Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Analysis/ValueTracking.cpp
Warning:line 211, column 31
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ValueTracking.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Analysis -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Analysis -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Analysis/ValueTracking.cpp
1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/ValueTracking.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/AssumeBundleQueries.h"
28#include "llvm/Analysis/AssumptionCache.h"
29#include "llvm/Analysis/EHPersonalities.h"
30#include "llvm/Analysis/GuardUtils.h"
31#include "llvm/Analysis/InstructionSimplify.h"
32#include "llvm/Analysis/Loads.h"
33#include "llvm/Analysis/LoopInfo.h"
34#include "llvm/Analysis/OptimizationRemarkEmitter.h"
35#include "llvm/Analysis/TargetLibraryInfo.h"
36#include "llvm/IR/Argument.h"
37#include "llvm/IR/Attributes.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/Constant.h"
40#include "llvm/IR/ConstantRange.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/DiagnosticInfo.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/GetElementPtrTypeIterator.h"
47#include "llvm/IR/GlobalAlias.h"
48#include "llvm/IR/GlobalValue.h"
49#include "llvm/IR/GlobalVariable.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
54#include "llvm/IR/Intrinsics.h"
55#include "llvm/IR/IntrinsicsAArch64.h"
56#include "llvm/IR/IntrinsicsRISCV.h"
57#include "llvm/IR/IntrinsicsX86.h"
58#include "llvm/IR/LLVMContext.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Module.h"
61#include "llvm/IR/Operator.h"
62#include "llvm/IR/PatternMatch.h"
63#include "llvm/IR/Type.h"
64#include "llvm/IR/User.h"
65#include "llvm/IR/Value.h"
66#include "llvm/Support/Casting.h"
67#include "llvm/Support/CommandLine.h"
68#include "llvm/Support/Compiler.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/KnownBits.h"
71#include "llvm/Support/MathExtras.h"
72#include <algorithm>
73#include <cassert>
74#include <cstdint>
75#include <utility>
76
77using namespace llvm;
78using namespace llvm::PatternMatch;
79
80// Controls the number of uses of the value searched for possible
81// dominating comparisons.
82static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83 cl::Hidden, cl::init(20));
84
85// According to the LangRef, branching on a poison condition is absolutely
86// immediate full UB. However, historically we haven't implemented that
87// consistently as we have an important transformation (non-trivial unswitch)
88// which introduces instances of branch on poison/undef to otherwise well
89// defined programs. This flag exists to let us test optimization benefit
90// of exploiting the specified behavior (in combination with enabling the
91// unswitch fix.)
92static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub",
93 cl::Hidden, cl::init(false));
94
95
96/// Returns the bitwidth of the given scalar or pointer type. For vector types,
97/// returns the element type's bitwidth.
98static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
99 if (unsigned BitWidth = Ty->getScalarSizeInBits())
100 return BitWidth;
101
102 return DL.getPointerTypeSizeInBits(Ty);
103}
104
105namespace {
106
107// Simplifying using an assume can only be done in a particular control-flow
108// context (the context instruction provides that context). If an assume and
109// the context instruction are not in the same block then the DT helps in
110// figuring out if we can use it.
111struct Query {
112 const DataLayout &DL;
113 AssumptionCache *AC;
114 const Instruction *CxtI;
115 const DominatorTree *DT;
116
117 // Unlike the other analyses, this may be a nullptr because not all clients
118 // provide it currently.
119 OptimizationRemarkEmitter *ORE;
120
121 /// If true, it is safe to use metadata during simplification.
122 InstrInfoQuery IIQ;
123
124 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
125 const DominatorTree *DT, bool UseInstrInfo,
126 OptimizationRemarkEmitter *ORE = nullptr)
127 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
128};
129
130} // end anonymous namespace
131
132// Given the provided Value and, potentially, a context instruction, return
133// the preferred context instruction (if any).
134static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
135 // If we've been provided with a context instruction, then use that (provided
136 // it has been inserted).
137 if (CxtI && CxtI->getParent())
138 return CxtI;
139
140 // If the value is really an already-inserted instruction, then use that.
141 CxtI = dyn_cast<Instruction>(V);
142 if (CxtI && CxtI->getParent())
143 return CxtI;
144
145 return nullptr;
146}
147
148static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
149 // If we've been provided with a context instruction, then use that (provided
150 // it has been inserted).
151 if (CxtI && CxtI->getParent())
152 return CxtI;
153
154 // If the value is really an already-inserted instruction, then use that.
155 CxtI = dyn_cast<Instruction>(V1);
156 if (CxtI && CxtI->getParent())
157 return CxtI;
158
159 CxtI = dyn_cast<Instruction>(V2);
160 if (CxtI && CxtI->getParent())
161 return CxtI;
162
163 return nullptr;
164}
165
166static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
167 const APInt &DemandedElts,
168 APInt &DemandedLHS, APInt &DemandedRHS) {
169 // The length of scalable vectors is unknown at compile time, thus we
170 // cannot check their values
171 if (isa<ScalableVectorType>(Shuf->getType()))
172 return false;
173
174 int NumElts =
175 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
176 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
177 DemandedLHS = DemandedRHS = APInt::getZero(NumElts);
178 if (DemandedElts.isZero())
179 return true;
180 // Simple case of a shuffle with zeroinitializer.
181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
182 DemandedLHS.setBit(0);
183 return true;
184 }
185 for (int i = 0; i != NumMaskElts; ++i) {
186 if (!DemandedElts[i])
187 continue;
188 int M = Shuf->getMaskValue(i);
189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant")(static_cast <bool> (M < (NumElts * 2) && "Invalid shuffle mask constant"
) ? void (0) : __assert_fail ("M < (NumElts * 2) && \"Invalid shuffle mask constant\""
, "llvm/lib/Analysis/ValueTracking.cpp", 189, __extension__ __PRETTY_FUNCTION__
))
;
190
191 // For undef elements, we don't know anything about the common state of
192 // the shuffle result.
193 if (M == -1)
194 return false;
195 if (M < NumElts)
196 DemandedLHS.setBit(M % NumElts);
197 else
198 DemandedRHS.setBit(M % NumElts);
199 }
200
201 return true;
202}
203
204static void computeKnownBits(const Value *V, const APInt &DemandedElts,
205 KnownBits &Known, unsigned Depth, const Query &Q);
206
207static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
208 const Query &Q) {
209 // FIXME: We currently have no way to represent the DemandedElts of a scalable
210 // vector
211 if (isa<ScalableVectorType>(V->getType())) {
19
Called C++ object pointer is null
212 Known.resetAll();
213 return;
214 }
215
216 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
217 APInt DemandedElts =
218 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
219 computeKnownBits(V, DemandedElts, Known, Depth, Q);
220}
221
222void llvm::computeKnownBits(const Value *V, KnownBits &Known,
223 const DataLayout &DL, unsigned Depth,
224 AssumptionCache *AC, const Instruction *CxtI,
225 const DominatorTree *DT,
226 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
227 ::computeKnownBits(V, Known, Depth,
228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
229}
230
231void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
232 KnownBits &Known, const DataLayout &DL,
233 unsigned Depth, AssumptionCache *AC,
234 const Instruction *CxtI, const DominatorTree *DT,
235 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
236 ::computeKnownBits(V, DemandedElts, Known, Depth,
237 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
238}
239
240static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
241 unsigned Depth, const Query &Q);
242
243static KnownBits computeKnownBits(const Value *V, unsigned Depth,
244 const Query &Q);
245
246KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
247 unsigned Depth, AssumptionCache *AC,
248 const Instruction *CxtI,
249 const DominatorTree *DT,
250 OptimizationRemarkEmitter *ORE,
251 bool UseInstrInfo) {
252 return ::computeKnownBits(
253 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
254}
255
256KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
257 const DataLayout &DL, unsigned Depth,
258 AssumptionCache *AC, const Instruction *CxtI,
259 const DominatorTree *DT,
260 OptimizationRemarkEmitter *ORE,
261 bool UseInstrInfo) {
262 return ::computeKnownBits(
263 V, DemandedElts, Depth,
264 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
265}
266
267bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
268 const DataLayout &DL, AssumptionCache *AC,
269 const Instruction *CxtI, const DominatorTree *DT,
270 bool UseInstrInfo) {
271 assert(LHS->getType() == RHS->getType() &&(static_cast <bool> (LHS->getType() == RHS->getType
() && "LHS and RHS should have the same type") ? void
(0) : __assert_fail ("LHS->getType() == RHS->getType() && \"LHS and RHS should have the same type\""
, "llvm/lib/Analysis/ValueTracking.cpp", 272, __extension__ __PRETTY_FUNCTION__
))
272 "LHS and RHS should have the same type")(static_cast <bool> (LHS->getType() == RHS->getType
() && "LHS and RHS should have the same type") ? void
(0) : __assert_fail ("LHS->getType() == RHS->getType() && \"LHS and RHS should have the same type\""
, "llvm/lib/Analysis/ValueTracking.cpp", 272, __extension__ __PRETTY_FUNCTION__
))
;
273 assert(LHS->getType()->isIntOrIntVectorTy() &&(static_cast <bool> (LHS->getType()->isIntOrIntVectorTy
() && "LHS and RHS should be integers") ? void (0) : __assert_fail
("LHS->getType()->isIntOrIntVectorTy() && \"LHS and RHS should be integers\""
, "llvm/lib/Analysis/ValueTracking.cpp", 274, __extension__ __PRETTY_FUNCTION__
))
274 "LHS and RHS should be integers")(static_cast <bool> (LHS->getType()->isIntOrIntVectorTy
() && "LHS and RHS should be integers") ? void (0) : __assert_fail
("LHS->getType()->isIntOrIntVectorTy() && \"LHS and RHS should be integers\""
, "llvm/lib/Analysis/ValueTracking.cpp", 274, __extension__ __PRETTY_FUNCTION__
))
;
275 // Look for an inverted mask: (X & ~M) op (Y & M).
276 {
277 Value *M;
278 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279 match(RHS, m_c_And(m_Specific(M), m_Value())))
280 return true;
281 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
282 match(LHS, m_c_And(m_Specific(M), m_Value())))
283 return true;
284 }
285 // Look for: (A & B) op ~(A | B)
286 {
287 Value *A, *B;
288 if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
289 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
290 return true;
291 if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
292 match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
293 return true;
294 }
295 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
296 KnownBits LHSKnown(IT->getBitWidth());
297 KnownBits RHSKnown(IT->getBitWidth());
298 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
299 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
300 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
301}
302
303bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
304 return !I->user_empty() && all_of(I->users(), [](const User *U) {
305 ICmpInst::Predicate P;
306 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
307 });
308}
309
310static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
311 const Query &Q);
312
313bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
314 bool OrZero, unsigned Depth,
315 AssumptionCache *AC, const Instruction *CxtI,
316 const DominatorTree *DT, bool UseInstrInfo) {
317 return ::isKnownToBeAPowerOfTwo(
318 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
319}
320
321static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
322 unsigned Depth, const Query &Q);
323
324static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
325
326bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
327 AssumptionCache *AC, const Instruction *CxtI,
328 const DominatorTree *DT, bool UseInstrInfo) {
329 return ::isKnownNonZero(V, Depth,
330 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
331}
332
333bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
334 unsigned Depth, AssumptionCache *AC,
335 const Instruction *CxtI, const DominatorTree *DT,
336 bool UseInstrInfo) {
337 KnownBits Known =
338 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
339 return Known.isNonNegative();
340}
341
342bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
343 AssumptionCache *AC, const Instruction *CxtI,
344 const DominatorTree *DT, bool UseInstrInfo) {
345 if (auto *CI = dyn_cast<ConstantInt>(V))
346 return CI->getValue().isStrictlyPositive();
347
348 // TODO: We'd doing two recursive queries here. We should factor this such
349 // that only a single query is needed.
350 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
351 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
352}
353
354bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
355 AssumptionCache *AC, const Instruction *CxtI,
356 const DominatorTree *DT, bool UseInstrInfo) {
357 KnownBits Known =
358 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
359 return Known.isNegative();
360}
361
362static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
363 const Query &Q);
364
365bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
366 const DataLayout &DL, AssumptionCache *AC,
367 const Instruction *CxtI, const DominatorTree *DT,
368 bool UseInstrInfo) {
369 return ::isKnownNonEqual(V1, V2, 0,
370 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
371 UseInstrInfo, /*ORE=*/nullptr));
372}
373
374static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
375 const Query &Q);
376
377bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
378 const DataLayout &DL, unsigned Depth,
379 AssumptionCache *AC, const Instruction *CxtI,
380 const DominatorTree *DT, bool UseInstrInfo) {
381 return ::MaskedValueIsZero(
382 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
383}
384
385static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
386 unsigned Depth, const Query &Q);
387
388static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
389 const Query &Q) {
390 // FIXME: We currently have no way to represent the DemandedElts of a scalable
391 // vector
392 if (isa<ScalableVectorType>(V->getType()))
393 return 1;
394
395 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
396 APInt DemandedElts =
397 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
398 return ComputeNumSignBits(V, DemandedElts, Depth, Q);
399}
400
401unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
402 unsigned Depth, AssumptionCache *AC,
403 const Instruction *CxtI,
404 const DominatorTree *DT, bool UseInstrInfo) {
405 return ::ComputeNumSignBits(
406 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
407}
408
409unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
410 unsigned Depth, AssumptionCache *AC,
411 const Instruction *CxtI,
412 const DominatorTree *DT) {
413 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
414 return V->getType()->getScalarSizeInBits() - SignBits + 1;
415}
416
417static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
418 bool NSW, const APInt &DemandedElts,
419 KnownBits &KnownOut, KnownBits &Known2,
420 unsigned Depth, const Query &Q) {
421 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
422
423 // If one operand is unknown and we have no nowrap information,
424 // the result will be unknown independently of the second operand.
425 if (KnownOut.isUnknown() && !NSW)
426 return;
427
428 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
429 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
430}
431
432static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
433 const APInt &DemandedElts, KnownBits &Known,
434 KnownBits &Known2, unsigned Depth,
435 const Query &Q) {
436 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
437 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
438
439 bool isKnownNegative = false;
440 bool isKnownNonNegative = false;
441 // If the multiplication is known not to overflow, compute the sign bit.
442 if (NSW) {
443 if (Op0 == Op1) {
444 // The product of a number with itself is non-negative.
445 isKnownNonNegative = true;
446 } else {
447 bool isKnownNonNegativeOp1 = Known.isNonNegative();
448 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
449 bool isKnownNegativeOp1 = Known.isNegative();
450 bool isKnownNegativeOp0 = Known2.isNegative();
451 // The product of two numbers with the same sign is non-negative.
452 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
453 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
454 // The product of a negative number and a non-negative number is either
455 // negative or zero.
456 if (!isKnownNonNegative)
457 isKnownNegative =
458 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
459 Known2.isNonZero()) ||
460 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
461 }
462 }
463
464 bool SelfMultiply = Op0 == Op1;
465 // TODO: SelfMultiply can be poison, but not undef.
466 if (SelfMultiply)
467 SelfMultiply &=
468 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
469 Known = KnownBits::mul(Known, Known2, SelfMultiply);
470
471 // Only make use of no-wrap flags if we failed to compute the sign bit
472 // directly. This matters if the multiplication always overflows, in
473 // which case we prefer to follow the result of the direct computation,
474 // though as the program is invoking undefined behaviour we can choose
475 // whatever we like here.
476 if (isKnownNonNegative && !Known.isNegative())
477 Known.makeNonNegative();
478 else if (isKnownNegative && !Known.isNonNegative())
479 Known.makeNegative();
480}
481
482void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
483 KnownBits &Known) {
484 unsigned BitWidth = Known.getBitWidth();
485 unsigned NumRanges = Ranges.getNumOperands() / 2;
486 assert(NumRanges >= 1)(static_cast <bool> (NumRanges >= 1) ? void (0) : __assert_fail
("NumRanges >= 1", "llvm/lib/Analysis/ValueTracking.cpp",
486, __extension__ __PRETTY_FUNCTION__))
;
487
488 Known.Zero.setAllBits();
489 Known.One.setAllBits();
490
491 for (unsigned i = 0; i < NumRanges; ++i) {
492 ConstantInt *Lower =
493 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
494 ConstantInt *Upper =
495 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
496 ConstantRange Range(Lower->getValue(), Upper->getValue());
497
498 // The first CommonPrefixBits of all values in Range are equal.
499 unsigned CommonPrefixBits =
500 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
501 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
502 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
503 Known.One &= UnsignedMax & Mask;
504 Known.Zero &= ~UnsignedMax & Mask;
505 }
506}
507
508static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
509 SmallVector<const Value *, 16> WorkSet(1, I);
510 SmallPtrSet<const Value *, 32> Visited;
511 SmallPtrSet<const Value *, 16> EphValues;
512
513 // The instruction defining an assumption's condition itself is always
514 // considered ephemeral to that assumption (even if it has other
515 // non-ephemeral users). See r246696's test case for an example.
516 if (is_contained(I->operands(), E))
517 return true;
518
519 while (!WorkSet.empty()) {
520 const Value *V = WorkSet.pop_back_val();
521 if (!Visited.insert(V).second)
522 continue;
523
524 // If all uses of this value are ephemeral, then so is this value.
525 if (llvm::all_of(V->users(), [&](const User *U) {
526 return EphValues.count(U);
527 })) {
528 if (V == E)
529 return true;
530
531 if (V == I || (isa<Instruction>(V) &&
532 !cast<Instruction>(V)->mayHaveSideEffects() &&
533 !cast<Instruction>(V)->isTerminator())) {
534 EphValues.insert(V);
535 if (const User *U = dyn_cast<User>(V))
536 append_range(WorkSet, U->operands());
537 }
538 }
539 }
540
541 return false;
542}
543
544// Is this an intrinsic that cannot be speculated but also cannot trap?
545bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
546 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
547 return CI->isAssumeLikeIntrinsic();
548
549 return false;
550}
551
552bool llvm::isValidAssumeForContext(const Instruction *Inv,
553 const Instruction *CxtI,
554 const DominatorTree *DT) {
555 // There are two restrictions on the use of an assume:
556 // 1. The assume must dominate the context (or the control flow must
557 // reach the assume whenever it reaches the context).
558 // 2. The context must not be in the assume's set of ephemeral values
559 // (otherwise we will use the assume to prove that the condition
560 // feeding the assume is trivially true, thus causing the removal of
561 // the assume).
562
563 if (Inv->getParent() == CxtI->getParent()) {
564 // If Inv and CtxI are in the same block, check if the assume (Inv) is first
565 // in the BB.
566 if (Inv->comesBefore(CxtI))
567 return true;
568
569 // Don't let an assume affect itself - this would cause the problems
570 // `isEphemeralValueOf` is trying to prevent, and it would also make
571 // the loop below go out of bounds.
572 if (Inv == CxtI)
573 return false;
574
575 // The context comes first, but they're both in the same block.
576 // Make sure there is nothing in between that might interrupt
577 // the control flow, not even CxtI itself.
578 // We limit the scan distance between the assume and its context instruction
579 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
580 // it can be adjusted if needed (could be turned into a cl::opt).
581 auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
582 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
583 return false;
584
585 return !isEphemeralValueOf(Inv, CxtI);
586 }
587
588 // Inv and CxtI are in different blocks.
589 if (DT) {
590 if (DT->dominates(Inv, CxtI))
591 return true;
592 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
593 // We don't have a DT, but this trivially dominates.
594 return true;
595 }
596
597 return false;
598}
599
600static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
601 // v u> y implies v != 0.
602 if (Pred == ICmpInst::ICMP_UGT)
603 return true;
604
605 // Special-case v != 0 to also handle v != null.
606 if (Pred == ICmpInst::ICMP_NE)
607 return match(RHS, m_Zero());
608
609 // All other predicates - rely on generic ConstantRange handling.
610 const APInt *C;
611 if (!match(RHS, m_APInt(C)))
612 return false;
613
614 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
615 return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
616}
617
618static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
619 // Use of assumptions is context-sensitive. If we don't have a context, we
620 // cannot use them!
621 if (!Q.AC || !Q.CxtI)
622 return false;
623
624 if (Q.CxtI && V->getType()->isPointerTy()) {
625 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
626 if (!NullPointerIsDefined(Q.CxtI->getFunction(),
627 V->getType()->getPointerAddressSpace()))
628 AttrKinds.push_back(Attribute::Dereferenceable);
629
630 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
631 return true;
632 }
633
634 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
635 if (!AssumeVH)
636 continue;
637 CallInst *I = cast<CallInst>(AssumeVH);
638 assert(I->getFunction() == Q.CxtI->getFunction() &&(static_cast <bool> (I->getFunction() == Q.CxtI->
getFunction() && "Got assumption for the wrong function!"
) ? void (0) : __assert_fail ("I->getFunction() == Q.CxtI->getFunction() && \"Got assumption for the wrong function!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 639, __extension__ __PRETTY_FUNCTION__
))
639 "Got assumption for the wrong function!")(static_cast <bool> (I->getFunction() == Q.CxtI->
getFunction() && "Got assumption for the wrong function!"
) ? void (0) : __assert_fail ("I->getFunction() == Q.CxtI->getFunction() && \"Got assumption for the wrong function!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 639, __extension__ __PRETTY_FUNCTION__
))
;
640
641 // Warning: This loop can end up being somewhat performance sensitive.
642 // We're running this loop for once for each value queried resulting in a
643 // runtime of ~O(#assumes * #values).
644
645 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&(static_cast <bool> (I->getCalledFunction()->getIntrinsicID
() == Intrinsic::assume && "must be an assume intrinsic"
) ? void (0) : __assert_fail ("I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && \"must be an assume intrinsic\""
, "llvm/lib/Analysis/ValueTracking.cpp", 646, __extension__ __PRETTY_FUNCTION__
))
646 "must be an assume intrinsic")(static_cast <bool> (I->getCalledFunction()->getIntrinsicID
() == Intrinsic::assume && "must be an assume intrinsic"
) ? void (0) : __assert_fail ("I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && \"must be an assume intrinsic\""
, "llvm/lib/Analysis/ValueTracking.cpp", 646, __extension__ __PRETTY_FUNCTION__
))
;
647
648 Value *RHS;
649 CmpInst::Predicate Pred;
650 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
651 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
652 return false;
653
654 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
655 return true;
656 }
657
658 return false;
659}
660
661static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
662 unsigned Depth, const Query &Q) {
663 // Use of assumptions is context-sensitive. If we don't have a context, we
664 // cannot use them!
665 if (!Q.AC || !Q.CxtI)
666 return;
667
668 unsigned BitWidth = Known.getBitWidth();
669
670 // Refine Known set if the pointer alignment is set by assume bundles.
671 if (V->getType()->isPointerTy()) {
672 if (RetainedKnowledge RK = getKnowledgeValidInContext(
673 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
674 if (isPowerOf2_64(RK.ArgValue))
675 Known.Zero.setLowBits(Log2_64(RK.ArgValue));
676 }
677 }
678
679 // Note that the patterns below need to be kept in sync with the code
680 // in AssumptionCache::updateAffectedValues.
681
682 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
683 if (!AssumeVH)
684 continue;
685 CallInst *I = cast<CallInst>(AssumeVH);
686 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&(static_cast <bool> (I->getParent()->getParent() ==
Q.CxtI->getParent()->getParent() && "Got assumption for the wrong function!"
) ? void (0) : __assert_fail ("I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && \"Got assumption for the wrong function!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 687, __extension__ __PRETTY_FUNCTION__
))
687 "Got assumption for the wrong function!")(static_cast <bool> (I->getParent()->getParent() ==
Q.CxtI->getParent()->getParent() && "Got assumption for the wrong function!"
) ? void (0) : __assert_fail ("I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && \"Got assumption for the wrong function!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 687, __extension__ __PRETTY_FUNCTION__
))
;
688
689 // Warning: This loop can end up being somewhat performance sensitive.
690 // We're running this loop for once for each value queried resulting in a
691 // runtime of ~O(#assumes * #values).
692
693 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&(static_cast <bool> (I->getCalledFunction()->getIntrinsicID
() == Intrinsic::assume && "must be an assume intrinsic"
) ? void (0) : __assert_fail ("I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && \"must be an assume intrinsic\""
, "llvm/lib/Analysis/ValueTracking.cpp", 694, __extension__ __PRETTY_FUNCTION__
))
694 "must be an assume intrinsic")(static_cast <bool> (I->getCalledFunction()->getIntrinsicID
() == Intrinsic::assume && "must be an assume intrinsic"
) ? void (0) : __assert_fail ("I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && \"must be an assume intrinsic\""
, "llvm/lib/Analysis/ValueTracking.cpp", 694, __extension__ __PRETTY_FUNCTION__
))
;
695
696 Value *Arg = I->getArgOperand(0);
697
698 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
699 assert(BitWidth == 1 && "assume operand is not i1?")(static_cast <bool> (BitWidth == 1 && "assume operand is not i1?"
) ? void (0) : __assert_fail ("BitWidth == 1 && \"assume operand is not i1?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 699, __extension__ __PRETTY_FUNCTION__
))
;
700 Known.setAllOnes();
701 return;
702 }
703 if (match(Arg, m_Not(m_Specific(V))) &&
704 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
705 assert(BitWidth == 1 && "assume operand is not i1?")(static_cast <bool> (BitWidth == 1 && "assume operand is not i1?"
) ? void (0) : __assert_fail ("BitWidth == 1 && \"assume operand is not i1?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 705, __extension__ __PRETTY_FUNCTION__
))
;
706 Known.setAllZero();
707 return;
708 }
709
710 // The remaining tests are all recursive, so bail out if we hit the limit.
711 if (Depth == MaxAnalysisRecursionDepth)
712 continue;
713
714 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
715 if (!Cmp)
716 continue;
717
718 // We are attempting to compute known bits for the operands of an assume.
719 // Do not try to use other assumptions for those recursive calls because
720 // that can lead to mutual recursion and a compile-time explosion.
721 // An example of the mutual recursion: computeKnownBits can call
722 // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
723 // and so on.
724 Query QueryNoAC = Q;
725 QueryNoAC.AC = nullptr;
726
727 // Note that ptrtoint may change the bitwidth.
728 Value *A, *B;
729 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
730
731 CmpInst::Predicate Pred;
732 uint64_t C;
733 switch (Cmp->getPredicate()) {
734 default:
735 break;
736 case ICmpInst::ICMP_EQ:
737 // assume(v = a)
738 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
739 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
740 KnownBits RHSKnown =
741 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
742 Known.Zero |= RHSKnown.Zero;
743 Known.One |= RHSKnown.One;
744 // assume(v & b = a)
745 } else if (match(Cmp,
746 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
747 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
748 KnownBits RHSKnown =
749 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
750 KnownBits MaskKnown =
751 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
752
753 // For those bits in the mask that are known to be one, we can propagate
754 // known bits from the RHS to V.
755 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
756 Known.One |= RHSKnown.One & MaskKnown.One;
757 // assume(~(v & b) = a)
758 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
759 m_Value(A))) &&
760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
761 KnownBits RHSKnown =
762 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
763 KnownBits MaskKnown =
764 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
765
766 // For those bits in the mask that are known to be one, we can propagate
767 // inverted known bits from the RHS to V.
768 Known.Zero |= RHSKnown.One & MaskKnown.One;
769 Known.One |= RHSKnown.Zero & MaskKnown.One;
770 // assume(v | b = a)
771 } else if (match(Cmp,
772 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
774 KnownBits RHSKnown =
775 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
776 KnownBits BKnown =
777 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
778
779 // For those bits in B that are known to be zero, we can propagate known
780 // bits from the RHS to V.
781 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
782 Known.One |= RHSKnown.One & BKnown.Zero;
783 // assume(~(v | b) = a)
784 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
785 m_Value(A))) &&
786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
787 KnownBits RHSKnown =
788 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
789 KnownBits BKnown =
790 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
791
792 // For those bits in B that are known to be zero, we can propagate
793 // inverted known bits from the RHS to V.
794 Known.Zero |= RHSKnown.One & BKnown.Zero;
795 Known.One |= RHSKnown.Zero & BKnown.Zero;
796 // assume(v ^ b = a)
797 } else if (match(Cmp,
798 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
800 KnownBits RHSKnown =
801 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
802 KnownBits BKnown =
803 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
804
805 // For those bits in B that are known to be zero, we can propagate known
806 // bits from the RHS to V. For those bits in B that are known to be one,
807 // we can propagate inverted known bits from the RHS to V.
808 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
809 Known.One |= RHSKnown.One & BKnown.Zero;
810 Known.Zero |= RHSKnown.One & BKnown.One;
811 Known.One |= RHSKnown.Zero & BKnown.One;
812 // assume(~(v ^ b) = a)
813 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
814 m_Value(A))) &&
815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
816 KnownBits RHSKnown =
817 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
818 KnownBits BKnown =
819 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
820
821 // For those bits in B that are known to be zero, we can propagate
822 // inverted known bits from the RHS to V. For those bits in B that are
823 // known to be one, we can propagate known bits from the RHS to V.
824 Known.Zero |= RHSKnown.One & BKnown.Zero;
825 Known.One |= RHSKnown.Zero & BKnown.Zero;
826 Known.Zero |= RHSKnown.Zero & BKnown.One;
827 Known.One |= RHSKnown.One & BKnown.One;
828 // assume(v << c = a)
829 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
830 m_Value(A))) &&
831 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
832 KnownBits RHSKnown =
833 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
834
835 // For those bits in RHS that are known, we can propagate them to known
836 // bits in V shifted to the right by C.
837 RHSKnown.Zero.lshrInPlace(C);
838 Known.Zero |= RHSKnown.Zero;
839 RHSKnown.One.lshrInPlace(C);
840 Known.One |= RHSKnown.One;
841 // assume(~(v << c) = a)
842 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
843 m_Value(A))) &&
844 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
845 KnownBits RHSKnown =
846 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
847 // For those bits in RHS that are known, we can propagate them inverted
848 // to known bits in V shifted to the right by C.
849 RHSKnown.One.lshrInPlace(C);
850 Known.Zero |= RHSKnown.One;
851 RHSKnown.Zero.lshrInPlace(C);
852 Known.One |= RHSKnown.Zero;
853 // assume(v >> c = a)
854 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
855 m_Value(A))) &&
856 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
857 KnownBits RHSKnown =
858 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
859 // For those bits in RHS that are known, we can propagate them to known
860 // bits in V shifted to the right by C.
861 Known.Zero |= RHSKnown.Zero << C;
862 Known.One |= RHSKnown.One << C;
863 // assume(~(v >> c) = a)
864 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
865 m_Value(A))) &&
866 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
867 KnownBits RHSKnown =
868 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
869 // For those bits in RHS that are known, we can propagate them inverted
870 // to known bits in V shifted to the right by C.
871 Known.Zero |= RHSKnown.One << C;
872 Known.One |= RHSKnown.Zero << C;
873 }
874 break;
875 case ICmpInst::ICMP_SGE:
876 // assume(v >=_s c) where c is non-negative
877 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
878 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
879 KnownBits RHSKnown =
880 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
881
882 if (RHSKnown.isNonNegative()) {
883 // We know that the sign bit is zero.
884 Known.makeNonNegative();
885 }
886 }
887 break;
888 case ICmpInst::ICMP_SGT:
889 // assume(v >_s c) where c is at least -1.
890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
892 KnownBits RHSKnown =
893 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
894
895 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
896 // We know that the sign bit is zero.
897 Known.makeNonNegative();
898 }
899 }
900 break;
901 case ICmpInst::ICMP_SLE:
902 // assume(v <=_s c) where c is negative
903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
905 KnownBits RHSKnown =
906 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
907
908 if (RHSKnown.isNegative()) {
909 // We know that the sign bit is one.
