
1715 if (is_method)
1716 ++num_params;
1717 if (num_params == 1)
1718 return unary;
1719 if (num_params == 2)
1720 return binary;
1721 else
1722 return false;
1723}
1724
1725bool TypeSystemClang::CheckOverloadedOperatorKindParameterCount(
1726 bool is_method, clang::OverloadedOperatorKind op_kind,
1727 uint32_t num_params) {
1728 switch (op_kind) {
1729 default:
1730 break;
1731 // C++ standard allows any number of arguments to new/delete
1732 case OO_New:
1733 case OO_Array_New:
1734 case OO_Delete:
1735 case OO_Array_Delete:
1736 return true;
1737 }
1738
1739#define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \
1740 case OO_##Name: \
1741 return check_op_param(is_method, op_kind, Unary, Binary, num_params);
1742 switch (op_kind) {
1743#include "clang/Basic/OperatorKinds.def"
1744 default:
1745 break;
1746 }
1747 return false;
1748}
1749
1750clang::AccessSpecifier
1751TypeSystemClang::UnifyAccessSpecifiers(clang::AccessSpecifier lhs,
1752 clang::AccessSpecifier rhs) {
1753 // Make the access equal to the stricter of the field and the nested field's
1754 // access
1755 if (lhs == AS_none || rhs == AS_none)
1756 return AS_none;
1757 if (lhs == AS_private || rhs == AS_private)
1758 return AS_private;
1759 if (lhs == AS_protected || rhs == AS_protected)
1760 return AS_protected;
1761 return AS_public;
1762}
1763
1764bool TypeSystemClang::FieldIsBitfield(FieldDecl *field,
1765 uint32_t &bitfield_bit_size) {
1766 ASTContext &ast = getASTContext();
1767 if (field == nullptr)
1768 return false;
1769
1770 if (field->isBitField()) {
1771 Expr *bit_width_expr = field->getBitWidth();
1772 if (bit_width_expr) {
1773 if (Optional<llvm::APSInt> bit_width_apsint =
1774 bit_width_expr->getIntegerConstantExpr(ast)) {
1775 bitfield_bit_size = bit_width_apsint->getLimitedValue(UINT32_MAX(4294967295U));
1776 return true;
1777 }
1778 }
1779 }
1780 return false;
1781}
1782
1783bool TypeSystemClang::RecordHasFields(const RecordDecl *record_decl) {
1784 if (record_decl == nullptr)
1785 return false;
1786
1787 if (!record_decl->field_empty())
1788 return true;
1789
1790 // No fields, lets check this is a CXX record and check the base classes
1791 const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
1792 if (cxx_record_decl) {
1793 CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
1794 for (base_class = cxx_record_decl->bases_begin(),
1795 base_class_end = cxx_record_decl->bases_end();
1796 base_class != base_class_end; ++base_class) {
1797 const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(
1798 base_class->getType()->getAs<RecordType>()->getDecl());
1799 if (RecordHasFields(base_class_decl))
1800 return true;
1801 }
1802 }
1803 return false;
1804}
1805
1806#pragma mark Objective-C Classes
1807
1808CompilerType TypeSystemClang::CreateObjCClass(
1809 llvm::StringRef name, clang::DeclContext *decl_ctx,
1810 OptionalClangModuleID owning_module, bool isForwardDecl, bool isInternal,
1811 ClangASTMetadata *metadata) {
1812 ASTContext &ast = getASTContext();
1813 assert(!name.empty())(static_cast <bool> (!name.empty()) ? void (0) : __assert_fail
("!name.empty()", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 1813, __extension__ __PRETTY_FUNCTION__))
;
1814 if (!decl_ctx)
1815 decl_ctx = ast.getTranslationUnitDecl();
1816
1817 ObjCInterfaceDecl *decl = ObjCInterfaceDecl::CreateDeserialized(ast, 0);
1818 decl->setDeclContext(decl_ctx);
1819 decl->setDeclName(&ast.Idents.get(name));
1820 /*isForwardDecl,*/
1821 decl->setImplicit(isInternal);
1822 SetOwningModule(decl, owning_module);
1823
1824 if (metadata)
1825 SetMetadata(decl, *metadata);
1826
1827 return GetType(ast.getObjCInterfaceType(decl));
1828}
1829
1830static inline bool BaseSpecifierIsEmpty(const CXXBaseSpecifier *b) {
1831 return !TypeSystemClang::RecordHasFields(b->getType()->getAsCXXRecordDecl());
1832}
1833
1834uint32_t
1835TypeSystemClang::GetNumBaseClasses(const CXXRecordDecl *cxx_record_decl,
1836 bool omit_empty_base_classes) {
1837 uint32_t num_bases = 0;
1838 if (cxx_record_decl) {
1839 if (omit_empty_base_classes) {
1840 CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
1841 for (base_class = cxx_record_decl->bases_begin(),
1842 base_class_end = cxx_record_decl->bases_end();
1843 base_class != base_class_end; ++base_class) {
1844 // Skip empty base classes
1845 if (BaseSpecifierIsEmpty(base_class))
1846 continue;
1847 ++num_bases;
1848 }
1849 } else
1850 num_bases = cxx_record_decl->getNumBases();
1851 }
1852 return num_bases;
1853}
1854
1855#pragma mark Namespace Declarations
1856
1857NamespaceDecl *TypeSystemClang::GetUniqueNamespaceDeclaration(
1858 const char *name, clang::DeclContext *decl_ctx,
1859 OptionalClangModuleID owning_module, bool is_inline) {
1860 NamespaceDecl *namespace_decl = nullptr;
1861 ASTContext &ast = getASTContext();
1862 TranslationUnitDecl *translation_unit_decl = ast.getTranslationUnitDecl();
1863 if (!decl_ctx)
1864 decl_ctx = translation_unit_decl;
1865
1866 if (name) {
1867 IdentifierInfo &identifier_info = ast.Idents.get(name);
1868 DeclarationName decl_name(&identifier_info);
1869 clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
1870 for (NamedDecl *decl : result) {
1871 namespace_decl = dyn_cast<clang::NamespaceDecl>(decl);
1872 if (namespace_decl)
1873 return namespace_decl;
1874 }
1875
1876 namespace_decl =
1877 NamespaceDecl::Create(ast, decl_ctx, is_inline, SourceLocation(),
1878 SourceLocation(), &identifier_info, nullptr);
1879
1880 decl_ctx->addDecl(namespace_decl);
1881 } else {
1882 if (decl_ctx == translation_unit_decl) {
1883 namespace_decl = translation_unit_decl->getAnonymousNamespace();
1884 if (namespace_decl)
1885 return namespace_decl;
1886
1887 namespace_decl =
1888 NamespaceDecl::Create(ast, decl_ctx, false, SourceLocation(),
1889 SourceLocation(), nullptr, nullptr);
1890 translation_unit_decl->setAnonymousNamespace(namespace_decl);
1891 translation_unit_decl->addDecl(namespace_decl);
1892 assert(namespace_decl == translation_unit_decl->getAnonymousNamespace())(static_cast <bool> (namespace_decl == translation_unit_decl
->getAnonymousNamespace()) ? void (0) : __assert_fail ("namespace_decl == translation_unit_decl->getAnonymousNamespace()"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
1892, __extension__ __PRETTY_FUNCTION__))
;
1893 } else {
1894 NamespaceDecl *parent_namespace_decl = cast<NamespaceDecl>(decl_ctx);
1895 if (parent_namespace_decl) {
1896 namespace_decl = parent_namespace_decl->getAnonymousNamespace();
1897 if (namespace_decl)
1898 return namespace_decl;
1899 namespace_decl =
1900 NamespaceDecl::Create(ast, decl_ctx, false, SourceLocation(),
1901 SourceLocation(), nullptr, nullptr);
1902 parent_namespace_decl->setAnonymousNamespace(namespace_decl);
1903 parent_namespace_decl->addDecl(namespace_decl);
1904 assert(namespace_decl ==(static_cast <bool> (namespace_decl == parent_namespace_decl
->getAnonymousNamespace()) ? void (0) : __assert_fail ("namespace_decl == parent_namespace_decl->getAnonymousNamespace()"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
1905, __extension__ __PRETTY_FUNCTION__))
1905 parent_namespace_decl->getAnonymousNamespace())(static_cast <bool> (namespace_decl == parent_namespace_decl
->getAnonymousNamespace()) ? void (0) : __assert_fail ("namespace_decl == parent_namespace_decl->getAnonymousNamespace()"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
1905, __extension__ __PRETTY_FUNCTION__))
;
1906 } else {
1907 assert(false && "GetUniqueNamespaceDeclaration called with no name and "(static_cast <bool> (false && "GetUniqueNamespaceDeclaration called with no name and "
"no namespace as decl_ctx") ? void (0) : __assert_fail ("false && \"GetUniqueNamespaceDeclaration called with no name and \" \"no namespace as decl_ctx\""
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
1908, __extension__ __PRETTY_FUNCTION__))
1908 "no namespace as decl_ctx")(static_cast <bool> (false && "GetUniqueNamespaceDeclaration called with no name and "
"no namespace as decl_ctx") ? void (0) : __assert_fail ("false && \"GetUniqueNamespaceDeclaration called with no name and \" \"no namespace as decl_ctx\""
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
1908, __extension__ __PRETTY_FUNCTION__))
;
1909 }
1910 }
1911 }
1912 // Note: namespaces can span multiple modules, so perhaps this isn't a good
1913 // idea.
1914 SetOwningModule(namespace_decl, owning_module);
1915
1916 VerifyDecl(namespace_decl);
1917 return namespace_decl;
1918}
1919
1920clang::BlockDecl *
1921TypeSystemClang::CreateBlockDeclaration(clang::DeclContext *ctx,
1922 OptionalClangModuleID owning_module) {
1923 if (ctx) {
1924 clang::BlockDecl *decl =
1925 clang::BlockDecl::CreateDeserialized(getASTContext(), 0);
1926 decl->setDeclContext(ctx);
1927 ctx->addDecl(decl);
1928 SetOwningModule(decl, owning_module);
1929 return decl;
1930 }
1931 return nullptr;
1932}
1933
1934clang::DeclContext *FindLCABetweenDecls(clang::DeclContext *left,
1935 clang::DeclContext *right,
1936 clang::DeclContext *root) {
1937 if (root == nullptr)
1938 return nullptr;
1939
1940 std::set<clang::DeclContext *> path_left;
1941 for (clang::DeclContext *d = left; d != nullptr; d = d->getParent())
1942 path_left.insert(d);
1943
1944 for (clang::DeclContext *d = right; d != nullptr; d = d->getParent())
1945 if (path_left.find(d) != path_left.end())
1946 return d;
1947
1948 return nullptr;
1949}
1950
1951clang::UsingDirectiveDecl *TypeSystemClang::CreateUsingDirectiveDeclaration(
1952 clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
1953 clang::NamespaceDecl *ns_decl) {
1954 if (decl_ctx && ns_decl) {
1955 auto *translation_unit = getASTContext().getTranslationUnitDecl();
1956 clang::UsingDirectiveDecl *using_decl = clang::UsingDirectiveDecl::Create(
1957 getASTContext(), decl_ctx, clang::SourceLocation(),
1958 clang::SourceLocation(), clang::NestedNameSpecifierLoc(),
1959 clang::SourceLocation(), ns_decl,
1960 FindLCABetweenDecls(decl_ctx, ns_decl,
1961 translation_unit));
1962 decl_ctx->addDecl(using_decl);
1963 SetOwningModule(using_decl, owning_module);
1964 return using_decl;
1965 }
1966 return nullptr;
1967}
1968
1969clang::UsingDecl *
1970TypeSystemClang::CreateUsingDeclaration(clang::DeclContext *current_decl_ctx,
1971 OptionalClangModuleID owning_module,
1972 clang::NamedDecl *target) {
1973 if (current_decl_ctx && target) {
1974 clang::UsingDecl *using_decl = clang::UsingDecl::Create(
1975 getASTContext(), current_decl_ctx, clang::SourceLocation(),
1976 clang::NestedNameSpecifierLoc(), clang::DeclarationNameInfo(), false);
1977 SetOwningModule(using_decl, owning_module);
1978 clang::UsingShadowDecl *shadow_decl = clang::UsingShadowDecl::Create(
1979 getASTContext(), current_decl_ctx, clang::SourceLocation(),
1980 target->getDeclName(), using_decl, target);
1981 SetOwningModule(shadow_decl, owning_module);
1982 using_decl->addShadowDecl(shadow_decl);
1983 current_decl_ctx->addDecl(using_decl);
1984 return using_decl;
1985 }
1986 return nullptr;
1987}
1988
1989clang::VarDecl *TypeSystemClang::CreateVariableDeclaration(
1990 clang::DeclContext *decl_context, OptionalClangModuleID owning_module,
1991 const char *name, clang::QualType type) {
1992 if (decl_context) {
1993 clang::VarDecl *var_decl =
1994 clang::VarDecl::CreateDeserialized(getASTContext(), 0);
1995 var_decl->setDeclContext(decl_context);
1996 if (name && name[0])
1997 var_decl->setDeclName(&getASTContext().Idents.getOwn(name));
1998 var_decl->setType(type);
1999 SetOwningModule(var_decl, owning_module);
2000 var_decl->setAccess(clang::AS_public);
2001 decl_context->addDecl(var_decl);
2002 return var_decl;
2003 }
2004 return nullptr;
2005}
2006
2007lldb::opaque_compiler_type_t
2008TypeSystemClang::GetOpaqueCompilerType(clang::ASTContext *ast,
2009 lldb::BasicType basic_type) {
2010 switch (basic_type) {
2011 case eBasicTypeVoid:
2012 return ast->VoidTy.getAsOpaquePtr();
2013 case eBasicTypeChar:
2014 return ast->CharTy.getAsOpaquePtr();
2015 case eBasicTypeSignedChar:
2016 return ast->SignedCharTy.getAsOpaquePtr();
2017 case eBasicTypeUnsignedChar:
2018 return ast->UnsignedCharTy.getAsOpaquePtr();
2019 case eBasicTypeWChar:
2020 return ast->getWCharType().getAsOpaquePtr();
2021 case eBasicTypeSignedWChar:
2022 return ast->getSignedWCharType().getAsOpaquePtr();
2023 case eBasicTypeUnsignedWChar:
2024 return ast->getUnsignedWCharType().getAsOpaquePtr();
2025 case eBasicTypeChar16:
2026 return ast->Char16Ty.getAsOpaquePtr();
2027 case eBasicTypeChar32:
2028 return ast->Char32Ty.getAsOpaquePtr();
2029 case eBasicTypeShort:
2030 return ast->ShortTy.getAsOpaquePtr();
2031 case eBasicTypeUnsignedShort:
2032 return ast->UnsignedShortTy.getAsOpaquePtr();
2033 case eBasicTypeInt:
2034 return ast->IntTy.getAsOpaquePtr();
2035 case eBasicTypeUnsignedInt:
2036 return ast->UnsignedIntTy.getAsOpaquePtr();
2037 case eBasicTypeLong:
2038 return ast->LongTy.getAsOpaquePtr();
2039 case eBasicTypeUnsignedLong:
2040 return ast->UnsignedLongTy.getAsOpaquePtr();
2041 case eBasicTypeLongLong:
2042 return ast->LongLongTy.getAsOpaquePtr();
2043 case eBasicTypeUnsignedLongLong:
2044 return ast->UnsignedLongLongTy.getAsOpaquePtr();
2045 case eBasicTypeInt128:
2046 return ast->Int128Ty.getAsOpaquePtr();
2047 case eBasicTypeUnsignedInt128:
2048 return ast->UnsignedInt128Ty.getAsOpaquePtr();
2049 case eBasicTypeBool:
2050 return ast->BoolTy.getAsOpaquePtr();
2051 case eBasicTypeHalf:
2052 return ast->HalfTy.getAsOpaquePtr();
2053 case eBasicTypeFloat:
2054 return ast->FloatTy.getAsOpaquePtr();
2055 case eBasicTypeDouble:
2056 return ast->DoubleTy.getAsOpaquePtr();
2057 case eBasicTypeLongDouble:
2058 return ast->LongDoubleTy.getAsOpaquePtr();
2059 case eBasicTypeFloatComplex:
2060 return ast->getComplexType(ast->FloatTy).getAsOpaquePtr();
2061 case eBasicTypeDoubleComplex:
2062 return ast->getComplexType(ast->DoubleTy).getAsOpaquePtr();
2063 case eBasicTypeLongDoubleComplex:
2064 return ast->getComplexType(ast->LongDoubleTy).getAsOpaquePtr();
2065 case eBasicTypeObjCID:
2066 return ast->getObjCIdType().getAsOpaquePtr();
2067 case eBasicTypeObjCClass:
2068 return ast->getObjCClassType().getAsOpaquePtr();
2069 case eBasicTypeObjCSel:
2070 return ast->getObjCSelType().getAsOpaquePtr();
2071 case eBasicTypeNullPtr:
2072 return ast->NullPtrTy.getAsOpaquePtr();
2073 default:
2074 return nullptr;
2075 }
2076}
2077
2078#pragma mark Function Types
2079
2080clang::DeclarationName
2081TypeSystemClang::GetDeclarationName(llvm::StringRef name,
2082 const CompilerType &function_clang_type) {
2083 clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS;
2084 if (!IsOperator(name, op_kind) || op_kind == clang::NUM_OVERLOADED_OPERATORS)
2085 return DeclarationName(&getASTContext().Idents.get(
2086 name)); // Not operator, but a regular function.
2087
2088 // Check the number of operator parameters. Sometimes we have seen bad DWARF
2089 // that doesn't correctly describe operators and if we try to create a method
2090 // and add it to the class, clang will assert and crash, so we need to make
2091 // sure things are acceptable.
2092 clang::QualType method_qual_type(ClangUtil::GetQualType(function_clang_type));
2093 const clang::FunctionProtoType *function_type =
2094 llvm::dyn_cast<clang::FunctionProtoType>(method_qual_type.getTypePtr());
2095 if (function_type == nullptr)
2096 return clang::DeclarationName();
2097
2098 const bool is_method = false;
2099 const unsigned int num_params = function_type->getNumParams();
2100 if (!TypeSystemClang::CheckOverloadedOperatorKindParameterCount(
2101 is_method, op_kind, num_params))
2102 return clang::DeclarationName();
2103
2104 return getASTContext().DeclarationNames.getCXXOperatorName(op_kind);
2105}
2106
2107PrintingPolicy TypeSystemClang::GetTypePrintingPolicy() {
2108 clang::PrintingPolicy printing_policy(getASTContext().getPrintingPolicy());
2109 printing_policy.SuppressTagKeyword = true;
2110 // Inline namespaces are important for some type formatters (e.g., libc++
2111 // and libstdc++ are differentiated by their inline namespaces).
2112 printing_policy.SuppressInlineNamespace = false;
2113 printing_policy.SuppressUnwrittenScope = false;
2114 // Default arguments are also always important for type formatters. Otherwise
2115 // we would need to always specify two type names for the setups where we do
2116 // know the default arguments and where we don't know default arguments.
2117 //
2118 // For example, without this we would need to have formatters for both:
2119 // std::basic_string<char>
2120 // and
2121 // std::basic_string<char, std::char_traits<char>, std::allocator<char> >
2122 // to support setups where LLDB was able to reconstruct default arguments
2123 // (and we then would have suppressed them from the type name) and also setups
2124 // where LLDB wasn't able to reconstruct the default arguments.
2125 printing_policy.SuppressDefaultTemplateArgs = false;
2126 return printing_policy;
2127}
2128
2129std::string TypeSystemClang::GetTypeNameForDecl(const NamedDecl *named_decl) {
2130 clang::PrintingPolicy printing_policy = GetTypePrintingPolicy();
2131 std::string result;
2132 llvm::raw_string_ostream os(result);
2133 named_decl->printQualifiedName(os, printing_policy);
2134 return result;
2135}
2136
2137FunctionDecl *TypeSystemClang::CreateFunctionDeclaration(
2138 clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
2139 llvm::StringRef name, const CompilerType &function_clang_type,
2140 clang::StorageClass storage, bool is_inline) {
2141 FunctionDecl *func_decl = nullptr;
2142 ASTContext &ast = getASTContext();
2143 if (!decl_ctx)
2144 decl_ctx = ast.getTranslationUnitDecl();
2145
2146 const bool hasWrittenPrototype = true;
2147 const bool isConstexprSpecified = false;
2148
2149 clang::DeclarationName declarationName =
2150 GetDeclarationName(name, function_clang_type);
2151 func_decl = FunctionDecl::CreateDeserialized(ast, 0);
2152 func_decl->setDeclContext(decl_ctx);
2153 func_decl->setDeclName(declarationName);
2154 func_decl->setType(ClangUtil::GetQualType(function_clang_type));
2155 func_decl->setStorageClass(storage);
2156 func_decl->setInlineSpecified(is_inline);
2157 func_decl->setHasWrittenPrototype(hasWrittenPrototype);
2158 func_decl->setConstexprKind(isConstexprSpecified
2159 ? ConstexprSpecKind::Constexpr
2160 : ConstexprSpecKind::Unspecified);
2161 SetOwningModule(func_decl, owning_module);
2162 decl_ctx->addDecl(func_decl);
2163
2164 VerifyDecl(func_decl);
2165
2166 return func_decl;
2167}
2168
2169CompilerType
2170TypeSystemClang::CreateFunctionType(const CompilerType &result_type,
2171 const CompilerType *args, unsigned num_args,
2172 bool is_variadic, unsigned type_quals,
2173 clang::CallingConv cc) {
2174 if (!result_type || !ClangUtil::IsClangType(result_type))
2175 return CompilerType(); // invalid return type
2176
2177 std::vector<QualType> qual_type_args;
2178 if (num_args > 0 && args == nullptr)
2179 return CompilerType(); // invalid argument array passed in
2180
2181 // Verify that all arguments are valid and the right type
2182 for (unsigned i = 0; i < num_args; ++i) {
2183 if (args[i]) {
2184 // Make sure we have a clang type in args[i] and not a type from another
2185 // language whose name might match
2186 const bool is_clang_type = ClangUtil::IsClangType(args[i]);
2187 lldbassert(is_clang_type)lldb_private::lldb_assert(static_cast<bool>(is_clang_type
), "is_clang_type", __FUNCTION__, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 2187)
;
2188 if (is_clang_type)
2189 qual_type_args.push_back(ClangUtil::GetQualType(args[i]));
2190 else
2191 return CompilerType(); // invalid argument type (must be a clang type)
2192 } else
2193 return CompilerType(); // invalid argument type (empty)
2194 }
2195
2196 // TODO: Detect calling convention in DWARF?
2197 FunctionProtoType::ExtProtoInfo proto_info;
2198 proto_info.ExtInfo = cc;
2199 proto_info.Variadic = is_variadic;
2200 proto_info.ExceptionSpec = EST_None;
2201 proto_info.TypeQuals = clang::Qualifiers::fromFastMask(type_quals);
2202 proto_info.RefQualifier = RQ_None;
2203
2204 return GetType(getASTContext().getFunctionType(
2205 ClangUtil::GetQualType(result_type), qual_type_args, proto_info));
2206}
2207
2208ParmVarDecl *TypeSystemClang::CreateParameterDeclaration(
2209 clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
2210 const char *name, const CompilerType &param_type, int storage,
2211 bool add_decl) {
2212 ASTContext &ast = getASTContext();
2213 auto *decl = ParmVarDecl::CreateDeserialized(ast, 0);
2214 decl->setDeclContext(decl_ctx);
2215 if (name && name[0])
2216 decl->setDeclName(&ast.Idents.get(name));
2217 decl->setType(ClangUtil::GetQualType(param_type));
2218 decl->setStorageClass(static_cast<clang::StorageClass>(storage));
2219 SetOwningModule(decl, owning_module);
2220 if (add_decl)
2221 decl_ctx->addDecl(decl);
2222
2223 return decl;
2224}
2225
2226void TypeSystemClang::SetFunctionParameters(
2227 FunctionDecl *function_decl, llvm::ArrayRef<ParmVarDecl *> params) {
2228 if (function_decl)
2229 function_decl->setParams(params);
2230}
2231
2232CompilerType
2233TypeSystemClang::CreateBlockPointerType(const CompilerType &function_type) {
2234 QualType block_type = m_ast_up->getBlockPointerType(
2235 clang::QualType::getFromOpaquePtr(function_type.GetOpaqueQualType()));
2236
2237 return GetType(block_type);
2238}
2239
2240#pragma mark Array Types
2241
2242CompilerType TypeSystemClang::CreateArrayType(const CompilerType &element_type,
2243 size_t element_count,
2244 bool is_vector) {
2245 if (element_type.IsValid()) {
2246 ASTContext &ast = getASTContext();
2247
2248 if (is_vector) {
2249 return GetType(ast.getExtVectorType(ClangUtil::GetQualType(element_type),
2250 element_count));
2251 } else {
2252
2253 llvm::APInt ap_element_count(64, element_count);
2254 if (element_count == 0) {
2255 return GetType(ast.getIncompleteArrayType(
2256 ClangUtil::GetQualType(element_type), clang::ArrayType::Normal, 0));
2257 } else {
2258 return GetType(ast.getConstantArrayType(
2259 ClangUtil::GetQualType(element_type), ap_element_count, nullptr,
2260 clang::ArrayType::Normal, 0));
2261 }
2262 }
2263 }
2264 return CompilerType();
2265}
2266
2267CompilerType TypeSystemClang::CreateStructForIdentifier(
2268 ConstString type_name,
2269 const std::initializer_list<std::pair<const char *, CompilerType>>
2270 &type_fields,
2271 bool packed) {
2272 CompilerType type;
2273 if (!type_name.IsEmpty() &&
2274 (type = GetTypeForIdentifier<clang::CXXRecordDecl>(type_name))
2275 .IsValid()) {
2276 lldbassert(0 && "Trying to create a type for an existing name")lldb_private::lldb_assert(static_cast<bool>(0 &&
"Trying to create a type for an existing name"), "0 && \"Trying to create a type for an existing name\""
, __FUNCTION__, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 2276)
;
2277 return type;
2278 }
2279
2280 type = CreateRecordType(nullptr, OptionalClangModuleID(), lldb::eAccessPublic,
2281 type_name.GetCString(), clang::TTK_Struct,
2282 lldb::eLanguageTypeC);
2283 StartTagDeclarationDefinition(type);
2284 for (const auto &field : type_fields)
2285 AddFieldToRecordType(type, field.first, field.second, lldb::eAccessPublic,
2286 0);
2287 if (packed)
2288 SetIsPacked(type);
2289 CompleteTagDeclarationDefinition(type);
2290 return type;
2291}
2292
2293CompilerType TypeSystemClang::GetOrCreateStructForIdentifier(
2294 ConstString type_name,
2295 const std::initializer_list<std::pair<const char *, CompilerType>>
2296 &type_fields,
2297 bool packed) {
2298 CompilerType type;
2299 if ((type = GetTypeForIdentifier<clang::CXXRecordDecl>(type_name)).IsValid())
2300 return type;
2301
2302 return CreateStructForIdentifier(type_name, type_fields, packed);
2303}
2304
2305#pragma mark Enumeration Types
2306
2307CompilerType TypeSystemClang::CreateEnumerationType(
2308 llvm::StringRef name, clang::DeclContext *decl_ctx,
2309 OptionalClangModuleID owning_module, const Declaration &decl,
2310 const CompilerType &integer_clang_type, bool is_scoped) {
2311 // TODO: Do something intelligent with the Declaration object passed in
2312 // like maybe filling in the SourceLocation with it...
2313 ASTContext &ast = getASTContext();
2314
2315 // TODO: ask about these...
2316 // const bool IsFixed = false;
2317 EnumDecl *enum_decl = EnumDecl::CreateDeserialized(ast, 0);
2318 enum_decl->setDeclContext(decl_ctx);
2319 if (!name.empty())
2320 enum_decl->setDeclName(&ast.Idents.get(name));
2321 enum_decl->setScoped(is_scoped);
2322 enum_decl->setScopedUsingClassTag(is_scoped);
2323 enum_decl->setFixed(false);
2324 SetOwningModule(enum_decl, owning_module);
2325 if (decl_ctx)
2326 decl_ctx->addDecl(enum_decl);
2327
2328 // TODO: check if we should be setting the promotion type too?
2329 enum_decl->setIntegerType(ClangUtil::GetQualType(integer_clang_type));
2330
2331 enum_decl->setAccess(AS_public); // TODO respect what's in the debug info
2332
2333 return GetType(ast.getTagDeclType(enum_decl));
2334}
2335
2336CompilerType TypeSystemClang::GetIntTypeFromBitSize(size_t bit_size,
2337 bool is_signed) {
2338 clang::ASTContext &ast = getASTContext();
2339
2340 if (is_signed) {
2341 if (bit_size == ast.getTypeSize(ast.SignedCharTy))
2342 return GetType(ast.SignedCharTy);
2343
2344 if (bit_size == ast.getTypeSize(ast.ShortTy))
2345 return GetType(ast.ShortTy);
2346
2347 if (bit_size == ast.getTypeSize(ast.IntTy))
2348 return GetType(ast.IntTy);
2349
2350 if (bit_size == ast.getTypeSize(ast.LongTy))
2351 return GetType(ast.LongTy);
2352
2353 if (bit_size == ast.getTypeSize(ast.LongLongTy))
2354 return GetType(ast.LongLongTy);
2355
2356 if (bit_size == ast.getTypeSize(ast.Int128Ty))
2357 return GetType(ast.Int128Ty);
2358 } else {
2359 if (bit_size == ast.getTypeSize(ast.UnsignedCharTy))
2360 return GetType(ast.UnsignedCharTy);
2361
2362 if (bit_size == ast.getTypeSize(ast.UnsignedShortTy))
2363 return GetType(ast.UnsignedShortTy);
2364
2365 if (bit_size == ast.getTypeSize(ast.UnsignedIntTy))
2366 return GetType(ast.UnsignedIntTy);
2367
2368 if (bit_size == ast.getTypeSize(ast.UnsignedLongTy))
2369 return GetType(ast.UnsignedLongTy);
2370
2371 if (bit_size == ast.getTypeSize(ast.UnsignedLongLongTy))
2372 return GetType(ast.UnsignedLongLongTy);
2373
2374 if (bit_size == ast.getTypeSize(ast.UnsignedInt128Ty))
2375 return GetType(ast.UnsignedInt128Ty);
2376 }
2377 return CompilerType();
2378}
2379
2380CompilerType TypeSystemClang::GetPointerSizedIntType(bool is_signed) {
2381 return GetIntTypeFromBitSize(
2382 getASTContext().getTypeSize(getASTContext().VoidPtrTy), is_signed);
2383}
2384
2385void TypeSystemClang::DumpDeclContextHiearchy(clang::DeclContext *decl_ctx) {
2386 if (decl_ctx) {
2387 DumpDeclContextHiearchy(decl_ctx->getParent());
2388
2389 clang::NamedDecl *named_decl = llvm::dyn_cast<clang::NamedDecl>(decl_ctx);
2390 if (named_decl) {
2391 printf("%20s: %s\n", decl_ctx->getDeclKindName(),
2392 named_decl->getDeclName().getAsString().c_str());
2393 } else {
2394 printf("%20s\n", decl_ctx->getDeclKindName());
2395 }
2396 }
2397}
2398
2399void TypeSystemClang::DumpDeclHiearchy(clang::Decl *decl) {
2400 if (decl == nullptr)
2401 return;
2402 DumpDeclContextHiearchy(decl->getDeclContext());
2403
2404 clang::RecordDecl *record_decl = llvm::dyn_cast<clang::RecordDecl>(decl);
2405 if (record_decl) {
2406 printf("%20s: %s%s\n", decl->getDeclKindName(),
2407 record_decl->getDeclName().getAsString().c_str(),
2408 record_decl->isInjectedClassName() ? " (injected class name)" : "");
2409
2410 } else {
2411 clang::NamedDecl *named_decl = llvm::dyn_cast<clang::NamedDecl>(decl);
2412 if (named_decl) {
2413 printf("%20s: %s\n", decl->getDeclKindName(),
2414 named_decl->getDeclName().getAsString().c_str());
2415 } else {
2416 printf("%20s\n", decl->getDeclKindName());
2417 }
2418 }
2419}
2420
2421bool TypeSystemClang::DeclsAreEquivalent(clang::Decl *lhs_decl,
2422 clang::Decl *rhs_decl) {
2423 if (lhs_decl && rhs_decl) {
2424 // Make sure the decl kinds match first
2425 const clang::Decl::Kind lhs_decl_kind = lhs_decl->getKind();
2426 const clang::Decl::Kind rhs_decl_kind = rhs_decl->getKind();
2427
2428 if (lhs_decl_kind == rhs_decl_kind) {
2429 // Now check that the decl contexts kinds are all equivalent before we
2430 // have to check any names of the decl contexts...
2431 clang::DeclContext *lhs_decl_ctx = lhs_decl->getDeclContext();
2432 clang::DeclContext *rhs_decl_ctx = rhs_decl->getDeclContext();
2433 if (lhs_decl_ctx && rhs_decl_ctx) {
2434 while (true) {
2435 if (lhs_decl_ctx && rhs_decl_ctx) {
2436 const clang::Decl::Kind lhs_decl_ctx_kind =
2437 lhs_decl_ctx->getDeclKind();
2438 const clang::Decl::Kind rhs_decl_ctx_kind =
2439 rhs_decl_ctx->getDeclKind();
2440 if (lhs_decl_ctx_kind == rhs_decl_ctx_kind) {
2441 lhs_decl_ctx = lhs_decl_ctx->getParent();
2442 rhs_decl_ctx = rhs_decl_ctx->getParent();
2443
2444 if (lhs_decl_ctx == nullptr && rhs_decl_ctx == nullptr)
2445 break;
2446 } else
2447 return false;
2448 } else
2449 return false;
2450 }
2451
2452 // Now make sure the name of the decls match
2453 clang::NamedDecl *lhs_named_decl =
2454 llvm::dyn_cast<clang::NamedDecl>(lhs_decl);
2455 clang::NamedDecl *rhs_named_decl =
2456 llvm::dyn_cast<clang::NamedDecl>(rhs_decl);
2457 if (lhs_named_decl && rhs_named_decl) {
2458 clang::DeclarationName lhs_decl_name = lhs_named_decl->getDeclName();
2459 clang::DeclarationName rhs_decl_name = rhs_named_decl->getDeclName();
2460 if (lhs_decl_name.getNameKind() == rhs_decl_name.getNameKind()) {
2461 if (lhs_decl_name.getAsString() != rhs_decl_name.getAsString())
2462 return false;
2463 } else
2464 return false;
2465 } else
2466 return false;
2467
2468 // We know that the decl context kinds all match, so now we need to
2469 // make sure the names match as well
2470 lhs_decl_ctx = lhs_decl->getDeclContext();
2471 rhs_decl_ctx = rhs_decl->getDeclContext();
2472 while (true) {
2473 switch (lhs_decl_ctx->getDeclKind()) {
2474 case clang::Decl::TranslationUnit:
2475 // We don't care about the translation unit names
2476 return true;
2477 default: {
2478 clang::NamedDecl *lhs_named_decl =
2479 llvm::dyn_cast<clang::NamedDecl>(lhs_decl_ctx);
2480 clang::NamedDecl *rhs_named_decl =
2481 llvm::dyn_cast<clang::NamedDecl>(rhs_decl_ctx);
2482 if (lhs_named_decl && rhs_named_decl) {
2483 clang::DeclarationName lhs_decl_name =
2484 lhs_named_decl->getDeclName();
2485 clang::DeclarationName rhs_decl_name =
2486 rhs_named_decl->getDeclName();
2487 if (lhs_decl_name.getNameKind() == rhs_decl_name.getNameKind()) {
2488 if (lhs_decl_name.getAsString() != rhs_decl_name.getAsString())
2489 return false;
2490 } else
2491 return false;
2492 } else
2493 return false;
2494 } break;
2495 }
2496 lhs_decl_ctx = lhs_decl_ctx->getParent();
2497 rhs_decl_ctx = rhs_decl_ctx->getParent();
2498 }
2499 }
2500 }
2501 }
2502 return false;
2503}
2504bool TypeSystemClang::GetCompleteDecl(clang::ASTContext *ast,
2505 clang::Decl *decl) {
2506 if (!decl)
2507 return false;
2508
2509 ExternalASTSource *ast_source = ast->getExternalSource();
2510
2511 if (!ast_source)
2512 return false;
2513
2514 if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl)) {
2515 if (tag_decl->isCompleteDefinition())
2516 return true;
2517
2518 if (!tag_decl->hasExternalLexicalStorage())
2519 return false;
2520
2521 ast_source->CompleteType(tag_decl);
2522
2523 return !tag_decl->getTypeForDecl()->isIncompleteType();
2524 } else if (clang::ObjCInterfaceDecl *objc_interface_decl =
2525 llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl)) {
2526 if (objc_interface_decl->getDefinition())
2527 return true;
2528
2529 if (!objc_interface_decl->hasExternalLexicalStorage())
2530 return false;
2531
2532 ast_source->CompleteType(objc_interface_decl);
2533
2534 return !objc_interface_decl->getTypeForDecl()->isIncompleteType();
2535 } else {
2536 return false;
2537 }
2538}
2539
2540void TypeSystemClang::SetMetadataAsUserID(const clang::Decl *decl,
2541 user_id_t user_id) {
2542 ClangASTMetadata meta_data;
2543 meta_data.SetUserID(user_id);
2544 SetMetadata(decl, meta_data);
2545}
2546
2547void TypeSystemClang::SetMetadataAsUserID(const clang::Type *type,
2548 user_id_t user_id) {
2549 ClangASTMetadata meta_data;
2550 meta_data.SetUserID(user_id);
2551 SetMetadata(type, meta_data);
2552}
2553
2554void TypeSystemClang::SetMetadata(const clang::Decl *object,
2555 ClangASTMetadata &metadata) {
2556 m_decl_metadata[object] = metadata;
2557}
2558
2559void TypeSystemClang::SetMetadata(const clang::Type *object,
2560 ClangASTMetadata &metadata) {
2561 m_type_metadata[object] = metadata;
2562}
2563
2564ClangASTMetadata *TypeSystemClang::GetMetadata(const clang::Decl *object) {
2565 auto It = m_decl_metadata.find(object);
2566 if (It != m_decl_metadata.end())
2567 return &It->second;
2568 return nullptr;
2569}
2570
2571ClangASTMetadata *TypeSystemClang::GetMetadata(const clang::Type *object) {
2572 auto It = m_type_metadata.find(object);
2573 if (It != m_type_metadata.end())
2574 return &It->second;
2575 return nullptr;
2576}
2577
2578void TypeSystemClang::SetCXXRecordDeclAccess(const clang::CXXRecordDecl *object,
2579 clang::AccessSpecifier access) {
2580 if (access == clang::AccessSpecifier::AS_none)
2581 m_cxx_record_decl_access.erase(object);
2582 else
2583 m_cxx_record_decl_access[object] = access;
2584}
2585
2586clang::AccessSpecifier
2587TypeSystemClang::GetCXXRecordDeclAccess(const clang::CXXRecordDecl *object) {
2588 auto It = m_cxx_record_decl_access.find(object);
2589 if (It != m_cxx_record_decl_access.end())
2590 return It->second;
2591 return clang::AccessSpecifier::AS_none;
2592}
2593
2594clang::DeclContext *
2595TypeSystemClang::GetDeclContextForType(const CompilerType &type) {
2596 return GetDeclContextForType(ClangUtil::GetQualType(type));
2597}
2598
2599/// Aggressively desugar the provided type, skipping past various kinds of
2600/// syntactic sugar and other constructs one typically wants to ignore.
2601/// The \p mask argument allows one to skip certain kinds of simplifications,
2602/// when one wishes to handle a certain kind of type directly.
2603static QualType
2604RemoveWrappingTypes(QualType type, ArrayRef<clang::Type::TypeClass> mask = {}) {
2605 while (true) {
2606 if (find(mask, type->getTypeClass()) != mask.end())
2607 return type;
2608 switch (type->getTypeClass()) {
2609 // This is not fully correct as _Atomic is more than sugar, but it is
2610 // sufficient for the purposes we care about.
2611 case clang::Type::Atomic:
2612 type = cast<clang::AtomicType>(type)->getValueType();
2613 break;
2614 case clang::Type::Auto:
2615 case clang::Type::Decltype:
2616 case clang::Type::Elaborated:
2617 case clang::Type::Paren:
2618 case clang::Type::SubstTemplateTypeParm:
2619 case clang::Type::TemplateSpecialization:
2620 case clang::Type::Typedef:
2621 case clang::Type::TypeOf:
2622 case clang::Type::TypeOfExpr:
2623 case clang::Type::Using:
2624 type = type->getLocallyUnqualifiedSingleStepDesugaredType();
2625 break;
2626 default:
2627 return type;
2628 }
2629 }
2630}
2631
2632clang::DeclContext *
2633TypeSystemClang::GetDeclContextForType(clang::QualType type) {
2634 if (type.isNull())
2635 return nullptr;
2636
2637 clang::QualType qual_type = RemoveWrappingTypes(type.getCanonicalType());
2638 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
2639 switch (type_class) {
2640 case clang::Type::ObjCInterface:
2641 return llvm::cast<clang::ObjCObjectType>(qual_type.getTypePtr())
2642 ->getInterface();
2643 case clang::Type::ObjCObjectPointer:
2644 return GetDeclContextForType(
2645 llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())
2646 ->getPointeeType());
2647 case clang::Type::Record:
2648 return llvm::cast<clang::RecordType>(qual_type)->getDecl();
2649 case clang::Type::Enum:
2650 return llvm::cast<clang::EnumType>(qual_type)->getDecl();
2651 default:
2652 break;
2653 }
2654 // No DeclContext in this type...
2655 return nullptr;
2656}
2657
2658static bool GetCompleteQualType(clang::ASTContext *ast,
2659 clang::QualType qual_type,
2660 bool allow_completion = true) {
2661 qual_type = RemoveWrappingTypes(qual_type);
2662 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
2663 switch (type_class) {
2664 case clang::Type::ConstantArray:
2665 case clang::Type::IncompleteArray:
2666 case clang::Type::VariableArray: {
2667 const clang::ArrayType *array_type =
2668 llvm::dyn_cast<clang::ArrayType>(qual_type.getTypePtr());
2669
2670 if (array_type)
2671 return GetCompleteQualType(ast, array_type->getElementType(),
2672 allow_completion);
2673 } break;
2674 case clang::Type::Record: {
2675 clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
2676 if (cxx_record_decl) {
2677 if (cxx_record_decl->hasExternalLexicalStorage()) {
2678 const bool is_complete = cxx_record_decl->isCompleteDefinition();
2679 const bool fields_loaded =
2680 cxx_record_decl->hasLoadedFieldsFromExternalStorage();
2681 if (is_complete && fields_loaded)
2682 return true;
2683
2684 if (!allow_completion)
2685 return false;
2686
2687 // Call the field_begin() accessor to for it to use the external source
2688 // to load the fields...
2689 clang::ExternalASTSource *external_ast_source =
2690 ast->getExternalSource();
2691 if (external_ast_source) {
2692 external_ast_source->CompleteType(cxx_record_decl);
2693 if (cxx_record_decl->isCompleteDefinition()) {
2694 cxx_record_decl->field_begin();
2695 cxx_record_decl->setHasLoadedFieldsFromExternalStorage(true);
2696 }
2697 }
2698 }
2699 }
2700 const clang::TagType *tag_type =
2701 llvm::cast<clang::TagType>(qual_type.getTypePtr());
2702 return !tag_type->isIncompleteType();
2703 } break;
2704
2705 case clang::Type::Enum: {
2706 const clang::TagType *tag_type =
2707 llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
2708 if (tag_type) {
2709 clang::TagDecl *tag_decl = tag_type->getDecl();
2710 if (tag_decl) {
2711 if (tag_decl->getDefinition())
2712 return true;
2713
2714 if (!allow_completion)
2715 return false;
2716
2717 if (tag_decl->hasExternalLexicalStorage()) {
2718 if (ast) {
2719 clang::ExternalASTSource *external_ast_source =
2720 ast->getExternalSource();
2721 if (external_ast_source) {
2722 external_ast_source->CompleteType(tag_decl);
2723 return !tag_type->isIncompleteType();
2724 }
2725 }
2726 }
2727 return false;
2728 }
2729 }
2730
2731 } break;
2732 case clang::Type::ObjCObject:
2733 case clang::Type::ObjCInterface: {
2734 const clang::ObjCObjectType *objc_class_type =
2735 llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
2736 if (objc_class_type) {
2737 clang::ObjCInterfaceDecl *class_interface_decl =
2738 objc_class_type->getInterface();
2739 // We currently can't complete objective C types through the newly added
2740 // ASTContext because it only supports TagDecl objects right now...
2741 if (class_interface_decl) {
2742 if (class_interface_decl->getDefinition())
2743 return true;
2744
2745 if (!allow_completion)
2746 return false;
2747
2748 if (class_interface_decl->hasExternalLexicalStorage()) {
2749 if (ast) {
2750 clang::ExternalASTSource *external_ast_source =
2751 ast->getExternalSource();
2752 if (external_ast_source) {
2753 external_ast_source->CompleteType(class_interface_decl);
2754 return !objc_class_type->isIncompleteType();
2755 }
2756 }
2757 }
2758 return false;
2759 }
2760 }
2761 } break;
2762
2763 case clang::Type::Attributed:
2764 return GetCompleteQualType(
2765 ast, llvm::cast<clang::AttributedType>(qual_type)->getModifiedType(),
2766 allow_completion);
2767
2768 default:
2769 break;
2770 }
2771
2772 return true;
2773}
2774
2775static clang::ObjCIvarDecl::AccessControl
2776ConvertAccessTypeToObjCIvarAccessControl(AccessType access) {
2777 switch (access) {
2778 case eAccessNone:
2779 return clang::ObjCIvarDecl::None;
2780 case eAccessPublic:
2781 return clang::ObjCIvarDecl::Public;
2782 case eAccessPrivate:
2783 return clang::ObjCIvarDecl::Private;
2784 case eAccessProtected:
2785 return clang::ObjCIvarDecl::Protected;
2786 case eAccessPackage:
2787 return clang::ObjCIvarDecl::Package;
2788 }
2789 return clang::ObjCIvarDecl::None;
2790}
2791
2792// Tests
2793
2794#ifndef NDEBUG
2795bool TypeSystemClang::Verify(lldb::opaque_compiler_type_t type) {
2796 return !type || llvm::isa<clang::Type>(GetQualType(type).getTypePtr());
2797}
2798#endif
2799
2800bool TypeSystemClang::IsAggregateType(lldb::opaque_compiler_type_t type) {
2801 clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
2802
2803 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
2804 switch (type_class) {
2805 case clang::Type::IncompleteArray:
2806 case clang::Type::VariableArray:
2807 case clang::Type::ConstantArray:
2808 case clang::Type::ExtVector:
2809 case clang::Type::Vector:
2810 case clang::Type::Record:
2811 case clang::Type::ObjCObject:
2812 case clang::Type::ObjCInterface:
2813 return true;
2814 default:
2815 break;
2816 }
2817 // The clang type does have a value
2818 return false;
2819}
2820
2821bool TypeSystemClang::IsAnonymousType(lldb::opaque_compiler_type_t type) {
2822 clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
2823
2824 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
2825 switch (type_class) {
2826 case clang::Type::Record: {
2827 if (const clang::RecordType *record_type =
2828 llvm::dyn_cast_or_null<clang::RecordType>(
2829 qual_type.getTypePtrOrNull())) {
2830 if (const clang::RecordDecl *record_decl = record_type->getDecl()) {
2831 return record_decl->isAnonymousStructOrUnion();
2832 }
2833 }
2834 break;
2835 }
2836 default:
2837 break;
2838 }
2839 // The clang type does have a value
2840 return false;
2841}
2842
2843bool TypeSystemClang::IsArrayType(lldb::opaque_compiler_type_t type,
2844 CompilerType *element_type_ptr,
2845 uint64_t *size, bool *is_incomplete) {
2846 clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
2847
2848 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
2849 switch (type_class) {
2850 default:
2851 break;
2852
2853 case clang::Type::ConstantArray:
2854 if (element_type_ptr)
2855 element_type_ptr->SetCompilerType(
2856 this, llvm::cast<clang::ConstantArrayType>(qual_type)
2857 ->getElementType()
2858 .getAsOpaquePtr());
2859 if (size)
2860 *size = llvm::cast<clang::ConstantArrayType>(qual_type)
2861 ->getSize()
2862 .getLimitedValue(ULLONG_MAX(9223372036854775807LL*2ULL+1ULL));
2863 if (is_incomplete)
2864 *is_incomplete = false;
2865 return true;
2866
2867 case clang::Type::IncompleteArray:
2868 if (element_type_ptr)
2869 element_type_ptr->SetCompilerType(
2870 this, llvm::cast<clang::IncompleteArrayType>(qual_type)
2871 ->getElementType()
2872 .getAsOpaquePtr());
2873 if (size)
2874 *size = 0;
2875 if (is_incomplete)
2876 *is_incomplete = true;
2877 return true;
2878
2879 case clang::Type::VariableArray:
2880 if (element_type_ptr)
2881 element_type_ptr->SetCompilerType(
2882 this, llvm::cast<clang::VariableArrayType>(qual_type)
2883 ->getElementType()
2884 .getAsOpaquePtr());
2885 if (size)
2886 *size = 0;
2887 if (is_incomplete)
2888 *is_incomplete = false;
2889 return true;
2890
2891 case clang::Type::DependentSizedArray:
2892 if (element_type_ptr)
2893 element_type_ptr->SetCompilerType(
2894 this, llvm::cast<clang::DependentSizedArrayType>(qual_type)
2895 ->getElementType()
2896 .getAsOpaquePtr());
2897 if (size)
2898 *size = 0;
2899 if (is_incomplete)
2900 *is_incomplete = false;
2901 return true;
2902 }
2903 if (element_type_ptr)
2904 element_type_ptr->Clear();
2905 if (size)
2906 *size = 0;
2907 if (is_incomplete)
2908 *is_incomplete = false;
2909 return false;
2910}
2911
2912bool TypeSystemClang::IsVectorType(lldb::opaque_compiler_type_t type,
2913 CompilerType *element_type, uint64_t *size) {
2914 clang::QualType qual_type(GetCanonicalQualType(type));
2915
2916 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
2917 switch (type_class) {
2918 case clang::Type::Vector: {
2919 const clang::VectorType *vector_type =
2920 qual_type->getAs<clang::VectorType>();
2921 if (vector_type) {
2922 if (size)
2923 *size = vector_type->getNumElements();
2924 if (element_type)
2925 *element_type = GetType(vector_type->getElementType());
2926 }
2927 return true;
2928 } break;
2929 case clang::Type::ExtVector: {
2930 const clang::ExtVectorType *ext_vector_type =
2931 qual_type->getAs<clang::ExtVectorType>();
2932 if (ext_vector_type) {
2933 if (size)
2934 *size = ext_vector_type->getNumElements();
2935 if (element_type)
2936 *element_type =
2937 CompilerType(this, ext_vector_type->getElementType().getAsOpaquePtr());
2938 }
2939 return true;
2940 }
2941 default:
2942 break;
2943 }
2944 return false;
2945}
2946
2947bool TypeSystemClang::IsRuntimeGeneratedType(
2948 lldb::opaque_compiler_type_t type) {
2949 clang::DeclContext *decl_ctx = GetDeclContextForType(GetQualType(type));
2950 if (!decl_ctx)
2951 return false;
2952
2953 if (!llvm::isa<clang::ObjCInterfaceDecl>(decl_ctx))
2954 return false;
2955
2956 clang::ObjCInterfaceDecl *result_iface_decl =
2957 llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl_ctx);
2958
2959 ClangASTMetadata *ast_metadata = GetMetadata(result_iface_decl);
2960 if (!ast_metadata)
2961 return false;
2962 return (ast_metadata->GetISAPtr() != 0);
2963}
2964
2965bool TypeSystemClang::IsCharType(lldb::opaque_compiler_type_t type) {
2966 return GetQualType(type).getUnqualifiedType()->isCharType();
2967}
2968
2969bool TypeSystemClang::IsCompleteType(lldb::opaque_compiler_type_t type) {
2970 // If the type hasn't been lazily completed yet, complete it now so that we
2971 // can give the caller an accurate answer whether the type actually has a
2972 // definition. Without completing the type now we would just tell the user
2973 // the current (internal) completeness state of the type and most users don't
2974 // care (or even know) about this behavior.
2975 const bool allow_completion = true;
2976 return GetCompleteQualType(&getASTContext(), GetQualType(type),
2977 allow_completion);
2978}
2979
2980bool TypeSystemClang::IsConst(lldb::opaque_compiler_type_t type) {
2981 return GetQualType(type).isConstQualified();
2982}
2983
2984bool TypeSystemClang::IsCStringType(lldb::opaque_compiler_type_t type,
2985 uint32_t &length) {
2986 CompilerType pointee_or_element_clang_type;
2987 length = 0;
2988 Flags type_flags(GetTypeInfo(type, &pointee_or_element_clang_type));
2989
2990 if (!pointee_or_element_clang_type.IsValid())
2991 return false;
2992
2993 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer)) {
2994 if (pointee_or_element_clang_type.IsCharType()) {
2995 if (type_flags.Test(eTypeIsArray)) {
2996 // We know the size of the array and it could be a C string since it is
2997 // an array of characters
2998 length = llvm::cast<clang::ConstantArrayType>(
2999 GetCanonicalQualType(type).getTypePtr())
3000 ->getSize()
3001 .getLimitedValue();
3002 }
3003 return true;
3004 }
3005 }
3006 return false;
3007}
3008
3009bool TypeSystemClang::IsFunctionType(lldb::opaque_compiler_type_t type) {
3010 if (type) {
3011 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
3012
3013 if (qual_type->isFunctionType()) {
3014 return true;
3015 }
3016
3017 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3018 switch (type_class) {
3019 default:
3020 break;
3021 case clang::Type::LValueReference:
3022 case clang::Type::RValueReference: {
3023 const clang::ReferenceType *reference_type =
3024 llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
3025 if (reference_type)
3026 return IsFunctionType(
3027 reference_type->getPointeeType().getAsOpaquePtr());
3028 } break;
3029 }
3030 }
3031 return false;
3032}
3033
3034// Used to detect "Homogeneous Floating-point Aggregates"
3035uint32_t
3036TypeSystemClang::IsHomogeneousAggregate(lldb::opaque_compiler_type_t type,
3037 CompilerType *base_type_ptr) {
3038 if (!type)
3039 return 0;
3040
3041 clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
3042 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3043 switch (type_class) {
3044 case clang::Type::Record:
3045 if (GetCompleteType(type)) {
3046 const clang::CXXRecordDecl *cxx_record_decl =
3047 qual_type->getAsCXXRecordDecl();
3048 if (cxx_record_decl) {
3049 if (cxx_record_decl->getNumBases() || cxx_record_decl->isDynamicClass())
3050 return 0;
3051 }
3052 const clang::RecordType *record_type =
3053 llvm::cast<clang::RecordType>(qual_type.getTypePtr());
3054 if (record_type) {
3055 const clang::RecordDecl *record_decl = record_type->getDecl();
3056 if (record_decl) {
3057 // We are looking for a structure that contains only floating point
3058 // types
3059 clang::RecordDecl::field_iterator field_pos,
3060 field_end = record_decl->field_end();
3061 uint32_t num_fields = 0;
3062 bool is_hva = false;
3063 bool is_hfa = false;
3064 clang::QualType base_qual_type;
3065 uint64_t base_bitwidth = 0;
3066 for (field_pos = record_decl->field_begin(); field_pos != field_end;
3067 ++field_pos) {
3068 clang::QualType field_qual_type = field_pos->getType();
3069 uint64_t field_bitwidth = getASTContext().getTypeSize(qual_type);
3070 if (field_qual_type->isFloatingType()) {
3071 if (field_qual_type->isComplexType())
3072 return 0;
3073 else {
3074 if (num_fields == 0)
3075 base_qual_type = field_qual_type;
3076 else {
3077 if (is_hva)
3078 return 0;
3079 is_hfa = true;
3080 if (field_qual_type.getTypePtr() !=
3081 base_qual_type.getTypePtr())
3082 return 0;
3083 }
3084 }
3085 } else if (field_qual_type->isVectorType() ||
3086 field_qual_type->isExtVectorType()) {
3087 if (num_fields == 0) {
3088 base_qual_type = field_qual_type;
3089 base_bitwidth = field_bitwidth;
3090 } else {
3091 if (is_hfa)
3092 return 0;
3093 is_hva = true;
3094 if (base_bitwidth != field_bitwidth)
3095 return 0;
3096 if (field_qual_type.getTypePtr() != base_qual_type.getTypePtr())
3097 return 0;
3098 }
3099 } else
3100 return 0;
3101 ++num_fields;
3102 }
3103 if (base_type_ptr)
3104 *base_type_ptr = CompilerType(this, base_qual_type.getAsOpaquePtr());
3105 return num_fields;
3106 }
3107 }
3108 }
3109 break;
3110
3111 default:
3112 break;
3113 }
3114 return 0;
3115}
3116
3117size_t TypeSystemClang::GetNumberOfFunctionArguments(
3118 lldb::opaque_compiler_type_t type) {
3119 if (type) {
3120 clang::QualType qual_type(GetCanonicalQualType(type));
3121 const clang::FunctionProtoType *func =
3122 llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
3123 if (func)
3124 return func->getNumParams();
3125 }
3126 return 0;
3127}
3128
3129CompilerType
3130TypeSystemClang::GetFunctionArgumentAtIndex(lldb::opaque_compiler_type_t type,
3131 const size_t index) {
3132 if (type) {
3133 clang::QualType qual_type(GetQualType(type));
3134 const clang::FunctionProtoType *func =
3135 llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
3136 if (func) {
3137 if (index < func->getNumParams())
3138 return CompilerType(this, func->getParamType(index).getAsOpaquePtr());
3139 }
3140 }
3141 return CompilerType();
3142}
3143
3144bool TypeSystemClang::IsFunctionPointerType(lldb::opaque_compiler_type_t type) {
3145 if (type) {
3146 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
3147
3148 if (qual_type->isFunctionPointerType())
3149 return true;
3150
3151 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3152 switch (type_class) {
3153 default:
3154 break;
3155
3156 case clang::Type::LValueReference:
3157 case clang::Type::RValueReference: {
3158 const clang::ReferenceType *reference_type =
3159 llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
3160 if (reference_type)
3161 return IsFunctionPointerType(
3162 reference_type->getPointeeType().getAsOpaquePtr());
3163 } break;
3164 }
3165 }
3166 return false;
3167}
3168
3169bool TypeSystemClang::IsBlockPointerType(
3170 lldb::opaque_compiler_type_t type,
3171 CompilerType *function_pointer_type_ptr) {
3172 if (type) {
1
Assuming 'type' is non-null
2
Taking true branch
3173 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
3174
3175 if (qual_type->isBlockPointerType()) {
3
Calling 'Type::isBlockPointerType'
6
Returning from 'Type::isBlockPointerType'
7
Taking true branch
3176 if (function_pointer_type_ptr) {
8
Assuming 'function_pointer_type_ptr' is non-null
9
Taking true branch
3177 const clang::BlockPointerType *block_pointer_type =
11
'block_pointer_type' initialized to a null pointer value
3178 qual_type->getAs<clang::BlockPointerType>();
10
Assuming the object is not a 'BlockPointerType'
3179 QualType pointee_type = block_pointer_type->getPointeeType();
12
Called C++ object pointer is null
3180 QualType function_pointer_type = m_ast_up->getPointerType(pointee_type);
3181 *function_pointer_type_ptr =
3182 CompilerType(this, function_pointer_type.getAsOpaquePtr());
3183 }
3184 return true;
3185 }
3186
3187 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3188 switch (type_class) {
3189 default:
3190 break;
3191
3192 case clang::Type::LValueReference:
3193 case clang::Type::RValueReference: {
3194 const clang::ReferenceType *reference_type =
3195 llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
3196 if (reference_type)
3197 return IsBlockPointerType(
3198 reference_type->getPointeeType().getAsOpaquePtr(),
3199 function_pointer_type_ptr);
3200 } break;
3201 }
3202 }
3203 return false;
3204}
3205
3206bool TypeSystemClang::IsIntegerType(lldb::opaque_compiler_type_t type,
3207 bool &is_signed) {
3208 if (!type)
3209 return false;
3210
3211 clang::QualType qual_type(GetCanonicalQualType(type));
3212 const clang::BuiltinType *builtin_type =
3213 llvm::dyn_cast<clang::BuiltinType>(qual_type->getCanonicalTypeInternal());
3214
3215 if (builtin_type) {
3216 if (builtin_type->isInteger()) {
3217 is_signed = builtin_type->isSignedInteger();
3218 return true;
3219 }
3220 }
3221
3222 return false;
3223}
3224
3225bool TypeSystemClang::IsEnumerationType(lldb::opaque_compiler_type_t type,
3226 bool &is_signed) {
3227 if (type) {
3228 const clang::EnumType *enum_type = llvm::dyn_cast<clang::EnumType>(
3229 GetCanonicalQualType(type)->getCanonicalTypeInternal());
3230
3231 if (enum_type) {
3232 IsIntegerType(enum_type->getDecl()->getIntegerType().getAsOpaquePtr(),
3233 is_signed);
3234 return true;
3235 }
3236 }
3237
3238 return false;
3239}
3240
3241bool TypeSystemClang::IsScopedEnumerationType(
3242 lldb::opaque_compiler_type_t type) {
3243 if (type) {
3244 const clang::EnumType *enum_type = llvm::dyn_cast<clang::EnumType>(
3245 GetCanonicalQualType(type)->getCanonicalTypeInternal());
3246
3247 if (enum_type) {
3248 return enum_type->isScopedEnumeralType();
3249 }
3250 }
3251
3252 return false;
3253}
3254
3255bool TypeSystemClang::IsPointerType(lldb::opaque_compiler_type_t type,
3256 CompilerType *pointee_type) {
3257 if (type) {
3258 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
3259 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3260 switch (type_class) {
3261 case clang::Type::Builtin:
3262 switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
3263 default:
3264 break;
3265 case clang::BuiltinType::ObjCId:
3266 case clang::BuiltinType::ObjCClass:
3267 return true;
3268 }
3269 return false;
3270 case clang::Type::ObjCObjectPointer:
3271 if (pointee_type)
3272 pointee_type->SetCompilerType(
3273 this, llvm::cast<clang::ObjCObjectPointerType>(qual_type)
3274 ->getPointeeType()
3275 .getAsOpaquePtr());
3276 return true;
3277 case clang::Type::BlockPointer:
3278 if (pointee_type)
3279 pointee_type->SetCompilerType(
3280 this, llvm::cast<clang::BlockPointerType>(qual_type)
3281 ->getPointeeType()
3282 .getAsOpaquePtr());
3283 return true;
3284 case clang::Type::Pointer:
3285 if (pointee_type)
3286 pointee_type->SetCompilerType(this,
3287 llvm::cast<clang::PointerType>(qual_type)
3288 ->getPointeeType()
3289 .getAsOpaquePtr());
3290 return true;
3291 case clang::Type::MemberPointer:
3292 if (pointee_type)
3293 pointee_type->SetCompilerType(
3294 this, llvm::cast<clang::MemberPointerType>(qual_type)
3295 ->getPointeeType()
3296 .getAsOpaquePtr());
3297 return true;
3298 default:
3299 break;
3300 }
3301 }
3302 if (pointee_type)
3303 pointee_type->Clear();
3304 return false;
3305}
3306
3307bool TypeSystemClang::IsPointerOrReferenceType(
3308 lldb::opaque_compiler_type_t type, CompilerType *pointee_type) {
3309 if (type) {
3310 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
3311 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3312 switch (type_class) {
3313 case clang::Type::Builtin:
3314 switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
3315 default:
3316 break;
3317 case clang::BuiltinType::ObjCId:
3318 case clang::BuiltinType::ObjCClass:
3319 return true;
3320 }
3321 return false;
3322 case clang::Type::ObjCObjectPointer:
3323 if (pointee_type)
3324 pointee_type->SetCompilerType(
3325 this, llvm::cast<clang::ObjCObjectPointerType>(qual_type)
3326 ->getPointeeType().getAsOpaquePtr());
3327 return true;
3328 case clang::Type::BlockPointer:
3329 if (pointee_type)
3330 pointee_type->SetCompilerType(
3331 this, llvm::cast<clang::BlockPointerType>(qual_type)
3332 ->getPointeeType()
3333 .getAsOpaquePtr());
3334 return true;
3335 case clang::Type::Pointer:
3336 if (pointee_type)
3337 pointee_type->SetCompilerType(this,
3338 llvm::cast<clang::PointerType>(qual_type)
3339 ->getPointeeType()
3340 .getAsOpaquePtr());
3341 return true;
3342 case clang::Type::MemberPointer:
3343 if (pointee_type)
3344 pointee_type->SetCompilerType(
3345 this, llvm::cast<clang::MemberPointerType>(qual_type)
3346 ->getPointeeType()
3347 .getAsOpaquePtr());
3348 return true;
3349 case clang::Type::LValueReference:
3350 if (pointee_type)
3351 pointee_type->SetCompilerType(
3352 this, llvm::cast<clang::LValueReferenceType>(qual_type)
3353 ->desugar()
3354 .getAsOpaquePtr());
3355 return true;
3356 case clang::Type::RValueReference:
3357 if (pointee_type)
3358 pointee_type->SetCompilerType(
3359 this, llvm::cast<clang::RValueReferenceType>(qual_type)
3360 ->desugar()
3361 .getAsOpaquePtr());
3362 return true;
3363 default:
3364 break;
3365 }
3366 }
3367 if (pointee_type)
3368 pointee_type->Clear();
3369 return false;
3370}
3371
3372bool TypeSystemClang::IsReferenceType(lldb::opaque_compiler_type_t type,
3373 CompilerType *pointee_type,
3374 bool *is_rvalue) {
3375 if (type) {
3376 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
3377 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3378
3379 switch (type_class) {
3380 case clang::Type::LValueReference:
3381 if (pointee_type)
3382 pointee_type->SetCompilerType(
3383 this, llvm::cast<clang::LValueReferenceType>(qual_type)
3384 ->desugar()
3385 .getAsOpaquePtr());
3386 if (is_rvalue)
3387 *is_rvalue = false;
3388 return true;
3389 case clang::Type::RValueReference:
3390 if (pointee_type)
3391 pointee_type->SetCompilerType(
3392 this, llvm::cast<clang::RValueReferenceType>(qual_type)
3393 ->desugar()
3394 .getAsOpaquePtr());
3395 if (is_rvalue)
3396 *is_rvalue = true;
3397 return true;
3398
3399 default:
3400 break;
3401 }
3402 }
3403 if (pointee_type)
3404 pointee_type->Clear();
3405 return false;
3406}
3407
3408bool TypeSystemClang::IsFloatingPointType(lldb::opaque_compiler_type_t type,
3409 uint32_t &count, bool &is_complex) {
3410 if (type) {
3411 clang::QualType qual_type(GetCanonicalQualType(type));
3412
3413 if (const clang::BuiltinType *BT = llvm::dyn_cast<clang::BuiltinType>(
3414 qual_type->getCanonicalTypeInternal())) {
3415 clang::BuiltinType::Kind kind = BT->getKind();
3416 if (kind >= clang::BuiltinType::Float &&
3417 kind <= clang::BuiltinType::LongDouble) {
3418 count = 1;
3419 is_complex = false;
3420 return true;
3421 }
3422 } else if (const clang::ComplexType *CT =
3423 llvm::dyn_cast<clang::ComplexType>(
3424 qual_type->getCanonicalTypeInternal())) {
3425 if (IsFloatingPointType(CT->getElementType().getAsOpaquePtr(), count,
3426 is_complex)) {
3427 count = 2;
3428 is_complex = true;
3429 return true;
3430 }
3431 } else if (const clang::VectorType *VT = llvm::dyn_cast<clang::VectorType>(
3432 qual_type->getCanonicalTypeInternal())) {
3433 if (IsFloatingPointType(VT->getElementType().getAsOpaquePtr(), count,
3434 is_complex)) {
3435 count = VT->getNumElements();
3436 is_complex = false;
3437 return true;
3438 }
3439 }
3440 }
3441 count = 0;
3442 is_complex = false;
3443 return false;
3444}
3445
3446bool TypeSystemClang::IsDefined(lldb::opaque_compiler_type_t type) {
3447 if (!type)
3448 return false;
3449
3450 clang::QualType qual_type(GetQualType(type));
3451 const clang::TagType *tag_type =
3452 llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
3453 if (tag_type) {
3454 clang::TagDecl *tag_decl = tag_type->getDecl();
3455 if (tag_decl)
3456 return tag_decl->isCompleteDefinition();
3457 return false;
3458 } else {
3459 const clang::ObjCObjectType *objc_class_type =
3460 llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
3461 if (objc_class_type) {
3462 clang::ObjCInterfaceDecl *class_interface_decl =
3463 objc_class_type->getInterface();
3464 if (class_interface_decl)
3465 return class_interface_decl->getDefinition() != nullptr;
3466 return false;
3467 }
3468 }
3469 return true;
3470}
3471
3472bool TypeSystemClang::IsObjCClassType(const CompilerType &type) {
3473 if (ClangUtil::IsClangType(type)) {
3474 clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type));
3475
3476 const clang::ObjCObjectPointerType *obj_pointer_type =
3477 llvm::dyn_cast<clang::ObjCObjectPointerType>(qual_type);
3478
3479 if (obj_pointer_type)
3480 return obj_pointer_type->isObjCClassType();
3481 }
3482 return false;
3483}
3484
3485bool TypeSystemClang::IsObjCObjectOrInterfaceType(const CompilerType &type) {
3486 if (ClangUtil::IsClangType(type))
3487 return ClangUtil::GetCanonicalQualType(type)->isObjCObjectOrInterfaceType();
3488 return false;
3489}
3490
3491bool TypeSystemClang::IsClassType(lldb::opaque_compiler_type_t type) {
3492 if (!type)
3493 return false;
3494 clang::QualType qual_type(GetCanonicalQualType(type));
3495 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3496 return (type_class == clang::Type::Record);
3497}
3498
3499bool TypeSystemClang::IsEnumType(lldb::opaque_compiler_type_t type) {
3500 if (!type)
3501 return false;
3502 clang::QualType qual_type(GetCanonicalQualType(type));
3503 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3504 return (type_class == clang::Type::Enum);
3505}
3506
3507bool TypeSystemClang::IsPolymorphicClass(lldb::opaque_compiler_type_t type) {
3508 if (type) {
3509 clang::QualType qual_type(GetCanonicalQualType(type));
3510 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3511 switch (type_class) {
3512 case clang::Type::Record:
3513 if (GetCompleteType(type)) {
3514 const clang::RecordType *record_type =
3515 llvm::cast<clang::RecordType>(qual_type.getTypePtr());
3516 const clang::RecordDecl *record_decl = record_type->getDecl();
3517 if (record_decl) {
3518 const clang::CXXRecordDecl *cxx_record_decl =
3519 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
3520 if (cxx_record_decl)
3521 return cxx_record_decl->isPolymorphic();
3522 }
3523 }
3524 break;
3525
3526 default:
3527 break;
3528 }
3529 }
3530 return false;
3531}
3532
3533bool TypeSystemClang::IsPossibleDynamicType(lldb::opaque_compiler_type_t type,
3534 CompilerType *dynamic_pointee_type,
3535 bool check_cplusplus,
3536 bool check_objc) {
3537 clang::QualType pointee_qual_type;
3538 if (type) {
3539 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
3540 bool success = false;
3541 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3542 switch (type_class) {
3543 case clang::Type::Builtin:
3544 if (check_objc &&
3545 llvm::cast<clang::BuiltinType>(qual_type)->getKind() ==
3546 clang::BuiltinType::ObjCId) {
3547 if (dynamic_pointee_type)
3548 dynamic_pointee_type->SetCompilerType(this, type);
3549 return true;
3550 }
3551 break;
3552
3553 case clang::Type::ObjCObjectPointer:
3554 if (check_objc) {
3555 if (const auto *objc_pointee_type =
3556 qual_type->getPointeeType().getTypePtrOrNull()) {
3557 if (const auto *objc_object_type =
3558 llvm::dyn_cast_or_null<clang::ObjCObjectType>(
3559 objc_pointee_type)) {
3560 if (objc_object_type->isObjCClass())
3561 return false;
3562 }
3563 }
3564 if (dynamic_pointee_type)
3565 dynamic_pointee_type->SetCompilerType(
3566 this, llvm::cast<clang::ObjCObjectPointerType>(qual_type)
3567 ->getPointeeType()
3568 .getAsOpaquePtr());
3569 return true;
3570 }
3571 break;
3572
3573 case clang::Type::Pointer:
3574 pointee_qual_type =
3575 llvm::cast<clang::PointerType>(qual_type)->getPointeeType();
3576 success = true;
3577 break;
3578
3579 case clang::Type::LValueReference:
3580 case clang::Type::RValueReference:
3581 pointee_qual_type =
3582 llvm::cast<clang::ReferenceType>(qual_type)->getPointeeType();
3583 success = true;
3584 break;
3585
3586 default:
3587 break;
3588 }
3589
3590 if (success) {
3591 // Check to make sure what we are pointing too is a possible dynamic C++
3592 // type We currently accept any "void *" (in case we have a class that
3593 // has been watered down to an opaque pointer) and virtual C++ classes.
