Bug Summary

File:llvm/lib/IR/Verifier.cpp
Warning:line 2398, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Verifier.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fdenormal-fp-math=ieee,ieee -fdenormal-fp-math-f32=ieee,ieee -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/build-llvm/lib/IR -I /build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR -I /build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/build-llvm/lib/IR -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-02-004040-312-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// sanity checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15// * Both of a binary operator's parameters are of the same type
16// * Verify that the indices of mem access instructions match other operands
17// * Verify that arithmetic and other things are only performed on first-class
18// types. Verify that shifts & logicals only happen on integrals f.e.
19// * All of the constants in a switch statement are of the correct type
20// * The code is in valid SSA form
21// * It should be illegal to put a label into any other type (like a structure)
22// or to return one. [except constant arrays!]
23// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24// * PHI nodes must have an entry for each predecessor, with no extras.
25// * PHI nodes must be the first thing in a basic block, all grouped together
26// * PHI nodes must have at least one entry
27// * All basic blocks should only end with terminator insts, not contain them
28// * The entry node to a function must not have predecessors
29// * All Instructions must be embedded into a basic block
30// * Functions cannot take a void-typed parameter
31// * Verify that a function's argument list agrees with it's declared type.
32// * It is illegal to specify a name for a void value.
33// * It is illegal to have a internal global value with no initializer
34// * It is illegal to have a ret instruction that returns a value that does not
35// agree with the function return value type.
36// * Function call argument types match the function prototype
37// * A landing pad is defined by a landingpad instruction, and can be jumped to
38// only by the unwind edge of an invoke instruction.
39// * A landingpad instruction must be the first non-PHI instruction in the
40// block.
41// * Landingpad instructions must be in a function with a personality function.
42// * All other things that are tested by asserts spread about the code...
43//
44//===----------------------------------------------------------------------===//
45
46#include "llvm/IR/Verifier.h"
47#include "llvm/ADT/APFloat.h"
48#include "llvm/ADT/APInt.h"
49#include "llvm/ADT/ArrayRef.h"
50#include "llvm/ADT/DenseMap.h"
51#include "llvm/ADT/MapVector.h"
52#include "llvm/ADT/Optional.h"
53#include "llvm/ADT/STLExtras.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/ADT/StringMap.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/Twine.h"
61#include "llvm/ADT/ilist.h"
62#include "llvm/BinaryFormat/Dwarf.h"
63#include "llvm/IR/Argument.h"
64#include "llvm/IR/Attributes.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/CFG.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/Function.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalValue.h"
81#include "llvm/IR/GlobalVariable.h"
82#include "llvm/IR/InlineAsm.h"
83#include "llvm/IR/InstVisitor.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/IntrinsicInst.h"
88#include "llvm/IR/Intrinsics.h"
89#include "llvm/IR/IntrinsicsWebAssembly.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/InitializePasses.h"
101#include "llvm/Pass.h"
102#include "llvm/Support/AtomicOrdering.h"
103#include "llvm/Support/Casting.h"
104#include "llvm/Support/CommandLine.h"
105#include "llvm/Support/Debug.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118namespace llvm {
119
120struct VerifierSupport {
121 raw_ostream *OS;
122 const Module &M;
123 ModuleSlotTracker MST;
124 Triple TT;
125 const DataLayout &DL;
126 LLVMContext &Context;
127
128 /// Track the brokenness of the module while recursively visiting.
129 bool Broken = false;
130 /// Broken debug info can be "recovered" from by stripping the debug info.
131 bool BrokenDebugInfo = false;
132 /// Whether to treat broken debug info as an error.