910 Known.makeNegative();
911 }
912 }
913 break;
914 case ICmpInst::ICMP_SLT:
915 // assume(v <_s c) where c is non-positive
916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
918 KnownBits RHSKnown =
919 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
920
921 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
922 // We know that the sign bit is one.
923 Known.makeNegative();
924 }
925 }
926 break;
927 case ICmpInst::ICMP_ULE:
928 // assume(v <=_u c)
929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
931 KnownBits RHSKnown =
932 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
933
934 // Whatever high bits in c are zero are known to be zero.
935 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
936 }
937 break;
938 case ICmpInst::ICMP_ULT:
939 // assume(v <_u c)
940 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
941 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
942 KnownBits RHSKnown =
943 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
944
945 // If the RHS is known zero, then this assumption must be wrong (nothing
946 // is unsigned less than zero). Signal a conflict and get out of here.
947 if (RHSKnown.isZero()) {
948 Known.Zero.setAllBits();
949 Known.One.setAllBits();
950 break;
951 }
952
953 // Whatever high bits in c are zero are known to be zero (if c is a power
954 // of 2, then one more).
955 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
956 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
957 else
958 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
959 }
960 break;
961 }
962 }
963
964 // If assumptions conflict with each other or previous known bits, then we
965 // have a logical fallacy. It's possible that the assumption is not reachable,
966 // so this isn't a real bug. On the other hand, the program may have undefined
967 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
968 // clear out the known bits, try to warn the user, and hope for the best.
969 if (Known.Zero.intersects(Known.One)) {
970 Known.resetAll();
971
972 if (Q.ORE)
973 Q.ORE->emit([&]() {
974 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
975 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
976 CxtI)
977 << "Detected conflicting code assumptions. Program may "
978 "have undefined behavior, or compiler may have "
979 "internal error.";
980 });
981 }
982}
983
984/// Compute known bits from a shift operator, including those with a
985/// non-constant shift amount. Known is the output of this function. Known2 is a
986/// pre-allocated temporary with the same bit width as Known and on return
987/// contains the known bit of the shift value source. KF is an
988/// operator-specific function that, given the known-bits and a shift amount,
989/// compute the implied known-bits of the shift operator's result respectively
990/// for that shift amount. The results from calling KF are conservatively
991/// combined for all permitted shift amounts.
992static void computeKnownBitsFromShiftOperator(
993 const Operator *I, const APInt &DemandedElts, KnownBits &Known,
994 KnownBits &Known2, unsigned Depth, const Query &Q,
995 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
996 unsigned BitWidth = Known.getBitWidth();
997 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
998 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
999
1000 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1001 // BitWidth > 64 and any upper bits are known, we'll end up returning the
1002 // limit value (which implies all bits are known).
1003 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1004 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1005 bool ShiftAmtIsConstant = Known.isConstant();
1006 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
1007
1008 if (ShiftAmtIsConstant) {
1009 Known = KF(Known2, Known);
1010
1011 // If the known bits conflict, this must be an overflowing left shift, so
1012 // the shift result is poison. We can return anything we want. Choose 0 for
1013 // the best folding opportunity.
1014 if (Known.hasConflict())
1015 Known.setAllZero();
1016
1017 return;
1018 }
1019
1020 // If the shift amount could be greater than or equal to the bit-width of the
1021 // LHS, the value could be poison, but bail out because the check below is
1022 // expensive.
1023 // TODO: Should we just carry on?
1024 if (MaxShiftAmtIsOutOfRange) {
1025 Known.resetAll();
1026 return;
1027 }
1028
1029 // It would be more-clearly correct to use the two temporaries for this
1030 // calculation. Reusing the APInts here to prevent unnecessary allocations.
1031 Known.resetAll();
1032
1033 // If we know the shifter operand is nonzero, we can sometimes infer more
1034 // known bits. However this is expensive to compute, so be lazy about it and
1035 // only compute it when absolutely necessary.
1036 Optional<bool> ShifterOperandIsNonZero;
1037
1038 // Early exit if we can't constrain any well-defined shift amount.
1039 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1040 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1041 ShifterOperandIsNonZero =
1042 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1043 if (!*ShifterOperandIsNonZero)
1044 return;
1045 }
1046
1047 Known.Zero.setAllBits();
1048 Known.One.setAllBits();
1049 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1050 // Combine the shifted known input bits only for those shift amounts
1051 // compatible with its known constraints.
1052 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1053 continue;
1054 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1055 continue;
1056 // If we know the shifter is nonzero, we may be able to infer more known
1057 // bits. This check is sunk down as far as possible to avoid the expensive
1058 // call to isKnownNonZero if the cheaper checks above fail.
1059 if (ShiftAmt == 0) {
1060 if (!ShifterOperandIsNonZero.hasValue())
1061 ShifterOperandIsNonZero =
1062 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1063 if (*ShifterOperandIsNonZero)
1064 continue;
1065 }
1066
1067 Known = KnownBits::commonBits(
1068 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1069 }
1070
1071 // If the known bits conflict, the result is poison. Return a 0 and hope the
1072 // caller can further optimize that.
1073 if (Known.hasConflict())
1074 Known.setAllZero();
1075}
1076
1077static void computeKnownBitsFromOperator(const Operator *I,
1078 const APInt &DemandedElts,
1079 KnownBits &Known, unsigned Depth,
1080 const Query &Q) {
1081 unsigned BitWidth = Known.getBitWidth();
1082
1083 KnownBits Known2(BitWidth);
1084 switch (I->getOpcode()) {
1
Control jumps to 'case PHI:' at line 1424
1085 default: break;
1086 case Instruction::Load:
1087 if (MDNode *MD =
1088 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1089 computeKnownBitsFromRangeMetadata(*MD, Known);
1090 break;
1091 case Instruction::And: {
1092 // If either the LHS or the RHS are Zero, the result is zero.
1093 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1094 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1095
1096 Known &= Known2;
1097
1098 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1099 // here we handle the more general case of adding any odd number by
1100 // matching the form add(x, add(x, y)) where y is odd.
1101 // TODO: This could be generalized to clearing any bit set in y where the
1102 // following bit is known to be unset in y.
1103 Value *X = nullptr, *Y = nullptr;
1104 if (!Known.Zero[0] && !Known.One[0] &&
1105 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1106 Known2.resetAll();
1107 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1108 if (Known2.countMinTrailingOnes() > 0)
1109 Known.Zero.setBit(0);
1110 }
1111 break;
1112 }
1113 case Instruction::Or:
1114 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1115 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1116
1117 Known |= Known2;
1118 break;
1119 case Instruction::Xor:
1120 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1121 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1122
1123 Known ^= Known2;
1124 break;
1125 case Instruction::Mul: {
1126 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1127 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1128 Known, Known2, Depth, Q);
1129 break;
1130 }
1131 case Instruction::UDiv: {
1132 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1133 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1134 Known = KnownBits::udiv(Known, Known2);
1135 break;
1136 }
1137 case Instruction::Select: {
1138 const Value *LHS = nullptr, *RHS = nullptr;
1139 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1140 if (SelectPatternResult::isMinOrMax(SPF)) {
1141 computeKnownBits(RHS, Known, Depth + 1, Q);
1142 computeKnownBits(LHS, Known2, Depth + 1, Q);
1143 switch (SPF) {
1144 default:
1145 llvm_unreachable("Unhandled select pattern flavor!")::llvm::llvm_unreachable_internal("Unhandled select pattern flavor!"
, "llvm/lib/Analysis/ValueTracking.cpp", 1145)
;
1146 case SPF_SMAX:
1147 Known = KnownBits::smax(Known, Known2);
1148 break;
1149 case SPF_SMIN:
1150 Known = KnownBits::smin(Known, Known2);
1151 break;
1152 case SPF_UMAX:
1153 Known = KnownBits::umax(Known, Known2);
1154 break;
1155 case SPF_UMIN:
1156 Known = KnownBits::umin(Known, Known2);
1157 break;
1158 }
1159 break;
1160 }
1161
1162 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1163 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1164
1165 // Only known if known in both the LHS and RHS.
1166 Known = KnownBits::commonBits(Known, Known2);
1167
1168 if (SPF == SPF_ABS) {
1169 // RHS from matchSelectPattern returns the negation part of abs pattern.
1170 // If the negate has an NSW flag we can assume the sign bit of the result
1171 // will be 0 because that makes abs(INT_MIN) undefined.
1172 if (match(RHS, m_Neg(m_Specific(LHS))) &&
1173 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
1174 Known.Zero.setSignBit();
1175 }
1176
1177 break;
1178 }
1179 case Instruction::FPTrunc:
1180 case Instruction::FPExt:
1181 case Instruction::FPToUI:
1182 case Instruction::FPToSI:
1183 case Instruction::SIToFP:
1184 case Instruction::UIToFP:
1185 break; // Can't work with floating point.
1186 case Instruction::PtrToInt:
1187 case Instruction::IntToPtr:
1188 // Fall through and handle them the same as zext/trunc.
1189 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1190 case Instruction::ZExt:
1191 case Instruction::Trunc: {
1192 Type *SrcTy = I->getOperand(0)->getType();
1193
1194 unsigned SrcBitWidth;
1195 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1196 // which fall through here.
1197 Type *ScalarTy = SrcTy->getScalarType();
1198 SrcBitWidth = ScalarTy->isPointerTy() ?
1199 Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1200 Q.DL.getTypeSizeInBits(ScalarTy);
1201
1202 assert(SrcBitWidth && "SrcBitWidth can't be zero")(static_cast <bool> (SrcBitWidth && "SrcBitWidth can't be zero"
) ? void (0) : __assert_fail ("SrcBitWidth && \"SrcBitWidth can't be zero\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1202, __extension__ __PRETTY_FUNCTION__
))
;
1203 Known = Known.anyextOrTrunc(SrcBitWidth);
1204 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1205 Known = Known.zextOrTrunc(BitWidth);
1206 break;
1207 }
1208 case Instruction::BitCast: {
1209 Type *SrcTy = I->getOperand(0)->getType();
1210 if (SrcTy->isIntOrPtrTy() &&
1211 // TODO: For now, not handling conversions like:
1212 // (bitcast i64 %x to <2 x i32>)
1213 !I->getType()->isVectorTy()) {
1214 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1215 break;
1216 }
1217
1218 // Handle cast from vector integer type to scalar or vector integer.
1219 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1220 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1221 !I->getType()->isIntOrIntVectorTy())
1222 break;
1223
1224 // Look through a cast from narrow vector elements to wider type.
1225 // Examples: v4i32 -> v2i64, v3i8 -> v24
1226 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1227 if (BitWidth % SubBitWidth == 0) {
1228 // Known bits are automatically intersected across demanded elements of a
1229 // vector. So for example, if a bit is computed as known zero, it must be
1230 // zero across all demanded elements of the vector.
1231 //
1232 // For this bitcast, each demanded element of the output is sub-divided
1233 // across a set of smaller vector elements in the source vector. To get
1234 // the known bits for an entire element of the output, compute the known
1235 // bits for each sub-element sequentially. This is done by shifting the
1236 // one-set-bit demanded elements parameter across the sub-elements for
1237 // consecutive calls to computeKnownBits. We are using the demanded
1238 // elements parameter as a mask operator.
1239 //
1240 // The known bits of each sub-element are then inserted into place
1241 // (dependent on endian) to form the full result of known bits.
1242 unsigned NumElts = DemandedElts.getBitWidth();
1243 unsigned SubScale = BitWidth / SubBitWidth;
1244 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1245 for (unsigned i = 0; i != NumElts; ++i) {
1246 if (DemandedElts[i])
1247 SubDemandedElts.setBit(i * SubScale);
1248 }
1249
1250 KnownBits KnownSrc(SubBitWidth);
1251 for (unsigned i = 0; i != SubScale; ++i) {
1252 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1253 Depth + 1, Q);
1254 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1255 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1256 }
1257 }
1258 break;
1259 }
1260 case Instruction::SExt: {
1261 // Compute the bits in the result that are not present in the input.
1262 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1263
1264 Known = Known.trunc(SrcBitWidth);
1265 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1266 // If the sign bit of the input is known set or clear, then we know the
1267 // top bits of the result.
1268 Known = Known.sext(BitWidth);
1269 break;
1270 }
1271 case Instruction::Shl: {
1272 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1273 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1274 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1275 // If this shift has "nsw" keyword, then the result is either a poison
1276 // value or has the same sign bit as the first operand.
1277 if (NSW) {
1278 if (KnownVal.Zero.isSignBitSet())
1279 Result.Zero.setSignBit();
1280 if (KnownVal.One.isSignBitSet())
1281 Result.One.setSignBit();
1282 }
1283 return Result;
1284 };
1285 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1286 KF);
1287 // Trailing zeros of a right-shifted constant never decrease.
1288 const APInt *C;
1289 if (match(I->getOperand(0), m_APInt(C)))
1290 Known.Zero.setLowBits(C->countTrailingZeros());
1291 break;
1292 }
1293 case Instruction::LShr: {
1294 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1295 return KnownBits::lshr(KnownVal, KnownAmt);
1296 };
1297 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1298 KF);
1299 // Leading zeros of a left-shifted constant never decrease.
1300 const APInt *C;
1301 if (match(I->getOperand(0), m_APInt(C)))
1302 Known.Zero.setHighBits(C->countLeadingZeros());
1303 break;
1304 }
1305 case Instruction::AShr: {
1306 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1307 return KnownBits::ashr(KnownVal, KnownAmt);
1308 };
1309 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1310 KF);
1311 break;
1312 }
1313 case Instruction::Sub: {
1314 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1315 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1316 DemandedElts, Known, Known2, Depth, Q);
1317 break;
1318 }
1319 case Instruction::Add: {
1320 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1321 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1322 DemandedElts, Known, Known2, Depth, Q);
1323 break;
1324 }
1325 case Instruction::SRem:
1326 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1327 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1328 Known = KnownBits::srem(Known, Known2);
1329 break;
1330
1331 case Instruction::URem:
1332 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1333 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1334 Known = KnownBits::urem(Known, Known2);
1335 break;
1336 case Instruction::Alloca:
1337 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1338 break;
1339 case Instruction::GetElementPtr: {
1340 // Analyze all of the subscripts of this getelementptr instruction
1341 // to determine if we can prove known low zero bits.
1342 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1343 // Accumulate the constant indices in a separate variable
1344 // to minimize the number of calls to computeForAddSub.
1345 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1346
1347 gep_type_iterator GTI = gep_type_begin(I);
1348 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1349 // TrailZ can only become smaller, short-circuit if we hit zero.
1350 if (Known.isUnknown())
1351 break;
1352
1353 Value *Index = I->getOperand(i);
1354
1355 // Handle case when index is zero.
1356 Constant *CIndex = dyn_cast<Constant>(Index);
1357 if (CIndex && CIndex->isZeroValue())
1358 continue;
1359
1360 if (StructType *STy = GTI.getStructTypeOrNull()) {
1361 // Handle struct member offset arithmetic.
1362
1363 assert(CIndex &&(static_cast <bool> (CIndex && "Access to structure field must be known at compile time"
) ? void (0) : __assert_fail ("CIndex && \"Access to structure field must be known at compile time\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1364, __extension__ __PRETTY_FUNCTION__
))
1364 "Access to structure field must be known at compile time")(static_cast <bool> (CIndex && "Access to structure field must be known at compile time"
) ? void (0) : __assert_fail ("CIndex && \"Access to structure field must be known at compile time\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1364, __extension__ __PRETTY_FUNCTION__
))
;
1365
1366 if (CIndex->getType()->isVectorTy())
1367 Index = CIndex->getSplatValue();
1368
1369 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1370 const StructLayout *SL = Q.DL.getStructLayout(STy);
1371 uint64_t Offset = SL->getElementOffset(Idx);
1372 AccConstIndices += Offset;
1373 continue;
1374 }
1375
1376 // Handle array index arithmetic.
1377 Type *IndexedTy = GTI.getIndexedType();
1378 if (!IndexedTy->isSized()) {
1379 Known.resetAll();
1380 break;
1381 }
1382
1383 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1384 KnownBits IndexBits(IndexBitWidth);
1385 computeKnownBits(Index, IndexBits, Depth + 1, Q);
1386 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1387 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1388 KnownBits ScalingFactor(IndexBitWidth);
1389 // Multiply by current sizeof type.
1390 // &A[i] == A + i * sizeof(*A[i]).
1391 if (IndexTypeSize.isScalable()) {
1392 // For scalable types the only thing we know about sizeof is
1393 // that this is a multiple of the minimum size.
1394 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1395 } else if (IndexBits.isConstant()) {
1396 APInt IndexConst = IndexBits.getConstant();
1397 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1398 IndexConst *= ScalingFactor;
1399 AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1400 continue;
1401 } else {
1402 ScalingFactor =
1403 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1404 }
1405 IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1406
1407 // If the offsets have a different width from the pointer, according
1408 // to the language reference we need to sign-extend or truncate them
1409 // to the width of the pointer.
1410 IndexBits = IndexBits.sextOrTrunc(BitWidth);
1411
1412 // Note that inbounds does *not* guarantee nsw for the addition, as only
1413 // the offset is signed, while the base address is unsigned.
1414 Known = KnownBits::computeForAddSub(
1415 /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1416 }
1417 if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1418 KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1419 Known = KnownBits::computeForAddSub(
1420 /*Add=*/true, /*NSW=*/false, Known, Index);
1421 }
1422 break;
1423 }
1424 case Instruction::PHI: {
1425 const PHINode *P = cast<PHINode>(I);
2
'I' is a 'PHINode'
1426 BinaryOperator *BO = nullptr;
1427 Value *R = nullptr, *L = nullptr;
1428 if (matchSimpleRecurrence(P, BO, R, L)) {
3
Value assigned to 'R'
4
Assuming the condition is true
5
Taking true branch
1429 // Handle the case of a simple two-predecessor recurrence PHI.
1430 // There's a lot more that could theoretically be done here, but
1431 // this is sufficient to catch some interesting cases.
1432 unsigned Opcode = BO->getOpcode();
1433
1434 // If this is a shift recurrence, we know the bits being shifted in.
1435 // We can combine that with information about the start value of the
1436 // recurrence to conclude facts about the result.
1437 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
6
Assuming 'Opcode' is not equal to LShr
7
Assuming 'Opcode' is not equal to AShr
1438 Opcode == Instruction::Shl) &&
8
Assuming 'Opcode' is not equal to Shl
1439 BO->getOperand(0) == I) {
1440
1441 // We have matched a recurrence of the form:
1442 // %iv = [R, %entry], [%iv.next, %backedge]
1443 // %iv.next = shift_op %iv, L
1444
1445 // Recurse with the phi context to avoid concern about whether facts
1446 // inferred hold at original context instruction. TODO: It may be
1447 // correct to use the original context. IF warranted, explore and
1448 // add sufficient tests to cover.
1449 Query RecQ = Q;
1450 RecQ.CxtI = P;
1451 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1452 switch (Opcode) {
1453 case Instruction::Shl:
1454 // A shl recurrence will only increase the tailing zeros
1455 Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1456 break;
1457 case Instruction::LShr:
1458 // A lshr recurrence will preserve the leading zeros of the
1459 // start value
1460 Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1461 break;
1462 case Instruction::AShr:
1463 // An ashr recurrence will extend the initial sign bit
1464 Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1465 Known.One.setHighBits(Known2.countMinLeadingOnes());
1466 break;
1467 };
1468 }
1469
1470 // Check for operations that have the property that if
1471 // both their operands have low zero bits, the result
1472 // will have low zero bits.
1473 if (Opcode == Instruction::Add ||
9
Assuming 'Opcode' is not equal to Add
14
Taking true branch
1474 Opcode == Instruction::Sub ||
10
Assuming 'Opcode' is not equal to Sub
1475 Opcode == Instruction::And ||
11
Assuming 'Opcode' is not equal to And
1476 Opcode == Instruction::Or ||
12
Assuming 'Opcode' is not equal to Or
1477 Opcode == Instruction::Mul) {
13
Assuming 'Opcode' is equal to Mul
1478 // Change the context instruction to the "edge" that flows into the
1479 // phi. This is important because that is where the value is actually
1480 // "evaluated" even though it is used later somewhere else. (see also
1481 // D69571).
1482 Query RecQ = Q;
1483
1484 unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
15
Assuming pointer value is null
16
'?' condition is true
1485 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1486 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1487
1488 // Ok, we have a PHI of the form L op= R. Check for low
1489 // zero bits.
1490 RecQ.CxtI = RInst;
1491 computeKnownBits(R, Known2, Depth + 1, RecQ);
17
Passing null pointer value via 1st parameter 'V'
18
Calling 'computeKnownBits'
1492
1493 // We need to take the minimum number of known bits
1494 KnownBits Known3(BitWidth);
1495 RecQ.CxtI = LInst;
1496 computeKnownBits(L, Known3, Depth + 1, RecQ);
1497
1498 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1499 Known3.countMinTrailingZeros()));
1500
1501 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1502 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1503 // If initial value of recurrence is nonnegative, and we are adding
1504 // a nonnegative number with nsw, the result can only be nonnegative
1505 // or poison value regardless of the number of times we execute the
1506 // add in phi recurrence. If initial value is negative and we are
1507 // adding a negative number with nsw, the result can only be
1508 // negative or poison value. Similar arguments apply to sub and mul.
1509 //
1510 // (add non-negative, non-negative) --> non-negative
1511 // (add negative, negative) --> negative
1512 if (Opcode == Instruction::Add) {
1513 if (Known2.isNonNegative() && Known3.isNonNegative())
1514 Known.makeNonNegative();
1515 else if (Known2.isNegative() && Known3.isNegative())
1516 Known.makeNegative();
1517 }
1518
1519 // (sub nsw non-negative, negative) --> non-negative
1520 // (sub nsw negative, non-negative) --> negative
1521 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1522 if (Known2.isNonNegative() && Known3.isNegative())
1523 Known.makeNonNegative();
1524 else if (Known2.isNegative() && Known3.isNonNegative())
1525 Known.makeNegative();
1526 }
1527
1528 // (mul nsw non-negative, non-negative) --> non-negative
1529 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1530 Known3.isNonNegative())
1531 Known.makeNonNegative();
1532 }
1533
1534 break;
1535 }
1536 }
1537
1538 // Unreachable blocks may have zero-operand PHI nodes.
1539 if (P->getNumIncomingValues() == 0)
1540 break;
1541
1542 // Otherwise take the unions of the known bit sets of the operands,
1543 // taking conservative care to avoid excessive recursion.
1544 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1545 // Skip if every incoming value references to ourself.
1546 if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1547 break;
1548
1549 Known.Zero.setAllBits();
1550 Known.One.setAllBits();
1551 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1552 Value *IncValue = P->getIncomingValue(u);
1553 // Skip direct self references.
1554 if (IncValue == P) continue;
1555
1556 // Change the context instruction to the "edge" that flows into the
1557 // phi. This is important because that is where the value is actually
1558 // "evaluated" even though it is used later somewhere else. (see also
1559 // D69571).
1560 Query RecQ = Q;
1561 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1562
1563 Known2 = KnownBits(BitWidth);
1564 // Recurse, but cap the recursion to one level, because we don't
1565 // want to waste time spinning around in loops.
1566 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1567 Known = KnownBits::commonBits(Known, Known2);
1568 // If all bits have been ruled out, there's no need to check
1569 // more operands.
1570 if (Known.isUnknown())
1571 break;
1572 }
1573 }
1574 break;
1575 }
1576 case Instruction::Call:
1577 case Instruction::Invoke:
1578 // If range metadata is attached to this call, set known bits from that,
1579 // and then intersect with known bits based on other properties of the
1580 // function.
1581 if (MDNode *MD =
1582 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1583 computeKnownBitsFromRangeMetadata(*MD, Known);
1584 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1585 computeKnownBits(RV, Known2, Depth + 1, Q);
1586 Known.Zero |= Known2.Zero;
1587 Known.One |= Known2.One;
1588 }
1589 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1590 switch (II->getIntrinsicID()) {
1591 default: break;
1592 case Intrinsic::abs: {
1593 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1594 bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1595 Known = Known2.abs(IntMinIsPoison);
1596 break;
1597 }
1598 case Intrinsic::bitreverse:
1599 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1600 Known.Zero |= Known2.Zero.reverseBits();
1601 Known.One |= Known2.One.reverseBits();
1602 break;
1603 case Intrinsic::bswap:
1604 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1605 Known.Zero |= Known2.Zero.byteSwap();
1606 Known.One |= Known2.One.byteSwap();
1607 break;
1608 case Intrinsic::ctlz: {
1609 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1610 // If we have a known 1, its position is our upper bound.
1611 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1612 // If this call is poison for 0 input, the result will be less than 2^n.
1613 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1614 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1615 unsigned LowBits = Log2_32(PossibleLZ)+1;
1616 Known.Zero.setBitsFrom(LowBits);
1617 break;
1618 }
1619 case Intrinsic::cttz: {
1620 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1621 // If we have a known 1, its position is our upper bound.
1622 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1623 // If this call is poison for 0 input, the result will be less than 2^n.
1624 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1625 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1626 unsigned LowBits = Log2_32(PossibleTZ)+1;
1627 Known.Zero.setBitsFrom(LowBits);
1628 break;
1629 }
1630 case Intrinsic::ctpop: {
1631 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1632 // We can bound the space the count needs. Also, bits known to be zero
1633 // can't contribute to the population.
1634 unsigned BitsPossiblySet = Known2.countMaxPopulation();
1635 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1636 Known.Zero.setBitsFrom(LowBits);
1637 // TODO: we could bound KnownOne using the lower bound on the number
1638 // of bits which might be set provided by popcnt KnownOne2.
1639 break;
1640 }
1641 case Intrinsic::fshr:
1642 case Intrinsic::fshl: {
1643 const APInt *SA;
1644 if (!match(I->getOperand(2), m_APInt(SA)))
1645 break;
1646
1647 // Normalize to funnel shift left.
1648 uint64_t ShiftAmt = SA->urem(BitWidth);
1649 if (II->getIntrinsicID() == Intrinsic::fshr)
1650 ShiftAmt = BitWidth - ShiftAmt;
1651
1652 KnownBits Known3(BitWidth);
1653 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1654 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1655
1656 Known.Zero =
1657 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1658 Known.One =
1659 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1660 break;
1661 }
1662 case Intrinsic::uadd_sat:
1663 case Intrinsic::usub_sat: {
1664 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1665 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1666 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1667
1668 // Add: Leading ones of either operand are preserved.
1669 // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1670 // as leading zeros in the result.
1671 unsigned LeadingKnown;
1672 if (IsAdd)
1673 LeadingKnown = std::max(Known.countMinLeadingOnes(),
1674 Known2.countMinLeadingOnes());
1675 else
1676 LeadingKnown = std::max(Known.countMinLeadingZeros(),
1677 Known2.countMinLeadingOnes());
1678
1679 Known = KnownBits::computeForAddSub(
1680 IsAdd, /* NSW */ false, Known, Known2);
1681
1682 // We select between the operation result and all-ones/zero
1683 // respectively, so we can preserve known ones/zeros.
1684 if (IsAdd) {
1685 Known.One.setHighBits(LeadingKnown);
1686 Known.Zero.clearAllBits();
1687 } else {
1688 Known.Zero.setHighBits(LeadingKnown);
1689 Known.One.clearAllBits();
1690 }
1691 break;
1692 }
1693 case Intrinsic::umin:
1694 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1695 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1696 Known = KnownBits::umin(Known, Known2);
1697 break;
1698 case Intrinsic::umax:
1699 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1700 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1701 Known = KnownBits::umax(Known, Known2);
1702 break;
1703 case Intrinsic::smin:
1704 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1705 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1706 Known = KnownBits::smin(Known, Known2);
1707 break;
1708 case Intrinsic::smax:
1709 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1710 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1711 Known = KnownBits::smax(Known, Known2);
1712 break;
1713 case Intrinsic::x86_sse42_crc32_64_64:
1714 Known.Zero.setBitsFrom(32);
1715 break;
1716 case Intrinsic::riscv_vsetvli:
1717 case Intrinsic::riscv_vsetvlimax:
1718 // Assume that VL output is positive and would fit in an int32_t.
1719 // TODO: VLEN might be capped at 16 bits in a future V spec update.
1720 if (BitWidth >= 32)
1721 Known.Zero.setBitsFrom(31);
1722 break;
1723 case Intrinsic::vscale: {
1724 if (!II->getParent() || !II->getFunction() ||
1725 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
1726 break;
1727
1728 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
1729 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
1730
1731 if (!VScaleMax)
1732 break;
1733
1734 unsigned VScaleMin = Attr.getVScaleRangeMin();
1735
1736 // If vscale min = max then we know the exact value at compile time
1737 // and hence we know the exact bits.
1738 if (VScaleMin == VScaleMax) {
1739 Known.One = VScaleMin;
1740 Known.Zero = VScaleMin;
1741 Known.Zero.flipAllBits();
1742 break;
1743 }
1744
1745 unsigned FirstZeroHighBit =
1746 32 - countLeadingZeros(VScaleMax.getValue());
1747 if (FirstZeroHighBit < BitWidth)
1748 Known.Zero.setBitsFrom(FirstZeroHighBit);
1749
1750 break;
1751 }
1752 }
1753 }
1754 break;
1755 case Instruction::ShuffleVector: {
1756 auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1757 // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1758 if (!Shuf) {
1759 Known.resetAll();
1760 return;
1761 }
1762 // For undef elements, we don't know anything about the common state of
1763 // the shuffle result.
1764 APInt DemandedLHS, DemandedRHS;
1765 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1766 Known.resetAll();
1767 return;
1768 }
1769 Known.One.setAllBits();
1770 Known.Zero.setAllBits();
1771 if (!!DemandedLHS) {
1772 const Value *LHS = Shuf->getOperand(0);
1773 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1774 // If we don't know any bits, early out.
1775 if (Known.isUnknown())
1776 break;
1777 }
1778 if (!!DemandedRHS) {
1779 const Value *RHS = Shuf->getOperand(1);
1780 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1781 Known = KnownBits::commonBits(Known, Known2);
1782 }
1783 break;
1784 }
1785 case Instruction::InsertElement: {
1786 const Value *Vec = I->getOperand(0);
1787 const Value *Elt = I->getOperand(1);
1788 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1789 // Early out if the index is non-constant or out-of-range.
1790 unsigned NumElts = DemandedElts.getBitWidth();
1791 if (!CIdx || CIdx->getValue().uge(NumElts)) {
1792 Known.resetAll();
1793 return;
1794 }
1795 Known.One.setAllBits();
1796 Known.Zero.setAllBits();
1797 unsigned EltIdx = CIdx->getZExtValue();
1798 // Do we demand the inserted element?
1799 if (DemandedElts[EltIdx]) {
1800 computeKnownBits(Elt, Known, Depth + 1, Q);
1801 // If we don't know any bits, early out.
1802 if (Known.isUnknown())
1803 break;
1804 }
1805 // We don't need the base vector element that has been inserted.
1806 APInt DemandedVecElts = DemandedElts;
1807 DemandedVecElts.clearBit(EltIdx);
1808 if (!!DemandedVecElts) {
1809 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1810 Known = KnownBits::commonBits(Known, Known2);
1811 }
1812 break;
1813 }
1814 case Instruction::ExtractElement: {
1815 // Look through extract element. If the index is non-constant or
1816 // out-of-range demand all elements, otherwise just the extracted element.