3594 const clang::Type::TypeClass pointee_type_class =
3595 pointee_qual_type.getCanonicalType()->getTypeClass();
3596 switch (pointee_type_class) {
3597 case clang::Type::Builtin:
3598 switch (llvm::cast<clang::BuiltinType>(pointee_qual_type)->getKind()) {
3599 case clang::BuiltinType::UnknownAny:
3600 case clang::BuiltinType::Void:
3601 if (dynamic_pointee_type)
3602 dynamic_pointee_type->SetCompilerType(
3603 this, pointee_qual_type.getAsOpaquePtr());
3604 return true;
3605 default:
3606 break;
3607 }
3608 break;
3609
3610 case clang::Type::Record:
3611 if (check_cplusplus) {
3612 clang::CXXRecordDecl *cxx_record_decl =
3613 pointee_qual_type->getAsCXXRecordDecl();
3614 if (cxx_record_decl) {
3615 bool is_complete = cxx_record_decl->isCompleteDefinition();
3616
3617 if (is_complete)
3618 success = cxx_record_decl->isDynamicClass();
3619 else {
3620 ClangASTMetadata *metadata = GetMetadata(cxx_record_decl);
3621 if (metadata)
3622 success = metadata->GetIsDynamicCXXType();
3623 else {
3624 is_complete = GetType(pointee_qual_type).GetCompleteType();
3625 if (is_complete)
3626 success = cxx_record_decl->isDynamicClass();
3627 else
3628 success = false;
3629 }
3630 }
3631
3632 if (success) {
3633 if (dynamic_pointee_type)
3634 dynamic_pointee_type->SetCompilerType(
3635 this, pointee_qual_type.getAsOpaquePtr());
3636 return true;
3637 }
3638 }
3639 }
3640 break;
3641
3642 case clang::Type::ObjCObject:
3643 case clang::Type::ObjCInterface:
3644 if (check_objc) {
3645 if (dynamic_pointee_type)
3646 dynamic_pointee_type->SetCompilerType(
3647 this, pointee_qual_type.getAsOpaquePtr());
3648 return true;
3649 }
3650 break;
3651
3652 default:
3653 break;
3654 }
3655 }
3656 }
3657 if (dynamic_pointee_type)
3658 dynamic_pointee_type->Clear();
3659 return false;
3660}
3661
3662bool TypeSystemClang::IsScalarType(lldb::opaque_compiler_type_t type) {
3663 if (!type)
3664 return false;
3665
3666 return (GetTypeInfo(type, nullptr) & eTypeIsScalar) != 0;
3667}
3668
3669bool TypeSystemClang::IsTypedefType(lldb::opaque_compiler_type_t type) {
3670 if (!type)
3671 return false;
3672 return RemoveWrappingTypes(GetQualType(type), {clang::Type::Typedef})
3673 ->getTypeClass() == clang::Type::Typedef;
3674}
3675
3676bool TypeSystemClang::IsVoidType(lldb::opaque_compiler_type_t type) {
3677 if (!type)
3678 return false;
3679 return GetCanonicalQualType(type)->isVoidType();
3680}
3681
3682bool TypeSystemClang::CanPassInRegisters(const CompilerType &type) {
3683 if (auto *record_decl =
3684 TypeSystemClang::GetAsRecordDecl(type)) {
3685 return record_decl->canPassInRegisters();
3686 }
3687 return false;
3688}
3689
3690bool TypeSystemClang::SupportsLanguage(lldb::LanguageType language) {
3691 return TypeSystemClangSupportsLanguage(language);
3692}
3693
3694Optional<std::string>
3695TypeSystemClang::GetCXXClassName(const CompilerType &type) {
3696 if (!type)
3697 return llvm::None;
3698
3699 clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type));
3700 if (qual_type.isNull())
3701 return llvm::None;
3702
3703 clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
3704 if (!cxx_record_decl)
3705 return llvm::None;
3706
3707 return std::string(cxx_record_decl->getIdentifier()->getNameStart());
3708}
3709
3710bool TypeSystemClang::IsCXXClassType(const CompilerType &type) {
3711 if (!type)
3712 return false;
3713
3714 clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type));
3715 return !qual_type.isNull() && qual_type->getAsCXXRecordDecl() != nullptr;
3716}
3717
3718bool TypeSystemClang::IsBeingDefined(lldb::opaque_compiler_type_t type) {
3719 if (!type)
3720 return false;
3721 clang::QualType qual_type(GetCanonicalQualType(type));
3722 const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type);
3723 if (tag_type)
3724 return tag_type->isBeingDefined();
3725 return false;
3726}
3727
3728bool TypeSystemClang::IsObjCObjectPointerType(const CompilerType &type,
3729 CompilerType *class_type_ptr) {
3730 if (!ClangUtil::IsClangType(type))
3731 return false;
3732
3733 clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type));
3734
3735 if (!qual_type.isNull() && qual_type->isObjCObjectPointerType()) {
3736 if (class_type_ptr) {
3737 if (!qual_type->isObjCClassType() && !qual_type->isObjCIdType()) {
3738 const clang::ObjCObjectPointerType *obj_pointer_type =
3739 llvm::dyn_cast<clang::ObjCObjectPointerType>(qual_type);
3740 if (obj_pointer_type == nullptr)
3741 class_type_ptr->Clear();
3742 else
3743 class_type_ptr->SetCompilerType(
3744 type.GetTypeSystem(),
3745 clang::QualType(obj_pointer_type->getInterfaceType(), 0)
3746 .getAsOpaquePtr());
3747 }
3748 }
3749 return true;
3750 }
3751 if (class_type_ptr)
3752 class_type_ptr->Clear();
3753 return false;
3754}
3755
3756// Type Completion
3757
3758bool TypeSystemClang::GetCompleteType(lldb::opaque_compiler_type_t type) {
3759 if (!type)
3760 return false;
3761 const bool allow_completion = true;
3762 return GetCompleteQualType(&getASTContext(), GetQualType(type),
3763 allow_completion);
3764}
3765
3766ConstString TypeSystemClang::GetTypeName(lldb::opaque_compiler_type_t type) {
3767 if (!type)
3768 return ConstString();
3769
3770 clang::QualType qual_type(GetQualType(type));
3771
3772 // Remove certain type sugar from the name. Sugar such as elaborated types
3773 // or template types which only serve to improve diagnostics shouldn't
3774 // act as their own types from the user's perspective (e.g., formatter
3775 // shouldn't format a variable differently depending on how the ser has
3776 // specified the type. '::Type' and 'Type' should behave the same).
3777 // Typedefs and atomic derived types are not removed as they are actually
3778 // useful for identifiying specific types.
3779 qual_type = RemoveWrappingTypes(qual_type,
3780 {clang::Type::Typedef, clang::Type::Atomic});
3781
3782 // For a typedef just return the qualified name.
3783 if (const auto *typedef_type = qual_type->getAs<clang::TypedefType>()) {
3784 const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl();
3785 return ConstString(GetTypeNameForDecl(typedef_decl));
3786 }
3787
3788 return ConstString(qual_type.getAsString(GetTypePrintingPolicy()));
3789}
3790
3791ConstString
3792TypeSystemClang::GetDisplayTypeName(lldb::opaque_compiler_type_t type) {
3793 if (!type)
3794 return ConstString();
3795
3796 clang::QualType qual_type(GetQualType(type));
3797 clang::PrintingPolicy printing_policy(getASTContext().getPrintingPolicy());
3798 printing_policy.SuppressTagKeyword = true;
3799 printing_policy.SuppressScope = false;
3800 printing_policy.SuppressUnwrittenScope = true;
3801 printing_policy.SuppressInlineNamespace = true;
3802 return ConstString(qual_type.getAsString(printing_policy));
3803}
3804
3805uint32_t
3806TypeSystemClang::GetTypeInfo(lldb::opaque_compiler_type_t type,
3807 CompilerType *pointee_or_element_clang_type) {
3808 if (!type)
3809 return 0;
3810
3811 if (pointee_or_element_clang_type)
3812 pointee_or_element_clang_type->Clear();
3813
3814 clang::QualType qual_type =
3815 RemoveWrappingTypes(GetQualType(type), {clang::Type::Typedef});
3816
3817 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
3818 switch (type_class) {
3819 case clang::Type::Attributed:
3820 return GetTypeInfo(
3821 qual_type->getAs<clang::AttributedType>()
3822 ->getModifiedType().getAsOpaquePtr(),
3823 pointee_or_element_clang_type);
3824 case clang::Type::Builtin: {
3825 const clang::BuiltinType *builtin_type = llvm::dyn_cast<clang::BuiltinType>(
3826 qual_type->getCanonicalTypeInternal());
3827
3828 uint32_t builtin_type_flags = eTypeIsBuiltIn | eTypeHasValue;
3829 switch (builtin_type->getKind()) {
3830 case clang::BuiltinType::ObjCId:
3831 case clang::BuiltinType::ObjCClass:
3832 if (pointee_or_element_clang_type)
3833 pointee_or_element_clang_type->SetCompilerType(
3834 this, getASTContext().ObjCBuiltinClassTy.getAsOpaquePtr());
3835 builtin_type_flags |= eTypeIsPointer | eTypeIsObjC;
3836 break;
3837
3838 case clang::BuiltinType::ObjCSel:
3839 if (pointee_or_element_clang_type)
3840 pointee_or_element_clang_type->SetCompilerType(
3841 this, getASTContext().CharTy.getAsOpaquePtr());
3842 builtin_type_flags |= eTypeIsPointer | eTypeIsObjC;
3843 break;
3844
3845 case clang::BuiltinType::Bool:
3846 case clang::BuiltinType::Char_U:
3847 case clang::BuiltinType::UChar:
3848 case clang::BuiltinType::WChar_U:
3849 case clang::BuiltinType::Char16:
3850 case clang::BuiltinType::Char32:
3851 case clang::BuiltinType::UShort:
3852 case clang::BuiltinType::UInt:
3853 case clang::BuiltinType::ULong:
3854 case clang::BuiltinType::ULongLong:
3855 case clang::BuiltinType::UInt128:
3856 case clang::BuiltinType::Char_S:
3857 case clang::BuiltinType::SChar:
3858 case clang::BuiltinType::WChar_S:
3859 case clang::BuiltinType::Short:
3860 case clang::BuiltinType::Int:
3861 case clang::BuiltinType::Long:
3862 case clang::BuiltinType::LongLong:
3863 case clang::BuiltinType::Int128:
3864 case clang::BuiltinType::Float:
3865 case clang::BuiltinType::Double:
3866 case clang::BuiltinType::LongDouble:
3867 builtin_type_flags |= eTypeIsScalar;
3868 if (builtin_type->isInteger()) {
3869 builtin_type_flags |= eTypeIsInteger;
3870 if (builtin_type->isSignedInteger())
3871 builtin_type_flags |= eTypeIsSigned;
3872 } else if (builtin_type->isFloatingPoint())
3873 builtin_type_flags |= eTypeIsFloat;
3874 break;
3875 default:
3876 break;
3877 }
3878 return builtin_type_flags;
3879 }
3880
3881 case clang::Type::BlockPointer:
3882 if (pointee_or_element_clang_type)
3883 pointee_or_element_clang_type->SetCompilerType(
3884 this, qual_type->getPointeeType().getAsOpaquePtr());
3885 return eTypeIsPointer | eTypeHasChildren | eTypeIsBlock;
3886
3887 case clang::Type::Complex: {
3888 uint32_t complex_type_flags =
3889 eTypeIsBuiltIn | eTypeHasValue | eTypeIsComplex;
3890 const clang::ComplexType *complex_type = llvm::dyn_cast<clang::ComplexType>(
3891 qual_type->getCanonicalTypeInternal());
3892 if (complex_type) {
3893 clang::QualType complex_element_type(complex_type->getElementType());
3894 if (complex_element_type->isIntegerType())
3895 complex_type_flags |= eTypeIsFloat;
3896 else if (complex_element_type->isFloatingType())
3897 complex_type_flags |= eTypeIsInteger;
3898 }
3899 return complex_type_flags;
3900 } break;
3901
3902 case clang::Type::ConstantArray:
3903 case clang::Type::DependentSizedArray:
3904 case clang::Type::IncompleteArray:
3905 case clang::Type::VariableArray:
3906 if (pointee_or_element_clang_type)
3907 pointee_or_element_clang_type->SetCompilerType(
3908 this, llvm::cast<clang::ArrayType>(qual_type.getTypePtr())
3909 ->getElementType()
3910 .getAsOpaquePtr());
3911 return eTypeHasChildren | eTypeIsArray;
3912
3913 case clang::Type::DependentName:
3914 return 0;
3915 case clang::Type::DependentSizedExtVector:
3916 return eTypeHasChildren | eTypeIsVector;
3917 case clang::Type::DependentTemplateSpecialization:
3918 return eTypeIsTemplate;
3919
3920 case clang::Type::Enum:
3921 if (pointee_or_element_clang_type)
3922 pointee_or_element_clang_type->SetCompilerType(
3923 this, llvm::cast<clang::EnumType>(qual_type)
3924 ->getDecl()
3925 ->getIntegerType()
3926 .getAsOpaquePtr());
3927 return eTypeIsEnumeration | eTypeHasValue;
3928
3929 case clang::Type::FunctionProto:
3930 return eTypeIsFuncPrototype | eTypeHasValue;
3931 case clang::Type::FunctionNoProto:
3932 return eTypeIsFuncPrototype | eTypeHasValue;
3933 case clang::Type::InjectedClassName:
3934 return 0;
3935
3936 case clang::Type::LValueReference:
3937 case clang::Type::RValueReference:
3938 if (pointee_or_element_clang_type)
3939 pointee_or_element_clang_type->SetCompilerType(
3940 this, llvm::cast<clang::ReferenceType>(qual_type.getTypePtr())
3941 ->getPointeeType()
3942 .getAsOpaquePtr());
3943 return eTypeHasChildren | eTypeIsReference | eTypeHasValue;
3944
3945 case clang::Type::MemberPointer:
3946 return eTypeIsPointer | eTypeIsMember | eTypeHasValue;
3947
3948 case clang::Type::ObjCObjectPointer:
3949 if (pointee_or_element_clang_type)
3950 pointee_or_element_clang_type->SetCompilerType(
3951 this, qual_type->getPointeeType().getAsOpaquePtr());
3952 return eTypeHasChildren | eTypeIsObjC | eTypeIsClass | eTypeIsPointer |
3953 eTypeHasValue;
3954
3955 case clang::Type::ObjCObject:
3956 return eTypeHasChildren | eTypeIsObjC | eTypeIsClass;
3957 case clang::Type::ObjCInterface:
3958 return eTypeHasChildren | eTypeIsObjC | eTypeIsClass;
3959
3960 case clang::Type::Pointer:
3961 if (pointee_or_element_clang_type)
3962 pointee_or_element_clang_type->SetCompilerType(
3963 this, qual_type->getPointeeType().getAsOpaquePtr());
3964 return eTypeHasChildren | eTypeIsPointer | eTypeHasValue;
3965
3966 case clang::Type::Record:
3967 if (qual_type->getAsCXXRecordDecl())
3968 return eTypeHasChildren | eTypeIsClass | eTypeIsCPlusPlus;
3969 else
3970 return eTypeHasChildren | eTypeIsStructUnion;
3971 break;
3972 case clang::Type::SubstTemplateTypeParm:
3973 return eTypeIsTemplate;
3974 case clang::Type::TemplateTypeParm:
3975 return eTypeIsTemplate;
3976 case clang::Type::TemplateSpecialization:
3977 return eTypeIsTemplate;
3978
3979 case clang::Type::Typedef:
3980 return eTypeIsTypedef | GetType(llvm::cast<clang::TypedefType>(qual_type)
3981 ->getDecl()
3982 ->getUnderlyingType())
3983 .GetTypeInfo(pointee_or_element_clang_type);
3984 case clang::Type::UnresolvedUsing:
3985 return 0;
3986
3987 case clang::Type::ExtVector:
3988 case clang::Type::Vector: {
3989 uint32_t vector_type_flags = eTypeHasChildren | eTypeIsVector;
3990 const clang::VectorType *vector_type = llvm::dyn_cast<clang::VectorType>(
3991 qual_type->getCanonicalTypeInternal());
3992 if (vector_type) {
3993 if (vector_type->isIntegerType())
3994 vector_type_flags |= eTypeIsFloat;
3995 else if (vector_type->isFloatingType())
3996 vector_type_flags |= eTypeIsInteger;
3997 }
3998 return vector_type_flags;
3999 }
4000 default:
4001 return 0;
4002 }
4003 return 0;
4004}
4005
4006lldb::LanguageType
4007TypeSystemClang::GetMinimumLanguage(lldb::opaque_compiler_type_t type) {
4008 if (!type)
4009 return lldb::eLanguageTypeC;
4010
4011 // If the type is a reference, then resolve it to what it refers to first:
4012 clang::QualType qual_type(GetCanonicalQualType(type).getNonReferenceType());
4013 if (qual_type->isAnyPointerType()) {
4014 if (qual_type->isObjCObjectPointerType())
4015 return lldb::eLanguageTypeObjC;
4016 if (qual_type->getPointeeCXXRecordDecl())
4017 return lldb::eLanguageTypeC_plus_plus;
4018
4019 clang::QualType pointee_type(qual_type->getPointeeType());
4020 if (pointee_type->getPointeeCXXRecordDecl())
4021 return lldb::eLanguageTypeC_plus_plus;
4022 if (pointee_type->isObjCObjectOrInterfaceType())
4023 return lldb::eLanguageTypeObjC;
4024 if (pointee_type->isObjCClassType())
4025 return lldb::eLanguageTypeObjC;
4026 if (pointee_type.getTypePtr() ==
4027 getASTContext().ObjCBuiltinIdTy.getTypePtr())
4028 return lldb::eLanguageTypeObjC;
4029 } else {
4030 if (qual_type->isObjCObjectOrInterfaceType())
4031 return lldb::eLanguageTypeObjC;
4032 if (qual_type->getAsCXXRecordDecl())
4033 return lldb::eLanguageTypeC_plus_plus;
4034 switch (qual_type->getTypeClass()) {
4035 default:
4036 break;
4037 case clang::Type::Builtin:
4038 switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
4039 default:
4040 case clang::BuiltinType::Void:
4041 case clang::BuiltinType::Bool:
4042 case clang::BuiltinType::Char_U:
4043 case clang::BuiltinType::UChar:
4044 case clang::BuiltinType::WChar_U:
4045 case clang::BuiltinType::Char16:
4046 case clang::BuiltinType::Char32:
4047 case clang::BuiltinType::UShort:
4048 case clang::BuiltinType::UInt:
4049 case clang::BuiltinType::ULong:
4050 case clang::BuiltinType::ULongLong:
4051 case clang::BuiltinType::UInt128:
4052 case clang::BuiltinType::Char_S:
4053 case clang::BuiltinType::SChar:
4054 case clang::BuiltinType::WChar_S:
4055 case clang::BuiltinType::Short:
4056 case clang::BuiltinType::Int:
4057 case clang::BuiltinType::Long:
4058 case clang::BuiltinType::LongLong:
4059 case clang::BuiltinType::Int128:
4060 case clang::BuiltinType::Float:
4061 case clang::BuiltinType::Double:
4062 case clang::BuiltinType::LongDouble:
4063 break;
4064
4065 case clang::BuiltinType::NullPtr:
4066 return eLanguageTypeC_plus_plus;
4067
4068 case clang::BuiltinType::ObjCId:
4069 case clang::BuiltinType::ObjCClass:
4070 case clang::BuiltinType::ObjCSel:
4071 return eLanguageTypeObjC;
4072
4073 case clang::BuiltinType::Dependent:
4074 case clang::BuiltinType::Overload:
4075 case clang::BuiltinType::BoundMember:
4076 case clang::BuiltinType::UnknownAny:
4077 break;
4078 }
4079 break;
4080 case clang::Type::Typedef:
4081 return GetType(llvm::cast<clang::TypedefType>(qual_type)
4082 ->getDecl()
4083 ->getUnderlyingType())
4084 .GetMinimumLanguage();
4085 }
4086 }
4087 return lldb::eLanguageTypeC;
4088}
4089
4090lldb::TypeClass
4091TypeSystemClang::GetTypeClass(lldb::opaque_compiler_type_t type) {
4092 if (!type)
4093 return lldb::eTypeClassInvalid;
4094
4095 clang::QualType qual_type =
4096 RemoveWrappingTypes(GetQualType(type), {clang::Type::Typedef});
4097
4098 switch (qual_type->getTypeClass()) {
4099 case clang::Type::Atomic:
4100 case clang::Type::Auto:
4101 case clang::Type::Decltype:
4102 case clang::Type::Elaborated:
4103 case clang::Type::Paren:
4104 case clang::Type::TypeOf:
4105 case clang::Type::TypeOfExpr:
4106 case clang::Type::Using:
4107 llvm_unreachable("Handled in RemoveWrappingTypes!")::llvm::llvm_unreachable_internal("Handled in RemoveWrappingTypes!"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
4107)
;
4108 case clang::Type::UnaryTransform:
4109 break;
4110 case clang::Type::FunctionNoProto:
4111 return lldb::eTypeClassFunction;
4112 case clang::Type::FunctionProto:
4113 return lldb::eTypeClassFunction;
4114 case clang::Type::IncompleteArray:
4115 return lldb::eTypeClassArray;
4116 case clang::Type::VariableArray:
4117 return lldb::eTypeClassArray;
4118 case clang::Type::ConstantArray:
4119 return lldb::eTypeClassArray;
4120 case clang::Type::DependentSizedArray:
4121 return lldb::eTypeClassArray;
4122 case clang::Type::DependentSizedExtVector:
4123 return lldb::eTypeClassVector;
4124 case clang::Type::DependentVector:
4125 return lldb::eTypeClassVector;
4126 case clang::Type::ExtVector:
4127 return lldb::eTypeClassVector;
4128 case clang::Type::Vector:
4129 return lldb::eTypeClassVector;
4130 case clang::Type::Builtin:
4131 // Ext-Int is just an integer type.
4132 case clang::Type::BitInt:
4133 case clang::Type::DependentBitInt:
4134 return lldb::eTypeClassBuiltin;
4135 case clang::Type::ObjCObjectPointer:
4136 return lldb::eTypeClassObjCObjectPointer;
4137 case clang::Type::BlockPointer:
4138 return lldb::eTypeClassBlockPointer;
4139 case clang::Type::Pointer:
4140 return lldb::eTypeClassPointer;
4141 case clang::Type::LValueReference:
4142 return lldb::eTypeClassReference;
4143 case clang::Type::RValueReference:
4144 return lldb::eTypeClassReference;
4145 case clang::Type::MemberPointer:
4146 return lldb::eTypeClassMemberPointer;
4147 case clang::Type::Complex:
4148 if (qual_type->isComplexType())
4149 return lldb::eTypeClassComplexFloat;
4150 else
4151 return lldb::eTypeClassComplexInteger;
4152 case clang::Type::ObjCObject:
4153 return lldb::eTypeClassObjCObject;
4154 case clang::Type::ObjCInterface:
4155 return lldb::eTypeClassObjCInterface;
4156 case clang::Type::Record: {
4157 const clang::RecordType *record_type =
4158 llvm::cast<clang::RecordType>(qual_type.getTypePtr());
4159 const clang::RecordDecl *record_decl = record_type->getDecl();
4160 if (record_decl->isUnion())
4161 return lldb::eTypeClassUnion;
4162 else if (record_decl->isStruct())
4163 return lldb::eTypeClassStruct;
4164 else
4165 return lldb::eTypeClassClass;
4166 } break;
4167 case clang::Type::Enum:
4168 return lldb::eTypeClassEnumeration;
4169 case clang::Type::Typedef:
4170 return lldb::eTypeClassTypedef;
4171 case clang::Type::UnresolvedUsing:
4172 break;
4173
4174 case clang::Type::Attributed:
4175 break;
4176 case clang::Type::TemplateTypeParm:
4177 break;
4178 case clang::Type::SubstTemplateTypeParm:
4179 break;
4180 case clang::Type::SubstTemplateTypeParmPack:
4181 break;
4182 case clang::Type::InjectedClassName:
4183 break;
4184 case clang::Type::DependentName:
4185 break;
4186 case clang::Type::DependentTemplateSpecialization:
4187 break;
4188 case clang::Type::PackExpansion:
4189 break;
4190
4191 case clang::Type::TemplateSpecialization:
4192 break;
4193 case clang::Type::DeducedTemplateSpecialization:
4194 break;
4195 case clang::Type::Pipe:
4196 break;
4197
4198 // pointer type decayed from an array or function type.
4199 case clang::Type::Decayed:
4200 break;
4201 case clang::Type::Adjusted:
4202 break;
4203 case clang::Type::ObjCTypeParam:
4204 break;
4205
4206 case clang::Type::DependentAddressSpace:
4207 break;
4208 case clang::Type::MacroQualified:
4209 break;
4210
4211 // Matrix types that we're not sure how to display at the moment.
4212 case clang::Type::ConstantMatrix:
4213 case clang::Type::DependentSizedMatrix:
4214 break;
4215 }
4216 // We don't know hot to display this type...
4217 return lldb::eTypeClassOther;
4218}
4219
4220unsigned TypeSystemClang::GetTypeQualifiers(lldb::opaque_compiler_type_t type) {
4221 if (type)
4222 return GetQualType(type).getQualifiers().getCVRQualifiers();
4223 return 0;
4224}
4225
4226// Creating related types
4227
4228CompilerType
4229TypeSystemClang::GetArrayElementType(lldb::opaque_compiler_type_t type,
4230 ExecutionContextScope *exe_scope) {
4231 if (type) {
4232 clang::QualType qual_type(GetQualType(type));
4233
4234 const clang::Type *array_eletype =
4235 qual_type.getTypePtr()->getArrayElementTypeNoTypeQual();
4236
4237 if (!array_eletype)
4238 return CompilerType();
4239
4240 return GetType(clang::QualType(array_eletype, 0));
4241 }
4242 return CompilerType();
4243}
4244
4245CompilerType TypeSystemClang::GetArrayType(lldb::opaque_compiler_type_t type,
4246 uint64_t size) {
4247 if (type) {
4248 clang::QualType qual_type(GetCanonicalQualType(type));
4249 clang::ASTContext &ast_ctx = getASTContext();
4250 if (size != 0)
4251 return GetType(ast_ctx.getConstantArrayType(
4252 qual_type, llvm::APInt(64, size), nullptr,
4253 clang::ArrayType::ArraySizeModifier::Normal, 0));
4254 else
4255 return GetType(ast_ctx.getIncompleteArrayType(
4256 qual_type, clang::ArrayType::ArraySizeModifier::Normal, 0));
4257 }
4258
4259 return CompilerType();
4260}
4261
4262CompilerType
4263TypeSystemClang::GetCanonicalType(lldb::opaque_compiler_type_t type) {
4264 if (type)
4265 return GetType(GetCanonicalQualType(type));
4266 return CompilerType();
4267}
4268
4269static clang::QualType GetFullyUnqualifiedType_Impl(clang::ASTContext *ast,
4270 clang::QualType qual_type) {
4271 if (qual_type->isPointerType())
4272 qual_type = ast->getPointerType(
4273 GetFullyUnqualifiedType_Impl(ast, qual_type->getPointeeType()));
4274 else if (const ConstantArrayType *arr =
4275 ast->getAsConstantArrayType(qual_type)) {
4276 qual_type = ast->getConstantArrayType(
4277 GetFullyUnqualifiedType_Impl(ast, arr->getElementType()),
4278 arr->getSize(), arr->getSizeExpr(), arr->getSizeModifier(),
4279 arr->getIndexTypeQualifiers().getAsOpaqueValue());
4280 } else
4281 qual_type = qual_type.getUnqualifiedType();
4282 qual_type.removeLocalConst();
4283 qual_type.removeLocalRestrict();
4284 qual_type.removeLocalVolatile();
4285 return qual_type;
4286}
4287
4288CompilerType
4289TypeSystemClang::GetFullyUnqualifiedType(lldb::opaque_compiler_type_t type) {
4290 if (type)
4291 return GetType(
4292 GetFullyUnqualifiedType_Impl(&getASTContext(), GetQualType(type)));
4293 return CompilerType();
4294}
4295
4296CompilerType
4297TypeSystemClang::GetEnumerationIntegerType(lldb::opaque_compiler_type_t type) {
4298 if (type)
4299 return GetEnumerationIntegerType(GetType(GetCanonicalQualType(type)));
4300 return CompilerType();
4301}
4302
4303int TypeSystemClang::GetFunctionArgumentCount(
4304 lldb::opaque_compiler_type_t type) {
4305 if (type) {
4306 const clang::FunctionProtoType *func =
4307 llvm::dyn_cast<clang::FunctionProtoType>(GetCanonicalQualType(type));
4308 if (func)
4309 return func->getNumParams();
4310 }
4311 return -1;
4312}
4313
4314CompilerType TypeSystemClang::GetFunctionArgumentTypeAtIndex(
4315 lldb::opaque_compiler_type_t type, size_t idx) {
4316 if (type) {
4317 const clang::FunctionProtoType *func =
4318 llvm::dyn_cast<clang::FunctionProtoType>(GetQualType(type));
4319 if (func) {
4320 const uint32_t num_args = func->getNumParams();
4321 if (idx < num_args)
4322 return GetType(func->getParamType(idx));
4323 }
4324 }
4325 return CompilerType();
4326}
4327
4328CompilerType
4329TypeSystemClang::GetFunctionReturnType(lldb::opaque_compiler_type_t type) {
4330 if (type) {
4331 clang::QualType qual_type(GetQualType(type));
4332 const clang::FunctionProtoType *func =
4333 llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
4334 if (func)
4335 return GetType(func->getReturnType());
4336 }
4337 return CompilerType();
4338}
4339
4340size_t
4341TypeSystemClang::GetNumMemberFunctions(lldb::opaque_compiler_type_t type) {
4342 size_t num_functions = 0;
4343 if (type) {
4344 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
4345 switch (qual_type->getTypeClass()) {
4346 case clang::Type::Record:
4347 if (GetCompleteQualType(&getASTContext(), qual_type)) {
4348 const clang::RecordType *record_type =
4349 llvm::cast<clang::RecordType>(qual_type.getTypePtr());
4350 const clang::RecordDecl *record_decl = record_type->getDecl();
4351 assert(record_decl)(static_cast <bool> (record_decl) ? void (0) : __assert_fail
("record_decl", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 4351, __extension__ __PRETTY_FUNCTION__))
;
4352 const clang::CXXRecordDecl *cxx_record_decl =
4353 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
4354 if (cxx_record_decl)
4355 num_functions = std::distance(cxx_record_decl->method_begin(),
4356 cxx_record_decl->method_end());
4357 }
4358 break;
4359
4360 case clang::Type::ObjCObjectPointer: {
4361 const clang::ObjCObjectPointerType *objc_class_type =
4362 qual_type->getAs<clang::ObjCObjectPointerType>();
4363 const clang::ObjCInterfaceType *objc_interface_type =
4364 objc_class_type->getInterfaceType();
4365 if (objc_interface_type &&
4366 GetCompleteType(static_cast<lldb::opaque_compiler_type_t>(
4367 const_cast<clang::ObjCInterfaceType *>(objc_interface_type)))) {
4368 clang::ObjCInterfaceDecl *class_interface_decl =
4369 objc_interface_type->getDecl();
4370 if (class_interface_decl) {
4371 num_functions = std::distance(class_interface_decl->meth_begin(),
4372 class_interface_decl->meth_end());
4373 }
4374 }
4375 break;
4376 }
4377
4378 case clang::Type::ObjCObject:
4379 case clang::Type::ObjCInterface:
4380 if (GetCompleteType(type)) {
4381 const clang::ObjCObjectType *objc_class_type =
4382 llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
4383 if (objc_class_type) {
4384 clang::ObjCInterfaceDecl *class_interface_decl =
4385 objc_class_type->getInterface();
4386 if (class_interface_decl)
4387 num_functions = std::distance(class_interface_decl->meth_begin(),
4388 class_interface_decl->meth_end());
4389 }
4390 }
4391 break;
4392
4393 default:
4394 break;
4395 }
4396 }
4397 return num_functions;
4398}
4399
4400TypeMemberFunctionImpl
4401TypeSystemClang::GetMemberFunctionAtIndex(lldb::opaque_compiler_type_t type,
4402 size_t idx) {
4403 std::string name;
4404 MemberFunctionKind kind(MemberFunctionKind::eMemberFunctionKindUnknown);
4405 CompilerType clang_type;
4406 CompilerDecl clang_decl;
4407 if (type) {
4408 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
4409 switch (qual_type->getTypeClass()) {
4410 case clang::Type::Record:
4411 if (GetCompleteQualType(&getASTContext(), qual_type)) {
4412 const clang::RecordType *record_type =
4413 llvm::cast<clang::RecordType>(qual_type.getTypePtr());
4414 const clang::RecordDecl *record_decl = record_type->getDecl();
4415 assert(record_decl)(static_cast <bool> (record_decl) ? void (0) : __assert_fail
("record_decl", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 4415, __extension__ __PRETTY_FUNCTION__))
;
4416 const clang::CXXRecordDecl *cxx_record_decl =
4417 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
4418 if (cxx_record_decl) {
4419 auto method_iter = cxx_record_decl->method_begin();
4420 auto method_end = cxx_record_decl->method_end();
4421 if (idx <
4422 static_cast<size_t>(std::distance(method_iter, method_end))) {
4423 std::advance(method_iter, idx);
4424 clang::CXXMethodDecl *cxx_method_decl =
4425 method_iter->getCanonicalDecl();
4426 if (cxx_method_decl) {
4427 name = cxx_method_decl->getDeclName().getAsString();
4428 if (cxx_method_decl->isStatic())
4429 kind = lldb::eMemberFunctionKindStaticMethod;
4430 else if (llvm::isa<clang::CXXConstructorDecl>(cxx_method_decl))
4431 kind = lldb::eMemberFunctionKindConstructor;
4432 else if (llvm::isa<clang::CXXDestructorDecl>(cxx_method_decl))
4433 kind = lldb::eMemberFunctionKindDestructor;
4434 else
4435 kind = lldb::eMemberFunctionKindInstanceMethod;
4436 clang_type = GetType(cxx_method_decl->getType());
4437 clang_decl = GetCompilerDecl(cxx_method_decl);
4438 }
4439 }
4440 }
4441 }
4442 break;
4443
4444 case clang::Type::ObjCObjectPointer: {
4445 const clang::ObjCObjectPointerType *objc_class_type =
4446 qual_type->getAs<clang::ObjCObjectPointerType>();
4447 const clang::ObjCInterfaceType *objc_interface_type =
4448 objc_class_type->getInterfaceType();
4449 if (objc_interface_type &&
4450 GetCompleteType(static_cast<lldb::opaque_compiler_type_t>(
4451 const_cast<clang::ObjCInterfaceType *>(objc_interface_type)))) {
4452 clang::ObjCInterfaceDecl *class_interface_decl =
4453 objc_interface_type->getDecl();
4454 if (class_interface_decl) {
4455 auto method_iter = class_interface_decl->meth_begin();
4456 auto method_end = class_interface_decl->meth_end();
4457 if (idx <
4458 static_cast<size_t>(std::distance(method_iter, method_end))) {
4459 std::advance(method_iter, idx);
4460 clang::ObjCMethodDecl *objc_method_decl =
4461 method_iter->getCanonicalDecl();
4462 if (objc_method_decl) {
4463 clang_decl = GetCompilerDecl(objc_method_decl);
4464 name = objc_method_decl->getSelector().getAsString();
4465 if (objc_method_decl->isClassMethod())
4466 kind = lldb::eMemberFunctionKindStaticMethod;
4467 else
4468 kind = lldb::eMemberFunctionKindInstanceMethod;
4469 }
4470 }
4471 }
4472 }
4473 break;
4474 }
4475
4476 case clang::Type::ObjCObject:
4477 case clang::Type::ObjCInterface:
4478 if (GetCompleteType(type)) {
4479 const clang::ObjCObjectType *objc_class_type =
4480 llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
4481 if (objc_class_type) {
4482 clang::ObjCInterfaceDecl *class_interface_decl =
4483 objc_class_type->getInterface();
4484 if (class_interface_decl) {
4485 auto method_iter = class_interface_decl->meth_begin();
4486 auto method_end = class_interface_decl->meth_end();
4487 if (idx <
4488 static_cast<size_t>(std::distance(method_iter, method_end))) {
4489 std::advance(method_iter, idx);
4490 clang::ObjCMethodDecl *objc_method_decl =
4491 method_iter->getCanonicalDecl();
4492 if (objc_method_decl) {
4493 clang_decl = GetCompilerDecl(objc_method_decl);
4494 name = objc_method_decl->getSelector().getAsString();
4495 if (objc_method_decl->isClassMethod())
4496 kind = lldb::eMemberFunctionKindStaticMethod;
4497 else
4498 kind = lldb::eMemberFunctionKindInstanceMethod;
4499 }
4500 }
4501 }
4502 }
4503 }
4504 break;
4505
4506 default:
4507 break;
4508 }
4509 }
4510
4511 if (kind == eMemberFunctionKindUnknown)
4512 return TypeMemberFunctionImpl();
4513 else
4514 return TypeMemberFunctionImpl(clang_type, clang_decl, name, kind);
4515}
4516
4517CompilerType
4518TypeSystemClang::GetNonReferenceType(lldb::opaque_compiler_type_t type) {
4519 if (type)
4520 return GetType(GetQualType(type).getNonReferenceType());
4521 return CompilerType();
4522}
4523
4524CompilerType
4525TypeSystemClang::GetPointeeType(lldb::opaque_compiler_type_t type) {
4526 if (type) {
4527 clang::QualType qual_type(GetQualType(type));
4528 return GetType(qual_type.getTypePtr()->getPointeeType());
4529 }
4530 return CompilerType();
4531}
4532
4533CompilerType
4534TypeSystemClang::GetPointerType(lldb::opaque_compiler_type_t type) {
4535 if (type) {
4536 clang::QualType qual_type(GetQualType(type));
4537
4538 switch (qual_type.getDesugaredType(getASTContext())->getTypeClass()) {
4539 case clang::Type::ObjCObject:
4540 case clang::Type::ObjCInterface:
4541 return GetType(getASTContext().getObjCObjectPointerType(qual_type));
4542
4543 default:
4544 return GetType(getASTContext().getPointerType(qual_type));
4545 }
4546 }
4547 return CompilerType();
4548}
4549
4550CompilerType
4551TypeSystemClang::GetLValueReferenceType(lldb::opaque_compiler_type_t type) {
4552 if (type)
4553 return GetType(getASTContext().getLValueReferenceType(GetQualType(type)));
4554 else
4555 return CompilerType();
4556}
4557
4558CompilerType
4559TypeSystemClang::GetRValueReferenceType(lldb::opaque_compiler_type_t type) {
4560 if (type)
4561 return GetType(getASTContext().getRValueReferenceType(GetQualType(type)));
4562 else
4563 return CompilerType();
4564}
4565
4566CompilerType TypeSystemClang::GetAtomicType(lldb::opaque_compiler_type_t type) {
4567 if (!type)
4568 return CompilerType();
4569 return GetType(getASTContext().getAtomicType(GetQualType(type)));
4570}
4571
4572CompilerType
4573TypeSystemClang::AddConstModifier(lldb::opaque_compiler_type_t type) {
4574 if (type) {
4575 clang::QualType result(GetQualType(type));
4576 result.addConst();
4577 return GetType(result);
4578 }
4579 return CompilerType();
4580}
4581
4582CompilerType
4583TypeSystemClang::AddVolatileModifier(lldb::opaque_compiler_type_t type) {
4584 if (type) {
4585 clang::QualType result(GetQualType(type));
4586 result.addVolatile();
4587 return GetType(result);
4588 }
4589 return CompilerType();
4590}
4591
4592CompilerType
4593TypeSystemClang::AddRestrictModifier(lldb::opaque_compiler_type_t type) {
4594 if (type) {
4595 clang::QualType result(GetQualType(type));
4596 result.addRestrict();
4597 return GetType(result);
4598 }
4599 return CompilerType();
4600}
4601
4602CompilerType TypeSystemClang::CreateTypedef(
4603 lldb::opaque_compiler_type_t type, const char *typedef_name,
4604 const CompilerDeclContext &compiler_decl_ctx, uint32_t payload) {
4605 if (type && typedef_name && typedef_name[0]) {
4606 clang::ASTContext &clang_ast = getASTContext();
4607 clang::QualType qual_type(GetQualType(type));
4608
4609 clang::DeclContext *decl_ctx =
4610 TypeSystemClang::DeclContextGetAsDeclContext(compiler_decl_ctx);
4611 if (!decl_ctx)
4612 decl_ctx = getASTContext().getTranslationUnitDecl();
4613
4614 clang::TypedefDecl *decl =
4615 clang::TypedefDecl::CreateDeserialized(clang_ast, 0);
4616 decl->setDeclContext(decl_ctx);
4617 decl->setDeclName(&clang_ast.Idents.get(typedef_name));
4618 decl->setTypeSourceInfo(clang_ast.getTrivialTypeSourceInfo(qual_type));
4619 decl_ctx->addDecl(decl);
4620 SetOwningModule(decl, TypePayloadClang(payload).GetOwningModule());
4621
4622 clang::TagDecl *tdecl = nullptr;
4623 if (!qual_type.isNull()) {
4624 if (const clang::RecordType *rt = qual_type->getAs<clang::RecordType>())
4625 tdecl = rt->getDecl();
4626 if (const clang::EnumType *et = qual_type->getAs<clang::EnumType>())
4627 tdecl = et->getDecl();
4628 }
4629
4630 // Check whether this declaration is an anonymous struct, union, or enum,
4631 // hidden behind a typedef. If so, we try to check whether we have a
4632 // typedef tag to attach to the original record declaration
4633 if (tdecl && !tdecl->getIdentifier() && !tdecl->getTypedefNameForAnonDecl())
4634 tdecl->setTypedefNameForAnonDecl(decl);
4635
4636 decl->setAccess(clang::AS_public); // TODO respect proper access specifier
4637
4638 // Get a uniqued clang::QualType for the typedef decl type
4639 return GetType(clang_ast.getTypedefType(decl));
4640 }
4641 return CompilerType();
4642}
4643
4644CompilerType
4645TypeSystemClang::GetTypedefedType(lldb::opaque_compiler_type_t type) {
4646 if (type) {
4647 const clang::TypedefType *typedef_type = llvm::dyn_cast<clang::TypedefType>(
4648 RemoveWrappingTypes(GetQualType(type), {clang::Type::Typedef}));
4649 if (typedef_type)
4650 return GetType(typedef_type->getDecl()->getUnderlyingType());
4651 }
4652 return CompilerType();
4653}
4654
4655// Create related types using the current type's AST
4656
4657CompilerType TypeSystemClang::GetBasicTypeFromAST(lldb::BasicType basic_type) {
4658 return TypeSystemClang::GetBasicType(basic_type);
4659}
4660// Exploring the type
4661
4662const llvm::fltSemantics &
4663TypeSystemClang::GetFloatTypeSemantics(size_t byte_size) {
4664 clang::ASTContext &ast = getASTContext();
4665 const size_t bit_size = byte_size * 8;
4666 if (bit_size == ast.getTypeSize(ast.FloatTy))
4667 return ast.getFloatTypeSemantics(ast.FloatTy);
4668 else if (bit_size == ast.getTypeSize(ast.DoubleTy))
4669 return ast.getFloatTypeSemantics(ast.DoubleTy);
4670 else if (bit_size == ast.getTypeSize(ast.LongDoubleTy))
4671 return ast.getFloatTypeSemantics(ast.LongDoubleTy);
4672 else if (bit_size == ast.getTypeSize(ast.HalfTy))
4673 return ast.getFloatTypeSemantics(ast.HalfTy);
4674 return llvm::APFloatBase::Bogus();
4675}
4676
4677Optional<uint64_t>
4678TypeSystemClang::GetBitSize(lldb::opaque_compiler_type_t type,
4679 ExecutionContextScope *exe_scope) {
4680 if (GetCompleteType(type)) {
4681 clang::QualType qual_type(GetCanonicalQualType(type));
4682 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
4683 switch (type_class) {
4684 case clang::Type::Record:
4685 if (GetCompleteType(type))
4686 return getASTContext().getTypeSize(qual_type);
4687 else
4688 return None;
4689 break;
4690
4691 case clang::Type::ObjCInterface:
4692 case clang::Type::ObjCObject: {
4693 ExecutionContext exe_ctx(exe_scope);
4694 Process *process = exe_ctx.GetProcessPtr();
4695 if (process) {
4696 ObjCLanguageRuntime *objc_runtime = ObjCLanguageRuntime::Get(*process);
4697 if (objc_runtime) {
4698 uint64_t bit_size = 0;
4699 if (objc_runtime->GetTypeBitSize(GetType(qual_type), bit_size))
4700 return bit_size;
4701 }
4702 } else {
4703 static bool g_printed = false;
4704 if (!g_printed) {
4705 StreamString s;
4706 DumpTypeDescription(type, &s);
4707
4708 llvm::outs() << "warning: trying to determine the size of type ";
4709 llvm::outs() << s.GetString() << "\n";
4710 llvm::outs() << "without a valid ExecutionContext. this is not "
4711 "reliable. please file a bug against LLDB.\n";
4712 llvm::outs() << "backtrace:\n";
4713 llvm::sys::PrintStackTrace(llvm::outs());
4714 llvm::outs() << "\n";
4715 g_printed = true;
4716 }
4717 }
4718 }
4719 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4720 default:
4721 const uint32_t bit_size = getASTContext().getTypeSize(qual_type);
4722 if (bit_size == 0) {
4723 if (qual_type->isIncompleteArrayType())
4724 return getASTContext().getTypeSize(
4725 qual_type->getArrayElementTypeNoTypeQual()
4726 ->getCanonicalTypeUnqualified());
4727 }
4728 if (qual_type->isObjCObjectOrInterfaceType())
4729 return bit_size +
4730 getASTContext().getTypeSize(getASTContext().ObjCBuiltinClassTy);
4731 // Function types actually have a size of 0, that's not an error.
4732 if (qual_type->isFunctionProtoType())
4733 return bit_size;
4734 if (bit_size)
4735 return bit_size;
4736 }
4737 }
4738 return None;
4739}
4740
4741llvm::Optional<size_t>
4742TypeSystemClang::GetTypeBitAlign(lldb::opaque_compiler_type_t type,
4743 ExecutionContextScope *exe_scope) {
4744 if (GetCompleteType(type))
4745 return getASTContext().getTypeAlign(GetQualType(type));
4746 return {};
4747}
4748
4749lldb::Encoding TypeSystemClang::GetEncoding(lldb::opaque_compiler_type_t type,
4750 uint64_t &count) {
4751 if (!type)
4752 return lldb::eEncodingInvalid;
4753
4754 count = 1;
4755 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
4756
4757 switch (qual_type->getTypeClass()) {
4758 case clang::Type::Atomic:
4759 case clang::Type::Auto:
4760 case clang::Type::Decltype:
4761 case clang::Type::Elaborated:
4762 case clang::Type::Paren:
4763 case clang::Type::Typedef:
4764 case clang::Type::TypeOf:
4765 case clang::Type::TypeOfExpr:
4766 case clang::Type::Using:
4767 llvm_unreachable("Handled in RemoveWrappingTypes!")::llvm::llvm_unreachable_internal("Handled in RemoveWrappingTypes!"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
4767)
;
4768
4769 case clang::Type::UnaryTransform:
4770 break;
4771
4772 case clang::Type::FunctionNoProto:
4773 case clang::Type::FunctionProto:
4774 break;
4775
4776 case clang::Type::IncompleteArray:
4777 case clang::Type::VariableArray:
4778 break;
4779
4780 case clang::Type::ConstantArray:
4781 break;
4782
4783 case clang::Type::DependentVector:
4784 case clang::Type::ExtVector:
4785 case clang::Type::Vector:
4786 // TODO: Set this to more than one???
4787 break;
4788
4789 case clang::Type::BitInt:
4790 case clang::Type::DependentBitInt:
4791 return qual_type->isUnsignedIntegerType() ? lldb::eEncodingUint
4792 : lldb::eEncodingSint;
4793
4794 case clang::Type::Builtin:
4795 switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
4796 case clang::BuiltinType::Void:
4797 break;
4798
4799 case clang::BuiltinType::Char_S:
4800 case clang::BuiltinType::SChar:
4801 case clang::BuiltinType::WChar_S:
4802 case clang::BuiltinType::Short:
4803 case clang::BuiltinType::Int:
4804 case clang::BuiltinType::Long:
4805 case clang::BuiltinType::LongLong:
4806 case clang::BuiltinType::Int128:
4807 return lldb::eEncodingSint;
4808
4809 case clang::BuiltinType::Bool:
4810 case clang::BuiltinType::Char_U:
4811 case clang::BuiltinType::UChar:
4812 case clang::BuiltinType::WChar_U:
4813 case clang::BuiltinType::Char8:
4814 case clang::BuiltinType::Char16:
4815 case clang::BuiltinType::Char32:
4816 case clang::BuiltinType::UShort:
4817 case clang::BuiltinType::UInt:
4818 case clang::BuiltinType::ULong:
4819 case clang::BuiltinType::ULongLong:
4820 case clang::BuiltinType::UInt128:
4821 return lldb::eEncodingUint;
4822
4823 // Fixed point types. Note that they are currently ignored.
4824 case clang::BuiltinType::ShortAccum:
4825 case clang::BuiltinType::Accum:
4826 case clang::BuiltinType::LongAccum:
4827 case clang::BuiltinType::UShortAccum:
4828 case clang::BuiltinType::UAccum:
4829 case clang::BuiltinType::ULongAccum:
4830 case clang::BuiltinType::ShortFract:
4831 case clang::BuiltinType::Fract:
4832 case clang::BuiltinType::LongFract:
4833 case clang::BuiltinType::UShortFract:
4834 case clang::BuiltinType::UFract:
4835 case clang::BuiltinType::ULongFract:
4836 case clang::BuiltinType::SatShortAccum:
4837 case clang::BuiltinType::SatAccum:
4838 case clang::BuiltinType::SatLongAccum:
4839 case clang::BuiltinType::SatUShortAccum:
4840 case clang::BuiltinType::SatUAccum:
4841 case clang::BuiltinType::SatULongAccum:
4842 case clang::BuiltinType::SatShortFract:
4843 case clang::BuiltinType::SatFract:
4844 case clang::BuiltinType::SatLongFract:
4845 case clang::BuiltinType::SatUShortFract:
4846 case clang::BuiltinType::SatUFract:
4847 case clang::BuiltinType::SatULongFract:
4848 break;
4849
4850 case clang::BuiltinType::Half:
4851 case clang::BuiltinType::Float:
4852 case clang::BuiltinType::Float16:
4853 case clang::BuiltinType::Float128:
4854 case clang::BuiltinType::Double:
4855 case clang::BuiltinType::LongDouble:
4856 case clang::BuiltinType::BFloat16:
4857 case clang::BuiltinType::Ibm128:
4858 return lldb::eEncodingIEEE754;
4859
4860 case clang::BuiltinType::ObjCClass:
4861 case clang::BuiltinType::ObjCId:
4862 case clang::BuiltinType::ObjCSel:
4863 return lldb::eEncodingUint;
4864
4865 case clang::BuiltinType::NullPtr:
4866 return lldb::eEncodingUint;
4867
4868 case clang::BuiltinType::Kind::ARCUnbridgedCast:
4869 case clang::BuiltinType::Kind::BoundMember:
4870 case clang::BuiltinType::Kind::BuiltinFn:
4871 case clang::BuiltinType::Kind::Dependent:
4872 case clang::BuiltinType::Kind::OCLClkEvent:
4873 case clang::BuiltinType::Kind::OCLEvent:
4874 case clang::BuiltinType::Kind::OCLImage1dRO:
4875 case clang::BuiltinType::Kind::OCLImage1dWO:
4876 case clang::BuiltinType::Kind::OCLImage1dRW:
4877 case clang::BuiltinType::Kind::OCLImage1dArrayRO:
4878 case clang::BuiltinType::Kind::OCLImage1dArrayWO:
4879 case clang::BuiltinType::Kind::OCLImage1dArrayRW:
4880 case clang::BuiltinType::Kind::OCLImage1dBufferRO:
4881 case clang::BuiltinType::Kind::OCLImage1dBufferWO:
4882 case clang::BuiltinType::Kind::OCLImage1dBufferRW:
4883 case clang::BuiltinType::Kind::OCLImage2dRO:
4884 case clang::BuiltinType::Kind::OCLImage2dWO:
4885 case clang::BuiltinType::Kind::OCLImage2dRW:
4886 case clang::BuiltinType::Kind::OCLImage2dArrayRO:
4887 case clang::BuiltinType::Kind::OCLImage2dArrayWO:
4888 case clang::BuiltinType::Kind::OCLImage2dArrayRW:
4889 case clang::BuiltinType::Kind::OCLImage2dArrayDepthRO:
4890 case clang::BuiltinType::Kind::OCLImage2dArrayDepthWO:
4891 case clang::BuiltinType::Kind::OCLImage2dArrayDepthRW:
4892 case clang::BuiltinType::Kind::OCLImage2dArrayMSAARO:
4893 case clang::BuiltinType::Kind::OCLImage2dArrayMSAAWO:
4894 case clang::BuiltinType::Kind::OCLImage2dArrayMSAARW:
4895 case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthRO:
4896 case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthWO:
4897 case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthRW:
4898 case clang::BuiltinType::Kind::OCLImage2dDepthRO:
4899 case clang::BuiltinType::Kind::OCLImage2dDepthWO:
4900 case clang::BuiltinType::Kind::OCLImage2dDepthRW:
4901 case clang::BuiltinType::Kind::OCLImage2dMSAARO:
4902 case clang::BuiltinType::Kind::OCLImage2dMSAAWO:
4903 case clang::BuiltinType::Kind::OCLImage2dMSAARW:
4904 case clang::BuiltinType::Kind::OCLImage2dMSAADepthRO:
4905 case clang::BuiltinType::Kind::OCLImage2dMSAADepthWO:
4906 case clang::BuiltinType::Kind::OCLImage2dMSAADepthRW:
4907 case clang::BuiltinType::Kind::OCLImage3dRO:
4908 case clang::BuiltinType::Kind::OCLImage3dWO:
4909 case clang::BuiltinType::Kind::OCLImage3dRW:
4910 case clang::BuiltinType::Kind::OCLQueue:
4911 case clang::BuiltinType::Kind::OCLReserveID:
4912 case clang::BuiltinType::Kind::OCLSampler:
4913 case clang::BuiltinType::Kind::OMPArraySection:
4914 case clang::BuiltinType::Kind::OMPArrayShaping:
4915 case clang::BuiltinType::Kind::OMPIterator:
4916 case clang::BuiltinType::Kind::Overload:
4917 case clang::BuiltinType::Kind::PseudoObject:
4918 case clang::BuiltinType::Kind::UnknownAny:
4919 break;
4920
4921 case clang::BuiltinType::OCLIntelSubgroupAVCMcePayload:
4922 case clang::BuiltinType::OCLIntelSubgroupAVCImePayload:
4923 case clang::BuiltinType::OCLIntelSubgroupAVCRefPayload:
4924 case clang::BuiltinType::OCLIntelSubgroupAVCSicPayload:
4925 case clang::BuiltinType::OCLIntelSubgroupAVCMceResult:
4926 case clang::BuiltinType::OCLIntelSubgroupAVCImeResult:
4927 case clang::BuiltinType::OCLIntelSubgroupAVCRefResult:
4928 case clang::BuiltinType::OCLIntelSubgroupAVCSicResult:
4929 case clang::BuiltinType::OCLIntelSubgroupAVCImeResultSingleRefStreamout:
4930 case clang::BuiltinType::OCLIntelSubgroupAVCImeResultDualRefStreamout:
4931 case clang::BuiltinType::OCLIntelSubgroupAVCImeSingleRefStreamin:
4932 case clang::BuiltinType::OCLIntelSubgroupAVCImeDualRefStreamin:
4933 break;
4934
4935 // PowerPC -- Matrix Multiply Assist
4936 case clang::BuiltinType::VectorPair:
4937 case clang::BuiltinType::VectorQuad:
4938 break;
4939
4940 // ARM -- Scalable Vector Extension
4941 case clang::BuiltinType::SveBool:
4942 case clang::BuiltinType::SveInt8:
4943 case clang::BuiltinType::SveInt8x2:
4944 case clang::BuiltinType::SveInt8x3:
4945 case clang::BuiltinType::SveInt8x4:
4946 case clang::BuiltinType::SveInt16:
4947 case clang::BuiltinType::SveInt16x2:
4948 case clang::BuiltinType::SveInt16x3:
4949 case clang::BuiltinType::SveInt16x4:
4950 case clang::BuiltinType::SveInt32:
4951 case clang::BuiltinType::SveInt32x2:
4952 case clang::BuiltinType::SveInt32x3:
4953 case clang::BuiltinType::SveInt32x4:
4954 case clang::BuiltinType::SveInt64:
4955 case clang::BuiltinType::SveInt64x2:
4956 case clang::BuiltinType::SveInt64x3:
4957 case clang::BuiltinType::SveInt64x4:
4958 case clang::BuiltinType::SveUint8:
4959 case clang::BuiltinType::SveUint8x2:
4960 case clang::BuiltinType::SveUint8x3:
4961 case clang::BuiltinType::SveUint8x4:
4962 case clang::BuiltinType::SveUint16:
4963 case clang::BuiltinType::SveUint16x2:
4964 case clang::BuiltinType::SveUint16x3:
4965 case clang::BuiltinType::SveUint16x4:
4966 case clang::BuiltinType::SveUint32:
4967 case clang::BuiltinType::SveUint32x2:
4968 case clang::BuiltinType::SveUint32x3:
4969 case clang::BuiltinType::SveUint32x4:
4970 case clang::BuiltinType::SveUint64:
4971 case clang::BuiltinType::SveUint64x2:
4972 case clang::BuiltinType::SveUint64x3:
4973 case clang::BuiltinType::SveUint64x4:
4974 case clang::BuiltinType::SveFloat16:
4975 case clang::BuiltinType::SveBFloat16:
4976 case clang::BuiltinType::SveBFloat16x2:
4977 case clang::BuiltinType::SveBFloat16x3:
4978 case clang::BuiltinType::SveBFloat16x4:
4979 case clang::BuiltinType::SveFloat16x2:
4980 case clang::BuiltinType::SveFloat16x3:
4981 case clang::BuiltinType::SveFloat16x4:
4982 case clang::BuiltinType::SveFloat32:
4983 case clang::BuiltinType::SveFloat32x2:
4984 case clang::BuiltinType::SveFloat32x3:
4985 case clang::BuiltinType::SveFloat32x4:
4986 case clang::BuiltinType::SveFloat64:
4987 case clang::BuiltinType::SveFloat64x2:
4988 case clang::BuiltinType::SveFloat64x3:
4989 case clang::BuiltinType::SveFloat64x4:
4990 break;
4991
4992 // RISC-V V builtin types.
4993 case clang::BuiltinType::RvvInt8mf8:
4994 case clang::BuiltinType::RvvInt8mf4:
4995 case clang::BuiltinType::RvvInt8mf2:
4996 case clang::BuiltinType::RvvInt8m1:
4997 case clang::BuiltinType::RvvInt8m2:
4998 case clang::BuiltinType::RvvInt8m4:
4999 case clang::BuiltinType::RvvInt8m8:
5000 case clang::BuiltinType::RvvUint8mf8:
5001 case clang::BuiltinType::RvvUint8mf4:
5002 case clang::BuiltinType::RvvUint8mf2:
5003 case clang::BuiltinType::RvvUint8m1:
5004 case clang::BuiltinType::RvvUint8m2:
5005 case clang::BuiltinType::RvvUint8m4:
5006 case clang::BuiltinType::RvvUint8m8:
5007 case clang::BuiltinType::RvvInt16mf4:
5008 case clang::BuiltinType::RvvInt16mf2:
5009 case clang::BuiltinType::RvvInt16m1:
5010 case clang::BuiltinType::RvvInt16m2:
5011 case clang::BuiltinType::RvvInt16m4:
5012 case clang::BuiltinType::RvvInt16m8:
5013 case clang::BuiltinType::RvvUint16mf4:
5014 case clang::BuiltinType::RvvUint16mf2:
5015 case clang::BuiltinType::RvvUint16m1:
5016 case clang::BuiltinType::RvvUint16m2:
5017 case clang::BuiltinType::RvvUint16m4:
5018 case clang::BuiltinType::RvvUint16m8:
5019 case clang::BuiltinType::RvvInt32mf2:
5020 case clang::BuiltinType::RvvInt32m1:
5021 case clang::BuiltinType::RvvInt32m2:
5022 case clang::BuiltinType::RvvInt32m4:
5023 case clang::BuiltinType::RvvInt32m8:
5024 case clang::BuiltinType::RvvUint32mf2:
5025 case clang::BuiltinType::RvvUint32m1:
5026 case clang::BuiltinType::RvvUint32m2:
5027 case clang::BuiltinType::RvvUint32m4:
5028 case clang::BuiltinType::RvvUint32m8:
5029 case clang::BuiltinType::RvvInt64m1:
5030 case clang::BuiltinType::RvvInt64m2:
5031 case clang::BuiltinType::RvvInt64m4:
5032 case clang::BuiltinType::RvvInt64m8:
5033 case clang::BuiltinType::RvvUint64m1:
5034 case clang::BuiltinType::RvvUint64m2:
5035 case clang::BuiltinType::RvvUint64m4:
5036 case clang::BuiltinType::RvvUint64m8:
5037 case clang::BuiltinType::RvvFloat16mf4:
5038 case clang::BuiltinType::RvvFloat16mf2:
5039 case clang::BuiltinType::RvvFloat16m1:
5040 case clang::BuiltinType::RvvFloat16m2:
5041 case clang::BuiltinType::RvvFloat16m4:
5042 case clang::BuiltinType::RvvFloat16m8:
5043 case clang::BuiltinType::RvvFloat32mf2:
5044 case clang::BuiltinType::RvvFloat32m1:
5045 case clang::BuiltinType::RvvFloat32m2:
5046 case clang::BuiltinType::RvvFloat32m4:
5047 case clang::BuiltinType::RvvFloat32m8:
5048 case clang::BuiltinType::RvvFloat64m1:
5049 case clang::BuiltinType::RvvFloat64m2:
5050 case clang::BuiltinType::RvvFloat64m4:
5051 case clang::BuiltinType::RvvFloat64m8:
5052 case clang::BuiltinType::RvvBool1:
5053 case clang::BuiltinType::RvvBool2:
5054 case clang::BuiltinType::RvvBool4:
5055 case clang::BuiltinType::RvvBool8:
5056 case clang::BuiltinType::RvvBool16:
5057 case clang::BuiltinType::RvvBool32:
5058 case clang::BuiltinType::RvvBool64:
5059 break;
5060
5061 case clang::BuiltinType::IncompleteMatrixIdx:
5062 break;
5063 }
5064 break;
5065 // All pointer types are represented as unsigned integer encodings. We may
5066 // nee to add a eEncodingPointer if we ever need to know the difference
5067 case clang::Type::ObjCObjectPointer:
5068 case clang::Type::BlockPointer:
5069 case clang::Type::Pointer:
5070 case clang::Type::LValueReference:
5071 case clang::Type::RValueReference:
5072 case clang::Type::MemberPointer:
5073 return lldb::eEncodingUint;
5074 case clang::Type::Complex: {
5075 lldb::Encoding encoding = lldb::eEncodingIEEE754;
5076 if (qual_type->isComplexType())
5077 encoding = lldb::eEncodingIEEE754;
5078 else {
5079 const clang::ComplexType *complex_type =
5080 qual_type->getAsComplexIntegerType();
5081 if (complex_type)
5082 encoding = GetType(complex_type->getElementType()).GetEncoding(count);
5083 else
5084 encoding = lldb::eEncodingSint;
5085 }
5086 count = 2;
5087 return encoding;
5088 }
5089
5090 case clang::Type::ObjCInterface:
5091 break;
5092 case clang::Type::Record:
5093 break;
5094 case clang::Type::Enum:
5095 return lldb::eEncodingSint;
5096 case clang::Type::DependentSizedArray:
5097 case clang::Type::DependentSizedExtVector:
5098 case clang::Type::UnresolvedUsing:
5099 case clang::Type::Attributed:
5100 case clang::Type::TemplateTypeParm:
5101 case clang::Type::SubstTemplateTypeParm:
5102 case clang::Type::SubstTemplateTypeParmPack:
5103 case clang::Type::InjectedClassName:
5104 case clang::Type::DependentName:
5105 case clang::Type::DependentTemplateSpecialization:
5106 case clang::Type::PackExpansion:
5107 case clang::Type::ObjCObject:
5108
5109 case clang::Type::TemplateSpecialization:
5110 case clang::Type::DeducedTemplateSpecialization:
5111 case clang::Type::Adjusted:
5112 case clang::Type::Pipe:
5113 break;
5114
5115 // pointer type decayed from an array or function type.
5116 case clang::Type::Decayed:
5117 break;
5118 case clang::Type::ObjCTypeParam:
5119 break;
5120
5121 case clang::Type::DependentAddressSpace:
5122 break;
5123 case clang::Type::MacroQualified:
5124 break;
5125
5126 case clang::Type::ConstantMatrix:
5127 case clang::Type::DependentSizedMatrix:
5128 break;
5129 }
5130 count = 0;
5131 return lldb::eEncodingInvalid;
5132}
5133
5134lldb::Format TypeSystemClang::GetFormat(lldb::opaque_compiler_type_t type) {
5135 if (!type)
5136 return lldb::eFormatDefault;
5137
5138 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
5139
5140 switch (qual_type->getTypeClass()) {
5141 case clang::Type::Atomic:
5142 case clang::Type::Auto:
5143 case clang::Type::Decltype:
5144 case clang::Type::Elaborated:
5145 case clang::Type::Paren:
5146 case clang::Type::Typedef:
5147 case clang::Type::TypeOf:
5148 case clang::Type::TypeOfExpr:
5149 case clang::Type::Using:
5150 llvm_unreachable("Handled in RemoveWrappingTypes!")::llvm::llvm_unreachable_internal("Handled in RemoveWrappingTypes!"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
5150)
;
5151 case clang::Type::UnaryTransform:
5152 break;
5153
5154 case clang::Type::FunctionNoProto:
5155 case clang::Type::FunctionProto:
5156 break;
5157
5158 case clang::Type::IncompleteArray:
5159 case clang::Type::VariableArray:
5160 break;
5161
5162 case clang::Type::ConstantArray:
5163 return lldb::eFormatVoid; // no value
5164
5165 case clang::Type::DependentVector:
5166 case clang::Type::ExtVector:
5167 case clang::Type::Vector:
5168 break;
5169
5170 case clang::Type::BitInt:
5171 case clang::Type::DependentBitInt:
5172 return qual_type->isUnsignedIntegerType() ? lldb::eFormatUnsigned
5173 : lldb::eFormatDecimal;
5174
5175 case clang::Type::Builtin:
5176 switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
5177 case clang::BuiltinType::UnknownAny:
5178 case clang::BuiltinType::Void:
5179 case clang::BuiltinType::BoundMember:
5180 break;
5181
5182 case clang::BuiltinType::Bool:
5183 return lldb::eFormatBoolean;
5184 case clang::BuiltinType::Char_S:
5185 case clang::BuiltinType::SChar:
5186 case clang::BuiltinType::WChar_S:
5187 case clang::BuiltinType::Char_U:
5188 case clang::BuiltinType::UChar:
5189 case clang::BuiltinType::WChar_U:
5190 return lldb::eFormatChar;
5191 case clang::BuiltinType::Char8:
5192 return lldb::eFormatUnicode8;
5193 case clang::BuiltinType::Char16:
5194 return lldb::eFormatUnicode16;
5195 case clang::BuiltinType::Char32:
5196 return lldb::eFormatUnicode32;
5197 case clang::BuiltinType::UShort:
5198 return lldb::eFormatUnsigned;
5199 case clang::BuiltinType::Short:
5200 return lldb::eFormatDecimal;
5201 case clang::BuiltinType::UInt:
5202 return lldb::eFormatUnsigned;
5203 case clang::BuiltinType::Int:
5204 return lldb::eFormatDecimal;
5205 case clang::BuiltinType::ULong:
5206 return lldb::eFormatUnsigned;
5207 case clang::BuiltinType::Long:
5208 return lldb::eFormatDecimal;
5209 case clang::BuiltinType::ULongLong:
5210 return lldb::eFormatUnsigned;
5211 case clang::BuiltinType::LongLong:
5212 return lldb::eFormatDecimal;
5213 case clang::BuiltinType::UInt128:
5214 return lldb::eFormatUnsigned;
5215 case clang::BuiltinType::Int128:
5216 return lldb::eFormatDecimal;
5217 case clang::BuiltinType::Half:
5218 case clang::BuiltinType::Float:
5219 case clang::BuiltinType::Double:
5220 case clang::BuiltinType::LongDouble:
5221 return lldb::eFormatFloat;
5222 default:
5223 return lldb::eFormatHex;
5224 }
5225 break;
5226 case clang::Type::ObjCObjectPointer:
5227 return lldb::eFormatHex;
5228 case clang::Type::BlockPointer:
5229 return lldb::eFormatHex;
5230 case clang::Type::Pointer:
5231 return lldb::eFormatHex;
5232 case clang::Type::LValueReference:
5233 case clang::Type::RValueReference:
5234 return lldb::eFormatHex;
5235 case clang::Type::MemberPointer:
5236 break;
5237 case clang::Type::Complex: {
5238 if (qual_type->isComplexType())
5239 return lldb::eFormatComplex;
5240 else
5241 return lldb::eFormatComplexInteger;
5242 }
5243 case clang::Type::ObjCInterface:
5244 break;
5245 case clang::Type::Record:
5246 break;
5247 case clang::Type::Enum:
5248 return lldb::eFormatEnum;
5249 case clang::Type::DependentSizedArray:
5250 case clang::Type::DependentSizedExtVector:
5251 case clang::Type::UnresolvedUsing:
5252 case clang::Type::Attributed:
5253 case clang::Type::TemplateTypeParm:
5254 case clang::Type::SubstTemplateTypeParm:
5255 case clang::Type::SubstTemplateTypeParmPack:
5256 case clang::Type::InjectedClassName:
5257 case clang::Type::DependentName:
5258 case clang::Type::DependentTemplateSpecialization:
5259 case clang::Type::PackExpansion:
5260 case clang::Type::ObjCObject:
5261
5262 case clang::Type::TemplateSpecialization:
5263 case clang::Type::DeducedTemplateSpecialization:
5264 case clang::Type::Adjusted:
5265 case clang::Type::Pipe:
5266 break;
5267
5268 // pointer type decayed from an array or function type.
5269 case clang::Type::Decayed:
5270 break;
5271 case clang::Type::ObjCTypeParam:
5272 break;
5273
5274 case clang::Type::DependentAddressSpace:
5275 break;
5276 case clang::Type::MacroQualified:
5277 break;
5278
5279 // Matrix types we're not sure how to display yet.
5280 case clang::Type::ConstantMatrix:
5281 case clang::Type::DependentSizedMatrix:
5282 break;
5283 }
5284 // We don't know hot to display this type...