133 bool TreatBrokenDebugInfoAsError = true;
134
135 explicit VerifierSupport(raw_ostream *OS, const Module &M)
136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
137 Context(M.getContext()) {}
138
139private:
140 void Write(const Module *M) {
141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142 }
143
144 void Write(const Value *V) {
145 if (V)
146 Write(*V);
147 }
148
149 void Write(const Value &V) {
150 if (isa<Instruction>(V)) {
151 V.print(*OS, MST);
152 *OS << '\n';
153 } else {
154 V.printAsOperand(*OS, true, MST);
155 *OS << '\n';
156 }
157 }
158
159 void Write(const Metadata *MD) {
160 if (!MD)
161 return;
162 MD->print(*OS, MST, &M);
163 *OS << '\n';
164 }
165
166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
167 Write(MD.get());
168 }
169
170 void Write(const NamedMDNode *NMD) {
171 if (!NMD)
172 return;
173 NMD->print(*OS, MST);
174 *OS << '\n';
175 }
176
177 void Write(Type *T) {
178 if (!T)
179 return;
180 *OS << ' ' << *T;
181 }
182
183 void Write(const Comdat *C) {
184 if (!C)
185 return;
186 *OS << *C;
187 }
188
189 void Write(const APInt *AI) {
190 if (!AI)
191 return;
192 *OS << *AI << '\n';
193 }
194
195 void Write(const unsigned i) { *OS << i << '\n'; }
196
197 template <typename T> void Write(ArrayRef<T> Vs) {
198 for (const T &V : Vs)
199 Write(V);
200 }
201
202 template <typename T1, typename... Ts>
203 void WriteTs(const T1 &V1, const Ts &... Vs) {
204 Write(V1);
205 WriteTs(Vs...);
206 }
207
208 template <typename... Ts> void WriteTs() {}
209
210public:
211 /// A check failed, so printout out the condition and the message.
212 ///
213 /// This provides a nice place to put a breakpoint if you want to see why
214 /// something is not correct.
215 void CheckFailed(const Twine &Message) {
216 if (OS)
217 *OS << Message << '\n';
218 Broken = true;
219 }
220
221 /// A check failed (with values to print).
222 ///
223 /// This calls the Message-only version so that the above is easier to set a
224 /// breakpoint on.
225 template <typename T1, typename... Ts>
226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
227 CheckFailed(Message);
228 if (OS)
229 WriteTs(V1, Vs...);
230 }
231
232 /// A debug info check failed.
233 void DebugInfoCheckFailed(const Twine &Message) {
234 if (OS)
235 *OS << Message << '\n';
236 Broken |= TreatBrokenDebugInfoAsError;
237 BrokenDebugInfo = true;
238 }
239
240 /// A debug info check failed (with values to print).
241 template <typename T1, typename... Ts>
242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
243 const Ts &... Vs) {
244 DebugInfoCheckFailed(Message);
245 if (OS)
246 WriteTs(V1, Vs...);
247 }
248};
249
250} // namespace llvm
251
252namespace {
253
254class Verifier : public InstVisitor<Verifier>, VerifierSupport {
255 friend class InstVisitor<Verifier>;
256
257 DominatorTree DT;
258
259 /// When verifying a basic block, keep track of all of the
260 /// instructions we have seen so far.
261 ///
262 /// This allows us to do efficient dominance checks for the case when an
263 /// instruction has an operand that is an instruction in the same block.
264 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
265
266 /// Keep track of the metadata nodes that have been checked already.
267 SmallPtrSet<const Metadata *, 32> MDNodes;
268
269 /// Keep track which DISubprogram is attached to which function.
270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
271
272 /// Track all DICompileUnits visited.
273 SmallPtrSet<const Metadata *, 2> CUVisited;
274
275 /// The result type for a landingpad.
276 Type *LandingPadResultTy;
277
278 /// Whether we've seen a call to @llvm.localescape in this function
279 /// already.
280 bool SawFrameEscape;
281
282 /// Whether the current function has a DISubprogram attached to it.
283 bool HasDebugInfo = false;
284
285 /// Whether source was present on the first DIFile encountered in each CU.
286 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
287
288 /// Stores the count of how many objects were passed to llvm.localescape for a
289 /// given function and the largest index passed to llvm.localrecover.
290 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
291
292 // Maps catchswitches and cleanuppads that unwind to siblings to the
293 // terminators that indicate the unwind, used to detect cycles therein.
294 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
295
296 /// Cache of constants visited in search of ConstantExprs.
297 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
298
299 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
300 SmallVector<const Function *, 4> DeoptimizeDeclarations;
301
302 // Verify that this GlobalValue is only used in this module.
303 // This map is used to avoid visiting uses twice. We can arrive at a user
304 // twice, if they have multiple operands. In particular for very large
305 // constant expressions, we can arrive at a particular user many times.