1817 const Value *Vec = I->getOperand(0);
1818 const Value *Idx = I->getOperand(1);
1819 auto *CIdx = dyn_cast<ConstantInt>(Idx);
1820 if (isa<ScalableVectorType>(Vec->getType())) {
1821 // FIXME: there's probably *something* we can do with scalable vectors
1822 Known.resetAll();
1823 break;
1824 }
1825 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1826 APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1827 if (CIdx && CIdx->getValue().ult(NumElts))
1828 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1829 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1830 break;
1831 }
1832 case Instruction::ExtractValue:
1833 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1834 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1835 if (EVI->getNumIndices() != 1) break;
1836 if (EVI->getIndices()[0] == 0) {
1837 switch (II->getIntrinsicID()) {
1838 default: break;
1839 case Intrinsic::uadd_with_overflow:
1840 case Intrinsic::sadd_with_overflow:
1841 computeKnownBitsAddSub(true, II->getArgOperand(0),
1842 II->getArgOperand(1), false, DemandedElts,
1843 Known, Known2, Depth, Q);
1844 break;
1845 case Intrinsic::usub_with_overflow:
1846 case Intrinsic::ssub_with_overflow:
1847 computeKnownBitsAddSub(false, II->getArgOperand(0),
1848 II->getArgOperand(1), false, DemandedElts,
1849 Known, Known2, Depth, Q);
1850 break;
1851 case Intrinsic::umul_with_overflow:
1852 case Intrinsic::smul_with_overflow:
1853 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1854 DemandedElts, Known, Known2, Depth, Q);
1855 break;
1856 }
1857 }
1858 }
1859 break;
1860 case Instruction::Freeze:
1861 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1862 Depth + 1))
1863 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1864 break;
1865 }
1866}
1867
1868/// Determine which bits of V are known to be either zero or one and return
1869/// them.
1870KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1871 unsigned Depth, const Query &Q) {
1872 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1873 computeKnownBits(V, DemandedElts, Known, Depth, Q);
1874 return Known;
1875}
1876
1877/// Determine which bits of V are known to be either zero or one and return
1878/// them.
1879KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1880 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1881 computeKnownBits(V, Known, Depth, Q);
1882 return Known;
1883}
1884
1885/// Determine which bits of V are known to be either zero or one and return
1886/// them in the Known bit set.
1887///
1888/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1889/// we cannot optimize based on the assumption that it is zero without changing
1890/// it to be an explicit zero. If we don't change it to zero, other code could
1891/// optimized based on the contradictory assumption that it is non-zero.
1892/// Because instcombine aggressively folds operations with undef args anyway,
1893/// this won't lose us code quality.
1894///
1895/// This function is defined on values with integer type, values with pointer
1896/// type, and vectors of integers. In the case
1897/// where V is a vector, known zero, and known one values are the
1898/// same width as the vector element, and the bit is set only if it is true
1899/// for all of the demanded elements in the vector specified by DemandedElts.
1900void computeKnownBits(const Value *V, const APInt &DemandedElts,
1901 KnownBits &Known, unsigned Depth, const Query &Q) {
1902 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1903 // No demanded elts or V is a scalable vector, better to assume we don't
1904 // know anything.
1905 Known.resetAll();
1906 return;
1907 }
1908
1909 assert(V && "No Value?")(static_cast <bool> (V && "No Value?") ? void (
0) : __assert_fail ("V && \"No Value?\"", "llvm/lib/Analysis/ValueTracking.cpp"
, 1909, __extension__ __PRETTY_FUNCTION__))
;
1910 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth")(static_cast <bool> (Depth <= MaxAnalysisRecursionDepth
&& "Limit Search Depth") ? void (0) : __assert_fail (
"Depth <= MaxAnalysisRecursionDepth && \"Limit Search Depth\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1910, __extension__ __PRETTY_FUNCTION__
))
;
1911
1912#ifndef NDEBUG
1913 Type *Ty = V->getType();
1914 unsigned BitWidth = Known.getBitWidth();
1915
1916 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&(static_cast <bool> ((Ty->isIntOrIntVectorTy(BitWidth
) || Ty->isPtrOrPtrVectorTy()) && "Not integer or pointer type!"
) ? void (0) : __assert_fail ("(Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && \"Not integer or pointer type!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1917, __extension__ __PRETTY_FUNCTION__
))
1917 "Not integer or pointer type!")(static_cast <bool> ((Ty->isIntOrIntVectorTy(BitWidth
) || Ty->isPtrOrPtrVectorTy()) && "Not integer or pointer type!"
) ? void (0) : __assert_fail ("(Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && \"Not integer or pointer type!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1917, __extension__ __PRETTY_FUNCTION__
))
;
1918
1919 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1920 assert((static_cast <bool> (FVTy->getNumElements() == DemandedElts
.getBitWidth() && "DemandedElt width should equal the fixed vector number of elements"
) ? void (0) : __assert_fail ("FVTy->getNumElements() == DemandedElts.getBitWidth() && \"DemandedElt width should equal the fixed vector number of elements\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1922, __extension__ __PRETTY_FUNCTION__
))
1921 FVTy->getNumElements() == DemandedElts.getBitWidth() &&(static_cast <bool> (FVTy->getNumElements() == DemandedElts
.getBitWidth() && "DemandedElt width should equal the fixed vector number of elements"
) ? void (0) : __assert_fail ("FVTy->getNumElements() == DemandedElts.getBitWidth() && \"DemandedElt width should equal the fixed vector number of elements\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1922, __extension__ __PRETTY_FUNCTION__
))
1922 "DemandedElt width should equal the fixed vector number of elements")(static_cast <bool> (FVTy->getNumElements() == DemandedElts
.getBitWidth() && "DemandedElt width should equal the fixed vector number of elements"
) ? void (0) : __assert_fail ("FVTy->getNumElements() == DemandedElts.getBitWidth() && \"DemandedElt width should equal the fixed vector number of elements\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1922, __extension__ __PRETTY_FUNCTION__
))
;
1923 } else {
1924 assert(DemandedElts == APInt(1, 1) &&(static_cast <bool> (DemandedElts == APInt(1, 1) &&
"DemandedElt width should be 1 for scalars") ? void (0) : __assert_fail
("DemandedElts == APInt(1, 1) && \"DemandedElt width should be 1 for scalars\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1925, __extension__ __PRETTY_FUNCTION__
))
1925 "DemandedElt width should be 1 for scalars")(static_cast <bool> (DemandedElts == APInt(1, 1) &&
"DemandedElt width should be 1 for scalars") ? void (0) : __assert_fail
("DemandedElts == APInt(1, 1) && \"DemandedElt width should be 1 for scalars\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1925, __extension__ __PRETTY_FUNCTION__
))
;
1926 }
1927
1928 Type *ScalarTy = Ty->getScalarType();
1929 if (ScalarTy->isPointerTy()) {
1930 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&(static_cast <bool> (BitWidth == Q.DL.getPointerTypeSizeInBits
(ScalarTy) && "V and Known should have same BitWidth"
) ? void (0) : __assert_fail ("BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && \"V and Known should have same BitWidth\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1931, __extension__ __PRETTY_FUNCTION__
))
1931 "V and Known should have same BitWidth")(static_cast <bool> (BitWidth == Q.DL.getPointerTypeSizeInBits
(ScalarTy) && "V and Known should have same BitWidth"
) ? void (0) : __assert_fail ("BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && \"V and Known should have same BitWidth\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1931, __extension__ __PRETTY_FUNCTION__
))
;
1932 } else {
1933 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&(static_cast <bool> (BitWidth == Q.DL.getTypeSizeInBits
(ScalarTy) && "V and Known should have same BitWidth"
) ? void (0) : __assert_fail ("BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && \"V and Known should have same BitWidth\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1934, __extension__ __PRETTY_FUNCTION__
))
1934 "V and Known should have same BitWidth")(static_cast <bool> (BitWidth == Q.DL.getTypeSizeInBits
(ScalarTy) && "V and Known should have same BitWidth"
) ? void (0) : __assert_fail ("BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && \"V and Known should have same BitWidth\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1934, __extension__ __PRETTY_FUNCTION__
))
;
1935 }
1936#endif
1937
1938 const APInt *C;
1939 if (match(V, m_APInt(C))) {
1940 // We know all of the bits for a scalar constant or a splat vector constant!
1941 Known = KnownBits::makeConstant(*C);
1942 return;
1943 }
1944 // Null and aggregate-zero are all-zeros.
1945 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1946 Known.setAllZero();
1947 return;
1948 }
1949 // Handle a constant vector by taking the intersection of the known bits of
1950 // each element.
1951 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1952 // We know that CDV must be a vector of integers. Take the intersection of
1953 // each element.
1954 Known.Zero.setAllBits(); Known.One.setAllBits();
1955 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1956 if (!DemandedElts[i])
1957 continue;
1958 APInt Elt = CDV->getElementAsAPInt(i);
1959 Known.Zero &= ~Elt;
1960 Known.One &= Elt;
1961 }
1962 return;
1963 }
1964
1965 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1966 // We know that CV must be a vector of integers. Take the intersection of
1967 // each element.
1968 Known.Zero.setAllBits(); Known.One.setAllBits();
1969 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1970 if (!DemandedElts[i])
1971 continue;
1972 Constant *Element = CV->getAggregateElement(i);
1973 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1974 if (!ElementCI) {
1975 Known.resetAll();
1976 return;
1977 }
1978 const APInt &Elt = ElementCI->getValue();
1979 Known.Zero &= ~Elt;
1980 Known.One &= Elt;
1981 }
1982 return;
1983 }
1984
1985 // Start out not knowing anything.
1986 Known.resetAll();
1987
1988 // We can't imply anything about undefs.
1989 if (isa<UndefValue>(V))
1990 return;
1991
1992 // There's no point in looking through other users of ConstantData for
1993 // assumptions. Confirm that we've handled them all.
1994 assert(!isa<ConstantData>(V) && "Unhandled constant data!")(static_cast <bool> (!isa<ConstantData>(V) &&
"Unhandled constant data!") ? void (0) : __assert_fail ("!isa<ConstantData>(V) && \"Unhandled constant data!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 1994, __extension__ __PRETTY_FUNCTION__
))
;
1995
1996 // All recursive calls that increase depth must come after this.
1997 if (Depth == MaxAnalysisRecursionDepth)
1998 return;
1999
2000 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2001 // the bits of its aliasee.
2002 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2003 if (!GA->isInterposable())
2004 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2005 return;
2006 }
2007
2008 if (const Operator *I = dyn_cast<Operator>(V))
2009 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2010
2011 // Aligned pointers have trailing zeros - refine Known.Zero set
2012 if (isa<PointerType>(V->getType())) {
2013 Align Alignment = V->getPointerAlignment(Q.DL);
2014 Known.Zero.setLowBits(Log2(Alignment));
2015 }
2016
2017 // computeKnownBitsFromAssume strictly refines Known.
2018 // Therefore, we run them after computeKnownBitsFromOperator.
2019
2020 // Check whether a nearby assume intrinsic can determine some known bits.
2021 computeKnownBitsFromAssume(V, Known, Depth, Q);
2022
2023 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?")(static_cast <bool> ((Known.Zero & Known.One) == 0 &&
"Bits known to be one AND zero?") ? void (0) : __assert_fail
("(Known.Zero & Known.One) == 0 && \"Bits known to be one AND zero?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2023, __extension__ __PRETTY_FUNCTION__
))
;
2024}
2025
2026/// Return true if the given value is known to have exactly one
2027/// bit set when defined. For vectors return true if every element is known to
2028/// be a power of two when defined. Supports values with integer or pointer
2029/// types and vectors of integers.
2030bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2031 const Query &Q) {
2032 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth")(static_cast <bool> (Depth <= MaxAnalysisRecursionDepth
&& "Limit Search Depth") ? void (0) : __assert_fail (
"Depth <= MaxAnalysisRecursionDepth && \"Limit Search Depth\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2032, __extension__ __PRETTY_FUNCTION__
))
;
2033
2034 // Attempt to match against constants.
2035 if (OrZero && match(V, m_Power2OrZero()))
2036 return true;
2037 if (match(V, m_Power2()))
2038 return true;
2039
2040 // 1 << X is clearly a power of two if the one is not shifted off the end. If
2041 // it is shifted off the end then the result is undefined.
2042 if (match(V, m_Shl(m_One(), m_Value())))
2043 return true;
2044
2045 // (signmask) >>l X is clearly a power of two if the one is not shifted off
2046 // the bottom. If it is shifted off the bottom then the result is undefined.
2047 if (match(V, m_LShr(m_SignMask(), m_Value())))
2048 return true;
2049
2050 // The remaining tests are all recursive, so bail out if we hit the limit.
2051 if (Depth++ == MaxAnalysisRecursionDepth)
2052 return false;
2053
2054 Value *X = nullptr, *Y = nullptr;
2055 // A shift left or a logical shift right of a power of two is a power of two
2056 // or zero.
2057 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2058 match(V, m_LShr(m_Value(X), m_Value()))))
2059 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2060
2061 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2062 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2063
2064 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2065 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2066 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2067
2068 // Peek through min/max.
2069 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
2070 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
2071 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
2072 }
2073
2074 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2075 // A power of two and'd with anything is a power of two or zero.
2076 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2077 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2078 return true;
2079 // X & (-X) is always a power of two or zero.
2080 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2081 return true;
2082 return false;
2083 }
2084
2085 // Adding a power-of-two or zero to the same power-of-two or zero yields
2086 // either the original power-of-two, a larger power-of-two or zero.
2087 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2088 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2089 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2090 Q.IIQ.hasNoSignedWrap(VOBO)) {
2091 if (match(X, m_And(m_Specific(Y), m_Value())) ||
2092 match(X, m_And(m_Value(), m_Specific(Y))))
2093 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2094 return true;
2095 if (match(Y, m_And(m_Specific(X), m_Value())) ||
2096 match(Y, m_And(m_Value(), m_Specific(X))))
2097 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2098 return true;
2099
2100 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2101 KnownBits LHSBits(BitWidth);
2102 computeKnownBits(X, LHSBits, Depth, Q);
2103
2104 KnownBits RHSBits(BitWidth);
2105 computeKnownBits(Y, RHSBits, Depth, Q);
2106 // If i8 V is a power of two or zero:
2107 // ZeroBits: 1 1 1 0 1 1 1 1
2108 // ~ZeroBits: 0 0 0 1 0 0 0 0
2109 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2110 // If OrZero isn't set, we cannot give back a zero result.
2111 // Make sure either the LHS or RHS has a bit set.
2112 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2113 return true;
2114 }
2115 }
2116
2117 // An exact divide or right shift can only shift off zero bits, so the result
2118 // is a power of two only if the first operand is a power of two and not
2119 // copying a sign bit (sdiv int_min, 2).
2120 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2121 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2122 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2123 Depth, Q);
2124 }
2125
2126 return false;
2127}
2128
2129/// Test whether a GEP's result is known to be non-null.
2130///
2131/// Uses properties inherent in a GEP to try to determine whether it is known
2132/// to be non-null.
2133///
2134/// Currently this routine does not support vector GEPs.
2135static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2136 const Query &Q) {
2137 const Function *F = nullptr;
2138 if (const Instruction *I = dyn_cast<Instruction>(GEP))
2139 F = I->getFunction();
2140
2141 if (!GEP->isInBounds() ||
2142 NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2143 return false;
2144
2145 // FIXME: Support vector-GEPs.
2146 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP")(static_cast <bool> (GEP->getType()->isPointerTy(
) && "We only support plain pointer GEP") ? void (0) :
__assert_fail ("GEP->getType()->isPointerTy() && \"We only support plain pointer GEP\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2146, __extension__ __PRETTY_FUNCTION__
))
;
2147
2148 // If the base pointer is non-null, we cannot walk to a null address with an
2149 // inbounds GEP in address space zero.
2150 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2151 return true;
2152
2153 // Walk the GEP operands and see if any operand introduces a non-zero offset.
2154 // If so, then the GEP cannot produce a null pointer, as doing so would
2155 // inherently violate the inbounds contract within address space zero.
2156 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2157 GTI != GTE; ++GTI) {
2158 // Struct types are easy -- they must always be indexed by a constant.
2159 if (StructType *STy = GTI.getStructTypeOrNull()) {
2160 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2161 unsigned ElementIdx = OpC->getZExtValue();
2162 const StructLayout *SL = Q.DL.getStructLayout(STy);
2163 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2164 if (ElementOffset > 0)
2165 return true;
2166 continue;
2167 }
2168
2169 // If we have a zero-sized type, the index doesn't matter. Keep looping.
2170 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2171 continue;
2172
2173 // Fast path the constant operand case both for efficiency and so we don't
2174 // increment Depth when just zipping down an all-constant GEP.
2175 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2176 if (!OpC->isZero())
2177 return true;
2178 continue;
2179 }
2180
2181 // We post-increment Depth here because while isKnownNonZero increments it
2182 // as well, when we pop back up that increment won't persist. We don't want
2183 // to recurse 10k times just because we have 10k GEP operands. We don't
2184 // bail completely out because we want to handle constant GEPs regardless
2185 // of depth.
2186 if (Depth++ >= MaxAnalysisRecursionDepth)
2187 continue;
2188
2189 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2190 return true;
2191 }
2192
2193 return false;
2194}
2195
2196static bool isKnownNonNullFromDominatingCondition(const Value *V,
2197 const Instruction *CtxI,
2198 const DominatorTree *DT) {
2199 if (isa<Constant>(V))
2200 return false;
2201
2202 if (!CtxI || !DT)
2203 return false;
2204
2205 unsigned NumUsesExplored = 0;
2206 for (auto *U : V->users()) {
2207 // Avoid massive lists
2208 if (NumUsesExplored >= DomConditionsMaxUses)
2209 break;
2210 NumUsesExplored++;
2211
2212 // If the value is used as an argument to a call or invoke, then argument
2213 // attributes may provide an answer about null-ness.
2214 if (const auto *CB = dyn_cast<CallBase>(U))
2215 if (auto *CalledFunc = CB->getCalledFunction())
2216 for (const Argument &Arg : CalledFunc->args())
2217 if (CB->getArgOperand(Arg.getArgNo()) == V &&
2218 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2219 DT->dominates(CB, CtxI))
2220 return true;
2221
2222 // If the value is used as a load/store, then the pointer must be non null.
2223 if (V == getLoadStorePointerOperand(U)) {
2224 const Instruction *I = cast<Instruction>(U);
2225 if (!NullPointerIsDefined(I->getFunction(),
2226 V->getType()->getPointerAddressSpace()) &&
2227 DT->dominates(I, CtxI))
2228 return true;
2229 }
2230
2231 // Consider only compare instructions uniquely controlling a branch
2232 Value *RHS;
2233 CmpInst::Predicate Pred;
2234 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2235 continue;
2236
2237 bool NonNullIfTrue;
2238 if (cmpExcludesZero(Pred, RHS))
2239 NonNullIfTrue = true;
2240 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2241 NonNullIfTrue = false;
2242 else
2243 continue;
2244
2245 SmallVector<const User *, 4> WorkList;
2246 SmallPtrSet<const User *, 4> Visited;
2247 for (auto *CmpU : U->users()) {
2248 assert(WorkList.empty() && "Should be!")(static_cast <bool> (WorkList.empty() && "Should be!"
) ? void (0) : __assert_fail ("WorkList.empty() && \"Should be!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2248, __extension__ __PRETTY_FUNCTION__
))
;
2249 if (Visited.insert(CmpU).second)
2250 WorkList.push_back(CmpU);
2251
2252 while (!WorkList.empty()) {
2253 auto *Curr = WorkList.pop_back_val();
2254
2255 // If a user is an AND, add all its users to the work list. We only
2256 // propagate "pred != null" condition through AND because it is only
2257 // correct to assume that all conditions of AND are met in true branch.
2258 // TODO: Support similar logic of OR and EQ predicate?
2259 if (NonNullIfTrue)
2260 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2261 for (auto *CurrU : Curr->users())
2262 if (Visited.insert(CurrU).second)
2263 WorkList.push_back(CurrU);
2264 continue;
2265 }
2266
2267 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2268 assert(BI->isConditional() && "uses a comparison!")(static_cast <bool> (BI->isConditional() && "uses a comparison!"
) ? void (0) : __assert_fail ("BI->isConditional() && \"uses a comparison!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2268, __extension__ __PRETTY_FUNCTION__
))
;
2269
2270 BasicBlock *NonNullSuccessor =
2271 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2272 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2273 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2274 return true;
2275 } else if (NonNullIfTrue && isGuard(Curr) &&
2276 DT->dominates(cast<Instruction>(Curr), CtxI)) {
2277 return true;
2278 }
2279 }
2280 }
2281 }
2282
2283 return false;
2284}
2285
2286/// Does the 'Range' metadata (which must be a valid MD_range operand list)
2287/// ensure that the value it's attached to is never Value? 'RangeType' is
2288/// is the type of the value described by the range.
2289static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2290 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2291 assert(NumRanges >= 1)(static_cast <bool> (NumRanges >= 1) ? void (0) : __assert_fail
("NumRanges >= 1", "llvm/lib/Analysis/ValueTracking.cpp",
2291, __extension__ __PRETTY_FUNCTION__))
;
2292 for (unsigned i = 0; i < NumRanges; ++i) {
2293 ConstantInt *Lower =
2294 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2295 ConstantInt *Upper =
2296 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2297 ConstantRange Range(Lower->getValue(), Upper->getValue());
2298 if (Range.contains(Value))
2299 return false;
2300 }
2301 return true;
2302}
2303
2304/// Try to detect a recurrence that monotonically increases/decreases from a
2305/// non-zero starting value. These are common as induction variables.
2306static bool isNonZeroRecurrence(const PHINode *PN) {
2307 BinaryOperator *BO = nullptr;
2308 Value *Start = nullptr, *Step = nullptr;
2309 const APInt *StartC, *StepC;
2310 if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2311 !match(Start, m_APInt(StartC)) || StartC->isZero())
2312 return false;
2313
2314 switch (BO->getOpcode()) {
2315 case Instruction::Add:
2316 // Starting from non-zero and stepping away from zero can never wrap back
2317 // to zero.
2318 return BO->hasNoUnsignedWrap() ||
2319 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2320 StartC->isNegative() == StepC->isNegative());
2321 case Instruction::Mul:
2322 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2323 match(Step, m_APInt(StepC)) && !StepC->isZero();
2324 case Instruction::Shl:
2325 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2326 case Instruction::AShr:
2327 case Instruction::LShr:
2328 return BO->isExact();
2329 default:
2330 return false;
2331 }
2332}
2333
2334/// Return true if the given value is known to be non-zero when defined. For
2335/// vectors, return true if every demanded element is known to be non-zero when
2336/// defined. For pointers, if the context instruction and dominator tree are
2337/// specified, perform context-sensitive analysis and return true if the
2338/// pointer couldn't possibly be null at the specified instruction.
2339/// Supports values with integer or pointer type and vectors of integers.
2340bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2341 const Query &Q) {
2342 // FIXME: We currently have no way to represent the DemandedElts of a scalable
2343 // vector
2344 if (isa<ScalableVectorType>(V->getType()))
2345 return false;
2346
2347 if (auto *C = dyn_cast<Constant>(V)) {
2348 if (C->isNullValue())
2349 return false;
2350 if (isa<ConstantInt>(C))
2351 // Must be non-zero due to null test above.
2352 return true;
2353
2354 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2355 // See the comment for IntToPtr/PtrToInt instructions below.
2356 if (CE->getOpcode() == Instruction::IntToPtr ||
2357 CE->getOpcode() == Instruction::PtrToInt)
2358 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2359 .getFixedSize() <=
2360 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2361 return isKnownNonZero(CE->getOperand(0), Depth, Q);
2362 }
2363
2364 // For constant vectors, check that all elements are undefined or known
2365 // non-zero to determine that the whole vector is known non-zero.
2366 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2367 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2368 if (!DemandedElts[i])
2369 continue;
2370 Constant *Elt = C->getAggregateElement(i);
2371 if (!Elt || Elt->isNullValue())
2372 return false;
2373 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2374 return false;
2375 }
2376 return true;
2377 }
2378
2379 // A global variable in address space 0 is non null unless extern weak
2380 // or an absolute symbol reference. Other address spaces may have null as a
2381 // valid address for a global, so we can't assume anything.
2382 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2383 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2384 GV->getType()->getAddressSpace() == 0)
2385 return true;
2386 } else
2387 return false;
2388 }
2389
2390 if (auto *I = dyn_cast<Instruction>(V)) {
2391 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2392 // If the possible ranges don't contain zero, then the value is
2393 // definitely non-zero.
2394 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2395 const APInt ZeroValue(Ty->getBitWidth(), 0);
2396 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2397 return true;
2398 }
2399 }
2400 }
2401
2402 if (isKnownNonZeroFromAssume(V, Q))
2403 return true;
2404
2405 // Some of the tests below are recursive, so bail out if we hit the limit.
2406 if (Depth++ >= MaxAnalysisRecursionDepth)
2407 return false;
2408
2409 // Check for pointer simplifications.
2410
2411 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2412 // Alloca never returns null, malloc might.
2413 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2414 return true;
2415
2416 // A byval, inalloca may not be null in a non-default addres space. A
2417 // nonnull argument is assumed never 0.
2418 if (const Argument *A = dyn_cast<Argument>(V)) {
2419 if (((A->hasPassPointeeByValueCopyAttr() &&
2420 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2421 A->hasNonNullAttr()))
2422 return true;
2423 }
2424
2425 // A Load tagged with nonnull metadata is never null.
2426 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2427 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2428 return true;
2429
2430 if (const auto *Call = dyn_cast<CallBase>(V)) {
2431 if (Call->isReturnNonNull())
2432 return true;
2433 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2434 return isKnownNonZero(RP, Depth, Q);
2435 }
2436 }
2437
2438 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2439 return true;
2440
2441 // Check for recursive pointer simplifications.
2442 if (V->getType()->isPointerTy()) {
2443 // Look through bitcast operations, GEPs, and int2ptr instructions as they
2444 // do not alter the value, or at least not the nullness property of the
2445 // value, e.g., int2ptr is allowed to zero/sign extend the value.
2446 //
2447 // Note that we have to take special care to avoid looking through
2448 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2449 // as casts that can alter the value, e.g., AddrSpaceCasts.
2450 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2451 return isGEPKnownNonNull(GEP, Depth, Q);
2452
2453 if (auto *BCO = dyn_cast<BitCastOperator>(V))
2454 return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2455
2456 if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2457 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2458 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2459 return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2460 }
2461
2462 // Similar to int2ptr above, we can look through ptr2int here if the cast
2463 // is a no-op or an extend and not a truncate.
2464 if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2465 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2466 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2467 return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2468
2469 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2470
2471 // X | Y != 0 if X != 0 or Y != 0.
2472 Value *X = nullptr, *Y = nullptr;
2473 if (match(V, m_Or(m_Value(X), m_Value(Y))))
2474 return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2475 isKnownNonZero(Y, DemandedElts, Depth, Q);
2476
2477 // ext X != 0 if X != 0.
2478 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2479 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2480
2481 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
2482 // if the lowest bit is shifted off the end.
2483 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2484 // shl nuw can't remove any non-zero bits.
2485 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2486 if (Q.IIQ.hasNoUnsignedWrap(BO))
2487 return isKnownNonZero(X, Depth, Q);
2488
2489 KnownBits Known(BitWidth);
2490 computeKnownBits(X, DemandedElts, Known, Depth, Q);
2491 if (Known.One[0])
2492 return true;
2493 }
2494 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
2495 // defined if the sign bit is shifted off the end.
2496 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2497 // shr exact can only shift out zero bits.
2498 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2499 if (BO->isExact())
2500 return isKnownNonZero(X, Depth, Q);
2501
2502 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2503 if (Known.isNegative())
2504 return true;
2505
2506 // If the shifter operand is a constant, and all of the bits shifted
2507 // out are known to be zero, and X is known non-zero then at least one
2508 // non-zero bit must remain.
2509 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2510 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2511 // Is there a known one in the portion not shifted out?
2512 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2513 return true;
2514 // Are all the bits to be shifted out known zero?
2515 if (Known.countMinTrailingZeros() >= ShiftVal)
2516 return isKnownNonZero(X, DemandedElts, Depth, Q);
2517 }
2518 }
2519 // div exact can only produce a zero if the dividend is zero.
2520 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2521 return isKnownNonZero(X, DemandedElts, Depth, Q);
2522 }
2523 // X + Y.
2524 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2525 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2526 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2527
2528 // If X and Y are both non-negative (as signed values) then their sum is not
2529 // zero unless both X and Y are zero.
2530 if (XKnown.isNonNegative() && YKnown.isNonNegative())
2531 if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2532 isKnownNonZero(Y, DemandedElts, Depth, Q))
2533 return true;
2534
2535 // If X and Y are both negative (as signed values) then their sum is not
2536 // zero unless both X and Y equal INT_MIN.
2537 if (XKnown.isNegative() && YKnown.isNegative()) {
2538 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2539 // The sign bit of X is set. If some other bit is set then X is not equal
2540 // to INT_MIN.
2541 if (XKnown.One.intersects(Mask))
2542 return true;
2543 // The sign bit of Y is set. If some other bit is set then Y is not equal
2544 // to INT_MIN.
2545 if (YKnown.One.intersects(Mask))
2546 return true;
2547 }
2548
2549 // The sum of a non-negative number and a power of two is not zero.
2550 if (XKnown.isNonNegative() &&
2551 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2552 return true;
2553 if (YKnown.isNonNegative() &&
2554 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2555 return true;
2556 }
2557 // X * Y.
2558 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2559 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2560 // If X and Y are non-zero then so is X * Y as long as the multiplication
2561 // does not overflow.
2562 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2563 isKnownNonZero(X, DemandedElts, Depth, Q) &&
2564 isKnownNonZero(Y, DemandedElts, Depth, Q))
2565 return true;
2566 }
2567 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2568 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2569 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2570 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2571 return true;
2572 }
2573 // PHI
2574 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2575 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2576 return true;
2577
2578 // Check if all incoming values are non-zero using recursion.
2579 Query RecQ = Q;
2580 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2581 return llvm::all_of(PN->operands(), [&](const Use &U) {
2582 if (U.get() == PN)
2583 return true;
2584 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2585 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2586 });
2587 }
2588 // ExtractElement
2589 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2590 const Value *Vec = EEI->getVectorOperand();
2591 const Value *Idx = EEI->getIndexOperand();
2592 auto *CIdx = dyn_cast<ConstantInt>(Idx);
2593 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2594 unsigned NumElts = VecTy->getNumElements();
2595 APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2596 if (CIdx && CIdx->getValue().ult(NumElts))
2597 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2598 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2599 }
2600 }
2601 // Freeze
2602 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2603 auto *Op = FI->getOperand(0);
2604 if (isKnownNonZero(Op, Depth, Q) &&
2605 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2606 return true;
2607 }
2608
2609 KnownBits Known(BitWidth);
2610 computeKnownBits(V, DemandedElts, Known, Depth, Q);
2611 return Known.One != 0;
2612}
2613
2614bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2615 // FIXME: We currently have no way to represent the DemandedElts of a scalable
2616 // vector
2617 if (isa<ScalableVectorType>(V->getType()))
2618 return false;
2619
2620 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2621 APInt DemandedElts =
2622 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2623 return isKnownNonZero(V, DemandedElts, Depth, Q);
2624}
2625
2626/// If the pair of operators are the same invertible function, return the
2627/// the operands of the function corresponding to each input. Otherwise,
2628/// return None. An invertible function is one that is 1-to-1 and maps
2629/// every input value to exactly one output value. This is equivalent to
2630/// saying that Op1 and Op2 are equal exactly when the specified pair of
2631/// operands are equal, (except that Op1 and Op2 may be poison more often.)