5285 return lldb::eFormatBytes;
5286}
5287
5288static bool ObjCDeclHasIVars(clang::ObjCInterfaceDecl *class_interface_decl,
5289 bool check_superclass) {
5290 while (class_interface_decl) {
5291 if (class_interface_decl->ivar_size() > 0)
5292 return true;
5293
5294 if (check_superclass)
5295 class_interface_decl = class_interface_decl->getSuperClass();
5296 else
5297 break;
5298 }
5299 return false;
5300}
5301
5302static Optional<SymbolFile::ArrayInfo>
5303GetDynamicArrayInfo(TypeSystemClang &ast, SymbolFile *sym_file,
5304 clang::QualType qual_type,
5305 const ExecutionContext *exe_ctx) {
5306 if (qual_type->isIncompleteArrayType())
5307 if (auto *metadata = ast.GetMetadata(qual_type.getTypePtr()))
5308 return sym_file->GetDynamicArrayInfoForUID(metadata->GetUserID(),
5309 exe_ctx);
5310 return llvm::None;
5311}
5312
5313uint32_t TypeSystemClang::GetNumChildren(lldb::opaque_compiler_type_t type,
5314 bool omit_empty_base_classes,
5315 const ExecutionContext *exe_ctx) {
5316 if (!type)
5317 return 0;
5318
5319 uint32_t num_children = 0;
5320 clang::QualType qual_type(RemoveWrappingTypes(GetQualType(type)));
5321 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
5322 switch (type_class) {
5323 case clang::Type::Builtin:
5324 switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
5325 case clang::BuiltinType::ObjCId: // child is Class
5326 case clang::BuiltinType::ObjCClass: // child is Class
5327 num_children = 1;
5328 break;
5329
5330 default:
5331 break;
5332 }
5333 break;
5334
5335 case clang::Type::Complex:
5336 return 0;
5337 case clang::Type::Record:
5338 if (GetCompleteQualType(&getASTContext(), qual_type)) {
5339 const clang::RecordType *record_type =
5340 llvm::cast<clang::RecordType>(qual_type.getTypePtr());
5341 const clang::RecordDecl *record_decl = record_type->getDecl();
5342 assert(record_decl)(static_cast <bool> (record_decl) ? void (0) : __assert_fail
("record_decl", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 5342, __extension__ __PRETTY_FUNCTION__))
;
5343 const clang::CXXRecordDecl *cxx_record_decl =
5344 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
5345 if (cxx_record_decl) {
5346 if (omit_empty_base_classes) {
5347 // Check each base classes to see if it or any of its base classes
5348 // contain any fields. This can help limit the noise in variable
5349 // views by not having to show base classes that contain no members.
5350 clang::CXXRecordDecl::base_class_const_iterator base_class,
5351 base_class_end;
5352 for (base_class = cxx_record_decl->bases_begin(),
5353 base_class_end = cxx_record_decl->bases_end();
5354 base_class != base_class_end; ++base_class) {
5355 const clang::CXXRecordDecl *base_class_decl =
5356 llvm::cast<clang::CXXRecordDecl>(
5357 base_class->getType()
5358 ->getAs<clang::RecordType>()
5359 ->getDecl());
5360
5361 // Skip empty base classes
5362 if (!TypeSystemClang::RecordHasFields(base_class_decl))
5363 continue;
5364
5365 num_children++;
5366 }
5367 } else {
5368 // Include all base classes
5369 num_children += cxx_record_decl->getNumBases();
5370 }
5371 }
5372 clang::RecordDecl::field_iterator field, field_end;
5373 for (field = record_decl->field_begin(),
5374 field_end = record_decl->field_end();
5375 field != field_end; ++field)
5376 ++num_children;
5377 }
5378 break;
5379
5380 case clang::Type::ObjCObject:
5381 case clang::Type::ObjCInterface:
5382 if (GetCompleteQualType(&getASTContext(), qual_type)) {
5383 const clang::ObjCObjectType *objc_class_type =
5384 llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
5385 assert(objc_class_type)(static_cast <bool> (objc_class_type) ? void (0) : __assert_fail
("objc_class_type", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 5385, __extension__ __PRETTY_FUNCTION__))
;
5386 if (objc_class_type) {
5387 clang::ObjCInterfaceDecl *class_interface_decl =
5388 objc_class_type->getInterface();
5389
5390 if (class_interface_decl) {
5391
5392 clang::ObjCInterfaceDecl *superclass_interface_decl =
5393 class_interface_decl->getSuperClass();
5394 if (superclass_interface_decl) {
5395 if (omit_empty_base_classes) {
5396 if (ObjCDeclHasIVars(superclass_interface_decl, true))
5397 ++num_children;
5398 } else
5399 ++num_children;
5400 }
5401
5402 num_children += class_interface_decl->ivar_size();
5403 }
5404 }
5405 }
5406 break;
5407
5408 case clang::Type::LValueReference:
5409 case clang::Type::RValueReference:
5410 case clang::Type::ObjCObjectPointer: {
5411 CompilerType pointee_clang_type(GetPointeeType(type));
5412
5413 uint32_t num_pointee_children = 0;
5414 if (pointee_clang_type.IsAggregateType())
5415 num_pointee_children =
5416 pointee_clang_type.GetNumChildren(omit_empty_base_classes, exe_ctx);
5417 // If this type points to a simple type, then it has 1 child
5418 if (num_pointee_children == 0)
5419 num_children = 1;
5420 else
5421 num_children = num_pointee_children;
5422 } break;
5423
5424 case clang::Type::Vector:
5425 case clang::Type::ExtVector:
5426 num_children =
5427 llvm::cast<clang::VectorType>(qual_type.getTypePtr())->getNumElements();
5428 break;
5429
5430 case clang::Type::ConstantArray:
5431 num_children = llvm::cast<clang::ConstantArrayType>(qual_type.getTypePtr())
5432 ->getSize()
5433 .getLimitedValue();
5434 break;
5435 case clang::Type::IncompleteArray:
5436 if (auto array_info =
5437 GetDynamicArrayInfo(*this, GetSymbolFile(), qual_type, exe_ctx))
5438 // Only 1-dimensional arrays are supported.
5439 num_children = array_info->element_orders.size()
5440 ? array_info->element_orders.back()
5441 : 0;
5442 break;
5443
5444 case clang::Type::Pointer: {
5445 const clang::PointerType *pointer_type =
5446 llvm::cast<clang::PointerType>(qual_type.getTypePtr());
5447 clang::QualType pointee_type(pointer_type->getPointeeType());
5448 CompilerType pointee_clang_type(GetType(pointee_type));
5449 uint32_t num_pointee_children = 0;
5450 if (pointee_clang_type.IsAggregateType())
5451 num_pointee_children =
5452 pointee_clang_type.GetNumChildren(omit_empty_base_classes, exe_ctx);
5453 if (num_pointee_children == 0) {
5454 // We have a pointer to a pointee type that claims it has no children. We
5455 // will want to look at
5456 num_children = GetNumPointeeChildren(pointee_type);
5457 } else
5458 num_children = num_pointee_children;
5459 } break;
5460
5461 default:
5462 break;
5463 }
5464 return num_children;
5465}
5466
5467CompilerType TypeSystemClang::GetBuiltinTypeByName(ConstString name) {
5468 return GetBasicType(GetBasicTypeEnumeration(name));
5469}
5470
5471lldb::BasicType
5472TypeSystemClang::GetBasicTypeEnumeration(lldb::opaque_compiler_type_t type) {
5473 if (type) {
5474 clang::QualType qual_type(GetQualType(type));
5475 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
5476 if (type_class == clang::Type::Builtin) {
5477 switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
5478 case clang::BuiltinType::Void:
5479 return eBasicTypeVoid;
5480 case clang::BuiltinType::Bool:
5481 return eBasicTypeBool;
5482 case clang::BuiltinType::Char_S:
5483 return eBasicTypeSignedChar;
5484 case clang::BuiltinType::Char_U:
5485 return eBasicTypeUnsignedChar;
5486 case clang::BuiltinType::Char16:
5487 return eBasicTypeChar16;
5488 case clang::BuiltinType::Char32:
5489 return eBasicTypeChar32;
5490 case clang::BuiltinType::UChar:
5491 return eBasicTypeUnsignedChar;
5492 case clang::BuiltinType::SChar:
5493 return eBasicTypeSignedChar;
5494 case clang::BuiltinType::WChar_S:
5495 return eBasicTypeSignedWChar;
5496 case clang::BuiltinType::WChar_U:
5497 return eBasicTypeUnsignedWChar;
5498 case clang::BuiltinType::Short:
5499 return eBasicTypeShort;
5500 case clang::BuiltinType::UShort:
5501 return eBasicTypeUnsignedShort;
5502 case clang::BuiltinType::Int:
5503 return eBasicTypeInt;
5504 case clang::BuiltinType::UInt:
5505 return eBasicTypeUnsignedInt;
5506 case clang::BuiltinType::Long:
5507 return eBasicTypeLong;
5508 case clang::BuiltinType::ULong:
5509 return eBasicTypeUnsignedLong;
5510 case clang::BuiltinType::LongLong:
5511 return eBasicTypeLongLong;
5512 case clang::BuiltinType::ULongLong:
5513 return eBasicTypeUnsignedLongLong;
5514 case clang::BuiltinType::Int128:
5515 return eBasicTypeInt128;
5516 case clang::BuiltinType::UInt128:
5517 return eBasicTypeUnsignedInt128;
5518
5519 case clang::BuiltinType::Half:
5520 return eBasicTypeHalf;
5521 case clang::BuiltinType::Float:
5522 return eBasicTypeFloat;
5523 case clang::BuiltinType::Double:
5524 return eBasicTypeDouble;
5525 case clang::BuiltinType::LongDouble:
5526 return eBasicTypeLongDouble;
5527
5528 case clang::BuiltinType::NullPtr:
5529 return eBasicTypeNullPtr;
5530 case clang::BuiltinType::ObjCId:
5531 return eBasicTypeObjCID;
5532 case clang::BuiltinType::ObjCClass:
5533 return eBasicTypeObjCClass;
5534 case clang::BuiltinType::ObjCSel:
5535 return eBasicTypeObjCSel;
5536 default:
5537 return eBasicTypeOther;
5538 }
5539 }
5540 }
5541 return eBasicTypeInvalid;
5542}
5543
5544void TypeSystemClang::ForEachEnumerator(
5545 lldb::opaque_compiler_type_t type,
5546 std::function<bool(const CompilerType &integer_type,
5547 ConstString name,
5548 const llvm::APSInt &value)> const &callback) {
5549 const clang::EnumType *enum_type =
5550 llvm::dyn_cast<clang::EnumType>(GetCanonicalQualType(type));
5551 if (enum_type) {
5552 const clang::EnumDecl *enum_decl = enum_type->getDecl();
5553 if (enum_decl) {
5554 CompilerType integer_type = GetType(enum_decl->getIntegerType());
5555
5556 clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
5557 for (enum_pos = enum_decl->enumerator_begin(),
5558 enum_end_pos = enum_decl->enumerator_end();
5559 enum_pos != enum_end_pos; ++enum_pos) {
5560 ConstString name(enum_pos->getNameAsString().c_str());
5561 if (!callback(integer_type, name, enum_pos->getInitVal()))
5562 break;
5563 }
5564 }
5565 }
5566}
5567
5568#pragma mark Aggregate Types
5569
5570uint32_t TypeSystemClang::GetNumFields(lldb::opaque_compiler_type_t type) {
5571 if (!type)
5572 return 0;
5573
5574 uint32_t count = 0;
5575 clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
5576 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
5577 switch (type_class) {
5578 case clang::Type::Record:
5579 if (GetCompleteType(type)) {
5580 const clang::RecordType *record_type =
5581 llvm::dyn_cast<clang::RecordType>(qual_type.getTypePtr());
5582 if (record_type) {
5583 clang::RecordDecl *record_decl = record_type->getDecl();
5584 if (record_decl) {
5585 uint32_t field_idx = 0;
5586 clang::RecordDecl::field_iterator field, field_end;
5587 for (field = record_decl->field_begin(),
5588 field_end = record_decl->field_end();
5589 field != field_end; ++field)
5590 ++field_idx;
5591 count = field_idx;
5592 }
5593 }
5594 }
5595 break;
5596
5597 case clang::Type::ObjCObjectPointer: {
5598 const clang::ObjCObjectPointerType *objc_class_type =
5599 qual_type->getAs<clang::ObjCObjectPointerType>();
5600 const clang::ObjCInterfaceType *objc_interface_type =
5601 objc_class_type->getInterfaceType();
5602 if (objc_interface_type &&
5603 GetCompleteType(static_cast<lldb::opaque_compiler_type_t>(
5604 const_cast<clang::ObjCInterfaceType *>(objc_interface_type)))) {
5605 clang::ObjCInterfaceDecl *class_interface_decl =
5606 objc_interface_type->getDecl();
5607 if (class_interface_decl) {
5608 count = class_interface_decl->ivar_size();
5609 }
5610 }
5611 break;
5612 }
5613
5614 case clang::Type::ObjCObject:
5615 case clang::Type::ObjCInterface:
5616 if (GetCompleteType(type)) {
5617 const clang::ObjCObjectType *objc_class_type =
5618 llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
5619 if (objc_class_type) {
5620 clang::ObjCInterfaceDecl *class_interface_decl =
5621 objc_class_type->getInterface();
5622
5623 if (class_interface_decl)
5624 count = class_interface_decl->ivar_size();
5625 }
5626 }
5627 break;
5628
5629 default:
5630 break;
5631 }
5632 return count;
5633}
5634
5635static lldb::opaque_compiler_type_t
5636GetObjCFieldAtIndex(clang::ASTContext *ast,
5637 clang::ObjCInterfaceDecl *class_interface_decl, size_t idx,
5638 std::string &name, uint64_t *bit_offset_ptr,
5639 uint32_t *bitfield_bit_size_ptr, bool *is_bitfield_ptr) {
5640 if (class_interface_decl) {
5641 if (idx < (class_interface_decl->ivar_size())) {
5642 clang::ObjCInterfaceDecl::ivar_iterator ivar_pos,
5643 ivar_end = class_interface_decl->ivar_end();
5644 uint32_t ivar_idx = 0;
5645
5646 for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end;
5647 ++ivar_pos, ++ivar_idx) {
5648 if (ivar_idx == idx) {
5649 const clang::ObjCIvarDecl *ivar_decl = *ivar_pos;
5650
5651 clang::QualType ivar_qual_type(ivar_decl->getType());
5652
5653 name.assign(ivar_decl->getNameAsString());
5654
5655 if (bit_offset_ptr) {
5656 const clang::ASTRecordLayout &interface_layout =
5657 ast->getASTObjCInterfaceLayout(class_interface_decl);
5658 *bit_offset_ptr = interface_layout.getFieldOffset(ivar_idx);
5659 }
5660
5661 const bool is_bitfield = ivar_pos->isBitField();
5662
5663 if (bitfield_bit_size_ptr) {
5664 *bitfield_bit_size_ptr = 0;
5665
5666 if (is_bitfield && ast) {
5667 clang::Expr *bitfield_bit_size_expr = ivar_pos->getBitWidth();
5668 clang::Expr::EvalResult result;
5669 if (bitfield_bit_size_expr &&
5670 bitfield_bit_size_expr->EvaluateAsInt(result, *ast)) {
5671 llvm::APSInt bitfield_apsint = result.Val.getInt();
5672 *bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue();
5673 }
5674 }
5675 }
5676 if (is_bitfield_ptr)
5677 *is_bitfield_ptr = is_bitfield;
5678
5679 return ivar_qual_type.getAsOpaquePtr();
5680 }
5681 }
5682 }
5683 }
5684 return nullptr;
5685}
5686
5687CompilerType TypeSystemClang::GetFieldAtIndex(lldb::opaque_compiler_type_t type,
5688 size_t idx, std::string &name,
5689 uint64_t *bit_offset_ptr,
5690 uint32_t *bitfield_bit_size_ptr,
5691 bool *is_bitfield_ptr) {
5692 if (!type)
5693 return CompilerType();
5694
5695 clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
5696 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
5697 switch (type_class) {
5698 case clang::Type::Record:
5699 if (GetCompleteType(type)) {
5700 const clang::RecordType *record_type =
5701 llvm::cast<clang::RecordType>(qual_type.getTypePtr());
5702 const clang::RecordDecl *record_decl = record_type->getDecl();
5703 uint32_t field_idx = 0;
5704 clang::RecordDecl::field_iterator field, field_end;
5705 for (field = record_decl->field_begin(),
5706 field_end = record_decl->field_end();
5707 field != field_end; ++field, ++field_idx) {
5708 if (idx == field_idx) {
5709 // Print the member type if requested
5710 // Print the member name and equal sign
5711 name.assign(field->getNameAsString());
5712
5713 // Figure out the type byte size (field_type_info.first) and
5714 // alignment (field_type_info.second) from the AST context.
5715 if (bit_offset_ptr) {
5716 const clang::ASTRecordLayout &record_layout =
5717 getASTContext().getASTRecordLayout(record_decl);
5718 *bit_offset_ptr = record_layout.getFieldOffset(field_idx);
5719 }
5720
5721 const bool is_bitfield = field->isBitField();
5722
5723 if (bitfield_bit_size_ptr) {
5724 *bitfield_bit_size_ptr = 0;
5725
5726 if (is_bitfield) {
5727 clang::Expr *bitfield_bit_size_expr = field->getBitWidth();
5728 clang::Expr::EvalResult result;
5729 if (bitfield_bit_size_expr &&
5730 bitfield_bit_size_expr->EvaluateAsInt(result,
5731 getASTContext())) {
5732 llvm::APSInt bitfield_apsint = result.Val.getInt();
5733 *bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue();
5734 }
5735 }
5736 }
5737 if (is_bitfield_ptr)
5738 *is_bitfield_ptr = is_bitfield;
5739
5740 return GetType(field->getType());
5741 }
5742 }
5743 }
5744 break;
5745
5746 case clang::Type::ObjCObjectPointer: {
5747 const clang::ObjCObjectPointerType *objc_class_type =
5748 qual_type->getAs<clang::ObjCObjectPointerType>();
5749 const clang::ObjCInterfaceType *objc_interface_type =
5750 objc_class_type->getInterfaceType();
5751 if (objc_interface_type &&
5752 GetCompleteType(static_cast<lldb::opaque_compiler_type_t>(
5753 const_cast<clang::ObjCInterfaceType *>(objc_interface_type)))) {
5754 clang::ObjCInterfaceDecl *class_interface_decl =
5755 objc_interface_type->getDecl();
5756 if (class_interface_decl) {
5757 return CompilerType(
5758 this, GetObjCFieldAtIndex(&getASTContext(), class_interface_decl,
5759 idx, name, bit_offset_ptr,
5760 bitfield_bit_size_ptr, is_bitfield_ptr));
5761 }
5762 }
5763 break;
5764 }
5765
5766 case clang::Type::ObjCObject:
5767 case clang::Type::ObjCInterface:
5768 if (GetCompleteType(type)) {
5769 const clang::ObjCObjectType *objc_class_type =
5770 llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
5771 assert(objc_class_type)(static_cast <bool> (objc_class_type) ? void (0) : __assert_fail
("objc_class_type", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 5771, __extension__ __PRETTY_FUNCTION__))
;
5772 if (objc_class_type) {
5773 clang::ObjCInterfaceDecl *class_interface_decl =
5774 objc_class_type->getInterface();
5775 return CompilerType(
5776 this, GetObjCFieldAtIndex(&getASTContext(), class_interface_decl,
5777 idx, name, bit_offset_ptr,
5778 bitfield_bit_size_ptr, is_bitfield_ptr));
5779 }
5780 }
5781 break;
5782
5783 default:
5784 break;
5785 }
5786 return CompilerType();
5787}
5788
5789uint32_t
5790TypeSystemClang::GetNumDirectBaseClasses(lldb::opaque_compiler_type_t type) {
5791 uint32_t count = 0;
5792 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
5793 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
5794 switch (type_class) {
5795 case clang::Type::Record:
5796 if (GetCompleteType(type)) {
5797 const clang::CXXRecordDecl *cxx_record_decl =
5798 qual_type->getAsCXXRecordDecl();
5799 if (cxx_record_decl)
5800 count = cxx_record_decl->getNumBases();
5801 }
5802 break;
5803
5804 case clang::Type::ObjCObjectPointer:
5805 count = GetPointeeType(type).GetNumDirectBaseClasses();
5806 break;
5807
5808 case clang::Type::ObjCObject:
5809 if (GetCompleteType(type)) {
5810 const clang::ObjCObjectType *objc_class_type =
5811 qual_type->getAsObjCQualifiedInterfaceType();
5812 if (objc_class_type) {
5813 clang::ObjCInterfaceDecl *class_interface_decl =
5814 objc_class_type->getInterface();
5815
5816 if (class_interface_decl && class_interface_decl->getSuperClass())
5817 count = 1;
5818 }
5819 }
5820 break;
5821 case clang::Type::ObjCInterface:
5822 if (GetCompleteType(type)) {
5823 const clang::ObjCInterfaceType *objc_interface_type =
5824 qual_type->getAs<clang::ObjCInterfaceType>();
5825 if (objc_interface_type) {
5826 clang::ObjCInterfaceDecl *class_interface_decl =
5827 objc_interface_type->getInterface();
5828
5829 if (class_interface_decl && class_interface_decl->getSuperClass())
5830 count = 1;
5831 }
5832 }
5833 break;
5834
5835 default:
5836 break;
5837 }
5838 return count;
5839}
5840
5841uint32_t
5842TypeSystemClang::GetNumVirtualBaseClasses(lldb::opaque_compiler_type_t type) {
5843 uint32_t count = 0;
5844 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
5845 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
5846 switch (type_class) {
5847 case clang::Type::Record:
5848 if (GetCompleteType(type)) {
5849 const clang::CXXRecordDecl *cxx_record_decl =
5850 qual_type->getAsCXXRecordDecl();
5851 if (cxx_record_decl)
5852 count = cxx_record_decl->getNumVBases();
5853 }
5854 break;
5855
5856 default:
5857 break;
5858 }
5859 return count;
5860}
5861
5862CompilerType TypeSystemClang::GetDirectBaseClassAtIndex(
5863 lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr) {
5864 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
5865 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
5866 switch (type_class) {
5867 case clang::Type::Record:
5868 if (GetCompleteType(type)) {
5869 const clang::CXXRecordDecl *cxx_record_decl =
5870 qual_type->getAsCXXRecordDecl();
5871 if (cxx_record_decl) {
5872 uint32_t curr_idx = 0;
5873 clang::CXXRecordDecl::base_class_const_iterator base_class,
5874 base_class_end;
5875 for (base_class = cxx_record_decl->bases_begin(),
5876 base_class_end = cxx_record_decl->bases_end();
5877 base_class != base_class_end; ++base_class, ++curr_idx) {
5878 if (curr_idx == idx) {
5879 if (bit_offset_ptr) {
5880 const clang::ASTRecordLayout &record_layout =
5881 getASTContext().getASTRecordLayout(cxx_record_decl);
5882 const clang::CXXRecordDecl *base_class_decl =
5883 llvm::cast<clang::CXXRecordDecl>(
5884 base_class->getType()
5885 ->getAs<clang::RecordType>()
5886 ->getDecl());
5887 if (base_class->isVirtual())
5888 *bit_offset_ptr =
5889 record_layout.getVBaseClassOffset(base_class_decl)
5890 .getQuantity() *
5891 8;
5892 else
5893 *bit_offset_ptr =
5894 record_layout.getBaseClassOffset(base_class_decl)
5895 .getQuantity() *
5896 8;
5897 }
5898 return GetType(base_class->getType());
5899 }
5900 }
5901 }
5902 }
5903 break;
5904
5905 case clang::Type::ObjCObjectPointer:
5906 return GetPointeeType(type).GetDirectBaseClassAtIndex(idx, bit_offset_ptr);
5907
5908 case clang::Type::ObjCObject:
5909 if (idx == 0 && GetCompleteType(type)) {
5910 const clang::ObjCObjectType *objc_class_type =
5911 qual_type->getAsObjCQualifiedInterfaceType();
5912 if (objc_class_type) {
5913 clang::ObjCInterfaceDecl *class_interface_decl =
5914 objc_class_type->getInterface();
5915
5916 if (class_interface_decl) {
5917 clang::ObjCInterfaceDecl *superclass_interface_decl =
5918 class_interface_decl->getSuperClass();
5919 if (superclass_interface_decl) {
5920 if (bit_offset_ptr)
5921 *bit_offset_ptr = 0;
5922 return GetType(getASTContext().getObjCInterfaceType(
5923 superclass_interface_decl));
5924 }
5925 }
5926 }
5927 }
5928 break;
5929 case clang::Type::ObjCInterface:
5930 if (idx == 0 && GetCompleteType(type)) {
5931 const clang::ObjCObjectType *objc_interface_type =
5932 qual_type->getAs<clang::ObjCInterfaceType>();
5933 if (objc_interface_type) {
5934 clang::ObjCInterfaceDecl *class_interface_decl =
5935 objc_interface_type->getInterface();
5936
5937 if (class_interface_decl) {
5938 clang::ObjCInterfaceDecl *superclass_interface_decl =
5939 class_interface_decl->getSuperClass();
5940 if (superclass_interface_decl) {
5941 if (bit_offset_ptr)
5942 *bit_offset_ptr = 0;
5943 return GetType(getASTContext().getObjCInterfaceType(
5944 superclass_interface_decl));
5945 }
5946 }
5947 }
5948 }
5949 break;
5950
5951 default:
5952 break;
5953 }
5954 return CompilerType();
5955}
5956
5957CompilerType TypeSystemClang::GetVirtualBaseClassAtIndex(
5958 lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr) {
5959 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
5960 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
5961 switch (type_class) {
5962 case clang::Type::Record:
5963 if (GetCompleteType(type)) {
5964 const clang::CXXRecordDecl *cxx_record_decl =
5965 qual_type->getAsCXXRecordDecl();
5966 if (cxx_record_decl) {
5967 uint32_t curr_idx = 0;
5968 clang::CXXRecordDecl::base_class_const_iterator base_class,
5969 base_class_end;
5970 for (base_class = cxx_record_decl->vbases_begin(),
5971 base_class_end = cxx_record_decl->vbases_end();
5972 base_class != base_class_end; ++base_class, ++curr_idx) {
5973 if (curr_idx == idx) {
5974 if (bit_offset_ptr) {
5975 const clang::ASTRecordLayout &record_layout =
5976 getASTContext().getASTRecordLayout(cxx_record_decl);
5977 const clang::CXXRecordDecl *base_class_decl =
5978 llvm::cast<clang::CXXRecordDecl>(
5979 base_class->getType()
5980 ->getAs<clang::RecordType>()
5981 ->getDecl());
5982 *bit_offset_ptr =
5983 record_layout.getVBaseClassOffset(base_class_decl)
5984 .getQuantity() *
5985 8;
5986 }
5987 return GetType(base_class->getType());
5988 }
5989 }
5990 }
5991 }
5992 break;
5993
5994 default:
5995 break;
5996 }
5997 return CompilerType();
5998}
5999
6000// If a pointer to a pointee type (the clang_type arg) says that it has no
6001// children, then we either need to trust it, or override it and return a
6002// different result. For example, an "int *" has one child that is an integer,
6003// but a function pointer doesn't have any children. Likewise if a Record type
6004// claims it has no children, then there really is nothing to show.
6005uint32_t TypeSystemClang::GetNumPointeeChildren(clang::QualType type) {
6006 if (type.isNull())
6007 return 0;
6008
6009 clang::QualType qual_type = RemoveWrappingTypes(type.getCanonicalType());
6010 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
6011 switch (type_class) {
6012 case clang::Type::Builtin:
6013 switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
6014 case clang::BuiltinType::UnknownAny:
6015 case clang::BuiltinType::Void:
6016 case clang::BuiltinType::NullPtr:
6017 case clang::BuiltinType::OCLEvent:
6018 case clang::BuiltinType::OCLImage1dRO:
6019 case clang::BuiltinType::OCLImage1dWO:
6020 case clang::BuiltinType::OCLImage1dRW:
6021 case clang::BuiltinType::OCLImage1dArrayRO:
6022 case clang::BuiltinType::OCLImage1dArrayWO:
6023 case clang::BuiltinType::OCLImage1dArrayRW:
6024 case clang::BuiltinType::OCLImage1dBufferRO:
6025 case clang::BuiltinType::OCLImage1dBufferWO:
6026 case clang::BuiltinType::OCLImage1dBufferRW:
6027 case clang::BuiltinType::OCLImage2dRO:
6028 case clang::BuiltinType::OCLImage2dWO:
6029 case clang::BuiltinType::OCLImage2dRW:
6030 case clang::BuiltinType::OCLImage2dArrayRO:
6031 case clang::BuiltinType::OCLImage2dArrayWO:
6032 case clang::BuiltinType::OCLImage2dArrayRW:
6033 case clang::BuiltinType::OCLImage3dRO:
6034 case clang::BuiltinType::OCLImage3dWO:
6035 case clang::BuiltinType::OCLImage3dRW:
6036 case clang::BuiltinType::OCLSampler:
6037 return 0;
6038 case clang::BuiltinType::Bool:
6039 case clang::BuiltinType::Char_U:
6040 case clang::BuiltinType::UChar:
6041 case clang::BuiltinType::WChar_U:
6042 case clang::BuiltinType::Char16:
6043 case clang::BuiltinType::Char32:
6044 case clang::BuiltinType::UShort:
6045 case clang::BuiltinType::UInt:
6046 case clang::BuiltinType::ULong:
6047 case clang::BuiltinType::ULongLong:
6048 case clang::BuiltinType::UInt128:
6049 case clang::BuiltinType::Char_S:
6050 case clang::BuiltinType::SChar:
6051 case clang::BuiltinType::WChar_S:
6052 case clang::BuiltinType::Short:
6053 case clang::BuiltinType::Int:
6054 case clang::BuiltinType::Long:
6055 case clang::BuiltinType::LongLong:
6056 case clang::BuiltinType::Int128:
6057 case clang::BuiltinType::Float:
6058 case clang::BuiltinType::Double:
6059 case clang::BuiltinType::LongDouble:
6060 case clang::BuiltinType::Dependent:
6061 case clang::BuiltinType::Overload:
6062 case clang::BuiltinType::ObjCId:
6063 case clang::BuiltinType::ObjCClass:
6064 case clang::BuiltinType::ObjCSel:
6065 case clang::BuiltinType::BoundMember:
6066 case clang::BuiltinType::Half:
6067 case clang::BuiltinType::ARCUnbridgedCast:
6068 case clang::BuiltinType::PseudoObject:
6069 case clang::BuiltinType::BuiltinFn:
6070 case clang::BuiltinType::OMPArraySection:
6071 return 1;
6072 default:
6073 return 0;
6074 }
6075 break;
6076
6077 case clang::Type::Complex:
6078 return 1;
6079 case clang::Type::Pointer:
6080 return 1;
6081 case clang::Type::BlockPointer:
6082 return 0; // If block pointers don't have debug info, then no children for
6083 // them
6084 case clang::Type::LValueReference:
6085 return 1;
6086 case clang::Type::RValueReference:
6087 return 1;
6088 case clang::Type::MemberPointer:
6089 return 0;
6090 case clang::Type::ConstantArray:
6091 return 0;
6092 case clang::Type::IncompleteArray:
6093 return 0;
6094 case clang::Type::VariableArray:
6095 return 0;
6096 case clang::Type::DependentSizedArray:
6097 return 0;
6098 case clang::Type::DependentSizedExtVector:
6099 return 0;
6100 case clang::Type::Vector:
6101 return 0;
6102 case clang::Type::ExtVector:
6103 return 0;
6104 case clang::Type::FunctionProto:
6105 return 0; // When we function pointers, they have no children...
6106 case clang::Type::FunctionNoProto:
6107 return 0; // When we function pointers, they have no children...
6108 case clang::Type::UnresolvedUsing:
6109 return 0;
6110 case clang::Type::Record:
6111 return 0;
6112 case clang::Type::Enum:
6113 return 1;
6114 case clang::Type::TemplateTypeParm:
6115 return 1;
6116 case clang::Type::SubstTemplateTypeParm:
6117 return 1;
6118 case clang::Type::TemplateSpecialization:
6119 return 1;
6120 case clang::Type::InjectedClassName:
6121 return 0;
6122 case clang::Type::DependentName:
6123 return 1;
6124 case clang::Type::DependentTemplateSpecialization:
6125 return 1;
6126 case clang::Type::ObjCObject:
6127 return 0;
6128 case clang::Type::ObjCInterface:
6129 return 0;
6130 case clang::Type::ObjCObjectPointer:
6131 return 1;
6132 default:
6133 break;
6134 }
6135 return 0;
6136}
6137
6138CompilerType TypeSystemClang::GetChildCompilerTypeAtIndex(
6139 lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, size_t idx,
6140 bool transparent_pointers, bool omit_empty_base_classes,
6141 bool ignore_array_bounds, std::string &child_name,
6142 uint32_t &child_byte_size, int32_t &child_byte_offset,
6143 uint32_t &child_bitfield_bit_size, uint32_t &child_bitfield_bit_offset,
6144 bool &child_is_base_class, bool &child_is_deref_of_parent,
6145 ValueObject *valobj, uint64_t &language_flags) {
6146 if (!type)
6147 return CompilerType();
6148
6149 auto get_exe_scope = [&exe_ctx]() {
6150 return exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr;
6151 };
6152
6153 clang::QualType parent_qual_type(
6154 RemoveWrappingTypes(GetCanonicalQualType(type)));
6155 const clang::Type::TypeClass parent_type_class =
6156 parent_qual_type->getTypeClass();
6157 child_bitfield_bit_size = 0;
6158 child_bitfield_bit_offset = 0;
6159 child_is_base_class = false;
6160 language_flags = 0;
6161
6162 const bool idx_is_valid =
6163 idx < GetNumChildren(type, omit_empty_base_classes, exe_ctx);
6164 int32_t bit_offset;
6165 switch (parent_type_class) {
6166 case clang::Type::Builtin:
6167 if (idx_is_valid) {
6168 switch (llvm::cast<clang::BuiltinType>(parent_qual_type)->getKind()) {
6169 case clang::BuiltinType::ObjCId:
6170 case clang::BuiltinType::ObjCClass:
6171 child_name = "isa";
6172 child_byte_size =
6173 getASTContext().getTypeSize(getASTContext().ObjCBuiltinClassTy) /
6174 CHAR_BIT8;
6175 return GetType(getASTContext().ObjCBuiltinClassTy);
6176
6177 default:
6178 break;
6179 }
6180 }
6181 break;
6182
6183 case clang::Type::Record:
6184 if (idx_is_valid && GetCompleteType(type)) {
6185 const clang::RecordType *record_type =
6186 llvm::cast<clang::RecordType>(parent_qual_type.getTypePtr());
6187 const clang::RecordDecl *record_decl = record_type->getDecl();
6188 assert(record_decl)(static_cast <bool> (record_decl) ? void (0) : __assert_fail
("record_decl", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 6188, __extension__ __PRETTY_FUNCTION__))
;
6189 const clang::ASTRecordLayout &record_layout =
6190 getASTContext().getASTRecordLayout(record_decl);
6191 uint32_t child_idx = 0;
6192
6193 const clang::CXXRecordDecl *cxx_record_decl =
6194 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
6195 if (cxx_record_decl) {
6196 // We might have base classes to print out first
6197 clang::CXXRecordDecl::base_class_const_iterator base_class,
6198 base_class_end;
6199 for (base_class = cxx_record_decl->bases_begin(),
6200 base_class_end = cxx_record_decl->bases_end();
6201 base_class != base_class_end; ++base_class) {
6202 const clang::CXXRecordDecl *base_class_decl = nullptr;
6203
6204 // Skip empty base classes
6205 if (omit_empty_base_classes) {
6206 base_class_decl = llvm::cast<clang::CXXRecordDecl>(
6207 base_class->getType()->getAs<clang::RecordType>()->getDecl());
6208 if (!TypeSystemClang::RecordHasFields(base_class_decl))
6209 continue;
6210 }
6211
6212 if (idx == child_idx) {
6213 if (base_class_decl == nullptr)
6214 base_class_decl = llvm::cast<clang::CXXRecordDecl>(
6215 base_class->getType()->getAs<clang::RecordType>()->getDecl());
6216
6217 if (base_class->isVirtual()) {
6218 bool handled = false;
6219 if (valobj) {
6220 clang::VTableContextBase *vtable_ctx =
6221 getASTContext().getVTableContext();
6222 if (vtable_ctx)
6223 handled = GetVBaseBitOffset(*vtable_ctx, *valobj,
6224 record_layout, cxx_record_decl,
6225 base_class_decl, bit_offset);
6226 }
6227 if (!handled)
6228 bit_offset = record_layout.getVBaseClassOffset(base_class_decl)
6229 .getQuantity() *
6230 8;
6231 } else
6232 bit_offset = record_layout.getBaseClassOffset(base_class_decl)
6233 .getQuantity() *
6234 8;
6235
6236 // Base classes should be a multiple of 8 bits in size
6237 child_byte_offset = bit_offset / 8;
6238 CompilerType base_class_clang_type = GetType(base_class->getType());
6239 child_name = base_class_clang_type.GetTypeName().AsCString("");
6240 Optional<uint64_t> size =
6241 base_class_clang_type.GetBitSize(get_exe_scope());
6242 if (!size)
6243 return {};
6244 uint64_t base_class_clang_type_bit_size = *size;
6245
6246 // Base classes bit sizes should be a multiple of 8 bits in size
6247 assert(base_class_clang_type_bit_size % 8 == 0)(static_cast <bool> (base_class_clang_type_bit_size % 8
== 0) ? void (0) : __assert_fail ("base_class_clang_type_bit_size % 8 == 0"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
6247, __extension__ __PRETTY_FUNCTION__))
;
6248 child_byte_size = base_class_clang_type_bit_size / 8;
6249 child_is_base_class = true;
6250 return base_class_clang_type;
6251 }
6252 // We don't increment the child index in the for loop since we might
6253 // be skipping empty base classes
6254 ++child_idx;
6255 }
6256 }
6257 // Make sure index is in range...
6258 uint32_t field_idx = 0;
6259 clang::RecordDecl::field_iterator field, field_end;
6260 for (field = record_decl->field_begin(),
6261 field_end = record_decl->field_end();
6262 field != field_end; ++field, ++field_idx, ++child_idx) {
6263 if (idx == child_idx) {
6264 // Print the member type if requested
6265 // Print the member name and equal sign
6266 child_name.assign(field->getNameAsString());
6267
6268 // Figure out the type byte size (field_type_info.first) and
6269 // alignment (field_type_info.second) from the AST context.
6270 CompilerType field_clang_type = GetType(field->getType());
6271 assert(field_idx < record_layout.getFieldCount())(static_cast <bool> (field_idx < record_layout.getFieldCount
()) ? void (0) : __assert_fail ("field_idx < record_layout.getFieldCount()"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
6271, __extension__ __PRETTY_FUNCTION__))
;
6272 Optional<uint64_t> size =
6273 field_clang_type.GetByteSize(get_exe_scope());
6274 if (!size)
6275 return {};
6276 child_byte_size = *size;
6277 const uint32_t child_bit_size = child_byte_size * 8;
6278
6279 // Figure out the field offset within the current struct/union/class
6280 // type
6281 bit_offset = record_layout.getFieldOffset(field_idx);
6282 if (FieldIsBitfield(*field, child_bitfield_bit_size)) {
6283 child_bitfield_bit_offset = bit_offset % child_bit_size;
6284 const uint32_t child_bit_offset =
6285 bit_offset - child_bitfield_bit_offset;
6286 child_byte_offset = child_bit_offset / 8;
6287 } else {
6288 child_byte_offset = bit_offset / 8;
6289 }
6290
6291 return field_clang_type;
6292 }
6293 }
6294 }
6295 break;
6296
6297 case clang::Type::ObjCObject:
6298 case clang::Type::ObjCInterface:
6299 if (idx_is_valid && GetCompleteType(type)) {
6300 const clang::ObjCObjectType *objc_class_type =
6301 llvm::dyn_cast<clang::ObjCObjectType>(parent_qual_type.getTypePtr());
6302 assert(objc_class_type)(static_cast <bool> (objc_class_type) ? void (0) : __assert_fail
("objc_class_type", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 6302, __extension__ __PRETTY_FUNCTION__))
;
6303 if (objc_class_type) {
6304 uint32_t child_idx = 0;
6305 clang::ObjCInterfaceDecl *class_interface_decl =
6306 objc_class_type->getInterface();
6307
6308 if (class_interface_decl) {
6309
6310 const clang::ASTRecordLayout &interface_layout =
6311 getASTContext().getASTObjCInterfaceLayout(class_interface_decl);
6312 clang::ObjCInterfaceDecl *superclass_interface_decl =
6313 class_interface_decl->getSuperClass();
6314 if (superclass_interface_decl) {
6315 if (omit_empty_base_classes) {
6316 CompilerType base_class_clang_type =
6317 GetType(getASTContext().getObjCInterfaceType(
6318 superclass_interface_decl));
6319 if (base_class_clang_type.GetNumChildren(omit_empty_base_classes,
6320 exe_ctx) > 0) {
6321 if (idx == 0) {
6322 clang::QualType ivar_qual_type(
6323 getASTContext().getObjCInterfaceType(
6324 superclass_interface_decl));
6325
6326 child_name.assign(
6327 superclass_interface_decl->getNameAsString());
6328
6329 clang::TypeInfo ivar_type_info =
6330 getASTContext().getTypeInfo(ivar_qual_type.getTypePtr());
6331
6332 child_byte_size = ivar_type_info.Width / 8;
6333 child_byte_offset = 0;
6334 child_is_base_class = true;
6335
6336 return GetType(ivar_qual_type);
6337 }
6338
6339 ++child_idx;
6340 }
6341 } else
6342 ++child_idx;
6343 }
6344
6345 const uint32_t superclass_idx = child_idx;
6346
6347 if (idx < (child_idx + class_interface_decl->ivar_size())) {
6348 clang::ObjCInterfaceDecl::ivar_iterator ivar_pos,
6349 ivar_end = class_interface_decl->ivar_end();
6350
6351 for (ivar_pos = class_interface_decl->ivar_begin();
6352 ivar_pos != ivar_end; ++ivar_pos) {
6353 if (child_idx == idx) {
6354 clang::ObjCIvarDecl *ivar_decl = *ivar_pos;
6355
6356 clang::QualType ivar_qual_type(ivar_decl->getType());
6357
6358 child_name.assign(ivar_decl->getNameAsString());
6359
6360 clang::TypeInfo ivar_type_info =
6361 getASTContext().getTypeInfo(ivar_qual_type.getTypePtr());
6362
6363 child_byte_size = ivar_type_info.Width / 8;
6364
6365 // Figure out the field offset within the current
6366 // struct/union/class type For ObjC objects, we can't trust the
6367 // bit offset we get from the Clang AST, since that doesn't
6368 // account for the space taken up by unbacked properties, or
6369 // from the changing size of base classes that are newer than
6370 // this class. So if we have a process around that we can ask
6371 // about this object, do so.
6372 child_byte_offset = LLDB_INVALID_IVAR_OFFSET(4294967295U);
6373 Process *process = nullptr;
6374 if (exe_ctx)
6375 process = exe_ctx->GetProcessPtr();
6376 if (process) {
6377 ObjCLanguageRuntime *objc_runtime =
6378 ObjCLanguageRuntime::Get(*process);
6379 if (objc_runtime != nullptr) {
6380 CompilerType parent_ast_type = GetType(parent_qual_type);
6381 child_byte_offset = objc_runtime->GetByteOffsetForIvar(
6382 parent_ast_type, ivar_decl->getNameAsString().c_str());
6383 }
6384 }
6385
6386 // Setting this to INT32_MAX to make sure we don't compute it
6387 // twice...
6388 bit_offset = INT32_MAX(2147483647);
6389
6390 if (child_byte_offset ==
6391 static_cast<int32_t>(LLDB_INVALID_IVAR_OFFSET(4294967295U))) {
6392 bit_offset = interface_layout.getFieldOffset(child_idx -
6393 superclass_idx);
6394 child_byte_offset = bit_offset / 8;
6395 }
6396
6397 // Note, the ObjC Ivar Byte offset is just that, it doesn't
6398 // account for the bit offset of a bitfield within its
6399 // containing object. So regardless of where we get the byte
6400 // offset from, we still need to get the bit offset for
6401 // bitfields from the layout.
6402
6403 if (FieldIsBitfield(ivar_decl, child_bitfield_bit_size)) {
6404 if (bit_offset == INT32_MAX(2147483647))
6405 bit_offset = interface_layout.getFieldOffset(
6406 child_idx - superclass_idx);
6407
6408 child_bitfield_bit_offset = bit_offset % 8;
6409 }
6410 return GetType(ivar_qual_type);
6411 }
6412 ++child_idx;
6413 }
6414 }
6415 }
6416 }
6417 }
6418 break;
6419
6420 case clang::Type::ObjCObjectPointer:
6421 if (idx_is_valid) {
6422 CompilerType pointee_clang_type(GetPointeeType(type));
6423
6424 if (transparent_pointers && pointee_clang_type.IsAggregateType()) {
6425 child_is_deref_of_parent = false;
6426 bool tmp_child_is_deref_of_parent = false;
6427 return pointee_clang_type.GetChildCompilerTypeAtIndex(
6428 exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
6429 ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
6430 child_bitfield_bit_size, child_bitfield_bit_offset,
6431 child_is_base_class, tmp_child_is_deref_of_parent, valobj,
6432 language_flags);
6433 } else {
6434 child_is_deref_of_parent = true;
6435 const char *parent_name =
6436 valobj ? valobj->GetName().GetCString() : nullptr;
6437 if (parent_name) {
6438 child_name.assign(1, '*');
6439 child_name += parent_name;
6440 }
6441
6442 // We have a pointer to an simple type
6443 if (idx == 0 && pointee_clang_type.GetCompleteType()) {
6444 if (Optional<uint64_t> size =
6445 pointee_clang_type.GetByteSize(get_exe_scope())) {
6446 child_byte_size = *size;
6447 child_byte_offset = 0;
6448 return pointee_clang_type;
6449 }
6450 }
6451 }
6452 }
6453 break;
6454
6455 case clang::Type::Vector:
6456 case clang::Type::ExtVector:
6457 if (idx_is_valid) {
6458 const clang::VectorType *array =
6459 llvm::cast<clang::VectorType>(parent_qual_type.getTypePtr());
6460 if (array) {
6461 CompilerType element_type = GetType(array->getElementType());
6462 if (element_type.GetCompleteType()) {
6463 char element_name[64];
6464 ::snprintf(element_name, sizeof(element_name), "[%" PRIu64"l" "u" "]",
6465 static_cast<uint64_t>(idx));
6466 child_name.assign(element_name);
6467 if (Optional<uint64_t> size =
6468 element_type.GetByteSize(get_exe_scope())) {
6469 child_byte_size = *size;
6470 child_byte_offset = (int32_t)idx * (int32_t)child_byte_size;
6471 return element_type;
6472 }
6473 }
6474 }
6475 }
6476 break;
6477
6478 case clang::Type::ConstantArray:
6479 case clang::Type::IncompleteArray:
6480 if (ignore_array_bounds || idx_is_valid) {
6481 const clang::ArrayType *array = GetQualType(type)->getAsArrayTypeUnsafe();
6482 if (array) {
6483 CompilerType element_type = GetType(array->getElementType());
6484 if (element_type.GetCompleteType()) {
6485 child_name = std::string(llvm::formatv("[{0}]", idx));
6486 if (Optional<uint64_t> size =
6487 element_type.GetByteSize(get_exe_scope())) {
6488 child_byte_size = *size;
6489 child_byte_offset = (int32_t)idx * (int32_t)child_byte_size;
6490 return element_type;
6491 }
6492 }
6493 }
6494 }
6495 break;
6496
6497 case clang::Type::Pointer: {
6498 CompilerType pointee_clang_type(GetPointeeType(type));
6499
6500 // Don't dereference "void *" pointers
6501 if (pointee_clang_type.IsVoidType())
6502 return CompilerType();
6503
6504 if (transparent_pointers && pointee_clang_type.IsAggregateType()) {
6505 child_is_deref_of_parent = false;
6506 bool tmp_child_is_deref_of_parent = false;
6507 return pointee_clang_type.GetChildCompilerTypeAtIndex(
6508 exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
6509 ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
6510 child_bitfield_bit_size, child_bitfield_bit_offset,
6511 child_is_base_class, tmp_child_is_deref_of_parent, valobj,
6512 language_flags);
6513 } else {
6514 child_is_deref_of_parent = true;
6515
6516 const char *parent_name =
6517 valobj ? valobj->GetName().GetCString() : nullptr;
6518 if (parent_name) {
6519 child_name.assign(1, '*');
6520 child_name += parent_name;
6521 }
6522
6523 // We have a pointer to an simple type
6524 if (idx == 0) {
6525 if (Optional<uint64_t> size =
6526 pointee_clang_type.GetByteSize(get_exe_scope())) {
6527 child_byte_size = *size;
6528 child_byte_offset = 0;
6529 return pointee_clang_type;
6530 }
6531 }
6532 }
6533 break;
6534 }
6535
6536 case clang::Type::LValueReference:
6537 case clang::Type::RValueReference:
6538 if (idx_is_valid) {
6539 const clang::ReferenceType *reference_type =
6540 llvm::cast<clang::ReferenceType>(
6541 RemoveWrappingTypes(GetQualType(type)).getTypePtr());
6542 CompilerType pointee_clang_type =
6543 GetType(reference_type->getPointeeType());
6544 if (transparent_pointers && pointee_clang_type.IsAggregateType()) {
6545 child_is_deref_of_parent = false;
6546 bool tmp_child_is_deref_of_parent = false;
6547 return pointee_clang_type.GetChildCompilerTypeAtIndex(
6548 exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
6549 ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
6550 child_bitfield_bit_size, child_bitfield_bit_offset,
6551 child_is_base_class, tmp_child_is_deref_of_parent, valobj,
6552 language_flags);
6553 } else {
6554 const char *parent_name =
6555 valobj ? valobj->GetName().GetCString() : nullptr;
6556 if (parent_name) {
6557 child_name.assign(1, '&');
6558 child_name += parent_name;
6559 }
6560
6561 // We have a pointer to an simple type
6562 if (idx == 0) {
6563 if (Optional<uint64_t> size =
6564 pointee_clang_type.GetByteSize(get_exe_scope())) {
6565 child_byte_size = *size;
6566 child_byte_offset = 0;
6567 return pointee_clang_type;
6568 }
6569 }
6570 }
6571 }
6572 break;
6573
6574 default:
6575 break;
6576 }
6577 return CompilerType();
6578}
6579
6580static uint32_t GetIndexForRecordBase(const clang::RecordDecl *record_decl,
6581 const clang::CXXBaseSpecifier *base_spec,
6582 bool omit_empty_base_classes) {
6583 uint32_t child_idx = 0;
6584
6585 const clang::CXXRecordDecl *cxx_record_decl =
6586 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
6587
6588 if (cxx_record_decl) {
6589 clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
6590 for (base_class = cxx_record_decl->bases_begin(),
6591 base_class_end = cxx_record_decl->bases_end();
6592 base_class != base_class_end; ++base_class) {
6593 if (omit_empty_base_classes) {
6594 if (BaseSpecifierIsEmpty(base_class))
6595 continue;
6596 }
6597
6598 if (base_class == base_spec)
6599 return child_idx;
6600 ++child_idx;
6601 }
6602 }
6603
6604 return UINT32_MAX(4294967295U);
6605}
6606
6607static uint32_t GetIndexForRecordChild(const clang::RecordDecl *record_decl,
6608 clang::NamedDecl *canonical_decl,
6609 bool omit_empty_base_classes) {
6610 uint32_t child_idx = TypeSystemClang::GetNumBaseClasses(
6611 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl),
6612 omit_empty_base_classes);
6613
6614 clang::RecordDecl::field_iterator field, field_end;
6615 for (field = record_decl->field_begin(), field_end = record_decl->field_end();
6616 field != field_end; ++field, ++child_idx) {
6617 if (field->getCanonicalDecl() == canonical_decl)
6618 return child_idx;
6619 }
6620
6621 return UINT32_MAX(4294967295U);
6622}
6623
6624// Look for a child member (doesn't include base classes, but it does include
6625// their members) in the type hierarchy. Returns an index path into
6626// "clang_type" on how to reach the appropriate member.
6627//
6628// class A
6629// {
6630// public:
6631// int m_a;
6632// int m_b;
6633// };
6634//
6635// class B
6636// {
6637// };
6638//
6639// class C :
6640// public B,
6641// public A
6642// {
6643// };
6644//
6645// If we have a clang type that describes "class C", and we wanted to looked
6646// "m_b" in it:
6647//
6648// With omit_empty_base_classes == false we would get an integer array back
6649// with: { 1, 1 } The first index 1 is the child index for "class A" within
6650// class C The second index 1 is the child index for "m_b" within class A
6651//
6652// With omit_empty_base_classes == true we would get an integer array back
6653// with: { 0, 1 } The first index 0 is the child index for "class A" within
6654// class C (since class B doesn't have any members it doesn't count) The second
6655// index 1 is the child index for "m_b" within class A
6656
6657size_t TypeSystemClang::GetIndexOfChildMemberWithName(
6658 lldb::opaque_compiler_type_t type, const char *name,
6659 bool omit_empty_base_classes, std::vector<uint32_t> &child_indexes) {
6660 if (type && name && name[0]) {
6661 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
6662 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
6663 switch (type_class) {
6664 case clang::Type::Record:
6665 if (GetCompleteType(type)) {
6666 const clang::RecordType *record_type =
6667 llvm::cast<clang::RecordType>(qual_type.getTypePtr());
6668 const clang::RecordDecl *record_decl = record_type->getDecl();
6669
6670 assert(record_decl)(static_cast <bool> (record_decl) ? void (0) : __assert_fail
("record_decl", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 6670, __extension__ __PRETTY_FUNCTION__))
;
6671 uint32_t child_idx = 0;
6672
6673 const clang::CXXRecordDecl *cxx_record_decl =
6674 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
6675
6676 // Try and find a field that matches NAME
6677 clang::RecordDecl::field_iterator field, field_end;
6678 llvm::StringRef name_sref(name);
6679 for (field = record_decl->field_begin(),
6680 field_end = record_decl->field_end();
6681 field != field_end; ++field, ++child_idx) {
6682 llvm::StringRef field_name = field->getName();
6683 if (field_name.empty()) {
6684 CompilerType field_type = GetType(field->getType());
6685 child_indexes.push_back(child_idx);
6686 if (field_type.GetIndexOfChildMemberWithName(
6687 name, omit_empty_base_classes, child_indexes))
6688 return child_indexes.size();
6689 child_indexes.pop_back();
6690
6691 } else if (field_name.equals(name_sref)) {
6692 // We have to add on the number of base classes to this index!
6693 child_indexes.push_back(
6694 child_idx + TypeSystemClang::GetNumBaseClasses(
6695 cxx_record_decl, omit_empty_base_classes));
6696 return child_indexes.size();
6697 }
6698 }
6699
6700 if (cxx_record_decl) {
6701 const clang::RecordDecl *parent_record_decl = cxx_record_decl;
6702
6703 // Didn't find things easily, lets let clang do its thang...
6704 clang::IdentifierInfo &ident_ref =
6705 getASTContext().Idents.get(name_sref);
6706 clang::DeclarationName decl_name(&ident_ref);
6707
6708 clang::CXXBasePaths paths;
6709 if (cxx_record_decl->lookupInBases(
6710 [decl_name](const clang::CXXBaseSpecifier *specifier,
6711 clang::CXXBasePath &path) {
6712 CXXRecordDecl *record =
6713 specifier->getType()->getAsCXXRecordDecl();
6714 auto r = record->lookup(decl_name);
6715 path.Decls = r.begin();
6716 return !r.empty();
6717 },
6718 paths)) {
6719 clang::CXXBasePaths::const_paths_iterator path,
6720 path_end = paths.end();
6721 for (path = paths.begin(); path != path_end; ++path) {
6722 const size_t num_path_elements = path->size();
6723 for (size_t e = 0; e < num_path_elements; ++e) {
6724 clang::CXXBasePathElement elem = (*path)[e];
6725
6726 child_idx = GetIndexForRecordBase(parent_record_decl, elem.Base,
6727 omit_empty_base_classes);
6728 if (child_idx == UINT32_MAX(4294967295U)) {
6729 child_indexes.clear();
6730 return 0;
6731 } else {
6732 child_indexes.push_back(child_idx);
6733 parent_record_decl = llvm::cast<clang::RecordDecl>(
6734 elem.Base->getType()
6735 ->getAs<clang::RecordType>()
6736 ->getDecl());
6737 }
6738 }
6739 for (clang::DeclContext::lookup_iterator I = path->Decls, E;
6740 I != E; ++I) {
6741 child_idx = GetIndexForRecordChild(
6742 parent_record_decl, *I, omit_empty_base_classes);
6743 if (child_idx == UINT32_MAX(4294967295U)) {
6744 child_indexes.clear();
6745 return 0;
6746 } else {
6747 child_indexes.push_back(child_idx);
6748 }
6749 }
6750 }
6751 return child_indexes.size();
6752 }
6753 }
6754 }
6755 break;
6756
6757 case clang::Type::ObjCObject:
6758 case clang::Type::ObjCInterface:
6759 if (GetCompleteType(type)) {
6760 llvm::StringRef name_sref(name);
6761 const clang::ObjCObjectType *objc_class_type =
6762 llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
6763 assert(objc_class_type)(static_cast <bool> (objc_class_type) ? void (0) : __assert_fail
("objc_class_type", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 6763, __extension__ __PRETTY_FUNCTION__))
;
6764 if (objc_class_type) {
6765 uint32_t child_idx = 0;
6766 clang::ObjCInterfaceDecl *class_interface_decl =
6767 objc_class_type->getInterface();
6768
6769 if (class_interface_decl) {
6770 clang::ObjCInterfaceDecl::ivar_iterator ivar_pos,
6771 ivar_end = class_interface_decl->ivar_end();
6772 clang::ObjCInterfaceDecl *superclass_interface_decl =
6773 class_interface_decl->getSuperClass();
6774
6775 for (ivar_pos = class_interface_decl->ivar_begin();
6776 ivar_pos != ivar_end; ++ivar_pos, ++child_idx) {
6777 const clang::ObjCIvarDecl *ivar_decl = *ivar_pos;
6778
6779 if (ivar_decl->getName().equals(name_sref)) {
6780 if ((!omit_empty_base_classes && superclass_interface_decl) ||
6781 (omit_empty_base_classes &&
6782 ObjCDeclHasIVars(superclass_interface_decl, true)))
6783 ++child_idx;
6784
6785 child_indexes.push_back(child_idx);
6786 return child_indexes.size();
6787 }
6788 }
6789
6790 if (superclass_interface_decl) {
6791 // The super class index is always zero for ObjC classes, so we
6792 // push it onto the child indexes in case we find an ivar in our
6793 // superclass...
6794 child_indexes.push_back(0);
6795
6796 CompilerType superclass_clang_type =
6797 GetType(getASTContext().getObjCInterfaceType(
6798 superclass_interface_decl));
6799 if (superclass_clang_type.GetIndexOfChildMemberWithName(
6800 name, omit_empty_base_classes, child_indexes)) {
6801 // We did find an ivar in a superclass so just return the
6802 // results!
6803 return child_indexes.size();
6804 }
6805
6806 // We didn't find an ivar matching "name" in our superclass, pop
6807 // the superclass zero index that we pushed on above.
6808 child_indexes.pop_back();
6809 }
6810 }
6811 }
6812 }
6813 break;
6814
6815 case clang::Type::ObjCObjectPointer: {
6816 CompilerType objc_object_clang_type = GetType(
6817 llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())
6818 ->getPointeeType());
6819 return objc_object_clang_type.GetIndexOfChildMemberWithName(
6820 name, omit_empty_base_classes, child_indexes);
6821 } break;
6822
6823 case clang::Type::ConstantArray: {
6824 // const clang::ConstantArrayType *array =
6825 // llvm::cast<clang::ConstantArrayType>(parent_qual_type.getTypePtr());
6826 // const uint64_t element_count =
6827 // array->getSize().getLimitedValue();
6828 //
6829 // if (idx < element_count)
6830 // {
6831 // std::pair<uint64_t, unsigned> field_type_info =
6832 // ast->getTypeInfo(array->getElementType());
6833 //
6834 // char element_name[32];
6835 // ::snprintf (element_name, sizeof (element_name),
6836 // "%s[%u]", parent_name ? parent_name : "", idx);
6837 //
6838 // child_name.assign(element_name);
6839 // assert(field_type_info.first % 8 == 0);
6840 // child_byte_size = field_type_info.first / 8;
6841 // child_byte_offset = idx * child_byte_size;
6842 // return array->getElementType().getAsOpaquePtr();
6843 // }
6844 } break;
6845
6846 // case clang::Type::MemberPointerType:
6847 // {
6848 // MemberPointerType *mem_ptr_type =
6849 // llvm::cast<MemberPointerType>(qual_type.getTypePtr());
6850 // clang::QualType pointee_type =
6851 // mem_ptr_type->getPointeeType();
6852 //
6853 // if (TypeSystemClang::IsAggregateType
6854 // (pointee_type.getAsOpaquePtr()))
6855 // {
6856 // return GetIndexOfChildWithName (ast,
6857 // mem_ptr_type->getPointeeType().getAsOpaquePtr(),
6858 // name);
6859 // }
6860 // }
6861 // break;
6862 //
6863 case clang::Type::LValueReference:
6864 case clang::Type::RValueReference: {
6865 const clang::ReferenceType *reference_type =
6866 llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
6867 clang::QualType pointee_type(reference_type->getPointeeType());
6868 CompilerType pointee_clang_type = GetType(pointee_type);
6869
6870 if (pointee_clang_type.IsAggregateType()) {
6871 return pointee_clang_type.GetIndexOfChildMemberWithName(
6872 name, omit_empty_base_classes, child_indexes);
6873 }
6874 } break;
6875
6876 case clang::Type::Pointer: {
6877 CompilerType pointee_clang_type(GetPointeeType(type));
6878
6879 if (pointee_clang_type.IsAggregateType()) {
6880 return pointee_clang_type.GetIndexOfChildMemberWithName(
6881 name, omit_empty_base_classes, child_indexes);
6882 }
6883 } break;
6884
6885 default:
6886 break;
6887 }
6888 }
6889 return 0;
6890}
6891
6892// Get the index of the child of "clang_type" whose name matches. This function
6893// doesn't descend into the children, but only looks one level deep and name
6894// matches can include base class names.
6895
6896uint32_t
6897TypeSystemClang::GetIndexOfChildWithName(lldb::opaque_compiler_type_t type,
6898 const char *name,
6899 bool omit_empty_base_classes) {
6900 if (type && name && name[0]) {
6901 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
6902
6903 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
6904
6905 switch (type_class) {
6906 case clang::Type::Record:
6907 if (GetCompleteType(type)) {
6908 const clang::RecordType *record_type =
6909 llvm::cast<clang::RecordType>(qual_type.getTypePtr());
6910 const clang::RecordDecl *record_decl = record_type->getDecl();
6911
6912 assert(record_decl)(static_cast <bool> (record_decl) ? void (0) : __assert_fail
("record_decl", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 6912, __extension__ __PRETTY_FUNCTION__))
;
6913 uint32_t child_idx = 0;
6914
6915 const clang::CXXRecordDecl *cxx_record_decl =
6916 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
6917
6918 if (cxx_record_decl) {
6919 clang::CXXRecordDecl::base_class_const_iterator base_class,
6920 base_class_end;
6921 for (base_class = cxx_record_decl->bases_begin(),
6922 base_class_end = cxx_record_decl->bases_end();
6923 base_class != base_class_end; ++base_class) {
6924 // Skip empty base classes
6925 clang::CXXRecordDecl *base_class_decl =
6926 llvm::cast<clang::CXXRecordDecl>(
6927 base_class->getType()
6928 ->getAs<clang::RecordType>()
6929 ->getDecl());
6930 if (omit_empty_base_classes &&
6931 !TypeSystemClang::RecordHasFields(base_class_decl))
6932 continue;
6933
6934 CompilerType base_class_clang_type = GetType(base_class->getType());
6935 std::string base_class_type_name(
6936 base_class_clang_type.GetTypeName().AsCString(""));
6937 if (base_class_type_name == name)
6938 return child_idx;
6939 ++child_idx;
6940 }
6941 }
6942
6943 // Try and find a field that matches NAME
6944 clang::RecordDecl::field_iterator field, field_end;
6945 llvm::StringRef name_sref(name);
6946 for (field = record_decl->field_begin(),
6947 field_end = record_decl->field_end();
6948 field != field_end; ++field, ++child_idx) {
6949 if (field->getName().equals(name_sref))
6950 return child_idx;
6951 }
6952 }
6953 break;
6954
6955 case clang::Type::ObjCObject:
6956 case clang::Type::ObjCInterface:
6957 if (GetCompleteType(type)) {
6958 llvm::StringRef name_sref(name);
6959 const clang::ObjCObjectType *objc_class_type =
6960 llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
6961 assert(objc_class_type)(static_cast <bool> (objc_class_type) ? void (0) : __assert_fail
("objc_class_type", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 6961, __extension__ __PRETTY_FUNCTION__))
;
6962 if (objc_class_type) {
6963 uint32_t child_idx = 0;
6964 clang::ObjCInterfaceDecl *class_interface_decl =
6965 objc_class_type->getInterface();
6966
6967 if (class_interface_decl) {
6968 clang::ObjCInterfaceDecl::ivar_iterator ivar_pos,
6969 ivar_end = class_interface_decl->ivar_end();
6970 clang::ObjCInterfaceDecl *superclass_interface_decl =
6971 class_interface_decl->getSuperClass();
6972
6973 for (ivar_pos = class_interface_decl->ivar_begin();
6974 ivar_pos != ivar_end; ++ivar_pos, ++child_idx) {
6975 const clang::ObjCIvarDecl *ivar_decl = *ivar_pos;
6976
6977 if (ivar_decl->getName().equals(name_sref)) {
6978 if ((!omit_empty_base_classes && superclass_interface_decl) ||
6979 (omit_empty_base_classes &&
6980 ObjCDeclHasIVars(superclass_interface_decl, true)))
6981 ++child_idx;
6982
6983 return child_idx;
6984 }
6985 }
6986
6987 if (superclass_interface_decl) {
6988 if (superclass_interface_decl->getName().equals(name_sref))
6989 return 0;
6990 }
6991 }
6992 }
6993 }
6994 break;
6995
6996 case clang::Type::ObjCObjectPointer: {
6997 CompilerType pointee_clang_type = GetType(
6998 llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())
6999 ->getPointeeType());
7000 return pointee_clang_type.GetIndexOfChildWithName(
7001 name, omit_empty_base_classes);
7002 } break;
7003
7004 case clang::Type::ConstantArray: {
7005 // const clang::ConstantArrayType *array =
7006 // llvm::cast<clang::ConstantArrayType>(parent_qual_type.getTypePtr());
7007 // const uint64_t element_count =
7008 // array->getSize().getLimitedValue();
7009 //
7010 // if (idx < element_count)
7011 // {
7012 // std::pair<uint64_t, unsigned> field_type_info =
7013 // ast->getTypeInfo(array->getElementType());
7014 //
7015 // char element_name[32];
7016 // ::snprintf (element_name, sizeof (element_name),
7017 // "%s[%u]", parent_name ? parent_name : "", idx);
7018 //
7019 // child_name.assign(element_name);
7020 // assert(field_type_info.first % 8 == 0);
7021 // child_byte_size = field_type_info.first / 8;
7022 // child_byte_offset = idx * child_byte_size;
7023 // return array->getElementType().getAsOpaquePtr();
7024 // }
7025 } break;
7026
7027 // case clang::Type::MemberPointerType:
7028 // {
7029 // MemberPointerType *mem_ptr_type =
7030 // llvm::cast<MemberPointerType>(qual_type.getTypePtr());
7031 // clang::QualType pointee_type =
7032 // mem_ptr_type->getPointeeType();
7033 //
7034 // if (TypeSystemClang::IsAggregateType
7035 // (pointee_type.getAsOpaquePtr()))
7036 // {
7037 // return GetIndexOfChildWithName (ast,
7038 // mem_ptr_type->getPointeeType().getAsOpaquePtr(),
7039 // name);
7040 // }
7041 // }
7042 // break;
7043 //
7044 case clang::Type::LValueReference:
7045 case clang::Type::RValueReference: {
7046 const clang::ReferenceType *reference_type =
7047 llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
7048 CompilerType pointee_type = GetType(reference_type->getPointeeType());
7049
7050 if (pointee_type.IsAggregateType()) {
7051 return pointee_type.GetIndexOfChildWithName(name,
7052 omit_empty_base_classes);
7053 }
7054 } break;
7055
7056 case clang::Type::Pointer: {
7057 const clang::PointerType *pointer_type =
7058 llvm::cast<clang::PointerType>(qual_type.getTypePtr());
7059 CompilerType pointee_type = GetType(pointer_type->getPointeeType());
7060
7061 if (pointee_type.IsAggregateType()) {
7062 return pointee_type.GetIndexOfChildWithName(name,
7063 omit_empty_base_classes);
7064 } else {
7065 // if (parent_name)
7066 // {
7067 // child_name.assign(1, '*');
7068 // child_name += parent_name;
7069 // }
7070 //
7071 // // We have a pointer to an simple type
7072 // if (idx == 0)
7073 // {
7074 // std::pair<uint64_t, unsigned> clang_type_info
7075 // = ast->getTypeInfo(pointee_type);
7076 // assert(clang_type_info.first % 8 == 0);
7077 // child_byte_size = clang_type_info.first / 8;
7078 // child_byte_offset = 0;
7079 // return pointee_type.getAsOpaquePtr();
7080 // }
7081 }
7082 } break;
7083
7084 default:
7085 break;
7086 }
7087 }
7088 return UINT32_MAX(4294967295U);
7089}
7090
7091size_t
7092TypeSystemClang::GetNumTemplateArguments(lldb::opaque_compiler_type_t type) {
7093 if (!type)
7094 return 0;
7095
7096 clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
7097 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
7098 switch (type_class) {
7099 case clang::Type::Record:
7100 if (GetCompleteType(type)) {
7101 const clang::CXXRecordDecl *cxx_record_decl =
7102 qual_type->getAsCXXRecordDecl();
7103 if (cxx_record_decl) {
7104 const clang::ClassTemplateSpecializationDecl *template_decl =
7105 llvm::dyn_cast<clang::ClassTemplateSpecializationDecl>(
7106 cxx_record_decl);
7107 if (template_decl)
7108 return template_decl->getTemplateArgs().size();
7109 }
7110 }
7111 break;
7112
7113 default:
7114 break;
7115 }
7116
7117 return 0;
7118}
7119
7120const clang::ClassTemplateSpecializationDecl *
7121TypeSystemClang::GetAsTemplateSpecialization(
7122 lldb::opaque_compiler_type_t type) {
7123 if (!type)
7124 return nullptr;
7125
7126 clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
7127 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
7128 switch (type_class) {
7129 case clang::Type::Record: {
7130 if (! GetCompleteType(type))
7131 return nullptr;
7132 const clang::CXXRecordDecl *cxx_record_decl =
7133 qual_type->getAsCXXRecordDecl();
7134 if (!cxx_record_decl)
7135 return nullptr;
7136 return llvm::dyn_cast<clang::ClassTemplateSpecializationDecl>(
7137 cxx_record_decl);
7138 }
7139
7140 default:
7141 return nullptr;
7142 }
7143}
7144
7145lldb::TemplateArgumentKind
7146TypeSystemClang::GetTemplateArgumentKind(lldb::opaque_compiler_type_t type,
7147 size_t arg_idx) {
7148 const clang::ClassTemplateSpecializationDecl *template_decl =
7149 GetAsTemplateSpecialization(type);
7150 if (! template_decl || arg_idx >= template_decl->getTemplateArgs().size())
7151 return eTemplateArgumentKindNull;
7152
7153 switch (template_decl->getTemplateArgs()[arg_idx].getKind()) {
7154 case clang::TemplateArgument::Null:
7155 return eTemplateArgumentKindNull;
7156
7157 case clang::TemplateArgument::NullPtr:
7158 return eTemplateArgumentKindNullPtr;
7159
7160 case clang::TemplateArgument::Type:
7161 return eTemplateArgumentKindType;
7162
7163 case clang::TemplateArgument::Declaration:
7164 return eTemplateArgumentKindDeclaration;
7165
7166 case clang::TemplateArgument::Integral:
7167 return eTemplateArgumentKindIntegral;
7168
7169 case clang::TemplateArgument::Template:
7170 return eTemplateArgumentKindTemplate;
7171
7172 case clang::TemplateArgument::TemplateExpansion:
7173 return eTemplateArgumentKindTemplateExpansion;
7174
7175 case clang::TemplateArgument::Expression:
7176 return eTemplateArgumentKindExpression;
7177
7178 case clang::TemplateArgument::Pack:
7179 return eTemplateArgumentKindPack;
7180 }
7181 llvm_unreachable("Unhandled clang::TemplateArgument::ArgKind")::llvm::llvm_unreachable_internal("Unhandled clang::TemplateArgument::ArgKind"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
7181)
;
7182}
7183
7184CompilerType
7185TypeSystemClang::GetTypeTemplateArgument(lldb::opaque_compiler_type_t type,
7186 size_t idx) {
7187 const clang::ClassTemplateSpecializationDecl *template_decl =
7188 GetAsTemplateSpecialization(type);
7189 if (!template_decl || idx >= template_decl->getTemplateArgs().size())
7190 return CompilerType();
7191
7192 const clang::TemplateArgument &template_arg =
7193 template_decl->getTemplateArgs()[idx];
7194 if (template_arg.getKind() != clang::TemplateArgument::Type)
7195 return CompilerType();
7196
7197 return GetType(template_arg.getAsType());
7198}
7199
7200Optional<CompilerType::IntegralTemplateArgument>
7201TypeSystemClang::GetIntegralTemplateArgument(lldb::opaque_compiler_type_t type,
7202 size_t idx) {
7203 const clang::ClassTemplateSpecializationDecl *template_decl =
7204 GetAsTemplateSpecialization(type);
7205 if (! template_decl || idx >= template_decl->getTemplateArgs().size())
7206 return llvm::None;
7207
7208 const clang::TemplateArgument &template_arg =
7209 template_decl->getTemplateArgs()[idx];
7210 if (template_arg.getKind() != clang::TemplateArgument::Integral)
7211 return llvm::None;
7212
7213 return {
7214 {template_arg.getAsIntegral(), GetType(template_arg.getIntegralType())}};
7215}
7216
7217CompilerType TypeSystemClang::GetTypeForFormatters(void *type) {
7218 if (type)
7219 return ClangUtil::RemoveFastQualifiers(CompilerType(this, type));
7220 return CompilerType();
7221}
7222
7223clang::EnumDecl *TypeSystemClang::GetAsEnumDecl(const CompilerType &type) {
7224 const clang::EnumType *enutype =
7225 llvm::dyn_cast<clang::EnumType>(ClangUtil::GetCanonicalQualType(type));
7226 if (enutype)
7227 return enutype->getDecl();
7228 return nullptr;
7229}
7230
7231clang::RecordDecl *TypeSystemClang::GetAsRecordDecl(const CompilerType &type) {
7232 const clang::RecordType *record_type =
7233 llvm::dyn_cast<clang::RecordType>(ClangUtil::GetCanonicalQualType(type));
7234 if (record_type)
7235 return record_type->getDecl();
7236 return nullptr;
7237}
7238
7239clang::TagDecl *TypeSystemClang::GetAsTagDecl(const CompilerType &type) {
7240 return ClangUtil::GetAsTagDecl(type);
7241}
7242
7243clang::TypedefNameDecl *
7244TypeSystemClang::GetAsTypedefDecl(const CompilerType &type) {
7245 const clang::TypedefType *typedef_type =
7246 llvm::dyn_cast<clang::TypedefType>(ClangUtil::GetQualType(type));
7247 if (typedef_type)
7248 return typedef_type->getDecl();
7249 return nullptr;
7250}
7251
7252clang::CXXRecordDecl *
7253TypeSystemClang::GetAsCXXRecordDecl(lldb::opaque_compiler_type_t type) {
7254 return GetCanonicalQualType(type)->getAsCXXRecordDecl();
7255}
7256
7257clang::ObjCInterfaceDecl *
7258TypeSystemClang::GetAsObjCInterfaceDecl(const CompilerType &type) {
7259 const clang::ObjCObjectType *objc_class_type =
7260 llvm::dyn_cast<clang::ObjCObjectType>(
7261 ClangUtil::GetCanonicalQualType(type));
7262 if (objc_class_type)
7263 return objc_class_type->getInterface();
7264 return nullptr;
7265}
7266
7267clang::FieldDecl *TypeSystemClang::AddFieldToRecordType(
7268 const CompilerType &type, llvm::StringRef name,
7269 const CompilerType &field_clang_type, AccessType access,
7270 uint32_t bitfield_bit_size) {
7271 if (!type.IsValid() || !field_clang_type.IsValid())
7272 return nullptr;
7273 TypeSystemClang *ast =
7274 llvm::dyn_cast_or_null<TypeSystemClang>(type.GetTypeSystem());
7275 if (!ast)
7276 return nullptr;
7277 clang::ASTContext &clang_ast = ast->getASTContext();
7278 clang::IdentifierInfo *ident = nullptr;
7279 if (!name.empty())
7280 ident = &clang_ast.Idents.get(name);
7281
7282 clang::FieldDecl *field = nullptr;
7283
7284 clang::Expr *bit_width = nullptr;
7285 if (bitfield_bit_size != 0) {
7286 llvm::APInt bitfield_bit_size_apint(clang_ast.getTypeSize(clang_ast.IntTy),
7287 bitfield_bit_size);
7288 bit_width = new (clang_ast)
7289 clang::IntegerLiteral(clang_ast, bitfield_bit_size_apint,
7290 clang_ast.IntTy, clang::SourceLocation());
7291 }
7292
7293 clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type);
7294 if (record_decl) {
7295 field = clang::FieldDecl::CreateDeserialized(clang_ast, 0);
7296 field->setDeclContext(record_decl);
7297 field->setDeclName(ident);
7298 field->setType(ClangUtil::GetQualType(field_clang_type));
7299 if (bit_width)
7300 field->setBitWidth(bit_width);
7301 SetMemberOwningModule(field, record_decl);
7302
7303 if (name.empty()) {
7304 // Determine whether this field corresponds to an anonymous struct or
7305 // union.