306 SmallPtrSet<const Value *, 32> GlobalValueVisited;
307
308 // Keeps track of duplicate function argument debug info.
309 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
310
311 TBAAVerifier TBAAVerifyHelper;
312
313 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
314
315public:
316 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
317 const Module &M)
318 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
319 SawFrameEscape(false), TBAAVerifyHelper(this) {
320 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
321 }
322
323 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
324
325 bool verify(const Function &F) {
326 assert(F.getParent() == &M &&((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 327, __PRETTY_FUNCTION__))
327 "An instance of this class only works with a specific module!")((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 327, __PRETTY_FUNCTION__))
;
328
329 // First ensure the function is well-enough formed to compute dominance
330 // information, and directly compute a dominance tree. We don't rely on the
331 // pass manager to provide this as it isolates us from a potentially
332 // out-of-date dominator tree and makes it significantly more complex to run
333 // this code outside of a pass manager.
334 // FIXME: It's really gross that we have to cast away constness here.
335 if (!F.empty())
336 DT.recalculate(const_cast<Function &>(F));
337
338 for (const BasicBlock &BB : F) {
339 if (!BB.empty() && BB.back().isTerminator())
340 continue;
341
342 if (OS) {
343 *OS << "Basic Block in function '" << F.getName()
344 << "' does not have terminator!\n";
345 BB.printAsOperand(*OS, true, MST);
346 *OS << "\n";
347 }
348 return false;
349 }
350
351 Broken = false;
352 // FIXME: We strip const here because the inst visitor strips const.
353 visit(const_cast<Function &>(F));
354 verifySiblingFuncletUnwinds();
355 InstsInThisBlock.clear();
356 DebugFnArgs.clear();
357 LandingPadResultTy = nullptr;
358 SawFrameEscape = false;
359 SiblingFuncletInfo.clear();
360
361 return !Broken;
362 }
363
364 /// Verify the module that this instance of \c Verifier was initialized with.
365 bool verify() {
366 Broken = false;
367
368 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
369 for (const Function &F : M)
370 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
371 DeoptimizeDeclarations.push_back(&F);
372
373 // Now that we've visited every function, verify that we never asked to
374 // recover a frame index that wasn't escaped.
375 verifyFrameRecoverIndices();
376 for (const GlobalVariable &GV : M.globals())
377 visitGlobalVariable(GV);
378
379 for (const GlobalAlias &GA : M.aliases())
380 visitGlobalAlias(GA);
381
382 for (const NamedMDNode &NMD : M.named_metadata())
383 visitNamedMDNode(NMD);
384
385 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
386 visitComdat(SMEC.getValue());
387
388 visitModuleFlags(M);
389 visitModuleIdents(M);
390 visitModuleCommandLines(M);
391
392 verifyCompileUnits();
393
394 verifyDeoptimizeCallingConvs();
395 DISubprogramAttachments.clear();
396 return !Broken;
397 }
398
399private:
400 // Verification methods...
401 void visitGlobalValue(const GlobalValue &GV);
402 void visitGlobalVariable(const GlobalVariable &GV);
403 void visitGlobalAlias(const GlobalAlias &GA);
404 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
405 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
406 const GlobalAlias &A, const Constant &C);
407 void visitNamedMDNode(const NamedMDNode &NMD);
408 void visitMDNode(const MDNode &MD);
409 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
410 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
411 void visitComdat(const Comdat &C);
412 void visitModuleIdents(const Module &M);
413 void visitModuleCommandLines(const Module &M);
414 void visitModuleFlags(const Module &M);
415 void visitModuleFlag(const MDNode *Op,
416 DenseMap<const MDString *, const MDNode *> &SeenIDs,
417 SmallVectorImpl<const MDNode *> &Requirements);
418 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
419 void visitFunction(const Function &F);
420 void visitBasicBlock(BasicBlock &BB);
421 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
422 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
423 void visitProfMetadata(Instruction &I, MDNode *MD);
424
425 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
426#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
427#include "llvm/IR/Metadata.def"
428 void visitDIScope(const DIScope &N);
429 void visitDIVariable(const DIVariable &N);
430 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
431 void visitDITemplateParameter(const DITemplateParameter &N);
432
433 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
434
435 // InstVisitor overrides...