2632static Optional<std::pair<Value*, Value*>>
2633getInvertibleOperands(const Operator *Op1,
2634 const Operator *Op2) {
2635 if (Op1->getOpcode() != Op2->getOpcode())
2636 return None;
2637
2638 auto getOperands = [&](unsigned OpNum) -> auto {
2639 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2640 };
2641
2642 switch (Op1->getOpcode()) {
2643 default:
2644 break;
2645 case Instruction::Add:
2646 case Instruction::Sub:
2647 if (Op1->getOperand(0) == Op2->getOperand(0))
2648 return getOperands(1);
2649 if (Op1->getOperand(1) == Op2->getOperand(1))
2650 return getOperands(0);
2651 break;
2652 case Instruction::Mul: {
2653 // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2654 // and N is the bitwdith. The nsw case is non-obvious, but proven by
2655 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2656 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2657 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2658 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2659 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2660 break;
2661
2662 // Assume operand order has been canonicalized
2663 if (Op1->getOperand(1) == Op2->getOperand(1) &&
2664 isa<ConstantInt>(Op1->getOperand(1)) &&
2665 !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2666 return getOperands(0);
2667 break;
2668 }
2669 case Instruction::Shl: {
2670 // Same as multiplies, with the difference that we don't need to check
2671 // for a non-zero multiply. Shifts always multiply by non-zero.
2672 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2673 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2674 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2675 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2676 break;
2677
2678 if (Op1->getOperand(1) == Op2->getOperand(1))
2679 return getOperands(0);
2680 break;
2681 }
2682 case Instruction::AShr:
2683 case Instruction::LShr: {
2684 auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2685 auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2686 if (!PEO1->isExact() || !PEO2->isExact())
2687 break;
2688
2689 if (Op1->getOperand(1) == Op2->getOperand(1))
2690 return getOperands(0);
2691 break;
2692 }
2693 case Instruction::SExt:
2694 case Instruction::ZExt:
2695 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2696 return getOperands(0);
2697 break;
2698 case Instruction::PHI: {
2699 const PHINode *PN1 = cast<PHINode>(Op1);
2700 const PHINode *PN2 = cast<PHINode>(Op2);
2701
2702 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2703 // are a single invertible function of the start values? Note that repeated
2704 // application of an invertible function is also invertible
2705 BinaryOperator *BO1 = nullptr;
2706 Value *Start1 = nullptr, *Step1 = nullptr;
2707 BinaryOperator *BO2 = nullptr;
2708 Value *Start2 = nullptr, *Step2 = nullptr;
2709 if (PN1->getParent() != PN2->getParent() ||
2710 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2711 !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2712 break;
2713
2714 auto Values = getInvertibleOperands(cast<Operator>(BO1),
2715 cast<Operator>(BO2));
2716 if (!Values)
2717 break;
2718
2719 // We have to be careful of mutually defined recurrences here. Ex:
2720 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2721 // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2722 // The invertibility of these is complicated, and not worth reasoning
2723 // about (yet?).
2724 if (Values->first != PN1 || Values->second != PN2)
2725 break;
2726
2727 return std::make_pair(Start1, Start2);
2728 }
2729 }
2730 return None;
2731}
2732
2733/// Return true if V2 == V1 + X, where X is known non-zero.
2734static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2735 const Query &Q) {
2736 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2737 if (!BO || BO->getOpcode() != Instruction::Add)
2738 return false;
2739 Value *Op = nullptr;
2740 if (V2 == BO->getOperand(0))
2741 Op = BO->getOperand(1);
2742 else if (V2 == BO->getOperand(1))
2743 Op = BO->getOperand(0);
2744 else
2745 return false;
2746 return isKnownNonZero(Op, Depth + 1, Q);
2747}
2748
2749/// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2750/// the multiplication is nuw or nsw.
2751static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2752 const Query &Q) {
2753 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2754 const APInt *C;
2755 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2756 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2757 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2758 }
2759 return false;
2760}
2761
2762/// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2763/// the shift is nuw or nsw.
2764static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2765 const Query &Q) {
2766 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2767 const APInt *C;
2768 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2769 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2770 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
2771 }
2772 return false;
2773}
2774
2775static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2776 unsigned Depth, const Query &Q) {
2777 // Check two PHIs are in same block.
2778 if (PN1->getParent() != PN2->getParent())
2779 return false;
2780
2781 SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2782 bool UsedFullRecursion = false;
2783 for (const BasicBlock *IncomBB : PN1->blocks()) {
2784 if (!VisitedBBs.insert(IncomBB).second)
2785 continue; // Don't reprocess blocks that we have dealt with already.
2786 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2787 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2788 const APInt *C1, *C2;
2789 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2790 continue;
2791
2792 // Only one pair of phi operands is allowed for full recursion.
2793 if (UsedFullRecursion)
2794 return false;
2795
2796 Query RecQ = Q;
2797 RecQ.CxtI = IncomBB->getTerminator();
2798 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2799 return false;
2800 UsedFullRecursion = true;
2801 }
2802 return true;
2803}
2804
2805/// Return true if it is known that V1 != V2.
2806static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2807 const Query &Q) {
2808 if (V1 == V2)
2809 return false;
2810 if (V1->getType() != V2->getType())
2811 // We can't look through casts yet.
2812 return false;
2813
2814 if (Depth >= MaxAnalysisRecursionDepth)
2815 return false;
2816
2817 // See if we can recurse through (exactly one of) our operands. This
2818 // requires our operation be 1-to-1 and map every input value to exactly
2819 // one output value. Such an operation is invertible.
2820 auto *O1 = dyn_cast<Operator>(V1);
2821 auto *O2 = dyn_cast<Operator>(V2);
2822 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2823 if (auto Values = getInvertibleOperands(O1, O2))
2824 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2825
2826 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2827 const PHINode *PN2 = cast<PHINode>(V2);
2828 // FIXME: This is missing a generalization to handle the case where one is
2829 // a PHI and another one isn't.
2830 if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2831 return true;
2832 };
2833 }
2834
2835 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2836 return true;
2837
2838 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2839 return true;
2840
2841 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2842 return true;
2843
2844 if (V1->getType()->isIntOrIntVectorTy()) {
2845 // Are any known bits in V1 contradictory to known bits in V2? If V1
2846 // has a known zero where V2 has a known one, they must not be equal.
2847 KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2848 KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2849
2850 if (Known1.Zero.intersects(Known2.One) ||
2851 Known2.Zero.intersects(Known1.One))
2852 return true;
2853 }
2854 return false;
2855}
2856
2857/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2858/// simplify operations downstream. Mask is known to be zero for bits that V
2859/// cannot have.
2860///
2861/// This function is defined on values with integer type, values with pointer
2862/// type, and vectors of integers. In the case
2863/// where V is a vector, the mask, known zero, and known one values are the
2864/// same width as the vector element, and the bit is set only if it is true
2865/// for all of the elements in the vector.
2866bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2867 const Query &Q) {
2868 KnownBits Known(Mask.getBitWidth());
2869 computeKnownBits(V, Known, Depth, Q);
2870 return Mask.isSubsetOf(Known.Zero);
2871}
2872
2873// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2874// Returns the input and lower/upper bounds.
2875static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2876 const APInt *&CLow, const APInt *&CHigh) {
2877 assert(isa<Operator>(Select) &&(static_cast <bool> (isa<Operator>(Select) &&
cast<Operator>(Select)->getOpcode() == Instruction::
Select && "Input should be a Select!") ? void (0) : __assert_fail
("isa<Operator>(Select) && cast<Operator>(Select)->getOpcode() == Instruction::Select && \"Input should be a Select!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2879, __extension__ __PRETTY_FUNCTION__
))
2878 cast<Operator>(Select)->getOpcode() == Instruction::Select &&(static_cast <bool> (isa<Operator>(Select) &&
cast<Operator>(Select)->getOpcode() == Instruction::
Select && "Input should be a Select!") ? void (0) : __assert_fail
("isa<Operator>(Select) && cast<Operator>(Select)->getOpcode() == Instruction::Select && \"Input should be a Select!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2879, __extension__ __PRETTY_FUNCTION__
))
2879 "Input should be a Select!")(static_cast <bool> (isa<Operator>(Select) &&
cast<Operator>(Select)->getOpcode() == Instruction::
Select && "Input should be a Select!") ? void (0) : __assert_fail
("isa<Operator>(Select) && cast<Operator>(Select)->getOpcode() == Instruction::Select && \"Input should be a Select!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2879, __extension__ __PRETTY_FUNCTION__
))
;
2880
2881 const Value *LHS = nullptr, *RHS = nullptr;
2882 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2883 if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2884 return false;
2885
2886 if (!match(RHS, m_APInt(CLow)))
2887 return false;
2888
2889 const Value *LHS2 = nullptr, *RHS2 = nullptr;
2890 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2891 if (getInverseMinMaxFlavor(SPF) != SPF2)
2892 return false;
2893
2894 if (!match(RHS2, m_APInt(CHigh)))
2895 return false;
2896
2897 if (SPF == SPF_SMIN)
2898 std::swap(CLow, CHigh);
2899
2900 In = LHS2;
2901 return CLow->sle(*CHigh);
2902}
2903
2904static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
2905 const APInt *&CLow,
2906 const APInt *&CHigh) {
2907 assert((II->getIntrinsicID() == Intrinsic::smin ||(static_cast <bool> ((II->getIntrinsicID() == Intrinsic
::smin || II->getIntrinsicID() == Intrinsic::smax) &&
"Must be smin/smax") ? void (0) : __assert_fail ("(II->getIntrinsicID() == Intrinsic::smin || II->getIntrinsicID() == Intrinsic::smax) && \"Must be smin/smax\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2908, __extension__ __PRETTY_FUNCTION__
))
2908 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax")(static_cast <bool> ((II->getIntrinsicID() == Intrinsic
::smin || II->getIntrinsicID() == Intrinsic::smax) &&
"Must be smin/smax") ? void (0) : __assert_fail ("(II->getIntrinsicID() == Intrinsic::smin || II->getIntrinsicID() == Intrinsic::smax) && \"Must be smin/smax\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2908, __extension__ __PRETTY_FUNCTION__
))
;
2909
2910 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
2911 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
2912 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
2913 !match(II->getArgOperand(1), m_APInt(CLow)) ||
2914 !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
2915 return false;
2916
2917 if (II->getIntrinsicID() == Intrinsic::smin)
2918 std::swap(CLow, CHigh);
2919 return CLow->sle(*CHigh);
2920}
2921
2922/// For vector constants, loop over the elements and find the constant with the
2923/// minimum number of sign bits. Return 0 if the value is not a vector constant
2924/// or if any element was not analyzed; otherwise, return the count for the
2925/// element with the minimum number of sign bits.
2926static unsigned computeNumSignBitsVectorConstant(const Value *V,
2927 const APInt &DemandedElts,
2928 unsigned TyBits) {
2929 const auto *CV = dyn_cast<Constant>(V);
2930 if (!CV || !isa<FixedVectorType>(CV->getType()))
2931 return 0;
2932
2933 unsigned MinSignBits = TyBits;
2934 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2935 for (unsigned i = 0; i != NumElts; ++i) {
2936 if (!DemandedElts[i])
2937 continue;
2938 // If we find a non-ConstantInt, bail out.
2939 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2940 if (!Elt)
2941 return 0;
2942
2943 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2944 }
2945
2946 return MinSignBits;
2947}
2948
2949static unsigned ComputeNumSignBitsImpl(const Value *V,
2950 const APInt &DemandedElts,
2951 unsigned Depth, const Query &Q);
2952
2953static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2954 unsigned Depth, const Query &Q) {
2955 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2956 assert(Result > 0 && "At least one sign bit needs to be present!")(static_cast <bool> (Result > 0 && "At least one sign bit needs to be present!"
) ? void (0) : __assert_fail ("Result > 0 && \"At least one sign bit needs to be present!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2956, __extension__ __PRETTY_FUNCTION__
))
;
2957 return Result;
2958}
2959
2960/// Return the number of times the sign bit of the register is replicated into
2961/// the other bits. We know that at least 1 bit is always equal to the sign bit
2962/// (itself), but other cases can give us information. For example, immediately
2963/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2964/// other, so we return 3. For vectors, return the number of sign bits for the
2965/// vector element with the minimum number of known sign bits of the demanded
2966/// elements in the vector specified by DemandedElts.
2967static unsigned ComputeNumSignBitsImpl(const Value *V,
2968 const APInt &DemandedElts,
2969 unsigned Depth, const Query &Q) {
2970 Type *Ty = V->getType();
2971
2972 // FIXME: We currently have no way to represent the DemandedElts of a scalable
2973 // vector
2974 if (isa<ScalableVectorType>(Ty))
2975 return 1;
2976
2977#ifndef NDEBUG
2978 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth")(static_cast <bool> (Depth <= MaxAnalysisRecursionDepth
&& "Limit Search Depth") ? void (0) : __assert_fail (
"Depth <= MaxAnalysisRecursionDepth && \"Limit Search Depth\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2978, __extension__ __PRETTY_FUNCTION__
))
;
2979
2980 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2981 assert((static_cast <bool> (FVTy->getNumElements() == DemandedElts
.getBitWidth() && "DemandedElt width should equal the fixed vector number of elements"
) ? void (0) : __assert_fail ("FVTy->getNumElements() == DemandedElts.getBitWidth() && \"DemandedElt width should equal the fixed vector number of elements\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2983, __extension__ __PRETTY_FUNCTION__
))
2982 FVTy->getNumElements() == DemandedElts.getBitWidth() &&(static_cast <bool> (FVTy->getNumElements() == DemandedElts
.getBitWidth() && "DemandedElt width should equal the fixed vector number of elements"
) ? void (0) : __assert_fail ("FVTy->getNumElements() == DemandedElts.getBitWidth() && \"DemandedElt width should equal the fixed vector number of elements\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2983, __extension__ __PRETTY_FUNCTION__
))
2983 "DemandedElt width should equal the fixed vector number of elements")(static_cast <bool> (FVTy->getNumElements() == DemandedElts
.getBitWidth() && "DemandedElt width should equal the fixed vector number of elements"
) ? void (0) : __assert_fail ("FVTy->getNumElements() == DemandedElts.getBitWidth() && \"DemandedElt width should equal the fixed vector number of elements\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2983, __extension__ __PRETTY_FUNCTION__
))
;
2984 } else {
2985 assert(DemandedElts == APInt(1, 1) &&(static_cast <bool> (DemandedElts == APInt(1, 1) &&
"DemandedElt width should be 1 for scalars") ? void (0) : __assert_fail
("DemandedElts == APInt(1, 1) && \"DemandedElt width should be 1 for scalars\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2986, __extension__ __PRETTY_FUNCTION__
))
2986 "DemandedElt width should be 1 for scalars")(static_cast <bool> (DemandedElts == APInt(1, 1) &&
"DemandedElt width should be 1 for scalars") ? void (0) : __assert_fail
("DemandedElts == APInt(1, 1) && \"DemandedElt width should be 1 for scalars\""
, "llvm/lib/Analysis/ValueTracking.cpp", 2986, __extension__ __PRETTY_FUNCTION__
))
;
2987 }
2988#endif
2989
2990 // We return the minimum number of sign bits that are guaranteed to be present
2991 // in V, so for undef we have to conservatively return 1. We don't have the
2992 // same behavior for poison though -- that's a FIXME today.
2993
2994 Type *ScalarTy = Ty->getScalarType();
2995 unsigned TyBits = ScalarTy->isPointerTy() ?
2996 Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2997 Q.DL.getTypeSizeInBits(ScalarTy);
2998
2999 unsigned Tmp, Tmp2;
3000 unsigned FirstAnswer = 1;
3001
3002 // Note that ConstantInt is handled by the general computeKnownBits case
3003 // below.
3004
3005 if (Depth == MaxAnalysisRecursionDepth)
3006 return 1;
3007
3008 if (auto *U = dyn_cast<Operator>(V)) {
3009 switch (Operator::getOpcode(V)) {
3010 default: break;
3011 case Instruction::SExt:
3012 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3013 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
3014
3015 case Instruction::SDiv: {
3016 const APInt *Denominator;
3017 // sdiv X, C -> adds log(C) sign bits.
3018 if (match(U->getOperand(1), m_APInt(Denominator))) {
3019
3020 // Ignore non-positive denominator.
3021 if (!Denominator->isStrictlyPositive())
3022 break;
3023
3024 // Calculate the incoming numerator bits.
3025 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3026
3027 // Add floor(log(C)) bits to the numerator bits.
3028 return std::min(TyBits, NumBits + Denominator->logBase2());
3029 }
3030 break;
3031 }
3032
3033 case Instruction::SRem: {
3034 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3035
3036 const APInt *Denominator;
3037 // srem X, C -> we know that the result is within [-C+1,C) when C is a
3038 // positive constant. This let us put a lower bound on the number of sign
3039 // bits.
3040 if (match(U->getOperand(1), m_APInt(Denominator))) {
3041
3042 // Ignore non-positive denominator.
3043 if (Denominator->isStrictlyPositive()) {
3044 // Calculate the leading sign bit constraints by examining the
3045 // denominator. Given that the denominator is positive, there are two
3046 // cases:
3047 //
3048 // 1. The numerator is positive. The result range is [0,C) and
3049 // [0,C) u< (1 << ceilLogBase2(C)).
3050 //
3051 // 2. The numerator is negative. Then the result range is (-C,0] and
3052 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3053 //
3054 // Thus a lower bound on the number of sign bits is `TyBits -
3055 // ceilLogBase2(C)`.
3056
3057 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3058 Tmp = std::max(Tmp, ResBits);
3059 }
3060 }
3061 return Tmp;
3062 }
3063
3064 case Instruction::AShr: {
3065 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3066 // ashr X, C -> adds C sign bits. Vectors too.
3067 const APInt *ShAmt;
3068 if (match(U->getOperand(1), m_APInt(ShAmt))) {
3069 if (ShAmt->uge(TyBits))
3070 break; // Bad shift.
3071 unsigned ShAmtLimited = ShAmt->getZExtValue();
3072 Tmp += ShAmtLimited;
3073 if (Tmp > TyBits) Tmp = TyBits;
3074 }
3075 return Tmp;
3076 }
3077 case Instruction::Shl: {
3078 const APInt *ShAmt;
3079 if (match(U->getOperand(1), m_APInt(ShAmt))) {
3080 // shl destroys sign bits.
3081 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3082 if (ShAmt->uge(TyBits) || // Bad shift.
3083 ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3084 Tmp2 = ShAmt->getZExtValue();
3085 return Tmp - Tmp2;
3086 }
3087 break;
3088 }
3089 case Instruction::And:
3090 case Instruction::Or:
3091 case Instruction::Xor: // NOT is handled here.
3092 // Logical binary ops preserve the number of sign bits at the worst.
3093 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3094 if (Tmp != 1) {
3095 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3096 FirstAnswer = std::min(Tmp, Tmp2);
3097 // We computed what we know about the sign bits as our first
3098 // answer. Now proceed to the generic code that uses
3099 // computeKnownBits, and pick whichever answer is better.
3100 }
3101 break;
3102
3103 case Instruction::Select: {
3104 // If we have a clamp pattern, we know that the number of sign bits will
3105 // be the minimum of the clamp min/max range.
3106 const Value *X;
3107 const APInt *CLow, *CHigh;
3108 if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3109 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3110
3111 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3112 if (Tmp == 1) break;
3113 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3114 return std::min(Tmp, Tmp2);
3115 }
3116
3117 case Instruction::Add:
3118 // Add can have at most one carry bit. Thus we know that the output
3119 // is, at worst, one more bit than the inputs.
3120 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3121 if (Tmp == 1) break;
3122
3123 // Special case decrementing a value (ADD X, -1):
3124 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3125 if (CRHS->isAllOnesValue()) {
3126 KnownBits Known(TyBits);
3127 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3128
3129 // If the input is known to be 0 or 1, the output is 0/-1, which is
3130 // all sign bits set.
3131 if ((Known.Zero | 1).isAllOnes())
3132 return TyBits;
3133
3134 // If we are subtracting one from a positive number, there is no carry
3135 // out of the result.
3136 if (Known.isNonNegative())
3137 return Tmp;
3138 }
3139
3140 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3141 if (Tmp2 == 1) break;
3142 return std::min(Tmp, Tmp2) - 1;
3143
3144 case Instruction::Sub:
3145 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3146 if (Tmp2 == 1) break;
3147
3148 // Handle NEG.
3149 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3150 if (CLHS->isNullValue()) {
3151 KnownBits Known(TyBits);
3152 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3153 // If the input is known to be 0 or 1, the output is 0/-1, which is
3154 // all sign bits set.
3155 if ((Known.Zero | 1).isAllOnes())
3156 return TyBits;
3157
3158 // If the input is known to be positive (the sign bit is known clear),
3159 // the output of the NEG has the same number of sign bits as the
3160 // input.
3161 if (Known.isNonNegative())
3162 return Tmp2;
3163
3164 // Otherwise, we treat this like a SUB.
3165 }
3166
3167 // Sub can have at most one carry bit. Thus we know that the output
3168 // is, at worst, one more bit than the inputs.
3169 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3170 if (Tmp == 1) break;
3171 return std::min(Tmp, Tmp2) - 1;
3172
3173 case Instruction::Mul: {
3174 // The output of the Mul can be at most twice the valid bits in the
3175 // inputs.
3176 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3177 if (SignBitsOp0 == 1) break;
3178 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3179 if (SignBitsOp1 == 1) break;
3180 unsigned OutValidBits =
3181 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3182 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3183 }
3184
3185 case Instruction::PHI: {
3186 const PHINode *PN = cast<PHINode>(U);
3187 unsigned NumIncomingValues = PN->getNumIncomingValues();
3188 // Don't analyze large in-degree PHIs.
3189 if (NumIncomingValues > 4) break;
3190 // Unreachable blocks may have zero-operand PHI nodes.
3191 if (NumIncomingValues == 0) break;
3192
3193 // Take the minimum of all incoming values. This can't infinitely loop
3194 // because of our depth threshold.
3195 Query RecQ = Q;
3196 Tmp = TyBits;
3197 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3198 if (Tmp == 1) return Tmp;
3199 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3200 Tmp = std::min(
3201 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3202 }
3203 return Tmp;
3204 }
3205
3206 case Instruction::Trunc:
3207 // FIXME: it's tricky to do anything useful for this, but it is an
3208 // important case for targets like X86.
3209 break;
3210
3211 case Instruction::ExtractElement:
3212 // Look through extract element. At the moment we keep this simple and
3213 // skip tracking the specific element. But at least we might find
3214 // information valid for all elements of the vector (for example if vector
3215 // is sign extended, shifted, etc).
3216 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3217
3218 case Instruction::ShuffleVector: {
3219 // Collect the minimum number of sign bits that are shared by every vector
3220 // element referenced by the shuffle.
3221 auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3222 if (!Shuf) {
3223 // FIXME: Add support for shufflevector constant expressions.
3224 return 1;
3225 }
3226 APInt DemandedLHS, DemandedRHS;
3227 // For undef elements, we don't know anything about the common state of
3228 // the shuffle result.
3229 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3230 return 1;
3231 Tmp = std::numeric_limits<unsigned>::max();
3232 if (!!DemandedLHS) {
3233 const Value *LHS = Shuf->getOperand(0);
3234 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3235 }
3236 // If we don't know anything, early out and try computeKnownBits
3237 // fall-back.
3238 if (Tmp == 1)
3239 break;
3240 if (!!DemandedRHS) {
3241 const Value *RHS = Shuf->getOperand(1);
3242 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3243 Tmp = std::min(Tmp, Tmp2);
3244 }
3245 // If we don't know anything, early out and try computeKnownBits
3246 // fall-back.
3247 if (Tmp == 1)
3248 break;
3249 assert(Tmp <= TyBits && "Failed to determine minimum sign bits")(static_cast <bool> (Tmp <= TyBits && "Failed to determine minimum sign bits"
) ? void (0) : __assert_fail ("Tmp <= TyBits && \"Failed to determine minimum sign bits\""
, "llvm/lib/Analysis/ValueTracking.cpp", 3249, __extension__ __PRETTY_FUNCTION__
))
;
3250 return Tmp;
3251 }
3252 case Instruction::Call: {
3253 if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3254 switch (II->getIntrinsicID()) {
3255 default: break;
3256 case Intrinsic::abs:
3257 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3258 if (Tmp == 1) break;
3259
3260 // Absolute value reduces number of sign bits by at most 1.
3261 return Tmp - 1;
3262 case Intrinsic::smin:
3263 case Intrinsic::smax: {
3264 const APInt *CLow, *CHigh;
3265 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
3266 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3267 }
3268 }
3269 }
3270 }
3271 }
3272 }
3273
3274 // Finally, if we can prove that the top bits of the result are 0's or 1's,
3275 // use this information.
3276
3277 // If we can examine all elements of a vector constant successfully, we're
3278 // done (we can't do any better than that). If not, keep trying.
3279 if (unsigned VecSignBits =
3280 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3281 return VecSignBits;
3282
3283 KnownBits Known(TyBits);
3284 computeKnownBits(V, DemandedElts, Known, Depth, Q);
3285
3286 // If we know that the sign bit is either zero or one, determine the number of
3287 // identical bits in the top of the input value.
3288 return std::max(FirstAnswer, Known.countMinSignBits());
3289}
3290
3291Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3292 const TargetLibraryInfo *TLI) {
3293 const Function *F = CB.getCalledFunction();
3294 if (!F)
3295 return Intrinsic::not_intrinsic;
3296
3297 if (F->isIntrinsic())
3298 return F->getIntrinsicID();
3299
3300 // We are going to infer semantics of a library function based on mapping it
3301 // to an LLVM intrinsic. Check that the library function is available from
3302 // this callbase and in this environment.
3303 LibFunc Func;
3304 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3305 !CB.onlyReadsMemory())
3306 return Intrinsic::not_intrinsic;
3307
3308 switch (Func) {
3309 default:
3310 break;
3311 case LibFunc_sin:
3312 case LibFunc_sinf:
3313 case LibFunc_sinl:
3314 return Intrinsic::sin;
3315 case LibFunc_cos:
3316 case LibFunc_cosf:
3317 case LibFunc_cosl:
3318 return Intrinsic::cos;
3319 case LibFunc_exp:
3320 case LibFunc_expf:
3321 case LibFunc_expl:
3322 return Intrinsic::exp;
3323 case LibFunc_exp2:
3324 case LibFunc_exp2f:
3325 case LibFunc_exp2l:
3326 return Intrinsic::exp2;
3327 case LibFunc_log:
3328 case LibFunc_logf:
3329 case LibFunc_logl:
3330 return Intrinsic::log;
3331 case LibFunc_log10:
3332 case LibFunc_log10f:
3333 case LibFunc_log10l:
3334 return Intrinsic::log10;
3335 case LibFunc_log2:
3336 case LibFunc_log2f:
3337 case LibFunc_log2l:
3338 return Intrinsic::log2;
3339 case LibFunc_fabs:
3340 case LibFunc_fabsf:
3341 case LibFunc_fabsl:
3342 return Intrinsic::fabs;
3343 case LibFunc_fmin:
3344 case LibFunc_fminf:
3345 case LibFunc_fminl:
3346 return Intrinsic::minnum;
3347 case LibFunc_fmax:
3348 case LibFunc_fmaxf:
3349 case LibFunc_fmaxl:
3350 return Intrinsic::maxnum;
3351 case LibFunc_copysign:
3352 case LibFunc_copysignf:
3353 case LibFunc_copysignl:
3354 return Intrinsic::copysign;
3355 case LibFunc_floor:
3356 case LibFunc_floorf:
3357 case LibFunc_floorl:
3358 return Intrinsic::floor;
3359 case LibFunc_ceil:
3360 case LibFunc_ceilf:
3361 case LibFunc_ceill:
3362 return Intrinsic::ceil;
3363 case LibFunc_trunc:
3364 case LibFunc_truncf:
3365 case LibFunc_truncl:
3366 return Intrinsic::trunc;
3367 case LibFunc_rint:
3368 case LibFunc_rintf:
3369 case LibFunc_rintl:
3370 return Intrinsic::rint;
3371 case LibFunc_nearbyint:
3372 case LibFunc_nearbyintf:
3373 case LibFunc_nearbyintl:
3374 return Intrinsic::nearbyint;
3375 case LibFunc_round:
3376 case LibFunc_roundf:
3377 case LibFunc_roundl:
3378 return Intrinsic::round;
3379 case LibFunc_roundeven:
3380 case LibFunc_roundevenf:
3381 case LibFunc_roundevenl:
3382 return Intrinsic::roundeven;
3383 case LibFunc_pow:
3384 case LibFunc_powf:
3385 case LibFunc_powl:
3386 return Intrinsic::pow;
3387 case LibFunc_sqrt:
3388 case LibFunc_sqrtf:
3389 case LibFunc_sqrtl:
3390 return Intrinsic::sqrt;
3391 }
3392
3393 return Intrinsic::not_intrinsic;
3394}
3395
3396/// Return true if we can prove that the specified FP value is never equal to
3397/// -0.0.
3398/// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3399/// that a value is not -0.0. It only guarantees that -0.0 may be treated
3400/// the same as +0.0 in floating-point ops.
3401bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3402 unsigned Depth) {
3403 if (auto *CFP = dyn_cast<ConstantFP>(V))
3404 return !CFP->getValueAPF().isNegZero();
3405
3406 if (Depth == MaxAnalysisRecursionDepth)
3407 return false;
3408
3409 auto *Op = dyn_cast<Operator>(V);
3410 if (!Op)
3411 return false;
3412
3413 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3414 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3415 return true;
3416
3417 // sitofp and uitofp turn into +0.0 for zero.
3418 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3419 return true;
3420
3421 if (auto *Call = dyn_cast<CallInst>(Op)) {
3422 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3423 switch (IID) {
3424 default:
3425 break;
3426 // sqrt(-0.0) = -0.0, no other negative results are possible.
3427 case Intrinsic::sqrt:
3428 case Intrinsic::canonicalize:
3429 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3430 case Intrinsic::experimental_constrained_sqrt: {
3431 // NOTE: This rounding mode restriction may be too strict.
3432 const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
3433 if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
3434 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3435 else
3436 return false;
3437 }
3438 // fabs(x) != -0.0
3439 case Intrinsic::fabs:
3440 return true;
3441 // sitofp and uitofp turn into +0.0 for zero.
3442 case Intrinsic::experimental_constrained_sitofp:
3443 case Intrinsic::experimental_constrained_uitofp:
3444 return true;
3445 }
3446 }
3447
3448 return false;
3449}
3450
3451/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3452/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3453/// bit despite comparing equal.
3454static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3455 const TargetLibraryInfo *TLI,
3456 bool SignBitOnly,
3457 unsigned Depth) {
3458 // TODO: This function does not do the right thing when SignBitOnly is true
3459 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3460 // which flips the sign bits of NaNs. See
3461 // https://llvm.org/bugs/show_bug.cgi?id=31702.
3462
3463 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3464 return !CFP->getValueAPF().isNegative() ||
3465 (!SignBitOnly && CFP->getValueAPF().isZero());
3466 }
3467
3468 // Handle vector of constants.
3469 if (auto *CV = dyn_cast<Constant>(V)) {
3470 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3471 unsigned NumElts = CVFVTy->getNumElements();
3472 for (unsigned i = 0; i != NumElts; ++i) {
3473 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3474 if (!CFP)
3475 return false;
3476 if (CFP->getValueAPF().isNegative() &&
3477 (SignBitOnly || !CFP->getValueAPF().isZero()))
3478 return false;
3479 }
3480
3481 // All non-negative ConstantFPs.
3482 return true;
3483 }
3484 }
3485
3486 if (Depth == MaxAnalysisRecursionDepth)
3487 return false;
3488
3489 const Operator *I = dyn_cast<Operator>(V);
3490 if (!I)
3491 return false;
3492
3493 switch (I->getOpcode()) {
3494 default:
3495 break;
3496 // Unsigned integers are always nonnegative.
3497 case Instruction::UIToFP:
3498 return true;
3499 case Instruction::FMul:
3500 case Instruction::FDiv:
3501 // X * X is always non-negative or a NaN.