7306 if (const clang::TagType *TagT =
7307 field->getType()->getAs<clang::TagType>()) {
7308 if (clang::RecordDecl *Rec =
7309 llvm::dyn_cast<clang::RecordDecl>(TagT->getDecl()))
7310 if (!Rec->getDeclName()) {
7311 Rec->setAnonymousStructOrUnion(true);
7312 field->setImplicit();
7313 }
7314 }
7315 }
7316
7317 if (field) {
7318 clang::AccessSpecifier access_specifier =
7319 TypeSystemClang::ConvertAccessTypeToAccessSpecifier(access);
7320 field->setAccess(access_specifier);
7321
7322 if (clang::CXXRecordDecl *cxx_record_decl =
7323 llvm::dyn_cast<CXXRecordDecl>(record_decl)) {
7324 AddAccessSpecifierDecl(cxx_record_decl, ast->getASTContext(),
7325 ast->GetCXXRecordDeclAccess(cxx_record_decl),
7326 access_specifier);
7327 ast->SetCXXRecordDeclAccess(cxx_record_decl, access_specifier);
7328 }
7329 record_decl->addDecl(field);
7330
7331 VerifyDecl(field);
7332 }
7333 } else {
7334 clang::ObjCInterfaceDecl *class_interface_decl =
7335 ast->GetAsObjCInterfaceDecl(type);
7336
7337 if (class_interface_decl) {
7338 const bool is_synthesized = false;
7339
7340 field_clang_type.GetCompleteType();
7341
7342 auto *ivar = clang::ObjCIvarDecl::CreateDeserialized(clang_ast, 0);
7343 ivar->setDeclContext(class_interface_decl);
7344 ivar->setDeclName(ident);
7345 ivar->setType(ClangUtil::GetQualType(field_clang_type));
7346 ivar->setAccessControl(ConvertAccessTypeToObjCIvarAccessControl(access));
7347 if (bit_width)
7348 ivar->setBitWidth(bit_width);
7349 ivar->setSynthesize(is_synthesized);
7350 field = ivar;
7351 SetMemberOwningModule(field, class_interface_decl);
7352
7353 if (field) {
7354 class_interface_decl->addDecl(field);
7355
7356 VerifyDecl(field);
7357 }
7358 }
7359 }
7360 return field;
7361}
7362
7363void TypeSystemClang::BuildIndirectFields(const CompilerType &type) {
7364 if (!type)
7365 return;
7366
7367 TypeSystemClang *ast = llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
7368 if (!ast)
7369 return;
7370
7371 clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type);
7372
7373 if (!record_decl)
7374 return;
7375
7376 typedef llvm::SmallVector<clang::IndirectFieldDecl *, 1> IndirectFieldVector;
7377
7378 IndirectFieldVector indirect_fields;
7379 clang::RecordDecl::field_iterator field_pos;
7380 clang::RecordDecl::field_iterator field_end_pos = record_decl->field_end();
7381 clang::RecordDecl::field_iterator last_field_pos = field_end_pos;
7382 for (field_pos = record_decl->field_begin(); field_pos != field_end_pos;
7383 last_field_pos = field_pos++) {
7384 if (field_pos->isAnonymousStructOrUnion()) {
7385 clang::QualType field_qual_type = field_pos->getType();
7386
7387 const clang::RecordType *field_record_type =
7388 field_qual_type->getAs<clang::RecordType>();
7389
7390 if (!field_record_type)
7391 continue;
7392
7393 clang::RecordDecl *field_record_decl = field_record_type->getDecl();
7394
7395 if (!field_record_decl)
7396 continue;
7397
7398 for (clang::RecordDecl::decl_iterator
7399 di = field_record_decl->decls_begin(),
7400 de = field_record_decl->decls_end();
7401 di != de; ++di) {
7402 if (clang::FieldDecl *nested_field_decl =
7403 llvm::dyn_cast<clang::FieldDecl>(*di)) {
7404 clang::NamedDecl **chain =
7405 new (ast->getASTContext()) clang::NamedDecl *[2];
7406 chain[0] = *field_pos;
7407 chain[1] = nested_field_decl;
7408 clang::IndirectFieldDecl *indirect_field =
7409 clang::IndirectFieldDecl::Create(
7410 ast->getASTContext(), record_decl, clang::SourceLocation(),
7411 nested_field_decl->getIdentifier(),
7412 nested_field_decl->getType(), {chain, 2});
7413 SetMemberOwningModule(indirect_field, record_decl);
7414
7415 indirect_field->setImplicit();
7416
7417 indirect_field->setAccess(TypeSystemClang::UnifyAccessSpecifiers(
7418 field_pos->getAccess(), nested_field_decl->getAccess()));
7419
7420 indirect_fields.push_back(indirect_field);
7421 } else if (clang::IndirectFieldDecl *nested_indirect_field_decl =
7422 llvm::dyn_cast<clang::IndirectFieldDecl>(*di)) {
7423 size_t nested_chain_size =
7424 nested_indirect_field_decl->getChainingSize();
7425 clang::NamedDecl **chain = new (ast->getASTContext())
7426 clang::NamedDecl *[nested_chain_size + 1];
7427 chain[0] = *field_pos;
7428
7429 int chain_index = 1;
7430 for (clang::IndirectFieldDecl::chain_iterator
7431 nci = nested_indirect_field_decl->chain_begin(),
7432 nce = nested_indirect_field_decl->chain_end();
7433 nci < nce; ++nci) {
7434 chain[chain_index] = *nci;
7435 chain_index++;
7436 }
7437
7438 clang::IndirectFieldDecl *indirect_field =
7439 clang::IndirectFieldDecl::Create(
7440 ast->getASTContext(), record_decl, clang::SourceLocation(),
7441 nested_indirect_field_decl->getIdentifier(),
7442 nested_indirect_field_decl->getType(),
7443 {chain, nested_chain_size + 1});
7444 SetMemberOwningModule(indirect_field, record_decl);
7445
7446 indirect_field->setImplicit();
7447
7448 indirect_field->setAccess(TypeSystemClang::UnifyAccessSpecifiers(
7449 field_pos->getAccess(), nested_indirect_field_decl->getAccess()));
7450
7451 indirect_fields.push_back(indirect_field);
7452 }
7453 }
7454 }
7455 }
7456
7457 // Check the last field to see if it has an incomplete array type as its last
7458 // member and if it does, the tell the record decl about it
7459 if (last_field_pos != field_end_pos) {
7460 if (last_field_pos->getType()->isIncompleteArrayType())
7461 record_decl->hasFlexibleArrayMember();
7462 }
7463
7464 for (IndirectFieldVector::iterator ifi = indirect_fields.begin(),
7465 ife = indirect_fields.end();
7466 ifi < ife; ++ifi) {
7467 record_decl->addDecl(*ifi);
7468 }
7469}
7470
7471void TypeSystemClang::SetIsPacked(const CompilerType &type) {
7472 if (type) {
7473 TypeSystemClang *ast =
7474 llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
7475 if (ast) {
7476 clang::RecordDecl *record_decl = GetAsRecordDecl(type);
7477
7478 if (!record_decl)
7479 return;
7480
7481 record_decl->addAttr(
7482 clang::PackedAttr::CreateImplicit(ast->getASTContext()));
7483 }
7484 }
7485}
7486
7487clang::VarDecl *TypeSystemClang::AddVariableToRecordType(
7488 const CompilerType &type, llvm::StringRef name,
7489 const CompilerType &var_type, AccessType access) {
7490 if (!type.IsValid() || !var_type.IsValid())
7491 return nullptr;
7492
7493 TypeSystemClang *ast = llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
7494 if (!ast)
7495 return nullptr;
7496
7497 clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type);
7498 if (!record_decl)
7499 return nullptr;
7500
7501 clang::VarDecl *var_decl = nullptr;
7502 clang::IdentifierInfo *ident = nullptr;
7503 if (!name.empty())
7504 ident = &ast->getASTContext().Idents.get(name);
7505
7506 var_decl = clang::VarDecl::CreateDeserialized(ast->getASTContext(), 0);
7507 var_decl->setDeclContext(record_decl);
7508 var_decl->setDeclName(ident);
7509 var_decl->setType(ClangUtil::GetQualType(var_type));
7510 var_decl->setStorageClass(clang::SC_Static);
7511 SetMemberOwningModule(var_decl, record_decl);
7512 if (!var_decl)
7513 return nullptr;
7514
7515 var_decl->setAccess(
7516 TypeSystemClang::ConvertAccessTypeToAccessSpecifier(access));
7517 record_decl->addDecl(var_decl);
7518
7519 VerifyDecl(var_decl);
7520
7521 return var_decl;
7522}
7523
7524void TypeSystemClang::SetIntegerInitializerForVariable(
7525 VarDecl *var, const llvm::APInt &init_value) {
7526 assert(!var->hasInit() && "variable already initialized")(static_cast <bool> (!var->hasInit() && "variable already initialized"
) ? void (0) : __assert_fail ("!var->hasInit() && \"variable already initialized\""
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
7526, __extension__ __PRETTY_FUNCTION__))
;
7527
7528 clang::ASTContext &ast = var->getASTContext();
7529 QualType qt = var->getType();
7530 assert(qt->isIntegralOrEnumerationType() &&(static_cast <bool> (qt->isIntegralOrEnumerationType
() && "only integer or enum types supported") ? void (
0) : __assert_fail ("qt->isIntegralOrEnumerationType() && \"only integer or enum types supported\""
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
7531, __extension__ __PRETTY_FUNCTION__))
7531 "only integer or enum types supported")(static_cast <bool> (qt->isIntegralOrEnumerationType
() && "only integer or enum types supported") ? void (
0) : __assert_fail ("qt->isIntegralOrEnumerationType() && \"only integer or enum types supported\""
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
7531, __extension__ __PRETTY_FUNCTION__))
;
7532 // If the variable is an enum type, take the underlying integer type as
7533 // the type of the integer literal.
7534 if (const EnumType *enum_type = llvm::dyn_cast<EnumType>(qt.getTypePtr())) {
7535 const EnumDecl *enum_decl = enum_type->getDecl();
7536 qt = enum_decl->getIntegerType();
7537 }
7538 var->setInit(IntegerLiteral::Create(ast, init_value, qt.getUnqualifiedType(),
7539 SourceLocation()));
7540}
7541
7542void TypeSystemClang::SetFloatingInitializerForVariable(
7543 clang::VarDecl *var, const llvm::APFloat &init_value) {
7544 assert(!var->hasInit() && "variable already initialized")(static_cast <bool> (!var->hasInit() && "variable already initialized"
) ? void (0) : __assert_fail ("!var->hasInit() && \"variable already initialized\""
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
7544, __extension__ __PRETTY_FUNCTION__))
;
7545
7546 clang::ASTContext &ast = var->getASTContext();
7547 QualType qt = var->getType();
7548 assert(qt->isFloatingType() && "only floating point types supported")(static_cast <bool> (qt->isFloatingType() &&
"only floating point types supported") ? void (0) : __assert_fail
("qt->isFloatingType() && \"only floating point types supported\""
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
7548, __extension__ __PRETTY_FUNCTION__))
;
7549 var->setInit(FloatingLiteral::Create(
7550 ast, init_value, true, qt.getUnqualifiedType(), SourceLocation()));
7551}
7552
7553clang::CXXMethodDecl *TypeSystemClang::AddMethodToCXXRecordType(
7554 lldb::opaque_compiler_type_t type, llvm::StringRef name,
7555 const char *mangled_name, const CompilerType &method_clang_type,
7556 lldb::AccessType access, bool is_virtual, bool is_static, bool is_inline,
7557 bool is_explicit, bool is_attr_used, bool is_artificial) {
7558 if (!type || !method_clang_type.IsValid() || name.empty())
7559 return nullptr;
7560
7561 clang::QualType record_qual_type(GetCanonicalQualType(type));
7562
7563 clang::CXXRecordDecl *cxx_record_decl =
7564 record_qual_type->getAsCXXRecordDecl();
7565
7566 if (cxx_record_decl == nullptr)
7567 return nullptr;
7568
7569 clang::QualType method_qual_type(ClangUtil::GetQualType(method_clang_type));
7570
7571 clang::CXXMethodDecl *cxx_method_decl = nullptr;
7572
7573 clang::DeclarationName decl_name(&getASTContext().Idents.get(name));
7574
7575 const clang::FunctionType *function_type =
7576 llvm::dyn_cast<clang::FunctionType>(method_qual_type.getTypePtr());
7577
7578 if (function_type == nullptr)
7579 return nullptr;
7580
7581 const clang::FunctionProtoType *method_function_prototype(
7582 llvm::dyn_cast<clang::FunctionProtoType>(function_type));
7583
7584 if (!method_function_prototype)
7585 return nullptr;
7586
7587 unsigned int num_params = method_function_prototype->getNumParams();
7588
7589 clang::CXXDestructorDecl *cxx_dtor_decl(nullptr);
7590 clang::CXXConstructorDecl *cxx_ctor_decl(nullptr);
7591
7592 if (is_artificial)
7593 return nullptr; // skip everything artificial
7594
7595 const clang::ExplicitSpecifier explicit_spec(
7596 nullptr /*expr*/, is_explicit ? clang::ExplicitSpecKind::ResolvedTrue
7597 : clang::ExplicitSpecKind::ResolvedFalse);
7598
7599 if (name.startswith("~")) {
7600 cxx_dtor_decl =
7601 clang::CXXDestructorDecl::CreateDeserialized(getASTContext(), 0);
7602 cxx_dtor_decl->setDeclContext(cxx_record_decl);
7603 cxx_dtor_decl->setDeclName(
7604 getASTContext().DeclarationNames.getCXXDestructorName(
7605 getASTContext().getCanonicalType(record_qual_type)));
7606 cxx_dtor_decl->setType(method_qual_type);
7607 cxx_dtor_decl->setImplicit(is_artificial);
7608 cxx_dtor_decl->setInlineSpecified(is_inline);
7609 cxx_dtor_decl->setConstexprKind(ConstexprSpecKind::Unspecified);
7610 cxx_method_decl = cxx_dtor_decl;
7611 } else if (decl_name == cxx_record_decl->getDeclName()) {
7612 cxx_ctor_decl = clang::CXXConstructorDecl::CreateDeserialized(
7613 getASTContext(), 0, 0);
7614 cxx_ctor_decl->setDeclContext(cxx_record_decl);
7615 cxx_ctor_decl->setDeclName(
7616 getASTContext().DeclarationNames.getCXXConstructorName(
7617 getASTContext().getCanonicalType(record_qual_type)));
7618 cxx_ctor_decl->setType(method_qual_type);
7619 cxx_ctor_decl->setImplicit(is_artificial);
7620 cxx_ctor_decl->setInlineSpecified(is_inline);
7621 cxx_ctor_decl->setConstexprKind(ConstexprSpecKind::Unspecified);
7622 cxx_ctor_decl->setNumCtorInitializers(0);
7623 cxx_ctor_decl->setExplicitSpecifier(explicit_spec);
7624 cxx_method_decl = cxx_ctor_decl;
7625 } else {
7626 clang::StorageClass SC = is_static ? clang::SC_Static : clang::SC_None;
7627 clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS;
7628
7629 if (IsOperator(name, op_kind)) {
7630 if (op_kind != clang::NUM_OVERLOADED_OPERATORS) {
7631 // Check the number of operator parameters. Sometimes we have seen bad
7632 // DWARF that doesn't correctly describe operators and if we try to
7633 // create a method and add it to the class, clang will assert and
7634 // crash, so we need to make sure things are acceptable.
7635 const bool is_method = true;
7636 if (!TypeSystemClang::CheckOverloadedOperatorKindParameterCount(
7637 is_method, op_kind, num_params))
7638 return nullptr;
7639 cxx_method_decl =
7640 clang::CXXMethodDecl::CreateDeserialized(getASTContext(), 0);
7641 cxx_method_decl->setDeclContext(cxx_record_decl);
7642 cxx_method_decl->setDeclName(
7643 getASTContext().DeclarationNames.getCXXOperatorName(op_kind));
7644 cxx_method_decl->setType(method_qual_type);
7645 cxx_method_decl->setStorageClass(SC);
7646 cxx_method_decl->setInlineSpecified(is_inline);
7647 cxx_method_decl->setConstexprKind(ConstexprSpecKind::Unspecified);
7648 } else if (num_params == 0) {
7649 // Conversion operators don't take params...
7650 auto *cxx_conversion_decl =
7651 clang::CXXConversionDecl::CreateDeserialized(getASTContext(), 0);
7652 cxx_conversion_decl->setDeclContext(cxx_record_decl);
7653 cxx_conversion_decl->setDeclName(
7654 getASTContext().DeclarationNames.getCXXConversionFunctionName(
7655 getASTContext().getCanonicalType(
7656 function_type->getReturnType())));
7657 cxx_conversion_decl->setType(method_qual_type);
7658 cxx_conversion_decl->setInlineSpecified(is_inline);
7659 cxx_conversion_decl->setExplicitSpecifier(explicit_spec);
7660 cxx_conversion_decl->setConstexprKind(ConstexprSpecKind::Unspecified);
7661 cxx_method_decl = cxx_conversion_decl;
7662 }
7663 }
7664
7665 if (cxx_method_decl == nullptr) {
7666 cxx_method_decl =
7667 clang::CXXMethodDecl::CreateDeserialized(getASTContext(), 0);
7668 cxx_method_decl->setDeclContext(cxx_record_decl);
7669 cxx_method_decl->setDeclName(decl_name);
7670 cxx_method_decl->setType(method_qual_type);
7671 cxx_method_decl->setInlineSpecified(is_inline);
7672 cxx_method_decl->setStorageClass(SC);
7673 cxx_method_decl->setConstexprKind(ConstexprSpecKind::Unspecified);
7674 }
7675 }
7676 SetMemberOwningModule(cxx_method_decl, cxx_record_decl);
7677
7678 clang::AccessSpecifier access_specifier =
7679 TypeSystemClang::ConvertAccessTypeToAccessSpecifier(access);
7680
7681 cxx_method_decl->setAccess(access_specifier);
7682 cxx_method_decl->setVirtualAsWritten(is_virtual);
7683
7684 if (is_attr_used)
7685 cxx_method_decl->addAttr(clang::UsedAttr::CreateImplicit(getASTContext()));
7686
7687 if (mangled_name != nullptr) {
7688 cxx_method_decl->addAttr(clang::AsmLabelAttr::CreateImplicit(
7689 getASTContext(), mangled_name, /*literal=*/false));
7690 }
7691
7692 // Populate the method decl with parameter decls
7693
7694 llvm::SmallVector<clang::ParmVarDecl *, 12> params;
7695
7696 for (unsigned param_index = 0; param_index < num_params; ++param_index) {
7697 params.push_back(clang::ParmVarDecl::Create(
7698 getASTContext(), cxx_method_decl, clang::SourceLocation(),
7699 clang::SourceLocation(),
7700 nullptr, // anonymous
7701 method_function_prototype->getParamType(param_index), nullptr,
7702 clang::SC_None, nullptr));
7703 }
7704
7705 cxx_method_decl->setParams(llvm::ArrayRef<clang::ParmVarDecl *>(params));
7706
7707 AddAccessSpecifierDecl(cxx_record_decl, getASTContext(),
7708 GetCXXRecordDeclAccess(cxx_record_decl),
7709 access_specifier);
7710 SetCXXRecordDeclAccess(cxx_record_decl, access_specifier);
7711
7712 cxx_record_decl->addDecl(cxx_method_decl);
7713
7714 // Sometimes the debug info will mention a constructor (default/copy/move),
7715 // destructor, or assignment operator (copy/move) but there won't be any
7716 // version of this in the code. So we check if the function was artificially
7717 // generated and if it is trivial and this lets the compiler/backend know
7718 // that it can inline the IR for these when it needs to and we can avoid a
7719 // "missing function" error when running expressions.
7720
7721 if (is_artificial) {
7722 if (cxx_ctor_decl && ((cxx_ctor_decl->isDefaultConstructor() &&
7723 cxx_record_decl->hasTrivialDefaultConstructor()) ||
7724 (cxx_ctor_decl->isCopyConstructor() &&
7725 cxx_record_decl->hasTrivialCopyConstructor()) ||
7726 (cxx_ctor_decl->isMoveConstructor() &&
7727 cxx_record_decl->hasTrivialMoveConstructor()))) {
7728 cxx_ctor_decl->setDefaulted();
7729 cxx_ctor_decl->setTrivial(true);
7730 } else if (cxx_dtor_decl) {
7731 if (cxx_record_decl->hasTrivialDestructor()) {
7732 cxx_dtor_decl->setDefaulted();
7733 cxx_dtor_decl->setTrivial(true);
7734 }
7735 } else if ((cxx_method_decl->isCopyAssignmentOperator() &&
7736 cxx_record_decl->hasTrivialCopyAssignment()) ||
7737 (cxx_method_decl->isMoveAssignmentOperator() &&
7738 cxx_record_decl->hasTrivialMoveAssignment())) {
7739 cxx_method_decl->setDefaulted();
7740 cxx_method_decl->setTrivial(true);
7741 }
7742 }
7743
7744 VerifyDecl(cxx_method_decl);
7745
7746 return cxx_method_decl;
7747}
7748
7749void TypeSystemClang::AddMethodOverridesForCXXRecordType(
7750 lldb::opaque_compiler_type_t type) {
7751 if (auto *record = GetAsCXXRecordDecl(type))
7752 for (auto *method : record->methods())
7753 addOverridesForMethod(method);
7754}
7755
7756#pragma mark C++ Base Classes
7757
7758std::unique_ptr<clang::CXXBaseSpecifier>
7759TypeSystemClang::CreateBaseClassSpecifier(lldb::opaque_compiler_type_t type,
7760 AccessType access, bool is_virtual,
7761 bool base_of_class) {
7762 if (!type)
7763 return nullptr;
7764
7765 return std::make_unique<clang::CXXBaseSpecifier>(
7766 clang::SourceRange(), is_virtual, base_of_class,
7767 TypeSystemClang::ConvertAccessTypeToAccessSpecifier(access),
7768 getASTContext().getTrivialTypeSourceInfo(GetQualType(type)),
7769 clang::SourceLocation());
7770}
7771
7772bool TypeSystemClang::TransferBaseClasses(
7773 lldb::opaque_compiler_type_t type,
7774 std::vector<std::unique_ptr<clang::CXXBaseSpecifier>> bases) {
7775 if (!type)
7776 return false;
7777 clang::CXXRecordDecl *cxx_record_decl = GetAsCXXRecordDecl(type);
7778 if (!cxx_record_decl)
7779 return false;
7780 std::vector<clang::CXXBaseSpecifier *> raw_bases;
7781 raw_bases.reserve(bases.size());
7782
7783 // Clang will make a copy of them, so it's ok that we pass pointers that we're
7784 // about to destroy.
7785 for (auto &b : bases)
7786 raw_bases.push_back(b.get());
7787 cxx_record_decl->setBases(raw_bases.data(), raw_bases.size());
7788 return true;
7789}
7790
7791bool TypeSystemClang::SetObjCSuperClass(
7792 const CompilerType &type, const CompilerType &superclass_clang_type) {
7793 TypeSystemClang *ast =
7794 llvm::dyn_cast_or_null<TypeSystemClang>(type.GetTypeSystem());
7795 if (!ast)
7796 return false;
7797 clang::ASTContext &clang_ast = ast->getASTContext();
7798
7799 if (type && superclass_clang_type.IsValid() &&
7800 superclass_clang_type.GetTypeSystem() == type.GetTypeSystem()) {
7801 clang::ObjCInterfaceDecl *class_interface_decl =
7802 GetAsObjCInterfaceDecl(type);
7803 clang::ObjCInterfaceDecl *super_interface_decl =
7804 GetAsObjCInterfaceDecl(superclass_clang_type);
7805 if (class_interface_decl && super_interface_decl) {
7806 class_interface_decl->setSuperClass(clang_ast.getTrivialTypeSourceInfo(
7807 clang_ast.getObjCInterfaceType(super_interface_decl)));
7808 return true;
7809 }
7810 }
7811 return false;
7812}
7813
7814bool TypeSystemClang::AddObjCClassProperty(
7815 const CompilerType &type, const char *property_name,
7816 const CompilerType &property_clang_type, clang::ObjCIvarDecl *ivar_decl,
7817 const char *property_setter_name, const char *property_getter_name,
7818 uint32_t property_attributes, ClangASTMetadata *metadata) {
7819 if (!type || !property_clang_type.IsValid() || property_name == nullptr ||
7820 property_name[0] == '\0')
7821 return false;
7822 TypeSystemClang *ast = llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
7823 if (!ast)
7824 return false;
7825 clang::ASTContext &clang_ast = ast->getASTContext();
7826
7827 clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type);
7828 if (!class_interface_decl)
7829 return false;
7830
7831 CompilerType property_clang_type_to_access;
7832
7833 if (property_clang_type.IsValid())
7834 property_clang_type_to_access = property_clang_type;
7835 else if (ivar_decl)
7836 property_clang_type_to_access = ast->GetType(ivar_decl->getType());
7837
7838 if (!class_interface_decl || !property_clang_type_to_access.IsValid())
7839 return false;
7840
7841 clang::TypeSourceInfo *prop_type_source;
7842 if (ivar_decl)
7843 prop_type_source = clang_ast.getTrivialTypeSourceInfo(ivar_decl->getType());
7844 else
7845 prop_type_source = clang_ast.getTrivialTypeSourceInfo(
7846 ClangUtil::GetQualType(property_clang_type));
7847
7848 clang::ObjCPropertyDecl *property_decl =
7849 clang::ObjCPropertyDecl::CreateDeserialized(clang_ast, 0);
7850 property_decl->setDeclContext(class_interface_decl);
7851 property_decl->setDeclName(&clang_ast.Idents.get(property_name));
7852 property_decl->setType(ivar_decl
7853 ? ivar_decl->getType()
7854 : ClangUtil::GetQualType(property_clang_type),
7855 prop_type_source);
7856 SetMemberOwningModule(property_decl, class_interface_decl);
7857
7858 if (!property_decl)
7859 return false;
7860
7861 if (metadata)
7862 ast->SetMetadata(property_decl, *metadata);
7863
7864 class_interface_decl->addDecl(property_decl);
7865
7866 clang::Selector setter_sel, getter_sel;
7867
7868 if (property_setter_name) {
7869 std::string property_setter_no_colon(property_setter_name,
7870 strlen(property_setter_name) - 1);
7871 clang::IdentifierInfo *setter_ident =
7872 &clang_ast.Idents.get(property_setter_no_colon);
7873 setter_sel = clang_ast.Selectors.getSelector(1, &setter_ident);
7874 } else if (!(property_attributes & DW_APPLE_PROPERTY_readonly)) {
7875 std::string setter_sel_string("set");
7876 setter_sel_string.push_back(::toupper(property_name[0]));
7877 setter_sel_string.append(&property_name[1]);
7878 clang::IdentifierInfo *setter_ident =
7879 &clang_ast.Idents.get(setter_sel_string);
7880 setter_sel = clang_ast.Selectors.getSelector(1, &setter_ident);
7881 }
7882 property_decl->setSetterName(setter_sel);
7883 property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_setter);
7884
7885 if (property_getter_name != nullptr) {
7886 clang::IdentifierInfo *getter_ident =
7887 &clang_ast.Idents.get(property_getter_name);
7888 getter_sel = clang_ast.Selectors.getSelector(0, &getter_ident);
7889 } else {
7890 clang::IdentifierInfo *getter_ident = &clang_ast.Idents.get(property_name);
7891 getter_sel = clang_ast.Selectors.getSelector(0, &getter_ident);
7892 }
7893 property_decl->setGetterName(getter_sel);
7894 property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_getter);
7895
7896 if (ivar_decl)
7897 property_decl->setPropertyIvarDecl(ivar_decl);
7898
7899 if (property_attributes & DW_APPLE_PROPERTY_readonly)
7900 property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_readonly);
7901 if (property_attributes & DW_APPLE_PROPERTY_readwrite)
7902 property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_readwrite);
7903 if (property_attributes & DW_APPLE_PROPERTY_assign)
7904 property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_assign);
7905 if (property_attributes & DW_APPLE_PROPERTY_retain)
7906 property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_retain);
7907 if (property_attributes & DW_APPLE_PROPERTY_copy)
7908 property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_copy);
7909 if (property_attributes & DW_APPLE_PROPERTY_nonatomic)
7910 property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_nonatomic);
7911 if (property_attributes & ObjCPropertyAttribute::kind_nullability)
7912 property_decl->setPropertyAttributes(
7913 ObjCPropertyAttribute::kind_nullability);
7914 if (property_attributes & ObjCPropertyAttribute::kind_null_resettable)
7915 property_decl->setPropertyAttributes(
7916 ObjCPropertyAttribute::kind_null_resettable);
7917 if (property_attributes & ObjCPropertyAttribute::kind_class)
7918 property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_class);
7919
7920 const bool isInstance =
7921 (property_attributes & ObjCPropertyAttribute::kind_class) == 0;
7922
7923 clang::ObjCMethodDecl *getter = nullptr;
7924 if (!getter_sel.isNull())
7925 getter = isInstance ? class_interface_decl->lookupInstanceMethod(getter_sel)
7926 : class_interface_decl->lookupClassMethod(getter_sel);
7927 if (!getter_sel.isNull() && !getter) {
7928 const bool isVariadic = false;
7929 const bool isPropertyAccessor = true;
7930 const bool isSynthesizedAccessorStub = false;
7931 const bool isImplicitlyDeclared = true;
7932 const bool isDefined = false;
7933 const clang::ObjCMethodDecl::ImplementationControl impControl =
7934 clang::ObjCMethodDecl::None;
7935 const bool HasRelatedResultType = false;
7936
7937 getter = clang::ObjCMethodDecl::CreateDeserialized(clang_ast, 0);
7938 getter->setDeclName(getter_sel);
7939 getter->setReturnType(ClangUtil::GetQualType(property_clang_type_to_access));
7940 getter->setDeclContext(class_interface_decl);
7941 getter->setInstanceMethod(isInstance);
7942 getter->setVariadic(isVariadic);
7943 getter->setPropertyAccessor(isPropertyAccessor);
7944 getter->setSynthesizedAccessorStub(isSynthesizedAccessorStub);
7945 getter->setImplicit(isImplicitlyDeclared);
7946 getter->setDefined(isDefined);
7947 getter->setDeclImplementation(impControl);
7948 getter->setRelatedResultType(HasRelatedResultType);
7949 SetMemberOwningModule(getter, class_interface_decl);
7950
7951 if (getter) {
7952 if (metadata)
7953 ast->SetMetadata(getter, *metadata);
7954
7955 getter->setMethodParams(clang_ast, llvm::ArrayRef<clang::ParmVarDecl *>(),
7956 llvm::ArrayRef<clang::SourceLocation>());
7957 class_interface_decl->addDecl(getter);
7958 }
7959 }
7960 if (getter) {
7961 getter->setPropertyAccessor(true);
7962 property_decl->setGetterMethodDecl(getter);
7963 }
7964
7965 clang::ObjCMethodDecl *setter = nullptr;
7966 setter = isInstance ? class_interface_decl->lookupInstanceMethod(setter_sel)
7967 : class_interface_decl->lookupClassMethod(setter_sel);
7968 if (!setter_sel.isNull() && !setter) {
7969 clang::QualType result_type = clang_ast.VoidTy;
7970 const bool isVariadic = false;
7971 const bool isPropertyAccessor = true;
7972 const bool isSynthesizedAccessorStub = false;
7973 const bool isImplicitlyDeclared = true;
7974 const bool isDefined = false;
7975 const clang::ObjCMethodDecl::ImplementationControl impControl =
7976 clang::ObjCMethodDecl::None;
7977 const bool HasRelatedResultType = false;
7978
7979 setter = clang::ObjCMethodDecl::CreateDeserialized(clang_ast, 0);
7980 setter->setDeclName(setter_sel);
7981 setter->setReturnType(result_type);
7982 setter->setDeclContext(class_interface_decl);
7983 setter->setInstanceMethod(isInstance);
7984 setter->setVariadic(isVariadic);
7985 setter->setPropertyAccessor(isPropertyAccessor);
7986 setter->setSynthesizedAccessorStub(isSynthesizedAccessorStub);
7987 setter->setImplicit(isImplicitlyDeclared);
7988 setter->setDefined(isDefined);
7989 setter->setDeclImplementation(impControl);
7990 setter->setRelatedResultType(HasRelatedResultType);
7991 SetMemberOwningModule(setter, class_interface_decl);
7992
7993 if (setter) {
7994 if (metadata)
7995 ast->SetMetadata(setter, *metadata);
7996
7997 llvm::SmallVector<clang::ParmVarDecl *, 1> params;
7998 params.push_back(clang::ParmVarDecl::Create(
7999 clang_ast, setter, clang::SourceLocation(), clang::SourceLocation(),
8000 nullptr, // anonymous
8001 ClangUtil::GetQualType(property_clang_type_to_access), nullptr,
8002 clang::SC_Auto, nullptr));
8003
8004 setter->setMethodParams(clang_ast,
8005 llvm::ArrayRef<clang::ParmVarDecl *>(params),
8006 llvm::ArrayRef<clang::SourceLocation>());
8007
8008 class_interface_decl->addDecl(setter);
8009 }
8010 }
8011 if (setter) {
8012 setter->setPropertyAccessor(true);
8013 property_decl->setSetterMethodDecl(setter);
8014 }
8015
8016 return true;
8017}
8018
8019bool TypeSystemClang::IsObjCClassTypeAndHasIVars(const CompilerType &type,
8020 bool check_superclass) {
8021 clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type);
8022 if (class_interface_decl)
8023 return ObjCDeclHasIVars(class_interface_decl, check_superclass);
8024 return false;
8025}
8026
8027clang::ObjCMethodDecl *TypeSystemClang::AddMethodToObjCObjectType(
8028 const CompilerType &type,
8029 const char *name, // the full symbol name as seen in the symbol table
8030 // (lldb::opaque_compiler_type_t type, "-[NString
8031 // stringWithCString:]")
8032 const CompilerType &method_clang_type, lldb::AccessType access,
8033 bool is_artificial, bool is_variadic, bool is_objc_direct_call) {
8034 if (!type || !method_clang_type.IsValid())
8035 return nullptr;
8036
8037 clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type);
8038
8039 if (class_interface_decl == nullptr)
8040 return nullptr;
8041 TypeSystemClang *lldb_ast =
8042 llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
8043 if (lldb_ast == nullptr)
8044 return nullptr;
8045 clang::ASTContext &ast = lldb_ast->getASTContext();
8046
8047 const char *selector_start = ::strchr(name, ' ');
8048 if (selector_start == nullptr)
8049 return nullptr;
8050
8051 selector_start++;
8052 llvm::SmallVector<clang::IdentifierInfo *, 12> selector_idents;
8053
8054 size_t len = 0;
8055 const char *start;
8056
8057 unsigned num_selectors_with_args = 0;
8058 for (start = selector_start; start && *start != '\0' && *start != ']';
8059 start += len) {
8060 len = ::strcspn(start, ":]");
8061 bool has_arg = (start[len] == ':');
8062 if (has_arg)
8063 ++num_selectors_with_args;
8064 selector_idents.push_back(&ast.Idents.get(llvm::StringRef(start, len)));
8065 if (has_arg)
8066 len += 1;
8067 }
8068
8069 if (selector_idents.size() == 0)
8070 return nullptr;
8071
8072 clang::Selector method_selector = ast.Selectors.getSelector(
8073 num_selectors_with_args ? selector_idents.size() : 0,
8074 selector_idents.data());
8075
8076 clang::QualType method_qual_type(ClangUtil::GetQualType(method_clang_type));
8077
8078 // Populate the method decl with parameter decls
8079 const clang::Type *method_type(method_qual_type.getTypePtr());
8080
8081 if (method_type == nullptr)
8082 return nullptr;
8083
8084 const clang::FunctionProtoType *method_function_prototype(
8085 llvm::dyn_cast<clang::FunctionProtoType>(method_type));
8086
8087 if (!method_function_prototype)
8088 return nullptr;
8089
8090 const bool isInstance = (name[0] == '-');
8091 const bool isVariadic = is_variadic;
8092 const bool isPropertyAccessor = false;
8093 const bool isSynthesizedAccessorStub = false;
8094 /// Force this to true because we don't have source locations.
8095 const bool isImplicitlyDeclared = true;
8096 const bool isDefined = false;
8097 const clang::ObjCMethodDecl::ImplementationControl impControl =
8098 clang::ObjCMethodDecl::None;
8099 const bool HasRelatedResultType = false;
8100
8101 const unsigned num_args = method_function_prototype->getNumParams();
8102
8103 if (num_args != num_selectors_with_args)
8104 return nullptr; // some debug information is corrupt. We are not going to
8105 // deal with it.
8106
8107 auto *objc_method_decl = clang::ObjCMethodDecl::CreateDeserialized(ast, 0);
8108 objc_method_decl->setDeclName(method_selector);
8109 objc_method_decl->setReturnType(method_function_prototype->getReturnType());
8110 objc_method_decl->setDeclContext(
8111 lldb_ast->GetDeclContextForType(ClangUtil::GetQualType(type)));
8112 objc_method_decl->setInstanceMethod(isInstance);
8113 objc_method_decl->setVariadic(isVariadic);
8114 objc_method_decl->setPropertyAccessor(isPropertyAccessor);
8115 objc_method_decl->setSynthesizedAccessorStub(isSynthesizedAccessorStub);
8116 objc_method_decl->setImplicit(isImplicitlyDeclared);
8117 objc_method_decl->setDefined(isDefined);
8118 objc_method_decl->setDeclImplementation(impControl);
8119 objc_method_decl->setRelatedResultType(HasRelatedResultType);
8120 SetMemberOwningModule(objc_method_decl, class_interface_decl);
8121
8122 if (objc_method_decl == nullptr)
8123 return nullptr;
8124
8125 if (num_args > 0) {
8126 llvm::SmallVector<clang::ParmVarDecl *, 12> params;
8127
8128 for (unsigned param_index = 0; param_index < num_args; ++param_index) {
8129 params.push_back(clang::ParmVarDecl::Create(
8130 ast, objc_method_decl, clang::SourceLocation(),
8131 clang::SourceLocation(),
8132 nullptr, // anonymous
8133 method_function_prototype->getParamType(param_index), nullptr,
8134 clang::SC_Auto, nullptr));
8135 }
8136
8137 objc_method_decl->setMethodParams(
8138 ast, llvm::ArrayRef<clang::ParmVarDecl *>(params),
8139 llvm::ArrayRef<clang::SourceLocation>());
8140 }
8141
8142 if (is_objc_direct_call) {
8143 // Add a the objc_direct attribute to the declaration we generate that
8144 // we generate a direct method call for this ObjCMethodDecl.
8145 objc_method_decl->addAttr(
8146 clang::ObjCDirectAttr::CreateImplicit(ast, SourceLocation()));
8147 // Usually Sema is creating implicit parameters (e.g., self) when it
8148 // parses the method. We don't have a parsing Sema when we build our own
8149 // AST here so we manually need to create these implicit parameters to
8150 // make the direct call code generation happy.
8151 objc_method_decl->createImplicitParams(ast, class_interface_decl);
8152 }
8153
8154 class_interface_decl->addDecl(objc_method_decl);
8155
8156 VerifyDecl(objc_method_decl);
8157
8158 return objc_method_decl;
8159}
8160
8161bool TypeSystemClang::SetHasExternalStorage(lldb::opaque_compiler_type_t type,
8162 bool has_extern) {
8163 if (!type)
8164 return false;
8165
8166 clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
8167
8168 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
8169 switch (type_class) {
8170 case clang::Type::Record: {
8171 clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
8172 if (cxx_record_decl) {
8173 cxx_record_decl->setHasExternalLexicalStorage(has_extern);
8174 cxx_record_decl->setHasExternalVisibleStorage(has_extern);
8175 return true;
8176 }
8177 } break;
8178
8179 case clang::Type::Enum: {
8180 clang::EnumDecl *enum_decl =
8181 llvm::cast<clang::EnumType>(qual_type)->getDecl();
8182 if (enum_decl) {
8183 enum_decl->setHasExternalLexicalStorage(has_extern);
8184 enum_decl->setHasExternalVisibleStorage(has_extern);
8185 return true;
8186 }
8187 } break;
8188
8189 case clang::Type::ObjCObject:
8190 case clang::Type::ObjCInterface: {
8191 const clang::ObjCObjectType *objc_class_type =
8192 llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
8193 assert(objc_class_type)(static_cast <bool> (objc_class_type) ? void (0) : __assert_fail
("objc_class_type", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 8193, __extension__ __PRETTY_FUNCTION__))
;
8194 if (objc_class_type) {
8195 clang::ObjCInterfaceDecl *class_interface_decl =
8196 objc_class_type->getInterface();
8197
8198 if (class_interface_decl) {
8199 class_interface_decl->setHasExternalLexicalStorage(has_extern);
8200 class_interface_decl->setHasExternalVisibleStorage(has_extern);
8201 return true;
8202 }
8203 }
8204 } break;
8205
8206 default:
8207 break;
8208 }
8209 return false;
8210}
8211
8212#pragma mark TagDecl
8213
8214bool TypeSystemClang::StartTagDeclarationDefinition(const CompilerType &type) {
8215 clang::QualType qual_type(ClangUtil::GetQualType(type));
8216 if (!qual_type.isNull()) {
8217 const clang::TagType *tag_type = qual_type->getAs<clang::TagType>();
8218 if (tag_type) {
8219 clang::TagDecl *tag_decl = tag_type->getDecl();
8220 if (tag_decl) {
8221 tag_decl->startDefinition();
8222 return true;
8223 }
8224 }
8225
8226 const clang::ObjCObjectType *object_type =
8227 qual_type->getAs<clang::ObjCObjectType>();
8228 if (object_type) {
8229 clang::ObjCInterfaceDecl *interface_decl = object_type->getInterface();
8230 if (interface_decl) {
8231 interface_decl->startDefinition();
8232 return true;
8233 }
8234 }
8235 }
8236 return false;
8237}
8238
8239bool TypeSystemClang::CompleteTagDeclarationDefinition(
8240 const CompilerType &type) {
8241 clang::QualType qual_type(ClangUtil::GetQualType(type));
8242 if (qual_type.isNull())
8243 return false;
8244
8245 TypeSystemClang *lldb_ast =
8246 llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
8247 if (lldb_ast == nullptr)
8248 return false;
8249
8250 // Make sure we use the same methodology as
8251 // TypeSystemClang::StartTagDeclarationDefinition() as to how we start/end
8252 // the definition.
8253 const clang::TagType *tag_type = qual_type->getAs<clang::TagType>();
8254 if (tag_type) {
8255 clang::TagDecl *tag_decl = tag_type->getDecl();
8256
8257 if (auto *cxx_record_decl = llvm::dyn_cast<CXXRecordDecl>(tag_decl)) {
8258 // If we have a move constructor declared but no copy constructor we
8259 // need to explicitly mark it as deleted. Usually Sema would do this for
8260 // us in Sema::DeclareImplicitCopyConstructor but we don't have a Sema
8261 // when building an AST from debug information.
8262 // See also:
8263 // C++11 [class.copy]p7, p18:
8264 // If the class definition declares a move constructor or move assignment
8265 // operator, an implicitly declared copy constructor or copy assignment
8266 // operator is defined as deleted.
8267 if (cxx_record_decl->hasUserDeclaredMoveConstructor() ||
8268 cxx_record_decl->hasUserDeclaredMoveAssignment()) {
8269 if (cxx_record_decl->needsImplicitCopyConstructor())
8270 cxx_record_decl->setImplicitCopyConstructorIsDeleted();
8271 if (cxx_record_decl->needsImplicitCopyAssignment())
8272 cxx_record_decl->setImplicitCopyAssignmentIsDeleted();
8273 }
8274
8275 if (!cxx_record_decl->isCompleteDefinition())
8276 cxx_record_decl->completeDefinition();
8277 cxx_record_decl->setHasLoadedFieldsFromExternalStorage(true);
8278 cxx_record_decl->setHasExternalLexicalStorage(false);
8279 cxx_record_decl->setHasExternalVisibleStorage(false);
8280 lldb_ast->SetCXXRecordDeclAccess(cxx_record_decl,
8281 clang::AccessSpecifier::AS_none);
8282 return true;
8283 }
8284 }
8285
8286 const clang::EnumType *enutype = qual_type->getAs<clang::EnumType>();
8287
8288 if (!enutype)
8289 return false;
8290 clang::EnumDecl *enum_decl = enutype->getDecl();
8291
8292 if (enum_decl->isCompleteDefinition())
8293 return true;
8294
8295 clang::ASTContext &ast = lldb_ast->getASTContext();
8296
8297 /// TODO This really needs to be fixed.
8298
8299 QualType integer_type(enum_decl->getIntegerType());
8300 if (!integer_type.isNull()) {
8301 unsigned NumPositiveBits = 1;
8302 unsigned NumNegativeBits = 0;
8303
8304 clang::QualType promotion_qual_type;
8305 // If the enum integer type is less than an integer in bit width,
8306 // then we must promote it to an integer size.
8307 if (ast.getTypeSize(enum_decl->getIntegerType()) <
8308 ast.getTypeSize(ast.IntTy)) {
8309 if (enum_decl->getIntegerType()->isSignedIntegerType())
8310 promotion_qual_type = ast.IntTy;
8311 else
8312 promotion_qual_type = ast.UnsignedIntTy;
8313 } else
8314 promotion_qual_type = enum_decl->getIntegerType();
8315
8316 enum_decl->completeDefinition(enum_decl->getIntegerType(),
8317 promotion_qual_type, NumPositiveBits,
8318 NumNegativeBits);
8319 }
8320 return true;
8321}
8322
8323clang::EnumConstantDecl *TypeSystemClang::AddEnumerationValueToEnumerationType(
8324 const CompilerType &enum_type, const Declaration &decl, const char *name,
8325 const llvm::APSInt &value) {
8326
8327 if (!enum_type || ConstString(name).IsEmpty())
8328 return nullptr;
8329
8330 lldbassert(enum_type.GetTypeSystem() == static_cast<TypeSystem *>(this))lldb_private::lldb_assert(static_cast<bool>(enum_type.GetTypeSystem
() == static_cast<TypeSystem *>(this)), "enum_type.GetTypeSystem() == static_cast<TypeSystem *>(this)"
, __FUNCTION__, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 8330)
;
8331
8332 lldb::opaque_compiler_type_t enum_opaque_compiler_type =
8333 enum_type.GetOpaqueQualType();
8334
8335 if (!enum_opaque_compiler_type)
8336 return nullptr;
8337
8338 clang::QualType enum_qual_type(
8339 GetCanonicalQualType(enum_opaque_compiler_type));
8340
8341 const clang::Type *clang_type = enum_qual_type.getTypePtr();
8342
8343 if (!clang_type)
8344 return nullptr;
8345
8346 const clang::EnumType *enutype = llvm::dyn_cast<clang::EnumType>(clang_type);
8347
8348 if (!enutype)
8349 return nullptr;
8350
8351 clang::EnumConstantDecl *enumerator_decl =
8352 clang::EnumConstantDecl::CreateDeserialized(getASTContext(), 0);
8353 enumerator_decl->setDeclContext(enutype->getDecl());
8354 if (name && name[0])
8355 enumerator_decl->setDeclName(&getASTContext().Idents.get(name));
8356 enumerator_decl->setType(clang::QualType(enutype, 0));
8357 enumerator_decl->setInitVal(value);
8358 SetMemberOwningModule(enumerator_decl, enutype->getDecl());
8359
8360 if (!enumerator_decl)
8361 return nullptr;
8362
8363 enutype->getDecl()->addDecl(enumerator_decl);
8364
8365 VerifyDecl(enumerator_decl);
8366 return enumerator_decl;
8367}
8368
8369clang::EnumConstantDecl *TypeSystemClang::AddEnumerationValueToEnumerationType(
8370 const CompilerType &enum_type, const Declaration &decl, const char *name,
8371 int64_t enum_value, uint32_t enum_value_bit_size) {
8372 CompilerType underlying_type = GetEnumerationIntegerType(enum_type);
8373 bool is_signed = false;
8374 underlying_type.IsIntegerType(is_signed);
8375
8376 llvm::APSInt value(enum_value_bit_size, is_signed);
8377 value = enum_value;
8378
8379 return AddEnumerationValueToEnumerationType(enum_type, decl, name, value);
8380}
8381
8382CompilerType TypeSystemClang::GetEnumerationIntegerType(CompilerType type) {
8383 clang::QualType qt(ClangUtil::GetQualType(type));
8384 const clang::Type *clang_type = qt.getTypePtrOrNull();
8385 const auto *enum_type = llvm::dyn_cast_or_null<clang::EnumType>(clang_type);
8386 if (!enum_type)
8387 return CompilerType();
8388
8389 return GetType(enum_type->getDecl()->getIntegerType());
8390}
8391
8392CompilerType
8393TypeSystemClang::CreateMemberPointerType(const CompilerType &type,
8394 const CompilerType &pointee_type) {
8395 if (type && pointee_type.IsValid() &&
8396 type.GetTypeSystem() == pointee_type.GetTypeSystem()) {
8397 TypeSystemClang *ast =
8398 llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
8399 if (!ast)
8400 return CompilerType();
8401 return ast->GetType(ast->getASTContext().getMemberPointerType(
8402 ClangUtil::GetQualType(pointee_type),
8403 ClangUtil::GetQualType(type).getTypePtr()));
8404 }
8405 return CompilerType();
8406}
8407
8408// Dumping types
8409#define DEPTH_INCREMENT2 2
8410
8411#ifndef NDEBUG
8412LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void
8413TypeSystemClang::dump(lldb::opaque_compiler_type_t type) const {
8414 if (!type)
8415 return;
8416 clang::QualType qual_type(GetQualType(type));
8417 qual_type.dump();
8418}
8419#endif
8420
8421void TypeSystemClang::Dump(llvm::raw_ostream &output) {
8422 GetTranslationUnitDecl()->dump(output);
8423}
8424
8425void TypeSystemClang::DumpFromSymbolFile(Stream &s,
8426 llvm::StringRef symbol_name) {
8427 SymbolFile *symfile = GetSymbolFile();
8428
8429 if (!symfile)
8430 return;
8431
8432 lldb_private::TypeList type_list;
8433 symfile->GetTypes(nullptr, eTypeClassAny, type_list);
8434 size_t ntypes = type_list.GetSize();
8435
8436 for (size_t i = 0; i < ntypes; ++i) {
8437 TypeSP type = type_list.GetTypeAtIndex(i);
8438
8439 if (!symbol_name.empty())
8440 if (symbol_name != type->GetName().GetStringRef())
8441 continue;
8442
8443 s << type->GetName().AsCString() << "\n";
8444
8445 CompilerType full_type = type->GetFullCompilerType();
8446 if (clang::TagDecl *tag_decl = GetAsTagDecl(full_type)) {
8447 tag_decl->dump(s.AsRawOstream());
8448 continue;
8449 }
8450 if (clang::TypedefNameDecl *typedef_decl = GetAsTypedefDecl(full_type)) {
8451 typedef_decl->dump(s.AsRawOstream());
8452 continue;
8453 }
8454 if (auto *objc_obj = llvm::dyn_cast<clang::ObjCObjectType>(
8455 ClangUtil::GetQualType(full_type).getTypePtr())) {
8456 if (clang::ObjCInterfaceDecl *interface_decl = objc_obj->getInterface()) {
8457 interface_decl->dump(s.AsRawOstream());
8458 continue;
8459 }
8460 }
8461 GetCanonicalQualType(full_type.GetOpaqueQualType())
8462 .dump(s.AsRawOstream(), getASTContext());
8463 }
8464}
8465
8466void TypeSystemClang::DumpValue(
8467 lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, Stream *s,
8468 lldb::Format format, const lldb_private::DataExtractor &data,
8469 lldb::offset_t data_byte_offset, size_t data_byte_size,
8470 uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset, bool show_types,
8471 bool show_summary, bool verbose, uint32_t depth) {
8472 if (!type)
8473 return;
8474
8475 clang::QualType qual_type(GetQualType(type));
8476 switch (qual_type->getTypeClass()) {
8477 case clang::Type::Record:
8478 if (GetCompleteType(type)) {
8479 const clang::RecordType *record_type =
8480 llvm::cast<clang::RecordType>(qual_type.getTypePtr());
8481 const clang::RecordDecl *record_decl = record_type->getDecl();
8482 assert(record_decl)(static_cast <bool> (record_decl) ? void (0) : __assert_fail
("record_decl", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 8482, __extension__ __PRETTY_FUNCTION__))
;
8483 uint32_t field_bit_offset = 0;
8484 uint32_t field_byte_offset = 0;
8485 const clang::ASTRecordLayout &record_layout =
8486 getASTContext().getASTRecordLayout(record_decl);
8487 uint32_t child_idx = 0;
8488
8489 const clang::CXXRecordDecl *cxx_record_decl =
8490 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
8491 if (cxx_record_decl) {
8492 // We might have base classes to print out first
8493 clang::CXXRecordDecl::base_class_const_iterator base_class,
8494 base_class_end;
8495 for (base_class = cxx_record_decl->bases_begin(),
8496 base_class_end = cxx_record_decl->bases_end();
8497 base_class != base_class_end; ++base_class) {
8498 const clang::CXXRecordDecl *base_class_decl =
8499 llvm::cast<clang::CXXRecordDecl>(
8500 base_class->getType()->getAs<clang::RecordType>()->getDecl());
8501
8502 // Skip empty base classes
8503 if (!verbose && !TypeSystemClang::RecordHasFields(base_class_decl))
8504 continue;
8505
8506 if (base_class->isVirtual())
8507 field_bit_offset =
8508 record_layout.getVBaseClassOffset(base_class_decl)
8509 .getQuantity() *
8510 8;
8511 else
8512 field_bit_offset = record_layout.getBaseClassOffset(base_class_decl)
8513 .getQuantity() *
8514 8;
8515 field_byte_offset = field_bit_offset / 8;
8516 assert(field_bit_offset % 8 == 0)(static_cast <bool> (field_bit_offset % 8 == 0) ? void (
0) : __assert_fail ("field_bit_offset % 8 == 0", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 8516, __extension__ __PRETTY_FUNCTION__))
;
8517 if (child_idx == 0)
8518 s->PutChar('{');
8519 else
8520 s->PutChar(',');
8521
8522 clang::QualType base_class_qual_type = base_class->getType();
8523 std::string base_class_type_name(base_class_qual_type.getAsString());
8524
8525 // Indent and print the base class type name
8526 s->Format("\n{0}{1}", llvm::fmt_repeat(" ", depth + DEPTH_INCREMENT2),
8527 base_class_type_name);
8528
8529 clang::TypeInfo base_class_type_info =
8530 getASTContext().getTypeInfo(base_class_qual_type);
8531
8532 // Dump the value of the member
8533 CompilerType base_clang_type = GetType(base_class_qual_type);
8534 base_clang_type.DumpValue(
8535 exe_ctx,
8536 s, // Stream to dump to
8537 base_clang_type
8538 .GetFormat(), // The format with which to display the member
8539 data, // Data buffer containing all bytes for this type
8540 data_byte_offset + field_byte_offset, // Offset into "data" where
8541 // to grab value from
8542 base_class_type_info.Width / 8, // Size of this type in bytes
8543 0, // Bitfield bit size
8544 0, // Bitfield bit offset
8545 show_types, // Boolean indicating if we should show the variable
8546 // types
8547 show_summary, // Boolean indicating if we should show a summary
8548 // for the current type
8549 verbose, // Verbose output?
8550 depth + DEPTH_INCREMENT2); // Scope depth for any types that have
8551 // children
8552
8553 ++child_idx;
8554 }
8555 }
8556 uint32_t field_idx = 0;
8557 clang::RecordDecl::field_iterator field, field_end;
8558 for (field = record_decl->field_begin(),
8559 field_end = record_decl->field_end();
8560 field != field_end; ++field, ++field_idx, ++child_idx) {
8561 // Print the starting squiggly bracket (if this is the first member) or
8562 // comma (for member 2 and beyond) for the struct/union/class member.
8563 if (child_idx == 0)
8564 s->PutChar('{');
8565 else
8566 s->PutChar(',');
8567
8568 // Indent
8569 s->Printf("\n%*s", depth + DEPTH_INCREMENT2, "");
8570
8571 clang::QualType field_type = field->getType();
8572 // Print the member type if requested
8573 // Figure out the type byte size (field_type_info.first) and alignment
8574 // (field_type_info.second) from the AST context.
8575 clang::TypeInfo field_type_info =
8576 getASTContext().getTypeInfo(field_type);
8577 assert(field_idx < record_layout.getFieldCount())(static_cast <bool> (field_idx < record_layout.getFieldCount
()) ? void (0) : __assert_fail ("field_idx < record_layout.getFieldCount()"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
8577, __extension__ __PRETTY_FUNCTION__))
;
8578 // Figure out the field offset within the current struct/union/class
8579 // type
8580 field_bit_offset = record_layout.getFieldOffset(field_idx);
8581 field_byte_offset = field_bit_offset / 8;
8582 uint32_t field_bitfield_bit_size = 0;
8583 uint32_t field_bitfield_bit_offset = 0;
8584 if (FieldIsBitfield(*field, field_bitfield_bit_size))
8585 field_bitfield_bit_offset = field_bit_offset % 8;
8586
8587 if (show_types) {
8588 std::string field_type_name(field_type.getAsString());
8589 if (field_bitfield_bit_size > 0)
8590 s->Printf("(%s:%u) ", field_type_name.c_str(),
8591 field_bitfield_bit_size);
8592 else
8593 s->Printf("(%s) ", field_type_name.c_str());
8594 }
8595 // Print the member name and equal sign
8596 s->Printf("%s = ", field->getNameAsString().c_str());
8597
8598 // Dump the value of the member
8599 CompilerType field_clang_type = GetType(field_type);
8600 field_clang_type.DumpValue(
8601 exe_ctx,
8602 s, // Stream to dump to
8603 field_clang_type
8604 .GetFormat(), // The format with which to display the member
8605 data, // Data buffer containing all bytes for this type
8606 data_byte_offset + field_byte_offset, // Offset into "data" where to
8607 // grab value from
8608 field_type_info.Width / 8, // Size of this type in bytes
8609 field_bitfield_bit_size, // Bitfield bit size
8610 field_bitfield_bit_offset, // Bitfield bit offset
8611 show_types, // Boolean indicating if we should show the variable
8612 // types
8613 show_summary, // Boolean indicating if we should show a summary for
8614 // the current type
8615 verbose, // Verbose output?
8616 depth + DEPTH_INCREMENT2); // Scope depth for any types that have
8617 // children
8618 }
8619
8620 // Indent the trailing squiggly bracket
8621 if (child_idx > 0)
8622 s->Printf("\n%*s}", depth, "");
8623 }
8624 return;
8625
8626 case clang::Type::Enum:
8627 if (GetCompleteType(type)) {
8628 const clang::EnumType *enutype =
8629 llvm::cast<clang::EnumType>(qual_type.getTypePtr());
8630 const clang::EnumDecl *enum_decl = enutype->getDecl();
8631 assert(enum_decl)(static_cast <bool> (enum_decl) ? void (0) : __assert_fail
("enum_decl", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 8631, __extension__ __PRETTY_FUNCTION__))
;
8632 clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
8633 lldb::offset_t offset = data_byte_offset;
8634 const int64_t enum_value = data.GetMaxU64Bitfield(
8635 &offset, data_byte_size, bitfield_bit_size, bitfield_bit_offset);
8636 for (enum_pos = enum_decl->enumerator_begin(),
8637 enum_end_pos = enum_decl->enumerator_end();
8638 enum_pos != enum_end_pos; ++enum_pos) {
8639 if (enum_pos->getInitVal() == enum_value) {
8640 s->Printf("%s", enum_pos->getNameAsString().c_str());
8641 return;
8642 }
8643 }
8644 // If we have gotten here we didn't get find the enumerator in the enum
8645 // decl, so just print the integer.
8646 s->Printf("%" PRIi64"l" "i", enum_value);
8647 }
8648 return;
8649
8650 case clang::Type::ConstantArray: {
8651 const clang::ConstantArrayType *array =
8652 llvm::cast<clang::ConstantArrayType>(qual_type.getTypePtr());
8653 bool is_array_of_characters = false;
8654 clang::QualType element_qual_type = array->getElementType();
8655
8656 const clang::Type *canonical_type =
8657 element_qual_type->getCanonicalTypeInternal().getTypePtr();
8658 if (canonical_type)
8659 is_array_of_characters = canonical_type->isCharType();
8660
8661 const uint64_t element_count = array->getSize().getLimitedValue();
8662
8663 clang::TypeInfo field_type_info =
8664 getASTContext().getTypeInfo(element_qual_type);
8665
8666 uint32_t element_idx = 0;
8667 uint32_t element_offset = 0;
8668 uint64_t element_byte_size = field_type_info.Width / 8;
8669 uint32_t element_stride = element_byte_size;
8670
8671 if (is_array_of_characters) {
8672 s->PutChar('"');
8673 DumpDataExtractor(data, s, data_byte_offset, lldb::eFormatChar,
8674 element_byte_size, element_count, UINT32_MAX(4294967295U),
8675 LLDB_INVALID_ADDRESS(18446744073709551615UL), 0, 0);
8676 s->PutChar('"');
8677 return;
8678 } else {
8679 CompilerType element_clang_type = GetType(element_qual_type);
8680 lldb::Format element_format = element_clang_type.GetFormat();
8681
8682 for (element_idx = 0; element_idx < element_count; ++element_idx) {
8683 // Print the starting squiggly bracket (if this is the first member) or
8684 // comman (for member 2 and beyong) for the struct/union/class member.
8685 if (element_idx == 0)
8686 s->PutChar('{');
8687 else
8688 s->PutChar(',');
8689
8690 // Indent and print the index
8691 s->Printf("\n%*s[%u] ", depth + DEPTH_INCREMENT2, "", element_idx);
8692
8693 // Figure out the field offset within the current struct/union/class
8694 // type
8695 element_offset = element_idx * element_stride;
8696
8697 // Dump the value of the member
8698 element_clang_type.DumpValue(
8699 exe_ctx,
8700 s, // Stream to dump to
8701 element_format, // The format with which to display the element
8702 data, // Data buffer containing all bytes for this type
8703 data_byte_offset +
8704 element_offset, // Offset into "data" where to grab value from
8705 element_byte_size, // Size of this type in bytes
8706 0, // Bitfield bit size
8707 0, // Bitfield bit offset
8708 show_types, // Boolean indicating if we should show the variable
8709 // types
8710 show_summary, // Boolean indicating if we should show a summary for
8711 // the current type
8712 verbose, // Verbose output?
8713 depth + DEPTH_INCREMENT2); // Scope depth for any types that have
8714 // children
8715 }
8716
8717 // Indent the trailing squiggly bracket
8718 if (element_idx > 0)
8719 s->Printf("\n%*s}", depth, "");
8720 }
8721 }
8722 return;
8723
8724 case clang::Type::Typedef: {
8725 clang::QualType typedef_qual_type =
8726 llvm::cast<clang::TypedefType>(qual_type)
8727 ->getDecl()
8728 ->getUnderlyingType();
8729
8730 CompilerType typedef_clang_type = GetType(typedef_qual_type);
8731 lldb::Format typedef_format = typedef_clang_type.GetFormat();
8732 clang::TypeInfo typedef_type_info =
8733 getASTContext().getTypeInfo(typedef_qual_type);
8734 uint64_t typedef_byte_size = typedef_type_info.Width / 8;
8735
8736 return typedef_clang_type.DumpValue(
8737 exe_ctx,
8738 s, // Stream to dump to
8739 typedef_format, // The format with which to display the element
8740 data, // Data buffer containing all bytes for this type
8741 data_byte_offset, // Offset into "data" where to grab value from
8742 typedef_byte_size, // Size of this type in bytes
8743 bitfield_bit_size, // Bitfield bit size
8744 bitfield_bit_offset, // Bitfield bit offset
8745 show_types, // Boolean indicating if we should show the variable types
8746 show_summary, // Boolean indicating if we should show a summary for the
8747 // current type
8748 verbose, // Verbose output?
8749 depth); // Scope depth for any types that have children
8750 } break;
8751
8752 case clang::Type::Auto: {
8753 clang::QualType elaborated_qual_type =
8754 llvm::cast<clang::AutoType>(qual_type)->getDeducedType();
8755 CompilerType elaborated_clang_type = GetType(elaborated_qual_type);
8756 lldb::Format elaborated_format = elaborated_clang_type.GetFormat();
8757 clang::TypeInfo elaborated_type_info =
8758 getASTContext().getTypeInfo(elaborated_qual_type);
8759 uint64_t elaborated_byte_size = elaborated_type_info.Width / 8;
8760
8761 return elaborated_clang_type.DumpValue(
8762 exe_ctx,
8763 s, // Stream to dump to
8764 elaborated_format, // The format with which to display the element
8765 data, // Data buffer containing all bytes for this type
8766 data_byte_offset, // Offset into "data" where to grab value from
8767 elaborated_byte_size, // Size of this type in bytes
8768 bitfield_bit_size, // Bitfield bit size
8769 bitfield_bit_offset, // Bitfield bit offset
8770 show_types, // Boolean indicating if we should show the variable types
8771 show_summary, // Boolean indicating if we should show a summary for the
8772 // current type
8773 verbose, // Verbose output?
8774 depth); // Scope depth for any types that have children
8775 } break;
8776
8777 case clang::Type::Elaborated: {
8778 clang::QualType elaborated_qual_type =
8779 llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType();
8780 CompilerType elaborated_clang_type = GetType(elaborated_qual_type);
8781 lldb::Format elaborated_format = elaborated_clang_type.GetFormat();
8782 clang::TypeInfo elaborated_type_info =
8783 getASTContext().getTypeInfo(elaborated_qual_type);
8784 uint64_t elaborated_byte_size = elaborated_type_info.Width / 8;
8785
8786 return elaborated_clang_type.DumpValue(
8787 exe_ctx,
8788 s, // Stream to dump to
8789 elaborated_format, // The format with which to display the element
8790 data, // Data buffer containing all bytes for this type
8791 data_byte_offset, // Offset into "data" where to grab value from
8792 elaborated_byte_size, // Size of this type in bytes
8793 bitfield_bit_size, // Bitfield bit size
8794 bitfield_bit_offset, // Bitfield bit offset
8795 show_types, // Boolean indicating if we should show the variable types
8796 show_summary, // Boolean indicating if we should show a summary for the
8797 // current type
8798 verbose, // Verbose output?
8799 depth); // Scope depth for any types that have children
8800 } break;
8801
8802 case clang::Type::Paren: {
8803 clang::QualType desugar_qual_type =
8804 llvm::cast<clang::ParenType>(qual_type)->desugar();
8805 CompilerType desugar_clang_type = GetType(desugar_qual_type);
8806
8807 lldb::Format desugar_format = desugar_clang_type.GetFormat();
8808 clang::TypeInfo desugar_type_info =
8809 getASTContext().getTypeInfo(desugar_qual_type);
8810 uint64_t desugar_byte_size = desugar_type_info.Width / 8;
8811
8812 return desugar_clang_type.DumpValue(
8813 exe_ctx,
8814 s, // Stream to dump to
8815 desugar_format, // The format with which to display the element
8816 data, // Data buffer containing all bytes for this type
8817 data_byte_offset, // Offset into "data" where to grab value from
8818 desugar_byte_size, // Size of this type in bytes
8819 bitfield_bit_size, // Bitfield bit size
8820 bitfield_bit_offset, // Bitfield bit offset
8821 show_types, // Boolean indicating if we should show the variable types
8822 show_summary, // Boolean indicating if we should show a summary for the
8823 // current type
8824 verbose, // Verbose output?
8825 depth); // Scope depth for any types that have children
8826 } break;
8827
8828 default:
8829 // We are down to a scalar type that we just need to display.
8830 DumpDataExtractor(data, s, data_byte_offset, format, data_byte_size, 1,
8831 UINT32_MAX(4294967295U), LLDB_INVALID_ADDRESS(18446744073709551615UL), bitfield_bit_size,
8832 bitfield_bit_offset);
8833
8834 if (show_summary)
8835 DumpSummary(type, exe_ctx, s, data, data_byte_offset, data_byte_size);
8836 break;
8837 }
8838}
8839
8840static bool DumpEnumValue(const clang::QualType &qual_type, Stream *s,
8841 const DataExtractor &data, lldb::offset_t byte_offset,
8842 size_t byte_size, uint32_t bitfield_bit_offset,
8843 uint32_t bitfield_bit_size) {
8844 const clang::EnumType *enutype =
8845 llvm::cast<clang::EnumType>(qual_type.getTypePtr());
8846 const clang::EnumDecl *enum_decl = enutype->getDecl();
8847 assert(enum_decl)(static_cast <bool> (enum_decl) ? void (0) : __assert_fail
("enum_decl", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 8847, __extension__ __PRETTY_FUNCTION__))
;
8848 lldb::offset_t offset = byte_offset;
8849 const uint64_t enum_svalue = data.GetMaxS64Bitfield(
8850 &offset, byte_size, bitfield_bit_size, bitfield_bit_offset);
8851 bool can_be_bitfield = true;
8852 uint64_t covered_bits = 0;
8853 int num_enumerators = 0;
8854
8855 // Try to find an exact match for the value.
8856 // At the same time, we're applying a heuristic to determine whether we want
8857 // to print this enum as a bitfield. We're likely dealing with a bitfield if
8858 // every enumerator is either a one bit value or a superset of the previous
8859 // enumerators. Also 0 doesn't make sense when the enumerators are used as
8860 // flags.
8861 for (auto *enumerator : enum_decl->enumerators()) {
8862 uint64_t val = enumerator->getInitVal().getSExtValue();
8863 val = llvm::SignExtend64(val, 8*byte_size);
8864 if (llvm::countPopulation(val) != 1 && (val & ~covered_bits) != 0)
8865 can_be_bitfield = false;
8866 covered_bits |= val;
8867 ++num_enumerators;
8868 if (val == enum_svalue) {
8869 // Found an exact match, that's all we need to do.
8870 s->PutCString(enumerator->getNameAsString());
8871 return true;
8872 }
8873 }
8874
8875 // Unsigned values make more sense for flags.
8876 offset = byte_offset;
8877 const uint64_t enum_uvalue = data.GetMaxU64Bitfield(
8878 &offset, byte_size, bitfield_bit_size, bitfield_bit_offset);
8879
8880 // No exact match, but we don't think this is a bitfield. Print the value as
8881 // decimal.
8882 if (!can_be_bitfield) {
8883 if (qual_type->isSignedIntegerOrEnumerationType())
8884 s->Printf("%" PRIi64"l" "i", enum_svalue);
8885 else
8886 s->Printf("%" PRIu64"l" "u", enum_uvalue);
8887 return true;
8888 }
8889
8890 uint64_t remaining_value = enum_uvalue;
8891 std::vector<std::pair<uint64_t, llvm::StringRef>> values;
8892 values.reserve(num_enumerators);
8893 for (auto *enumerator : enum_decl->enumerators())
8894 if (auto val = enumerator->getInitVal().getZExtValue())
8895 values.emplace_back(val, enumerator->getName());
8896
8897 // Sort in reverse order of the number of the population count, so that in
8898 // `enum {A, B, ALL = A|B }` we visit ALL first. Use a stable sort so that
8899 // A | C where A is declared before C is displayed in this order.
8900 std::stable_sort(values.begin(), values.end(), [](const auto &a, const auto &b) {
8901 return llvm::countPopulation(a.first) > llvm::countPopulation(b.first);
8902 });
8903
8904 for (const auto &val : values) {
8905 if ((remaining_value & val.first) != val.first)
8906 continue;
8907 remaining_value &= ~val.first;
8908 s->PutCString(val.second);
8909 if (remaining_value)
8910 s->PutCString(" | ");
8911 }
8912
8913 // If there is a remainder that is not covered by the value, print it as hex.
8914 if (remaining_value)
8915 s->Printf("0x%" PRIx64"l" "x", remaining_value);
8916
8917 return true;
8918}
8919
8920bool TypeSystemClang::DumpTypeValue(
8921 lldb::opaque_compiler_type_t type, Stream *s, lldb::Format format,
8922 const lldb_private::DataExtractor &data, lldb::offset_t byte_offset,
8923 size_t byte_size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset,
8924 ExecutionContextScope *exe_scope) {
8925 if (!type)
8926 return false;
8927 if (IsAggregateType(type)) {
8928 return false;
8929 } else {
8930 clang::QualType qual_type(GetQualType(type));
8931
8932 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
8933
8934 if (type_class == clang::Type::Elaborated) {
8935 qual_type = llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType();
8936 return DumpTypeValue(qual_type.getAsOpaquePtr(), s, format, data, byte_offset, byte_size,
8937 bitfield_bit_size, bitfield_bit_offset, exe_scope);
8938 }
8939
8940 switch (type_class) {
8941 case clang::Type::Typedef: {
8942 clang::QualType typedef_qual_type =
8943 llvm::cast<clang::TypedefType>(qual_type)
8944 ->getDecl()
8945 ->getUnderlyingType();
8946 CompilerType typedef_clang_type = GetType(typedef_qual_type);
8947 if (format == eFormatDefault)
8948 format = typedef_clang_type.GetFormat();
8949 clang::TypeInfo typedef_type_info =
8950 getASTContext().getTypeInfo(typedef_qual_type);
8951 uint64_t typedef_byte_size = typedef_type_info.Width / 8;
8952
8953 return typedef_clang_type.DumpTypeValue(
8954 s,
8955 format, // The format with which to display the element
8956 data, // Data buffer containing all bytes for this type
8957 byte_offset, // Offset into "data" where to grab value from
8958 typedef_byte_size, // Size of this type in bytes
8959 bitfield_bit_size, // Size in bits of a bitfield value, if zero don't
8960 // treat as a bitfield
8961 bitfield_bit_offset, // Offset in bits of a bitfield value if
8962 // bitfield_bit_size != 0
8963 exe_scope);
8964 } break;
8965
8966 case clang::Type::Enum:
8967 // If our format is enum or default, show the enumeration value as its
8968 // enumeration string value, else just display it as requested.
8969 if ((format == eFormatEnum || format == eFormatDefault) &&
8970 GetCompleteType(type))
8971 return DumpEnumValue(qual_type, s, data, byte_offset, byte_size,
8972 bitfield_bit_offset, bitfield_bit_size);
8973 // format was not enum, just fall through and dump the value as
8974 // requested....
8975 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8976
8977 default:
8978 // We are down to a scalar type that we just need to display.
8979 {
8980 uint32_t item_count = 1;
8981 // A few formats, we might need to modify our size and count for
8982 // depending
8983 // on how we are trying to display the value...
8984 switch (format) {
8985 default:
8986 case eFormatBoolean:
8987 case eFormatBinary:
8988 case eFormatComplex:
8989 case eFormatCString: // NULL terminated C strings
8990 case eFormatDecimal:
8991 case eFormatEnum:
8992 case eFormatHex:
8993 case eFormatHexUppercase:
8994 case eFormatFloat:
8995 case eFormatOctal:
8996 case eFormatOSType:
8997 case eFormatUnsigned:
8998 case eFormatPointer:
8999 case eFormatVectorOfChar:
9000 case eFormatVectorOfSInt8:
9001 case eFormatVectorOfUInt8:
9002 case eFormatVectorOfSInt16:
9003 case eFormatVectorOfUInt16:
9004 case eFormatVectorOfSInt32:
9005 case eFormatVectorOfUInt32:
9006 case eFormatVectorOfSInt64:
9007 case eFormatVectorOfUInt64:
9008 case eFormatVectorOfFloat32:
9009 case eFormatVectorOfFloat64:
9010 case eFormatVectorOfUInt128:
9011 break;
9012
9013 case eFormatChar:
9014 case eFormatCharPrintable:
9015 case eFormatCharArray:
9016 case eFormatBytes:
9017 case eFormatUnicode8:
9018 case eFormatBytesWithASCII:
9019 item_count = byte_size;
9020 byte_size = 1;
9021 break;
9022
9023 case eFormatUnicode16:
9024 item_count = byte_size / 2;
9025 byte_size = 2;
9026 break;
9027
9028 case eFormatUnicode32:
9029 item_count = byte_size / 4;
9030 byte_size = 4;
9031 break;
9032 }
9033 return DumpDataExtractor(data, s, byte_offset, format, byte_size,
9034 item_count, UINT32_MAX(4294967295U), LLDB_INVALID_ADDRESS(18446744073709551615UL),
9035 bitfield_bit_size, bitfield_bit_offset,
9036 exe_scope);
9037 }
9038 break;
9039 }
9040 }
9041 return false;
9042}
9043
9044void TypeSystemClang::DumpSummary(lldb::opaque_compiler_type_t type,
9045 ExecutionContext *exe_ctx, Stream *s,
9046 const lldb_private::DataExtractor &data,
9047 lldb::offset_t data_byte_offset,
9048 size_t data_byte_size) {
9049 uint32_t length = 0;
9050 if (IsCStringType(type, length)) {
9051 if (exe_ctx) {
9052 Process *process = exe_ctx->GetProcessPtr();
9053 if (process) {
9054 lldb::offset_t offset = data_byte_offset;
9055 lldb::addr_t pointer_address = data.GetMaxU64(&offset, data_byte_size);
9056 std::vector<uint8_t> buf;
9057 if (length > 0)
9058 buf.resize(length);
9059 else
9060 buf.resize(256);
9061
9062 DataExtractor cstr_data(&buf.front(), buf.size(),
9063 process->GetByteOrder(), 4);
9064 buf.back() = '\0';
9065 size_t bytes_read;
9066 size_t total_cstr_len = 0;
9067 Status error;
9068 while ((bytes_read = process->ReadMemory(pointer_address, &buf.front(),
9069 buf.size(), error)) > 0) {
9070 const size_t len = strlen((const char *)&buf.front());
9071 if (len == 0)
9072 break;
9073 if (total_cstr_len == 0)
9074 s->PutCString(" \"");
9075 DumpDataExtractor(cstr_data, s, 0, lldb::eFormatChar, 1, len,
9076 UINT32_MAX(4294967295U), LLDB_INVALID_ADDRESS(18446744073709551615UL), 0, 0);
9077 total_cstr_len += len;
9078 if (len < buf.size())
9079 break;
9080 pointer_address += total_cstr_len;
9081 }
9082 if (total_cstr_len > 0)
9083 s->PutChar('"');
9084 }
9085 }
9086 }
9087}
9088
9089void TypeSystemClang::DumpTypeDescription(lldb::opaque_compiler_type_t type,
9090 lldb::DescriptionLevel level) {
9091 StreamFile s(stdoutstdout, false);
9092 DumpTypeDescription(type, &s, level);
9093
9094 CompilerType ct(this, type);
9095 const clang::Type *clang_type = ClangUtil::GetQualType(ct).getTypePtr();
9096 ClangASTMetadata *metadata = GetMetadata(clang_type);
9097 if (metadata) {
9098 metadata->Dump(&s);
9099 }
9100}
9101
9102void TypeSystemClang::DumpTypeDescription(lldb::opaque_compiler_type_t type,
9103 Stream *s,
9104 lldb::DescriptionLevel level) {
9105 if (type) {
9106 clang::QualType qual_type =
9107 RemoveWrappingTypes(GetQualType(type), {clang::Type::Typedef});
9108
9109 llvm::SmallVector<char, 1024> buf;
9110 llvm::raw_svector_ostream llvm_ostrm(buf);
9111
9112 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
9113 switch (type_class) {
9114 case clang::Type::ObjCObject:
9115 case clang::Type::ObjCInterface: {
9116 GetCompleteType(type);
9117
9118 auto *objc_class_type =
9119 llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
9120 assert(objc_class_type)(static_cast <bool> (objc_class_type) ? void (0) : __assert_fail
("objc_class_type", "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, 9120, __extension__ __PRETTY_FUNCTION__))
;
9121 if (!objc_class_type)
9122 break;
9123 clang::ObjCInterfaceDecl *class_interface_decl =
9124 objc_class_type->getInterface();
9125 if (!class_interface_decl)
9126 break;
9127 if (level == eDescriptionLevelVerbose)
9128 class_interface_decl->dump(llvm_ostrm);
9129 else
9130 class_interface_decl->print(llvm_ostrm,
9131 getASTContext().getPrintingPolicy(),
9132 s->GetIndentLevel());
9133 } break;
9134
9135 case clang::Type::Typedef: {
9136 auto *typedef_type = qual_type->getAs<clang::TypedefType>();
9137 if (!typedef_type)
9138 break;
9139 const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl();
9140 if (level == eDescriptionLevelVerbose)
9141 typedef_decl->dump(llvm_ostrm);
9142 else {
9143 std::string clang_typedef_name(GetTypeNameForDecl(typedef_decl));
9144 if (!clang_typedef_name.empty()) {
9145 s->PutCString("typedef ");
9146 s->PutCString(clang_typedef_name);
9147 }
9148 }
9149 } break;
9150
9151 case clang::Type::Record: {
9152 GetCompleteType(type);
9153
9154 auto *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
9155 const clang::RecordDecl *record_decl = record_type->getDecl();
9156 if (level == eDescriptionLevelVerbose)
9157 record_decl->dump(llvm_ostrm);
9158 else {
9159 if (auto *cxx_record_decl =
9160 llvm::dyn_cast<clang::CXXRecordDecl>(record_decl))
9161 cxx_record_decl->print(llvm_ostrm,
9162 getASTContext().getPrintingPolicy(),
9163 s->GetIndentLevel());
9164 else
9165 record_decl->print(llvm_ostrm, getASTContext().getPrintingPolicy(),
9166 s->GetIndentLevel());
9167 }
9168 } break;
9169
9170 default: {
9171 if (auto *tag_type =
9172 llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr())) {
9173 if (clang::TagDecl *tag_decl = tag_type->getDecl()) {
9174 if (level == eDescriptionLevelVerbose)
9175 tag_decl->dump(llvm_ostrm);
9176 else
9177 tag_decl->print(llvm_ostrm, 0);
9178 }
9179 } else {
9180 if (level == eDescriptionLevelVerbose)
9181 qual_type->dump(llvm_ostrm, getASTContext());
9182 else {
9183 std::string clang_type_name(qual_type.getAsString());
9184 if (!clang_type_name.empty())
9185 s->PutCString(clang_type_name);
9186 }
9187 }
9188 }
9189 }
9190
9191 if (buf.size() > 0) {
9192 s->Write(buf.data(), buf.size());
9193 }
9194}
9195}
9196
9197void TypeSystemClang::DumpTypeName(const CompilerType &type) {
9198 if (ClangUtil::IsClangType(type)) {
9199 clang::QualType qual_type(
9200 ClangUtil::GetCanonicalQualType(ClangUtil::RemoveFastQualifiers(type)));
9201
9202 const clang::Type::TypeClass type_class = qual_type->getTypeClass();
9203 switch (type_class) {
9204 case clang::Type::Record: {
9205 const clang::CXXRecordDecl *cxx_record_decl =
9206 qual_type->getAsCXXRecordDecl();
9207 if (cxx_record_decl)
9208 printf("class %s", cxx_record_decl->getName().str().c_str());
9209 } break;
9210
9211 case clang::Type::Enum: {
9212 clang::EnumDecl *enum_decl =
9213 llvm::cast<clang::EnumType>(qual_type)->getDecl();
9214 if (enum_decl) {
9215 printf("enum %s", enum_decl->getName().str().c_str());
9216 }
9217 } break;
9218
9219 case clang::Type::ObjCObject:
9220 case clang::Type::ObjCInterface: {
9221 const clang::ObjCObjectType *objc_class_type =
9222 llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
9223 if (objc_class_type) {
9224 clang::ObjCInterfaceDecl *class_interface_decl =
9225 objc_class_type->getInterface();
9226 // We currently can't complete objective C types through the newly
9227 // added ASTContext because it only supports TagDecl objects right
9228 // now...
9229 if (class_interface_decl)
9230 printf("@class %s", class_interface_decl->getName().str().c_str());
9231 }
9232 } break;
9233
9234 case clang::Type::Typedef:
9235 printf("typedef %s", llvm::cast<clang::TypedefType>(qual_type)
9236 ->getDecl()
9237 ->getName()
9238 .str()
9239 .c_str());
9240 break;
9241
9242 case clang::Type::Auto:
9243 printf("auto ");
9244 return DumpTypeName(CompilerType(type.GetTypeSystem(),
9245 llvm::cast<clang::AutoType>(qual_type)
9246 ->getDeducedType()
9247 .getAsOpaquePtr()));
9248
9249 case clang::Type::Elaborated:
9250 printf("elaborated ");
9251 return DumpTypeName(CompilerType(
9252 type.GetTypeSystem(), llvm::cast<clang::ElaboratedType>(qual_type)
9253 ->getNamedType()
9254 .getAsOpaquePtr()));
9255
9256 case clang::Type::Paren:
9257 printf("paren ");
9258 return DumpTypeName(CompilerType(
9259 type.GetTypeSystem(),
9260 llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr()));
9261
9262 default:
9263 printf("TypeSystemClang::DumpTypeName() type_class = %u", type_class);
9264 break;
9265 }
9266 }
9267}
9268
9269clang::ClassTemplateDecl *TypeSystemClang::ParseClassTemplateDecl(
9270 clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
9271 lldb::AccessType access_type, const char *parent_name, int tag_decl_kind,
9272 const TypeSystemClang::TemplateParameterInfos &template_param_infos) {
9273 if (template_param_infos.IsValid()) {
9274 std::string template_basename(parent_name);
9275 template_basename.erase(template_basename.find('<'));
9276
9277 return CreateClassTemplateDecl(decl_ctx, owning_module, access_type,
9278 template_basename.c_str(), tag_decl_kind,
9279 template_param_infos);
9280 }
9281 return nullptr;
9282}
9283
9284void TypeSystemClang::CompleteTagDecl(clang::TagDecl *decl) {
9285 SymbolFile *sym_file = GetSymbolFile();
9286 if (sym_file) {
9287 CompilerType clang_type = GetTypeForDecl(decl);
9288 if (clang_type)
9289 sym_file->CompleteType(clang_type);
9290 }
9291}
9292
9293void TypeSystemClang::CompleteObjCInterfaceDecl(
9294 clang::ObjCInterfaceDecl *decl) {
9295 SymbolFile *sym_file = GetSymbolFile();
9296 if (sym_file) {
9297 CompilerType clang_type = GetTypeForDecl(decl);
9298 if (clang_type)
9299 sym_file->CompleteType(clang_type);
9300 }
9301}
9302
9303DWARFASTParser *TypeSystemClang::GetDWARFParser() {
9304 if (!m_dwarf_ast_parser_up)
9305 m_dwarf_ast_parser_up = std::make_unique<DWARFASTParserClang>(*this);
9306 return m_dwarf_ast_parser_up.get();
9307}
9308
9309PDBASTParser *TypeSystemClang::GetPDBParser() {
9310 if (!m_pdb_ast_parser_up)
9311 m_pdb_ast_parser_up = std::make_unique<PDBASTParser>(*this);
9312 return m_pdb_ast_parser_up.get();
9313}
9314
9315bool TypeSystemClang::LayoutRecordType(
9316 const clang::RecordDecl *record_decl, uint64_t &bit_size,
9317 uint64_t &alignment,
9318 llvm::DenseMap<const clang::FieldDecl *, uint64_t> &field_offsets,
9319 llvm::DenseMap<const clang::CXXRecordDecl *, clang::CharUnits>
9320 &base_offsets,
9321 llvm::DenseMap<const clang::CXXRecordDecl *, clang::CharUnits>
9322 &vbase_offsets) {
9323 lldb_private::ClangASTImporter *importer = nullptr;
9324 if (m_dwarf_ast_parser_up)
9325 importer = &m_dwarf_ast_parser_up->GetClangASTImporter();
9326 if (!importer && m_pdb_ast_parser_up)
9327 importer = &m_pdb_ast_parser_up->GetClangASTImporter();
9328 if (!importer)
9329 return false;
9330
9331 return importer->LayoutRecordType(record_decl, bit_size, alignment,
9332 field_offsets, base_offsets, vbase_offsets);
9333}
9334
9335// CompilerDecl override functions
9336
9337ConstString TypeSystemClang::DeclGetName(void *opaque_decl) {
9338 if (opaque_decl) {
9339 clang::NamedDecl *nd =
9340 llvm::dyn_cast<NamedDecl>((clang::Decl *)opaque_decl);
9341 if (nd != nullptr)
9342 return ConstString(nd->getDeclName().getAsString());
9343 }
9344 return ConstString();
9345}
9346
9347ConstString TypeSystemClang::DeclGetMangledName(void *opaque_decl) {
9348 if (opaque_decl) {
9349 clang::NamedDecl *nd =
9350 llvm::dyn_cast<clang::NamedDecl>((clang::Decl *)opaque_decl);
9351 if (nd != nullptr && !llvm::isa<clang::ObjCMethodDecl>(nd)) {
9352 clang::MangleContext *mc = getMangleContext();
9353 if (mc && mc->shouldMangleCXXName(nd)) {
9354 llvm::SmallVector<char, 1024> buf;
9355 llvm::raw_svector_ostream llvm_ostrm(buf);
9356 if (llvm::isa<clang::CXXConstructorDecl>(nd)) {
9357 mc->mangleName(
9358 clang::GlobalDecl(llvm::dyn_cast<clang::CXXConstructorDecl>(nd),
9359 Ctor_Complete),
9360 llvm_ostrm);
9361 } else if (llvm::isa<clang::CXXDestructorDecl>(nd)) {
9362 mc->mangleName(
9363 clang::GlobalDecl(llvm::dyn_cast<clang::CXXDestructorDecl>(nd),
9364 Dtor_Complete),
9365 llvm_ostrm);
9366 } else {
9367 mc->mangleName(nd, llvm_ostrm);
9368 }
9369 if (buf.size() > 0)
9370 return ConstString(buf.data(), buf.size());
9371 }
9372 }
9373 }
9374 return ConstString();
9375}
9376
9377CompilerDeclContext TypeSystemClang::DeclGetDeclContext(void *opaque_decl) {
9378 if (opaque_decl)
9379 return CreateDeclContext(((clang::Decl *)opaque_decl)->getDeclContext());
9380 return CompilerDeclContext();
9381}
9382
9383CompilerType TypeSystemClang::DeclGetFunctionReturnType(void *opaque_decl) {
9384 if (clang::FunctionDecl *func_decl =
9385 llvm::dyn_cast<clang::FunctionDecl>((clang::Decl *)opaque_decl))
9386 return GetType(func_decl->getReturnType());
9387 if (clang::ObjCMethodDecl *objc_method =
9388 llvm::dyn_cast<clang::ObjCMethodDecl>((clang::Decl *)opaque_decl))
9389 return GetType(objc_method->getReturnType());
9390 else
9391 return CompilerType();
9392}
9393
9394size_t TypeSystemClang::DeclGetFunctionNumArguments(void *opaque_decl) {
9395 if (clang::FunctionDecl *func_decl =
9396 llvm::dyn_cast<clang::FunctionDecl>((clang::Decl *)opaque_decl))
9397 return func_decl->param_size();
9398 if (clang::ObjCMethodDecl *objc_method =
9399 llvm::dyn_cast<clang::ObjCMethodDecl>((clang::Decl *)opaque_decl))
9400 return objc_method->param_size();
9401 else
9402 return 0;
9403}
9404
9405CompilerType TypeSystemClang::DeclGetFunctionArgumentType(void *opaque_decl,
9406 size_t idx) {
9407 if (clang::FunctionDecl *func_decl =
9408 llvm::dyn_cast<clang::FunctionDecl>((clang::Decl *)opaque_decl)) {
9409 if (idx < func_decl->param_size()) {
9410 ParmVarDecl *var_decl = func_decl->getParamDecl(idx);
9411 if (var_decl)
9412 return GetType(var_decl->getOriginalType());
9413 }
9414 } else if (clang::ObjCMethodDecl *objc_method =
9415 llvm::dyn_cast<clang::ObjCMethodDecl>(
9416 (clang::Decl *)opaque_decl)) {
9417 if (idx < objc_method->param_size())
9418 return GetType(objc_method->parameters()[idx]->getOriginalType());
9419 }
9420 return CompilerType();
9421}
9422
9423// CompilerDeclContext functions
9424
9425std::vector<CompilerDecl> TypeSystemClang::DeclContextFindDeclByName(
9426 void *opaque_decl_ctx, ConstString name, const bool ignore_using_decls) {
9427 std::vector<CompilerDecl> found_decls;
9428 SymbolFile *symbol_file = GetSymbolFile();
9429 if (opaque_decl_ctx && symbol_file) {
9430 DeclContext *root_decl_ctx = (DeclContext *)opaque_decl_ctx;
9431 std::set<DeclContext *> searched;
9432 std::multimap<DeclContext *, DeclContext *> search_queue;
9433
9434 for (clang::DeclContext *decl_context = root_decl_ctx;
9435 decl_context != nullptr && found_decls.empty();
9436 decl_context = decl_context->getParent()) {
9437 search_queue.insert(std::make_pair(decl_context, decl_context));
9438
9439 for (auto it = search_queue.find(decl_context); it != search_queue.end();
9440 it++) {
9441 if (!searched.insert(it->second).second)
9442 continue;
9443 symbol_file->ParseDeclsForContext(
9444 CreateDeclContext(it->second));
9445
9446 for (clang::Decl *child : it->second->decls()) {
9447 if (clang::UsingDirectiveDecl *ud =
9448 llvm::dyn_cast<clang::UsingDirectiveDecl>(child)) {
9449 if (ignore_using_decls)
9450 continue;
9451 clang::DeclContext *from = ud->getCommonAncestor();
9452 if (searched.find(ud->getNominatedNamespace()) == searched.end())
9453 search_queue.insert(
9454 std::make_pair(from, ud->getNominatedNamespace()));
9455 } else if (clang::UsingDecl *ud =
9456 llvm::dyn_cast<clang::UsingDecl>(child)) {
9457 if (ignore_using_decls)
9458 continue;
9459 for (clang::UsingShadowDecl *usd : ud->shadows()) {
9460 clang::Decl *target = usd->getTargetDecl();
9461 if (clang::NamedDecl *nd =
9462 llvm::dyn_cast<clang::NamedDecl>(target)) {
9463 IdentifierInfo *ii = nd->getIdentifier();
9464 if (ii != nullptr &&
9465 ii->getName().equals(name.AsCString(nullptr)))
9466 found_decls.push_back(GetCompilerDecl(nd));
9467 }
9468 }
9469 } else if (clang::NamedDecl *nd =
9470 llvm::dyn_cast<clang::NamedDecl>(child)) {
9471 IdentifierInfo *ii = nd->getIdentifier();
9472 if (ii != nullptr && ii->getName().equals(name.AsCString(nullptr)))
9473 found_decls.push_back(GetCompilerDecl(nd));
9474 }
9475 }
9476 }
9477 }
9478 }
9479 return found_decls;
9480}
9481
9482// Look for child_decl_ctx's lookup scope in frame_decl_ctx and its parents,
9483// and return the number of levels it took to find it, or
9484// LLDB_INVALID_DECL_LEVEL if not found. If the decl was imported via a using
9485// declaration, its name and/or type, if set, will be used to check that the
9486// decl found in the scope is a match.
9487//
9488// The optional name is required by languages (like C++) to handle using
9489// declarations like:
9490//
9491// void poo();
9492// namespace ns {
9493// void foo();
9494// void goo();
9495// }
9496// void bar() {
9497// using ns::foo;
9498// // CountDeclLevels returns 0 for 'foo', 1 for 'poo', and
9499// // LLDB_INVALID_DECL_LEVEL for 'goo'.
9500// }
9501//
9502// The optional type is useful in the case that there's a specific overload
9503// that we're looking for that might otherwise be shadowed, like:
9504//
9505// void foo(int);
9506// namespace ns {
9507// void foo();
9508// }
9509// void bar() {
9510// using ns::foo;
9511// // CountDeclLevels returns 0 for { 'foo', void() },
9512// // 1 for { 'foo', void(int) }, and
9513// // LLDB_INVALID_DECL_LEVEL for { 'foo', void(int, int) }.
9514// }
9515//
9516// NOTE: Because file statics are at the TranslationUnit along with globals, a
9517// function at file scope will return the same level as a function at global
9518// scope. Ideally we'd like to treat the file scope as an additional scope just
9519// below the global scope. More work needs to be done to recognise that, if
9520// the decl we're trying to look up is static, we should compare its source
9521// file with that of the current scope and return a lower number for it.
9522uint32_t TypeSystemClang::CountDeclLevels(clang::DeclContext *frame_decl_ctx,
9523 clang::DeclContext *child_decl_ctx,
9524 ConstString *child_name,
9525 CompilerType *child_type) {
9526 SymbolFile *symbol_file = GetSymbolFile();
9527 if (frame_decl_ctx && symbol_file) {
9528 std::set<DeclContext *> searched;
9529 std::multimap<DeclContext *, DeclContext *> search_queue;
9530
9531 // Get the lookup scope for the decl we're trying to find.
9532 clang::DeclContext *parent_decl_ctx = child_decl_ctx->getParent();
9533
9534 // Look for it in our scope's decl context and its parents.
9535 uint32_t level = 0;
9536 for (clang::DeclContext *decl_ctx = frame_decl_ctx; decl_ctx != nullptr;
9537 decl_ctx = decl_ctx->getParent()) {
9538 if (!decl_ctx->isLookupContext())
9539 continue;
9540 if (decl_ctx == parent_decl_ctx)
9541 // Found it!
9542 return level;
9543 search_queue.insert(std::make_pair(decl_ctx, decl_ctx));
9544 for (auto it = search_queue.find(decl_ctx); it != search_queue.end();
9545 it++) {
9546 if (searched.find(it->second) != searched.end())
9547 continue;
9548
9549 // Currently DWARF has one shared translation unit for all Decls at top
9550 // level, so this would erroneously find using statements anywhere. So
9551 // don't look at the top-level translation unit.
9552 // TODO fix this and add a testcase that depends on it.
9553
9554 if (llvm::isa<clang::TranslationUnitDecl>(it->second))
9555 continue;
9556
9557 searched.insert(it->second);
9558 symbol_file->ParseDeclsForContext(
9559 CreateDeclContext(it->second));
9560
9561 for (clang::Decl *child : it->second->decls()) {
9562 if (clang::UsingDirectiveDecl *ud =
9563 llvm::dyn_cast<clang::UsingDirectiveDecl>(child)) {
9564 clang::DeclContext *ns = ud->getNominatedNamespace();
9565 if (ns == parent_decl_ctx)
9566 // Found it!
9567 return level;
9568 clang::DeclContext *from = ud->getCommonAncestor();
9569 if (searched.find(ns) == searched.end())
9570 search_queue.insert(std::make_pair(from, ns));
9571 } else if (child_name) {
9572 if (clang::UsingDecl *ud =
9573 llvm::dyn_cast<clang::UsingDecl>(child)) {
9574 for (clang::UsingShadowDecl *usd : ud->shadows()) {
9575 clang::Decl *target = usd->getTargetDecl();
9576 clang::NamedDecl *nd = llvm::dyn_cast<clang::NamedDecl>(target);
9577 if (!nd)
9578 continue;
9579 // Check names.
9580 IdentifierInfo *ii = nd->getIdentifier();
9581 if (ii == nullptr ||
9582 !ii->getName().equals(child_name->AsCString(nullptr)))
9583 continue;
9584 // Check types, if one was provided.
9585 if (child_type) {
9586 CompilerType clang_type = GetTypeForDecl(nd);
9587 if (!AreTypesSame(clang_type, *child_type,
9588 /*ignore_qualifiers=*/true))
9589 continue;
9590 }
9591 // Found it!
9592 return level;
9593 }
9594 }
9595 }
9596 }
9597 }
9598 ++level;
9599 }
9600 }
9601 return LLDB_INVALID_DECL_LEVEL(4294967295U);
9602}
9603
9604ConstString TypeSystemClang::DeclContextGetName(void *opaque_decl_ctx) {
9605 if (opaque_decl_ctx) {
9606 clang::NamedDecl *named_decl =
9607 llvm::dyn_cast<clang::NamedDecl>((clang::DeclContext *)opaque_decl_ctx);
9608 if (named_decl)
9609 return ConstString(named_decl->getName());
9610 }
9611 return ConstString();
9612}
9613
9614ConstString
9615TypeSystemClang::DeclContextGetScopeQualifiedName(void *opaque_decl_ctx) {
9616 if (opaque_decl_ctx) {
9617 clang::NamedDecl *named_decl =
9618 llvm::dyn_cast<clang::NamedDecl>((clang::DeclContext *)opaque_decl_ctx);
9619 if (named_decl)
9620 return ConstString(GetTypeNameForDecl(named_decl));
9621 }
9622 return ConstString();
9623}
9624
9625bool TypeSystemClang::DeclContextIsClassMethod(
9626 void *opaque_decl_ctx, lldb::LanguageType *language_ptr,
9627 bool *is_instance_method_ptr, ConstString *language_object_name_ptr) {
9628 if (opaque_decl_ctx) {
9629 clang::DeclContext *decl_ctx = (clang::DeclContext *)opaque_decl_ctx;
9630 if (ObjCMethodDecl *objc_method =
9631 llvm::dyn_cast<clang::ObjCMethodDecl>(decl_ctx)) {
9632 if (is_instance_method_ptr)
9633 *is_instance_method_ptr = objc_method->isInstanceMethod();
9634 if (language_ptr)
9635 *language_ptr = eLanguageTypeObjC;
9636 if (language_object_name_ptr)
9637 language_object_name_ptr->SetCString("self");
9638 return true;
9639 } else if (CXXMethodDecl *cxx_method =
9640 llvm::dyn_cast<clang::CXXMethodDecl>(decl_ctx)) {
9641 if (is_instance_method_ptr)
9642 *is_instance_method_ptr = cxx_method->isInstance();
9643 if (language_ptr)
9644 *language_ptr = eLanguageTypeC_plus_plus;
9645 if (language_object_name_ptr)
9646 language_object_name_ptr->SetCString("this");
9647 return true;
9648 } else if (clang::FunctionDecl *function_decl =
9649 llvm::dyn_cast<clang::FunctionDecl>(decl_ctx)) {
9650 ClangASTMetadata *metadata = GetMetadata(function_decl);
9651 if (metadata && metadata->HasObjectPtr()) {
9652 if (is_instance_method_ptr)
9653 *is_instance_method_ptr = true;
9654 if (language_ptr)
9655 *language_ptr = eLanguageTypeObjC;
9656 if (language_object_name_ptr)
9657 language_object_name_ptr->SetCString(metadata->GetObjectPtrName());
9658 return true;
9659 }
9660 }
9661 }
9662 return false;
9663}
9664
9665bool TypeSystemClang::DeclContextIsContainedInLookup(
9666 void *opaque_decl_ctx, void *other_opaque_decl_ctx) {
9667 auto *decl_ctx = (clang::DeclContext *)opaque_decl_ctx;
9668 auto *other = (clang::DeclContext *)other_opaque_decl_ctx;
9669
9670 do {
9671 // A decl context always includes its own contents in its lookup.
9672 if (decl_ctx == other)
9673 return true;
9674
9675 // If we have an inline namespace, then the lookup of the parent context
9676 // also includes the inline namespace contents.
9677 } while (other->isInlineNamespace() && (other = other->getParent()));
9678
9679 return false;
9680}
9681
9682static bool IsClangDeclContext(const CompilerDeclContext &dc) {
9683 return dc.IsValid() && isa<TypeSystemClang>(dc.GetTypeSystem());
9684}
9685
9686clang::DeclContext *
9687TypeSystemClang::DeclContextGetAsDeclContext(const CompilerDeclContext &dc) {
9688 if (IsClangDeclContext(dc))
9689 return (clang::DeclContext *)dc.GetOpaqueDeclContext();
9690 return nullptr;
9691}
9692
9693ObjCMethodDecl *
9694TypeSystemClang::DeclContextGetAsObjCMethodDecl(const CompilerDeclContext &dc) {
9695 if (IsClangDeclContext(dc))
9696 return llvm::dyn_cast<clang::ObjCMethodDecl>(
9697 (clang::DeclContext *)dc.GetOpaqueDeclContext());
9698 return nullptr;
9699}
9700
9701CXXMethodDecl *
9702TypeSystemClang::DeclContextGetAsCXXMethodDecl(const CompilerDeclContext &dc) {
9703 if (IsClangDeclContext(dc))
9704 return llvm::dyn_cast<clang::CXXMethodDecl>(
9705 (clang::DeclContext *)dc.GetOpaqueDeclContext());
9706 return nullptr;
9707}
9708
9709clang::FunctionDecl *
9710TypeSystemClang::DeclContextGetAsFunctionDecl(const CompilerDeclContext &dc) {
9711 if (IsClangDeclContext(dc))
9712 return llvm::dyn_cast<clang::FunctionDecl>(
9713 (clang::DeclContext *)dc.GetOpaqueDeclContext());
9714 return nullptr;
9715}
9716
9717clang::NamespaceDecl *
9718TypeSystemClang::DeclContextGetAsNamespaceDecl(const CompilerDeclContext &dc) {
9719 if (IsClangDeclContext(dc))
9720 return llvm::dyn_cast<clang::NamespaceDecl>(
9721 (clang::DeclContext *)dc.GetOpaqueDeclContext());
9722 return nullptr;
9723}
9724
9725ClangASTMetadata *
9726TypeSystemClang::DeclContextGetMetaData(const CompilerDeclContext &dc,
9727 const Decl *object) {
9728 TypeSystemClang *ast = llvm::cast<TypeSystemClang>(dc.GetTypeSystem());
9729 return ast->GetMetadata(object);
9730}
9731
9732clang::ASTContext *
9733TypeSystemClang::DeclContextGetTypeSystemClang(const CompilerDeclContext &dc) {
9734 TypeSystemClang *ast =
9735 llvm::dyn_cast_or_null<TypeSystemClang>(dc.GetTypeSystem());
9736 if (ast)
9737 return &ast->getASTContext();
9738 return nullptr;
9739}
9740
9741namespace {
9742/// A specialized scratch AST used within ScratchTypeSystemClang.
9743/// These are the ASTs backing the different IsolatedASTKinds. They behave
9744/// like a normal ScratchTypeSystemClang but they don't own their own
9745/// persistent storage or target reference.
9746class SpecializedScratchAST : public TypeSystemClang {
9747public:
9748 /// \param name The display name of the TypeSystemClang instance.
9749 /// \param triple The triple used for the TypeSystemClang instance.
9750 /// \param ast_source The ClangASTSource that should be used to complete
9751 /// type information.
9752 SpecializedScratchAST(llvm::StringRef name, llvm::Triple triple,
9753 std::unique_ptr<ClangASTSource> ast_source)
9754 : TypeSystemClang(name, triple),
9755 m_scratch_ast_source_up(std::move(ast_source)) {
9756 // Setup the ClangASTSource to complete this AST.
9757 m_scratch_ast_source_up->InstallASTContext(*this);
9758 llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> proxy_ast_source(
9759 m_scratch_ast_source_up->CreateProxy());
9760 SetExternalSource(proxy_ast_source);
9761 }
9762
9763 /// The ExternalASTSource that performs lookups and completes types.
9764 std::unique_ptr<ClangASTSource> m_scratch_ast_source_up;
9765};
9766} // namespace
9767
9768char ScratchTypeSystemClang::ID;
9769const llvm::NoneType ScratchTypeSystemClang::DefaultAST = llvm::None;
9770
9771ScratchTypeSystemClang::ScratchTypeSystemClang(Target &target,
9772 llvm::Triple triple)
9773 : TypeSystemClang("scratch ASTContext", triple), m_triple(triple),
9774 m_target_wp(target.shared_from_this()),
9775 m_persistent_variables(
9776 new ClangPersistentVariables(target.shared_from_this())) {
9777 m_scratch_ast_source_up = CreateASTSource();
9778 m_scratch_ast_source_up->InstallASTContext(*this);
9779 llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> proxy_ast_source(
9780 m_scratch_ast_source_up->CreateProxy());
9781 SetExternalSource(proxy_ast_source);
9782}
9783
9784void ScratchTypeSystemClang::Finalize() {
9785 TypeSystemClang::Finalize();
9786 m_scratch_ast_source_up.reset();
9787}
9788
9789TypeSystemClang *
9790ScratchTypeSystemClang::GetForTarget(Target &target,
9791 llvm::Optional<IsolatedASTKind> ast_kind,
9792 bool create_on_demand) {
9793 auto type_system_or_err = target.GetScratchTypeSystemForLanguage(
9794 lldb::eLanguageTypeC, create_on_demand);
9795 if (auto err = type_system_or_err.takeError()) {
9796 LLDB_LOG_ERROR(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_TARGET),do { ::lldb_private::Log *log_private = (lldb_private::GetLogIfAnyCategoriesSet
(::lldb_private::LLDBLog::Target)); ::llvm::Error error_private
= (std::move(err)); if (log_private && error_private
) { log_private->FormatError(::std::move(error_private), "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, __func__, "Couldn't get scratch TypeSystemClang"); } else ::
llvm::consumeError(::std::move(error_private)); } while (0)
9797 std::move(err), "Couldn't get scratch TypeSystemClang")do { ::lldb_private::Log *log_private = (lldb_private::GetLogIfAnyCategoriesSet
(::lldb_private::LLDBLog::Target)); ::llvm::Error error_private
= (std::move(err)); if (log_private && error_private
) { log_private->FormatError(::std::move(error_private), "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp"
, __func__, "Couldn't get scratch TypeSystemClang"); } else ::
llvm::consumeError(::std::move(error_private)); } while (0)
;
9798 return nullptr;
9799 }
9800 ScratchTypeSystemClang &scratch_ast =
9801 llvm::cast<ScratchTypeSystemClang>(type_system_or_err.get());
9802 // If no dedicated sub-AST was requested, just return the main AST.
9803 if (ast_kind == DefaultAST)
9804 return &scratch_ast;
9805 // Search the sub-ASTs.
9806 return &scratch_ast.GetIsolatedAST(*ast_kind);
9807}
9808
9809/// Returns a human-readable name that uniquely identifiers the sub-AST kind.
9810static llvm::StringRef
9811GetNameForIsolatedASTKind(ScratchTypeSystemClang::IsolatedASTKind kind) {
9812 switch (kind) {
9813 case ScratchTypeSystemClang::IsolatedASTKind::CppModules:
9814 return "C++ modules";
9815 }
9816 llvm_unreachable("Unimplemented IsolatedASTKind?")::llvm::llvm_unreachable_internal("Unimplemented IsolatedASTKind?"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
9816)
;
9817}
9818
9819void ScratchTypeSystemClang::Dump(llvm::raw_ostream &output) {
9820 // First dump the main scratch AST.
9821 output << "State of scratch Clang type system:\n";
9822 TypeSystemClang::Dump(output);
9823
9824 // Now sort the isolated sub-ASTs.
9825 typedef std::pair<IsolatedASTKey, TypeSystem *> KeyAndTS;
9826 std::vector<KeyAndTS> sorted_typesystems;
9827 for (const auto &a : m_isolated_asts)
9828 sorted_typesystems.emplace_back(a.first, a.second.get());
9829 llvm::stable_sort(sorted_typesystems,
9830 [](const KeyAndTS &lhs, const KeyAndTS &rhs) {
9831 return lhs.first < rhs.first;
9832 });
9833
9834 // Dump each sub-AST too.
9835 for (const auto &a : sorted_typesystems) {
9836 IsolatedASTKind kind =
9837 static_cast<ScratchTypeSystemClang::IsolatedASTKind>(a.first);
9838 output << "State of scratch Clang type subsystem "
9839 << GetNameForIsolatedASTKind(kind) << ":\n";
9840 a.second->Dump(output);
9841 }
9842}
9843
9844UserExpression *ScratchTypeSystemClang::GetUserExpression(
9845 llvm::StringRef expr, llvm::StringRef prefix, lldb::LanguageType language,
9846 Expression::ResultType desired_type,
9847 const EvaluateExpressionOptions &options, ValueObject *ctx_obj) {
9848 TargetSP target_sp = m_target_wp.lock();
9849 if (!target_sp)
9850 return nullptr;
9851
9852 return new ClangUserExpression(*target_sp.get(), expr, prefix, language,
9853 desired_type, options, ctx_obj);
9854}
9855
9856FunctionCaller *ScratchTypeSystemClang::GetFunctionCaller(
9857 const CompilerType &return_type, const Address &function_address,
9858 const ValueList &arg_value_list, const char *name) {
9859 TargetSP target_sp = m_target_wp.lock();
9860 if (!target_sp)
9861 return nullptr;
9862
9863 Process *process = target_sp->GetProcessSP().get();
9864 if (!process)
9865 return nullptr;
9866
9867 return new ClangFunctionCaller(*process, return_type, function_address,
9868 arg_value_list, name);
9869}
9870
9871std::unique_ptr<UtilityFunction>
9872ScratchTypeSystemClang::CreateUtilityFunction(std::string text,
9873 std::string name) {
9874 TargetSP target_sp = m_target_wp.lock();
9875 if (!target_sp)
9876 return {};
9877
9878 return std::make_unique<ClangUtilityFunction>(
9879 *target_sp.get(), std::move(text), std::move(name),
9880 target_sp->GetDebugUtilityExpression());
9881}
9882
9883PersistentExpressionState *
9884ScratchTypeSystemClang::GetPersistentExpressionState() {
9885 return m_persistent_variables.get();
9886}
9887
9888void ScratchTypeSystemClang::ForgetSource(ASTContext *src_ctx,
9889 ClangASTImporter &importer) {
9890 // Remove it as a source from the main AST.
9891 importer.ForgetSource(&getASTContext(), src_ctx);
9892 // Remove it as a source from all created sub-ASTs.
9893 for (const auto &a : m_isolated_asts)
9894 importer.ForgetSource(&a.second->getASTContext(), src_ctx);
9895}
9896
9897std::unique_ptr<ClangASTSource> ScratchTypeSystemClang::CreateASTSource() {
9898 return std::make_unique<ClangASTSource>(
9899 m_target_wp.lock()->shared_from_this(),
9900 m_persistent_variables->GetClangASTImporter());
9901}
9902
9903static llvm::StringRef
9904GetSpecializedASTName(ScratchTypeSystemClang::IsolatedASTKind feature) {
9905 switch (feature) {
9906 case ScratchTypeSystemClang::IsolatedASTKind::CppModules:
9907 return "scratch ASTContext for C++ module types";
9908 }
9909 llvm_unreachable("Unimplemented ASTFeature kind?")::llvm::llvm_unreachable_internal("Unimplemented ASTFeature kind?"
, "lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp",
9909)
;
9910}
9911
9912TypeSystemClang &ScratchTypeSystemClang::GetIsolatedAST(
9913 ScratchTypeSystemClang::IsolatedASTKind feature) {
9914 auto found_ast = m_isolated_asts.find(feature);
9915 if (found_ast != m_isolated_asts.end())
9916 return *found_ast->second;
9917
9918 // Couldn't find the requested sub-AST, so create it now.
9919 std::unique_ptr<TypeSystemClang> new_ast;
9920 new_ast.reset(new SpecializedScratchAST(GetSpecializedASTName(feature),
9921 m_triple, CreateASTSource()));
9922 m_isolated_asts[feature] = std::move(new_ast);
9923 return *m_isolated_asts[feature];
9924}

/build/llvm-toolchain-snapshot-14~++20220129111630+058c5dfc78cd/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132class UsingShadowDecl;
133
134using CanQualType = CanQual<Type>;
135
136// Provide forward declarations for all of the *Type classes.
137#define TYPE(Class, Base) class Class##Type;
138#include "clang/AST/TypeNodes.inc"
139
140/// The collection of all-type qualifiers we support.
141/// Clang supports five independent qualifiers:
142/// * C99: const, volatile, and restrict
143/// * MS: __unaligned
144/// * Embedded C (TR18037): address spaces
145/// * Objective C: the GC attributes (none, weak, or strong)
146class Qualifiers {
147public:
148 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
149 Const = 0x1,
150 Restrict = 0x2,
151 Volatile = 0x4,
152 CVRMask = Const | Volatile | Restrict
153 };
154
155 enum GC {
156 GCNone = 0,
157 Weak,
158 Strong
159 };
160
161 enum ObjCLifetime {
162 /// There is no lifetime qualification on this type.
163 OCL_None,
164
165 /// This object can be modified without requiring retains or
166 /// releases.
167 OCL_ExplicitNone,
168
169 /// Assigning into this object requires the old value to be
170 /// released and the new value to be retained. The timing of the
171 /// release of the old value is inexact: it may be moved to
172 /// immediately after the last known point where the value is
173 /// live.
174 OCL_Strong,
175
176 /// Reading or writing from this object requires a barrier call.
177 OCL_Weak,
178
179 /// Assigning into this object requires a lifetime extension.
180 OCL_Autoreleasing
181 };
182
183 enum {
184 /// The maximum supported address space number.
185 /// 23 bits should be enough for anyone.
186 MaxAddressSpace = 0x7fffffu,
187
188 /// The width of the "fast" qualifier mask.
189 FastWidth = 3,
190
191 /// The fast qualifier mask.
192 FastMask = (1 << FastWidth) - 1
193 };
194
195 /// Returns the common set of qualifiers while removing them from
196 /// the given sets.
197 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
198 // If both are only CVR-qualified, bit operations are sufficient.
199 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
200 Qualifiers Q;
201 Q.Mask = L.Mask & R.Mask;
202 L.Mask &= ~Q.Mask;
203 R.Mask &= ~Q.Mask;
204 return Q;
205 }
206
207 Qualifiers Q;
208 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
209 Q.addCVRQualifiers(CommonCRV);
210 L.removeCVRQualifiers(CommonCRV);
211 R.removeCVRQualifiers(CommonCRV);
212
213 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
214 Q.setObjCGCAttr(L.getObjCGCAttr());
215 L.removeObjCGCAttr();
216 R.removeObjCGCAttr();
217 }
218
219 if (L.getObjCLifetime() == R.getObjCLifetime()) {
220 Q.setObjCLifetime(L.getObjCLifetime());
221 L.removeObjCLifetime();
222 R.removeObjCLifetime();
223 }
224
225 if (L.getAddressSpace() == R.getAddressSpace()) {
226 Q.setAddressSpace(L.getAddressSpace());
227 L.removeAddressSpace();
228 R.removeAddressSpace();
229 }
230 return Q;
231 }
232
233 static Qualifiers fromFastMask(unsigned Mask) {
234 Qualifiers Qs;
235 Qs.addFastQualifiers(Mask);
236 return Qs;
237 }
238
239 static Qualifiers fromCVRMask(unsigned CVR) {
240 Qualifiers Qs;
241 Qs.addCVRQualifiers(CVR);
242 return Qs;
243 }
244
245 static Qualifiers fromCVRUMask(unsigned CVRU) {
246 Qualifiers Qs;
247 Qs.addCVRUQualifiers(CVRU);
248 return Qs;
249 }
250
251 // Deserialize qualifiers from an opaque representation.
252 static Qualifiers fromOpaqueValue(unsigned opaque) {
253 Qualifiers Qs;
254 Qs.Mask = opaque;
255 return Qs;
256 }
257
258 // Serialize these qualifiers into an opaque representation.
259 unsigned getAsOpaqueValue() const {
260 return Mask;
261 }
262
263 bool hasConst() const { return Mask & Const; }
264 bool hasOnlyConst() const { return Mask == Const; }
265 void removeConst() { Mask &= ~Const; }
266 void addConst() { Mask |= Const; }
267
268 bool hasVolatile() const { return Mask & Volatile; }
269 bool hasOnlyVolatile() const { return Mask == Volatile; }
270 void removeVolatile() { Mask &= ~Volatile; }
271 void addVolatile() { Mask |= Volatile; }
272
273 bool hasRestrict() const { return Mask & Restrict; }
274 bool hasOnlyRestrict() const { return Mask == Restrict; }
275 void removeRestrict() { Mask &= ~Restrict; }
276 void addRestrict() { Mask |= Restrict; }
277
278 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
279 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
280 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
281
282 void setCVRQualifiers(unsigned mask) {
283 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 283, __extension__ __PRETTY_FUNCTION__
))
;
284 Mask = (Mask & ~CVRMask) | mask;
285 }
286 void removeCVRQualifiers(unsigned mask) {
287 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 287, __extension__ __PRETTY_FUNCTION__
))
;
288 Mask &= ~mask;
289 }
290 void removeCVRQualifiers() {
291 removeCVRQualifiers(CVRMask);
292 }
293 void addCVRQualifiers(unsigned mask) {
294 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 294, __extension__ __PRETTY_FUNCTION__
))
;
295 Mask |= mask;
296 }
297 void addCVRUQualifiers(unsigned mask) {
298 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")(static_cast <bool> (!(mask & ~CVRMask & ~UMask
) && "bitmask contains non-CVRU bits") ? void (0) : __assert_fail
("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "clang/include/clang/AST/Type.h", 298, __extension__ __PRETTY_FUNCTION__
))
;
299 Mask |= mask;
300 }
301
302 bool hasUnaligned() const { return Mask & UMask; }
303 void setUnaligned(bool flag) {
304 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
305 }
306 void removeUnaligned() { Mask &= ~UMask; }
307 void addUnaligned() { Mask |= UMask; }
308
309 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
310 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
311 void setObjCGCAttr(GC type) {
312 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
313 }
314 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
315 void addObjCGCAttr(GC type) {
316 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 316, __extension__ __PRETTY_FUNCTION__
))
;
317 setObjCGCAttr(type);
318 }
319 Qualifiers withoutObjCGCAttr() const {
320 Qualifiers qs = *this;
321 qs.removeObjCGCAttr();
322 return qs;
323 }
324 Qualifiers withoutObjCLifetime() const {
325 Qualifiers qs = *this;
326 qs.removeObjCLifetime();
327 return qs;
328 }
329 Qualifiers withoutAddressSpace() const {
330 Qualifiers qs = *this;
331 qs.removeAddressSpace();
332 return qs;
333 }
334
335 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
336 ObjCLifetime getObjCLifetime() const {
337 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
338 }
339 void setObjCLifetime(ObjCLifetime type) {
340 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
341 }
342 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
343 void addObjCLifetime(ObjCLifetime type) {
344 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 344, __extension__ __PRETTY_FUNCTION__
))
;
345 assert(!hasObjCLifetime())(static_cast <bool> (!hasObjCLifetime()) ? void (0) : __assert_fail
("!hasObjCLifetime()", "clang/include/clang/AST/Type.h", 345
, __extension__ __PRETTY_FUNCTION__))
;
346 Mask |= (type << LifetimeShift);
347 }
348
349 /// True if the lifetime is neither None or ExplicitNone.
350 bool hasNonTrivialObjCLifetime() const {
351 ObjCLifetime lifetime = getObjCLifetime();
352 return (lifetime > OCL_ExplicitNone);
353 }
354
355 /// True if the lifetime is either strong or weak.
356 bool hasStrongOrWeakObjCLifetime() const {
357 ObjCLifetime lifetime = getObjCLifetime();
358 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
359 }
360
361 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
362 LangAS getAddressSpace() const {
363 return static_cast<LangAS>(Mask >> AddressSpaceShift);
364 }
365 bool hasTargetSpecificAddressSpace() const {
366 return isTargetAddressSpace(getAddressSpace());
367 }
368 /// Get the address space attribute value to be printed by diagnostics.
369 unsigned getAddressSpaceAttributePrintValue() const {
370 auto Addr = getAddressSpace();
371 // This function is not supposed to be used with language specific
372 // address spaces. If that happens, the diagnostic message should consider
373 // printing the QualType instead of the address space value.
374 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())(static_cast <bool> (Addr == LangAS::Default || hasTargetSpecificAddressSpace
()) ? void (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "clang/include/clang/AST/Type.h", 374, __extension__ __PRETTY_FUNCTION__
))
;
375 if (Addr != LangAS::Default)
376 return toTargetAddressSpace(Addr);
377 // TODO: The diagnostic messages where Addr may be 0 should be fixed
378 // since it cannot differentiate the situation where 0 denotes the default
379 // address space or user specified __attribute__((address_space(0))).
380 return 0;
381 }
382 void setAddressSpace(LangAS space) {
383 assert((unsigned)space <= MaxAddressSpace)(static_cast <bool> ((unsigned)space <= MaxAddressSpace
) ? void (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "clang/include/clang/AST/Type.h", 383, __extension__ __PRETTY_FUNCTION__
))
;
384 Mask = (Mask & ~AddressSpaceMask)
385 | (((uint32_t) space) << AddressSpaceShift);
386 }
387 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
388 void addAddressSpace(LangAS space) {
389 assert(space != LangAS::Default)(static_cast <bool> (space != LangAS::Default) ? void (
0) : __assert_fail ("space != LangAS::Default", "clang/include/clang/AST/Type.h"
, 389, __extension__ __PRETTY_FUNCTION__))
;
390 setAddressSpace(space);
391 }
392
393 // Fast qualifiers are those that can be allocated directly
394 // on a QualType object.
395 bool hasFastQualifiers() const { return getFastQualifiers(); }
396 unsigned getFastQualifiers() const { return Mask & FastMask; }
397 void setFastQualifiers(unsigned mask) {
398 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 398, __extension__ __PRETTY_FUNCTION__
))
;
399 Mask = (Mask & ~FastMask) | mask;
400 }
401 void removeFastQualifiers(unsigned mask) {
402 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 402, __extension__ __PRETTY_FUNCTION__
))
;
403 Mask &= ~mask;
404 }
405 void removeFastQualifiers() {
406 removeFastQualifiers(FastMask);
407 }
408 void addFastQualifiers(unsigned mask) {
409 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 409, __extension__ __PRETTY_FUNCTION__
))
;
410 Mask |= mask;
411 }
412
413 /// Return true if the set contains any qualifiers which require an ExtQuals
414 /// node to be allocated.
415 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
416 Qualifiers getNonFastQualifiers() const {
417 Qualifiers Quals = *this;
418 Quals.setFastQualifiers(0);
419 return Quals;
420 }
421
422 /// Return true if the set contains any qualifiers.
423 bool hasQualifiers() const { return Mask; }
424 bool empty() const { return !Mask; }
425
426 /// Add the qualifiers from the given set to this set.
427 void addQualifiers(Qualifiers Q) {
428 // If the other set doesn't have any non-boolean qualifiers, just
429 // bit-or it in.
430 if (!(Q.Mask & ~CVRMask))
431 Mask |= Q.Mask;
432 else {
433 Mask |= (Q.Mask & CVRMask);
434 if (Q.hasAddressSpace())
435 addAddressSpace(Q.getAddressSpace());
436 if (Q.hasObjCGCAttr())
437 addObjCGCAttr(Q.getObjCGCAttr());
438 if (Q.hasObjCLifetime())
439 addObjCLifetime(Q.getObjCLifetime());
440 }
441 }
442
443 /// Remove the qualifiers from the given set from this set.
444 void removeQualifiers(Qualifiers Q) {
445 // If the other set doesn't have any non-boolean qualifiers, just
446 // bit-and the inverse in.
447 if (!(Q.Mask & ~CVRMask))
448 Mask &= ~Q.Mask;
449 else {
450 Mask &= ~(Q.Mask & CVRMask);
451 if (getObjCGCAttr() == Q.getObjCGCAttr())
452 removeObjCGCAttr();
453 if (getObjCLifetime() == Q.getObjCLifetime())
454 removeObjCLifetime();
455 if (getAddressSpace() == Q.getAddressSpace())
456 removeAddressSpace();
457 }
458 }
459
460 /// Add the qualifiers from the given set to this set, given that
461 /// they don't conflict.
462 void addConsistentQualifiers(Qualifiers qs) {
463 assert(getAddressSpace() == qs.getAddressSpace() ||(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 464, __extension__ __PRETTY_FUNCTION__
))
464 !hasAddressSpace() || !qs.hasAddressSpace())(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 464, __extension__ __PRETTY_FUNCTION__
))
;
465 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 466, __extension__ __PRETTY_FUNCTION__
))
466 !hasObjCGCAttr() || !qs.hasObjCGCAttr())(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 466, __extension__ __PRETTY_FUNCTION__
))
;
467 assert(getObjCLifetime() == qs.getObjCLifetime() ||(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 468, __extension__ __PRETTY_FUNCTION__
))
468 !hasObjCLifetime() || !qs.hasObjCLifetime())(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 468, __extension__ __PRETTY_FUNCTION__
))
;
469 Mask |= qs.Mask;
470 }
471
472 /// Returns true if address space A is equal to or a superset of B.
473 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
474 /// overlapping address spaces.
475 /// CL1.1 or CL1.2:
476 /// every address space is a superset of itself.
477 /// CL2.0 adds:
478 /// __generic is a superset of any address space except for __constant.
479 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
480 // Address spaces must match exactly.
481 return A == B ||
482 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
483 // for __constant can be used as __generic.
484 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
485 // We also define global_device and global_host address spaces,
486 // to distinguish global pointers allocated on host from pointers
487 // allocated on device, which are a subset of __global.
488 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
489 B == LangAS::opencl_global_host)) ||
490 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
491 B == LangAS::sycl_global_host)) ||
492 // Consider pointer size address spaces to be equivalent to default.
493 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
494 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
495 // Default is a superset of SYCL address spaces.
496 (A == LangAS::Default &&
497 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
498 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
499 B == LangAS::sycl_global_host)) ||
500 // In HIP device compilation, any cuda address space is allowed
501 // to implicitly cast into the default address space.
502 (A == LangAS::Default &&
503 (B == LangAS::cuda_constant || B == LangAS::cuda_device ||
504 B == LangAS::cuda_shared));
505 }
506
507 /// Returns true if the address space in these qualifiers is equal to or
508 /// a superset of the address space in the argument qualifiers.
509 bool isAddressSpaceSupersetOf(Qualifiers other) const {
510 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
511 }
512
513 /// Determines if these qualifiers compatibly include another set.
514 /// Generally this answers the question of whether an object with the other
515 /// qualifiers can be safely used as an object with these qualifiers.
516 bool compatiblyIncludes(Qualifiers other) const {
517 return isAddressSpaceSupersetOf(other) &&
518 // ObjC GC qualifiers can match, be added, or be removed, but can't
519 // be changed.
520 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
521 !other.hasObjCGCAttr()) &&
522 // ObjC lifetime qualifiers must match exactly.
523 getObjCLifetime() == other.getObjCLifetime() &&
524 // CVR qualifiers may subset.
525 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
526 // U qualifier may superset.
527 (!other.hasUnaligned() || hasUnaligned());
528 }
529
530 /// Determines if these qualifiers compatibly include another set of
531 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
532 ///
533 /// One set of Objective-C lifetime qualifiers compatibly includes the other
534 /// if the lifetime qualifiers match, or if both are non-__weak and the
535 /// including set also contains the 'const' qualifier, or both are non-__weak
536 /// and one is None (which can only happen in non-ARC modes).
537 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
538 if (getObjCLifetime() == other.getObjCLifetime())
539 return true;
540
541 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
542 return false;
543
544 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
545 return true;
546
547 return hasConst();
548 }
549
550 /// Determine whether this set of qualifiers is a strict superset of
551 /// another set of qualifiers, not considering qualifier compatibility.
552 bool isStrictSupersetOf(Qualifiers Other) const;
553
554 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
555 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
556
557 explicit operator bool() const { return hasQualifiers(); }
558
559 Qualifiers &operator+=(Qualifiers R) {
560 addQualifiers(R);
561 return *this;
562 }
563
564 // Union two qualifier sets. If an enumerated qualifier appears
565 // in both sets, use the one from the right.
566 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
567 L += R;
568 return L;
569 }
570
571 Qualifiers &operator-=(Qualifiers R) {
572 removeQualifiers(R);
573 return *this;
574 }
575
576 /// Compute the difference between two qualifier sets.
577 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
578 L -= R;
579 return L;
580 }
581
582 std::string getAsString() const;
583 std::string getAsString(const PrintingPolicy &Policy) const;
584
585 static std::string getAddrSpaceAsString(LangAS AS);
586
587 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
588 void print(raw_ostream &OS, const PrintingPolicy &Policy,
589 bool appendSpaceIfNonEmpty = false) const;
590
591 void Profile(llvm::FoldingSetNodeID &ID) const {
592 ID.AddInteger(Mask);
593 }
594
595private:
596 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
597 // |C R V|U|GCAttr|Lifetime|AddressSpace|
598 uint32_t Mask = 0;
599
600 static const uint32_t UMask = 0x8;
601 static const uint32_t UShift = 3;
602 static const uint32_t GCAttrMask = 0x30;
603 static const uint32_t GCAttrShift = 4;
604 static const uint32_t LifetimeMask = 0x1C0;
605 static const uint32_t LifetimeShift = 6;
606 static const uint32_t AddressSpaceMask =
607 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
608 static const uint32_t AddressSpaceShift = 9;
609};
610
611/// A std::pair-like structure for storing a qualified type split
612/// into its local qualifiers and its locally-unqualified type.
613struct SplitQualType {
614 /// The locally-unqualified type.
615 const Type *Ty = nullptr;
616
617 /// The local qualifiers.
618 Qualifiers Quals;
619
620 SplitQualType() = default;
621 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
622
623 SplitQualType getSingleStepDesugaredType() const; // end of this file
624
625 // Make std::tie work.
626 std::pair<const Type *,Qualifiers> asPair() const {
627 return std::pair<const Type *, Qualifiers>(Ty, Quals);
628 }
629
630 friend bool operator==(SplitQualType a, SplitQualType b) {
631 return a.Ty == b.Ty && a.Quals == b.Quals;
632 }
633 friend bool operator!=(SplitQualType a, SplitQualType b) {
634 return a.Ty != b.Ty || a.Quals != b.Quals;
635 }
636};
637
638/// The kind of type we are substituting Objective-C type arguments into.
639///
640/// The kind of substitution affects the replacement of type parameters when
641/// no concrete type information is provided, e.g., when dealing with an
642/// unspecialized type.
643enum class ObjCSubstitutionContext {
644 /// An ordinary type.
645 Ordinary,
646
647 /// The result type of a method or function.
648 Result,
649
650 /// The parameter type of a method or function.
651 Parameter,
652
653 /// The type of a property.
654 Property,
655
656 /// The superclass of a type.
657 Superclass,
658};
659
660/// A (possibly-)qualified type.
661///
662/// For efficiency, we don't store CV-qualified types as nodes on their
663/// own: instead each reference to a type stores the qualifiers. This
664/// greatly reduces the number of nodes we need to allocate for types (for
665/// example we only need one for 'int', 'const int', 'volatile int',
666/// 'const volatile int', etc).
667///
668/// As an added efficiency bonus, instead of making this a pair, we
669/// just store the two bits we care about in the low bits of the
670/// pointer. To handle the packing/unpacking, we make QualType be a
671/// simple wrapper class that acts like a smart pointer. A third bit
672/// indicates whether there are extended qualifiers present, in which
673/// case the pointer points to a special structure.
674class QualType {
675 friend class QualifierCollector;
676
677 // Thankfully, these are efficiently composable.
678 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
679 Qualifiers::FastWidth> Value;
680
681 const ExtQuals *getExtQualsUnsafe() const {
682 return Value.getPointer().get<const ExtQuals*>();
683 }
684
685 const Type *getTypePtrUnsafe() const {
686 return Value.getPointer().get<const Type*>();
687 }
688
689 const ExtQualsTypeCommonBase *getCommonPtr() const {
690 assert(!isNull() && "Cannot retrieve a NULL type pointer")(static_cast <bool> (!isNull() && "Cannot retrieve a NULL type pointer"
) ? void (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "clang/include/clang/AST/Type.h", 690, __extension__ __PRETTY_FUNCTION__
))
;
691 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
692 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
693 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
694 }
695
696public:
697 QualType() = default;
698 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
699 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
700
701 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
702 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
703
704 /// Retrieves a pointer to the underlying (unqualified) type.
705 ///
706 /// This function requires that the type not be NULL. If the type might be
707 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
708 const Type *getTypePtr() const;
709
710 const Type *getTypePtrOrNull() const;
711
712 /// Retrieves a pointer to the name of the base type.
713 const IdentifierInfo *getBaseTypeIdentifier() const;
714
715 /// Divides a QualType into its unqualified type and a set of local
716 /// qualifiers.
717 SplitQualType split() const;
718
719 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
720
721 static QualType getFromOpaquePtr(const void *Ptr) {
722 QualType T;
723 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
724 return T;
725 }
726
727 const Type &operator*() const {
728 return *getTypePtr();
729 }
730
731 const Type *operator->() const {
732 return getTypePtr();
733 }
734
735 bool isCanonical() const;
736 bool isCanonicalAsParam() const;
737
738 /// Return true if this QualType doesn't point to a type yet.
739 bool isNull() const {
740 return Value.getPointer().isNull();
741 }
742
743 /// Determine whether this particular QualType instance has the
744 /// "const" qualifier set, without looking through typedefs that may have
745 /// added "const" at a different level.
746 bool isLocalConstQualified() const {
747 return (getLocalFastQualifiers() & Qualifiers::Const);
748 }
749
750 /// Determine whether this type is const-qualified.
751 bool isConstQualified() const;
752
753 /// Determine whether this particular QualType instance has the
754 /// "restrict" qualifier set, without looking through typedefs that may have
755 /// added "restrict" at a different level.
756 bool isLocalRestrictQualified() const {
757 return (getLocalFastQualifiers() & Qualifiers::Restrict);
758 }
759
760 /// Determine whether this type is restrict-qualified.
761 bool isRestrictQualified() const;
762
763 /// Determine whether this particular QualType instance has the
764 /// "volatile" qualifier set, without looking through typedefs that may have
765 /// added "volatile" at a different level.
766 bool isLocalVolatileQualified() const {
767 return (getLocalFastQualifiers() & Qualifiers::Volatile);
768 }
769
770 /// Determine whether this type is volatile-qualified.
771 bool isVolatileQualified() const;
772
773 /// Determine whether this particular QualType instance has any
774 /// qualifiers, without looking through any typedefs that might add
775 /// qualifiers at a different level.
776 bool hasLocalQualifiers() const {
777 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
778 }
779
780 /// Determine whether this type has any qualifiers.
781 bool hasQualifiers() const;
782
783 /// Determine whether this particular QualType instance has any
784 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
785 /// instance.
786 bool hasLocalNonFastQualifiers() const {
787 return Value.getPointer().is<const ExtQuals*>();
788 }
789
790 /// Retrieve the set of qualifiers local to this particular QualType
791 /// instance, not including any qualifiers acquired through typedefs or
792 /// other sugar.
793 Qualifiers getLocalQualifiers() const;
794
795 /// Retrieve the set of qualifiers applied to this type.
796 Qualifiers getQualifiers() const;
797
798 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
799 /// local to this particular QualType instance, not including any qualifiers
800 /// acquired through typedefs or other sugar.
801 unsigned getLocalCVRQualifiers() const {
802 return getLocalFastQualifiers();
803 }
804
805 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
806 /// applied to this type.
807 unsigned getCVRQualifiers() const;
808
809 bool isConstant(const ASTContext& Ctx) const {
810 return QualType::isConstant(*this, Ctx);
811 }
812
813 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
814 bool isPODType(const ASTContext &Context) const;
815
816 /// Return true if this is a POD type according to the rules of the C++98
817 /// standard, regardless of the current compilation's language.
818 bool isCXX98PODType(const ASTContext &Context) const;
819
820 /// Return true if this is a POD type according to the more relaxed rules
821 /// of the C++11 standard, regardless of the current compilation's language.