3502 // X / X is always exactly 1.0 or a NaN.
3503 if (I->getOperand(0) == I->getOperand(1) &&
3504 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3505 return true;
3506
3507 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3508 case Instruction::FAdd:
3509 case Instruction::FRem:
3510 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3511 Depth + 1) &&
3512 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3513 Depth + 1);
3514 case Instruction::Select:
3515 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3516 Depth + 1) &&
3517 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3518 Depth + 1);
3519 case Instruction::FPExt:
3520 case Instruction::FPTrunc:
3521 // Widening/narrowing never change sign.
3522 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3523 Depth + 1);
3524 case Instruction::ExtractElement:
3525 // Look through extract element. At the moment we keep this simple and skip
3526 // tracking the specific element. But at least we might find information
3527 // valid for all elements of the vector.
3528 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3529 Depth + 1);
3530 case Instruction::Call:
3531 const auto *CI = cast<CallInst>(I);
3532 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3533 switch (IID) {
3534 default:
3535 break;
3536 case Intrinsic::maxnum: {
3537 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3538 auto isPositiveNum = [&](Value *V) {
3539 if (SignBitOnly) {
3540 // With SignBitOnly, this is tricky because the result of
3541 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3542 // a constant strictly greater than 0.0.
3543 const APFloat *C;
3544 return match(V, m_APFloat(C)) &&
3545 *C > APFloat::getZero(C->getSemantics());
3546 }
3547
3548 // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3549 // maxnum can't be ordered-less-than-zero.
3550 return isKnownNeverNaN(V, TLI) &&
3551 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3552 };
3553
3554 // TODO: This could be improved. We could also check that neither operand
3555 // has its sign bit set (and at least 1 is not-NAN?).
3556 return isPositiveNum(V0) || isPositiveNum(V1);
3557 }
3558
3559 case Intrinsic::maximum:
3560 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3561 Depth + 1) ||
3562 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3563 Depth + 1);
3564 case Intrinsic::minnum:
3565 case Intrinsic::minimum:
3566 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3567 Depth + 1) &&
3568 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3569 Depth + 1);
3570 case Intrinsic::exp:
3571 case Intrinsic::exp2:
3572 case Intrinsic::fabs:
3573 return true;
3574
3575 case Intrinsic::sqrt:
3576 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
3577 if (!SignBitOnly)
3578 return true;
3579 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3580 CannotBeNegativeZero(CI->getOperand(0), TLI));
3581
3582 case Intrinsic::powi:
3583 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3584 // powi(x,n) is non-negative if n is even.
3585 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3586 return true;
3587 }
3588 // TODO: This is not correct. Given that exp is an integer, here are the
3589 // ways that pow can return a negative value:
3590 //
3591 // pow(x, exp) --> negative if exp is odd and x is negative.
3592 // pow(-0, exp) --> -inf if exp is negative odd.
3593 // pow(-0, exp) --> -0 if exp is positive odd.
3594 // pow(-inf, exp) --> -0 if exp is negative odd.
3595 // pow(-inf, exp) --> -inf if exp is positive odd.
3596 //
3597 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3598 // but we must return false if x == -0. Unfortunately we do not currently
3599 // have a way of expressing this constraint. See details in
3600 // https://llvm.org/bugs/show_bug.cgi?id=31702.
3601 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3602 Depth + 1);
3603
3604 case Intrinsic::fma:
3605 case Intrinsic::fmuladd:
3606 // x*x+y is non-negative if y is non-negative.
3607 return I->getOperand(0) == I->getOperand(1) &&
3608 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3609 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3610 Depth + 1);
3611 }
3612 break;
3613 }
3614 return false;
3615}
3616
3617bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3618 const TargetLibraryInfo *TLI) {
3619 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3620}
3621
3622bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3623 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3624}
3625
3626bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3627 unsigned Depth) {
3628 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type")(static_cast <bool> (V->getType()->isFPOrFPVectorTy
() && "Querying for Inf on non-FP type") ? void (0) :
__assert_fail ("V->getType()->isFPOrFPVectorTy() && \"Querying for Inf on non-FP type\""
, "llvm/lib/Analysis/ValueTracking.cpp", 3628, __extension__ __PRETTY_FUNCTION__
))
;
3629
3630 // If we're told that infinities won't happen, assume they won't.
3631 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3632 if (FPMathOp->hasNoInfs())
3633 return true;
3634
3635 // Handle scalar constants.
3636 if (auto *CFP = dyn_cast<ConstantFP>(V))
3637 return !CFP->isInfinity();
3638
3639 if (Depth == MaxAnalysisRecursionDepth)
3640 return false;
3641
3642 if (auto *Inst = dyn_cast<Instruction>(V)) {
3643 switch (Inst->getOpcode()) {
3644 case Instruction::Select: {
3645 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3646 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3647 }
3648 case Instruction::SIToFP:
3649 case Instruction::UIToFP: {
3650 // Get width of largest magnitude integer (remove a bit if signed).
3651 // This still works for a signed minimum value because the largest FP
3652 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3653 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3654 if (Inst->getOpcode() == Instruction::SIToFP)
3655 --IntSize;
3656
3657 // If the exponent of the largest finite FP value can hold the largest
3658 // integer, the result of the cast must be finite.
3659 Type *FPTy = Inst->getType()->getScalarType();
3660 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3661 }
3662 default:
3663 break;
3664 }
3665 }
3666
3667 // try to handle fixed width vector constants
3668 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3669 if (VFVTy && isa<Constant>(V)) {
3670 // For vectors, verify that each element is not infinity.
3671 unsigned NumElts = VFVTy->getNumElements();
3672 for (unsigned i = 0; i != NumElts; ++i) {
3673 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3674 if (!Elt)
3675 return false;
3676 if (isa<UndefValue>(Elt))
3677 continue;
3678 auto *CElt = dyn_cast<ConstantFP>(Elt);
3679 if (!CElt || CElt->isInfinity())
3680 return false;
3681 }
3682 // All elements were confirmed non-infinity or undefined.
3683 return true;
3684 }
3685
3686 // was not able to prove that V never contains infinity
3687 return false;
3688}
3689
3690bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3691 unsigned Depth) {
3692 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type")(static_cast <bool> (V->getType()->isFPOrFPVectorTy
() && "Querying for NaN on non-FP type") ? void (0) :
__assert_fail ("V->getType()->isFPOrFPVectorTy() && \"Querying for NaN on non-FP type\""
, "llvm/lib/Analysis/ValueTracking.cpp", 3692, __extension__ __PRETTY_FUNCTION__
))
;
3693
3694 // If we're told that NaNs won't happen, assume they won't.
3695 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3696 if (FPMathOp->hasNoNaNs())
3697 return true;
3698
3699 // Handle scalar constants.
3700 if (auto *CFP = dyn_cast<ConstantFP>(V))
3701 return !CFP->isNaN();
3702
3703 if (Depth == MaxAnalysisRecursionDepth)
3704 return false;
3705
3706 if (auto *Inst = dyn_cast<Instruction>(V)) {
3707 switch (Inst->getOpcode()) {
3708 case Instruction::FAdd:
3709 case Instruction::FSub:
3710 // Adding positive and negative infinity produces NaN.
3711 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3712 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3713 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3714 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3715
3716 case Instruction::FMul:
3717 // Zero multiplied with infinity produces NaN.
3718 // FIXME: If neither side can be zero fmul never produces NaN.
3719 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3720 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3721 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3722 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3723
3724 case Instruction::FDiv:
3725 case Instruction::FRem:
3726 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3727 return false;
3728
3729 case Instruction::Select: {
3730 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3731 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3732 }
3733 case Instruction::SIToFP:
3734 case Instruction::UIToFP:
3735 return true;
3736 case Instruction::FPTrunc:
3737 case Instruction::FPExt:
3738 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3739 default:
3740 break;
3741 }
3742 }
3743
3744 if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3745 switch (II->getIntrinsicID()) {
3746 case Intrinsic::canonicalize:
3747 case Intrinsic::fabs:
3748 case Intrinsic::copysign:
3749 case Intrinsic::exp:
3750 case Intrinsic::exp2:
3751 case Intrinsic::floor:
3752 case Intrinsic::ceil:
3753 case Intrinsic::trunc:
3754 case Intrinsic::rint:
3755 case Intrinsic::nearbyint:
3756 case Intrinsic::round:
3757 case Intrinsic::roundeven:
3758 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3759 case Intrinsic::sqrt:
3760 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3761 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3762 case Intrinsic::minnum:
3763 case Intrinsic::maxnum:
3764 // If either operand is not NaN, the result is not NaN.
3765 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3766 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3767 default:
3768 return false;
3769 }
3770 }
3771
3772 // Try to handle fixed width vector constants
3773 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3774 if (VFVTy && isa<Constant>(V)) {
3775 // For vectors, verify that each element is not NaN.
3776 unsigned NumElts = VFVTy->getNumElements();
3777 for (unsigned i = 0; i != NumElts; ++i) {
3778 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3779 if (!Elt)
3780 return false;
3781 if (isa<UndefValue>(Elt))
3782 continue;
3783 auto *CElt = dyn_cast<ConstantFP>(Elt);
3784 if (!CElt || CElt->isNaN())
3785 return false;
3786 }
3787 // All elements were confirmed not-NaN or undefined.
3788 return true;
3789 }
3790
3791 // Was not able to prove that V never contains NaN
3792 return false;
3793}
3794
3795Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3796
3797 // All byte-wide stores are splatable, even of arbitrary variables.
3798 if (V->getType()->isIntegerTy(8))
3799 return V;
3800
3801 LLVMContext &Ctx = V->getContext();
3802
3803 // Undef don't care.
3804 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3805 if (isa<UndefValue>(V))
3806 return UndefInt8;
3807
3808 // Return Undef for zero-sized type.
3809 if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3810 return UndefInt8;
3811
3812 Constant *C = dyn_cast<Constant>(V);
3813 if (!C) {
3814 // Conceptually, we could handle things like:
3815 // %a = zext i8 %X to i16
3816 // %b = shl i16 %a, 8
3817 // %c = or i16 %a, %b
3818 // but until there is an example that actually needs this, it doesn't seem
3819 // worth worrying about.
3820 return nullptr;
3821 }
3822
3823 // Handle 'null' ConstantArrayZero etc.
3824 if (C->isNullValue())
3825 return Constant::getNullValue(Type::getInt8Ty(Ctx));
3826
3827 // Constant floating-point values can be handled as integer values if the
3828 // corresponding integer value is "byteable". An important case is 0.0.
3829 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3830 Type *Ty = nullptr;
3831 if (CFP->getType()->isHalfTy())
3832 Ty = Type::getInt16Ty(Ctx);
3833 else if (CFP->getType()->isFloatTy())
3834 Ty = Type::getInt32Ty(Ctx);
3835 else if (CFP->getType()->isDoubleTy())
3836 Ty = Type::getInt64Ty(Ctx);
3837 // Don't handle long double formats, which have strange constraints.
3838 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3839 : nullptr;
3840 }
3841
3842 // We can handle constant integers that are multiple of 8 bits.
3843 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3844 if (CI->getBitWidth() % 8 == 0) {
3845 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!")(static_cast <bool> (CI->getBitWidth() > 8 &&
"8 bits should be handled above!") ? void (0) : __assert_fail
("CI->getBitWidth() > 8 && \"8 bits should be handled above!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 3845, __extension__ __PRETTY_FUNCTION__
))
;
3846 if (!CI->getValue().isSplat(8))
3847 return nullptr;
3848 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3849 }
3850 }
3851
3852 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3853 if (CE->getOpcode() == Instruction::IntToPtr) {
3854 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3855 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3856 return isBytewiseValue(
3857 ConstantExpr::getIntegerCast(CE->getOperand(0),
3858 Type::getIntNTy(Ctx, BitWidth), false),
3859 DL);
3860 }
3861 }
3862 }
3863
3864 auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3865 if (LHS == RHS)
3866 return LHS;
3867 if (!LHS || !RHS)
3868 return nullptr;
3869 if (LHS == UndefInt8)
3870 return RHS;
3871 if (RHS == UndefInt8)
3872 return LHS;
3873 return nullptr;
3874 };
3875
3876 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3877 Value *Val = UndefInt8;
3878 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3879 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3880 return nullptr;
3881 return Val;
3882 }
3883
3884 if (isa<ConstantAggregate>(C)) {
3885 Value *Val = UndefInt8;
3886 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3887 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3888 return nullptr;
3889 return Val;
3890 }
3891
3892 // Don't try to handle the handful of other constants.
3893 return nullptr;
3894}
3895
3896// This is the recursive version of BuildSubAggregate. It takes a few different
3897// arguments. Idxs is the index within the nested struct From that we are
3898// looking at now (which is of type IndexedType). IdxSkip is the number of
3899// indices from Idxs that should be left out when inserting into the resulting
3900// struct. To is the result struct built so far, new insertvalue instructions
3901// build on that.
3902static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3903 SmallVectorImpl<unsigned> &Idxs,
3904 unsigned IdxSkip,
3905 Instruction *InsertBefore) {
3906 StructType *STy = dyn_cast<StructType>(IndexedType);
3907 if (STy) {
3908 // Save the original To argument so we can modify it
3909 Value *OrigTo = To;
3910 // General case, the type indexed by Idxs is a struct
3911 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3912 // Process each struct element recursively
3913 Idxs.push_back(i);
3914 Value *PrevTo = To;
3915 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3916 InsertBefore);
3917 Idxs.pop_back();
3918 if (!To) {
3919 // Couldn't find any inserted value for this index? Cleanup
3920 while (PrevTo != OrigTo) {
3921 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3922 PrevTo = Del->getAggregateOperand();
3923 Del->eraseFromParent();
3924 }
3925 // Stop processing elements
3926 break;
3927 }
3928 }
3929 // If we successfully found a value for each of our subaggregates
3930 if (To)
3931 return To;
3932 }
3933 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3934 // the struct's elements had a value that was inserted directly. In the latter
3935 // case, perhaps we can't determine each of the subelements individually, but
3936 // we might be able to find the complete struct somewhere.
3937
3938 // Find the value that is at that particular spot
3939 Value *V = FindInsertedValue(From, Idxs);
3940
3941 if (!V)
3942 return nullptr;
3943
3944 // Insert the value in the new (sub) aggregate
3945 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3946 "tmp", InsertBefore);
3947}
3948
3949// This helper takes a nested struct and extracts a part of it (which is again a
3950// struct) into a new value. For example, given the struct:
3951// { a, { b, { c, d }, e } }
3952// and the indices "1, 1" this returns
3953// { c, d }.
3954//
3955// It does this by inserting an insertvalue for each element in the resulting
3956// struct, as opposed to just inserting a single struct. This will only work if
3957// each of the elements of the substruct are known (ie, inserted into From by an
3958// insertvalue instruction somewhere).
3959//
3960// All inserted insertvalue instructions are inserted before InsertBefore
3961static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3962 Instruction *InsertBefore) {
3963 assert(InsertBefore && "Must have someplace to insert!")(static_cast <bool> (InsertBefore && "Must have someplace to insert!"
) ? void (0) : __assert_fail ("InsertBefore && \"Must have someplace to insert!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 3963, __extension__ __PRETTY_FUNCTION__
))
;
3964 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3965 idx_range);
3966 Value *To = UndefValue::get(IndexedType);
3967 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3968 unsigned IdxSkip = Idxs.size();
3969
3970 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3971}
3972
3973/// Given an aggregate and a sequence of indices, see if the scalar value
3974/// indexed is already around as a register, for example if it was inserted
3975/// directly into the aggregate.
3976///
3977/// If InsertBefore is not null, this function will duplicate (modified)
3978/// insertvalues when a part of a nested struct is extracted.
3979Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3980 Instruction *InsertBefore) {
3981 // Nothing to index? Just return V then (this is useful at the end of our
3982 // recursion).
3983 if (idx_range.empty())
3984 return V;
3985 // We have indices, so V should have an indexable type.
3986 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&(static_cast <bool> ((V->getType()->isStructTy() ||
V->getType()->isArrayTy()) && "Not looking at a struct or array?"
) ? void (0) : __assert_fail ("(V->getType()->isStructTy() || V->getType()->isArrayTy()) && \"Not looking at a struct or array?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 3987, __extension__ __PRETTY_FUNCTION__
))
3987 "Not looking at a struct or array?")(static_cast <bool> ((V->getType()->isStructTy() ||
V->getType()->isArrayTy()) && "Not looking at a struct or array?"
) ? void (0) : __assert_fail ("(V->getType()->isStructTy() || V->getType()->isArrayTy()) && \"Not looking at a struct or array?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 3987, __extension__ __PRETTY_FUNCTION__
))
;
3988 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&(static_cast <bool> (ExtractValueInst::getIndexedType(V
->getType(), idx_range) && "Invalid indices for type?"
) ? void (0) : __assert_fail ("ExtractValueInst::getIndexedType(V->getType(), idx_range) && \"Invalid indices for type?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 3989, __extension__ __PRETTY_FUNCTION__
))
3989 "Invalid indices for type?")(static_cast <bool> (ExtractValueInst::getIndexedType(V
->getType(), idx_range) && "Invalid indices for type?"
) ? void (0) : __assert_fail ("ExtractValueInst::getIndexedType(V->getType(), idx_range) && \"Invalid indices for type?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 3989, __extension__ __PRETTY_FUNCTION__
))
;
3990
3991 if (Constant *C = dyn_cast<Constant>(V)) {
3992 C = C->getAggregateElement(idx_range[0]);
3993 if (!C) return nullptr;
3994 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3995 }
3996
3997 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3998 // Loop the indices for the insertvalue instruction in parallel with the
3999 // requested indices
4000 const unsigned *req_idx = idx_range.begin();
4001 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
4002 i != e; ++i, ++req_idx) {
4003 if (req_idx == idx_range.end()) {
4004 // We can't handle this without inserting insertvalues
4005 if (!InsertBefore)
4006 return nullptr;
4007
4008 // The requested index identifies a part of a nested aggregate. Handle
4009 // this specially. For example,
4010 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
4011 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
4012 // %C = extractvalue {i32, { i32, i32 } } %B, 1
4013 // This can be changed into
4014 // %A = insertvalue {i32, i32 } undef, i32 10, 0
4015 // %C = insertvalue {i32, i32 } %A, i32 11, 1
4016 // which allows the unused 0,0 element from the nested struct to be
4017 // removed.
4018 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
4019 InsertBefore);
4020 }
4021
4022 // This insert value inserts something else than what we are looking for.
4023 // See if the (aggregate) value inserted into has the value we are
4024 // looking for, then.
4025 if (*req_idx != *i)
4026 return FindInsertedValue(I->getAggregateOperand(), idx_range,
4027 InsertBefore);
4028 }
4029 // If we end up here, the indices of the insertvalue match with those
4030 // requested (though possibly only partially). Now we recursively look at
4031 // the inserted value, passing any remaining indices.
4032 return FindInsertedValue(I->getInsertedValueOperand(),
4033 makeArrayRef(req_idx, idx_range.end()),
4034 InsertBefore);
4035 }
4036
4037 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4038 // If we're extracting a value from an aggregate that was extracted from
4039 // something else, we can extract from that something else directly instead.
4040 // However, we will need to chain I's indices with the requested indices.
4041
4042 // Calculate the number of indices required
4043 unsigned size = I->getNumIndices() + idx_range.size();
4044 // Allocate some space to put the new indices in
4045 SmallVector<unsigned, 5> Idxs;
4046 Idxs.reserve(size);
4047 // Add indices from the extract value instruction
4048 Idxs.append(I->idx_begin(), I->idx_end());
4049
4050 // Add requested indices
4051 Idxs.append(idx_range.begin(), idx_range.end());
4052
4053 assert(Idxs.size() == size(static_cast <bool> (Idxs.size() == size && "Number of indices added not correct?"
) ? void (0) : __assert_fail ("Idxs.size() == size && \"Number of indices added not correct?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 4054, __extension__ __PRETTY_FUNCTION__
))
4054 && "Number of indices added not correct?")(static_cast <bool> (Idxs.size() == size && "Number of indices added not correct?"
) ? void (0) : __assert_fail ("Idxs.size() == size && \"Number of indices added not correct?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 4054, __extension__ __PRETTY_FUNCTION__
))
;
4055
4056 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4057 }
4058 // Otherwise, we don't know (such as, extracting from a function return value
4059 // or load instruction)
4060 return nullptr;
4061}
4062
4063bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4064 unsigned CharSize) {
4065 // Make sure the GEP has exactly three arguments.
4066 if (GEP->getNumOperands() != 3)
4067 return false;
4068
4069 // Make sure the index-ee is a pointer to array of \p CharSize integers.
4070 // CharSize.
4071 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4072 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4073 return false;
4074
4075 // Check to make sure that the first operand of the GEP is an integer and
4076 // has value 0 so that we are sure we're indexing into the initializer.
4077 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4078 if (!FirstIdx || !FirstIdx->isZero())
4079 return false;
4080
4081 return true;
4082}
4083
4084bool llvm::getConstantDataArrayInfo(const Value *V,
4085 ConstantDataArraySlice &Slice,
4086 unsigned ElementSize, uint64_t Offset) {
4087 assert(V)(static_cast <bool> (V) ? void (0) : __assert_fail ("V"
, "llvm/lib/Analysis/ValueTracking.cpp", 4087, __extension__ __PRETTY_FUNCTION__
))
;
4088
4089 // Look through bitcast instructions and geps.
4090 V = V->stripPointerCasts();
4091
4092 // If the value is a GEP instruction or constant expression, treat it as an
4093 // offset.
4094 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4095 // The GEP operator should be based on a pointer to string constant, and is
4096 // indexing into the string constant.
4097 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4098 return false;
4099
4100 // If the second index isn't a ConstantInt, then this is a variable index
4101 // into the array. If this occurs, we can't say anything meaningful about
4102 // the string.
4103 uint64_t StartIdx = 0;
4104 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4105 StartIdx = CI->getZExtValue();
4106 else
4107 return false;
4108 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4109 StartIdx + Offset);
4110 }
4111
4112 // The GEP instruction, constant or instruction, must reference a global
4113 // variable that is a constant and is initialized. The referenced constant
4114 // initializer is the array that we'll use for optimization.
4115 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4116 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4117 return false;
4118
4119 const ConstantDataArray *Array;
4120 ArrayType *ArrayTy;
4121 if (GV->getInitializer()->isNullValue()) {
4122 Type *GVTy = GV->getValueType();
4123 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4124 // A zeroinitializer for the array; there is no ConstantDataArray.
4125 Array = nullptr;
4126 } else {
4127 const DataLayout &DL = GV->getParent()->getDataLayout();
4128 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4129 uint64_t Length = SizeInBytes / (ElementSize / 8);
4130 if (Length <= Offset)
4131 return false;
4132
4133 Slice.Array = nullptr;
4134 Slice.Offset = 0;
4135 Slice.Length = Length - Offset;
4136 return true;
4137 }
4138 } else {
4139 // This must be a ConstantDataArray.
4140 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4141 if (!Array)
4142 return false;
4143 ArrayTy = Array->getType();
4144 }
4145 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4146 return false;
4147
4148 uint64_t NumElts = ArrayTy->getArrayNumElements();
4149 if (Offset > NumElts)
4150 return false;
4151
4152 Slice.Array = Array;
4153 Slice.Offset = Offset;
4154 Slice.Length = NumElts - Offset;
4155 return true;
4156}
4157
4158/// This function computes the length of a null-terminated C string pointed to
4159/// by V. If successful, it returns true and returns the string in Str.
4160/// If unsuccessful, it returns false.
4161bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4162 uint64_t Offset, bool TrimAtNul) {
4163 ConstantDataArraySlice Slice;
4164 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4165 return false;
4166
4167 if (Slice.Array == nullptr) {
4168 if (TrimAtNul) {
4169 Str = StringRef();
4170 return true;
4171 }
4172 if (Slice.Length == 1) {
4173 Str = StringRef("", 1);
4174 return true;
4175 }
4176 // We cannot instantiate a StringRef as we do not have an appropriate string
4177 // of 0s at hand.
4178 return false;
4179 }
4180
4181 // Start out with the entire array in the StringRef.
4182 Str = Slice.Array->getAsString();
4183 // Skip over 'offset' bytes.
4184 Str = Str.substr(Slice.Offset);
4185
4186 if (TrimAtNul) {
4187 // Trim off the \0 and anything after it. If the array is not nul
4188 // terminated, we just return the whole end of string. The client may know
4189 // some other way that the string is length-bound.
4190 Str = Str.substr(0, Str.find('\0'));
4191 }
4192 return true;
4193}
4194
4195// These next two are very similar to the above, but also look through PHI
4196// nodes.
4197// TODO: See if we can integrate these two together.
4198
4199/// If we can compute the length of the string pointed to by
4200/// the specified pointer, return 'len+1'. If we can't, return 0.
4201static uint64_t GetStringLengthH(const Value *V,
4202 SmallPtrSetImpl<const PHINode*> &PHIs,
4203 unsigned CharSize) {
4204 // Look through noop bitcast instructions.
4205 V = V->stripPointerCasts();
4206
4207 // If this is a PHI node, there are two cases: either we have already seen it
4208 // or we haven't.
4209 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4210 if (!PHIs.insert(PN).second)
4211 return ~0ULL; // already in the set.
4212
4213 // If it was new, see if all the input strings are the same length.
4214 uint64_t LenSoFar = ~0ULL;
4215 for (Value *IncValue : PN->incoming_values()) {
4216 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4217 if (Len == 0) return 0; // Unknown length -> unknown.
4218
4219 if (Len == ~0ULL) continue;
4220
4221 if (Len != LenSoFar && LenSoFar != ~0ULL)
4222 return 0; // Disagree -> unknown.
4223 LenSoFar = Len;
4224 }
4225
4226 // Success, all agree.
4227 return LenSoFar;
4228 }
4229
4230 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4231 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4232 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4233 if (Len1 == 0) return 0;
4234 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4235 if (Len2 == 0) return 0;
4236 if (Len1 == ~0ULL) return Len2;
4237 if (Len2 == ~0ULL) return Len1;
4238 if (Len1 != Len2) return 0;
4239 return Len1;
4240 }
4241
4242 // Otherwise, see if we can read the string.
4243 ConstantDataArraySlice Slice;
4244 if (!getConstantDataArrayInfo(V, Slice, CharSize))
4245 return 0;
4246
4247 if (Slice.Array == nullptr)
4248 return 1;
4249
4250 // Search for nul characters
4251 unsigned NullIndex = 0;
4252 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4253 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4254 break;
4255 }
4256
4257 return NullIndex + 1;
4258}
4259
4260/// If we can compute the length of the string pointed to by
4261/// the specified pointer, return 'len+1'. If we can't, return 0.
4262uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4263 if (!V->getType()->isPointerTy())
4264 return 0;
4265
4266 SmallPtrSet<const PHINode*, 32> PHIs;
4267 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4268 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4269 // an empty string as a length.
4270 return Len == ~0ULL ? 1 : Len;
4271}
4272
4273const Value *
4274llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4275 bool MustPreserveNullness) {
4276 assert(Call &&(static_cast <bool> (Call && "getArgumentAliasingToReturnedPointer only works on nonnull calls"
) ? void (0) : __assert_fail ("Call && \"getArgumentAliasingToReturnedPointer only works on nonnull calls\""
, "llvm/lib/Analysis/ValueTracking.cpp", 4277, __extension__ __PRETTY_FUNCTION__
))
4277 "getArgumentAliasingToReturnedPointer only works on nonnull calls")(static_cast <bool> (Call && "getArgumentAliasingToReturnedPointer only works on nonnull calls"
) ? void (0) : __assert_fail ("Call && \"getArgumentAliasingToReturnedPointer only works on nonnull calls\""
, "llvm/lib/Analysis/ValueTracking.cpp", 4277, __extension__ __PRETTY_FUNCTION__
))
;
4278 if (const Value *RV = Call->getReturnedArgOperand())
4279 return RV;
4280 // This can be used only as a aliasing property.
4281 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4282 Call, MustPreserveNullness))
4283 return Call->getArgOperand(0);
4284 return nullptr;
4285}
4286
4287bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4288 const CallBase *Call, bool MustPreserveNullness) {
4289 switch (Call->getIntrinsicID()) {
4290 case Intrinsic::launder_invariant_group:
4291 case Intrinsic::strip_invariant_group:
4292 case Intrinsic::aarch64_irg:
4293 case Intrinsic::aarch64_tagp:
4294 return true;
4295 case Intrinsic::ptrmask:
4296 return !MustPreserveNullness;
4297 default:
4298 return false;
4299 }
4300}
4301
4302/// \p PN defines a loop-variant pointer to an object. Check if the
4303/// previous iteration of the loop was referring to the same object as \p PN.
4304static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4305 const LoopInfo *LI) {
4306 // Find the loop-defined value.
4307 Loop *L = LI->getLoopFor(PN->getParent());
4308 if (PN->getNumIncomingValues() != 2)
4309 return true;
4310
4311 // Find the value from previous iteration.
4312 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4313 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4314 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4315 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4316 return true;
4317
4318 // If a new pointer is loaded in the loop, the pointer references a different
4319 // object in every iteration. E.g.:
4320 // for (i)
4321 // int *p = a[i];
4322 // ...
4323 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4324 if (!L->isLoopInvariant(Load->getPointerOperand()))
4325 return false;
4326 return true;
4327}
4328
4329const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4330 if (!V->getType()->isPointerTy())
4331 return V;
4332 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4333 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4334 V = GEP->getPointerOperand();
4335 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4336 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4337 V = cast<Operator>(V)->getOperand(0);
4338 if (!V->getType()->isPointerTy())
4339 return V;
4340 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4341 if (GA->isInterposable())
4342 return V;
4343 V = GA->getAliasee();
4344 } else {
4345 if (auto *PHI = dyn_cast<PHINode>(V)) {
4346 // Look through single-arg phi nodes created by LCSSA.
4347 if (PHI->getNumIncomingValues() == 1) {
4348 V = PHI->getIncomingValue(0);
4349 continue;
4350 }
4351 } else if (auto *Call = dyn_cast<CallBase>(V)) {
4352 // CaptureTracking can know about special capturing properties of some
4353 // intrinsics like launder.invariant.group, that can't be expressed with
4354 // the attributes, but have properties like returning aliasing pointer.
4355 // Because some analysis may assume that nocaptured pointer is not
4356 // returned from some special intrinsic (because function would have to
4357 // be marked with returns attribute), it is crucial to use this function
4358 // because it should be in sync with CaptureTracking. Not using it may
4359 // cause weird miscompilations where 2 aliasing pointers are assumed to
4360 // noalias.
4361 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4362 V = RP;
4363 continue;
4364 }
4365 }
4366
4367 return V;
4368 }
4369 assert(V->getType()->isPointerTy() && "Unexpected operand type!")(static_cast <bool> (V->getType()->isPointerTy() &&
"Unexpected operand type!") ? void (0) : __assert_fail ("V->getType()->isPointerTy() && \"Unexpected operand type!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 4369, __extension__ __PRETTY_FUNCTION__
))
;
4370 }
4371 return V;
4372}
4373
4374void llvm::getUnderlyingObjects(const Value *V,
4375 SmallVectorImpl<const Value *> &Objects,
4376 LoopInfo *LI, unsigned MaxLookup) {
4377 SmallPtrSet<const Value *, 4> Visited;
4378 SmallVector<const Value *, 4> Worklist;
4379 Worklist.push_back(V);
4380 do {
4381 const Value *P = Worklist.pop_back_val();
4382 P = getUnderlyingObject(P, MaxLookup);
4383
4384 if (!Visited.insert(P).second)
4385 continue;
4386
4387 if (auto *SI = dyn_cast<SelectInst>(P)) {
4388 Worklist.push_back(SI->getTrueValue());
4389 Worklist.push_back(SI->getFalseValue());
4390 continue;
4391 }
4392
4393 if (auto *PN = dyn_cast<PHINode>(P)) {
4394 // If this PHI changes the underlying object in every iteration of the
4395 // loop, don't look through it. Consider:
4396 // int **A;
4397 // for (i) {
4398 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
4399 // Curr = A[i];
4400 // *Prev, *Curr;
4401 //
4402 // Prev is tracking Curr one iteration behind so they refer to different
4403 // underlying objects.
4404 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4405 isSameUnderlyingObjectInLoop(PN, LI))
4406 append_range(Worklist, PN->incoming_values());
4407 continue;
4408 }
4409
4410 Objects.push_back(P);
4411 } while (!Worklist.empty());
4412}
4413
4414/// This is the function that does the work of looking through basic
4415/// ptrtoint+arithmetic+inttoptr sequences.
4416static const Value *getUnderlyingObjectFromInt(const Value *V) {
4417 do {
4418 if (const Operator *U = dyn_cast<Operator>(V)) {
4419 // If we find a ptrtoint, we can transfer control back to the
4420 // regular getUnderlyingObjectFromInt.
4421 if (U->getOpcode() == Instruction::PtrToInt)
4422 return U->getOperand(0);
4423 // If we find an add of a constant, a multiplied value, or a phi, it's
4424 // likely that the other operand will lead us to the base
4425 // object. We don't have to worry about the case where the
4426 // object address is somehow being computed by the multiply,
4427 // because our callers only care when the result is an
4428 // identifiable object.
4429 if (U->getOpcode() != Instruction::Add ||
4430 (!isa<ConstantInt>(U->getOperand(1)) &&
4431 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4432 !isa<PHINode>(U->getOperand(1))))
4433 return V;
4434 V = U->getOperand(0);
4435 } else {
4436 return V;
4437 }
4438 assert(V->getType()->isIntegerTy() && "Unexpected operand type!")(static_cast <bool> (V->getType()->isIntegerTy() &&
"Unexpected operand type!") ? void (0) : __assert_fail ("V->getType()->isIntegerTy() && \"Unexpected operand type!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 4438, __extension__ __PRETTY_FUNCTION__
))
;
4439 } while (true);
4440}
4441
4442/// This is a wrapper around getUnderlyingObjects and adds support for basic
4443/// ptrtoint+arithmetic+inttoptr sequences.
4444/// It returns false if unidentified object is found in getUnderlyingObjects.
4445bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4446 SmallVectorImpl<Value *> &Objects) {
4447 SmallPtrSet<const Value *, 16> Visited;
4448 SmallVector<const Value *, 4> Working(1, V);
4449 do {
4450 V = Working.pop_back_val();
4451
4452 SmallVector<const Value *, 4> Objs;
4453 getUnderlyingObjects(V, Objs);
4454
4455 for (const Value *V : Objs) {
4456 if (!Visited.insert(V).second)
4457 continue;
4458 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4459 const Value *O =
4460 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4461 if (O->getType()->isPointerTy()) {
4462 Working.push_back(O);
4463 continue;
4464 }
4465 }
4466 // If getUnderlyingObjects fails to find an identifiable object,
4467 // getUnderlyingObjectsForCodeGen also fails for safety.
4468 if (!isIdentifiedObject(V)) {
4469 Objects.clear();
4470 return false;
4471 }
4472 Objects.push_back(const_cast<Value *>(V));
4473 }
4474 } while (!Working.empty());
4475 return true;
4476}
4477
4478AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4479 AllocaInst *Result = nullptr;
4480 SmallPtrSet<Value *, 4> Visited;
4481 SmallVector<Value *, 4> Worklist;
4482
4483 auto AddWork = [&](Value *V) {
4484 if (Visited.insert(V).second)
4485 Worklist.push_back(V);
4486 };
4487
4488 AddWork(V);
4489 do {
4490 V = Worklist.pop_back_val();
4491 assert(Visited.count(V))(static_cast <bool> (Visited.count(V)) ? void (0) : __assert_fail
("Visited.count(V)", "llvm/lib/Analysis/ValueTracking.cpp", 4491
, __extension__ __PRETTY_FUNCTION__))
;
4492
4493 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4494 if (Result && Result != AI)
4495 return nullptr;
4496 Result = AI;
4497 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4498 AddWork(CI->getOperand(0));
4499 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4500 for (Value *IncValue : PN->incoming_values())
4501 AddWork(IncValue);
4502 } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4503 AddWork(SI->getTrueValue());
4504 AddWork(SI->getFalseValue());
4505 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4506 if (OffsetZero && !GEP->hasAllZeroIndices())
4507 return nullptr;
4508 AddWork(GEP->getPointerOperand());
4509 } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
4510 Value *Returned = CB->getReturnedArgOperand();
4511 if (Returned)
4512 AddWork(Returned);
4513 else
4514 return nullptr;
4515 } else {
4516 return nullptr;
4517 }
4518 } while (!Worklist.empty());
4519
4520 return Result;
4521}
4522
4523static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4524 const Value *V, bool AllowLifetime, bool AllowDroppable) {
4525 for (const User *U : V->users()) {
4526 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4527 if (!II)
4528 return false;
4529
4530 if (AllowLifetime && II->isLifetimeStartOrEnd())
4531 continue;
4532
4533 if (AllowDroppable && II->isDroppable())
4534 continue;
4535
4536 return false;
4537 }
4538 return true;
4539}
4540
4541bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4542 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4543 V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4544}
4545bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4546 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4547 V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4548}
4549
4550bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4551 if (!LI.isUnordered())
4552 return true;
4553 const Function &F = *LI.getFunction();
4554 // Speculative load may create a race that did not exist in the source.
4555 return F.hasFnAttribute(Attribute::SanitizeThread) ||
4556 // Speculative load may load data from dirty regions.
4557 F.hasFnAttribute(Attribute::SanitizeAddress) ||
4558 F.hasFnAttribute(Attribute::SanitizeHWAddress);
4559}
4560
4561
4562bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4563 const Instruction *CtxI,
4564 const DominatorTree *DT,
4565 const TargetLibraryInfo *TLI) {
4566 const Operator *Inst = dyn_cast<Operator>(V);
4567 if (!Inst)
4568 return false;
4569
4570 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4571 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4572 if (C->canTrap())
4573 return false;
4574
4575 switch (Inst->getOpcode()) {
4576 default:
4577 return true;
4578 case Instruction::UDiv:
4579 case Instruction::URem: {
4580 // x / y is undefined if y == 0.
4581 const APInt *V;
4582 if (match(Inst->getOperand(1), m_APInt(V)))
4583 return *V != 0;
4584 return false;
4585 }
4586 case Instruction::SDiv:
4587 case Instruction::SRem: {
4588 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4589 const APInt *Numerator, *Denominator;
4590 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4591 return false;
4592 // We cannot hoist this division if the denominator is 0.
4593 if (*Denominator == 0)
4594 return false;
4595 // It's safe to hoist if the denominator is not 0 or -1.
4596 if (!Denominator->isAllOnes())
4597 return true;
4598 // At this point we know that the denominator is -1. It is safe to hoist as
4599 // long we know that the numerator is not INT_MIN.
4600 if (match(Inst->getOperand(0), m_APInt(Numerator)))
4601 return !Numerator->isMinSignedValue();
4602 // The numerator *might* be MinSignedValue.
4603 return false;
4604 }
4605 case Instruction::Load: {
4606 const LoadInst *LI = cast<LoadInst>(Inst);
4607 if (mustSuppressSpeculation(*LI))
4608 return false;
4609 const DataLayout &DL = LI->getModule()->getDataLayout();
4610 return isDereferenceableAndAlignedPointer(
4611 LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT,
4612 TLI);
4613 }
4614 case Instruction::Call: {
4615 auto *CI = cast<const CallInst>(Inst);
4616 const Function *Callee = CI->getCalledFunction();
4617
4618 // The called function could have undefined behavior or side-effects, even
4619 // if marked readnone nounwind.
4620 return Callee && Callee->isSpeculatable();
4621 }
4622 case Instruction::VAArg:
4623 case Instruction::Alloca:
4624 case Instruction::Invoke:
4625 case Instruction::CallBr:
4626 case Instruction::PHI:
4627 case Instruction::Store:
4628 case Instruction::Ret:
4629 case Instruction::Br:
4630 case Instruction::IndirectBr:
4631 case Instruction::Switch:
4632 case Instruction::Unreachable:
4633 case Instruction::Fence:
4634 case Instruction::AtomicRMW:
4635 case Instruction::AtomicCmpXchg:
4636 case Instruction::LandingPad:
4637 case Instruction::Resume:
4638 case Instruction::CatchSwitch:
4639 case Instruction::CatchPad:
4640 case Instruction::CatchRet:
4641 case Instruction::CleanupPad:
4642 case Instruction::CleanupRet:
4643 return false; // Misc instructions which have effects
4644 }
4645}
4646
4647bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
4648 if (I.mayReadOrWriteMemory())
4649 // Memory dependency possible
4650 return true;
4651 if (!isSafeToSpeculativelyExecute(&I))
4652 // Can't move above a maythrow call or infinite loop. Or if an
4653 // inalloca alloca, above a stacksave call.
4654 return true;
4655 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4656 // 1) Can't reorder two inf-loop calls, even if readonly
4657 // 2) Also can't reorder an inf-loop call below a instruction which isn't
4658 // safe to speculative execute. (Inverse of above)
4659 return true;
4660 return false;
4661}
4662
4663/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4664static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4665 switch (OR) {
4666 case ConstantRange::OverflowResult::MayOverflow:
4667 return OverflowResult::MayOverflow;
4668 case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4669 return OverflowResult::AlwaysOverflowsLow;
4670 case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4671 return OverflowResult::AlwaysOverflowsHigh;
4672 case ConstantRange::OverflowResult::NeverOverflows:
4673 return OverflowResult::NeverOverflows;
4674 }
4675 llvm_unreachable("Unknown OverflowResult")::llvm::llvm_unreachable_internal("Unknown OverflowResult", "llvm/lib/Analysis/ValueTracking.cpp"
, 4675)
;
4676}
4677
4678/// Combine constant ranges from computeConstantRange() and computeKnownBits().
4679static ConstantRange computeConstantRangeIncludingKnownBits(
4680 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4681 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4682 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4683 KnownBits Known = computeKnownBits(
4684 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4685 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4686 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4687 ConstantRange::PreferredRangeType RangeType =
4688 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4689 return CR1.intersectWith(CR2, RangeType);
4690}
4691
4692OverflowResult llvm::computeOverflowForUnsignedMul(
4693 const Value *LHS, const Value *RHS, const DataLayout &DL,
4694 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4695 bool UseInstrInfo) {
4696 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4697 nullptr, UseInstrInfo);
4698 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4699 nullptr, UseInstrInfo);
4700 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4701 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4702 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4703}
4704
4705OverflowResult
4706llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4707 const DataLayout &DL, AssumptionCache *AC,
4708 const Instruction *CxtI,
4709 const DominatorTree *DT, bool UseInstrInfo) {
4710 // Multiplying n * m significant bits yields a result of n + m significant
4711 // bits. If the total number of significant bits does not exceed the
4712 // result bit width (minus 1), there is no overflow.
4713 // This means if we have enough leading sign bits in the operands
4714 // we can guarantee that the result does not overflow.
4715 // Ref: "Hacker's Delight" by Henry Warren
4716 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4717
4718 // Note that underestimating the number of sign bits gives a more
4719 // conservative answer.
4720 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4721 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4722
4723 // First handle the easy case: if we have enough sign bits there's
4724 // definitely no overflow.
4725 if (SignBits > BitWidth + 1)
4726 return OverflowResult::NeverOverflows;
4727
4728 // There are two ambiguous cases where there can be no overflow:
4729 // SignBits == BitWidth + 1 and
4730 // SignBits == BitWidth
4731 // The second case is difficult to check, therefore we only handle the
4732 // first case.
4733 if (SignBits == BitWidth + 1) {
4734 // It overflows only when both arguments are negative and the true
4735 // product is exactly the minimum negative number.
4736 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4737 // For simplicity we just check if at least one side is not negative.
4738 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4739 nullptr, UseInstrInfo);
4740 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4741 nullptr, UseInstrInfo);
4742 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4743 return OverflowResult::NeverOverflows;
4744 }
4745 return OverflowResult::MayOverflow;
4746}
4747
4748OverflowResult llvm::computeOverflowForUnsignedAdd(
4749 const Value *LHS, const Value *RHS, const DataLayout &DL,
4750 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4751 bool UseInstrInfo) {
4752 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4753 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4754 nullptr, UseInstrInfo);
4755 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4756 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4757 nullptr, UseInstrInfo);
4758 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4759}
4760
4761static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4762 const Value *RHS,
4763 const AddOperator *Add,
4764 const DataLayout &DL,
4765 AssumptionCache *AC,
4766 const Instruction *CxtI,
4767 const DominatorTree *DT) {
4768 if (Add && Add->hasNoSignedWrap()) {
4769 return OverflowResult::NeverOverflows;
4770 }
4771
4772 // If LHS and RHS each have at least two sign bits, the addition will look
4773 // like
4774 //
4775 // XX..... +
4776 // YY.....
4777 //
4778 // If the carry into the most significant position is 0, X and Y can't both
4779 // be 1 and therefore the carry out of the addition is also 0.
4780 //
4781 // If the carry into the most significant position is 1, X and Y can't both
4782 // be 0 and therefore the carry out of the addition is also 1.
4783 //
4784 // Since the carry into the most significant position is always equal to
4785 // the carry out of the addition, there is no signed overflow.
4786 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4787 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4788 return OverflowResult::NeverOverflows;
4789
4790 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4791 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4792 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4793 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4794 OverflowResult OR =
4795 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4796 if (OR != OverflowResult::MayOverflow)
4797 return OR;
4798
4799 // The remaining code needs Add to be available. Early returns if not so.
4800 if (!Add)
4801 return OverflowResult::MayOverflow;
4802
4803 // If the sign of Add is the same as at least one of the operands, this add
4804 // CANNOT overflow. If this can be determined from the known bits of the
4805 // operands the above signedAddMayOverflow() check will have already done so.
4806 // The only other way to improve on the known bits is from an assumption, so
4807 // call computeKnownBitsFromAssume() directly.
4808 bool LHSOrRHSKnownNonNegative =
4809 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4810 bool LHSOrRHSKnownNegative =
4811 (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4812 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4813 KnownBits AddKnown(LHSRange.getBitWidth());
4814 computeKnownBitsFromAssume(
4815 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4816 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4817 (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4818 return OverflowResult::NeverOverflows;
4819 }
4820
4821 return OverflowResult::MayOverflow;
4822}
4823
4824OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4825 const Value *RHS,
4826 const DataLayout &DL,
4827 AssumptionCache *AC,
4828 const Instruction *CxtI,
4829 const DominatorTree *DT) {
4830 // Checking for conditions implied by dominating conditions may be expensive.
4831 // Limit it to usub_with_overflow calls for now.
4832 if (match(CxtI,
4833 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4834 if (auto C =
4835 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4836 if (*C)
4837 return OverflowResult::NeverOverflows;
4838 return OverflowResult::AlwaysOverflowsLow;
4839 }
4840 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4841 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4842 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4843 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4844 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4845}
4846
4847OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4848 const Value *RHS,
4849 const DataLayout &DL,
4850 AssumptionCache *AC,
4851 const Instruction *CxtI,
4852 const DominatorTree *DT) {
4853 // If LHS and RHS each have at least two sign bits, the subtraction
4854 // cannot overflow.
4855 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4856 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4857 return OverflowResult::NeverOverflows;
4858
4859 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4860 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4861 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4862 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4863 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4864}
4865
4866bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4867 const DominatorTree &DT) {
4868 SmallVector<const BranchInst *, 2> GuardingBranches;
4869 SmallVector<const ExtractValueInst *, 2> Results;
4870
4871 for (const User *U : WO->users()) {
4872 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4873 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type")(static_cast <bool> (EVI->getNumIndices() == 1 &&
"Obvious from CI's type") ? void (0) : __assert_fail ("EVI->getNumIndices() == 1 && \"Obvious from CI's type\""
, "llvm/lib/Analysis/ValueTracking.cpp", 4873, __extension__ __PRETTY_FUNCTION__
))
;
4874
4875 if (EVI->getIndices()[0] == 0)
4876 Results.push_back(EVI);
4877 else {
4878 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type")(static_cast <bool> (EVI->getIndices()[0] == 1 &&
"Obvious from CI's type") ? void (0) : __assert_fail ("EVI->getIndices()[0] == 1 && \"Obvious from CI's type\""
, "llvm/lib/Analysis/ValueTracking.cpp", 4878, __extension__ __PRETTY_FUNCTION__
))
;
4879
4880 for (const auto *U : EVI->users())
4881 if (const auto *B = dyn_cast<BranchInst>(U)) {
4882 assert(B->isConditional() && "How else is it using an i1?")(static_cast <bool> (B->isConditional() && "How else is it using an i1?"
) ? void (0) : __assert_fail ("B->isConditional() && \"How else is it using an i1?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 4882, __extension__ __PRETTY_FUNCTION__
))
;
4883 GuardingBranches.push_back(B);
4884 }
4885 }
4886 } else {
4887 // We are using the aggregate directly in a way we don't want to analyze
4888 // here (storing it to a global, say).
4889 return false;
4890 }
4891 }
4892
4893 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4894 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4895 if (!NoWrapEdge.isSingleEdge())
4896 return false;
4897
4898 // Check if all users of the add are provably no-wrap.
4899 for (const auto *Result : Results) {
4900 // If the extractvalue itself is not executed on overflow, the we don't
4901 // need to check each use separately, since domination is transitive.
4902 if (DT.dominates(NoWrapEdge, Result->getParent()))
4903 continue;
4904
4905 for (auto &RU : Result->uses())
4906 if (!DT.dominates(NoWrapEdge, RU))
4907 return false;
4908 }
4909
4910 return true;
4911 };
4912
4913 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4914}
4915
4916static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
4917 bool ConsiderFlags) {
4918
4919 if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
4920 return true;
4921
4922 unsigned Opcode = Op->getOpcode();
4923
4924 // Check whether opcode is a poison/undef-generating operation
4925 switch (Opcode) {
4926 case Instruction::Shl:
4927 case Instruction::AShr:
4928 case Instruction::LShr: {
4929 // Shifts return poison if shiftwidth is larger than the bitwidth.
4930 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4931 SmallVector<Constant *, 4> ShiftAmounts;
4932 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4933 unsigned NumElts = FVTy->getNumElements();
4934 for (unsigned i = 0; i < NumElts; ++i)
4935 ShiftAmounts.push_back(C->getAggregateElement(i));
4936 } else if (isa<ScalableVectorType>(C->getType()))
4937 return true; // Can't tell, just return true to be safe
4938 else
4939 ShiftAmounts.push_back(C);
4940
4941 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4942 auto *CI = dyn_cast_or_null<ConstantInt>(C);
4943 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4944 });
4945 return !Safe;
4946 }
4947 return true;
4948 }
4949 case Instruction::FPToSI:
4950 case Instruction::FPToUI:
4951 // fptosi/ui yields poison if the resulting value does not fit in the
4952 // destination type.
4953 return true;
4954 case Instruction::Call:
4955 if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
4956 switch (II->getIntrinsicID()) {
4957 // TODO: Add more intrinsics.
4958 case Intrinsic::ctpop:
4959 case Intrinsic::sadd_with_overflow:
4960 case Intrinsic::ssub_with_overflow:
4961 case Intrinsic::smul_with_overflow:
4962 case Intrinsic::uadd_with_overflow:
4963 case Intrinsic::usub_with_overflow:
4964 case Intrinsic::umul_with_overflow:
4965 return false;
4966 }
4967 }
4968 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4969 case Instruction::CallBr:
4970 case Instruction::Invoke: {
4971 const auto *CB = cast<CallBase>(Op);
4972 return !CB->hasRetAttr(Attribute::NoUndef);
4973 }
4974 case Instruction::InsertElement:
4975 case Instruction::ExtractElement: {
4976 // If index exceeds the length of the vector, it returns poison
4977 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4978 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4979 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4980 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4981 return true;
4982 return false;
4983 }
4984 case Instruction::ShuffleVector: {
4985 // shufflevector may return undef.
4986 if (PoisonOnly)
4987 return false;
4988 ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4989 ? cast<ConstantExpr>(Op)->getShuffleMask()
4990 : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4991 return is_contained(Mask, UndefMaskElem);
4992 }
4993 case Instruction::FNeg:
4994 case Instruction::PHI:
4995 case Instruction::Select:
4996 case Instruction::URem:
4997 case Instruction::SRem:
4998 case Instruction::ExtractValue:
4999 case Instruction::InsertValue:
5000 case Instruction::Freeze:
5001 case Instruction::ICmp:
5002 case Instruction::FCmp:
5003 return false;
5004 case Instruction::GetElementPtr:
5005 // inbounds is handled above
5006 // TODO: what about inrange on constexpr?
5007 return false;
5008 default: {
5009 const auto *CE = dyn_cast<ConstantExpr>(Op);
5010 if (isa<CastInst>(Op) || (CE && CE->isCast()))
5011 return false;
5012 else if (Instruction::isBinaryOp(Opcode))
5013 return false;
5014 // Be conservative and return true.
5015 return true;
5016 }
5017 }
5018}
5019
5020bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) {
5021 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags);
5022}
5023
5024bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) {
5025 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags);
5026}
5027
5028static bool directlyImpliesPoison(const Value *ValAssumedPoison,
5029 const Value *V, unsigned Depth) {
5030 if (ValAssumedPoison == V)
5031 return true;
5032
5033 const unsigned MaxDepth = 2;
5034 if (Depth >= MaxDepth)
5035 return false;
5036
5037 if (const auto *I = dyn_cast<Instruction>(V)) {
5038 if (propagatesPoison(cast<Operator>(I)))
5039 return any_of(I->operands(), [=](const Value *Op) {
5040 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
5041 });
5042
5043 // 'select ValAssumedPoison, _, _' is poison.
5044 if (const auto *SI = dyn_cast<SelectInst>(I))
5045 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
5046 Depth + 1);
5047 // V = extractvalue V0, idx
5048 // V2 = extractvalue V0, idx2
5049 // V0's elements are all poison or not. (e.g., add_with_overflow)
5050 const WithOverflowInst *II;
5051 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5052 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
5053 llvm::is_contained(II->args(), ValAssumedPoison)))
5054 return true;
5055 }
5056 return false;
5057}
5058
5059static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5060 unsigned Depth) {
5061 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5062 return true;
5063
5064 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5065 return true;
5066
5067 const unsigned MaxDepth = 2;
5068 if (Depth >= MaxDepth)
5069 return false;
5070
5071 const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5072 if (I && !canCreatePoison(cast<Operator>(I))) {
5073 return all_of(I->operands(), [=](const Value *Op) {
5074 return impliesPoison(Op, V, Depth + 1);
5075 });
5076 }
5077 return false;
5078}
5079
5080bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5081 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5082}
5083
5084static bool programUndefinedIfUndefOrPoison(const Value *V,
5085 bool PoisonOnly);
5086
5087static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5088 AssumptionCache *AC,
5089 const Instruction *CtxI,
5090 const DominatorTree *DT,
5091 unsigned Depth, bool PoisonOnly) {
5092 if (Depth >= MaxAnalysisRecursionDepth)
5093 return false;
5094
5095 if (isa<MetadataAsValue>(V))
5096 return false;
5097
5098 if (const auto *A = dyn_cast<Argument>(V)) {
5099 if (A->hasAttribute(Attribute::NoUndef))
5100 return true;
5101 }
5102
5103 if (auto *C = dyn_cast<Constant>(V)) {
5104 if (isa<UndefValue>(C))
5105 return PoisonOnly && !isa<PoisonValue>(C);
5106
5107 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5108 isa<ConstantPointerNull>(C) || isa<Function>(C))
5109 return true;
5110
5111 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5112 return (PoisonOnly ? !C->containsPoisonElement()
5113 : !C->containsUndefOrPoisonElement()) &&
5114 !C->containsConstantExpression();
5115 }
5116
5117 // Strip cast operations from a pointer value.
5118 // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5119 // inbounds with zero offset. To guarantee that the result isn't poison, the
5120 // stripped pointer is checked as it has to be pointing into an allocated
5121 // object or be null `null` to ensure `inbounds` getelement pointers with a
5122 // zero offset could not produce poison.
5123 // It can strip off addrspacecast that do not change bit representation as
5124 // well. We believe that such addrspacecast is equivalent to no-op.
5125 auto *StrippedV = V->stripPointerCastsSameRepresentation();
5126 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5127 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5128 return true;
5129
5130 auto OpCheck = [&](const Value *V) {
5131 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5132 PoisonOnly);
5133 };
5134
5135 if (auto *Opr = dyn_cast<Operator>(V)) {
5136 // If the value is a freeze instruction, then it can never
5137 // be undef or poison.
5138 if (isa<FreezeInst>(V))
5139 return true;
5140
5141 if (const auto *CB = dyn_cast<CallBase>(V)) {
5142 if (CB->hasRetAttr(Attribute::NoUndef))
5143 return true;
5144 }
5145
5146 if (const auto *PN = dyn_cast<PHINode>(V)) {
5147 unsigned Num = PN->getNumIncomingValues();
5148 bool IsWellDefined = true;
5149 for (unsigned i = 0; i < Num; ++i) {
5150 auto *TI = PN->getIncomingBlock(i)->getTerminator();
5151 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5152 DT, Depth + 1, PoisonOnly)) {
5153 IsWellDefined = false;
5154 break;
5155 }
5156 }
5157 if (IsWellDefined)
5158 return true;
5159 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5160 return true;
5161 }
5162
5163 if (auto *I = dyn_cast<LoadInst>(V))
5164 if (I->getMetadata(LLVMContext::MD_noundef))
5165 return true;
5166
5167 if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5168 return true;
5169
5170 // CxtI may be null or a cloned instruction.
5171 if (!CtxI || !CtxI->getParent() || !DT)
5172 return false;
5173
5174 auto *DNode = DT->getNode(CtxI->getParent());
5175 if (!DNode)
5176 // Unreachable block
5177 return false;
5178
5179 // If V is used as a branch condition before reaching CtxI, V cannot be
5180 // undef or poison.
5181 // br V, BB1, BB2
5182 // BB1:
5183 // CtxI ; V cannot be undef or poison here
5184 auto *Dominator = DNode->getIDom();
5185 while (Dominator) {
5186 auto *TI = Dominator->getBlock()->getTerminator();
5187
5188 Value *Cond = nullptr;
5189 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
5190 if (BI->isConditional())
5191 Cond = BI->getCondition();
5192 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
5193 Cond = SI->getCondition();
5194 }
5195
5196 if (Cond) {
5197 if (Cond == V)
5198 return true;
5199 else if (PoisonOnly && isa<Operator>(Cond)) {
5200 // For poison, we can analyze further
5201 auto *Opr = cast<Operator>(Cond);
5202 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5203 return true;
5204 }
5205 }
5206
5207 Dominator = Dominator->getIDom();
5208 }
5209
5210 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
5211 return true;
5212
5213 return false;
5214}
5215
5216bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5217 const Instruction *CtxI,
5218 const DominatorTree *DT,
5219 unsigned Depth) {
5220 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5221}
5222
5223bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5224 const Instruction *CtxI,
5225 const DominatorTree *DT, unsigned Depth) {
5226 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5227}
5228
5229OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5230 const DataLayout &DL,
5231 AssumptionCache *AC,
5232 const Instruction *CxtI,
5233 const DominatorTree *DT) {
5234 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5235 Add, DL, AC, CxtI, DT);
5236}
5237
5238OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5239 const Value *RHS,
5240 const DataLayout &DL,
5241 AssumptionCache *AC,
5242 const Instruction *CxtI,
5243 const DominatorTree *DT) {
5244 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5245}
5246
5247bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5248 // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5249 // of time because it's possible for another thread to interfere with it for an
5250 // arbitrary length of time, but programs aren't allowed to rely on that.
5251
5252 // If there is no successor, then execution can't transfer to it.
5253 if (isa<ReturnInst>(I))
5254 return false;
5255 if (isa<UnreachableInst>(I))
5256 return false;
5257
5258 // Note: Do not add new checks here; instead, change Instruction::mayThrow or
5259 // Instruction::willReturn.
5260 //
5261 // FIXME: Move this check into Instruction::willReturn.
5262 if (isa<CatchPadInst>(I)) {
5263 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
5264 default:
5265 // A catchpad may invoke exception object constructors and such, which
5266 // in some languages can be arbitrary code, so be conservative by default.
5267 return false;
5268 case EHPersonality::CoreCLR:
5269 // For CoreCLR, it just involves a type test.
5270 return true;
5271 }
5272 }
5273
5274 // An instruction that returns without throwing must transfer control flow
5275 // to a successor.
5276 return !I->mayThrow() && I->willReturn();
5277}
5278
5279bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5280 // TODO: This is slightly conservative for invoke instruction since exiting
5281 // via an exception *is* normal control for them.
5282 for (const Instruction &I : *BB)
5283 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5284 return false;
5285 return true;
5286}
5287
5288bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5289 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
5290 unsigned ScanLimit) {
5291 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
5292 ScanLimit);
5293}
5294
5295bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5296 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
5297 assert(ScanLimit && "scan limit must be non-zero")(static_cast <bool> (ScanLimit && "scan limit must be non-zero"
) ? void (0) : __assert_fail ("ScanLimit && \"scan limit must be non-zero\""
, "llvm/lib/Analysis/ValueTracking.cpp", 5297, __extension__ __PRETTY_FUNCTION__
))
;
5298 for (const Instruction &I : Range) {
5299 if (isa<DbgInfoIntrinsic>(I))
5300 continue;
5301 if (--ScanLimit == 0)
5302 return false;
5303 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5304 return false;
5305 }
5306 return true;
5307}
5308
5309bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5310 const Loop *L) {
5311 // The loop header is guaranteed to be executed for every iteration.
5312 //
5313 // FIXME: Relax this constraint to cover all basic blocks that are
5314 // guaranteed to be executed at every iteration.
5315 if (I->getParent() != L->getHeader()) return false;
5316
5317 for (const Instruction &LI : *L->getHeader()) {
5318 if (&LI == I) return true;
5319 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5320 }
5321 llvm_unreachable("Instruction not contained in its own parent basic block.")::llvm::llvm_unreachable_internal("Instruction not contained in its own parent basic block."
, "llvm/lib/Analysis/ValueTracking.cpp", 5321)
;
5322}
5323
5324bool llvm::propagatesPoison(const Operator *I) {
5325 switch (I->getOpcode()) {
5326 case Instruction::Freeze:
5327 case Instruction::Select:
5328 case Instruction::PHI:
5329 case Instruction::Invoke:
5330 return false;
5331 case Instruction::Call:
5332 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5333 switch (II->getIntrinsicID()) {
5334 // TODO: Add more intrinsics.
5335 case Intrinsic::sadd_with_overflow:
5336 case Intrinsic::ssub_with_overflow:
5337 case Intrinsic::smul_with_overflow:
5338 case Intrinsic::uadd_with_overflow:
5339 case Intrinsic::usub_with_overflow:
5340 case Intrinsic::umul_with_overflow:
5341 // If an input is a vector containing a poison element, the
5342 // two output vectors (calculated results, overflow bits)'
5343 // corresponding lanes are poison.
5344 return true;
5345 case Intrinsic::ctpop:
5346 return true;
5347 }
5348 }
5349 return false;
5350 case Instruction::ICmp:
5351 case Instruction::FCmp:
5352 case Instruction::GetElementPtr:
5353 return true;
5354 default:
5355 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5356 return true;
5357
5358 // Be conservative and return false.