822 /// (C++0x [basic.types]p9). Note that, unlike
823 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
824 bool isCXX11PODType(const ASTContext &Context) const;
825
826 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
827 bool isTrivialType(const ASTContext &Context) const;
828
829 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
830 bool isTriviallyCopyableType(const ASTContext &Context) const;
831
832
833 /// Returns true if it is a class and it might be dynamic.
834 bool mayBeDynamicClass() const;
835
836 /// Returns true if it is not a class or if the class might not be dynamic.
837 bool mayBeNotDynamicClass() const;
838
839 // Don't promise in the API that anything besides 'const' can be
840 // easily added.
841
842 /// Add the `const` type qualifier to this QualType.
843 void addConst() {
844 addFastQualifiers(Qualifiers::Const);
845 }
846 QualType withConst() const {
847 return withFastQualifiers(Qualifiers::Const);
848 }
849
850 /// Add the `volatile` type qualifier to this QualType.
851 void addVolatile() {
852 addFastQualifiers(Qualifiers::Volatile);
853 }
854 QualType withVolatile() const {
855 return withFastQualifiers(Qualifiers::Volatile);
856 }
857
858 /// Add the `restrict` qualifier to this QualType.
859 void addRestrict() {
860 addFastQualifiers(Qualifiers::Restrict);
861 }
862 QualType withRestrict() const {
863 return withFastQualifiers(Qualifiers::Restrict);
864 }
865
866 QualType withCVRQualifiers(unsigned CVR) const {
867 return withFastQualifiers(CVR);
868 }
869
870 void addFastQualifiers(unsigned TQs) {
871 assert(!(TQs & ~Qualifiers::FastMask)(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 872, __extension__ __PRETTY_FUNCTION__
))
872 && "non-fast qualifier bits set in mask!")(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 872, __extension__ __PRETTY_FUNCTION__
))
;
873 Value.setInt(Value.getInt() | TQs);
874 }
875
876 void removeLocalConst();
877 void removeLocalVolatile();
878 void removeLocalRestrict();
879 void removeLocalCVRQualifiers(unsigned Mask);
880
881 void removeLocalFastQualifiers() { Value.setInt(0); }
882 void removeLocalFastQualifiers(unsigned Mask) {
883 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")(static_cast <bool> (!(Mask & ~Qualifiers::FastMask
) && "mask has non-fast qualifiers") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "clang/include/clang/AST/Type.h", 883, __extension__ __PRETTY_FUNCTION__
))
;
884 Value.setInt(Value.getInt() & ~Mask);
885 }
886
887 // Creates a type with the given qualifiers in addition to any
888 // qualifiers already on this type.
889 QualType withFastQualifiers(unsigned TQs) const {
890 QualType T = *this;
891 T.addFastQualifiers(TQs);
892 return T;
893 }
894
895 // Creates a type with exactly the given fast qualifiers, removing
896 // any existing fast qualifiers.
897 QualType withExactLocalFastQualifiers(unsigned TQs) const {
898 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
899 }
900
901 // Removes fast qualifiers, but leaves any extended qualifiers in place.
902 QualType withoutLocalFastQualifiers() const {
903 QualType T = *this;
904 T.removeLocalFastQualifiers();
905 return T;
906 }
907
908 QualType getCanonicalType() const;
909
910 /// Return this type with all of the instance-specific qualifiers
911 /// removed, but without removing any qualifiers that may have been applied
912 /// through typedefs.
913 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
914
915 /// Retrieve the unqualified variant of the given type,
916 /// removing as little sugar as possible.
917 ///
918 /// This routine looks through various kinds of sugar to find the
919 /// least-desugared type that is unqualified. For example, given:
920 ///
921 /// \code
922 /// typedef int Integer;
923 /// typedef const Integer CInteger;
924 /// typedef CInteger DifferenceType;
925 /// \endcode
926 ///
927 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
928 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
929 ///
930 /// The resulting type might still be qualified if it's sugar for an array
931 /// type. To strip qualifiers even from within a sugared array type, use
932 /// ASTContext::getUnqualifiedArrayType.
933 inline QualType getUnqualifiedType() const;
934
935 /// Retrieve the unqualified variant of the given type, removing as little
936 /// sugar as possible.
937 ///
938 /// Like getUnqualifiedType(), but also returns the set of
939 /// qualifiers that were built up.
940 ///
941 /// The resulting type might still be qualified if it's sugar for an array
942 /// type. To strip qualifiers even from within a sugared array type, use
943 /// ASTContext::getUnqualifiedArrayType.
944 inline SplitQualType getSplitUnqualifiedType() const;
945
946 /// Determine whether this type is more qualified than the other
947 /// given type, requiring exact equality for non-CVR qualifiers.
948 bool isMoreQualifiedThan(QualType Other) const;
949
950 /// Determine whether this type is at least as qualified as the other
951 /// given type, requiring exact equality for non-CVR qualifiers.
952 bool isAtLeastAsQualifiedAs(QualType Other) const;
953
954 QualType getNonReferenceType() const;
955
956 /// Determine the type of a (typically non-lvalue) expression with the
957 /// specified result type.
958 ///
959 /// This routine should be used for expressions for which the return type is
960 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
961 /// an lvalue. It removes a top-level reference (since there are no
962 /// expressions of reference type) and deletes top-level cvr-qualifiers
963 /// from non-class types (in C++) or all types (in C).
964 QualType getNonLValueExprType(const ASTContext &Context) const;
965
966 /// Remove an outer pack expansion type (if any) from this type. Used as part
967 /// of converting the type of a declaration to the type of an expression that
968 /// references that expression. It's meaningless for an expression to have a
969 /// pack expansion type.
970 QualType getNonPackExpansionType() const;
971
972 /// Return the specified type with any "sugar" removed from
973 /// the type. This takes off typedefs, typeof's etc. If the outer level of
974 /// the type is already concrete, it returns it unmodified. This is similar
975 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
976 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
977 /// concrete.
978 ///
979 /// Qualifiers are left in place.
980 QualType getDesugaredType(const ASTContext &Context) const {
981 return getDesugaredType(*this, Context);
982 }
983
984 SplitQualType getSplitDesugaredType() const {
985 return getSplitDesugaredType(*this);
986 }
987
988 /// Return the specified type with one level of "sugar" removed from
989 /// the type.
990 ///
991 /// This routine takes off the first typedef, typeof, etc. If the outer level
992 /// of the type is already concrete, it returns it unmodified.
993 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
994 return getSingleStepDesugaredTypeImpl(*this, Context);
995 }
996
997 /// Returns the specified type after dropping any
998 /// outer-level parentheses.
999 QualType IgnoreParens() const {
1000 if (isa<ParenType>(*this))
1001 return QualType::IgnoreParens(*this);
1002 return *this;
1003 }
1004
1005 /// Indicate whether the specified types and qualifiers are identical.
1006 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1007 return LHS.Value == RHS.Value;
1008 }
1009 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1010 return LHS.Value != RHS.Value;
1011 }
1012 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1013 return LHS.Value < RHS.Value;
1014 }
1015
1016 static std::string getAsString(SplitQualType split,
1017 const PrintingPolicy &Policy) {
1018 return getAsString(split.Ty, split.Quals, Policy);
1019 }
1020 static std::string getAsString(const Type *ty, Qualifiers qs,
1021 const PrintingPolicy &Policy);
1022
1023 std::string getAsString() const;
1024 std::string getAsString(const PrintingPolicy &Policy) const;
1025
1026 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1027 const Twine &PlaceHolder = Twine(),
1028 unsigned Indentation = 0) const;
1029
1030 static void print(SplitQualType split, raw_ostream &OS,
1031 const PrintingPolicy &policy, const Twine &PlaceHolder,
1032 unsigned Indentation = 0) {
1033 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1034 }
1035
1036 static void print(const Type *ty, Qualifiers qs,
1037 raw_ostream &OS, const PrintingPolicy &policy,
1038 const Twine &PlaceHolder,
1039 unsigned Indentation = 0);
1040
1041 void getAsStringInternal(std::string &Str,
1042 const PrintingPolicy &Policy) const;
1043
1044 static void getAsStringInternal(SplitQualType split, std::string &out,
1045 const PrintingPolicy &policy) {
1046 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1047 }
1048
1049 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1050 std::string &out,
1051 const PrintingPolicy &policy);
1052
1053 class StreamedQualTypeHelper {
1054 const QualType &T;
1055 const PrintingPolicy &Policy;
1056 const Twine &PlaceHolder;
1057 unsigned Indentation;
1058
1059 public:
1060 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1061 const Twine &PlaceHolder, unsigned Indentation)
1062 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1063 Indentation(Indentation) {}
1064
1065 friend raw_ostream &operator<<(raw_ostream &OS,
1066 const StreamedQualTypeHelper &SQT) {
1067 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1068 return OS;
1069 }
1070 };
1071
1072 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1073 const Twine &PlaceHolder = Twine(),
1074 unsigned Indentation = 0) const {
1075 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1076 }
1077
1078 void dump(const char *s) const;
1079 void dump() const;
1080 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1081
1082 void Profile(llvm::FoldingSetNodeID &ID) const {
1083 ID.AddPointer(getAsOpaquePtr());
1084 }
1085
1086 /// Check if this type has any address space qualifier.
1087 inline bool hasAddressSpace() const;
1088
1089 /// Return the address space of this type.
1090 inline LangAS getAddressSpace() const;
1091
1092 /// Returns true if address space qualifiers overlap with T address space
1093 /// qualifiers.
1094 /// OpenCL C defines conversion rules for pointers to different address spaces
1095 /// and notion of overlapping address spaces.
1096 /// CL1.1 or CL1.2:
1097 /// address spaces overlap iff they are they same.
1098 /// OpenCL C v2.0 s6.5.5 adds:
1099 /// __generic overlaps with any address space except for __constant.
1100 bool isAddressSpaceOverlapping(QualType T) const {
1101 Qualifiers Q = getQualifiers();
1102 Qualifiers TQ = T.getQualifiers();
1103 // Address spaces overlap if at least one of them is a superset of another
1104 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1105 }
1106
1107 /// Returns gc attribute of this type.
1108 inline Qualifiers::GC getObjCGCAttr() const;
1109
1110 /// true when Type is objc's weak.
1111 bool isObjCGCWeak() const {
1112 return getObjCGCAttr() == Qualifiers::Weak;
1113 }
1114
1115 /// true when Type is objc's strong.
1116 bool isObjCGCStrong() const {
1117 return getObjCGCAttr() == Qualifiers::Strong;
1118 }
1119
1120 /// Returns lifetime attribute of this type.
1121 Qualifiers::ObjCLifetime getObjCLifetime() const {
1122 return getQualifiers().getObjCLifetime();
1123 }
1124
1125 bool hasNonTrivialObjCLifetime() const {
1126 return getQualifiers().hasNonTrivialObjCLifetime();
1127 }
1128
1129 bool hasStrongOrWeakObjCLifetime() const {
1130 return getQualifiers().hasStrongOrWeakObjCLifetime();
1131 }
1132
1133 // true when Type is objc's weak and weak is enabled but ARC isn't.
1134 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1135
1136 enum PrimitiveDefaultInitializeKind {
1137 /// The type does not fall into any of the following categories. Note that
1138 /// this case is zero-valued so that values of this enum can be used as a
1139 /// boolean condition for non-triviality.
1140 PDIK_Trivial,
1141
1142 /// The type is an Objective-C retainable pointer type that is qualified
1143 /// with the ARC __strong qualifier.
1144 PDIK_ARCStrong,
1145
1146 /// The type is an Objective-C retainable pointer type that is qualified
1147 /// with the ARC __weak qualifier.
1148 PDIK_ARCWeak,
1149
1150 /// The type is a struct containing a field whose type is not PCK_Trivial.
1151 PDIK_Struct
1152 };
1153
1154 /// Functions to query basic properties of non-trivial C struct types.
1155
1156 /// Check if this is a non-trivial type that would cause a C struct
1157 /// transitively containing this type to be non-trivial to default initialize
1158 /// and return the kind.
1159 PrimitiveDefaultInitializeKind
1160 isNonTrivialToPrimitiveDefaultInitialize() const;
1161
1162 enum PrimitiveCopyKind {
1163 /// The type does not fall into any of the following categories. Note that
1164 /// this case is zero-valued so that values of this enum can be used as a
1165 /// boolean condition for non-triviality.
1166 PCK_Trivial,
1167
1168 /// The type would be trivial except that it is volatile-qualified. Types
1169 /// that fall into one of the other non-trivial cases may additionally be
1170 /// volatile-qualified.
1171 PCK_VolatileTrivial,
1172
1173 /// The type is an Objective-C retainable pointer type that is qualified
1174 /// with the ARC __strong qualifier.
1175 PCK_ARCStrong,
1176
1177 /// The type is an Objective-C retainable pointer type that is qualified
1178 /// with the ARC __weak qualifier.
1179 PCK_ARCWeak,
1180
1181 /// The type is a struct containing a field whose type is neither
1182 /// PCK_Trivial nor PCK_VolatileTrivial.
1183 /// Note that a C++ struct type does not necessarily match this; C++ copying
1184 /// semantics are too complex to express here, in part because they depend
1185 /// on the exact constructor or assignment operator that is chosen by
1186 /// overload resolution to do the copy.
1187 PCK_Struct
1188 };
1189
1190 /// Check if this is a non-trivial type that would cause a C struct
1191 /// transitively containing this type to be non-trivial to copy and return the
1192 /// kind.
1193 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1194
1195 /// Check if this is a non-trivial type that would cause a C struct
1196 /// transitively containing this type to be non-trivial to destructively
1197 /// move and return the kind. Destructive move in this context is a C++-style
1198 /// move in which the source object is placed in a valid but unspecified state
1199 /// after it is moved, as opposed to a truly destructive move in which the
1200 /// source object is placed in an uninitialized state.
1201 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1202
1203 enum DestructionKind {
1204 DK_none,
1205 DK_cxx_destructor,
1206 DK_objc_strong_lifetime,
1207 DK_objc_weak_lifetime,
1208 DK_nontrivial_c_struct
1209 };
1210
1211 /// Returns a nonzero value if objects of this type require
1212 /// non-trivial work to clean up after. Non-zero because it's
1213 /// conceivable that qualifiers (objc_gc(weak)?) could make
1214 /// something require destruction.
1215 DestructionKind isDestructedType() const {
1216 return isDestructedTypeImpl(*this);
1217 }
1218
1219 /// Check if this is or contains a C union that is non-trivial to
1220 /// default-initialize, which is a union that has a member that is non-trivial
1221 /// to default-initialize. If this returns true,
1222 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1223 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1224
1225 /// Check if this is or contains a C union that is non-trivial to destruct,
1226 /// which is a union that has a member that is non-trivial to destruct. If
1227 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1228 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1229
1230 /// Check if this is or contains a C union that is non-trivial to copy, which
1231 /// is a union that has a member that is non-trivial to copy. If this returns
1232 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1233 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1234
1235 /// Determine whether expressions of the given type are forbidden
1236 /// from being lvalues in C.
1237 ///
1238 /// The expression types that are forbidden to be lvalues are:
1239 /// - 'void', but not qualified void
1240 /// - function types
1241 ///
1242 /// The exact rule here is C99 6.3.2.1:
1243 /// An lvalue is an expression with an object type or an incomplete
1244 /// type other than void.
1245 bool isCForbiddenLValueType() const;
1246
1247 /// Substitute type arguments for the Objective-C type parameters used in the
1248 /// subject type.
1249 ///
1250 /// \param ctx ASTContext in which the type exists.
1251 ///
1252 /// \param typeArgs The type arguments that will be substituted for the
1253 /// Objective-C type parameters in the subject type, which are generally
1254 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1255 /// parameters will be replaced with their bounds or id/Class, as appropriate
1256 /// for the context.
1257 ///
1258 /// \param context The context in which the subject type was written.
1259 ///
1260 /// \returns the resulting type.
1261 QualType substObjCTypeArgs(ASTContext &ctx,
1262 ArrayRef<QualType> typeArgs,
1263 ObjCSubstitutionContext context) const;
1264
1265 /// Substitute type arguments from an object type for the Objective-C type
1266 /// parameters used in the subject type.
1267 ///
1268 /// This operation combines the computation of type arguments for
1269 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1270 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1271 /// callers that need to perform a single substitution in isolation.
1272 ///
1273 /// \param objectType The type of the object whose member type we're
1274 /// substituting into. For example, this might be the receiver of a message
1275 /// or the base of a property access.
1276 ///
1277 /// \param dc The declaration context from which the subject type was
1278 /// retrieved, which indicates (for example) which type parameters should
1279 /// be substituted.
1280 ///
1281 /// \param context The context in which the subject type was written.
1282 ///
1283 /// \returns the subject type after replacing all of the Objective-C type
1284 /// parameters with their corresponding arguments.
1285 QualType substObjCMemberType(QualType objectType,
1286 const DeclContext *dc,
1287 ObjCSubstitutionContext context) const;
1288
1289 /// Strip Objective-C "__kindof" types from the given type.
1290 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1291
1292 /// Remove all qualifiers including _Atomic.
1293 QualType getAtomicUnqualifiedType() const;
1294
1295private:
1296 // These methods are implemented in a separate translation unit;
1297 // "static"-ize them to avoid creating temporary QualTypes in the
1298 // caller.
1299 static bool isConstant(QualType T, const ASTContext& Ctx);
1300 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1301 static SplitQualType getSplitDesugaredType(QualType T);
1302 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1303 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1304 const ASTContext &C);
1305 static QualType IgnoreParens(QualType T);
1306 static DestructionKind isDestructedTypeImpl(QualType type);
1307
1308 /// Check if \param RD is or contains a non-trivial C union.
1309 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1310 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1311 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1312};
1313
1314} // namespace clang
1315
1316namespace llvm {
1317
1318/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1319/// to a specific Type class.
1320template<> struct simplify_type< ::clang::QualType> {
1321 using SimpleType = const ::clang::Type *;
1322
1323 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1324 return Val.getTypePtr();
1325 }
1326};
1327
1328// Teach SmallPtrSet that QualType is "basically a pointer".
1329template<>
1330struct PointerLikeTypeTraits<clang::QualType> {
1331 static inline void *getAsVoidPointer(clang::QualType P) {
1332 return P.getAsOpaquePtr();
1333 }
1334
1335 static inline clang::QualType getFromVoidPointer(void *P) {
1336 return clang::QualType::getFromOpaquePtr(P);
1337 }
1338
1339 // Various qualifiers go in low bits.
1340 static constexpr int NumLowBitsAvailable = 0;
1341};
1342
1343} // namespace llvm
1344
1345namespace clang {
1346
1347/// Base class that is common to both the \c ExtQuals and \c Type
1348/// classes, which allows \c QualType to access the common fields between the
1349/// two.
1350class ExtQualsTypeCommonBase {
1351 friend class ExtQuals;
1352 friend class QualType;
1353 friend class Type;
1354
1355 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1356 /// a self-referential pointer (for \c Type).
1357 ///
1358 /// This pointer allows an efficient mapping from a QualType to its
1359 /// underlying type pointer.
1360 const Type *const BaseType;
1361
1362 /// The canonical type of this type. A QualType.
1363 QualType CanonicalType;
1364
1365 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1366 : BaseType(baseType), CanonicalType(canon) {}
1367};
1368
1369/// We can encode up to four bits in the low bits of a
1370/// type pointer, but there are many more type qualifiers that we want
1371/// to be able to apply to an arbitrary type. Therefore we have this
1372/// struct, intended to be heap-allocated and used by QualType to
1373/// store qualifiers.
1374///
1375/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1376/// in three low bits on the QualType pointer; a fourth bit records whether
1377/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1378/// Objective-C GC attributes) are much more rare.
1379class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1380 // NOTE: changing the fast qualifiers should be straightforward as
1381 // long as you don't make 'const' non-fast.
1382 // 1. Qualifiers:
1383 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1384 // Fast qualifiers must occupy the low-order bits.
1385 // b) Update Qualifiers::FastWidth and FastMask.
1386 // 2. QualType:
1387 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1388 // b) Update remove{Volatile,Restrict}, defined near the end of
1389 // this header.
1390 // 3. ASTContext:
1391 // a) Update get{Volatile,Restrict}Type.
1392
1393 /// The immutable set of qualifiers applied by this node. Always contains
1394 /// extended qualifiers.
1395 Qualifiers Quals;
1396
1397 ExtQuals *this_() { return this; }
1398
1399public:
1400 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1401 : ExtQualsTypeCommonBase(baseType,
1402 canon.isNull() ? QualType(this_(), 0) : canon),
1403 Quals(quals) {
1404 assert(Quals.hasNonFastQualifiers()(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1405, __extension__ __PRETTY_FUNCTION__
))
1405 && "ExtQuals created with no fast qualifiers")(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1405, __extension__ __PRETTY_FUNCTION__
))
;
1406 assert(!Quals.hasFastQualifiers()(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1407, __extension__ __PRETTY_FUNCTION__
))
1407 && "ExtQuals created with fast qualifiers")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1407, __extension__ __PRETTY_FUNCTION__
))
;
1408 }
1409
1410 Qualifiers getQualifiers() const { return Quals; }
1411
1412 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1413 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1414
1415 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1416 Qualifiers::ObjCLifetime getObjCLifetime() const {
1417 return Quals.getObjCLifetime();
1418 }
1419
1420 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1421 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1422
1423 const Type *getBaseType() const { return BaseType; }
1424
1425public:
1426 void Profile(llvm::FoldingSetNodeID &ID) const {
1427 Profile(ID, getBaseType(), Quals);
1428 }
1429
1430 static void Profile(llvm::FoldingSetNodeID &ID,
1431 const Type *BaseType,
1432 Qualifiers Quals) {
1433 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"fast qualifiers in ExtQuals hash!") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "clang/include/clang/AST/Type.h", 1433, __extension__ __PRETTY_FUNCTION__
))
;
1434 ID.AddPointer(BaseType);
1435 Quals.Profile(ID);
1436 }
1437};
1438
1439/// The kind of C++11 ref-qualifier associated with a function type.
1440/// This determines whether a member function's "this" object can be an
1441/// lvalue, rvalue, or neither.
1442enum RefQualifierKind {
1443 /// No ref-qualifier was provided.
1444 RQ_None = 0,
1445
1446 /// An lvalue ref-qualifier was provided (\c &).
1447 RQ_LValue,
1448
1449 /// An rvalue ref-qualifier was provided (\c &&).
1450 RQ_RValue
1451};
1452
1453/// Which keyword(s) were used to create an AutoType.
1454enum class AutoTypeKeyword {
1455 /// auto
1456 Auto,
1457
1458 /// decltype(auto)
1459 DecltypeAuto,
1460
1461 /// __auto_type (GNU extension)
1462 GNUAutoType
1463};
1464
1465/// The base class of the type hierarchy.
1466///
1467/// A central concept with types is that each type always has a canonical
1468/// type. A canonical type is the type with any typedef names stripped out
1469/// of it or the types it references. For example, consider:
1470///
1471/// typedef int foo;
1472/// typedef foo* bar;
1473/// 'int *' 'foo *' 'bar'
1474///
1475/// There will be a Type object created for 'int'. Since int is canonical, its
1476/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1477/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1478/// there is a PointerType that represents 'int*', which, like 'int', is
1479/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1480/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1481/// is also 'int*'.
1482///
1483/// Non-canonical types are useful for emitting diagnostics, without losing
1484/// information about typedefs being used. Canonical types are useful for type
1485/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1486/// about whether something has a particular form (e.g. is a function type),
1487/// because they implicitly, recursively, strip all typedefs out of a type.
1488///
1489/// Types, once created, are immutable.
1490///
1491class alignas(8) Type : public ExtQualsTypeCommonBase {
1492public:
1493 enum TypeClass {
1494#define TYPE(Class, Base) Class,
1495#define LAST_TYPE(Class) TypeLast = Class
1496#define ABSTRACT_TYPE(Class, Base)
1497#include "clang/AST/TypeNodes.inc"
1498 };
1499
1500private:
1501 /// Bitfields required by the Type class.
1502 class TypeBitfields {
1503 friend class Type;
1504 template <class T> friend class TypePropertyCache;
1505
1506 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1507 unsigned TC : 8;
1508
1509 /// Store information on the type dependency.
1510 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1511
1512 /// True if the cache (i.e. the bitfields here starting with
1513 /// 'Cache') is valid.
1514 mutable unsigned CacheValid : 1;
1515
1516 /// Linkage of this type.
1517 mutable unsigned CachedLinkage : 3;
1518
1519 /// Whether this type involves and local or unnamed types.
1520 mutable unsigned CachedLocalOrUnnamed : 1;
1521
1522 /// Whether this type comes from an AST file.
1523 mutable unsigned FromAST : 1;
1524
1525 bool isCacheValid() const {
1526 return CacheValid;
1527 }
1528
1529 Linkage getLinkage() const {
1530 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1530, __extension__ __PRETTY_FUNCTION__
))
;
1531 return static_cast<Linkage>(CachedLinkage);
1532 }
1533
1534 bool hasLocalOrUnnamedType() const {
1535 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1535, __extension__ __PRETTY_FUNCTION__
))
;
1536 return CachedLocalOrUnnamed;
1537 }
1538 };
1539 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1540
1541protected:
1542 // These classes allow subclasses to somewhat cleanly pack bitfields
1543 // into Type.
1544
1545 class ArrayTypeBitfields {
1546 friend class ArrayType;
1547
1548 unsigned : NumTypeBits;
1549
1550 /// CVR qualifiers from declarations like
1551 /// 'int X[static restrict 4]'. For function parameters only.
1552 unsigned IndexTypeQuals : 3;
1553
1554 /// Storage class qualifiers from declarations like
1555 /// 'int X[static restrict 4]'. For function parameters only.
1556 /// Actually an ArrayType::ArraySizeModifier.
1557 unsigned SizeModifier : 3;
1558 };
1559
1560 class ConstantArrayTypeBitfields {
1561 friend class ConstantArrayType;
1562
1563 unsigned : NumTypeBits + 3 + 3;
1564
1565 /// Whether we have a stored size expression.
1566 unsigned HasStoredSizeExpr : 1;
1567 };
1568
1569 class BuiltinTypeBitfields {
1570 friend class BuiltinType;
1571
1572 unsigned : NumTypeBits;
1573
1574 /// The kind (BuiltinType::Kind) of builtin type this is.
1575 unsigned Kind : 8;
1576 };
1577
1578 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1579 /// Only common bits are stored here. Additional uncommon bits are stored
1580 /// in a trailing object after FunctionProtoType.
1581 class FunctionTypeBitfields {
1582 friend class FunctionProtoType;
1583 friend class FunctionType;
1584
1585 unsigned : NumTypeBits;
1586
1587 /// Extra information which affects how the function is called, like
1588 /// regparm and the calling convention.
1589 unsigned ExtInfo : 13;
1590
1591 /// The ref-qualifier associated with a \c FunctionProtoType.
1592 ///
1593 /// This is a value of type \c RefQualifierKind.
1594 unsigned RefQualifier : 2;
1595
1596 /// Used only by FunctionProtoType, put here to pack with the
1597 /// other bitfields.
1598 /// The qualifiers are part of FunctionProtoType because...
1599 ///
1600 /// C++ 8.3.5p4: The return type, the parameter type list and the
1601 /// cv-qualifier-seq, [...], are part of the function type.
1602 unsigned FastTypeQuals : Qualifiers::FastWidth;
1603 /// Whether this function has extended Qualifiers.
1604 unsigned HasExtQuals : 1;
1605
1606 /// The number of parameters this function has, not counting '...'.
1607 /// According to [implimits] 8 bits should be enough here but this is
1608 /// somewhat easy to exceed with metaprogramming and so we would like to
1609 /// keep NumParams as wide as reasonably possible.
1610 unsigned NumParams : 16;
1611
1612 /// The type of exception specification this function has.
1613 unsigned ExceptionSpecType : 4;
1614
1615 /// Whether this function has extended parameter information.
1616 unsigned HasExtParameterInfos : 1;
1617
1618 /// Whether the function is variadic.
1619 unsigned Variadic : 1;
1620
1621 /// Whether this function has a trailing return type.
1622 unsigned HasTrailingReturn : 1;
1623 };
1624
1625 class ObjCObjectTypeBitfields {
1626 friend class ObjCObjectType;
1627
1628 unsigned : NumTypeBits;
1629
1630 /// The number of type arguments stored directly on this object type.
1631 unsigned NumTypeArgs : 7;
1632
1633 /// The number of protocols stored directly on this object type.
1634 unsigned NumProtocols : 6;
1635
1636 /// Whether this is a "kindof" type.
1637 unsigned IsKindOf : 1;
1638 };
1639
1640 class ReferenceTypeBitfields {
1641 friend class ReferenceType;
1642
1643 unsigned : NumTypeBits;
1644
1645 /// True if the type was originally spelled with an lvalue sigil.
1646 /// This is never true of rvalue references but can also be false
1647 /// on lvalue references because of C++0x [dcl.typedef]p9,
1648 /// as follows:
1649 ///
1650 /// typedef int &ref; // lvalue, spelled lvalue
1651 /// typedef int &&rvref; // rvalue
1652 /// ref &a; // lvalue, inner ref, spelled lvalue
1653 /// ref &&a; // lvalue, inner ref
1654 /// rvref &a; // lvalue, inner ref, spelled lvalue
1655 /// rvref &&a; // rvalue, inner ref
1656 unsigned SpelledAsLValue : 1;
1657
1658 /// True if the inner type is a reference type. This only happens
1659 /// in non-canonical forms.
1660 unsigned InnerRef : 1;
1661 };
1662
1663 class TypeWithKeywordBitfields {
1664 friend class TypeWithKeyword;
1665
1666 unsigned : NumTypeBits;
1667
1668 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1669 unsigned Keyword : 8;
1670 };
1671
1672 enum { NumTypeWithKeywordBits = 8 };
1673
1674 class ElaboratedTypeBitfields {
1675 friend class ElaboratedType;
1676
1677 unsigned : NumTypeBits;
1678 unsigned : NumTypeWithKeywordBits;
1679
1680 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1681 unsigned HasOwnedTagDecl : 1;
1682 };
1683
1684 class VectorTypeBitfields {
1685 friend class VectorType;
1686 friend class DependentVectorType;
1687
1688 unsigned : NumTypeBits;
1689
1690 /// The kind of vector, either a generic vector type or some
1691 /// target-specific vector type such as for AltiVec or Neon.
1692 unsigned VecKind : 3;
1693 /// The number of elements in the vector.
1694 uint32_t NumElements;
1695 };
1696
1697 class AttributedTypeBitfields {
1698 friend class AttributedType;
1699
1700 unsigned : NumTypeBits;
1701
1702 /// An AttributedType::Kind
1703 unsigned AttrKind : 32 - NumTypeBits;
1704 };
1705
1706 class AutoTypeBitfields {
1707 friend class AutoType;
1708
1709 unsigned : NumTypeBits;
1710
1711 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1712 /// or '__auto_type'? AutoTypeKeyword value.
1713 unsigned Keyword : 2;
1714
1715 /// The number of template arguments in the type-constraints, which is
1716 /// expected to be able to hold at least 1024 according to [implimits].
1717 /// However as this limit is somewhat easy to hit with template
1718 /// metaprogramming we'd prefer to keep it as large as possible.
1719 /// At the moment it has been left as a non-bitfield since this type
1720 /// safely fits in 64 bits as an unsigned, so there is no reason to
1721 /// introduce the performance impact of a bitfield.
1722 unsigned NumArgs;
1723 };
1724
1725 class SubstTemplateTypeParmPackTypeBitfields {
1726 friend class SubstTemplateTypeParmPackType;
1727
1728 unsigned : NumTypeBits;
1729
1730 /// The number of template arguments in \c Arguments, which is
1731 /// expected to be able to hold at least 1024 according to [implimits].
1732 /// However as this limit is somewhat easy to hit with template
1733 /// metaprogramming we'd prefer to keep it as large as possible.
1734 /// At the moment it has been left as a non-bitfield since this type
1735 /// safely fits in 64 bits as an unsigned, so there is no reason to
1736 /// introduce the performance impact of a bitfield.
1737 unsigned NumArgs;
1738 };
1739
1740 class TemplateSpecializationTypeBitfields {
1741 friend class TemplateSpecializationType;
1742
1743 unsigned : NumTypeBits;
1744
1745 /// Whether this template specialization type is a substituted type alias.
1746 unsigned TypeAlias : 1;
1747
1748 /// The number of template arguments named in this class template
1749 /// specialization, which is expected to be able to hold at least 1024
1750 /// according to [implimits]. However, as this limit is somewhat easy to
1751 /// hit with template metaprogramming we'd prefer to keep it as large
1752 /// as possible. At the moment it has been left as a non-bitfield since
1753 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1754 /// to introduce the performance impact of a bitfield.
1755 unsigned NumArgs;
1756 };
1757
1758 class DependentTemplateSpecializationTypeBitfields {
1759 friend class DependentTemplateSpecializationType;
1760
1761 unsigned : NumTypeBits;
1762 unsigned : NumTypeWithKeywordBits;
1763
1764 /// The number of template arguments named in this class template
1765 /// specialization, which is expected to be able to hold at least 1024
1766 /// according to [implimits]. However, as this limit is somewhat easy to
1767 /// hit with template metaprogramming we'd prefer to keep it as large
1768 /// as possible. At the moment it has been left as a non-bitfield since
1769 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1770 /// to introduce the performance impact of a bitfield.
1771 unsigned NumArgs;
1772 };
1773
1774 class PackExpansionTypeBitfields {
1775 friend class PackExpansionType;
1776
1777 unsigned : NumTypeBits;
1778
1779 /// The number of expansions that this pack expansion will
1780 /// generate when substituted (+1), which is expected to be able to
1781 /// hold at least 1024 according to [implimits]. However, as this limit
1782 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1783 /// keep it as large as possible. At the moment it has been left as a
1784 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1785 /// there is no reason to introduce the performance impact of a bitfield.
1786 ///
1787 /// This field will only have a non-zero value when some of the parameter
1788 /// packs that occur within the pattern have been substituted but others
1789 /// have not.
1790 unsigned NumExpansions;
1791 };
1792
1793 union {
1794 TypeBitfields TypeBits;
1795 ArrayTypeBitfields ArrayTypeBits;
1796 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1797 AttributedTypeBitfields AttributedTypeBits;
1798 AutoTypeBitfields AutoTypeBits;
1799 BuiltinTypeBitfields BuiltinTypeBits;
1800 FunctionTypeBitfields FunctionTypeBits;
1801 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1802 ReferenceTypeBitfields ReferenceTypeBits;
1803 TypeWithKeywordBitfields TypeWithKeywordBits;
1804 ElaboratedTypeBitfields ElaboratedTypeBits;
1805 VectorTypeBitfields VectorTypeBits;
1806 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1807 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1808 DependentTemplateSpecializationTypeBitfields
1809 DependentTemplateSpecializationTypeBits;
1810 PackExpansionTypeBitfields PackExpansionTypeBits;
1811 };
1812
1813private:
1814 template <class T> friend class TypePropertyCache;
1815
1816 /// Set whether this type comes from an AST file.
1817 void setFromAST(bool V = true) const {
1818 TypeBits.FromAST = V;
1819 }
1820
1821protected:
1822 friend class ASTContext;
1823
1824 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1825 : ExtQualsTypeCommonBase(this,
1826 canon.isNull() ? QualType(this_(), 0) : canon) {
1827 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1828 "changing bitfields changed sizeof(Type)!");
1829 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1830 "Insufficient alignment!");
1831 TypeBits.TC = tc;
1832 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1833 TypeBits.CacheValid = false;
1834 TypeBits.CachedLocalOrUnnamed = false;
1835 TypeBits.CachedLinkage = NoLinkage;
1836 TypeBits.FromAST = false;
1837 }
1838
1839 // silence VC++ warning C4355: 'this' : used in base member initializer list
1840 Type *this_() { return this; }
1841
1842 void setDependence(TypeDependence D) {
1843 TypeBits.Dependence = static_cast<unsigned>(D);
1844 }
1845
1846 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1847
1848public:
1849 friend class ASTReader;
1850 friend class ASTWriter;
1851 template <class T> friend class serialization::AbstractTypeReader;
1852 template <class T> friend class serialization::AbstractTypeWriter;
1853
1854 Type(const Type &) = delete;
1855 Type(Type &&) = delete;
1856 Type &operator=(const Type &) = delete;
1857 Type &operator=(Type &&) = delete;
1858
1859 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1860
1861 /// Whether this type comes from an AST file.
1862 bool isFromAST() const { return TypeBits.FromAST; }
1863
1864 /// Whether this type is or contains an unexpanded parameter
1865 /// pack, used to support C++0x variadic templates.
1866 ///
1867 /// A type that contains a parameter pack shall be expanded by the
1868 /// ellipsis operator at some point. For example, the typedef in the
1869 /// following example contains an unexpanded parameter pack 'T':
1870 ///
1871 /// \code
1872 /// template<typename ...T>
1873 /// struct X {
1874 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1875 /// };
1876 /// \endcode
1877 ///
1878 /// Note that this routine does not specify which
1879 bool containsUnexpandedParameterPack() const {
1880 return getDependence() & TypeDependence::UnexpandedPack;
1881 }
1882
1883 /// Determines if this type would be canonical if it had no further
1884 /// qualification.
1885 bool isCanonicalUnqualified() const {
1886 return CanonicalType == QualType(this, 0);
1887 }
1888
1889 /// Pull a single level of sugar off of this locally-unqualified type.
1890 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1891 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1892 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1893
1894 /// As an extension, we classify types as one of "sized" or "sizeless";
1895 /// every type is one or the other. Standard types are all sized;
1896 /// sizeless types are purely an extension.
1897 ///
1898 /// Sizeless types contain data with no specified size, alignment,
1899 /// or layout.
1900 bool isSizelessType() const;
1901 bool isSizelessBuiltinType() const;
1902
1903 /// Determines if this is a sizeless type supported by the
1904 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1905 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1906 bool isVLSTBuiltinType() const;
1907
1908 /// Returns the representative type for the element of an SVE builtin type.
1909 /// This is used to represent fixed-length SVE vectors created with the
1910 /// 'arm_sve_vector_bits' type attribute as VectorType.
1911 QualType getSveEltType(const ASTContext &Ctx) const;
1912
1913 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1914 /// object types, function types, and incomplete types.
1915
1916 /// Return true if this is an incomplete type.
1917 /// A type that can describe objects, but which lacks information needed to
1918 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1919 /// routine will need to determine if the size is actually required.
1920 ///
1921 /// Def If non-null, and the type refers to some kind of declaration
1922 /// that can be completed (such as a C struct, C++ class, or Objective-C
1923 /// class), will be set to the declaration.
1924 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1925
1926 /// Return true if this is an incomplete or object
1927 /// type, in other words, not a function type.
1928 bool isIncompleteOrObjectType() const {
1929 return !isFunctionType();
1930 }
1931
1932 /// Determine whether this type is an object type.
1933 bool isObjectType() const {
1934 // C++ [basic.types]p8:
1935 // An object type is a (possibly cv-qualified) type that is not a
1936 // function type, not a reference type, and not a void type.
1937 return !isReferenceType() && !isFunctionType() && !isVoidType();
1938 }
1939
1940 /// Return true if this is a literal type
1941 /// (C++11 [basic.types]p10)
1942 bool isLiteralType(const ASTContext &Ctx) const;
1943
1944 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1945 bool isStructuralType() const;
1946
1947 /// Test if this type is a standard-layout type.
1948 /// (C++0x [basic.type]p9)
1949 bool isStandardLayoutType() const;
1950
1951 /// Helper methods to distinguish type categories. All type predicates
1952 /// operate on the canonical type, ignoring typedefs and qualifiers.
1953
1954 /// Returns true if the type is a builtin type.
1955 bool isBuiltinType() const;
1956
1957 /// Test for a particular builtin type.
1958 bool isSpecificBuiltinType(unsigned K) const;
1959
1960 /// Test for a type which does not represent an actual type-system type but
1961 /// is instead used as a placeholder for various convenient purposes within
1962 /// Clang. All such types are BuiltinTypes.
1963 bool isPlaceholderType() const;
1964 const BuiltinType *getAsPlaceholderType() const;
1965
1966 /// Test for a specific placeholder type.
1967 bool isSpecificPlaceholderType(unsigned K) const;
1968
1969 /// Test for a placeholder type other than Overload; see
1970 /// BuiltinType::isNonOverloadPlaceholderType.
1971 bool isNonOverloadPlaceholderType() const;
1972
1973 /// isIntegerType() does *not* include complex integers (a GCC extension).
1974 /// isComplexIntegerType() can be used to test for complex integers.
1975 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1976 bool isEnumeralType() const;
1977
1978 /// Determine whether this type is a scoped enumeration type.
1979 bool isScopedEnumeralType() const;
1980 bool isBooleanType() const;
1981 bool isCharType() const;
1982 bool isWideCharType() const;
1983 bool isChar8Type() const;
1984 bool isChar16Type() const;
1985 bool isChar32Type() const;
1986 bool isAnyCharacterType() const;
1987 bool isIntegralType(const ASTContext &Ctx) const;
1988
1989 /// Determine whether this type is an integral or enumeration type.
1990 bool isIntegralOrEnumerationType() const;
1991
1992 /// Determine whether this type is an integral or unscoped enumeration type.
1993 bool isIntegralOrUnscopedEnumerationType() const;
1994 bool isUnscopedEnumerationType() const;
1995
1996 /// Floating point categories.
1997 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1998 /// isComplexType() does *not* include complex integers (a GCC extension).
1999 /// isComplexIntegerType() can be used to test for complex integers.
2000 bool isComplexType() const; // C99 6.2.5p11 (complex)
2001 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
2002 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
2003 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
2004 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
2005 bool isBFloat16Type() const;
2006 bool isFloat128Type() const;
2007 bool isIbm128Type() const;
2008 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2009 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2010 bool isVoidType() const; // C99 6.2.5p19
2011 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2012 bool isAggregateType() const;
2013 bool isFundamentalType() const;
2014 bool isCompoundType() const;
2015
2016 // Type Predicates: Check to see if this type is structurally the specified
2017 // type, ignoring typedefs and qualifiers.
2018 bool isFunctionType() const;
2019 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2020 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2021 bool isPointerType() const;
2022 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2023 bool isBlockPointerType() const;
2024 bool isVoidPointerType() const;
2025 bool isReferenceType() const;
2026 bool isLValueReferenceType() const;
2027 bool isRValueReferenceType() const;
2028 bool isObjectPointerType() const;
2029 bool isFunctionPointerType() const;
2030 bool isFunctionReferenceType() const;
2031 bool isMemberPointerType() const;
2032 bool isMemberFunctionPointerType() const;
2033 bool isMemberDataPointerType() const;
2034 bool isArrayType() const;
2035 bool isConstantArrayType() const;
2036 bool isIncompleteArrayType() const;
2037 bool isVariableArrayType() const;
2038 bool isDependentSizedArrayType() const;
2039 bool isRecordType() const;
2040 bool isClassType() const;
2041 bool isStructureType() const;
2042 bool isObjCBoxableRecordType() const;
2043 bool isInterfaceType() const;
2044 bool isStructureOrClassType() const;
2045 bool isUnionType() const;
2046 bool isComplexIntegerType() const; // GCC _Complex integer type.
2047 bool isVectorType() const; // GCC vector type.
2048 bool isExtVectorType() const; // Extended vector type.
2049 bool isMatrixType() const; // Matrix type.
2050 bool isConstantMatrixType() const; // Constant matrix type.
2051 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2052 bool isObjCObjectPointerType() const; // pointer to ObjC object
2053 bool isObjCRetainableType() const; // ObjC object or block pointer
2054 bool isObjCLifetimeType() const; // (array of)* retainable type
2055 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2056 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2057 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2058 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2059 // for the common case.
2060 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2061 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2062 bool isObjCQualifiedIdType() const; // id<foo>
2063 bool isObjCQualifiedClassType() const; // Class<foo>
2064 bool isObjCObjectOrInterfaceType() const;
2065 bool isObjCIdType() const; // id
2066 bool isDecltypeType() const;
2067 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2068 /// qualifier?
2069 ///
2070 /// This approximates the answer to the following question: if this
2071 /// translation unit were compiled in ARC, would this type be qualified
2072 /// with __unsafe_unretained?
2073 bool isObjCInertUnsafeUnretainedType() const {
2074 return hasAttr(attr::ObjCInertUnsafeUnretained);
2075 }
2076
2077 /// Whether the type is Objective-C 'id' or a __kindof type of an
2078 /// object type, e.g., __kindof NSView * or __kindof id
2079 /// <NSCopying>.
2080 ///
2081 /// \param bound Will be set to the bound on non-id subtype types,
2082 /// which will be (possibly specialized) Objective-C class type, or
2083 /// null for 'id.
2084 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2085 const ObjCObjectType *&bound) const;
2086
2087 bool isObjCClassType() const; // Class
2088
2089 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2090 /// Class type, e.g., __kindof Class <NSCopying>.
2091 ///
2092 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2093 /// here because Objective-C's type system cannot express "a class
2094 /// object for a subclass of NSFoo".
2095 bool isObjCClassOrClassKindOfType() const;
2096
2097 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2098 bool isObjCSelType() const; // Class
2099 bool isObjCBuiltinType() const; // 'id' or 'Class'
2100 bool isObjCARCBridgableType() const;
2101 bool isCARCBridgableType() const;
2102 bool isTemplateTypeParmType() const; // C++ template type parameter
2103 bool isNullPtrType() const; // C++11 std::nullptr_t
2104 bool isNothrowT() const; // C++ std::nothrow_t
2105 bool isAlignValT() const; // C++17 std::align_val_t
2106 bool isStdByteType() const; // C++17 std::byte
2107 bool isAtomicType() const; // C11 _Atomic()
2108 bool isUndeducedAutoType() const; // C++11 auto or
2109 // C++14 decltype(auto)
2110 bool isTypedefNameType() const; // typedef or alias template
2111
2112#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2113 bool is##Id##Type() const;
2114#include "clang/Basic/OpenCLImageTypes.def"
2115
2116 bool isImageType() const; // Any OpenCL image type
2117
2118 bool isSamplerT() const; // OpenCL sampler_t
2119 bool isEventT() const; // OpenCL event_t
2120 bool isClkEventT() const; // OpenCL clk_event_t
2121 bool isQueueT() const; // OpenCL queue_t
2122 bool isReserveIDT() const; // OpenCL reserve_id_t
2123
2124#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2125 bool is##Id##Type() const;
2126#include "clang/Basic/OpenCLExtensionTypes.def"
2127 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2128 bool isOCLIntelSubgroupAVCType() const;
2129 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2130
2131 bool isPipeType() const; // OpenCL pipe type
2132 bool isBitIntType() const; // Bit-precise integer type
2133 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2134
2135 /// Determines if this type, which must satisfy
2136 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2137 /// than implicitly __strong.
2138 bool isObjCARCImplicitlyUnretainedType() const;
2139
2140 /// Check if the type is the CUDA device builtin surface type.
2141 bool isCUDADeviceBuiltinSurfaceType() const;
2142 /// Check if the type is the CUDA device builtin texture type.
2143 bool isCUDADeviceBuiltinTextureType() const;
2144
2145 /// Return the implicit lifetime for this type, which must not be dependent.
2146 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2147
2148 enum ScalarTypeKind {
2149 STK_CPointer,
2150 STK_BlockPointer,
2151 STK_ObjCObjectPointer,
2152 STK_MemberPointer,
2153 STK_Bool,
2154 STK_Integral,
2155 STK_Floating,
2156 STK_IntegralComplex,
2157 STK_FloatingComplex,
2158 STK_FixedPoint
2159 };
2160
2161 /// Given that this is a scalar type, classify it.
2162 ScalarTypeKind getScalarTypeKind() const;
2163
2164 TypeDependence getDependence() const {
2165 return static_cast<TypeDependence>(TypeBits.Dependence);
2166 }
2167
2168 /// Whether this type is an error type.
2169 bool containsErrors() const {
2170 return getDependence() & TypeDependence::Error;
2171 }
2172
2173 /// Whether this type is a dependent type, meaning that its definition
2174 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2175 bool isDependentType() const {
2176 return getDependence() & TypeDependence::Dependent;
2177 }
2178
2179 /// Determine whether this type is an instantiation-dependent type,
2180 /// meaning that the type involves a template parameter (even if the
2181 /// definition does not actually depend on the type substituted for that
2182 /// template parameter).
2183 bool isInstantiationDependentType() const {
2184 return getDependence() & TypeDependence::Instantiation;
2185 }
2186
2187 /// Determine whether this type is an undeduced type, meaning that
2188 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2189 /// deduced.
2190 bool isUndeducedType() const;
2191
2192 /// Whether this type is a variably-modified type (C99 6.7.5).
2193 bool isVariablyModifiedType() const {
2194 return getDependence() & TypeDependence::VariablyModified;
2195 }
2196
2197 /// Whether this type involves a variable-length array type
2198 /// with a definite size.
2199 bool hasSizedVLAType() const;
2200
2201 /// Whether this type is or contains a local or unnamed type.
2202 bool hasUnnamedOrLocalType() const;
2203
2204 bool isOverloadableType() const;
2205
2206 /// Determine wither this type is a C++ elaborated-type-specifier.
2207 bool isElaboratedTypeSpecifier() const;
2208
2209 bool canDecayToPointerType() const;
2210
2211 /// Whether this type is represented natively as a pointer. This includes
2212 /// pointers, references, block pointers, and Objective-C interface,
2213 /// qualified id, and qualified interface types, as well as nullptr_t.
2214 bool hasPointerRepresentation() const;
2215
2216 /// Whether this type can represent an objective pointer type for the
2217 /// purpose of GC'ability
2218 bool hasObjCPointerRepresentation() const;
2219
2220 /// Determine whether this type has an integer representation
2221 /// of some sort, e.g., it is an integer type or a vector.
2222 bool hasIntegerRepresentation() const;
2223
2224 /// Determine whether this type has an signed integer representation
2225 /// of some sort, e.g., it is an signed integer type or a vector.
2226 bool hasSignedIntegerRepresentation() const;
2227
2228 /// Determine whether this type has an unsigned integer representation
2229 /// of some sort, e.g., it is an unsigned integer type or a vector.
2230 bool hasUnsignedIntegerRepresentation() const;
2231
2232 /// Determine whether this type has a floating-point representation
2233 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2234 bool hasFloatingRepresentation() const;
2235
2236 // Type Checking Functions: Check to see if this type is structurally the
2237 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2238 // the best type we can.
2239 const RecordType *getAsStructureType() const;
2240 /// NOTE: getAs*ArrayType are methods on ASTContext.
2241 const RecordType *getAsUnionType() const;
2242 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2243 const ObjCObjectType *getAsObjCInterfaceType() const;
2244
2245 // The following is a convenience method that returns an ObjCObjectPointerType
2246 // for object declared using an interface.
2247 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2248 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2249 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2250 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2251
2252 /// Retrieves the CXXRecordDecl that this type refers to, either
2253 /// because the type is a RecordType or because it is the injected-class-name
2254 /// type of a class template or class template partial specialization.
2255 CXXRecordDecl *getAsCXXRecordDecl() const;
2256
2257 /// Retrieves the RecordDecl this type refers to.
2258 RecordDecl *getAsRecordDecl() const;
2259
2260 /// Retrieves the TagDecl that this type refers to, either
2261 /// because the type is a TagType or because it is the injected-class-name
2262 /// type of a class template or class template partial specialization.
2263 TagDecl *getAsTagDecl() const;
2264
2265 /// If this is a pointer or reference to a RecordType, return the
2266 /// CXXRecordDecl that the type refers to.
2267 ///
2268 /// If this is not a pointer or reference, or the type being pointed to does
2269 /// not refer to a CXXRecordDecl, returns NULL.
2270 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2271
2272 /// Get the DeducedType whose type will be deduced for a variable with
2273 /// an initializer of this type. This looks through declarators like pointer
2274 /// types, but not through decltype or typedefs.
2275 DeducedType *getContainedDeducedType() const;
2276
2277 /// Get the AutoType whose type will be deduced for a variable with
2278 /// an initializer of this type. This looks through declarators like pointer
2279 /// types, but not through decltype or typedefs.
2280 AutoType *getContainedAutoType() const {
2281 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2282 }
2283
2284 /// Determine whether this type was written with a leading 'auto'
2285 /// corresponding to a trailing return type (possibly for a nested
2286 /// function type within a pointer to function type or similar).
2287 bool hasAutoForTrailingReturnType() const;
2288
2289 /// Member-template getAs<specific type>'. Look through sugar for
2290 /// an instance of \<specific type>. This scheme will eventually
2291 /// replace the specific getAsXXXX methods above.
2292 ///
2293 /// There are some specializations of this member template listed
2294 /// immediately following this class.
2295 template <typename T> const T *getAs() const;
2296
2297 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2298 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2299 /// This is used when you need to walk over sugar nodes that represent some
2300 /// kind of type adjustment from a type that was written as a \<specific type>
2301 /// to another type that is still canonically a \<specific type>.
2302 template <typename T> const T *getAsAdjusted() const;
2303
2304 /// A variant of getAs<> for array types which silently discards
2305 /// qualifiers from the outermost type.
2306 const ArrayType *getAsArrayTypeUnsafe() const;
2307
2308 /// Member-template castAs<specific type>. Look through sugar for
2309 /// the underlying instance of \<specific type>.
2310 ///
2311 /// This method has the same relationship to getAs<T> as cast<T> has
2312 /// to dyn_cast<T>; which is to say, the underlying type *must*
2313 /// have the intended type, and this method will never return null.
2314 template <typename T> const T *castAs() const;
2315
2316 /// A variant of castAs<> for array type which silently discards
2317 /// qualifiers from the outermost type.
2318 const ArrayType *castAsArrayTypeUnsafe() const;
2319
2320 /// Determine whether this type had the specified attribute applied to it
2321 /// (looking through top-level type sugar).
2322 bool hasAttr(attr::Kind AK) const;
2323
2324 /// Get the base element type of this type, potentially discarding type
2325 /// qualifiers. This should never be used when type qualifiers
2326 /// are meaningful.
2327 const Type *getBaseElementTypeUnsafe() const;
2328
2329 /// If this is an array type, return the element type of the array,
2330 /// potentially with type qualifiers missing.
2331 /// This should never be used when type qualifiers are meaningful.
2332 const Type *getArrayElementTypeNoTypeQual() const;
2333
2334 /// If this is a pointer type, return the pointee type.
2335 /// If this is an array type, return the array element type.
2336 /// This should never be used when type qualifiers are meaningful.
2337 const Type *getPointeeOrArrayElementType() const;
2338
2339 /// If this is a pointer, ObjC object pointer, or block
2340 /// pointer, this returns the respective pointee.
2341 QualType getPointeeType() const;
2342
2343 /// Return the specified type with any "sugar" removed from the type,
2344 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2345 const Type *getUnqualifiedDesugaredType() const;
2346
2347 /// More type predicates useful for type checking/promotion
2348 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2349
2350 /// Return true if this is an integer type that is
2351 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2352 /// or an enum decl which has a signed representation.
2353 bool isSignedIntegerType() const;
2354
2355 /// Return true if this is an integer type that is
2356 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2357 /// or an enum decl which has an unsigned representation.
2358 bool isUnsignedIntegerType() const;
2359
2360 /// Determines whether this is an integer type that is signed or an
2361 /// enumeration types whose underlying type is a signed integer type.
2362 bool isSignedIntegerOrEnumerationType() const;
2363
2364 /// Determines whether this is an integer type that is unsigned or an
2365 /// enumeration types whose underlying type is a unsigned integer type.
2366 bool isUnsignedIntegerOrEnumerationType() const;
2367
2368 /// Return true if this is a fixed point type according to
2369 /// ISO/IEC JTC1 SC22 WG14 N1169.
2370 bool isFixedPointType() const;
2371
2372 /// Return true if this is a fixed point or integer type.
2373 bool isFixedPointOrIntegerType() const;
2374
2375 /// Return true if this is a saturated fixed point type according to
2376 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2377 bool isSaturatedFixedPointType() const;
2378
2379 /// Return true if this is a saturated fixed point type according to
2380 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2381 bool isUnsaturatedFixedPointType() const;
2382
2383 /// Return true if this is a fixed point type that is signed according
2384 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2385 bool isSignedFixedPointType() const;
2386
2387 /// Return true if this is a fixed point type that is unsigned according
2388 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2389 bool isUnsignedFixedPointType() const;
2390
2391 /// Return true if this is not a variable sized type,
2392 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2393 /// incomplete types.
2394 bool isConstantSizeType() const;
2395
2396 /// Returns true if this type can be represented by some
2397 /// set of type specifiers.
2398 bool isSpecifierType() const;
2399
2400 /// Determine the linkage of this type.
2401 Linkage getLinkage() const;
2402
2403 /// Determine the visibility of this type.
2404 Visibility getVisibility() const {
2405 return getLinkageAndVisibility().getVisibility();
2406 }
2407
2408 /// Return true if the visibility was explicitly set is the code.
2409 bool isVisibilityExplicit() const {
2410 return getLinkageAndVisibility().isVisibilityExplicit();
2411 }
2412
2413 /// Determine the linkage and visibility of this type.
2414 LinkageInfo getLinkageAndVisibility() const;
2415
2416 /// True if the computed linkage is valid. Used for consistency
2417 /// checking. Should always return true.
2418 bool isLinkageValid() const;
2419
2420 /// Determine the nullability of the given type.
2421 ///
2422 /// Note that nullability is only captured as sugar within the type
2423 /// system, not as part of the canonical type, so nullability will
2424 /// be lost by canonicalization and desugaring.
2425 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2426
2427 /// Determine whether the given type can have a nullability
2428 /// specifier applied to it, i.e., if it is any kind of pointer type.
2429 ///
2430 /// \param ResultIfUnknown The value to return if we don't yet know whether
2431 /// this type can have nullability because it is dependent.
2432 bool canHaveNullability(bool ResultIfUnknown = true) const;
2433
2434 /// Retrieve the set of substitutions required when accessing a member
2435 /// of the Objective-C receiver type that is declared in the given context.
2436 ///
2437 /// \c *this is the type of the object we're operating on, e.g., the
2438 /// receiver for a message send or the base of a property access, and is
2439 /// expected to be of some object or object pointer type.
2440 ///
2441 /// \param dc The declaration context for which we are building up a
2442 /// substitution mapping, which should be an Objective-C class, extension,
2443 /// category, or method within.
2444 ///
2445 /// \returns an array of type arguments that can be substituted for
2446 /// the type parameters of the given declaration context in any type described
2447 /// within that context, or an empty optional to indicate that no
2448 /// substitution is required.
2449 Optional<ArrayRef<QualType>>
2450 getObjCSubstitutions(const DeclContext *dc) const;
2451
2452 /// Determines if this is an ObjC interface type that may accept type
2453 /// parameters.
2454 bool acceptsObjCTypeParams() const;
2455
2456 const char *getTypeClassName() const;
2457
2458 QualType getCanonicalTypeInternal() const {
2459 return CanonicalType;
2460 }
2461
2462 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2463 void dump() const;
2464 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2465};
2466
2467/// This will check for a TypedefType by removing any existing sugar
2468/// until it reaches a TypedefType or a non-sugared type.
2469template <> const TypedefType *Type::getAs() const;
2470
2471/// This will check for a TemplateSpecializationType by removing any
2472/// existing sugar until it reaches a TemplateSpecializationType or a
2473/// non-sugared type.
2474template <> const TemplateSpecializationType *Type::getAs() const;
2475
2476/// This will check for an AttributedType by removing any existing sugar
2477/// until it reaches an AttributedType or a non-sugared type.
2478template <> const AttributedType *Type::getAs() const;
2479
2480// We can do canonical leaf types faster, because we don't have to
2481// worry about preserving child type decoration.
2482#define TYPE(Class, Base)
2483#define LEAF_TYPE(Class) \
2484template <> inline const Class##Type *Type::getAs() const { \
2485 return dyn_cast<Class##Type>(CanonicalType); \
2486} \
2487template <> inline const Class##Type *Type::castAs() const { \
2488 return cast<Class##Type>(CanonicalType); \
2489}
2490#include "clang/AST/TypeNodes.inc"
2491
2492/// This class is used for builtin types like 'int'. Builtin
2493/// types are always canonical and have a literal name field.
2494class BuiltinType : public Type {
2495public:
2496 enum Kind {
2497// OpenCL image types
2498#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2499#include "clang/Basic/OpenCLImageTypes.def"
2500// OpenCL extension types
2501#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2502#include "clang/Basic/OpenCLExtensionTypes.def"
2503// SVE Types
2504#define SVE_TYPE(Name, Id, SingletonId) Id,
2505#include "clang/Basic/AArch64SVEACLETypes.def"
2506// PPC MMA Types
2507#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2508#include "clang/Basic/PPCTypes.def"
2509// RVV Types
2510#define RVV_TYPE(Name, Id, SingletonId) Id,
2511#include "clang/Basic/RISCVVTypes.def"
2512// All other builtin types
2513#define BUILTIN_TYPE(Id, SingletonId) Id,
2514#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2515#include "clang/AST/BuiltinTypes.def"
2516 };
2517
2518private:
2519 friend class ASTContext; // ASTContext creates these.
2520
2521 BuiltinType(Kind K)
2522 : Type(Builtin, QualType(),
2523 K == Dependent ? TypeDependence::DependentInstantiation
2524 : TypeDependence::None) {
2525 BuiltinTypeBits.Kind = K;
2526 }
2527
2528public:
2529 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2530 StringRef getName(const PrintingPolicy &Policy) const;
2531
2532 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2533 // The StringRef is null-terminated.
2534 StringRef str = getName(Policy);
2535 assert(!str.empty() && str.data()[str.size()] == '\0')(static_cast <bool> (!str.empty() && str.data()
[str.size()] == '\0') ? void (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "clang/include/clang/AST/Type.h", 2535, __extension__ __PRETTY_FUNCTION__
))
;
2536 return str.data();
2537 }
2538
2539 bool isSugared() const { return false; }
2540 QualType desugar() const { return QualType(this, 0); }
2541
2542 bool isInteger() const {
2543 return getKind() >= Bool && getKind() <= Int128;
2544 }
2545
2546 bool isSignedInteger() const {
2547 return getKind() >= Char_S && getKind() <= Int128;
2548 }
2549
2550 bool isUnsignedInteger() const {
2551 return getKind() >= Bool && getKind() <= UInt128;
2552 }
2553
2554 bool isFloatingPoint() const {
2555 return getKind() >= Half && getKind() <= Ibm128;
2556 }
2557
2558 /// Determines whether the given kind corresponds to a placeholder type.
2559 static bool isPlaceholderTypeKind(Kind K) {
2560 return K >= Overload;
2561 }
2562
2563 /// Determines whether this type is a placeholder type, i.e. a type
2564 /// which cannot appear in arbitrary positions in a fully-formed
2565 /// expression.
2566 bool isPlaceholderType() const {
2567 return isPlaceholderTypeKind(getKind());
2568 }
2569
2570 /// Determines whether this type is a placeholder type other than
2571 /// Overload. Most placeholder types require only syntactic
2572 /// information about their context in order to be resolved (e.g.
2573 /// whether it is a call expression), which means they can (and
2574 /// should) be resolved in an earlier "phase" of analysis.
2575 /// Overload expressions sometimes pick up further information
2576 /// from their context, like whether the context expects a
2577 /// specific function-pointer type, and so frequently need
2578 /// special treatment.
2579 bool isNonOverloadPlaceholderType() const {
2580 return getKind() > Overload;
2581 }
2582
2583 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2584};
2585
2586/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2587/// types (_Complex float etc) as well as the GCC integer complex extensions.
2588class ComplexType : public Type, public llvm::FoldingSetNode {
2589 friend class ASTContext; // ASTContext creates these.
2590
2591 QualType ElementType;
2592
2593 ComplexType(QualType Element, QualType CanonicalPtr)
2594 : Type(Complex, CanonicalPtr, Element->getDependence()),
2595 ElementType(Element) {}
2596
2597public:
2598 QualType getElementType() const { return ElementType; }
2599
2600 bool isSugared() const { return false; }
2601 QualType desugar() const { return QualType(this, 0); }
2602
2603 void Profile(llvm::FoldingSetNodeID &ID) {
2604 Profile(ID, getElementType());
2605 }
2606
2607 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2608 ID.AddPointer(Element.getAsOpaquePtr());
2609 }
2610
2611 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2612};
2613
2614/// Sugar for parentheses used when specifying types.
2615class ParenType : public Type, public llvm::FoldingSetNode {
2616 friend class ASTContext; // ASTContext creates these.
2617
2618 QualType Inner;
2619
2620 ParenType(QualType InnerType, QualType CanonType)
2621 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2622
2623public:
2624 QualType getInnerType() const { return Inner; }
2625
2626 bool isSugared() const { return true; }
2627 QualType desugar() const { return getInnerType(); }
2628
2629 void Profile(llvm::FoldingSetNodeID &ID) {
2630 Profile(ID, getInnerType());
2631 }
2632
2633 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2634 Inner.Profile(ID);
2635 }
2636
2637 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2638};
2639
2640/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2641class PointerType : public Type, public llvm::FoldingSetNode {
2642 friend class ASTContext; // ASTContext creates these.
2643
2644 QualType PointeeType;
2645
2646 PointerType(QualType Pointee, QualType CanonicalPtr)
2647 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2648 PointeeType(Pointee) {}
2649
2650public:
2651 QualType getPointeeType() const { return PointeeType; }
2652
2653 bool isSugared() const { return false; }
2654 QualType desugar() const { return QualType(this, 0); }
2655
2656 void Profile(llvm::FoldingSetNodeID &ID) {
2657 Profile(ID, getPointeeType());
2658 }
2659
2660 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2661 ID.AddPointer(Pointee.getAsOpaquePtr());
2662 }
2663
2664 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2665};
2666
2667/// Represents a type which was implicitly adjusted by the semantic
2668/// engine for arbitrary reasons. For example, array and function types can
2669/// decay, and function types can have their calling conventions adjusted.
2670class AdjustedType : public Type, public llvm::FoldingSetNode {
2671 QualType OriginalTy;
2672 QualType AdjustedTy;
2673
2674protected:
2675 friend class ASTContext; // ASTContext creates these.
2676
2677 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2678 QualType CanonicalPtr)
2679 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2680 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2681
2682public:
2683 QualType getOriginalType() const { return OriginalTy; }
2684 QualType getAdjustedType() const { return AdjustedTy; }
2685
2686 bool isSugared() const { return true; }
2687 QualType desugar() const { return AdjustedTy; }
2688
2689 void Profile(llvm::FoldingSetNodeID &ID) {
2690 Profile(ID, OriginalTy, AdjustedTy);
2691 }
2692
2693 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2694 ID.AddPointer(Orig.getAsOpaquePtr());
2695 ID.AddPointer(New.getAsOpaquePtr());
2696 }
2697
2698 static bool classof(const Type *T) {
2699 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2700 }
2701};
2702
2703/// Represents a pointer type decayed from an array or function type.
2704class DecayedType : public AdjustedType {
2705 friend class ASTContext; // ASTContext creates these.
2706
2707 inline
2708 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2709
2710public:
2711 QualType getDecayedType() const { return getAdjustedType(); }
2712
2713 inline QualType getPointeeType() const;
2714
2715 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2716};
2717
2718/// Pointer to a block type.
2719/// This type is to represent types syntactically represented as
2720/// "void (^)(int)", etc. Pointee is required to always be a function type.
2721class BlockPointerType : public Type, public llvm::FoldingSetNode {
2722 friend class ASTContext; // ASTContext creates these.
2723
2724 // Block is some kind of pointer type
2725 QualType PointeeType;
2726
2727 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2728 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2729 PointeeType(Pointee) {}
2730
2731public:
2732 // Get the pointee type. Pointee is required to always be a function type.
2733 QualType getPointeeType() const { return PointeeType; }
2734
2735 bool isSugared() const { return false; }
2736 QualType desugar() const { return QualType(this, 0); }
2737
2738 void Profile(llvm::FoldingSetNodeID &ID) {
2739 Profile(ID, getPointeeType());
2740 }
2741
2742 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2743 ID.AddPointer(Pointee.getAsOpaquePtr());
2744 }
2745
2746 static bool classof(const Type *T) {
2747 return T->getTypeClass() == BlockPointer;
2748 }
2749};
2750
2751/// Base for LValueReferenceType and RValueReferenceType
2752class ReferenceType : public Type, public llvm::FoldingSetNode {
2753 QualType PointeeType;
2754
2755protected:
2756 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2757 bool SpelledAsLValue)
2758 : Type(tc, CanonicalRef, Referencee->getDependence()),
2759 PointeeType(Referencee) {
2760 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2761 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2762 }
2763
2764public:
2765 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2766 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2767
2768 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2769
2770 QualType getPointeeType() const {
2771 // FIXME: this might strip inner qualifiers; okay?
2772 const ReferenceType *T = this;
2773 while (T->isInnerRef())
2774 T = T->PointeeType->castAs<ReferenceType>();
2775 return T->PointeeType;
2776 }
2777
2778 void Profile(llvm::FoldingSetNodeID &ID) {
2779 Profile(ID, PointeeType, isSpelledAsLValue());
2780 }
2781
2782 static void Profile(llvm::FoldingSetNodeID &ID,
2783 QualType Referencee,
2784 bool SpelledAsLValue) {
2785 ID.AddPointer(Referencee.getAsOpaquePtr());
2786 ID.AddBoolean(SpelledAsLValue);
2787 }
2788
2789 static bool classof(const Type *T) {
2790 return T->getTypeClass() == LValueReference ||
2791 T->getTypeClass() == RValueReference;
2792 }
2793};
2794
2795/// An lvalue reference type, per C++11 [dcl.ref].
2796class LValueReferenceType : public ReferenceType {
2797 friend class ASTContext; // ASTContext creates these
2798
2799 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2800 bool SpelledAsLValue)
2801 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2802 SpelledAsLValue) {}
2803
2804public:
2805 bool isSugared() const { return false; }
2806 QualType desugar() const { return QualType(this, 0); }
2807
2808 static bool classof(const Type *T) {
2809 return T->getTypeClass() == LValueReference;
2810 }
2811};
2812
2813/// An rvalue reference type, per C++11 [dcl.ref].
2814class RValueReferenceType : public ReferenceType {
2815 friend class ASTContext; // ASTContext creates these
2816
2817 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2818 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2819
2820public:
2821 bool isSugared() const { return false; }
2822 QualType desugar() const { return QualType(this, 0); }
2823
2824 static bool classof(const Type *T) {
2825 return T->getTypeClass() == RValueReference;
2826 }
2827};
2828
2829/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2830///
2831/// This includes both pointers to data members and pointer to member functions.
2832class MemberPointerType : public Type, public llvm::FoldingSetNode {
2833 friend class ASTContext; // ASTContext creates these.
2834
2835 QualType PointeeType;
2836
2837 /// The class of which the pointee is a member. Must ultimately be a
2838 /// RecordType, but could be a typedef or a template parameter too.
2839 const Type *Class;
2840
2841 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2842 : Type(MemberPointer, CanonicalPtr,
2843 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2844 Pointee->getDependence()),
2845 PointeeType(Pointee), Class(Cls) {}
2846
2847public:
2848 QualType getPointeeType() const { return PointeeType; }
2849
2850 /// Returns true if the member type (i.e. the pointee type) is a
2851 /// function type rather than a data-member type.
2852 bool isMemberFunctionPointer() const {
2853 return PointeeType->isFunctionProtoType();
2854 }
2855
2856 /// Returns true if the member type (i.e. the pointee type) is a
2857 /// data type rather than a function type.
2858 bool isMemberDataPointer() const {
2859 return !PointeeType->isFunctionProtoType();
2860 }
2861
2862 const Type *getClass() const { return Class; }
2863 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2864
2865 bool isSugared() const { return false; }
2866 QualType desugar() const { return QualType(this, 0); }
2867
2868 void Profile(llvm::FoldingSetNodeID &ID) {
2869 Profile(ID, getPointeeType(), getClass());
2870 }
2871
2872 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2873 const Type *Class) {
2874 ID.AddPointer(Pointee.getAsOpaquePtr());
2875 ID.AddPointer(Class);
2876 }
2877
2878 static bool classof(const Type *T) {
2879 return T->getTypeClass() == MemberPointer;
2880 }
2881};
2882
2883/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2884class ArrayType : public Type, public llvm::FoldingSetNode {
2885public:
2886 /// Capture whether this is a normal array (e.g. int X[4])
2887 /// an array with a static size (e.g. int X[static 4]), or an array
2888 /// with a star size (e.g. int X[*]).
2889 /// 'static' is only allowed on function parameters.