5359 return false;
5360 }
5361}
5362
5363void llvm::getGuaranteedWellDefinedOps(
5364 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5365 switch (I->getOpcode()) {
5366 case Instruction::Store:
5367 Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5368 break;
5369
5370 case Instruction::Load:
5371 Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5372 break;
5373
5374 // Since dereferenceable attribute imply noundef, atomic operations
5375 // also implicitly have noundef pointers too
5376 case Instruction::AtomicCmpXchg:
5377 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5378 break;
5379
5380 case Instruction::AtomicRMW:
5381 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5382 break;
5383
5384 case Instruction::Call:
5385 case Instruction::Invoke: {
5386 const CallBase *CB = cast<CallBase>(I);
5387 if (CB->isIndirectCall())
5388 Operands.insert(CB->getCalledOperand());
5389 for (unsigned i = 0; i < CB->arg_size(); ++i) {
5390 if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5391 CB->paramHasAttr(i, Attribute::Dereferenceable))
5392 Operands.insert(CB->getArgOperand(i));
5393 }
5394 break;
5395 }
5396 case Instruction::Ret:
5397 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
5398 Operands.insert(I->getOperand(0));
5399 break;
5400 default:
5401 break;
5402 }
5403}
5404
5405void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5406 SmallPtrSetImpl<const Value *> &Operands) {
5407 getGuaranteedWellDefinedOps(I, Operands);
5408 switch (I->getOpcode()) {
5409 // Divisors of these operations are allowed to be partially undef.
5410 case Instruction::UDiv:
5411 case Instruction::SDiv:
5412 case Instruction::URem:
5413 case Instruction::SRem:
5414 Operands.insert(I->getOperand(1));
5415 break;
5416 case Instruction::Switch:
5417 if (BranchOnPoisonAsUB)
5418 Operands.insert(cast<SwitchInst>(I)->getCondition());
5419 break;
5420 case Instruction::Br: {
5421 auto *BR = cast<BranchInst>(I);
5422 if (BranchOnPoisonAsUB && BR->isConditional())
5423 Operands.insert(BR->getCondition());
5424 break;
5425 }
5426 default:
5427 break;
5428 }
5429}
5430
5431bool llvm::mustTriggerUB(const Instruction *I,
5432 const SmallSet<const Value *, 16>& KnownPoison) {
5433 SmallPtrSet<const Value *, 4> NonPoisonOps;
5434 getGuaranteedNonPoisonOps(I, NonPoisonOps);
5435
5436 for (const auto *V : NonPoisonOps)
5437 if (KnownPoison.count(V))
5438 return true;
5439
5440 return false;
5441}
5442
5443static bool programUndefinedIfUndefOrPoison(const Value *V,
5444 bool PoisonOnly) {
5445 // We currently only look for uses of values within the same basic
5446 // block, as that makes it easier to guarantee that the uses will be
5447 // executed given that Inst is executed.
5448 //
5449 // FIXME: Expand this to consider uses beyond the same basic block. To do
5450 // this, look out for the distinction between post-dominance and strong
5451 // post-dominance.
5452 const BasicBlock *BB = nullptr;
5453 BasicBlock::const_iterator Begin;
5454 if (const auto *Inst = dyn_cast<Instruction>(V)) {
5455 BB = Inst->getParent();
5456 Begin = Inst->getIterator();
5457 Begin++;
5458 } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5459 BB = &Arg->getParent()->getEntryBlock();
5460 Begin = BB->begin();
5461 } else {
5462 return false;
5463 }
5464
5465 // Limit number of instructions we look at, to avoid scanning through large
5466 // blocks. The current limit is chosen arbitrarily.
5467 unsigned ScanLimit = 32;
5468 BasicBlock::const_iterator End = BB->end();
5469
5470 if (!PoisonOnly) {
5471 // Since undef does not propagate eagerly, be conservative & just check
5472 // whether a value is directly passed to an instruction that must take
5473 // well-defined operands.
5474
5475 for (auto &I : make_range(Begin, End)) {
5476 if (isa<DbgInfoIntrinsic>(I))
5477 continue;
5478 if (--ScanLimit == 0)
5479 break;
5480
5481 SmallPtrSet<const Value *, 4> WellDefinedOps;
5482 getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5483 if (WellDefinedOps.contains(V))
5484 return true;
5485
5486 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5487 break;
5488 }
5489 return false;
5490 }
5491
5492 // Set of instructions that we have proved will yield poison if Inst
5493 // does.
5494 SmallSet<const Value *, 16> YieldsPoison;
5495 SmallSet<const BasicBlock *, 4> Visited;
5496
5497 YieldsPoison.insert(V);
5498 auto Propagate = [&](const User *User) {
5499 if (propagatesPoison(cast<Operator>(User)))
5500 YieldsPoison.insert(User);
5501 };
5502 for_each(V->users(), Propagate);
5503 Visited.insert(BB);
5504
5505 while (true) {
5506 for (auto &I : make_range(Begin, End)) {
5507 if (isa<DbgInfoIntrinsic>(I))
5508 continue;
5509 if (--ScanLimit == 0)
5510 return false;
5511 if (mustTriggerUB(&I, YieldsPoison))
5512 return true;
5513 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5514 return false;
5515
5516 // Mark poison that propagates from I through uses of I.
5517 if (YieldsPoison.count(&I))
5518 for_each(I.users(), Propagate);
5519 }
5520
5521 BB = BB->getSingleSuccessor();
5522 if (!BB || !Visited.insert(BB).second)
5523 break;
5524
5525 Begin = BB->getFirstNonPHI()->getIterator();
5526 End = BB->end();
5527 }
5528 return false;
5529}
5530
5531bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5532 return ::programUndefinedIfUndefOrPoison(Inst, false);
5533}
5534
5535bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5536 return ::programUndefinedIfUndefOrPoison(Inst, true);
5537}
5538
5539static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5540 if (FMF.noNaNs())
5541 return true;
5542
5543 if (auto *C = dyn_cast<ConstantFP>(V))
5544 return !C->isNaN();
5545
5546 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5547 if (!C->getElementType()->isFloatingPointTy())
5548 return false;
5549 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5550 if (C->getElementAsAPFloat(I).isNaN())
5551 return false;
5552 }
5553 return true;
5554 }
5555
5556 if (isa<ConstantAggregateZero>(V))
5557 return true;
5558
5559 return false;
5560}
5561
5562static bool isKnownNonZero(const Value *V) {
5563 if (auto *C = dyn_cast<ConstantFP>(V))
5564 return !C->isZero();
5565
5566 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5567 if (!C->getElementType()->isFloatingPointTy())
5568 return false;
5569 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5570 if (C->getElementAsAPFloat(I).isZero())
5571 return false;
5572 }
5573 return true;
5574 }
5575
5576 return false;
5577}
5578
5579/// Match clamp pattern for float types without care about NaNs or signed zeros.
5580/// Given non-min/max outer cmp/select from the clamp pattern this
5581/// function recognizes if it can be substitued by a "canonical" min/max
5582/// pattern.
5583static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5584 Value *CmpLHS, Value *CmpRHS,
5585 Value *TrueVal, Value *FalseVal,
5586 Value *&LHS, Value *&RHS) {
5587 // Try to match
5588 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5589 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5590 // and return description of the outer Max/Min.
5591
5592 // First, check if select has inverse order:
5593 if (CmpRHS == FalseVal) {
5594 std::swap(TrueVal, FalseVal);
5595 Pred = CmpInst::getInversePredicate(Pred);
5596 }
5597
5598 // Assume success now. If there's no match, callers should not use these anyway.
5599 LHS = TrueVal;
5600 RHS = FalseVal;
5601
5602 const APFloat *FC1;
5603 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5604 return {SPF_UNKNOWN, SPNB_NA, false};
5605
5606 const APFloat *FC2;
5607 switch (Pred) {
5608 case CmpInst::FCMP_OLT:
5609 case CmpInst::FCMP_OLE:
5610 case CmpInst::FCMP_ULT:
5611 case CmpInst::FCMP_ULE:
5612 if (match(FalseVal,
5613 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5614 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5615 *FC1 < *FC2)
5616 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5617 break;
5618 case CmpInst::FCMP_OGT:
5619 case CmpInst::FCMP_OGE:
5620 case CmpInst::FCMP_UGT:
5621 case CmpInst::FCMP_UGE:
5622 if (match(FalseVal,
5623 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5624 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5625 *FC1 > *FC2)
5626 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5627 break;
5628 default:
5629 break;
5630 }
5631
5632 return {SPF_UNKNOWN, SPNB_NA, false};
5633}
5634
5635/// Recognize variations of:
5636/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5637static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5638 Value *CmpLHS, Value *CmpRHS,
5639 Value *TrueVal, Value *FalseVal) {
5640 // Swap the select operands and predicate to match the patterns below.
5641 if (CmpRHS != TrueVal) {
5642 Pred = ICmpInst::getSwappedPredicate(Pred);
5643 std::swap(TrueVal, FalseVal);
5644 }
5645 const APInt *C1;
5646 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5647 const APInt *C2;
5648 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5649 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5650 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5651 return {SPF_SMAX, SPNB_NA, false};
5652
5653 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5654 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5655 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5656 return {SPF_SMIN, SPNB_NA, false};
5657
5658 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5659 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5660 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5661 return {SPF_UMAX, SPNB_NA, false};
5662
5663 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5664 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5665 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5666 return {SPF_UMIN, SPNB_NA, false};
5667 }
5668 return {SPF_UNKNOWN, SPNB_NA, false};
5669}
5670
5671/// Recognize variations of:
5672/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5673static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5674 Value *CmpLHS, Value *CmpRHS,
5675 Value *TVal, Value *FVal,
5676 unsigned Depth) {
5677 // TODO: Allow FP min/max with nnan/nsz.
5678 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison")(static_cast <bool> (CmpInst::isIntPredicate(Pred) &&
"Expected integer comparison") ? void (0) : __assert_fail ("CmpInst::isIntPredicate(Pred) && \"Expected integer comparison\""
, "llvm/lib/Analysis/ValueTracking.cpp", 5678, __extension__ __PRETTY_FUNCTION__
))
;
5679
5680 Value *A = nullptr, *B = nullptr;
5681 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5682 if (!SelectPatternResult::isMinOrMax(L.Flavor))
5683 return {SPF_UNKNOWN, SPNB_NA, false};
5684
5685 Value *C = nullptr, *D = nullptr;
5686 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5687 if (L.Flavor != R.Flavor)
5688 return {SPF_UNKNOWN, SPNB_NA, false};
5689
5690 // We have something like: x Pred y ? min(a, b) : min(c, d).
5691 // Try to match the compare to the min/max operations of the select operands.
5692 // First, make sure we have the right compare predicate.
5693 switch (L.Flavor) {
5694 case SPF_SMIN:
5695 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5696 Pred = ICmpInst::getSwappedPredicate(Pred);
5697 std::swap(CmpLHS, CmpRHS);
5698 }
5699 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5700 break;
5701 return {SPF_UNKNOWN, SPNB_NA, false};
5702 case SPF_SMAX:
5703 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5704 Pred = ICmpInst::getSwappedPredicate(Pred);
5705 std::swap(CmpLHS, CmpRHS);
5706 }
5707 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5708 break;
5709 return {SPF_UNKNOWN, SPNB_NA, false};
5710 case SPF_UMIN:
5711 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5712 Pred = ICmpInst::getSwappedPredicate(Pred);
5713 std::swap(CmpLHS, CmpRHS);
5714 }
5715 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5716 break;
5717 return {SPF_UNKNOWN, SPNB_NA, false};
5718 case SPF_UMAX:
5719 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5720 Pred = ICmpInst::getSwappedPredicate(Pred);
5721 std::swap(CmpLHS, CmpRHS);
5722 }
5723 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5724 break;
5725 return {SPF_UNKNOWN, SPNB_NA, false};
5726 default:
5727 return {SPF_UNKNOWN, SPNB_NA, false};
5728 }
5729
5730 // If there is a common operand in the already matched min/max and the other
5731 // min/max operands match the compare operands (either directly or inverted),
5732 // then this is min/max of the same flavor.
5733
5734 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5735 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5736 if (D == B) {
5737 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5738 match(A, m_Not(m_Specific(CmpRHS)))))
5739 return {L.Flavor, SPNB_NA, false};
5740 }
5741 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5742 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5743 if (C == B) {
5744 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5745 match(A, m_Not(m_Specific(CmpRHS)))))
5746 return {L.Flavor, SPNB_NA, false};
5747 }
5748 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5749 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5750 if (D == A) {
5751 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5752 match(B, m_Not(m_Specific(CmpRHS)))))
5753 return {L.Flavor, SPNB_NA, false};
5754 }
5755 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5756 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5757 if (C == A) {
5758 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5759 match(B, m_Not(m_Specific(CmpRHS)))))
5760 return {L.Flavor, SPNB_NA, false};
5761 }
5762
5763 return {SPF_UNKNOWN, SPNB_NA, false};
5764}
5765
5766/// If the input value is the result of a 'not' op, constant integer, or vector
5767/// splat of a constant integer, return the bitwise-not source value.
5768/// TODO: This could be extended to handle non-splat vector integer constants.
5769static Value *getNotValue(Value *V) {
5770 Value *NotV;
5771 if (match(V, m_Not(m_Value(NotV))))
5772 return NotV;
5773
5774 const APInt *C;
5775 if (match(V, m_APInt(C)))
5776 return ConstantInt::get(V->getType(), ~(*C));
5777
5778 return nullptr;
5779}
5780
5781/// Match non-obvious integer minimum and maximum sequences.
5782static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5783 Value *CmpLHS, Value *CmpRHS,
5784 Value *TrueVal, Value *FalseVal,
5785 Value *&LHS, Value *&RHS,
5786 unsigned Depth) {
5787 // Assume success. If there's no match, callers should not use these anyway.
5788 LHS = TrueVal;
5789 RHS = FalseVal;
5790
5791 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5792 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5793 return SPR;
5794
5795 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5796 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5797 return SPR;
5798
5799 // Look through 'not' ops to find disguised min/max.
5800 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5801 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5802 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5803 switch (Pred) {
5804 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5805 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5806 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5807 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5808 default: break;
5809 }
5810 }
5811
5812 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5813 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5814 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5815 switch (Pred) {
5816 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5817 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5818 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5819 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5820 default: break;
5821 }
5822 }
5823
5824 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5825 return {SPF_UNKNOWN, SPNB_NA, false};
5826
5827 const APInt *C1;
5828 if (!match(CmpRHS, m_APInt(C1)))
5829 return {SPF_UNKNOWN, SPNB_NA, false};
5830
5831 // An unsigned min/max can be written with a signed compare.
5832 const APInt *C2;
5833 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5834 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5835 // Is the sign bit set?
5836 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5837 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5838 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
5839 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5840
5841 // Is the sign bit clear?
5842 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5843 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5844 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
5845 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5846 }
5847
5848 return {SPF_UNKNOWN, SPNB_NA, false};
5849}
5850
5851bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5852 assert(X && Y && "Invalid operand")(static_cast <bool> (X && Y && "Invalid operand"
) ? void (0) : __assert_fail ("X && Y && \"Invalid operand\""
, "llvm/lib/Analysis/ValueTracking.cpp", 5852, __extension__ __PRETTY_FUNCTION__
))
;
5853
5854 // X = sub (0, Y) || X = sub nsw (0, Y)
5855 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5856 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5857 return true;
5858
5859 // Y = sub (0, X) || Y = sub nsw (0, X)
5860 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5861 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5862 return true;
5863
5864 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5865 Value *A, *B;
5866 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5867 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5868 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5869 match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5870}
5871
5872static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5873 FastMathFlags FMF,
5874 Value *CmpLHS, Value *CmpRHS,
5875 Value *TrueVal, Value *FalseVal,
5876 Value *&LHS, Value *&RHS,
5877 unsigned Depth) {
5878 if (CmpInst::isFPPredicate(Pred)) {
5879 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5880 // 0.0 operand, set the compare's 0.0 operands to that same value for the
5881 // purpose of identifying min/max. Disregard vector constants with undefined
5882 // elements because those can not be back-propagated for analysis.
5883 Value *OutputZeroVal = nullptr;
5884 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5885 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
5886 OutputZeroVal = TrueVal;
5887 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5888 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
5889 OutputZeroVal = FalseVal;
5890
5891 if (OutputZeroVal) {
5892 if (match(CmpLHS, m_AnyZeroFP()))
5893 CmpLHS = OutputZeroVal;
5894 if (match(CmpRHS, m_AnyZeroFP()))
5895 CmpRHS = OutputZeroVal;
5896 }
5897 }
5898
5899 LHS = CmpLHS;
5900 RHS = CmpRHS;
5901
5902 // Signed zero may return inconsistent results between implementations.
5903 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5904 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5905 // Therefore, we behave conservatively and only proceed if at least one of the
5906 // operands is known to not be zero or if we don't care about signed zero.
5907 switch (Pred) {
5908 default: break;
5909 // FIXME: Include OGT/OLT/UGT/ULT.
5910 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5911 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5912 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5913 !isKnownNonZero(CmpRHS))
5914 return {SPF_UNKNOWN, SPNB_NA, false};
5915 }
5916
5917 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5918 bool Ordered = false;
5919
5920 // When given one NaN and one non-NaN input:
5921 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5922 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5923 // ordered comparison fails), which could be NaN or non-NaN.
5924 // so here we discover exactly what NaN behavior is required/accepted.
5925 if (CmpInst::isFPPredicate(Pred)) {
5926 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5927 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5928
5929 if (LHSSafe && RHSSafe) {
5930 // Both operands are known non-NaN.
5931 NaNBehavior = SPNB_RETURNS_ANY;
5932 } else if (CmpInst::isOrdered(Pred)) {
5933 // An ordered comparison will return false when given a NaN, so it
5934 // returns the RHS.
5935 Ordered = true;
5936 if (LHSSafe)
5937 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5938 NaNBehavior = SPNB_RETURNS_NAN;
5939 else if (RHSSafe)
5940 NaNBehavior = SPNB_RETURNS_OTHER;
5941 else
5942 // Completely unsafe.
5943 return {SPF_UNKNOWN, SPNB_NA, false};
5944 } else {
5945 Ordered = false;
5946 // An unordered comparison will return true when given a NaN, so it
5947 // returns the LHS.
5948 if (LHSSafe)
5949 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5950 NaNBehavior = SPNB_RETURNS_OTHER;
5951 else if (RHSSafe)
5952 NaNBehavior = SPNB_RETURNS_NAN;
5953 else
5954 // Completely unsafe.
5955 return {SPF_UNKNOWN, SPNB_NA, false};
5956 }
5957 }
5958
5959 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5960 std::swap(CmpLHS, CmpRHS);
5961 Pred = CmpInst::getSwappedPredicate(Pred);
5962 if (NaNBehavior == SPNB_RETURNS_NAN)
5963 NaNBehavior = SPNB_RETURNS_OTHER;
5964 else if (NaNBehavior == SPNB_RETURNS_OTHER)
5965 NaNBehavior = SPNB_RETURNS_NAN;
5966 Ordered = !Ordered;
5967 }
5968
5969 // ([if]cmp X, Y) ? X : Y
5970 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5971 switch (Pred) {
5972 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5973 case ICmpInst::ICMP_UGT:
5974 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5975 case ICmpInst::ICMP_SGT:
5976 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5977 case ICmpInst::ICMP_ULT:
5978 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5979 case ICmpInst::ICMP_SLT:
5980 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5981 case FCmpInst::FCMP_UGT:
5982 case FCmpInst::FCMP_UGE:
5983 case FCmpInst::FCMP_OGT:
5984 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5985 case FCmpInst::FCMP_ULT:
5986 case FCmpInst::FCMP_ULE:
5987 case FCmpInst::FCMP_OLT:
5988 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5989 }
5990 }
5991
5992 if (isKnownNegation(TrueVal, FalseVal)) {
5993 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5994 // match against either LHS or sext(LHS).
5995 auto MaybeSExtCmpLHS =
5996 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5997 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5998 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5999 if (match(TrueVal, MaybeSExtCmpLHS)) {
6000 // Set the return values. If the compare uses the negated value (-X >s 0),
6001 // swap the return values because the negated value is always 'RHS'.
6002 LHS = TrueVal;
6003 RHS = FalseVal;
6004 if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
6005 std::swap(LHS, RHS);
6006
6007 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
6008 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
6009 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6010 return {SPF_ABS, SPNB_NA, false};
6011
6012 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
6013 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
6014 return {SPF_ABS, SPNB_NA, false};
6015
6016 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
6017 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
6018 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6019 return {SPF_NABS, SPNB_NA, false};
6020 }
6021 else if (match(FalseVal, MaybeSExtCmpLHS)) {
6022 // Set the return values. If the compare uses the negated value (-X >s 0),
6023 // swap the return values because the negated value is always 'RHS'.
6024 LHS = FalseVal;
6025 RHS = TrueVal;
6026 if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
6027 std::swap(LHS, RHS);
6028
6029 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
6030 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
6031 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6032 return {SPF_NABS, SPNB_NA, false};
6033
6034 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
6035 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
6036 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6037 return {SPF_ABS, SPNB_NA, false};
6038 }
6039 }
6040
6041 if (CmpInst::isIntPredicate(Pred))
6042 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
6043
6044 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
6045 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
6046 // semantics than minNum. Be conservative in such case.
6047 if (NaNBehavior != SPNB_RETURNS_ANY ||
6048 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6049 !isKnownNonZero(CmpRHS)))
6050 return {SPF_UNKNOWN, SPNB_NA, false};
6051
6052 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
6053}
6054
6055/// Helps to match a select pattern in case of a type mismatch.
6056///
6057/// The function processes the case when type of true and false values of a
6058/// select instruction differs from type of the cmp instruction operands because
6059/// of a cast instruction. The function checks if it is legal to move the cast
6060/// operation after "select". If yes, it returns the new second value of
6061/// "select" (with the assumption that cast is moved):
6062/// 1. As operand of cast instruction when both values of "select" are same cast
6063/// instructions.
6064/// 2. As restored constant (by applying reverse cast operation) when the first
6065/// value of the "select" is a cast operation and the second value is a
6066/// constant.
6067/// NOTE: We return only the new second value because the first value could be
6068/// accessed as operand of cast instruction.
6069static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6070 Instruction::CastOps *CastOp) {
6071 auto *Cast1 = dyn_cast<CastInst>(V1);
6072 if (!Cast1)
6073 return nullptr;
6074
6075 *CastOp = Cast1->getOpcode();
6076 Type *SrcTy = Cast1->getSrcTy();
6077 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6078 // If V1 and V2 are both the same cast from the same type, look through V1.
6079 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6080 return Cast2->getOperand(0);
6081 return nullptr;
6082 }
6083
6084 auto *C = dyn_cast<Constant>(V2);
6085 if (!C)
6086 return nullptr;
6087
6088 Constant *CastedTo = nullptr;
6089 switch (*CastOp) {
6090 case Instruction::ZExt:
6091 if (CmpI->isUnsigned())
6092 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6093 break;
6094 case Instruction::SExt:
6095 if (CmpI->isSigned())
6096 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6097 break;
6098 case Instruction::Trunc:
6099 Constant *CmpConst;
6100 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6101 CmpConst->getType() == SrcTy) {
6102 // Here we have the following case:
6103 //
6104 // %cond = cmp iN %x, CmpConst
6105 // %tr = trunc iN %x to iK
6106 // %narrowsel = select i1 %cond, iK %t, iK C
6107 //
6108 // We can always move trunc after select operation:
6109 //
6110 // %cond = cmp iN %x, CmpConst
6111 // %widesel = select i1 %cond, iN %x, iN CmpConst
6112 // %tr = trunc iN %widesel to iK
6113 //
6114 // Note that C could be extended in any way because we don't care about
6115 // upper bits after truncation. It can't be abs pattern, because it would
6116 // look like:
6117 //
6118 // select i1 %cond, x, -x.
6119 //
6120 // So only min/max pattern could be matched. Such match requires widened C
6121 // == CmpConst. That is why set widened C = CmpConst, condition trunc
6122 // CmpConst == C is checked below.
6123 CastedTo = CmpConst;
6124 } else {
6125 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6126 }
6127 break;
6128 case Instruction::FPTrunc:
6129 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6130 break;
6131 case Instruction::FPExt:
6132 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6133 break;
6134 case Instruction::FPToUI:
6135 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6136 break;
6137 case Instruction::FPToSI:
6138 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6139 break;
6140 case Instruction::UIToFP:
6141 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6142 break;
6143 case Instruction::SIToFP:
6144 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6145 break;
6146 default:
6147 break;
6148 }
6149
6150 if (!CastedTo)
6151 return nullptr;
6152
6153 // Make sure the cast doesn't lose any information.
6154 Constant *CastedBack =
6155 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6156 if (CastedBack != C)
6157 return nullptr;
6158
6159 return CastedTo;
6160}
6161
6162SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6163 Instruction::CastOps *CastOp,
6164 unsigned Depth) {
6165 if (Depth >= MaxAnalysisRecursionDepth)
6166 return {SPF_UNKNOWN, SPNB_NA, false};
6167
6168 SelectInst *SI = dyn_cast<SelectInst>(V);
6169 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6170
6171 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6172 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6173
6174 Value *TrueVal = SI->getTrueValue();
6175 Value *FalseVal = SI->getFalseValue();
6176
6177 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6178 CastOp, Depth);
6179}
6180
6181SelectPatternResult llvm::matchDecomposedSelectPattern(
6182 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6183 Instruction::CastOps *CastOp, unsigned Depth) {
6184 CmpInst::Predicate Pred = CmpI->getPredicate();
6185 Value *CmpLHS = CmpI->getOperand(0);
6186 Value *CmpRHS = CmpI->getOperand(1);
6187 FastMathFlags FMF;
6188 if (isa<FPMathOperator>(CmpI))
6189 FMF = CmpI->getFastMathFlags();
6190
6191 // Bail out early.
6192 if (CmpI->isEquality())
6193 return {SPF_UNKNOWN, SPNB_NA, false};
6194
6195 // Deal with type mismatches.
6196 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6197 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6198 // If this is a potential fmin/fmax with a cast to integer, then ignore
6199 // -0.0 because there is no corresponding integer value.
6200 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6201 FMF.setNoSignedZeros();
6202 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6203 cast<CastInst>(TrueVal)->getOperand(0), C,
6204 LHS, RHS, Depth);
6205 }
6206 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6207 // If this is a potential fmin/fmax with a cast to integer, then ignore
6208 // -0.0 because there is no corresponding integer value.
6209 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6210 FMF.setNoSignedZeros();
6211 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6212 C, cast<CastInst>(FalseVal)->getOperand(0),
6213 LHS, RHS, Depth);
6214 }
6215 }
6216 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6217 LHS, RHS, Depth);
6218}
6219
6220CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6221 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6222 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6223 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6224 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6225 if (SPF == SPF_FMINNUM)
6226 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6227 if (SPF == SPF_FMAXNUM)
6228 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6229 llvm_unreachable("unhandled!")::llvm::llvm_unreachable_internal("unhandled!", "llvm/lib/Analysis/ValueTracking.cpp"
, 6229)
;
6230}
6231
6232SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6233 if (SPF == SPF_SMIN) return SPF_SMAX;
6234 if (SPF == SPF_UMIN) return SPF_UMAX;
6235 if (SPF == SPF_SMAX) return SPF_SMIN;
6236 if (SPF == SPF_UMAX) return SPF_UMIN;
6237 llvm_unreachable("unhandled!")::llvm::llvm_unreachable_internal("unhandled!", "llvm/lib/Analysis/ValueTracking.cpp"
, 6237)
;
6238}
6239
6240Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6241 switch (MinMaxID) {
6242 case Intrinsic::smax: return Intrinsic::smin;
6243 case Intrinsic::smin: return Intrinsic::smax;
6244 case Intrinsic::umax: return Intrinsic::umin;
6245 case Intrinsic::umin: return Intrinsic::umax;
6246 default: llvm_unreachable("Unexpected intrinsic")::llvm::llvm_unreachable_internal("Unexpected intrinsic", "llvm/lib/Analysis/ValueTracking.cpp"
, 6246)
;
6247 }
6248}
6249
6250CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6251 return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6252}
6253
6254APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
6255 switch (SPF) {
6256 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
6257 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
6258 case SPF_UMAX: return APInt::getMaxValue(BitWidth);
6259 case SPF_UMIN: return APInt::getMinValue(BitWidth);
6260 default: llvm_unreachable("Unexpected flavor")::llvm::llvm_unreachable_internal("Unexpected flavor", "llvm/lib/Analysis/ValueTracking.cpp"
, 6260)
;
6261 }
6262}
6263
6264std::pair<Intrinsic::ID, bool>
6265llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6266 // Check if VL contains select instructions that can be folded into a min/max
6267 // vector intrinsic and return the intrinsic if it is possible.
6268 // TODO: Support floating point min/max.
6269 bool AllCmpSingleUse = true;
6270 SelectPatternResult SelectPattern;
6271 SelectPattern.Flavor = SPF_UNKNOWN;
6272 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6273 Value *LHS, *RHS;
6274 auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6275 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6276 CurrentPattern.Flavor == SPF_FMINNUM ||
6277 CurrentPattern.Flavor == SPF_FMAXNUM ||
6278 !I->getType()->isIntOrIntVectorTy())
6279 return false;
6280 if (SelectPattern.Flavor != SPF_UNKNOWN &&
6281 SelectPattern.Flavor != CurrentPattern.Flavor)
6282 return false;
6283 SelectPattern = CurrentPattern;
6284 AllCmpSingleUse &=
6285 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6286 return true;
6287 })) {
6288 switch (SelectPattern.Flavor) {
6289 case SPF_SMIN:
6290 return {Intrinsic::smin, AllCmpSingleUse};
6291 case SPF_UMIN:
6292 return {Intrinsic::umin, AllCmpSingleUse};
6293 case SPF_SMAX:
6294 return {Intrinsic::smax, AllCmpSingleUse};
6295 case SPF_UMAX:
6296 return {Intrinsic::umax, AllCmpSingleUse};
6297 default:
6298 llvm_unreachable("unexpected select pattern flavor")::llvm::llvm_unreachable_internal("unexpected select pattern flavor"
, "llvm/lib/Analysis/ValueTracking.cpp", 6298)
;
6299 }
6300 }
6301 return {Intrinsic::not_intrinsic, false};
6302}
6303
6304bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6305 Value *&Start, Value *&Step) {
6306 // Handle the case of a simple two-predecessor recurrence PHI.
6307 // There's a lot more that could theoretically be done here, but
6308 // this is sufficient to catch some interesting cases.
6309 if (P->getNumIncomingValues() != 2)
6310 return false;
6311
6312 for (unsigned i = 0; i != 2; ++i) {
6313 Value *L = P->getIncomingValue(i);
6314 Value *R = P->getIncomingValue(!i);
6315 Operator *LU = dyn_cast<Operator>(L);
6316 if (!LU)
6317 continue;
6318 unsigned Opcode = LU->getOpcode();
6319
6320 switch (Opcode) {
6321 default:
6322 continue;
6323 // TODO: Expand list -- xor, div, gep, uaddo, etc..
6324 case Instruction::LShr:
6325 case Instruction::AShr:
6326 case Instruction::Shl:
6327 case Instruction::Add:
6328 case Instruction::Sub:
6329 case Instruction::And:
6330 case Instruction::Or:
6331 case Instruction::Mul: {
6332 Value *LL = LU->getOperand(0);
6333 Value *LR = LU->getOperand(1);
6334 // Find a recurrence.