2890 enum ArraySizeModifier {
2891 Normal, Static, Star
2892 };
2893
2894private:
2895 /// The element type of the array.
2896 QualType ElementType;
2897
2898protected:
2899 friend class ASTContext; // ASTContext creates these.
2900
2901 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2902 unsigned tq, const Expr *sz = nullptr);
2903
2904public:
2905 QualType getElementType() const { return ElementType; }
2906
2907 ArraySizeModifier getSizeModifier() const {
2908 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2909 }
2910
2911 Qualifiers getIndexTypeQualifiers() const {
2912 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2913 }
2914
2915 unsigned getIndexTypeCVRQualifiers() const {
2916 return ArrayTypeBits.IndexTypeQuals;
2917 }
2918
2919 static bool classof(const Type *T) {
2920 return T->getTypeClass() == ConstantArray ||
2921 T->getTypeClass() == VariableArray ||
2922 T->getTypeClass() == IncompleteArray ||
2923 T->getTypeClass() == DependentSizedArray;
2924 }
2925};
2926
2927/// Represents the canonical version of C arrays with a specified constant size.
2928/// For example, the canonical type for 'int A[4 + 4*100]' is a
2929/// ConstantArrayType where the element type is 'int' and the size is 404.
2930class ConstantArrayType final
2931 : public ArrayType,
2932 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2933 friend class ASTContext; // ASTContext creates these.
2934 friend TrailingObjects;
2935
2936 llvm::APInt Size; // Allows us to unique the type.
2937
2938 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2939 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2940 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2941 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2942 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2943 assert(!can.isNull() && "canonical constant array should not have size")(static_cast <bool> (!can.isNull() && "canonical constant array should not have size"
) ? void (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "clang/include/clang/AST/Type.h", 2943, __extension__ __PRETTY_FUNCTION__
))
;
2944 *getTrailingObjects<const Expr*>() = sz;
2945 }
2946 }
2947
2948 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2949 return ConstantArrayTypeBits.HasStoredSizeExpr;
2950 }
2951
2952public:
2953 const llvm::APInt &getSize() const { return Size; }
2954 const Expr *getSizeExpr() const {
2955 return ConstantArrayTypeBits.HasStoredSizeExpr
2956 ? *getTrailingObjects<const Expr *>()
2957 : nullptr;
2958 }
2959 bool isSugared() const { return false; }
2960 QualType desugar() const { return QualType(this, 0); }
2961
2962 /// Determine the number of bits required to address a member of
2963 // an array with the given element type and number of elements.
2964 static unsigned getNumAddressingBits(const ASTContext &Context,
2965 QualType ElementType,
2966 const llvm::APInt &NumElements);
2967
2968 /// Determine the maximum number of active bits that an array's size
2969 /// can require, which limits the maximum size of the array.
2970 static unsigned getMaxSizeBits(const ASTContext &Context);
2971
2972 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2973 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2974 getSizeModifier(), getIndexTypeCVRQualifiers());
2975 }
2976
2977 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2978 QualType ET, const llvm::APInt &ArraySize,
2979 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2980 unsigned TypeQuals);
2981
2982 static bool classof(const Type *T) {
2983 return T->getTypeClass() == ConstantArray;
2984 }
2985};
2986
2987/// Represents a C array with an unspecified size. For example 'int A[]' has
2988/// an IncompleteArrayType where the element type is 'int' and the size is
2989/// unspecified.
2990class IncompleteArrayType : public ArrayType {
2991 friend class ASTContext; // ASTContext creates these.
2992
2993 IncompleteArrayType(QualType et, QualType can,
2994 ArraySizeModifier sm, unsigned tq)
2995 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2996
2997public:
2998 friend class StmtIteratorBase;
2999
3000 bool isSugared() const { return false; }
3001 QualType desugar() const { return QualType(this, 0); }
3002
3003 static bool classof(const Type *T) {
3004 return T->getTypeClass() == IncompleteArray;
3005 }
3006
3007 void Profile(llvm::FoldingSetNodeID &ID) {
3008 Profile(ID, getElementType(), getSizeModifier(),
3009 getIndexTypeCVRQualifiers());
3010 }
3011
3012 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3013 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3014 ID.AddPointer(ET.getAsOpaquePtr());
3015 ID.AddInteger(SizeMod);
3016 ID.AddInteger(TypeQuals);
3017 }
3018};
3019
3020/// Represents a C array with a specified size that is not an
3021/// integer-constant-expression. For example, 'int s[x+foo()]'.
3022/// Since the size expression is an arbitrary expression, we store it as such.
3023///
3024/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3025/// should not be: two lexically equivalent variable array types could mean
3026/// different things, for example, these variables do not have the same type
3027/// dynamically:
3028///
3029/// void foo(int x) {
3030/// int Y[x];
3031/// ++x;
3032/// int Z[x];
3033/// }
3034class VariableArrayType : public ArrayType {
3035 friend class ASTContext; // ASTContext creates these.
3036
3037 /// An assignment-expression. VLA's are only permitted within
3038 /// a function block.
3039 Stmt *SizeExpr;
3040
3041 /// The range spanned by the left and right array brackets.
3042 SourceRange Brackets;
3043
3044 VariableArrayType(QualType et, QualType can, Expr *e,
3045 ArraySizeModifier sm, unsigned tq,
3046 SourceRange brackets)
3047 : ArrayType(VariableArray, et, can, sm, tq, e),
3048 SizeExpr((Stmt*) e), Brackets(brackets) {}
3049
3050public:
3051 friend class StmtIteratorBase;
3052
3053 Expr *getSizeExpr() const {
3054 // We use C-style casts instead of cast<> here because we do not wish
3055 // to have a dependency of Type.h on Stmt.h/Expr.h.
3056 return (Expr*) SizeExpr;
3057 }
3058
3059 SourceRange getBracketsRange() const { return Brackets; }
3060 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3061 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3062
3063 bool isSugared() const { return false; }
3064 QualType desugar() const { return QualType(this, 0); }
3065
3066 static bool classof(const Type *T) {
3067 return T->getTypeClass() == VariableArray;
3068 }
3069
3070 void Profile(llvm::FoldingSetNodeID &ID) {
3071 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "clang/include/clang/AST/Type.h", 3071)
;
3072 }
3073};
3074
3075/// Represents an array type in C++ whose size is a value-dependent expression.
3076///
3077/// For example:
3078/// \code
3079/// template<typename T, int Size>
3080/// class array {
3081/// T data[Size];
3082/// };
3083/// \endcode
3084///
3085/// For these types, we won't actually know what the array bound is
3086/// until template instantiation occurs, at which point this will
3087/// become either a ConstantArrayType or a VariableArrayType.
3088class DependentSizedArrayType : public ArrayType {
3089 friend class ASTContext; // ASTContext creates these.
3090
3091 const ASTContext &Context;
3092
3093 /// An assignment expression that will instantiate to the
3094 /// size of the array.
3095 ///
3096 /// The expression itself might be null, in which case the array
3097 /// type will have its size deduced from an initializer.
3098 Stmt *SizeExpr;
3099
3100 /// The range spanned by the left and right array brackets.
3101 SourceRange Brackets;
3102
3103 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3104 Expr *e, ArraySizeModifier sm, unsigned tq,
3105 SourceRange brackets);
3106
3107public:
3108 friend class StmtIteratorBase;
3109
3110 Expr *getSizeExpr() const {
3111 // We use C-style casts instead of cast<> here because we do not wish
3112 // to have a dependency of Type.h on Stmt.h/Expr.h.
3113 return (Expr*) SizeExpr;
3114 }
3115
3116 SourceRange getBracketsRange() const { return Brackets; }
3117 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3118 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3119
3120 bool isSugared() const { return false; }
3121 QualType desugar() const { return QualType(this, 0); }
3122
3123 static bool classof(const Type *T) {
3124 return T->getTypeClass() == DependentSizedArray;
3125 }
3126
3127 void Profile(llvm::FoldingSetNodeID &ID) {
3128 Profile(ID, Context, getElementType(),
3129 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3130 }
3131
3132 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3133 QualType ET, ArraySizeModifier SizeMod,
3134 unsigned TypeQuals, Expr *E);
3135};
3136
3137/// Represents an extended address space qualifier where the input address space
3138/// value is dependent. Non-dependent address spaces are not represented with a
3139/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3140///
3141/// For example:
3142/// \code
3143/// template<typename T, int AddrSpace>
3144/// class AddressSpace {
3145/// typedef T __attribute__((address_space(AddrSpace))) type;
3146/// }
3147/// \endcode
3148class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3149 friend class ASTContext;
3150
3151 const ASTContext &Context;
3152 Expr *AddrSpaceExpr;
3153 QualType PointeeType;
3154 SourceLocation loc;
3155
3156 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3157 QualType can, Expr *AddrSpaceExpr,
3158 SourceLocation loc);
3159
3160public:
3161 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3162 QualType getPointeeType() const { return PointeeType; }
3163 SourceLocation getAttributeLoc() const { return loc; }
3164
3165 bool isSugared() const { return false; }
3166 QualType desugar() const { return QualType(this, 0); }
3167
3168 static bool classof(const Type *T) {
3169 return T->getTypeClass() == DependentAddressSpace;
3170 }
3171
3172 void Profile(llvm::FoldingSetNodeID &ID) {
3173 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3174 }
3175
3176 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3177 QualType PointeeType, Expr *AddrSpaceExpr);
3178};
3179
3180/// Represents an extended vector type where either the type or size is
3181/// dependent.
3182///
3183/// For example:
3184/// \code
3185/// template<typename T, int Size>
3186/// class vector {
3187/// typedef T __attribute__((ext_vector_type(Size))) type;
3188/// }
3189/// \endcode
3190class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3191 friend class ASTContext;
3192
3193 const ASTContext &Context;
3194 Expr *SizeExpr;
3195
3196 /// The element type of the array.
3197 QualType ElementType;
3198
3199 SourceLocation loc;
3200
3201 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3202 QualType can, Expr *SizeExpr, SourceLocation loc);
3203
3204public:
3205 Expr *getSizeExpr() const { return SizeExpr; }
3206 QualType getElementType() const { return ElementType; }
3207 SourceLocation getAttributeLoc() const { return loc; }
3208
3209 bool isSugared() const { return false; }
3210 QualType desugar() const { return QualType(this, 0); }
3211
3212 static bool classof(const Type *T) {
3213 return T->getTypeClass() == DependentSizedExtVector;
3214 }
3215
3216 void Profile(llvm::FoldingSetNodeID &ID) {
3217 Profile(ID, Context, getElementType(), getSizeExpr());
3218 }
3219
3220 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3221 QualType ElementType, Expr *SizeExpr);
3222};
3223
3224
3225/// Represents a GCC generic vector type. This type is created using
3226/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3227/// bytes; or from an Altivec __vector or vector declaration.
3228/// Since the constructor takes the number of vector elements, the
3229/// client is responsible for converting the size into the number of elements.
3230class VectorType : public Type, public llvm::FoldingSetNode {
3231public:
3232 enum VectorKind {
3233 /// not a target-specific vector type
3234 GenericVector,
3235
3236 /// is AltiVec vector
3237 AltiVecVector,
3238
3239 /// is AltiVec 'vector Pixel'
3240 AltiVecPixel,
3241
3242 /// is AltiVec 'vector bool ...'
3243 AltiVecBool,
3244
3245 /// is ARM Neon vector
3246 NeonVector,
3247
3248 /// is ARM Neon polynomial vector
3249 NeonPolyVector,
3250
3251 /// is AArch64 SVE fixed-length data vector
3252 SveFixedLengthDataVector,
3253
3254 /// is AArch64 SVE fixed-length predicate vector
3255 SveFixedLengthPredicateVector
3256 };
3257
3258protected:
3259 friend class ASTContext; // ASTContext creates these.
3260
3261 /// The element type of the vector.
3262 QualType ElementType;
3263
3264 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3265 VectorKind vecKind);
3266
3267 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3268 QualType canonType, VectorKind vecKind);
3269
3270public:
3271 QualType getElementType() const { return ElementType; }
3272 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3273
3274 bool isSugared() const { return false; }
3275 QualType desugar() const { return QualType(this, 0); }
3276
3277 VectorKind getVectorKind() const {
3278 return VectorKind(VectorTypeBits.VecKind);
3279 }
3280
3281 void Profile(llvm::FoldingSetNodeID &ID) {
3282 Profile(ID, getElementType(), getNumElements(),
3283 getTypeClass(), getVectorKind());
3284 }
3285
3286 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3287 unsigned NumElements, TypeClass TypeClass,
3288 VectorKind VecKind) {
3289 ID.AddPointer(ElementType.getAsOpaquePtr());
3290 ID.AddInteger(NumElements);
3291 ID.AddInteger(TypeClass);
3292 ID.AddInteger(VecKind);
3293 }
3294
3295 static bool classof(const Type *T) {
3296 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3297 }
3298};
3299
3300/// Represents a vector type where either the type or size is dependent.
3301////
3302/// For example:
3303/// \code
3304/// template<typename T, int Size>
3305/// class vector {
3306/// typedef T __attribute__((vector_size(Size))) type;
3307/// }
3308/// \endcode
3309class DependentVectorType : public Type, public llvm::FoldingSetNode {
3310 friend class ASTContext;
3311
3312 const ASTContext &Context;
3313 QualType ElementType;
3314 Expr *SizeExpr;
3315 SourceLocation Loc;
3316
3317 DependentVectorType(const ASTContext &Context, QualType ElementType,
3318 QualType CanonType, Expr *SizeExpr,
3319 SourceLocation Loc, VectorType::VectorKind vecKind);
3320
3321public:
3322 Expr *getSizeExpr() const { return SizeExpr; }
3323 QualType getElementType() const { return ElementType; }
3324 SourceLocation getAttributeLoc() const { return Loc; }
3325 VectorType::VectorKind getVectorKind() const {
3326 return VectorType::VectorKind(VectorTypeBits.VecKind);
3327 }
3328
3329 bool isSugared() const { return false; }
3330 QualType desugar() const { return QualType(this, 0); }
3331
3332 static bool classof(const Type *T) {
3333 return T->getTypeClass() == DependentVector;
3334 }
3335
3336 void Profile(llvm::FoldingSetNodeID &ID) {
3337 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3338 }
3339
3340 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3341 QualType ElementType, const Expr *SizeExpr,
3342 VectorType::VectorKind VecKind);
3343};
3344
3345/// ExtVectorType - Extended vector type. This type is created using
3346/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3347/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3348/// class enables syntactic extensions, like Vector Components for accessing
3349/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3350/// Shading Language).
3351class ExtVectorType : public VectorType {
3352 friend class ASTContext; // ASTContext creates these.
3353
3354 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3355 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3356
3357public:
3358 static int getPointAccessorIdx(char c) {
3359 switch (c) {
3360 default: return -1;
3361 case 'x': case 'r': return 0;
3362 case 'y': case 'g': return 1;
3363 case 'z': case 'b': return 2;
3364 case 'w': case 'a': return 3;
3365 }
3366 }
3367
3368 static int getNumericAccessorIdx(char c) {
3369 switch (c) {
3370 default: return -1;
3371 case '0': return 0;
3372 case '1': return 1;
3373 case '2': return 2;
3374 case '3': return 3;
3375 case '4': return 4;
3376 case '5': return 5;
3377 case '6': return 6;
3378 case '7': return 7;
3379 case '8': return 8;
3380 case '9': return 9;
3381 case 'A':
3382 case 'a': return 10;
3383 case 'B':
3384 case 'b': return 11;
3385 case 'C':
3386 case 'c': return 12;
3387 case 'D':
3388 case 'd': return 13;
3389 case 'E':
3390 case 'e': return 14;
3391 case 'F':
3392 case 'f': return 15;
3393 }
3394 }
3395
3396 static int getAccessorIdx(char c, bool isNumericAccessor) {
3397 if (isNumericAccessor)
3398 return getNumericAccessorIdx(c);
3399 else
3400 return getPointAccessorIdx(c);
3401 }
3402
3403 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3404 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3405 return unsigned(idx-1) < getNumElements();
3406 return false;
3407 }
3408
3409 bool isSugared() const { return false; }
3410 QualType desugar() const { return QualType(this, 0); }
3411
3412 static bool classof(const Type *T) {
3413 return T->getTypeClass() == ExtVector;
3414 }
3415};
3416
3417/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3418/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3419/// number of rows and "columns" specifies the number of columns.
3420class MatrixType : public Type, public llvm::FoldingSetNode {
3421protected:
3422 friend class ASTContext;
3423
3424 /// The element type of the matrix.
3425 QualType ElementType;
3426
3427 MatrixType(QualType ElementTy, QualType CanonElementTy);
3428
3429 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3430 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3431
3432public:
3433 /// Returns type of the elements being stored in the matrix
3434 QualType getElementType() const { return ElementType; }
3435
3436 /// Valid elements types are the following:
3437 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3438 /// and _Bool
3439 /// * the standard floating types float or double
3440 /// * a half-precision floating point type, if one is supported on the target
3441 static bool isValidElementType(QualType T) {
3442 return T->isDependentType() ||
3443 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3444 }
3445
3446 bool isSugared() const { return false; }
3447 QualType desugar() const { return QualType(this, 0); }
3448
3449 static bool classof(const Type *T) {
3450 return T->getTypeClass() == ConstantMatrix ||
3451 T->getTypeClass() == DependentSizedMatrix;
3452 }
3453};
3454
3455/// Represents a concrete matrix type with constant number of rows and columns
3456class ConstantMatrixType final : public MatrixType {
3457protected:
3458 friend class ASTContext;
3459
3460 /// Number of rows and columns.
3461 unsigned NumRows;
3462 unsigned NumColumns;
3463
3464 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3465
3466 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3467 unsigned NColumns, QualType CanonElementType);
3468
3469 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3470 unsigned NColumns, QualType CanonElementType);
3471
3472public:
3473 /// Returns the number of rows in the matrix.
3474 unsigned getNumRows() const { return NumRows; }
3475
3476 /// Returns the number of columns in the matrix.
3477 unsigned getNumColumns() const { return NumColumns; }
3478
3479 /// Returns the number of elements required to embed the matrix into a vector.
3480 unsigned getNumElementsFlattened() const {
3481 return getNumRows() * getNumColumns();
3482 }
3483
3484 /// Returns true if \p NumElements is a valid matrix dimension.
3485 static constexpr bool isDimensionValid(size_t NumElements) {
3486 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3487 }
3488
3489 /// Returns the maximum number of elements per dimension.
3490 static constexpr unsigned getMaxElementsPerDimension() {
3491 return MaxElementsPerDimension;
3492 }
3493
3494 void Profile(llvm::FoldingSetNodeID &ID) {
3495 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3496 getTypeClass());
3497 }
3498
3499 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3500 unsigned NumRows, unsigned NumColumns,
3501 TypeClass TypeClass) {
3502 ID.AddPointer(ElementType.getAsOpaquePtr());
3503 ID.AddInteger(NumRows);
3504 ID.AddInteger(NumColumns);
3505 ID.AddInteger(TypeClass);
3506 }
3507
3508 static bool classof(const Type *T) {
3509 return T->getTypeClass() == ConstantMatrix;
3510 }
3511};
3512
3513/// Represents a matrix type where the type and the number of rows and columns
3514/// is dependent on a template.
3515class DependentSizedMatrixType final : public MatrixType {
3516 friend class ASTContext;
3517
3518 const ASTContext &Context;
3519 Expr *RowExpr;
3520 Expr *ColumnExpr;
3521
3522 SourceLocation loc;
3523
3524 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3525 QualType CanonicalType, Expr *RowExpr,
3526 Expr *ColumnExpr, SourceLocation loc);
3527
3528public:
3529 Expr *getRowExpr() const { return RowExpr; }
3530 Expr *getColumnExpr() const { return ColumnExpr; }
3531 SourceLocation getAttributeLoc() const { return loc; }
3532
3533 static bool classof(const Type *T) {
3534 return T->getTypeClass() == DependentSizedMatrix;
3535 }
3536
3537 void Profile(llvm::FoldingSetNodeID &ID) {
3538 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3539 }
3540
3541 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3542 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3543};
3544
3545/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3546/// class of FunctionNoProtoType and FunctionProtoType.
3547class FunctionType : public Type {
3548 // The type returned by the function.
3549 QualType ResultType;
3550
3551public:
3552 /// Interesting information about a specific parameter that can't simply
3553 /// be reflected in parameter's type. This is only used by FunctionProtoType
3554 /// but is in FunctionType to make this class available during the
3555 /// specification of the bases of FunctionProtoType.
3556 ///
3557 /// It makes sense to model language features this way when there's some
3558 /// sort of parameter-specific override (such as an attribute) that
3559 /// affects how the function is called. For example, the ARC ns_consumed
3560 /// attribute changes whether a parameter is passed at +0 (the default)
3561 /// or +1 (ns_consumed). This must be reflected in the function type,
3562 /// but isn't really a change to the parameter type.
3563 ///
3564 /// One serious disadvantage of modelling language features this way is
3565 /// that they generally do not work with language features that attempt
3566 /// to destructure types. For example, template argument deduction will
3567 /// not be able to match a parameter declared as
3568 /// T (*)(U)
3569 /// against an argument of type
3570 /// void (*)(__attribute__((ns_consumed)) id)
3571 /// because the substitution of T=void, U=id into the former will
3572 /// not produce the latter.
3573 class ExtParameterInfo {
3574 enum {
3575 ABIMask = 0x0F,
3576 IsConsumed = 0x10,
3577 HasPassObjSize = 0x20,
3578 IsNoEscape = 0x40,
3579 };
3580 unsigned char Data = 0;
3581
3582 public:
3583 ExtParameterInfo() = default;
3584
3585 /// Return the ABI treatment of this parameter.
3586 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3587 ExtParameterInfo withABI(ParameterABI kind) const {
3588 ExtParameterInfo copy = *this;
3589 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3590 return copy;
3591 }
3592
3593 /// Is this parameter considered "consumed" by Objective-C ARC?
3594 /// Consumed parameters must have retainable object type.
3595 bool isConsumed() const { return (Data & IsConsumed); }
3596 ExtParameterInfo withIsConsumed(bool consumed) const {
3597 ExtParameterInfo copy = *this;
3598 if (consumed)
3599 copy.Data |= IsConsumed;
3600 else
3601 copy.Data &= ~IsConsumed;
3602 return copy;
3603 }
3604
3605 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3606 ExtParameterInfo withHasPassObjectSize() const {
3607 ExtParameterInfo Copy = *this;
3608 Copy.Data |= HasPassObjSize;
3609 return Copy;
3610 }
3611
3612 bool isNoEscape() const { return Data & IsNoEscape; }
3613 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3614 ExtParameterInfo Copy = *this;
3615 if (NoEscape)
3616 Copy.Data |= IsNoEscape;
3617 else
3618 Copy.Data &= ~IsNoEscape;
3619 return Copy;
3620 }
3621
3622 unsigned char getOpaqueValue() const { return Data; }
3623 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3624 ExtParameterInfo result;
3625 result.Data = data;
3626 return result;
3627 }
3628
3629 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3630 return lhs.Data == rhs.Data;
3631 }
3632
3633 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3634 return lhs.Data != rhs.Data;
3635 }
3636 };
3637
3638 /// A class which abstracts out some details necessary for
3639 /// making a call.
3640 ///
3641 /// It is not actually used directly for storing this information in
3642 /// a FunctionType, although FunctionType does currently use the
3643 /// same bit-pattern.
3644 ///
3645 // If you add a field (say Foo), other than the obvious places (both,
3646 // constructors, compile failures), what you need to update is
3647 // * Operator==
3648 // * getFoo
3649 // * withFoo
3650 // * functionType. Add Foo, getFoo.
3651 // * ASTContext::getFooType
3652 // * ASTContext::mergeFunctionTypes
3653 // * FunctionNoProtoType::Profile
3654 // * FunctionProtoType::Profile
3655 // * TypePrinter::PrintFunctionProto
3656 // * AST read and write
3657 // * Codegen
3658 class ExtInfo {
3659 friend class FunctionType;
3660
3661 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3662 // adjust the Bits field below, and if you add bits, you'll need to adjust
3663 // Type::FunctionTypeBitfields::ExtInfo as well.
3664
3665 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3666 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3667 //
3668 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3669 enum { CallConvMask = 0x1F };
3670 enum { NoReturnMask = 0x20 };
3671 enum { ProducesResultMask = 0x40 };
3672 enum { NoCallerSavedRegsMask = 0x80 };
3673 enum {
3674 RegParmMask = 0x700,
3675 RegParmOffset = 8
3676 };
3677 enum { NoCfCheckMask = 0x800 };
3678 enum { CmseNSCallMask = 0x1000 };
3679 uint16_t Bits = CC_C;
3680
3681 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3682
3683 public:
3684 // Constructor with no defaults. Use this when you know that you
3685 // have all the elements (when reading an AST file for example).
3686 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3687 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3688 bool cmseNSCall) {
3689 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(static_cast <bool> ((!hasRegParm || regParm < 7) &&
"Invalid regparm value") ? void (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "clang/include/clang/AST/Type.h", 3689, __extension__ __PRETTY_FUNCTION__
))
;
3690 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3691 (producesResult ? ProducesResultMask : 0) |
3692 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3693 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3694 (NoCfCheck ? NoCfCheckMask : 0) |
3695 (cmseNSCall ? CmseNSCallMask : 0);
3696 }
3697
3698 // Constructor with all defaults. Use when for example creating a
3699 // function known to use defaults.
3700 ExtInfo() = default;
3701
3702 // Constructor with just the calling convention, which is an important part
3703 // of the canonical type.
3704 ExtInfo(CallingConv CC) : Bits(CC) {}
3705
3706 bool getNoReturn() const { return Bits & NoReturnMask; }
3707 bool getProducesResult() const { return Bits & ProducesResultMask; }
3708 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3709 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3710 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3711 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3712
3713 unsigned getRegParm() const {
3714 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3715 if (RegParm > 0)
3716 --RegParm;
3717 return RegParm;
3718 }
3719
3720 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3721
3722 bool operator==(ExtInfo Other) const {
3723 return Bits == Other.Bits;
3724 }
3725 bool operator!=(ExtInfo Other) const {
3726 return Bits != Other.Bits;
3727 }
3728
3729 // Note that we don't have setters. That is by design, use
3730 // the following with methods instead of mutating these objects.
3731
3732 ExtInfo withNoReturn(bool noReturn) const {
3733 if (noReturn)
3734 return ExtInfo(Bits | NoReturnMask);
3735 else
3736 return ExtInfo(Bits & ~NoReturnMask);
3737 }
3738
3739 ExtInfo withProducesResult(bool producesResult) const {
3740 if (producesResult)
3741 return ExtInfo(Bits | ProducesResultMask);
3742 else
3743 return ExtInfo(Bits & ~ProducesResultMask);
3744 }
3745
3746 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3747 if (cmseNSCall)
3748 return ExtInfo(Bits | CmseNSCallMask);
3749 else
3750 return ExtInfo(Bits & ~CmseNSCallMask);
3751 }
3752
3753 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3754 if (noCallerSavedRegs)
3755 return ExtInfo(Bits | NoCallerSavedRegsMask);
3756 else
3757 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3758 }
3759
3760 ExtInfo withNoCfCheck(bool noCfCheck) const {
3761 if (noCfCheck)
3762 return ExtInfo(Bits | NoCfCheckMask);
3763 else
3764 return ExtInfo(Bits & ~NoCfCheckMask);
3765 }
3766
3767 ExtInfo withRegParm(unsigned RegParm) const {
3768 assert(RegParm < 7 && "Invalid regparm value")(static_cast <bool> (RegParm < 7 && "Invalid regparm value"
) ? void (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "clang/include/clang/AST/Type.h", 3768, __extension__ __PRETTY_FUNCTION__
))
;
3769 return ExtInfo((Bits & ~RegParmMask) |
3770 ((RegParm + 1) << RegParmOffset));
3771 }
3772
3773 ExtInfo withCallingConv(CallingConv cc) const {
3774 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3775 }
3776
3777 void Profile(llvm::FoldingSetNodeID &ID) const {
3778 ID.AddInteger(Bits);
3779 }
3780 };
3781
3782 /// A simple holder for a QualType representing a type in an
3783 /// exception specification. Unfortunately needed by FunctionProtoType
3784 /// because TrailingObjects cannot handle repeated types.
3785 struct ExceptionType { QualType Type; };
3786
3787 /// A simple holder for various uncommon bits which do not fit in
3788 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3789 /// alignment of subsequent objects in TrailingObjects. You must update
3790 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3791 struct alignas(void *) FunctionTypeExtraBitfields {
3792 /// The number of types in the exception specification.
3793 /// A whole unsigned is not needed here and according to
3794 /// [implimits] 8 bits would be enough here.
3795 unsigned NumExceptionType;
3796 };
3797
3798protected:
3799 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3800 TypeDependence Dependence, ExtInfo Info)
3801 : Type(tc, Canonical, Dependence), ResultType(res) {
3802 FunctionTypeBits.ExtInfo = Info.Bits;
3803 }
3804
3805 Qualifiers getFastTypeQuals() const {
3806 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3807 }
3808
3809public:
3810 QualType getReturnType() const { return ResultType; }
3811
3812 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3813 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3814
3815 /// Determine whether this function type includes the GNU noreturn
3816 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3817 /// type.
3818 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3819
3820 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3821 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3822 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3823
3824 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3825 "Const, volatile and restrict are assumed to be a subset of "
3826 "the fast qualifiers.");
3827
3828 bool isConst() const { return getFastTypeQuals().hasConst(); }
3829 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3830 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3831
3832 /// Determine the type of an expression that calls a function of
3833 /// this type.
3834 QualType getCallResultType(const ASTContext &Context) const {
3835 return getReturnType().getNonLValueExprType(Context);
3836 }
3837
3838 static StringRef getNameForCallConv(CallingConv CC);
3839
3840 static bool classof(const Type *T) {
3841 return T->getTypeClass() == FunctionNoProto ||
3842 T->getTypeClass() == FunctionProto;
3843 }
3844};
3845
3846/// Represents a K&R-style 'int foo()' function, which has
3847/// no information available about its arguments.
3848class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3849 friend class ASTContext; // ASTContext creates these.
3850
3851 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3852 : FunctionType(FunctionNoProto, Result, Canonical,
3853 Result->getDependence() &
3854 ~(TypeDependence::DependentInstantiation |
3855 TypeDependence::UnexpandedPack),
3856 Info) {}
3857
3858public:
3859 // No additional state past what FunctionType provides.
3860
3861 bool isSugared() const { return false; }
3862 QualType desugar() const { return QualType(this, 0); }
3863
3864 void Profile(llvm::FoldingSetNodeID &ID) {
3865 Profile(ID, getReturnType(), getExtInfo());
3866 }
3867
3868 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3869 ExtInfo Info) {
3870 Info.Profile(ID);
3871 ID.AddPointer(ResultType.getAsOpaquePtr());
3872 }
3873
3874 static bool classof(const Type *T) {
3875 return T->getTypeClass() == FunctionNoProto;
3876 }
3877};
3878
3879/// Represents a prototype with parameter type info, e.g.
3880/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3881/// parameters, not as having a single void parameter. Such a type can have
3882/// an exception specification, but this specification is not part of the
3883/// canonical type. FunctionProtoType has several trailing objects, some of
3884/// which optional. For more information about the trailing objects see
3885/// the first comment inside FunctionProtoType.
3886class FunctionProtoType final
3887 : public FunctionType,
3888 public llvm::FoldingSetNode,
3889 private llvm::TrailingObjects<
3890 FunctionProtoType, QualType, SourceLocation,
3891 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3892 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3893 friend class ASTContext; // ASTContext creates these.
3894 friend TrailingObjects;
3895
3896 // FunctionProtoType is followed by several trailing objects, some of
3897 // which optional. They are in order:
3898 //
3899 // * An array of getNumParams() QualType holding the parameter types.
3900 // Always present. Note that for the vast majority of FunctionProtoType,
3901 // these will be the only trailing objects.
3902 //
3903 // * Optionally if the function is variadic, the SourceLocation of the
3904 // ellipsis.
3905 //
3906 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3907 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3908 // a single FunctionTypeExtraBitfields. Present if and only if
3909 // hasExtraBitfields() is true.
3910 //
3911 // * Optionally exactly one of:
3912 // * an array of getNumExceptions() ExceptionType,
3913 // * a single Expr *,
3914 // * a pair of FunctionDecl *,
3915 // * a single FunctionDecl *
3916 // used to store information about the various types of exception
3917 // specification. See getExceptionSpecSize for the details.
3918 //
3919 // * Optionally an array of getNumParams() ExtParameterInfo holding
3920 // an ExtParameterInfo for each of the parameters. Present if and
3921 // only if hasExtParameterInfos() is true.
3922 //
3923 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3924 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3925 // if hasExtQualifiers() is true.
3926 //
3927 // The optional FunctionTypeExtraBitfields has to be before the data
3928 // related to the exception specification since it contains the number
3929 // of exception types.
3930 //
3931 // We put the ExtParameterInfos last. If all were equal, it would make
3932 // more sense to put these before the exception specification, because
3933 // it's much easier to skip past them compared to the elaborate switch
3934 // required to skip the exception specification. However, all is not
3935 // equal; ExtParameterInfos are used to model very uncommon features,
3936 // and it's better not to burden the more common paths.
3937
3938public:
3939 /// Holds information about the various types of exception specification.
3940 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3941 /// used to group together the various bits of information about the
3942 /// exception specification.
3943 struct ExceptionSpecInfo {
3944 /// The kind of exception specification this is.
3945 ExceptionSpecificationType Type = EST_None;
3946
3947 /// Explicitly-specified list of exception types.
3948 ArrayRef<QualType> Exceptions;
3949
3950 /// Noexcept expression, if this is a computed noexcept specification.
3951 Expr *NoexceptExpr = nullptr;
3952
3953 /// The function whose exception specification this is, for
3954 /// EST_Unevaluated and EST_Uninstantiated.
3955 FunctionDecl *SourceDecl = nullptr;
3956
3957 /// The function template whose exception specification this is instantiated
3958 /// from, for EST_Uninstantiated.
3959 FunctionDecl *SourceTemplate = nullptr;
3960
3961 ExceptionSpecInfo() = default;
3962
3963 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3964 };
3965
3966 /// Extra information about a function prototype. ExtProtoInfo is not
3967 /// stored as such in FunctionProtoType but is used to group together
3968 /// the various bits of extra information about a function prototype.
3969 struct ExtProtoInfo {
3970 FunctionType::ExtInfo ExtInfo;
3971 bool Variadic : 1;
3972 bool HasTrailingReturn : 1;
3973 Qualifiers TypeQuals;
3974 RefQualifierKind RefQualifier = RQ_None;
3975 ExceptionSpecInfo ExceptionSpec;
3976 const ExtParameterInfo *ExtParameterInfos = nullptr;
3977 SourceLocation EllipsisLoc;
3978
3979 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3980
3981 ExtProtoInfo(CallingConv CC)
3982 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3983
3984 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3985 ExtProtoInfo Result(*this);
3986 Result.ExceptionSpec = ESI;
3987 return Result;
3988 }
3989 };
3990
3991private:
3992 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3993 return getNumParams();
3994 }
3995
3996 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3997 return isVariadic();
3998 }
3999
4000 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
4001 return hasExtraBitfields();
4002 }
4003
4004 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4005 return getExceptionSpecSize().NumExceptionType;
4006 }
4007
4008 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4009 return getExceptionSpecSize().NumExprPtr;
4010 }
4011
4012 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4013 return getExceptionSpecSize().NumFunctionDeclPtr;
4014 }
4015
4016 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4017 return hasExtParameterInfos() ? getNumParams() : 0;
4018 }
4019
4020 /// Determine whether there are any argument types that
4021 /// contain an unexpanded parameter pack.
4022 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4023 unsigned numArgs) {
4024 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4025 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4026 return true;
4027
4028 return false;
4029 }
4030
4031 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4032 QualType canonical, const ExtProtoInfo &epi);
4033
4034 /// This struct is returned by getExceptionSpecSize and is used to
4035 /// translate an ExceptionSpecificationType to the number and kind
4036 /// of trailing objects related to the exception specification.
4037 struct ExceptionSpecSizeHolder {
4038 unsigned NumExceptionType;
4039 unsigned NumExprPtr;
4040 unsigned NumFunctionDeclPtr;
4041 };
4042
4043 /// Return the number and kind of trailing objects
4044 /// related to the exception specification.
4045 static ExceptionSpecSizeHolder
4046 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4047 switch (EST) {
4048 case EST_None:
4049 case EST_DynamicNone:
4050 case EST_MSAny:
4051 case EST_BasicNoexcept:
4052 case EST_Unparsed:
4053 case EST_NoThrow:
4054 return {0, 0, 0};
4055
4056 case EST_Dynamic:
4057 return {NumExceptions, 0, 0};
4058
4059 case EST_DependentNoexcept:
4060 case EST_NoexceptFalse:
4061 case EST_NoexceptTrue:
4062 return {0, 1, 0};
4063
4064 case EST_Uninstantiated:
4065 return {0, 0, 2};
4066
4067 case EST_Unevaluated:
4068 return {0, 0, 1};
4069 }
4070 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "clang/include/clang/AST/Type.h", 4070)
;
4071 }
4072
4073 /// Return the number and kind of trailing objects
4074 /// related to the exception specification.
4075 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4076 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4077 }
4078
4079 /// Whether the trailing FunctionTypeExtraBitfields is present.
4080 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4081 // If the exception spec type is EST_Dynamic then we have > 0 exception
4082 // types and the exact number is stored in FunctionTypeExtraBitfields.
4083 return EST == EST_Dynamic;
4084 }
4085
4086 /// Whether the trailing FunctionTypeExtraBitfields is present.
4087 bool hasExtraBitfields() const {
4088 return hasExtraBitfields(getExceptionSpecType());
4089 }
4090
4091 bool hasExtQualifiers() const {
4092 return FunctionTypeBits.HasExtQuals;
4093 }
4094
4095public:
4096 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4097
4098 QualType getParamType(unsigned i) const {
4099 assert(i < getNumParams() && "invalid parameter index")(static_cast <bool> (i < getNumParams() && "invalid parameter index"
) ? void (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "clang/include/clang/AST/Type.h", 4099, __extension__ __PRETTY_FUNCTION__
))
;
4100 return param_type_begin()[i];
4101 }
4102
4103 ArrayRef<QualType> getParamTypes() const {
4104 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4105 }
4106
4107 ExtProtoInfo getExtProtoInfo() const {
4108 ExtProtoInfo EPI;
4109 EPI.ExtInfo = getExtInfo();
4110 EPI.Variadic = isVariadic();
4111 EPI.EllipsisLoc = getEllipsisLoc();
4112 EPI.HasTrailingReturn = hasTrailingReturn();
4113 EPI.ExceptionSpec = getExceptionSpecInfo();
4114 EPI.TypeQuals = getMethodQuals();
4115 EPI.RefQualifier = getRefQualifier();
4116 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4117 return EPI;
4118 }
4119
4120 /// Get the kind of exception specification on this function.
4121 ExceptionSpecificationType getExceptionSpecType() const {
4122 return static_cast<ExceptionSpecificationType>(
4123 FunctionTypeBits.ExceptionSpecType);
4124 }
4125
4126 /// Return whether this function has any kind of exception spec.
4127 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4128
4129 /// Return whether this function has a dynamic (throw) exception spec.
4130 bool hasDynamicExceptionSpec() const {
4131 return isDynamicExceptionSpec(getExceptionSpecType());
4132 }
4133
4134 /// Return whether this function has a noexcept exception spec.
4135 bool hasNoexceptExceptionSpec() const {
4136 return isNoexceptExceptionSpec(getExceptionSpecType());
4137 }
4138
4139 /// Return whether this function has a dependent exception spec.
4140 bool hasDependentExceptionSpec() const;
4141
4142 /// Return whether this function has an instantiation-dependent exception
4143 /// spec.
4144 bool hasInstantiationDependentExceptionSpec() const;
4145
4146 /// Return all the available information about this type's exception spec.
4147 ExceptionSpecInfo getExceptionSpecInfo() const {
4148 ExceptionSpecInfo Result;
4149 Result.Type = getExceptionSpecType();
4150 if (Result.Type == EST_Dynamic) {
4151 Result.Exceptions = exceptions();
4152 } else if (isComputedNoexcept(Result.Type)) {
4153 Result.NoexceptExpr = getNoexceptExpr();
4154 } else if (Result.Type == EST_Uninstantiated) {
4155 Result.SourceDecl = getExceptionSpecDecl();
4156 Result.SourceTemplate = getExceptionSpecTemplate();
4157 } else if (Result.Type == EST_Unevaluated) {
4158 Result.SourceDecl = getExceptionSpecDecl();
4159 }
4160 return Result;
4161 }
4162
4163 /// Return the number of types in the exception specification.
4164 unsigned getNumExceptions() const {
4165 return getExceptionSpecType() == EST_Dynamic
4166 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4167 ->NumExceptionType
4168 : 0;
4169 }
4170
4171 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4172 QualType getExceptionType(unsigned i) const {
4173 assert(i < getNumExceptions() && "Invalid exception number!")(static_cast <bool> (i < getNumExceptions() &&
"Invalid exception number!") ? void (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "clang/include/clang/AST/Type.h", 4173, __extension__ __PRETTY_FUNCTION__
))
;
4174 return exception_begin()[i];
4175 }
4176
4177 /// Return the expression inside noexcept(expression), or a null pointer
4178 /// if there is none (because the exception spec is not of this form).
4179 Expr *getNoexceptExpr() const {
4180 if (!isComputedNoexcept(getExceptionSpecType()))
4181 return nullptr;
4182 return *getTrailingObjects<Expr *>();
4183 }
4184
4185 /// If this function type has an exception specification which hasn't
4186 /// been determined yet (either because it has not been evaluated or because
4187 /// it has not been instantiated), this is the function whose exception
4188 /// specification is represented by this type.
4189 FunctionDecl *getExceptionSpecDecl() const {
4190 if (getExceptionSpecType() != EST_Uninstantiated &&
4191 getExceptionSpecType() != EST_Unevaluated)
4192 return nullptr;
4193 return getTrailingObjects<FunctionDecl *>()[0];
4194 }
4195
4196 /// If this function type has an uninstantiated exception
4197 /// specification, this is the function whose exception specification
4198 /// should be instantiated to find the exception specification for
4199 /// this type.
4200 FunctionDecl *getExceptionSpecTemplate() const {
4201 if (getExceptionSpecType() != EST_Uninstantiated)
4202 return nullptr;
4203 return getTrailingObjects<FunctionDecl *>()[1];
4204 }
4205
4206 /// Determine whether this function type has a non-throwing exception
4207 /// specification.
4208 CanThrowResult canThrow() const;
4209
4210 /// Determine whether this function type has a non-throwing exception
4211 /// specification. If this depends on template arguments, returns
4212 /// \c ResultIfDependent.
4213 bool isNothrow(bool ResultIfDependent = false) const {
4214 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4215 }
4216
4217 /// Whether this function prototype is variadic.
4218 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4219
4220 SourceLocation getEllipsisLoc() const {
4221 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4222 : SourceLocation();
4223 }
4224
4225 /// Determines whether this function prototype contains a
4226 /// parameter pack at the end.
4227 ///
4228 /// A function template whose last parameter is a parameter pack can be
4229 /// called with an arbitrary number of arguments, much like a variadic
4230 /// function.
4231 bool isTemplateVariadic() const;
4232
4233 /// Whether this function prototype has a trailing return type.
4234 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4235
4236 Qualifiers getMethodQuals() const {
4237 if (hasExtQualifiers())
4238 return *getTrailingObjects<Qualifiers>();
4239 else
4240 return getFastTypeQuals();
4241 }
4242
4243 /// Retrieve the ref-qualifier associated with this function type.
4244 RefQualifierKind getRefQualifier() const {
4245 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4246 }
4247
4248 using param_type_iterator = const QualType *;
4249 using param_type_range = llvm::iterator_range<param_type_iterator>;
4250
4251 param_type_range param_types() const {
4252 return param_type_range(param_type_begin(), param_type_end());
4253 }
4254
4255 param_type_iterator param_type_begin() const {
4256 return getTrailingObjects<QualType>();
4257 }
4258
4259 param_type_iterator param_type_end() const {
4260 return param_type_begin() + getNumParams();
4261 }
4262
4263 using exception_iterator = const QualType *;
4264
4265 ArrayRef<QualType> exceptions() const {
4266 return llvm::makeArrayRef(exception_begin(), exception_end());
4267 }
4268
4269 exception_iterator exception_begin() const {
4270 return reinterpret_cast<exception_iterator>(
4271 getTrailingObjects<ExceptionType>());
4272 }
4273
4274 exception_iterator exception_end() const {
4275 return exception_begin() + getNumExceptions();
4276 }
4277
4278 /// Is there any interesting extra information for any of the parameters
4279 /// of this function type?
4280 bool hasExtParameterInfos() const {
4281 return FunctionTypeBits.HasExtParameterInfos;
4282 }
4283
4284 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4285 assert(hasExtParameterInfos())(static_cast <bool> (hasExtParameterInfos()) ? void (0)
: __assert_fail ("hasExtParameterInfos()", "clang/include/clang/AST/Type.h"
, 4285, __extension__ __PRETTY_FUNCTION__))
;
4286 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4287 getNumParams());
4288 }
4289
4290 /// Return a pointer to the beginning of the array of extra parameter
4291 /// information, if present, or else null if none of the parameters
4292 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4293 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4294 if (!hasExtParameterInfos())
4295 return nullptr;
4296 return getTrailingObjects<ExtParameterInfo>();
4297 }
4298
4299 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4300 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4300, __extension__ __PRETTY_FUNCTION__
))
;
4301 if (hasExtParameterInfos())
4302 return getTrailingObjects<ExtParameterInfo>()[I];
4303 return ExtParameterInfo();
4304 }
4305
4306 ParameterABI getParameterABI(unsigned I) const {
4307 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4307, __extension__ __PRETTY_FUNCTION__
))
;
4308 if (hasExtParameterInfos())
4309 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4310 return ParameterABI::Ordinary;
4311 }
4312
4313 bool isParamConsumed(unsigned I) const {
4314 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4314, __extension__ __PRETTY_FUNCTION__
))
;
4315 if (hasExtParameterInfos())
4316 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4317 return false;
4318 }
4319
4320 bool isSugared() const { return false; }
4321 QualType desugar() const { return QualType(this, 0); }
4322
4323 void printExceptionSpecification(raw_ostream &OS,
4324 const PrintingPolicy &Policy) const;
4325
4326 static bool classof(const Type *T) {
4327 return T->getTypeClass() == FunctionProto;
4328 }
4329
4330 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4331 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4332 param_type_iterator ArgTys, unsigned NumArgs,
4333 const ExtProtoInfo &EPI, const ASTContext &Context,
4334 bool Canonical);
4335};
4336
4337/// Represents the dependent type named by a dependently-scoped
4338/// typename using declaration, e.g.
4339/// using typename Base<T>::foo;
4340///
4341/// Template instantiation turns these into the underlying type.
4342class UnresolvedUsingType : public Type {
4343 friend class ASTContext; // ASTContext creates these.
4344
4345 UnresolvedUsingTypenameDecl *Decl;
4346
4347 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4348 : Type(UnresolvedUsing, QualType(),
4349 TypeDependence::DependentInstantiation),
4350 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4351
4352public:
4353 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4354
4355 bool isSugared() const { return false; }
4356 QualType desugar() const { return QualType(this, 0); }
4357
4358 static bool classof(const Type *T) {
4359 return T->getTypeClass() == UnresolvedUsing;
4360 }
4361
4362 void Profile(llvm::FoldingSetNodeID &ID) {
4363 return Profile(ID, Decl);
4364 }
4365
4366 static void Profile(llvm::FoldingSetNodeID &ID,
4367 UnresolvedUsingTypenameDecl *D) {
4368 ID.AddPointer(D);
4369 }
4370};
4371
4372class UsingType : public Type, public llvm::FoldingSetNode {
4373 UsingShadowDecl *Found;
4374 friend class ASTContext; // ASTContext creates these.
4375
4376 UsingType(const UsingShadowDecl *Found, QualType Underlying, QualType Canon);
4377
4378public:
4379 UsingShadowDecl *getFoundDecl() const { return Found; }
4380 QualType getUnderlyingType() const;
4381
4382 bool isSugared() const { return true; }
4383 QualType desugar() const { return getUnderlyingType(); }
4384
4385 void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Found); }
4386 static void Profile(llvm::FoldingSetNodeID &ID,
4387 const UsingShadowDecl *Found) {
4388 ID.AddPointer(Found);
4389 }
4390 static bool classof(const Type *T) { return T->getTypeClass() == Using; }
4391};
4392
4393class TypedefType : public Type {
4394 TypedefNameDecl *Decl;
4395
4396private:
4397 friend class ASTContext; // ASTContext creates these.
4398
4399 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4400 QualType can);
4401
4402public:
4403 TypedefNameDecl *getDecl() const { return Decl; }
4404
4405 bool isSugared() const { return true; }
4406 QualType desugar() const;
4407
4408 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4409};
4410
4411/// Sugar type that represents a type that was qualified by a qualifier written
4412/// as a macro invocation.
4413class MacroQualifiedType : public Type {
4414 friend class ASTContext; // ASTContext creates these.
4415
4416 QualType UnderlyingTy;
4417 const IdentifierInfo *MacroII;
4418
4419 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4420 const IdentifierInfo *MacroII)
4421 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4422 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4423 assert(isa<AttributedType>(UnderlyingTy) &&(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "clang/include/clang/AST/Type.h", 4424, __extension__ __PRETTY_FUNCTION__
))
4424 "Expected a macro qualified type to only wrap attributed types.")(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "clang/include/clang/AST/Type.h", 4424, __extension__ __PRETTY_FUNCTION__
))
;
4425 }
4426
4427public:
4428 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4429 QualType getUnderlyingType() const { return UnderlyingTy; }
4430
4431 /// Return this attributed type's modified type with no qualifiers attached to
4432 /// it.
4433 QualType getModifiedType() const;
4434
4435 bool isSugared() const { return true; }
4436 QualType desugar() const;
4437
4438 static bool classof(const Type *T) {
4439 return T->getTypeClass() == MacroQualified;
4440 }
4441};
4442
4443/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4444class TypeOfExprType : public Type {
4445 Expr *TOExpr;
4446
4447protected:
4448 friend class ASTContext; // ASTContext creates these.
4449
4450 TypeOfExprType(Expr *E, QualType can = QualType());
4451
4452public:
4453 Expr *getUnderlyingExpr() const { return TOExpr; }
4454
4455 /// Remove a single level of sugar.
4456 QualType desugar() const;
4457
4458 /// Returns whether this type directly provides sugar.
4459 bool isSugared() const;
4460
4461 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4462};
4463
4464/// Internal representation of canonical, dependent
4465/// `typeof(expr)` types.
4466///
4467/// This class is used internally by the ASTContext to manage
4468/// canonical, dependent types, only. Clients will only see instances
4469/// of this class via TypeOfExprType nodes.
4470class DependentTypeOfExprType
4471 : public TypeOfExprType, public llvm::FoldingSetNode {
4472 const ASTContext &Context;
4473
4474public:
4475 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4476 : TypeOfExprType(E), Context(Context) {}
4477
4478 void Profile(llvm::FoldingSetNodeID &ID) {
4479 Profile(ID, Context, getUnderlyingExpr());
4480 }
4481
4482 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4483 Expr *E);
4484};
4485
4486/// Represents `typeof(type)`, a GCC extension.
4487class TypeOfType : public Type {
4488 friend class ASTContext; // ASTContext creates these.
4489
4490 QualType TOType;
4491
4492 TypeOfType(QualType T, QualType can)
4493 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4494 assert(!isa<TypedefType>(can) && "Invalid canonical type")(static_cast <bool> (!isa<TypedefType>(can) &&
"Invalid canonical type") ? void (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "clang/include/clang/AST/Type.h", 4494, __extension__ __PRETTY_FUNCTION__
))
;
4495 }
4496
4497public:
4498 QualType getUnderlyingType() const { return TOType; }
4499
4500 /// Remove a single level of sugar.
4501 QualType desugar() const { return getUnderlyingType(); }
4502
4503 /// Returns whether this type directly provides sugar.
4504 bool isSugared() const { return true; }
4505
4506 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4507};
4508
4509/// Represents the type `decltype(expr)` (C++11).
4510class DecltypeType : public Type {
4511 Expr *E;
4512 QualType UnderlyingType;
4513
4514protected:
4515 friend class ASTContext; // ASTContext creates these.
4516
4517 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4518
4519public:
4520 Expr *getUnderlyingExpr() const { return E; }
4521 QualType getUnderlyingType() const { return UnderlyingType; }
4522
4523 /// Remove a single level of sugar.
4524 QualType desugar() const;
4525
4526 /// Returns whether this type directly provides sugar.
4527 bool isSugared() const;
4528
4529 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4530};
4531
4532/// Internal representation of canonical, dependent
4533/// decltype(expr) types.
4534///
4535/// This class is used internally by the ASTContext to manage
4536/// canonical, dependent types, only. Clients will only see instances
4537/// of this class via DecltypeType nodes.
4538class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4539 const ASTContext &Context;
4540
4541public:
4542 DependentDecltypeType(const ASTContext &Context, Expr *E);
4543
4544 void Profile(llvm::FoldingSetNodeID &ID) {
4545 Profile(ID, Context, getUnderlyingExpr());
4546 }
4547
4548 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4549 Expr *E);
4550};
4551
4552/// A unary type transform, which is a type constructed from another.
4553class UnaryTransformType : public Type {
4554public:
4555 enum UTTKind {
4556 EnumUnderlyingType
4557 };
4558
4559private:
4560 /// The untransformed type.
4561 QualType BaseType;
4562
4563 /// The transformed type if not dependent, otherwise the same as BaseType.
4564 QualType UnderlyingType;
4565
4566 UTTKind UKind;
4567
4568protected:
4569 friend class ASTContext;
4570
4571 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4572 QualType CanonicalTy);
4573
4574public:
4575 bool isSugared() const { return !isDependentType(); }
4576 QualType desugar() const { return UnderlyingType; }
4577
4578 QualType getUnderlyingType() const { return UnderlyingType; }
4579 QualType getBaseType() const { return BaseType; }
4580
4581 UTTKind getUTTKind() const { return UKind; }
4582
4583 static bool classof(const Type *T) {
4584 return T->getTypeClass() == UnaryTransform;
4585 }
4586};
4587
4588/// Internal representation of canonical, dependent
4589/// __underlying_type(type) types.
4590///
4591/// This class is used internally by the ASTContext to manage
4592/// canonical, dependent types, only. Clients will only see instances
4593/// of this class via UnaryTransformType nodes.
4594class DependentUnaryTransformType : public UnaryTransformType,
4595 public llvm::FoldingSetNode {
4596public:
4597 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4598 UTTKind UKind);
4599
4600 void Profile(llvm::FoldingSetNodeID &ID) {
4601 Profile(ID, getBaseType(), getUTTKind());
4602 }
4603
4604 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4605 UTTKind UKind) {
4606 ID.AddPointer(BaseType.getAsOpaquePtr());
4607 ID.AddInteger((unsigned)UKind);
4608 }
4609};
4610
4611class TagType : public Type {
4612 friend class ASTReader;
4613 template <class T> friend class serialization::AbstractTypeReader;
4614
4615 /// Stores the TagDecl associated with this type. The decl may point to any
4616 /// TagDecl that declares the entity.
4617 TagDecl *decl;
4618
4619protected:
4620 TagType(TypeClass TC, const TagDecl *D, QualType can);
4621
4622public:
4623 TagDecl *getDecl() const;
4624
4625 /// Determines whether this type is in the process of being defined.
4626 bool isBeingDefined() const;
4627
4628 static bool classof(const Type *T) {
4629 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4630 }
4631};
4632
4633/// A helper class that allows the use of isa/cast/dyncast
4634/// to detect TagType objects of structs/unions/classes.
4635class RecordType : public TagType {
4636protected:
4637 friend class ASTContext; // ASTContext creates these.
4638
4639 explicit RecordType(const RecordDecl *D)
4640 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4641 explicit RecordType(TypeClass TC, RecordDecl *D)
4642 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4643
4644public:
4645 RecordDecl *getDecl() const {
4646 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4647 }
4648
4649 /// Recursively check all fields in the record for const-ness. If any field
4650 /// is declared const, return true. Otherwise, return false.
4651 bool hasConstFields() const;
4652
4653 bool isSugared() const { return false; }
4654 QualType desugar() const { return QualType(this, 0); }
4655
4656 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4657};
4658
4659/// A helper class that allows the use of isa/cast/dyncast
4660/// to detect TagType objects of enums.
4661class EnumType : public TagType {
4662 friend class ASTContext; // ASTContext creates these.
4663
4664 explicit EnumType(const EnumDecl *D)
4665 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4666
4667public:
4668 EnumDecl *getDecl() const {
4669 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4670 }
4671
4672 bool isSugared() const { return false; }
4673 QualType desugar() const { return QualType(this, 0); }
4674
4675 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4676};
4677
4678/// An attributed type is a type to which a type attribute has been applied.
4679///
4680/// The "modified type" is the fully-sugared type to which the attributed
4681/// type was applied; generally it is not canonically equivalent to the
4682/// attributed type. The "equivalent type" is the minimally-desugared type
4683/// which the type is canonically equivalent to.
4684///
4685/// For example, in the following attributed type:
4686/// int32_t __attribute__((vector_size(16)))
4687/// - the modified type is the TypedefType for int32_t
4688/// - the equivalent type is VectorType(16, int32_t)
4689/// - the canonical type is VectorType(16, int)
4690class AttributedType : public Type, public llvm::FoldingSetNode {
4691public:
4692 using Kind = attr::Kind;
4693
4694private:
4695 friend class ASTContext; // ASTContext creates these
4696
4697 QualType ModifiedType;
4698 QualType EquivalentType;
4699
4700 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4701 QualType equivalent)
4702 : Type(Attributed, canon, equivalent->getDependence()),
4703 ModifiedType(modified), EquivalentType(equivalent) {
4704 AttributedTypeBits.AttrKind = attrKind;
4705 }
4706
4707public:
4708 Kind getAttrKind() const {
4709 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4710 }
4711
4712 QualType getModifiedType() const { return ModifiedType; }
4713 QualType getEquivalentType() const { return EquivalentType; }
4714
4715 bool isSugared() const { return true; }
4716 QualType desugar() const { return getEquivalentType(); }
4717
4718 /// Does this attribute behave like a type qualifier?
4719 ///
4720 /// A type qualifier adjusts a type to provide specialized rules for
4721 /// a specific object, like the standard const and volatile qualifiers.
4722 /// This includes attributes controlling things like nullability,
4723 /// address spaces, and ARC ownership. The value of the object is still
4724 /// largely described by the modified type.
4725 ///
4726 /// In contrast, many type attributes "rewrite" their modified type to
4727 /// produce a fundamentally different type, not necessarily related in any
4728 /// formalizable way to the original type. For example, calling convention
4729 /// and vector attributes are not simple type qualifiers.
4730 ///
4731 /// Type qualifiers are often, but not always, reflected in the canonical
4732 /// type.
4733 bool isQualifier() const;
4734
4735 bool isMSTypeSpec() const;
4736
4737 bool isCallingConv() const;
4738
4739 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4740
4741 /// Retrieve the attribute kind corresponding to the given
4742 /// nullability kind.
4743 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4744 switch (kind) {
4745 case NullabilityKind::NonNull:
4746 return attr::TypeNonNull;
4747
4748 case NullabilityKind::Nullable:
4749 return attr::TypeNullable;
4750
4751 case NullabilityKind::NullableResult:
4752 return attr::TypeNullableResult;
4753
4754 case NullabilityKind::Unspecified:
4755 return attr::TypeNullUnspecified;
4756 }
4757 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "clang/include/clang/AST/Type.h", 4757)
;
4758 }
4759
4760 /// Strip off the top-level nullability annotation on the given
4761 /// type, if it's there.
4762 ///
4763 /// \param T The type to strip. If the type is exactly an
4764 /// AttributedType specifying nullability (without looking through
4765 /// type sugar), the nullability is returned and this type changed
4766 /// to the underlying modified type.
4767 ///
4768 /// \returns the top-level nullability, if present.
4769 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4770
4771 void Profile(llvm::FoldingSetNodeID &ID) {
4772 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4773 }
4774
4775 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4776 QualType modified, QualType equivalent) {
4777 ID.AddInteger(attrKind);
4778 ID.AddPointer(modified.getAsOpaquePtr());
4779 ID.AddPointer(equivalent.getAsOpaquePtr());
4780 }
4781
4782 static bool classof(const Type *T) {
4783 return T->getTypeClass() == Attributed;
4784 }
4785};
4786
4787class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4788 friend class ASTContext; // ASTContext creates these
4789
4790 // Helper data collector for canonical types.
4791 struct CanonicalTTPTInfo {
4792 unsigned Depth : 15;
4793 unsigned ParameterPack : 1;
4794 unsigned Index : 16;
4795 };
4796
4797 union {
4798 // Info for the canonical type.
4799 CanonicalTTPTInfo CanTTPTInfo;
4800
4801 // Info for the non-canonical type.
4802 TemplateTypeParmDecl *TTPDecl;
4803 };
4804
4805 /// Build a non-canonical type.
4806 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4807 : Type(TemplateTypeParm, Canon,
4808 TypeDependence::DependentInstantiation |
4809 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4810 TTPDecl(TTPDecl) {}
4811
4812 /// Build the canonical type.
4813 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4814 : Type(TemplateTypeParm, QualType(this, 0),
4815 TypeDependence::DependentInstantiation |
4816 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4817 CanTTPTInfo.Depth = D;
4818 CanTTPTInfo.Index = I;
4819 CanTTPTInfo.ParameterPack = PP;
4820 }
4821
4822 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4823 QualType Can = getCanonicalTypeInternal();
4824 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4825 }
4826
4827public:
4828 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4829 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4830 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4831
4832 TemplateTypeParmDecl *getDecl() const {
4833 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4834 }
4835
4836 IdentifierInfo *getIdentifier() const;
4837
4838 bool isSugared() const { return false; }
4839 QualType desugar() const { return QualType(this, 0); }
4840
4841 void Profile(llvm::FoldingSetNodeID &ID) {
4842 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4843 }
4844
4845 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4846 unsigned Index, bool ParameterPack,
4847 TemplateTypeParmDecl *TTPDecl) {
4848 ID.AddInteger(Depth);
4849 ID.AddInteger(Index);
4850 ID.AddBoolean(ParameterPack);
4851 ID.AddPointer(TTPDecl);
4852 }
4853
4854 static bool classof(const Type *T) {
4855 return T->getTypeClass() == TemplateTypeParm;
4856 }
4857};
4858
4859/// Represents the result of substituting a type for a template
4860/// type parameter.
4861///
4862/// Within an instantiated template, all template type parameters have
4863/// been replaced with these. They are used solely to record that a
4864/// type was originally written as a template type parameter;
4865/// therefore they are never canonical.
4866class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4867 friend class ASTContext;
4868
4869 // The original type parameter.
4870 const TemplateTypeParmType *Replaced;
4871
4872 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4873 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4874 Replaced(Param) {}
4875
4876public:
4877 /// Gets the template parameter that was substituted for.
4878 const TemplateTypeParmType *getReplacedParameter() const {
4879 return Replaced;
4880 }
4881
4882 /// Gets the type that was substituted for the template
4883 /// parameter.
4884 QualType getReplacementType() const {
4885 return getCanonicalTypeInternal();
4886 }
4887
4888 bool isSugared() const { return true; }
4889 QualType desugar() const { return getReplacementType(); }
4890
4891 void Profile(llvm::FoldingSetNodeID &ID) {
4892 Profile(ID, getReplacedParameter(), getReplacementType());
4893 }
4894
4895 static void Profile(llvm::FoldingSetNodeID &ID,
4896 const TemplateTypeParmType *Replaced,
4897 QualType Replacement) {
4898 ID.AddPointer(Replaced);
4899 ID.AddPointer(Replacement.getAsOpaquePtr());
4900 }
4901
4902 static bool classof(const Type *T) {
4903 return T->getTypeClass() == SubstTemplateTypeParm;
4904 }
4905};
4906
4907/// Represents the result of substituting a set of types for a template
4908/// type parameter pack.
4909///
4910/// When a pack expansion in the source code contains multiple parameter packs
4911/// and those parameter packs correspond to different levels of template
4912/// parameter lists, this type node is used to represent a template type
4913/// parameter pack from an outer level, which has already had its argument pack
4914/// substituted but that still lives within a pack expansion that itself
4915/// could not be instantiated. When actually performing a substitution into
4916/// that pack expansion (e.g., when all template parameters have corresponding
4917/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4918/// at the current pack substitution index.
4919class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4920 friend class ASTContext;
4921
4922 /// The original type parameter.
4923 const TemplateTypeParmType *Replaced;
4924
4925 /// A pointer to the set of template arguments that this
4926 /// parameter pack is instantiated with.
4927 const TemplateArgument *Arguments;
4928
4929 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4930 QualType Canon,
4931 const TemplateArgument &ArgPack);
4932
4933public:
4934 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4935
4936 /// Gets the template parameter that was substituted for.
4937 const TemplateTypeParmType *getReplacedParameter() const {
4938 return Replaced;
4939 }
4940
4941 unsigned getNumArgs() const {
4942 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4943 }
4944
4945 bool isSugared() const { return false; }
4946 QualType desugar() const { return QualType(this, 0); }
4947
4948 TemplateArgument getArgumentPack() const;
4949
4950 void Profile(llvm::FoldingSetNodeID &ID);
4951 static void Profile(llvm::FoldingSetNodeID &ID,
4952 const TemplateTypeParmType *Replaced,
4953 const TemplateArgument &ArgPack);
4954
4955 static bool classof(const Type *T) {
4956 return T->getTypeClass() == SubstTemplateTypeParmPack;
4957 }
4958};
4959
4960/// Common base class for placeholders for types that get replaced by
4961/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4962/// class template types, and constrained type names.
4963///
4964/// These types are usually a placeholder for a deduced type. However, before
4965/// the initializer is attached, or (usually) if the initializer is
4966/// type-dependent, there is no deduced type and the type is canonical. In
4967/// the latter case, it is also a dependent type.
4968class DeducedType : public Type {
4969 QualType DeducedAsType;
4970
4971protected:
4972 DeducedType(TypeClass TC, QualType DeducedAsType,
4973 TypeDependence ExtraDependence, QualType Canon)
4974 : Type(TC, Canon,
4975 ExtraDependence | (DeducedAsType.isNull()
4976 ? TypeDependence::None
4977 : DeducedAsType->getDependence() &
4978 ~TypeDependence::VariablyModified)),
4979 DeducedAsType(DeducedAsType) {}
4980
4981public:
4982 bool isSugared() const { return !DeducedAsType.isNull(); }
4983 QualType desugar() const {
4984 return isSugared() ? DeducedAsType : QualType(this, 0);
4985 }
4986
4987 /// Get the type deduced for this placeholder type, or null if it
4988 /// has not been deduced.
4989 QualType getDeducedType() const { return DeducedAsType; }
4990 bool isDeduced() const {
4991 return !DeducedAsType.isNull() || isDependentType();
4992 }
4993
4994 static bool classof(const Type *T) {
4995 return T->getTypeClass() == Auto ||
4996 T->getTypeClass() == DeducedTemplateSpecialization;
4997 }
4998};
4999
5000/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
5001/// by a type-constraint.
5002class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
5003 friend class ASTContext; // ASTContext creates these
5004
5005 ConceptDecl *TypeConstraintConcept;
5006
5007 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
5008 TypeDependence ExtraDependence, QualType Canon, ConceptDecl *CD,
5009 ArrayRef<TemplateArgument> TypeConstraintArgs);
5010
5011 const TemplateArgument *getArgBuffer() const {
5012 return reinterpret_cast<const TemplateArgument*>(this+1);
5013 }
5014
5015 TemplateArgument *getArgBuffer() {
5016 return reinterpret_cast<TemplateArgument*>(this+1);
5017 }
5018
5019public:
5020 /// Retrieve the template arguments.
5021 const TemplateArgument *getArgs() const {
5022 return getArgBuffer();
5023 }
5024
5025 /// Retrieve the number of template arguments.
5026 unsigned getNumArgs() const {
5027 return AutoTypeBits.NumArgs;
5028 }
5029
5030 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5031
5032 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5033 return {getArgs(), getNumArgs()};
5034 }
5035
5036 ConceptDecl *getTypeConstraintConcept() const {
5037 return TypeConstraintConcept;
5038 }
5039
5040 bool isConstrained() const {
5041 return TypeConstraintConcept != nullptr;
5042 }
5043
5044 bool isDecltypeAuto() const {
5045 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5046 }
5047
5048 AutoTypeKeyword getKeyword() const {
5049 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5050 }
5051
5052 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5053 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5054 getTypeConstraintConcept(), getTypeConstraintArguments());
5055 }
5056
5057 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5058 QualType Deduced, AutoTypeKeyword Keyword,
5059 bool IsDependent, ConceptDecl *CD,
5060 ArrayRef<TemplateArgument> Arguments);
5061
5062 static bool classof(const Type *T) {
5063 return T->getTypeClass() == Auto;
5064 }
5065};
5066
5067/// Represents a C++17 deduced template specialization type.
5068class DeducedTemplateSpecializationType : public DeducedType,
5069 public llvm::FoldingSetNode {
5070 friend class ASTContext; // ASTContext creates these
5071
5072 /// The name of the template whose arguments will be deduced.
5073 TemplateName Template;
5074
5075 DeducedTemplateSpecializationType(TemplateName Template,
5076 QualType DeducedAsType,
5077 bool IsDeducedAsDependent)
5078 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5079 toTypeDependence(Template.getDependence()) |
5080 (IsDeducedAsDependent
5081 ? TypeDependence::DependentInstantiation
5082 : TypeDependence::None),
5083 DeducedAsType.isNull() ? QualType(this, 0)
5084 : DeducedAsType.getCanonicalType()),
5085 Template(Template) {}
5086
5087public:
5088 /// Retrieve the name of the template that we are deducing.
5089 TemplateName getTemplateName() const { return Template;}
5090
5091 void Profile(llvm::FoldingSetNodeID &ID) {
5092 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5093 }
5094
5095 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5096 QualType Deduced, bool IsDependent) {
5097 Template.Profile(ID);
5098 QualType CanonicalType =
5099 Deduced.isNull() ? Deduced : Deduced.getCanonicalType();
5100 ID.AddPointer(CanonicalType.getAsOpaquePtr());
5101 ID.AddBoolean(IsDependent || Template.isDependent());
5102 }
5103
5104 static bool classof(const Type *T) {
5105 return T->getTypeClass() == DeducedTemplateSpecialization;
5106 }
5107};
5108
5109/// Represents a type template specialization; the template
5110/// must be a class template, a type alias template, or a template
5111/// template parameter. A template which cannot be resolved to one of
5112/// these, e.g. because it is written with a dependent scope
5113/// specifier, is instead represented as a
5114/// @c DependentTemplateSpecializationType.
5115///
5116/// A non-dependent template specialization type is always "sugar",
5117/// typically for a \c RecordType. For example, a class template
5118/// specialization type of \c vector<int> will refer to a tag type for
5119/// the instantiation \c std::vector<int, std::allocator<int>>
5120///
5121/// Template specializations are dependent if either the template or
5122/// any of the template arguments are dependent, in which case the
5123/// type may also be canonical.
5124///
5125/// Instances of this type are allocated with a trailing array of
5126/// TemplateArguments, followed by a QualType representing the
5127/// non-canonical aliased type when the template is a type alias
5128/// template.
5129class alignas(8) TemplateSpecializationType
5130 : public Type,
5131 public llvm::FoldingSetNode {
5132 friend class ASTContext; // ASTContext creates these
5133
5134 /// The name of the template being specialized. This is
5135 /// either a TemplateName::Template (in which case it is a
5136 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5137 /// TypeAliasTemplateDecl*), a
5138 /// TemplateName::SubstTemplateTemplateParmPack, or a
5139 /// TemplateName::SubstTemplateTemplateParm (in which case the
5140 /// replacement must, recursively, be one of these).
5141 TemplateName Template;
5142
5143 TemplateSpecializationType(TemplateName T,
5144 ArrayRef<TemplateArgument> Args,
5145 QualType Canon,
5146 QualType Aliased);
5147
5148public:
5149 /// Determine whether any of the given template arguments are dependent.
5150 ///
5151 /// The converted arguments should be supplied when known; whether an
5152 /// argument is dependent can depend on the conversions performed on it
5153 /// (for example, a 'const int' passed as a template argument might be
5154 /// dependent if the parameter is a reference but non-dependent if the
5155 /// parameter is an int).
5156 ///
5157 /// Note that the \p Args parameter is unused: this is intentional, to remind
5158 /// the caller that they need to pass in the converted arguments, not the
5159 /// specified arguments.
5160 static bool
5161 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5162 ArrayRef<TemplateArgument> Converted);
5163 static bool
5164 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5165 ArrayRef<TemplateArgument> Converted);
5166 static bool anyInstantiationDependentTemplateArguments(
5167 ArrayRef<TemplateArgumentLoc> Args);
5168
5169 /// True if this template specialization type matches a current
5170 /// instantiation in the context in which it is found.
5171 bool isCurrentInstantiation() const {
5172 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5173 }
5174
5175 /// Determine if this template specialization type is for a type alias
5176 /// template that has been substituted.
5177 ///
5178 /// Nearly every template specialization type whose template is an alias
5179 /// template will be substituted. However, this is not the case when
5180 /// the specialization contains a pack expansion but the template alias
5181 /// does not have a corresponding parameter pack, e.g.,
5182 ///
5183 /// \code
5184 /// template<typename T, typename U, typename V> struct S;
5185 /// template<typename T, typename U> using A = S<T, int, U>;
5186 /// template<typename... Ts> struct X {
5187 /// typedef A<Ts...> type; // not a type alias
5188 /// };
5189 /// \endcode
5190 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5191
5192 /// Get the aliased type, if this is a specialization of a type alias
5193 /// template.
5194 QualType getAliasedType() const {
5195 assert(isTypeAlias() && "not a type alias template specialization")(static_cast <bool> (isTypeAlias() && "not a type alias template specialization"
) ? void (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "clang/include/clang/AST/Type.h", 5195, __extension__ __PRETTY_FUNCTION__
))
;
5196 return *reinterpret_cast<const QualType*>(end());
5197 }
5198
5199 using iterator = const TemplateArgument *;
5200
5201 iterator begin() const { return getArgs(); }
5202 iterator end() const; // defined inline in TemplateBase.h
5203
5204 /// Retrieve the name of the template that we are specializing.
5205 TemplateName getTemplateName() const { return Template; }
5206
5207 /// Retrieve the template arguments.
5208 const TemplateArgument *getArgs() const {
5209 return reinterpret_cast<const TemplateArgument *>(this + 1);
5210 }
5211
5212 /// Retrieve the number of template arguments.
5213 unsigned getNumArgs() const {
5214 return TemplateSpecializationTypeBits.NumArgs;
5215 }
5216
5217 /// Retrieve a specific template argument as a type.
5218 /// \pre \c isArgType(Arg)
5219 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5220
5221 ArrayRef<TemplateArgument> template_arguments() const {
5222 return {getArgs(), getNumArgs()};
5223 }
5224
5225 bool isSugared() const {
5226 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5227 }
5228
5229 QualType desugar() const {
5230 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5231 }
5232
5233 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5234 Profile(ID, Template, template_arguments(), Ctx);
5235 if (isTypeAlias())
5236 getAliasedType().Profile(ID);
5237 }
5238
5239 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5240 ArrayRef<TemplateArgument> Args,
5241 const ASTContext &Context);
5242
5243 static bool classof(const Type *T) {
5244 return T->getTypeClass() == TemplateSpecialization;
5245 }
5246};
5247
5248/// Print a template argument list, including the '<' and '>'
5249/// enclosing the template arguments.
5250void printTemplateArgumentList(raw_ostream &OS,
5251 ArrayRef<TemplateArgument> Args,
5252 const PrintingPolicy &Policy,
5253 const TemplateParameterList *TPL = nullptr);
5254
5255void printTemplateArgumentList(raw_ostream &OS,
5256 ArrayRef<TemplateArgumentLoc> Args,
5257 const PrintingPolicy &Policy,
5258 const TemplateParameterList *TPL = nullptr);
5259
5260void printTemplateArgumentList(raw_ostream &OS,
5261 const TemplateArgumentListInfo &Args,
5262 const PrintingPolicy &Policy,
5263 const TemplateParameterList *TPL = nullptr);
5264
5265/// The injected class name of a C++ class template or class
5266/// template partial specialization. Used to record that a type was
5267/// spelled with a bare identifier rather than as a template-id; the
5268/// equivalent for non-templated classes is just RecordType.
5269///
5270/// Injected class name types are always dependent. Template
5271/// instantiation turns these into RecordTypes.
5272///
5273/// Injected class name types are always canonical. This works
5274/// because it is impossible to compare an injected class name type
5275/// with the corresponding non-injected template type, for the same
5276/// reason that it is impossible to directly compare template
5277/// parameters from different dependent contexts: injected class name
5278/// types can only occur within the scope of a particular templated
5279/// declaration, and within that scope every template specialization
5280/// will canonicalize to the injected class name (when appropriate
5281/// according to the rules of the language).
5282class InjectedClassNameType : public Type {
5283 friend class ASTContext; // ASTContext creates these.
5284 friend class ASTNodeImporter;
5285 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5286 // currently suitable for AST reading, too much
5287 // interdependencies.
5288 template <class T> friend class serialization::AbstractTypeReader;
5289
5290 CXXRecordDecl *Decl;
5291
5292 /// The template specialization which this type represents.
5293 /// For example, in
5294 /// template <class T> class A { ... };
5295 /// this is A<T>, whereas in
5296 /// template <class X, class Y> class A<B<X,Y> > { ... };
5297 /// this is A<B<X,Y> >.
5298 ///
5299 /// It is always unqualified, always a template specialization type,
5300 /// and always dependent.
5301 QualType InjectedType;
5302
5303 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5304 : Type(InjectedClassName, QualType(),
5305 TypeDependence::DependentInstantiation),
5306 Decl(D), InjectedType(TST) {
5307 assert(isa<TemplateSpecializationType>(TST))(static_cast <bool> (isa<TemplateSpecializationType>
(TST)) ? void (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "clang/include/clang/AST/Type.h", 5307, __extension__ __PRETTY_FUNCTION__
))
;
5308 assert(!TST.hasQualifiers())(static_cast <bool> (!TST.hasQualifiers()) ? void (0) :
__assert_fail ("!TST.hasQualifiers()", "clang/include/clang/AST/Type.h"
, 5308, __extension__ __PRETTY_FUNCTION__))
;
5309 assert(TST->isDependentType())(static_cast <bool> (TST->isDependentType()) ? void (
0) : __assert_fail ("TST->isDependentType()", "clang/include/clang/AST/Type.h"
, 5309, __extension__ __PRETTY_FUNCTION__))
;
5310 }
5311
5312public:
5313 QualType getInjectedSpecializationType() const { return InjectedType; }
5314
5315 const TemplateSpecializationType *getInjectedTST() const {
5316 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5317 }
5318
5319 TemplateName getTemplateName() const {
5320 return getInjectedTST()->getTemplateName();
5321 }
5322
5323 CXXRecordDecl *getDecl() const;
5324
5325 bool isSugared() const { return false; }
5326 QualType desugar() const { return QualType(this, 0); }
5327
5328 static bool classof(const Type *T) {
5329 return T->getTypeClass() == InjectedClassName;
5330 }
5331};
5332
5333/// The kind of a tag type.
5334enum TagTypeKind {
5335 /// The "struct" keyword.
5336 TTK_Struct,
5337
5338 /// The "__interface" keyword.
5339 TTK_Interface,
5340
5341 /// The "union" keyword.
5342 TTK_Union,
5343
5344 /// The "class" keyword.
5345 TTK_Class,
5346
5347 /// The "enum" keyword.
5348 TTK_Enum
5349};
5350
5351/// The elaboration keyword that precedes a qualified type name or
5352/// introduces an elaborated-type-specifier.
5353enum ElaboratedTypeKeyword {
5354 /// The "struct" keyword introduces the elaborated-type-specifier.
5355 ETK_Struct,
5356
5357 /// The "__interface" keyword introduces the elaborated-type-specifier.
5358 ETK_Interface,
5359
5360 /// The "union" keyword introduces the elaborated-type-specifier.
5361 ETK_Union,
5362
5363 /// The "class" keyword introduces the elaborated-type-specifier.
5364 ETK_Class,
5365
5366 /// The "enum" keyword introduces the elaborated-type-specifier.
5367 ETK_Enum,
5368
5369 /// The "typename" keyword precedes the qualified type name, e.g.,
5370 /// \c typename T::type.
5371 ETK_Typename,
5372
5373 /// No keyword precedes the qualified type name.
5374 ETK_None
5375};
5376
5377/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5378/// The keyword in stored in the free bits of the base class.
5379/// Also provides a few static helpers for converting and printing
5380/// elaborated type keyword and tag type kind enumerations.
5381class TypeWithKeyword : public Type {
5382protected:
5383 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5384 QualType Canonical, TypeDependence Dependence)
5385 : Type(tc, Canonical, Dependence) {
5386 TypeWithKeywordBits.Keyword = Keyword;
5387 }
5388
5389public:
5390 ElaboratedTypeKeyword getKeyword() const {
5391 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5392 }
5393
5394 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5395 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5396
5397 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5398 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5399 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5400
5401 /// Converts a TagTypeKind into an elaborated type keyword.
5402 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5403
5404 /// Converts an elaborated type keyword into a TagTypeKind.
5405 /// It is an error to provide an elaborated type keyword
5406 /// which *isn't* a tag kind here.
5407 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5408
5409 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5410
5411 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5412
5413 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5414 return getKeywordName(getKeywordForTagTypeKind(Kind));
5415 }
5416
5417 class CannotCastToThisType {};
5418 static CannotCastToThisType classof(const Type *);
5419};
5420
5421/// Represents a type that was referred to using an elaborated type
5422/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5423/// or both.
5424///
5425/// This type is used to keep track of a type name as written in the
5426/// source code, including tag keywords and any nested-name-specifiers.
5427/// The type itself is always "sugar", used to express what was written
5428/// in the source code but containing no additional semantic information.
5429class ElaboratedType final
5430 : public TypeWithKeyword,
5431 public llvm::FoldingSetNode,
5432 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5433 friend class ASTContext; // ASTContext creates these
5434 friend TrailingObjects;
5435
5436 /// The nested name specifier containing the qualifier.
5437 NestedNameSpecifier *NNS;
5438
5439 /// The type that this qualified name refers to.
5440 QualType NamedType;
5441
5442 /// The (re)declaration of this tag type owned by this occurrence is stored
5443 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5444 /// it, or obtain a null pointer if there is none.
5445
5446 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5447 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5448 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5449 // Any semantic dependence on the qualifier will have
5450 // been incorporated into NamedType. We still need to
5451 // track syntactic (instantiation / error / pack)
5452 // dependence on the qualifier.
5453 NamedType->getDependence() |
5454 (NNS ? toSyntacticDependence(
5455 toTypeDependence(NNS->getDependence()))
5456 : TypeDependence::None)),
5457 NNS(NNS), NamedType(NamedType) {
5458 ElaboratedTypeBits.HasOwnedTagDecl = false;
5459 if (OwnedTagDecl) {
5460 ElaboratedTypeBits.HasOwnedTagDecl = true;
5461 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5462 }
5463 assert(!(Keyword == ETK_None && NNS == nullptr) &&(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5465, __extension__ __PRETTY_FUNCTION__
))
5464 "ElaboratedType cannot have elaborated type keyword "(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5465, __extension__ __PRETTY_FUNCTION__
))
5465 "and name qualifier both null.")(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5465, __extension__ __PRETTY_FUNCTION__
))
;
5466 }
5467
5468public:
5469 /// Retrieve the qualification on this type.
5470 NestedNameSpecifier *getQualifier() const { return NNS; }
5471
5472 /// Retrieve the type named by the qualified-id.
5473 QualType getNamedType() const { return NamedType; }
5474
5475 /// Remove a single level of sugar.
5476 QualType desugar() const { return getNamedType(); }
5477
5478 /// Returns whether this type directly provides sugar.
5479 bool isSugared() const { return true; }
5480
5481 /// Return the (re)declaration of this type owned by this occurrence of this
5482 /// type, or nullptr if there is none.
5483 TagDecl *getOwnedTagDecl() const {
5484 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5485 : nullptr;
5486 }
5487
5488 void Profile(llvm::FoldingSetNodeID &ID) {
5489 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5490 }
5491
5492 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5493 NestedNameSpecifier *NNS, QualType NamedType,
5494 TagDecl *OwnedTagDecl) {
5495 ID.AddInteger(Keyword);
5496 ID.AddPointer(NNS);
5497 NamedType.Profile(ID);
5498 ID.AddPointer(OwnedTagDecl);
5499 }
5500
5501 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5502};
5503
5504/// Represents a qualified type name for which the type name is
5505/// dependent.
5506///
5507/// DependentNameType represents a class of dependent types that involve a
5508/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5509/// name of a type. The DependentNameType may start with a "typename" (for a
5510/// typename-specifier), "class", "struct", "union", or "enum" (for a
5511/// dependent elaborated-type-specifier), or nothing (in contexts where we
5512/// know that we must be referring to a type, e.g., in a base class specifier).
5513/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5514/// mode, this type is used with non-dependent names to delay name lookup until
5515/// instantiation.
5516class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5517 friend class ASTContext; // ASTContext creates these
5518
5519 /// The nested name specifier containing the qualifier.
5520 NestedNameSpecifier *NNS;
5521
5522 /// The type that this typename specifier refers to.
5523 const IdentifierInfo *Name;
5524
5525 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5526 const IdentifierInfo *Name, QualType CanonType)
5527 : TypeWithKeyword(Keyword, DependentName, CanonType,
5528 TypeDependence::DependentInstantiation |
5529 toTypeDependence(NNS->getDependence())),
5530 NNS(NNS), Name(Name) {}
5531
5532public:
5533 /// Retrieve the qualification on this type.
5534 NestedNameSpecifier *getQualifier() const { return NNS; }
5535
5536 /// Retrieve the type named by the typename specifier as an identifier.
5537 ///
5538 /// This routine will return a non-NULL identifier pointer when the
5539 /// form of the original typename was terminated by an identifier,
5540 /// e.g., "typename T::type".
5541 const IdentifierInfo *getIdentifier() const {
5542 return Name;
5543 }
5544
5545 bool isSugared() const { return false; }
5546 QualType desugar() const { return QualType(this, 0); }
5547
5548 void Profile(llvm::FoldingSetNodeID &ID) {
5549 Profile(ID, getKeyword(), NNS, Name);
5550 }
5551
5552 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5553 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5554 ID.AddInteger(Keyword);
5555 ID.AddPointer(NNS);
5556 ID.AddPointer(Name);
5557 }
5558
5559 static bool classof(const Type *T) {
5560 return T->getTypeClass() == DependentName;
5561 }
5562};
5563
5564/// Represents a template specialization type whose template cannot be
5565/// resolved, e.g.
5566/// A<T>::template B<T>
5567class alignas(8) DependentTemplateSpecializationType
5568 : public TypeWithKeyword,
5569 public llvm::FoldingSetNode {
5570 friend class ASTContext; // ASTContext creates these
5571
5572 /// The nested name specifier containing the qualifier.
5573 NestedNameSpecifier *NNS;
5574
5575 /// The identifier of the template.
5576 const IdentifierInfo *Name;
5577
5578 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5579 NestedNameSpecifier *NNS,
5580 const IdentifierInfo *Name,
5581 ArrayRef<TemplateArgument> Args,
5582 QualType Canon);
5583
5584 const TemplateArgument *getArgBuffer() const {
5585 return reinterpret_cast<const TemplateArgument*>(this+1);
5586 }
5587
5588 TemplateArgument *getArgBuffer() {
5589 return reinterpret_cast<TemplateArgument*>(this+1);
5590 }
5591
5592public:
5593 NestedNameSpecifier *getQualifier() const { return NNS; }
5594 const IdentifierInfo *getIdentifier() const { return Name; }
5595
5596 /// Retrieve the template arguments.
5597 const TemplateArgument *getArgs() const {
5598 return getArgBuffer();
5599 }
5600
5601 /// Retrieve the number of template arguments.
5602 unsigned getNumArgs() const {
5603 return DependentTemplateSpecializationTypeBits.NumArgs;
5604 }
5605
5606 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5607
5608 ArrayRef<TemplateArgument> template_arguments() const {
5609 return {getArgs(), getNumArgs()};
5610 }
5611
5612 using iterator = const TemplateArgument *;
5613
5614 iterator begin() const { return getArgs(); }
5615 iterator end() const; // inline in TemplateBase.h
5616
5617 bool isSugared() const { return false; }
5618 QualType desugar() const { return QualType(this, 0); }
5619
5620 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5621 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5622 }
5623
5624 static void Profile(llvm::FoldingSetNodeID &ID,
5625 const ASTContext &Context,
5626 ElaboratedTypeKeyword Keyword,
5627 NestedNameSpecifier *Qualifier,
5628 const IdentifierInfo *Name,
5629 ArrayRef<TemplateArgument> Args);
5630
5631 static bool classof(const Type *T) {
5632 return T->getTypeClass() == DependentTemplateSpecialization;
5633 }
5634};
5635
5636/// Represents a pack expansion of types.
5637///
5638/// Pack expansions are part of C++11 variadic templates. A pack
5639/// expansion contains a pattern, which itself contains one or more
5640/// "unexpanded" parameter packs. When instantiated, a pack expansion
5641/// produces a series of types, each instantiated from the pattern of
5642/// the expansion, where the Ith instantiation of the pattern uses the
5643/// Ith arguments bound to each of the unexpanded parameter packs. The
5644/// pack expansion is considered to "expand" these unexpanded
5645/// parameter packs.
5646///
5647/// \code
5648/// template<typename ...Types> struct tuple;
5649///
5650/// template<typename ...Types>
5651/// struct tuple_of_references {
5652/// typedef tuple<Types&...> type;
5653/// };
5654/// \endcode
5655///
5656/// Here, the pack expansion \c Types&... is represented via a
5657/// PackExpansionType whose pattern is Types&.
5658class PackExpansionType : public Type, public llvm::FoldingSetNode {
5659 friend class ASTContext; // ASTContext creates these
5660
5661 /// The pattern of the pack expansion.
5662 QualType Pattern;
5663
5664 PackExpansionType(QualType Pattern, QualType Canon,
5665 Optional<unsigned> NumExpansions)
5666 : Type(PackExpansion, Canon,
5667 (Pattern->getDependence() | TypeDependence::Dependent |
5668 TypeDependence::Instantiation) &
5669 ~TypeDependence::UnexpandedPack),
5670 Pattern(Pattern) {
5671 PackExpansionTypeBits.NumExpansions =
5672 NumExpansions ? *NumExpansions + 1 : 0;
5673 }
5674
5675public:
5676 /// Retrieve the pattern of this pack expansion, which is the
5677 /// type that will be repeatedly instantiated when instantiating the
5678 /// pack expansion itself.
5679 QualType getPattern() const { return Pattern; }
5680
5681 /// Retrieve the number of expansions that this pack expansion will
5682 /// generate, if known.
5683 Optional<unsigned> getNumExpansions() const {
5684 if (PackExpansionTypeBits.NumExpansions)
5685 return PackExpansionTypeBits.NumExpansions - 1;
5686 return None;
5687 }
5688
5689 bool isSugared() const { return false; }
5690 QualType desugar() const { return QualType(this, 0); }
5691
5692 void Profile(llvm::FoldingSetNodeID &ID) {
5693 Profile(ID, getPattern(), getNumExpansions());
5694 }
5695
5696 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5697 Optional<unsigned> NumExpansions) {
5698 ID.AddPointer(Pattern.getAsOpaquePtr());
5699 ID.AddBoolean(NumExpansions.hasValue());
5700 if (NumExpansions)
5701 ID.AddInteger(*NumExpansions);
5702 }
5703
5704 static bool classof(const Type *T) {
5705 return T->getTypeClass() == PackExpansion;
5706 }
5707};
5708
5709/// This class wraps the list of protocol qualifiers. For types that can
5710/// take ObjC protocol qualifers, they can subclass this class.
5711template <class T>
5712class ObjCProtocolQualifiers {
5713protected:
5714 ObjCProtocolQualifiers() = default;
5715
5716 ObjCProtocolDecl * const *getProtocolStorage() const {
5717 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5718 }
5719
5720 ObjCProtocolDecl **getProtocolStorage() {
5721 return static_cast<T*>(this)->getProtocolStorageImpl();
5722 }
5723
5724 void setNumProtocols(unsigned N) {
5725 static_cast<T*>(this)->setNumProtocolsImpl(N);
5726 }
5727
5728 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5729 setNumProtocols(protocols.size());
5730 assert(getNumProtocols() == protocols.size() &&(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "clang/include/clang/AST/Type.h", 5731, __extension__ __PRETTY_FUNCTION__
))
5731 "bitfield overflow in protocol count")(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "clang/include/clang/AST/Type.h", 5731, __extension__ __PRETTY_FUNCTION__
))
;
5732 if (!protocols.empty())
5733 memcpy(getProtocolStorage(), protocols.data(),
5734 protocols.size() * sizeof(ObjCProtocolDecl*));
5735 }
5736
5737public:
5738 using qual_iterator = ObjCProtocolDecl * const *;
5739 using qual_range = llvm::iterator_range<qual_iterator>;
5740
5741 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5742 qual_iterator qual_begin() const { return getProtocolStorage(); }
5743 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5744
5745 bool qual_empty() const { return getNumProtocols() == 0; }
5746
5747 /// Return the number of qualifying protocols in this type, or 0 if
5748 /// there are none.
5749 unsigned getNumProtocols() const {
5750 return static_cast<const T*>(this)->getNumProtocolsImpl();
5751 }
5752
5753 /// Fetch a protocol by index.
5754 ObjCProtocolDecl *getProtocol(unsigned I) const {
5755 assert(I < getNumProtocols() && "Out-of-range protocol access")(static_cast <bool> (I < getNumProtocols() &&
"Out-of-range protocol access") ? void (0) : __assert_fail (
"I < getNumProtocols() && \"Out-of-range protocol access\""
, "clang/include/clang/AST/Type.h", 5755, __extension__ __PRETTY_FUNCTION__
))
;
5756 return qual_begin()[I];
5757 }
5758
5759 /// Retrieve all of the protocol qualifiers.
5760 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5761 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5762 }
5763};
5764
5765/// Represents a type parameter type in Objective C. It can take
5766/// a list of protocols.
5767class ObjCTypeParamType : public Type,
5768 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5769 public llvm::FoldingSetNode {
5770 friend class ASTContext;
5771 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5772
5773 /// The number of protocols stored on this type.
5774 unsigned NumProtocols : 6;
5775
5776 ObjCTypeParamDecl *OTPDecl;
5777
5778 /// The protocols are stored after the ObjCTypeParamType node. In the
5779 /// canonical type, the list of protocols are sorted alphabetically
5780 /// and uniqued.
5781 ObjCProtocolDecl **getProtocolStorageImpl();
5782
5783 /// Return the number of qualifying protocols in this interface type,
5784 /// or 0 if there are none.
5785 unsigned getNumProtocolsImpl() const {
5786 return NumProtocols;
5787 }
5788
5789 void setNumProtocolsImpl(unsigned N) {
5790 NumProtocols = N;
5791 }
5792
5793 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5794 QualType can,
5795 ArrayRef<ObjCProtocolDecl *> protocols);
5796
5797public:
5798 bool isSugared() const { return true; }
5799 QualType desugar() const { return getCanonicalTypeInternal(); }
5800
5801 static bool classof(const Type *T) {
5802 return T->getTypeClass() == ObjCTypeParam;
5803 }
5804
5805 void Profile(llvm::FoldingSetNodeID &ID);
5806 static void Profile(llvm::FoldingSetNodeID &ID,
5807 const ObjCTypeParamDecl *OTPDecl,
5808 QualType CanonicalType,
5809 ArrayRef<ObjCProtocolDecl *> protocols);
5810
5811 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5812};
5813
5814/// Represents a class type in Objective C.
5815///
5816/// Every Objective C type is a combination of a base type, a set of
5817/// type arguments (optional, for parameterized classes) and a list of
5818/// protocols.
5819///
5820/// Given the following declarations:
5821/// \code
5822/// \@class C<T>;
5823/// \@protocol P;
5824/// \endcode
5825///
5826/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5827/// with base C and no protocols.
5828///
5829/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5830/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5831/// protocol list.
5832/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5833/// and protocol list [P].
5834///
5835/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5836/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5837/// and no protocols.
5838///
5839/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5840/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5841/// this should get its own sugar class to better represent the source.
5842class ObjCObjectType : public Type,
5843 public ObjCProtocolQualifiers<ObjCObjectType> {
5844 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5845
5846 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5847 // after the ObjCObjectPointerType node.
5848 // ObjCObjectType.NumProtocols - the number of protocols stored
5849 // after the type arguments of ObjCObjectPointerType node.
5850 //
5851 // These protocols are those written directly on the type. If
5852 // protocol qualifiers ever become additive, the iterators will need
5853 // to get kindof complicated.
5854 //
5855 // In the canonical object type, these are sorted alphabetically
5856 // and uniqued.
5857
5858 /// Either a BuiltinType or an InterfaceType or sugar for either.
5859 QualType BaseType;
5860
5861 /// Cached superclass type.
5862 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5863 CachedSuperClassType;
5864
5865 QualType *getTypeArgStorage();
5866 const QualType *getTypeArgStorage() const {
5867 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5868 }
5869
5870 ObjCProtocolDecl **getProtocolStorageImpl();
5871 /// Return the number of qualifying protocols in this interface type,
5872 /// or 0 if there are none.
5873 unsigned getNumProtocolsImpl() const {
5874 return ObjCObjectTypeBits.NumProtocols;
5875 }
5876 void setNumProtocolsImpl(unsigned N) {
5877 ObjCObjectTypeBits.NumProtocols = N;
5878 }
5879
5880protected:
5881 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5882
5883 ObjCObjectType(QualType Canonical, QualType Base,
5884 ArrayRef<QualType> typeArgs,
5885 ArrayRef<ObjCProtocolDecl *> protocols,
5886 bool isKindOf);
5887
5888 ObjCObjectType(enum Nonce_ObjCInterface)
5889 : Type(ObjCInterface, QualType(), TypeDependence::None),
5890 BaseType(QualType(this_(), 0)) {
5891 ObjCObjectTypeBits.NumProtocols = 0;
5892 ObjCObjectTypeBits.NumTypeArgs = 0;
5893 ObjCObjectTypeBits.IsKindOf = 0;
5894 }
5895
5896 void computeSuperClassTypeSlow() const;
5897
5898public:
5899 /// Gets the base type of this object type. This is always (possibly
5900 /// sugar for) one of:
5901 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5902 /// user, which is a typedef for an ObjCObjectPointerType)
5903 /// - the 'Class' builtin type (same caveat)
5904 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5905 QualType getBaseType() const { return BaseType; }
5906
5907 bool isObjCId() const {
5908 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5909 }
5910
5911 bool isObjCClass() const {
5912 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5913 }
5914
5915 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5916 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5917 bool isObjCUnqualifiedIdOrClass() const {
5918 if (!qual_empty()) return false;
5919 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5920 return T->getKind() == BuiltinType::ObjCId ||
5921 T->getKind() == BuiltinType::ObjCClass;
5922 return false;
5923 }
5924 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5925 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5926
5927 /// Gets the interface declaration for this object type, if the base type
5928 /// really is an interface.
5929 ObjCInterfaceDecl *getInterface() const;
5930
5931 /// Determine whether this object type is "specialized", meaning
5932 /// that it has type arguments.
5933 bool isSpecialized() const;
5934
5935 /// Determine whether this object type was written with type arguments.
5936 bool isSpecializedAsWritten() const {
5937 return ObjCObjectTypeBits.NumTypeArgs > 0;
5938 }
5939
5940 /// Determine whether this object type is "unspecialized", meaning
5941 /// that it has no type arguments.
5942 bool isUnspecialized() const { return !isSpecialized(); }
5943
5944 /// Determine whether this object type is "unspecialized" as
5945 /// written, meaning that it has no type arguments.
5946 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5947
5948 /// Retrieve the type arguments of this object type (semantically).
5949 ArrayRef<QualType> getTypeArgs() const;
5950
5951 /// Retrieve the type arguments of this object type as they were
5952 /// written.
5953 ArrayRef<QualType> getTypeArgsAsWritten() const {
5954 return llvm::makeArrayRef(getTypeArgStorage(),
5955 ObjCObjectTypeBits.NumTypeArgs);
5956 }
5957
5958 /// Whether this is a "__kindof" type as written.
5959 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5960
5961 /// Whether this ia a "__kindof" type (semantically).
5962 bool isKindOfType() const;
5963
5964 /// Retrieve the type of the superclass of this object type.
5965 ///
5966 /// This operation substitutes any type arguments into the
5967 /// superclass of the current class type, potentially producing a
5968 /// specialization of the superclass type. Produces a null type if
5969 /// there is no superclass.
5970 QualType getSuperClassType() const {
5971 if (!CachedSuperClassType.getInt())
5972 computeSuperClassTypeSlow();
5973
5974 assert(CachedSuperClassType.getInt() && "Superclass not set?")(static_cast <bool> (CachedSuperClassType.getInt() &&
"Superclass not set?") ? void (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "clang/include/clang/AST/Type.h", 5974, __extension__ __PRETTY_FUNCTION__
))
;
5975 return QualType(CachedSuperClassType.getPointer(), 0);
5976 }
5977
5978 /// Strip off the Objective-C "kindof" type and (with it) any
5979 /// protocol qualifiers.
5980 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5981
5982 bool isSugared() const { return false; }
5983 QualType desugar() const { return QualType(this, 0); }
5984
5985 static bool classof(const Type *T) {
5986 return T->getTypeClass() == ObjCObject ||
5987 T->getTypeClass() == ObjCInterface;
5988 }
5989};
5990
5991/// A class providing a concrete implementation
5992/// of ObjCObjectType, so as to not increase the footprint of
5993/// ObjCInterfaceType. Code outside of ASTContext and the core type
5994/// system should not reference this type.
5995class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5996 friend class ASTContext;
5997
5998 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5999 // will need to be modified.
6000
6001 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
6002 ArrayRef<QualType> typeArgs,
6003 ArrayRef<ObjCProtocolDecl *> protocols,
6004 bool isKindOf)
6005 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
6006
6007public:
6008 void Profile(llvm::FoldingSetNodeID &ID);
6009 static void Profile(llvm::FoldingSetNodeID &ID,
6010 QualType Base,
6011 ArrayRef<QualType> typeArgs,
6012 ArrayRef<ObjCProtocolDecl *> protocols,
6013 bool isKindOf);
6014};
6015
6016inline QualType *ObjCObjectType::getTypeArgStorage() {
6017 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
6018}
6019
6020inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
6021 return reinterpret_cast<ObjCProtocolDecl**>(
6022 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
6023}
6024
6025inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
6026 return reinterpret_cast<ObjCProtocolDecl**>(
6027 static_cast<ObjCTypeParamType*>(this)+1);
6028}
6029
6030/// Interfaces are the core concept in Objective-C for object oriented design.
6031/// They basically correspond to C++ classes. There are two kinds of interface
6032/// types: normal interfaces like `NSString`, and qualified interfaces, which
6033/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6034///
6035/// ObjCInterfaceType guarantees the following properties when considered
6036/// as a subtype of its superclass, ObjCObjectType:
6037/// - There are no protocol qualifiers. To reinforce this, code which
6038/// tries to invoke the protocol methods via an ObjCInterfaceType will
6039/// fail to compile.
6040/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6041/// T->getBaseType() == QualType(T, 0).
6042class ObjCInterfaceType : public ObjCObjectType {
6043 friend class ASTContext; // ASTContext creates these.
6044 friend class ASTReader;
6045 template <class T> friend class serialization::AbstractTypeReader;
6046
6047 ObjCInterfaceDecl *Decl;
6048
6049 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6050 : ObjCObjectType(Nonce_ObjCInterface),
6051 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6052
6053public:
6054 /// Get the declaration of this interface.
6055 ObjCInterfaceDecl *getDecl() const;
6056
6057 bool isSugared() const { return false; }
6058 QualType desugar() const { return QualType(this, 0); }
6059
6060 static bool classof(const Type *T) {
6061 return T->getTypeClass() == ObjCInterface;
6062 }
6063
6064 // Nonsense to "hide" certain members of ObjCObjectType within this
6065 // class. People asking for protocols on an ObjCInterfaceType are
6066 // not going to get what they want: ObjCInterfaceTypes are
6067 // guaranteed to have no protocols.
6068 enum {
6069 qual_iterator,
6070 qual_begin,
6071 qual_end,
6072 getNumProtocols,
6073 getProtocol
6074 };
6075};
6076
6077inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6078 QualType baseType = getBaseType();
6079 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6080 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6081 return T->getDecl();
6082
6083 baseType = ObjT->getBaseType();
6084 }
6085
6086 return nullptr;
6087}
6088
6089/// Represents a pointer to an Objective C object.
6090///
6091/// These are constructed from pointer declarators when the pointee type is
6092/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6093/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6094/// and 'Class<P>' are translated into these.
6095///
6096/// Pointers to pointers to Objective C objects are still PointerTypes;
6097/// only the first level of pointer gets it own type implementation.
6098class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6099 friend class ASTContext; // ASTContext creates these.
6100
6101 QualType PointeeType;
6102
6103 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6104 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6105 PointeeType(Pointee) {}
6106
6107public:
6108 /// Gets the type pointed to by this ObjC pointer.
6109 /// The result will always be an ObjCObjectType or sugar thereof.
6110 QualType getPointeeType() const { return PointeeType; }
6111
6112 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6113 ///
6114 /// This method is equivalent to getPointeeType() except that
6115 /// it discards any typedefs (or other sugar) between this
6116 /// type and the "outermost" object type. So for:
6117 /// \code
6118 /// \@class A; \@protocol P; \@protocol Q;
6119 /// typedef A<P> AP;
6120 /// typedef A A1;
6121 /// typedef A1<P> A1P;
6122 /// typedef A1P<Q> A1PQ;
6123 /// \endcode
6124 /// For 'A*', getObjectType() will return 'A'.
6125 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6126 /// For 'AP*', getObjectType() will return 'A<P>'.
6127 /// For 'A1*', getObjectType() will return 'A'.
6128 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6129 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6130 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6131 /// adding protocols to a protocol-qualified base discards the
6132 /// old qualifiers (for now). But if it didn't, getObjectType()
6133 /// would return 'A1P<Q>' (and we'd have to make iterating over
6134 /// qualifiers more complicated).
6135 const ObjCObjectType *getObjectType() const {
6136 return PointeeType->castAs<ObjCObjectType>();
6137 }
6138
6139 /// If this pointer points to an Objective C
6140 /// \@interface type, gets the type for that interface. Any protocol
6141 /// qualifiers on the interface are ignored.
6142 ///
6143 /// \return null if the base type for this pointer is 'id' or 'Class'
6144 const ObjCInterfaceType *getInterfaceType() const;
6145
6146 /// If this pointer points to an Objective \@interface
6147 /// type, gets the declaration for that interface.
6148 ///
6149 /// \return null if the base type for this pointer is 'id' or 'Class'
6150 ObjCInterfaceDecl *getInterfaceDecl() const {
6151 return getObjectType()->getInterface();
6152 }
6153
6154 /// True if this is equivalent to the 'id' type, i.e. if
6155 /// its object type is the primitive 'id' type with no protocols.
6156 bool isObjCIdType() const {
6157 return getObjectType()->isObjCUnqualifiedId();
6158 }
6159
6160 /// True if this is equivalent to the 'Class' type,
6161 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6162 bool isObjCClassType() const {
6163 return getObjectType()->isObjCUnqualifiedClass();
6164 }
6165
6166 /// True if this is equivalent to the 'id' or 'Class' type,
6167 bool isObjCIdOrClassType() const {
6168 return getObjectType()->isObjCUnqualifiedIdOrClass();
6169 }
6170
6171 /// True if this is equivalent to 'id<P>' for some non-empty set of
6172 /// protocols.
6173 bool isObjCQualifiedIdType() const {
6174 return getObjectType()->isObjCQualifiedId();
6175 }
6176
6177 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6178 /// protocols.
6179 bool isObjCQualifiedClassType() const {
6180 return getObjectType()->isObjCQualifiedClass();
6181 }
6182
6183 /// Whether this is a "__kindof" type.
6184 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6185
6186 /// Whether this type is specialized, meaning that it has type arguments.
6187 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6188
6189 /// Whether this type is specialized, meaning that it has type arguments.
6190 bool isSpecializedAsWritten() const {
6191 return getObjectType()->isSpecializedAsWritten();
6192 }
6193
6194 /// Whether this type is unspecialized, meaning that is has no type arguments.
6195 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6196
6197 /// Determine whether this object type is "unspecialized" as
6198 /// written, meaning that it has no type arguments.
6199 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6200
6201 /// Retrieve the type arguments for this type.
6202 ArrayRef<QualType> getTypeArgs() const {
6203 return getObjectType()->getTypeArgs();
6204 }
6205
6206 /// Retrieve the type arguments for this type.
6207 ArrayRef<QualType> getTypeArgsAsWritten() const {
6208 return getObjectType()->getTypeArgsAsWritten();
6209 }
6210
6211 /// An iterator over the qualifiers on the object type. Provided
6212 /// for convenience. This will always iterate over the full set of
6213 /// protocols on a type, not just those provided directly.
6214 using qual_iterator = ObjCObjectType::qual_iterator;
6215 using qual_range = llvm::iterator_range<qual_iterator>;
6216
6217 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6218
6219 qual_iterator qual_begin() const {
6220 return getObjectType()->qual_begin();
6221 }
6222
6223 qual_iterator qual_end() const {
6224 return getObjectType()->qual_end();
6225 }
6226
6227 bool qual_empty() const { return getObjectType()->qual_empty(); }
6228
6229 /// Return the number of qualifying protocols on the object type.
6230 unsigned getNumProtocols() const {
6231 return getObjectType()->getNumProtocols();
6232 }
6233
6234 /// Retrieve a qualifying protocol by index on the object type.
6235 ObjCProtocolDecl *getProtocol(unsigned I) const {
6236 return getObjectType()->getProtocol(I);
6237 }
6238
6239 bool isSugared() const { return false; }
6240 QualType desugar() const { return QualType(this, 0); }
6241
6242 /// Retrieve the type of the superclass of this object pointer type.
6243 ///
6244 /// This operation substitutes any type arguments into the
6245 /// superclass of the current class type, potentially producing a
6246 /// pointer to a specialization of the superclass type. Produces a
6247 /// null type if there is no superclass.
6248 QualType getSuperClassType() const;
6249
6250 /// Strip off the Objective-C "kindof" type and (with it) any
6251 /// protocol qualifiers.
6252 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6253 const ASTContext &ctx) const;
6254
6255 void Profile(llvm::FoldingSetNodeID &ID) {
6256 Profile(ID, getPointeeType());
6257 }
6258
6259 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6260 ID.AddPointer(T.getAsOpaquePtr());
6261 }
6262
6263 static bool classof(const Type *T) {
6264 return T->getTypeClass() == ObjCObjectPointer;
6265 }
6266};
6267
6268class AtomicType : public Type, public llvm::FoldingSetNode {
6269 friend class ASTContext; // ASTContext creates these.
6270
6271 QualType ValueType;
6272
6273 AtomicType(QualType ValTy, QualType Canonical)
6274 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6275
6276public:
6277 /// Gets the type contained by this atomic type, i.e.
6278 /// the type returned by performing an atomic load of this atomic type.
6279 QualType getValueType() const { return ValueType; }
6280
6281 bool isSugared() const { return false; }
6282 QualType desugar() const { return QualType(this, 0); }
6283
6284 void Profile(llvm::FoldingSetNodeID &ID) {
6285 Profile(ID, getValueType());
6286 }
6287
6288 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6289 ID.AddPointer(T.getAsOpaquePtr());
6290 }
6291
6292 static bool classof(const Type *T) {
6293 return T->getTypeClass() == Atomic;
6294 }
6295};
6296
6297/// PipeType - OpenCL20.
6298class PipeType : public Type, public llvm::FoldingSetNode {
6299 friend class ASTContext; // ASTContext creates these.
6300
6301 QualType ElementType;
6302 bool isRead;
6303
6304 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6305 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6306 ElementType(elemType), isRead(isRead) {}
6307
6308public:
6309 QualType getElementType() const { return ElementType; }
6310
6311 bool isSugared() const { return false; }
6312
6313 QualType desugar() const { return QualType(this, 0); }
6314
6315 void Profile(llvm::FoldingSetNodeID &ID) {
6316 Profile(ID, getElementType(), isReadOnly());
6317 }
6318
6319 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6320 ID.AddPointer(T.getAsOpaquePtr());
6321 ID.AddBoolean(isRead);
6322 }
6323
6324 static bool classof(const Type *T) {
6325 return T->getTypeClass() == Pipe;
6326 }
6327
6328 bool isReadOnly() const { return isRead; }
6329};
6330
6331/// A fixed int type of a specified bitwidth.
6332class BitIntType final : public Type, public llvm::FoldingSetNode {
6333 friend class ASTContext;
6334 unsigned IsUnsigned : 1;
6335 unsigned NumBits : 24;
6336
6337protected:
6338 BitIntType(bool isUnsigned, unsigned NumBits);
6339
6340public:
6341 bool isUnsigned() const { return IsUnsigned; }
6342 bool isSigned() const { return !IsUnsigned; }
6343 unsigned getNumBits() const { return NumBits; }
6344
6345 bool isSugared() const { return false; }
6346 QualType desugar() const { return QualType(this, 0); }
6347
6348 void Profile(llvm::FoldingSetNodeID &ID) {
6349 Profile(ID, isUnsigned(), getNumBits());
6350 }
6351
6352 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6353 unsigned NumBits) {
6354 ID.AddBoolean(IsUnsigned);
6355 ID.AddInteger(NumBits);
6356 }
6357
6358 static bool classof(const Type *T) { return T->getTypeClass() == BitInt; }
6359};
6360
6361class DependentBitIntType final : public Type, public llvm::FoldingSetNode {
6362 friend class ASTContext;
6363 const ASTContext &Context;
6364 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6365
6366protected:
6367 DependentBitIntType(const ASTContext &Context, bool IsUnsigned,
6368 Expr *NumBits);
6369
6370public:
6371 bool isUnsigned() const;
6372 bool isSigned() const { return !isUnsigned(); }
6373 Expr *getNumBitsExpr() const;
6374
6375 bool isSugared() const { return false; }
6376 QualType desugar() const { return QualType(this, 0); }
6377
6378 void Profile(llvm::FoldingSetNodeID &ID) {
6379 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6380 }
6381 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6382 bool IsUnsigned, Expr *NumBitsExpr);
6383
6384 static bool classof(const Type *T) {
6385 return T->getTypeClass() == DependentBitInt;
6386 }
6387};
6388
6389/// A qualifier set is used to build a set of qualifiers.
6390class QualifierCollector : public Qualifiers {
6391public:
6392 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6393
6394 /// Collect any qualifiers on the given type and return an
6395 /// unqualified type. The qualifiers are assumed to be consistent
6396 /// with those already in the type.
6397 const Type *strip(QualType type) {
6398 addFastQualifiers(type.getLocalFastQualifiers());
6399 if (!type.hasLocalNonFastQualifiers())
6400 return type.getTypePtrUnsafe();
6401
6402 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6403 addConsistentQualifiers(extQuals->getQualifiers());
6404 return extQuals->getBaseType();
6405 }
6406
6407 /// Apply the collected qualifiers to the given type.
6408 QualType apply(const ASTContext &Context, QualType QT) const;
6409
6410 /// Apply the collected qualifiers to the given type.
6411 QualType apply(const ASTContext &Context, const Type* T) const;
6412};
6413
6414/// A container of type source information.
6415///
6416/// A client can read the relevant info using TypeLoc wrappers, e.g:
6417/// @code
6418/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6419/// TL.getBeginLoc().print(OS, SrcMgr);
6420/// @endcode
6421class alignas(8) TypeSourceInfo {
6422 // Contains a memory block after the class, used for type source information,
6423 // allocated by ASTContext.
6424 friend class ASTContext;
6425
6426 QualType Ty;
6427
6428 TypeSourceInfo(QualType ty) : Ty(ty) {}
6429
6430public:
6431 /// Return the type wrapped by this type source info.
6432 QualType getType() const { return Ty; }
6433
6434 /// Return the TypeLoc wrapper for the type source info.
6435 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6436
6437 /// Override the type stored in this TypeSourceInfo. Use with caution!
6438 void overrideType(QualType T) { Ty = T; }
6439};
6440
6441// Inline function definitions.
6442
6443inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6444 SplitQualType desugar =
6445 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6446 desugar.Quals.addConsistentQualifiers(Quals);
6447 return desugar;
6448}
6449
6450inline const Type *QualType::getTypePtr() const {
6451 return getCommonPtr()->BaseType;
6452}
6453
6454inline const Type *QualType::getTypePtrOrNull() const {
6455 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6456}
6457
6458inline SplitQualType QualType::split() const {
6459 if (!hasLocalNonFastQualifiers())
6460 return SplitQualType(getTypePtrUnsafe(),
6461 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6462
6463 const ExtQuals *eq = getExtQualsUnsafe();
6464 Qualifiers qs = eq->getQualifiers();
6465 qs.addFastQualifiers(getLocalFastQualifiers());
6466 return SplitQualType(eq->getBaseType(), qs);
6467}
6468
6469inline Qualifiers QualType::getLocalQualifiers() const {
6470 Qualifiers Quals;
6471 if (hasLocalNonFastQualifiers())
6472 Quals = getExtQualsUnsafe()->getQualifiers();
6473 Quals.addFastQualifiers(getLocalFastQualifiers());
6474 return Quals;
6475}
6476
6477inline Qualifiers QualType::getQualifiers() const {
6478 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6479 quals.addFastQualifiers(getLocalFastQualifiers());
6480 return quals;
6481}
6482
6483inline unsigned QualType::getCVRQualifiers() const {
6484 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6485 cvr |= getLocalCVRQualifiers();
6486 return cvr;
6487}
6488
6489inline QualType QualType::getCanonicalType() const {
6490 QualType canon = getCommonPtr()->CanonicalType;
6491 return canon.withFastQualifiers(getLocalFastQualifiers());
6492}
6493
6494inline bool QualType::isCanonical() const {
6495 return getTypePtr()->isCanonicalUnqualified();
6496}
6497
6498inline bool QualType::isCanonicalAsParam() const {
6499 if (!isCanonical()) return false;
6500 if (hasLocalQualifiers()) return false;
6501
6502 const Type *T = getTypePtr();
6503 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6504 return false;
6505
6506 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6507}
6508
6509inline bool QualType::isConstQualified() const {
6510 return isLocalConstQualified() ||
6511 getCommonPtr()->CanonicalType.isLocalConstQualified();
6512}
6513
6514inline bool QualType::isRestrictQualified() const {
6515 return isLocalRestrictQualified() ||
6516 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6517}
6518
6519
6520inline bool QualType::isVolatileQualified() const {
6521 return isLocalVolatileQualified() ||
6522 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6523}
6524
6525inline bool QualType::hasQualifiers() const {
6526 return hasLocalQualifiers() ||
6527 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6528}
6529
6530inline QualType QualType::getUnqualifiedType() const {
6531 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6532 return QualType(getTypePtr(), 0);
6533
6534 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6535}
6536
6537inline SplitQualType QualType::getSplitUnqualifiedType() const {
6538 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6539 return split();
6540
6541 return getSplitUnqualifiedTypeImpl(*this);
6542}
6543
6544inline void QualType::removeLocalConst() {
6545 removeLocalFastQualifiers(Qualifiers::Const);
6546}
6547
6548inline void QualType::removeLocalRestrict() {
6549 removeLocalFastQualifiers(Qualifiers::Restrict);
6550}
6551
6552inline void QualType::removeLocalVolatile() {
6553 removeLocalFastQualifiers(Qualifiers::Volatile);
6554}
6555
6556inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6557 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")(static_cast <bool> (!(Mask & ~Qualifiers::CVRMask)
&& "mask has non-CVR bits") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "clang/include/clang/AST/Type.h", 6557, __extension__ __PRETTY_FUNCTION__
))
;
6558 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6559 "Fast bits differ from CVR bits!");
6560
6561 // Fast path: we don't need to touch the slow qualifiers.
6562 removeLocalFastQualifiers(Mask);
6563}
6564
6565/// Check if this type has any address space qualifier.
6566inline bool QualType::hasAddressSpace() const {
6567 return getQualifiers().hasAddressSpace();
6568}
6569
6570/// Return the address space of this type.
6571inline LangAS QualType::getAddressSpace() const {
6572 return getQualifiers().getAddressSpace();
6573}
6574
6575/// Return the gc attribute of this type.
6576inline Qualifiers::GC QualType::getObjCGCAttr() const {
6577 return getQualifiers().getObjCGCAttr();
6578}
6579
6580inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6581 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6582 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6583 return false;
6584}
6585
6586inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6587 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6588 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6589 return false;
6590}
6591
6592inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6593 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6594 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6595 return false;
6596}
6597
6598inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6599 if (const auto *PT = t.getAs<PointerType>()) {
6600 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6601 return FT->getExtInfo();
6602 } else if (const auto *FT = t.getAs<FunctionType>())
6603 return FT->getExtInfo();
6604
6605 return FunctionType::ExtInfo();
6606}
6607
6608inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6609 return getFunctionExtInfo(*t);
6610}
6611
6612/// Determine whether this type is more
6613/// qualified than the Other type. For example, "const volatile int"
6614/// is more qualified than "const int", "volatile int", and
6615/// "int". However, it is not more qualified than "const volatile
6616/// int".
6617inline bool QualType::isMoreQualifiedThan(QualType other) const {
6618 Qualifiers MyQuals = getQualifiers();
6619 Qualifiers OtherQuals = other.getQualifiers();
6620 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6621}
6622
6623/// Determine whether this type is at last
6624/// as qualified as the Other type. For example, "const volatile
6625/// int" is at least as qualified as "const int", "volatile int",
6626/// "int", and "const volatile int".
6627inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6628 Qualifiers OtherQuals = other.getQualifiers();
6629
6630 // Ignore __unaligned qualifier if this type is a void.
6631 if (getUnqualifiedType()->isVoidType())
6632 OtherQuals.removeUnaligned();
6633
6634 return getQualifiers().compatiblyIncludes(OtherQuals);
6635}
6636
6637/// If Type is a reference type (e.g., const
6638/// int&), returns the type that the reference refers to ("const
6639/// int"). Otherwise, returns the type itself. This routine is used
6640/// throughout Sema to implement C++ 5p6:
6641///
6642/// If an expression initially has the type "reference to T" (8.3.2,
6643/// 8.5.3), the type is adjusted to "T" prior to any further
6644/// analysis, the expression designates the object or function
6645/// denoted by the reference, and the expression is an lvalue.
6646inline QualType QualType::getNonReferenceType() const {
6647 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6648 return RefType->getPointeeType();
6649 else
6650 return *this;
6651}
6652
6653inline bool QualType::isCForbiddenLValueType() const {
6654 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6655 getTypePtr()->isFunctionType());
6656}
6657
6658/// Tests whether the type is categorized as a fundamental type.
6659///
6660/// \returns True for types specified in C++0x [basic.fundamental].
6661inline bool Type::isFundamentalType() const {
6662 return isVoidType() ||
6663 isNullPtrType() ||
6664 // FIXME: It's really annoying that we don't have an
6665 // 'isArithmeticType()' which agrees with the standard definition.
6666 (isArithmeticType() && !isEnumeralType());
6667}
6668
6669/// Tests whether the type is categorized as a compound type.
6670///
6671/// \returns True for types specified in C++0x [basic.compound].
6672inline bool Type::isCompoundType() const {
6673 // C++0x [basic.compound]p1:
6674 // Compound types can be constructed in the following ways:
6675 // -- arrays of objects of a given type [...];
6676 return isArrayType() ||
6677 // -- functions, which have parameters of given types [...];
6678 isFunctionType() ||
6679 // -- pointers to void or objects or functions [...];
6680 isPointerType() ||
6681 // -- references to objects or functions of a given type. [...]
6682 isReferenceType() ||
6683 // -- classes containing a sequence of objects of various types, [...];
6684 isRecordType() ||
6685 // -- unions, which are classes capable of containing objects of different
6686 // types at different times;
6687 isUnionType() ||
6688 // -- enumerations, which comprise a set of named constant values. [...];
6689 isEnumeralType() ||
6690 // -- pointers to non-static class members, [...].
6691 isMemberPointerType();
6692}
6693
6694inline bool Type::isFunctionType() const {
6695 return isa<FunctionType>(CanonicalType);
6696}
6697
6698inline bool Type::isPointerType() const {
6699 return isa<PointerType>(CanonicalType);
6700}
6701
6702inline bool Type::isAnyPointerType() const {
6703 return isPointerType() || isObjCObjectPointerType();
6704}
6705
6706inline bool Type::isBlockPointerType() const {
6707 return isa<BlockPointerType>(CanonicalType);
4
Assuming field 'CanonicalType' is a 'BlockPointerType'
5
Returning the value 1, which participates in a condition later
6708}
6709
6710inline bool Type::isReferenceType() const {
6711 return isa<ReferenceType>(CanonicalType);
6712}
6713
6714inline bool Type::isLValueReferenceType() const {
6715 return isa<LValueReferenceType>(CanonicalType);
6716}
6717
6718inline bool Type::isRValueReferenceType() const {
6719 return isa<RValueReferenceType>(CanonicalType);
6720}
6721
6722inline bool Type::isObjectPointerType() const {
6723 // Note: an "object pointer type" is not the same thing as a pointer to an
6724 // object type; rather, it is a pointer to an object type or a pointer to cv
6725 // void.
6726 if (const auto *T = getAs<PointerType>())
6727 return !T->getPointeeType()->isFunctionType();
6728 else
6729 return false;
6730}
6731
6732inline bool Type::isFunctionPointerType() const {
6733 if (const auto *T = getAs<PointerType>())
6734 return T->getPointeeType()->isFunctionType();
6735 else
6736 return false;
6737}
6738
6739inline bool Type::isFunctionReferenceType() const {
6740 if (const auto *T = getAs<ReferenceType>())
6741 return T->getPointeeType()->isFunctionType();
6742 else
6743 return false;
6744}
6745
6746inline bool Type::isMemberPointerType() const {
6747 return isa<MemberPointerType>(CanonicalType);
6748}
6749
6750inline bool Type::isMemberFunctionPointerType() const {
6751 if (const auto *T = getAs<MemberPointerType>())
6752 return T->isMemberFunctionPointer();
6753 else
6754 return false;
6755}
6756
6757inline bool Type::isMemberDataPointerType() const {
6758 if (const auto *T = getAs<MemberPointerType>())
6759 return T->isMemberDataPointer();
6760 else
6761 return false;
6762}
6763
6764inline bool Type::isArrayType() const {
6765 return isa<ArrayType>(CanonicalType);
6766}
6767
6768inline bool Type::isConstantArrayType() const {
6769 return isa<ConstantArrayType>(CanonicalType);
6770}
6771
6772inline bool Type::isIncompleteArrayType() const {
6773 return isa<IncompleteArrayType>(CanonicalType);
6774}
6775
6776inline bool Type::isVariableArrayType() const {
6777 return isa<VariableArrayType>(CanonicalType);
6778}
6779
6780inline bool Type::isDependentSizedArrayType() const {
6781 return isa<DependentSizedArrayType>(CanonicalType);
6782}
6783
6784inline bool Type::isBuiltinType() const {
6785 return isa<BuiltinType>(CanonicalType);
6786}
6787
6788inline bool Type::isRecordType() const {
6789 return isa<RecordType>(CanonicalType);
6790}
6791
6792inline bool Type::isEnumeralType() const {
6793 return isa<EnumType>(CanonicalType);
6794}
6795
6796inline bool Type::isAnyComplexType() const {
6797 return isa<ComplexType>(CanonicalType);
6798}
6799
6800inline bool Type::isVectorType() const {
6801 return isa<VectorType>(CanonicalType);
6802}
6803
6804inline bool Type::isExtVectorType() const {
6805 return isa<ExtVectorType>(CanonicalType);
6806}
6807
6808inline bool Type::isMatrixType() const {
6809 return isa<MatrixType>(CanonicalType);
6810}
6811
6812inline bool Type::isConstantMatrixType() const {
6813 return isa<ConstantMatrixType>(CanonicalType);
6814}
6815
6816inline bool Type::isDependentAddressSpaceType() const {
6817 return isa<DependentAddressSpaceType>(CanonicalType);
6818}
6819
6820inline bool Type::isObjCObjectPointerType() const {
6821 return isa<ObjCObjectPointerType>(CanonicalType);
6822}
6823
6824inline bool Type::isObjCObjectType() const {
6825 return isa<ObjCObjectType>(CanonicalType);
6826}
6827
6828inline bool Type::isObjCObjectOrInterfaceType() const {
6829 return isa<ObjCInterfaceType>(CanonicalType) ||
6830 isa<ObjCObjectType>(CanonicalType);
6831}
6832
6833inline bool Type::isAtomicType() const {
6834 return isa<AtomicType>(CanonicalType);
6835}
6836
6837inline bool Type::isUndeducedAutoType() const {
6838 return isa<AutoType>(CanonicalType);
6839}
6840
6841inline bool Type::isObjCQualifiedIdType() const {
6842 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6843 return OPT->isObjCQualifiedIdType();
6844 return false;
6845}
6846
6847inline bool Type::isObjCQualifiedClassType() const {
6848 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6849 return OPT->isObjCQualifiedClassType();
6850 return false;
6851}
6852
6853inline bool Type::isObjCIdType() const {
6854 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6855 return OPT->isObjCIdType();
6856 return false;
6857}
6858
6859inline bool Type::isObjCClassType() const {
6860 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6861 return OPT->isObjCClassType();
6862 return false;
6863}
6864
6865inline bool Type::isObjCSelType() const {
6866 if (const auto *OPT = getAs<PointerType>())
6867 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6868 return false;
6869}
6870
6871inline bool Type::isObjCBuiltinType() const {
6872 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6873}
6874
6875inline bool Type::isDecltypeType() const {
6876 return isa<DecltypeType>(this);
6877}
6878
6879#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6880 inline bool Type::is##Id##Type() const { \
6881 return isSpecificBuiltinType(BuiltinType::Id); \
6882 }
6883#include "clang/Basic/OpenCLImageTypes.def"
6884
6885inline bool Type::isSamplerT() const {
6886 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6887}
6888
6889inline bool Type::isEventT() const {
6890 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6891}
6892
6893inline bool Type::isClkEventT() const {
6894 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6895}
6896
6897inline bool Type::isQueueT() const {
6898 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6899}
6900
6901inline bool Type::isReserveIDT() const {
6902 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6903}
6904
6905inline bool Type::isImageType() const {
6906#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6907 return
6908#include "clang/Basic/OpenCLImageTypes.def"
6909 false; // end boolean or operation
6910}
6911
6912inline bool Type::isPipeType() const {
6913 return isa<PipeType>(CanonicalType);
6914}
6915
6916inline bool Type::isBitIntType() const {
6917 return isa<BitIntType>(CanonicalType);
6918}
6919
6920#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6921 inline bool Type::is##Id##Type() const { \
6922 return isSpecificBuiltinType(BuiltinType::Id); \
6923 }
6924#include "clang/Basic/OpenCLExtensionTypes.def"
6925
6926inline bool Type::isOCLIntelSubgroupAVCType() const {
6927#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6928 isOCLIntelSubgroupAVC##Id##Type() ||
6929 return
6930#include "clang/Basic/OpenCLExtensionTypes.def"
6931 false; // end of boolean or operation
6932}
6933
6934inline bool Type::isOCLExtOpaqueType() const {
6935#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6936 return
6937#include "clang/Basic/OpenCLExtensionTypes.def"
6938 false; // end of boolean or operation
6939}
6940
6941inline bool Type::isOpenCLSpecificType() const {
6942 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6943 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6944}
6945
6946inline bool Type::isTemplateTypeParmType() const {
6947 return isa<TemplateTypeParmType>(CanonicalType);
6948}
6949
6950inline bool Type::isSpecificBuiltinType(unsigned K) const {
6951 if (const BuiltinType *BT = getAs<BuiltinType>()) {
6952 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
6953 }
6954 return false;
6955}
6956
6957inline bool Type::isPlaceholderType() const {
6958 if (const auto *BT = dyn_cast<BuiltinType>(this))
6959 return BT->isPlaceholderType();
6960 return false;
6961}
6962
6963inline const BuiltinType *Type::getAsPlaceholderType() const {
6964 if (const auto *BT = dyn_cast<BuiltinType>(this))
6965 if (BT->isPlaceholderType())
6966 return BT;
6967 return nullptr;
6968}
6969
6970inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6971 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))(static_cast <bool> (BuiltinType::isPlaceholderTypeKind
((BuiltinType::Kind) K)) ? void (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "clang/include/clang/AST/Type.h", 6971, __extension__ __PRETTY_FUNCTION__
))
;
6972 return isSpecificBuiltinType(K);
6973}
6974
6975inline bool Type::isNonOverloadPlaceholderType() const {
6976 if (const auto *BT = dyn_cast<BuiltinType>(this))
6977 return BT->isNonOverloadPlaceholderType();
6978 return false;
6979}
6980
6981inline bool Type::isVoidType() const {
6982 return isSpecificBuiltinType(BuiltinType::Void);
6983}
6984
6985inline bool Type::isHalfType() const {
6986 // FIXME: Should we allow complex __fp16? Probably not.
6987 return isSpecificBuiltinType(BuiltinType::Half);
6988}
6989
6990inline bool Type::isFloat16Type() const {
6991 return isSpecificBuiltinType(BuiltinType::Float16);
6992}
6993
6994inline bool Type::isBFloat16Type() const {
6995 return isSpecificBuiltinType(BuiltinType::BFloat16);
6996}
6997
6998inline bool Type::isFloat128Type() const {
6999 return isSpecificBuiltinType(BuiltinType::Float128);
7000}
7001
7002inline bool Type::isIbm128Type() const {
7003 return isSpecificBuiltinType(BuiltinType::Ibm128);
7004}
7005
7006inline bool Type::isNullPtrType() const {
7007 return isSpecificBuiltinType(BuiltinType::NullPtr);
7008}
7009
7010bool IsEnumDeclComplete(EnumDecl *);
7011bool IsEnumDeclScoped(EnumDecl *);
7012
7013inline bool Type::isIntegerType() const {
7014 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7015 return BT->getKind() >= BuiltinType::Bool &&
7016 BT->getKind() <= BuiltinType::Int128;
7017 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
7018 // Incomplete enum types are not treated as integer types.
7019 // FIXME: In C++, enum types are never integer types.
7020 return IsEnumDeclComplete(ET->getDecl()) &&
7021 !IsEnumDeclScoped(ET->getDecl());
7022 }
7023 return isBitIntType();
7024}
7025
7026inline bool Type::isFixedPointType() const {
7027 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7028 return BT->getKind() >= BuiltinType::ShortAccum &&
7029 BT->getKind() <= BuiltinType::SatULongFract;
7030 }
7031 return false;
7032}
7033
7034inline bool Type::isFixedPointOrIntegerType() const {
7035 return isFixedPointType() || isIntegerType();
7036}
7037
7038inline bool Type::isSaturatedFixedPointType() const {
7039 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7040 return BT->getKind() >= BuiltinType::SatShortAccum &&
7041 BT->getKind() <= BuiltinType::SatULongFract;
7042 }
7043 return false;
7044}
7045
7046inline bool Type::isUnsaturatedFixedPointType() const {
7047 return isFixedPointType() && !isSaturatedFixedPointType();
7048}
7049
7050inline bool Type::isSignedFixedPointType() const {
7051 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7052 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7053 BT->getKind() <= BuiltinType::LongAccum) ||
7054 (BT->getKind() >= BuiltinType::ShortFract &&
7055 BT->getKind() <= BuiltinType::LongFract) ||
7056 (BT->getKind() >= BuiltinType::SatShortAccum &&
7057 BT->getKind() <= BuiltinType::SatLongAccum) ||
7058 (BT->getKind() >= BuiltinType::SatShortFract &&
7059 BT->getKind() <= BuiltinType::SatLongFract));
7060 }
7061 return false;
7062}
7063
7064inline bool Type::isUnsignedFixedPointType() const {
7065 return isFixedPointType() && !isSignedFixedPointType();
7066}
7067
7068inline bool Type::isScalarType() const {
7069 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7070 return BT->getKind() > BuiltinType::Void &&
7071 BT->getKind() <= BuiltinType::NullPtr;
7072 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7073 // Enums are scalar types, but only if they are defined. Incomplete enums
7074 // are not treated as scalar types.
7075 return IsEnumDeclComplete(ET->getDecl());
7076 return isa<PointerType>(CanonicalType) ||
7077 isa<BlockPointerType>(CanonicalType) ||
7078 isa<MemberPointerType>(CanonicalType) ||
7079 isa<ComplexType>(CanonicalType) ||
7080 isa<ObjCObjectPointerType>(CanonicalType) ||
7081 isBitIntType();
7082}
7083
7084inline bool Type::isIntegralOrEnumerationType() const {
7085 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7086 return BT->getKind() >= BuiltinType::Bool &&
7087 BT->getKind() <= BuiltinType::Int128;
7088
7089 // Check for a complete enum type; incomplete enum types are not properly an
7090 // enumeration type in the sense required here.
7091 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
7092 return IsEnumDeclComplete(ET->getDecl());
7093
7094 return isBitIntType();
7095}
7096
7097inline bool Type::isBooleanType() const {
7098 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7099 return BT->getKind() == BuiltinType::Bool;
7100 return false;
7101}
7102
7103inline bool Type::isUndeducedType() const {
7104 auto *DT = getContainedDeducedType();
7105 return DT && !DT->isDeduced();
7106}
7107
7108/// Determines whether this is a type for which one can define
7109/// an overloaded operator.
7110inline bool Type::isOverloadableType() const {
7111 return isDependentType() || isRecordType() || isEnumeralType();
7112}
7113
7114/// Determines whether this type is written as a typedef-name.
7115inline bool Type::isTypedefNameType() const {
7116 if (getAs<TypedefType>())
7117 return true;
7118 if (auto *TST = getAs<TemplateSpecializationType>())
7119 return TST->isTypeAlias();
7120 return false;
7121}
7122
7123/// Determines whether this type can decay to a pointer type.
7124inline bool Type::canDecayToPointerType() const {
7125 return isFunctionType() || isArrayType();
7126}
7127
7128inline bool Type::hasPointerRepresentation() const {
7129 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7130 isObjCObjectPointerType() || isNullPtrType());
7131}
7132
7133inline bool Type::hasObjCPointerRepresentation() const {
7134 return isObjCObjectPointerType();
7135}
7136
7137inline const Type *Type::getBaseElementTypeUnsafe() const {
7138 const Type *type = this;
7139 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7140 type = arrayType->getElementType().getTypePtr();
7141 return type;
7142}
7143
7144inline const Type *Type::getPointeeOrArrayElementType() const {
7145 const Type *type = this;
7146 if (type->isAnyPointerType())
7147 return type->getPointeeType().getTypePtr();
7148 else if (type->isArrayType())
7149 return type->getBaseElementTypeUnsafe();
7150 return type;
7151}
7152/// Insertion operator for partial diagnostics. This allows sending adress
7153/// spaces into a diagnostic with <<.
7154inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7155 LangAS AS) {
7156 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7157 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7158 return PD;
7159}
7160
7161/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7162/// into a diagnostic with <<.
7163inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7164 Qualifiers Q) {
7165 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7166 DiagnosticsEngine::ArgumentKind::ak_qual);
7167 return PD;
7168}
7169
7170/// Insertion operator for partial diagnostics. This allows sending QualType's
7171/// into a diagnostic with <<.
7172inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7173 QualType T) {
7174 PD.AddTaggedVal(reinterpret_cast<uint64_t>(T.getAsOpaquePtr()),
7175 DiagnosticsEngine::ak_qualtype);
7176 return PD;
7177}
7178
7179// Helper class template that is used by Type::getAs to ensure that one does
7180// not try to look through a qualified type to get to an array type.
7181template <typename T>
7182using TypeIsArrayType =
7183 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7184 std::is_base_of<ArrayType, T>::value>;
7185
7186// Member-template getAs<specific type>'.
7187template <typename T> const T *Type::getAs() const {
7188 static_assert(!TypeIsArrayType<T>::value,
7189 "ArrayType cannot be used with getAs!");
7190
7191 // If this is directly a T type, return it.
7192 if (const auto *Ty = dyn_cast<T>(this))
7193 return Ty;
7194
7195 // If the canonical form of this type isn't the right kind, reject it.
7196 if (!isa<T>(CanonicalType))
7197 return nullptr;
7198
7199 // If this is a typedef for the type, strip the typedef off without
7200 // losing all typedef information.
7201 return cast<T>(getUnqualifiedDesugaredType());
7202}
7203
7204template <typename T> const T *Type::getAsAdjusted() const {
7205 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7206
7207 // If this is directly a T type, return it.
7208 if (const auto *Ty = dyn_cast<T>(this))
7209 return Ty;
7210
7211 // If the canonical form of this type isn't the right kind, reject it.
7212 if (!isa<T>(CanonicalType))
7213 return nullptr;
7214
7215 // Strip off type adjustments that do not modify the underlying nature of the
7216 // type.
7217 const Type *Ty = this;
7218 while (Ty) {
7219 if (const auto *A = dyn_cast<AttributedType>(Ty))
7220 Ty = A->getModifiedType().getTypePtr();
7221 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7222 Ty = E->desugar().getTypePtr();
7223 else if (const auto *P = dyn_cast<ParenType>(Ty))
7224 Ty = P->desugar().getTypePtr();
7225 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7226 Ty = A->desugar().getTypePtr();
7227 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7228 Ty = M->desugar().getTypePtr();
7229 else
7230 break;
7231 }
7232
7233 // Just because the canonical type is correct does not mean we can use cast<>,
7234 // since we may not have stripped off all the sugar down to the base type.
7235 return dyn_cast<T>(Ty);
7236}
7237
7238inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7239 // If this is directly an array type, return it.
7240 if (const auto *arr = dyn_cast<ArrayType>(this))
7241 return arr;
7242
7243 // If the canonical form of this type isn't the right kind, reject it.
7244 if (!isa<ArrayType>(CanonicalType))
7245 return nullptr;
7246
7247 // If this is a typedef for the type, strip the typedef off without
7248 // losing all typedef information.
7249 return cast<ArrayType>(getUnqualifiedDesugaredType());
7250}
7251
7252template <typename T> const T *Type::castAs() const {
7253 static_assert(!TypeIsArrayType<T>::value,
7254 "ArrayType cannot be used with castAs!");
7255
7256 if (const auto *ty = dyn_cast<T>(this)) return ty;
7257 assert(isa<T>(CanonicalType))(static_cast <bool> (isa<T>(CanonicalType)) ? void
(0) : __assert_fail ("isa<T>(CanonicalType)", "clang/include/clang/AST/Type.h"
, 7257, __extension__ __PRETTY_FUNCTION__))
;
7258 return cast<T>(getUnqualifiedDesugaredType());
7259}
7260
7261inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7262 assert(isa<ArrayType>(CanonicalType))(static_cast <bool> (isa<ArrayType>(CanonicalType
)) ? void (0) : __assert_fail ("isa<ArrayType>(CanonicalType)"
, "clang/include/clang/AST/Type.h", 7262, __extension__ __PRETTY_FUNCTION__
))
;
7263 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7264 return cast<ArrayType>(getUnqualifiedDesugaredType());
7265}
7266
7267DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7268 QualType CanonicalPtr)
7269 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7270#ifndef NDEBUG
7271 QualType Adjusted = getAdjustedType();
7272 (void)AttributedType::stripOuterNullability(Adjusted);
7273 assert(isa<PointerType>(Adjusted))(static_cast <bool> (isa<PointerType>(Adjusted)) ?
void (0) : __assert_fail ("isa<PointerType>(Adjusted)"
, "clang/include/clang/AST/Type.h", 7273, __extension__ __PRETTY_FUNCTION__
))
;
7274#endif
7275}
7276
7277QualType DecayedType::getPointeeType() const {
7278 QualType Decayed = getDecayedType();
7279 (void)AttributedType::stripOuterNullability(Decayed);
7280 return cast<PointerType>(Decayed)->getPointeeType();
7281}
7282
7283// Get the decimal string representation of a fixed point type, represented
7284// as a scaled integer.
7285// TODO: At some point, we should change the arguments to instead just accept an
7286// APFixedPoint instead of APSInt and scale.
7287void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7288 unsigned Scale);
7289
7290} // namespace clang
7291
7292#endif // LLVM_CLANG_AST_TYPE_H