6335 if (LL == P)
6336 L = LR;
6337 else if (LR == P)
6338 L = LL;
6339 else
6340 continue; // Check for recurrence with L and R flipped.
6341
6342 break; // Match!
6343 }
6344 };
6345
6346 // We have matched a recurrence of the form:
6347 // %iv = [R, %entry], [%iv.next, %backedge]
6348 // %iv.next = binop %iv, L
6349 // OR
6350 // %iv = [R, %entry], [%iv.next, %backedge]
6351 // %iv.next = binop L, %iv
6352 BO = cast<BinaryOperator>(LU);
6353 Start = R;
6354 Step = L;
6355 return true;
6356 }
6357 return false;
6358}
6359
6360bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6361 Value *&Start, Value *&Step) {
6362 BinaryOperator *BO = nullptr;
6363 P = dyn_cast<PHINode>(I->getOperand(0));
6364 if (!P)
6365 P = dyn_cast<PHINode>(I->getOperand(1));
6366 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6367}
6368
6369/// Return true if "icmp Pred LHS RHS" is always true.
6370static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6371 const Value *RHS, const DataLayout &DL,
6372 unsigned Depth) {
6373 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!")(static_cast <bool> (!LHS->getType()->isVectorTy(
) && "TODO: extend to handle vectors!") ? void (0) : __assert_fail
("!LHS->getType()->isVectorTy() && \"TODO: extend to handle vectors!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6373, __extension__ __PRETTY_FUNCTION__
))
;
6374 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6375 return true;
6376
6377 switch (Pred) {
6378 default:
6379 return false;
6380
6381 case CmpInst::ICMP_SLE: {
6382 const APInt *C;
6383
6384 // LHS s<= LHS +_{nsw} C if C >= 0
6385 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6386 return !C->isNegative();
6387 return false;
6388 }
6389
6390 case CmpInst::ICMP_ULE: {
6391 const APInt *C;
6392
6393 // LHS u<= LHS +_{nuw} C for any C
6394 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6395 return true;
6396
6397 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6398 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6399 const Value *&X,
6400 const APInt *&CA, const APInt *&CB) {
6401 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6402 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6403 return true;
6404
6405 // If X & C == 0 then (X | C) == X +_{nuw} C
6406 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6407 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6408 KnownBits Known(CA->getBitWidth());
6409 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6410 /*CxtI*/ nullptr, /*DT*/ nullptr);
6411 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6412 return true;
6413 }
6414
6415 return false;
6416 };
6417
6418 const Value *X;
6419 const APInt *CLHS, *CRHS;
6420 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6421 return CLHS->ule(*CRHS);
6422
6423 return false;
6424 }
6425 }
6426}
6427
6428/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6429/// ALHS ARHS" is true. Otherwise, return None.
6430static Optional<bool>
6431isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6432 const Value *ARHS, const Value *BLHS, const Value *BRHS,
6433 const DataLayout &DL, unsigned Depth) {
6434 switch (Pred) {
6435 default:
6436 return None;
6437
6438 case CmpInst::ICMP_SLT:
6439 case CmpInst::ICMP_SLE:
6440 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6441 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6442 return true;
6443 return None;
6444
6445 case CmpInst::ICMP_ULT:
6446 case CmpInst::ICMP_ULE:
6447 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6448 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6449 return true;
6450 return None;
6451 }
6452}
6453
6454/// Return true if the operands of the two compares match. IsSwappedOps is true
6455/// when the operands match, but are swapped.
6456static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6457 const Value *BLHS, const Value *BRHS,
6458 bool &IsSwappedOps) {
6459
6460 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6461 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6462 return IsMatchingOps || IsSwappedOps;
6463}
6464
6465/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6466/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6467/// Otherwise, return None if we can't infer anything.
6468static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6469 CmpInst::Predicate BPred,
6470 bool AreSwappedOps) {
6471 // Canonicalize the predicate as if the operands were not commuted.
6472 if (AreSwappedOps)
6473 BPred = ICmpInst::getSwappedPredicate(BPred);
6474
6475 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6476 return true;
6477 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6478 return false;
6479
6480 return None;
6481}
6482
6483/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6484/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6485/// Otherwise, return None if we can't infer anything.
6486static Optional<bool>
6487isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6488 const ConstantInt *C1,
6489 CmpInst::Predicate BPred,
6490 const ConstantInt *C2) {
6491 ConstantRange DomCR =
6492 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6493 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue());
6494 ConstantRange Intersection = DomCR.intersectWith(CR);
6495 ConstantRange Difference = DomCR.difference(CR);
6496 if (Intersection.isEmptySet())
6497 return false;
6498 if (Difference.isEmptySet())
6499 return true;
6500 return None;
6501}
6502
6503/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
6504/// false. Otherwise, return None if we can't infer anything.
6505static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6506 CmpInst::Predicate BPred,
6507 const Value *BLHS, const Value *BRHS,
6508 const DataLayout &DL, bool LHSIsTrue,
6509 unsigned Depth) {
6510 Value *ALHS = LHS->getOperand(0);
6511 Value *ARHS = LHS->getOperand(1);
6512
6513 // The rest of the logic assumes the LHS condition is true. If that's not the
6514 // case, invert the predicate to make it so.
6515 CmpInst::Predicate APred =
6516 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6517
6518 // Can we infer anything when the two compares have matching operands?
6519 bool AreSwappedOps;
6520 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6521 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6522 APred, BPred, AreSwappedOps))
6523 return Implication;
6524 // No amount of additional analysis will infer the second condition, so
6525 // early exit.
6526 return None;
6527 }
6528
6529 // Can we infer anything when the LHS operands match and the RHS operands are
6530 // constants (not necessarily matching)?
6531 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6532 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6533 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6534 return Implication;
6535 // No amount of additional analysis will infer the second condition, so
6536 // early exit.
6537 return None;
6538 }
6539
6540 if (APred == BPred)
6541 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6542 return None;
6543}
6544
6545/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
6546/// false. Otherwise, return None if we can't infer anything. We expect the
6547/// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6548static Optional<bool>
6549isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6550 const Value *RHSOp0, const Value *RHSOp1,
6551 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6552 // The LHS must be an 'or', 'and', or a 'select' instruction.
6553 assert((LHS->getOpcode() == Instruction::And ||(static_cast <bool> ((LHS->getOpcode() == Instruction
::And || LHS->getOpcode() == Instruction::Or || LHS->getOpcode
() == Instruction::Select) && "Expected LHS to be 'and', 'or', or 'select'."
) ? void (0) : __assert_fail ("(LHS->getOpcode() == Instruction::And || LHS->getOpcode() == Instruction::Or || LHS->getOpcode() == Instruction::Select) && \"Expected LHS to be 'and', 'or', or 'select'.\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6556, __extension__ __PRETTY_FUNCTION__
))
6554 LHS->getOpcode() == Instruction::Or ||(static_cast <bool> ((LHS->getOpcode() == Instruction
::And || LHS->getOpcode() == Instruction::Or || LHS->getOpcode
() == Instruction::Select) && "Expected LHS to be 'and', 'or', or 'select'."
) ? void (0) : __assert_fail ("(LHS->getOpcode() == Instruction::And || LHS->getOpcode() == Instruction::Or || LHS->getOpcode() == Instruction::Select) && \"Expected LHS to be 'and', 'or', or 'select'.\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6556, __extension__ __PRETTY_FUNCTION__
))
6555 LHS->getOpcode() == Instruction::Select) &&(static_cast <bool> ((LHS->getOpcode() == Instruction
::And || LHS->getOpcode() == Instruction::Or || LHS->getOpcode
() == Instruction::Select) && "Expected LHS to be 'and', 'or', or 'select'."
) ? void (0) : __assert_fail ("(LHS->getOpcode() == Instruction::And || LHS->getOpcode() == Instruction::Or || LHS->getOpcode() == Instruction::Select) && \"Expected LHS to be 'and', 'or', or 'select'.\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6556, __extension__ __PRETTY_FUNCTION__
))
6556 "Expected LHS to be 'and', 'or', or 'select'.")(static_cast <bool> ((LHS->getOpcode() == Instruction
::And || LHS->getOpcode() == Instruction::Or || LHS->getOpcode
() == Instruction::Select) && "Expected LHS to be 'and', 'or', or 'select'."
) ? void (0) : __assert_fail ("(LHS->getOpcode() == Instruction::And || LHS->getOpcode() == Instruction::Or || LHS->getOpcode() == Instruction::Select) && \"Expected LHS to be 'and', 'or', or 'select'.\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6556, __extension__ __PRETTY_FUNCTION__
))
;
6557
6558 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit")(static_cast <bool> (Depth <= MaxAnalysisRecursionDepth
&& "Hit recursion limit") ? void (0) : __assert_fail
("Depth <= MaxAnalysisRecursionDepth && \"Hit recursion limit\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6558, __extension__ __PRETTY_FUNCTION__
))
;
6559
6560 // If the result of an 'or' is false, then we know both legs of the 'or' are
6561 // false. Similarly, if the result of an 'and' is true, then we know both
6562 // legs of the 'and' are true.
6563 const Value *ALHS, *ARHS;
6564 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6565 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6566 // FIXME: Make this non-recursion.
6567 if (Optional<bool> Implication = isImpliedCondition(
6568 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6569 return Implication;
6570 if (Optional<bool> Implication = isImpliedCondition(
6571 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6572 return Implication;
6573 return None;
6574 }
6575 return None;
6576}
6577
6578Optional<bool>
6579llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6580 const Value *RHSOp0, const Value *RHSOp1,
6581 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6582 // Bail out when we hit the limit.
6583 if (Depth == MaxAnalysisRecursionDepth)
6584 return None;
6585
6586 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6587 // example.
6588 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6589 return None;
6590
6591 Type *OpTy = LHS->getType();
6592 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!")(static_cast <bool> (OpTy->isIntOrIntVectorTy(1) &&
"Expected integer type only!") ? void (0) : __assert_fail ("OpTy->isIntOrIntVectorTy(1) && \"Expected integer type only!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6592, __extension__ __PRETTY_FUNCTION__
))
;
6593
6594 // FIXME: Extending the code below to handle vectors.
6595 if (OpTy->isVectorTy())
6596 return None;
6597
6598 assert(OpTy->isIntegerTy(1) && "implied by above")(static_cast <bool> (OpTy->isIntegerTy(1) &&
"implied by above") ? void (0) : __assert_fail ("OpTy->isIntegerTy(1) && \"implied by above\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6598, __extension__ __PRETTY_FUNCTION__
))
;
6599
6600 // Both LHS and RHS are icmps.
6601 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6602 if (LHSCmp)
6603 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6604 Depth);
6605
6606 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect
6607 /// the RHS to be an icmp.
6608 /// FIXME: Add support for and/or/select on the RHS.
6609 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6610 if ((LHSI->getOpcode() == Instruction::And ||
6611 LHSI->getOpcode() == Instruction::Or ||
6612 LHSI->getOpcode() == Instruction::Select))
6613 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6614 Depth);
6615 }
6616 return None;
6617}
6618
6619Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6620 const DataLayout &DL, bool LHSIsTrue,
6621 unsigned Depth) {
6622 // LHS ==> RHS by definition
6623 if (LHS == RHS)
6624 return LHSIsTrue;
6625
6626 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6627 if (RHSCmp)
6628 return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6629 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6630 LHSIsTrue, Depth);
6631 return None;
6632}
6633
6634// Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6635// condition dominating ContextI or nullptr, if no condition is found.
6636static std::pair<Value *, bool>
6637getDomPredecessorCondition(const Instruction *ContextI) {
6638 if (!ContextI || !ContextI->getParent())
6639 return {nullptr, false};
6640
6641 // TODO: This is a poor/cheap way to determine dominance. Should we use a
6642 // dominator tree (eg, from a SimplifyQuery) instead?
6643 const BasicBlock *ContextBB = ContextI->getParent();
6644 const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6645 if (!PredBB)
6646 return {nullptr, false};
6647
6648 // We need a conditional branch in the predecessor.
6649 Value *PredCond;
6650 BasicBlock *TrueBB, *FalseBB;
6651 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6652 return {nullptr, false};
6653
6654 // The branch should get simplified. Don't bother simplifying this condition.
6655 if (TrueBB == FalseBB)
6656 return {nullptr, false};
6657
6658 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&(static_cast <bool> ((TrueBB == ContextBB || FalseBB ==
ContextBB) && "Predecessor block does not point to successor?"
) ? void (0) : __assert_fail ("(TrueBB == ContextBB || FalseBB == ContextBB) && \"Predecessor block does not point to successor?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6659, __extension__ __PRETTY_FUNCTION__
))
6659 "Predecessor block does not point to successor?")(static_cast <bool> ((TrueBB == ContextBB || FalseBB ==
ContextBB) && "Predecessor block does not point to successor?"
) ? void (0) : __assert_fail ("(TrueBB == ContextBB || FalseBB == ContextBB) && \"Predecessor block does not point to successor?\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6659, __extension__ __PRETTY_FUNCTION__
))
;
6660
6661 // Is this condition implied by the predecessor condition?
6662 return {PredCond, TrueBB == ContextBB};
6663}
6664
6665Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6666 const Instruction *ContextI,
6667 const DataLayout &DL) {
6668 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool")(static_cast <bool> (Cond->getType()->isIntOrIntVectorTy
(1) && "Condition must be bool") ? void (0) : __assert_fail
("Cond->getType()->isIntOrIntVectorTy(1) && \"Condition must be bool\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6668, __extension__ __PRETTY_FUNCTION__
))
;
6669 auto PredCond = getDomPredecessorCondition(ContextI);
6670 if (PredCond.first)
6671 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6672 return None;
6673}
6674
6675Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6676 const Value *LHS, const Value *RHS,
6677 const Instruction *ContextI,
6678 const DataLayout &DL) {
6679 auto PredCond = getDomPredecessorCondition(ContextI);
6680 if (PredCond.first)
6681 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6682 PredCond.second);
6683 return None;
6684}
6685
6686static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6687 APInt &Upper, const InstrInfoQuery &IIQ,
6688 bool PreferSignedRange) {
6689 unsigned Width = Lower.getBitWidth();
6690 const APInt *C;
6691 switch (BO.getOpcode()) {
6692 case Instruction::Add:
6693 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6694 bool HasNSW = IIQ.hasNoSignedWrap(&BO);
6695 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
6696
6697 // If the caller expects a signed compare, then try to use a signed range.
6698 // Otherwise if both no-wraps are set, use the unsigned range because it
6699 // is never larger than the signed range. Example:
6700 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
6701 if (PreferSignedRange && HasNSW && HasNUW)
6702 HasNUW = false;
6703
6704 if (HasNUW) {
6705 // 'add nuw x, C' produces [C, UINT_MAX].
6706 Lower = *C;
6707 } else if (HasNSW) {
6708 if (C->isNegative()) {
6709 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6710 Lower = APInt::getSignedMinValue(Width);
6711 Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6712 } else {
6713 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6714 Lower = APInt::getSignedMinValue(Width) + *C;
6715 Upper = APInt::getSignedMaxValue(Width) + 1;
6716 }
6717 }
6718 }
6719 break;
6720
6721 case Instruction::And:
6722 if (match(BO.getOperand(1), m_APInt(C)))
6723 // 'and x, C' produces [0, C].
6724 Upper = *C + 1;
6725 break;
6726
6727 case Instruction::Or:
6728 if (match(BO.getOperand(1), m_APInt(C)))
6729 // 'or x, C' produces [C, UINT_MAX].
6730 Lower = *C;
6731 break;
6732
6733 case Instruction::AShr:
6734 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6735 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6736 Lower = APInt::getSignedMinValue(Width).ashr(*C);
6737 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6738 } else if (match(BO.getOperand(0), m_APInt(C))) {
6739 unsigned ShiftAmount = Width - 1;
6740 if (!C->isZero() && IIQ.isExact(&BO))
6741 ShiftAmount = C->countTrailingZeros();
6742 if (C->isNegative()) {
6743 // 'ashr C, x' produces [C, C >> (Width-1)]
6744 Lower = *C;
6745 Upper = C->ashr(ShiftAmount) + 1;
6746 } else {
6747 // 'ashr C, x' produces [C >> (Width-1), C]
6748 Lower = C->ashr(ShiftAmount);
6749 Upper = *C + 1;
6750 }
6751 }
6752 break;
6753
6754 case Instruction::LShr:
6755 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6756 // 'lshr x, C' produces [0, UINT_MAX >> C].
6757 Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
6758 } else if (match(BO.getOperand(0), m_APInt(C))) {
6759 // 'lshr C, x' produces [C >> (Width-1), C].
6760 unsigned ShiftAmount = Width - 1;
6761 if (!C->isZero() && IIQ.isExact(&BO))
6762 ShiftAmount = C->countTrailingZeros();
6763 Lower = C->lshr(ShiftAmount);
6764 Upper = *C + 1;
6765 }
6766 break;
6767
6768 case Instruction::Shl:
6769 if (match(BO.getOperand(0), m_APInt(C))) {
6770 if (IIQ.hasNoUnsignedWrap(&BO)) {
6771 // 'shl nuw C, x' produces [C, C << CLZ(C)]
6772 Lower = *C;
6773 Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6774 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6775 if (C->isNegative()) {
6776 // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6777 unsigned ShiftAmount = C->countLeadingOnes() - 1;
6778 Lower = C->shl(ShiftAmount);
6779 Upper = *C + 1;
6780 } else {
6781 // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6782 unsigned ShiftAmount = C->countLeadingZeros() - 1;
6783 Lower = *C;
6784 Upper = C->shl(ShiftAmount) + 1;
6785 }
6786 }
6787 }
6788 break;
6789
6790 case Instruction::SDiv:
6791 if (match(BO.getOperand(1), m_APInt(C))) {
6792 APInt IntMin = APInt::getSignedMinValue(Width);
6793 APInt IntMax = APInt::getSignedMaxValue(Width);
6794 if (C->isAllOnes()) {
6795 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6796 // where C != -1 and C != 0 and C != 1
6797 Lower = IntMin + 1;
6798 Upper = IntMax + 1;
6799 } else if (C->countLeadingZeros() < Width - 1) {
6800 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6801 // where C != -1 and C != 0 and C != 1
6802 Lower = IntMin.sdiv(*C);
6803 Upper = IntMax.sdiv(*C);
6804 if (Lower.sgt(Upper))
6805 std::swap(Lower, Upper);
6806 Upper = Upper + 1;
6807 assert(Upper != Lower && "Upper part of range has wrapped!")(static_cast <bool> (Upper != Lower && "Upper part of range has wrapped!"
) ? void (0) : __assert_fail ("Upper != Lower && \"Upper part of range has wrapped!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6807, __extension__ __PRETTY_FUNCTION__
))
;
6808 }
6809 } else if (match(BO.getOperand(0), m_APInt(C))) {
6810 if (C->isMinSignedValue()) {
6811 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6812 Lower = *C;
6813 Upper = Lower.lshr(1) + 1;
6814 } else {
6815 // 'sdiv C, x' produces [-|C|, |C|].
6816 Upper = C->abs() + 1;
6817 Lower = (-Upper) + 1;
6818 }
6819 }
6820 break;
6821
6822 case Instruction::UDiv:
6823 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6824 // 'udiv x, C' produces [0, UINT_MAX / C].
6825 Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6826 } else if (match(BO.getOperand(0), m_APInt(C))) {
6827 // 'udiv C, x' produces [0, C].
6828 Upper = *C + 1;
6829 }
6830 break;
6831
6832 case Instruction::SRem:
6833 if (match(BO.getOperand(1), m_APInt(C))) {
6834 // 'srem x, C' produces (-|C|, |C|).
6835 Upper = C->abs();
6836 Lower = (-Upper) + 1;
6837 }
6838 break;
6839
6840 case Instruction::URem:
6841 if (match(BO.getOperand(1), m_APInt(C)))
6842 // 'urem x, C' produces [0, C).
6843 Upper = *C;
6844 break;
6845
6846 default:
6847 break;
6848 }
6849}
6850
6851static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6852 APInt &Upper) {
6853 unsigned Width = Lower.getBitWidth();
6854 const APInt *C;
6855 switch (II.getIntrinsicID()) {
6856 case Intrinsic::ctpop:
6857 case Intrinsic::ctlz:
6858 case Intrinsic::cttz:
6859 // Maximum of set/clear bits is the bit width.
6860 assert(Lower == 0 && "Expected lower bound to be zero")(static_cast <bool> (Lower == 0 && "Expected lower bound to be zero"
) ? void (0) : __assert_fail ("Lower == 0 && \"Expected lower bound to be zero\""
, "llvm/lib/Analysis/ValueTracking.cpp", 6860, __extension__ __PRETTY_FUNCTION__
))
;
6861 Upper = Width + 1;
6862 break;
6863 case Intrinsic::uadd_sat:
6864 // uadd.sat(x, C) produces [C, UINT_MAX].
6865 if (match(II.getOperand(0), m_APInt(C)) ||
6866 match(II.getOperand(1), m_APInt(C)))
6867 Lower = *C;
6868 break;
6869 case Intrinsic::sadd_sat:
6870 if (match(II.getOperand(0), m_APInt(C)) ||
6871 match(II.getOperand(1), m_APInt(C))) {
6872 if (C->isNegative()) {
6873 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6874 Lower = APInt::getSignedMinValue(Width);
6875 Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6876 } else {
6877 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6878 Lower = APInt::getSignedMinValue(Width) + *C;
6879 Upper = APInt::getSignedMaxValue(Width) + 1;
6880 }
6881 }
6882 break;
6883 case Intrinsic::usub_sat:
6884 // usub.sat(C, x) produces [0, C].
6885 if (match(II.getOperand(0), m_APInt(C)))
6886 Upper = *C + 1;
6887 // usub.sat(x, C) produces [0, UINT_MAX - C].
6888 else if (match(II.getOperand(1), m_APInt(C)))
6889 Upper = APInt::getMaxValue(Width) - *C + 1;
6890 break;
6891 case Intrinsic::ssub_sat:
6892 if (match(II.getOperand(0), m_APInt(C))) {
6893 if (C->isNegative()) {
6894 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6895 Lower = APInt::getSignedMinValue(Width);
6896 Upper = *C - APInt::getSignedMinValue(Width) + 1;
6897 } else {
6898 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6899 Lower = *C - APInt::getSignedMaxValue(Width);
6900 Upper = APInt::getSignedMaxValue(Width) + 1;
6901 }
6902 } else if (match(II.getOperand(1), m_APInt(C))) {
6903 if (C->isNegative()) {
6904 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6905 Lower = APInt::getSignedMinValue(Width) - *C;
6906 Upper = APInt::getSignedMaxValue(Width) + 1;
6907 } else {
6908 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6909 Lower = APInt::getSignedMinValue(Width);
6910 Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6911 }
6912 }
6913 break;
6914 case Intrinsic::umin:
6915 case Intrinsic::umax:
6916 case Intrinsic::smin:
6917 case Intrinsic::smax:
6918 if (!match(II.getOperand(0), m_APInt(C)) &&
6919 !match(II.getOperand(1), m_APInt(C)))
6920 break;
6921
6922 switch (II.getIntrinsicID()) {
6923 case Intrinsic::umin:
6924 Upper = *C + 1;
6925 break;
6926 case Intrinsic::umax:
6927 Lower = *C;
6928 break;
6929 case Intrinsic::smin:
6930 Lower = APInt::getSignedMinValue(Width);
6931 Upper = *C + 1;
6932 break;
6933 case Intrinsic::smax:
6934 Lower = *C;
6935 Upper = APInt::getSignedMaxValue(Width) + 1;
6936 break;
6937 default:
6938 llvm_unreachable("Must be min/max intrinsic")::llvm::llvm_unreachable_internal("Must be min/max intrinsic"
, "llvm/lib/Analysis/ValueTracking.cpp", 6938)
;
6939 }
6940 break;
6941 case Intrinsic::abs:
6942 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6943 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6944 if (match(II.getOperand(1), m_One()))
6945 Upper = APInt::getSignedMaxValue(Width) + 1;
6946 else
6947 Upper = APInt::getSignedMinValue(Width) + 1;
6948 break;
6949 default:
6950 break;
6951 }
6952}
6953
6954static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6955 APInt &Upper, const InstrInfoQuery &IIQ) {
6956 const Value *LHS = nullptr, *RHS = nullptr;
6957 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6958 if (R.Flavor == SPF_UNKNOWN)
6959 return;
6960
6961 unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6962
6963 if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6964 // If the negation part of the abs (in RHS) has the NSW flag,
6965 // then the result of abs(X) is [0..SIGNED_MAX],
6966 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6967 Lower = APInt::getZero(BitWidth);
6968 if (match(RHS, m_Neg(m_Specific(LHS))) &&
6969 IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6970 Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6971 else
6972 Upper = APInt::getSignedMinValue(BitWidth) + 1;
6973 return;
6974 }
6975
6976 if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6977 // The result of -abs(X) is <= 0.
6978 Lower = APInt::getSignedMinValue(BitWidth);
6979 Upper = APInt(BitWidth, 1);
6980 return;
6981 }
6982
6983 const APInt *C;
6984 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6985 return;
6986
6987 switch (R.Flavor) {
6988 case SPF_UMIN:
6989 Upper = *C + 1;
6990 break;
6991 case SPF_UMAX:
6992 Lower = *C;
6993 break;
6994 case SPF_SMIN:
6995 Lower = APInt::getSignedMinValue(BitWidth);
6996 Upper = *C + 1;
6997 break;
6998 case SPF_SMAX:
6999 Lower = *C;
7000 Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7001 break;
7002 default:
7003 break;
7004 }
7005}
7006
7007static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
7008 // The maximum representable value of a half is 65504. For floats the maximum
7009 // value is 3.4e38 which requires roughly 129 bits.
7010 unsigned BitWidth = I->getType()->getScalarSizeInBits();
7011 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
7012 return;
7013 if (isa<FPToSIInst>(I) && BitWidth >= 17) {
7014 Lower = APInt(BitWidth, -65504);
7015 Upper = APInt(BitWidth, 65505);
7016 }
7017
7018 if (isa<FPToUIInst>(I) && BitWidth >= 16) {
7019 // For a fptoui the lower limit is left as 0.
7020 Upper = APInt(BitWidth, 65505);
7021 }
7022}
7023
7024ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
7025 bool UseInstrInfo, AssumptionCache *AC,
7026 const Instruction *CtxI,
7027 const DominatorTree *DT,
7028 unsigned Depth) {
7029 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction")(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && "Expected integer instruction") ? void (0) : __assert_fail
("V->getType()->isIntOrIntVectorTy() && \"Expected integer instruction\""
, "llvm/lib/Analysis/ValueTracking.cpp", 7029, __extension__ __PRETTY_FUNCTION__
))
;
7030
7031 if (Depth == MaxAnalysisRecursionDepth)
7032 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
7033
7034 const APInt *C;
7035 if (match(V, m_APInt(C)))
7036 return ConstantRange(*C);
7037
7038 InstrInfoQuery IIQ(UseInstrInfo);
7039 unsigned BitWidth = V->getType()->getScalarSizeInBits();
7040 APInt Lower = APInt(BitWidth, 0);
7041 APInt Upper = APInt(BitWidth, 0);
7042 if (auto *BO = dyn_cast<BinaryOperator>(V))
7043 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
7044 else if (auto *II = dyn_cast<IntrinsicInst>(V))
7045 setLimitsForIntrinsic(*II, Lower, Upper);
7046 else if (auto *SI = dyn_cast<SelectInst>(V))
7047 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
7048 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
7049 setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
7050
7051 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
7052
7053 if (auto *I = dyn_cast<Instruction>(V))
7054 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
7055 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
7056
7057 if (CtxI && AC) {
7058 // Try to restrict the range based on information from assumptions.
7059 for (auto &AssumeVH : AC->assumptionsFor(V)) {
7060 if (!AssumeVH)
7061 continue;
7062 CallInst *I = cast<CallInst>(AssumeVH);
7063 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&(static_cast <bool> (I->getParent()->getParent() ==
CtxI->getParent()->getParent() && "Got assumption for the wrong function!"
) ? void (0) : __assert_fail ("I->getParent()->getParent() == CtxI->getParent()->getParent() && \"Got assumption for the wrong function!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 7064, __extension__ __PRETTY_FUNCTION__
))
7064 "Got assumption for the wrong function!")(static_cast <bool> (I->getParent()->getParent() ==
CtxI->getParent()->getParent() && "Got assumption for the wrong function!"
) ? void (0) : __assert_fail ("I->getParent()->getParent() == CtxI->getParent()->getParent() && \"Got assumption for the wrong function!\""
, "llvm/lib/Analysis/ValueTracking.cpp", 7064, __extension__ __PRETTY_FUNCTION__
))
;
7065 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&(static_cast <bool> (I->getCalledFunction()->getIntrinsicID
() == Intrinsic::assume && "must be an assume intrinsic"
) ? void (0) : __assert_fail ("I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && \"must be an assume intrinsic\""
, "llvm/lib/Analysis/ValueTracking.cpp", 7066, __extension__ __PRETTY_FUNCTION__
))
7066 "must be an assume intrinsic")(static_cast <bool> (I->getCalledFunction()->getIntrinsicID
() == Intrinsic::assume && "must be an assume intrinsic"
) ? void (0) : __assert_fail ("I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && \"must be an assume intrinsic\""
, "llvm/lib/Analysis/ValueTracking.cpp", 7066, __extension__ __PRETTY_FUNCTION__
))
;
7067
7068 if (!isValidAssumeForContext(I, CtxI, DT))
7069 continue;
7070 Value *Arg = I->getArgOperand(0);
7071 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
7072 // Currently we just use information from comparisons.
7073 if (!Cmp || Cmp->getOperand(0) != V)
7074 continue;
7075 // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
7076 ConstantRange RHS =
7077 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
7078 UseInstrInfo, AC, I, DT, Depth + 1);
7079 CR = CR.intersectWith(
7080 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
7081 }
7082 }
7083
7084 return CR;
7085}
7086
7087static Optional<int64_t>
7088getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
7089 // Skip over the first indices.
7090 gep_type_iterator GTI = gep_type_begin(GEP);
7091 for (unsigned i = 1; i != Idx; ++i, ++GTI)
7092 /*skip along*/;
7093
7094 // Compute the offset implied by the rest of the indices.
7095 int64_t Offset = 0;
7096 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7097 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7098 if (!OpC)
7099 return None;
7100 if (OpC->isZero())
7101 continue; // No offset.
7102
7103 // Handle struct indices, which add their field offset to the pointer.
7104 if (StructType *STy = GTI.getStructTypeOrNull()) {
7105 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7106 continue;
7107 }
7108
7109 // Otherwise, we have a sequential type like an array or fixed-length
7110 // vector. Multiply the index by the ElementSize.
7111 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7112 if (Size.isScalable())
7113 return None;
7114 Offset += Size.getFixedSize() * OpC->getSExtValue();
7115 }
7116
7117 return Offset;
7118}
7119
7120Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
7121 const DataLayout &DL) {
7122 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
7123 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
7124 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
7125 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
7126
7127 // Handle the trivial case first.
7128 if (Ptr1 == Ptr2)
7129 return Offset2.getSExtValue() - Offset1.getSExtValue();
7130
7131 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7132 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7133
7134 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7135 // base. After that base, they may have some number of common (and
7136 // potentially variable) indices. After that they handle some constant
7137 // offset, which determines their offset from each other. At this point, we
7138 // handle no other case.
7139 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
7140 GEP1->getSourceElementType() != GEP2->getSourceElementType())
7141 return None;
7142
7143 // Skip any common indices and track the GEP types.
7144 unsigned Idx = 1;
7145 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7146 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7147 break;
7148
7149 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
7150 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
7151 if (!IOffset1 || !IOffset2)
7152 return None;
7153 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
7154 Offset1.getSExtValue();
7155}