436 using InstVisitor<Verifier>::visit;
437 void visit(Instruction &I);
438
439 void visitTruncInst(TruncInst &I);
440 void visitZExtInst(ZExtInst &I);
441 void visitSExtInst(SExtInst &I);
442 void visitFPTruncInst(FPTruncInst &I);
443 void visitFPExtInst(FPExtInst &I);
444 void visitFPToUIInst(FPToUIInst &I);
445 void visitFPToSIInst(FPToSIInst &I);
446 void visitUIToFPInst(UIToFPInst &I);
447 void visitSIToFPInst(SIToFPInst &I);
448 void visitIntToPtrInst(IntToPtrInst &I);
449 void visitPtrToIntInst(PtrToIntInst &I);
450 void visitBitCastInst(BitCastInst &I);
451 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
452 void visitPHINode(PHINode &PN);
453 void visitCallBase(CallBase &Call);
454 void visitUnaryOperator(UnaryOperator &U);
455 void visitBinaryOperator(BinaryOperator &B);
456 void visitICmpInst(ICmpInst &IC);
457 void visitFCmpInst(FCmpInst &FC);
458 void visitExtractElementInst(ExtractElementInst &EI);
459 void visitInsertElementInst(InsertElementInst &EI);
460 void visitShuffleVectorInst(ShuffleVectorInst &EI);
461 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
462 void visitCallInst(CallInst &CI);
463 void visitInvokeInst(InvokeInst &II);
464 void visitGetElementPtrInst(GetElementPtrInst &GEP);
465 void visitLoadInst(LoadInst &LI);
466 void visitStoreInst(StoreInst &SI);
467 void verifyDominatesUse(Instruction &I, unsigned i);
468 void visitInstruction(Instruction &I);
469 void visitTerminator(Instruction &I);
470 void visitBranchInst(BranchInst &BI);
471 void visitReturnInst(ReturnInst &RI);
472 void visitSwitchInst(SwitchInst &SI);
473 void visitIndirectBrInst(IndirectBrInst &BI);
474 void visitCallBrInst(CallBrInst &CBI);
475 void visitSelectInst(SelectInst &SI);
476 void visitUserOp1(Instruction &I);
477 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
478 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
479 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
480 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
481 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
482 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
483 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
484 void visitFenceInst(FenceInst &FI);
485 void visitAllocaInst(AllocaInst &AI);
486 void visitExtractValueInst(ExtractValueInst &EVI);
487 void visitInsertValueInst(InsertValueInst &IVI);
488 void visitEHPadPredecessors(Instruction &I);
489 void visitLandingPadInst(LandingPadInst &LPI);
490 void visitResumeInst(ResumeInst &RI);
491 void visitCatchPadInst(CatchPadInst &CPI);
492 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
493 void visitCleanupPadInst(CleanupPadInst &CPI);
494 void visitFuncletPadInst(FuncletPadInst &FPI);
495 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
496 void visitCleanupReturnInst(CleanupReturnInst &CRI);
497
498 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
499 void verifySwiftErrorValue(const Value *SwiftErrorVal);
500 void verifyMustTailCall(CallInst &CI);
501 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
502 unsigned ArgNo, std::string &Suffix);
503 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
504 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
505 const Value *V);
506 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
507 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
508 const Value *V, bool IsIntrinsic);
509 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
510
511 void visitConstantExprsRecursively(const Constant *EntryC);
512 void visitConstantExpr(const ConstantExpr *CE);
513 void verifyStatepoint(const CallBase &Call);
514 void verifyFrameRecoverIndices();
515 void verifySiblingFuncletUnwinds();
516
517 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
518 template <typename ValueOrMetadata>
519 void verifyFragmentExpression(const DIVariable &V,
520 DIExpression::FragmentInfo Fragment,
521 ValueOrMetadata *Desc);
522 void verifyFnArgs(const DbgVariableIntrinsic &I);
523 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
524
525 /// Module-level debug info verification...
526 void verifyCompileUnits();
527
528 /// Module-level verification that all @llvm.experimental.deoptimize
529 /// declarations share the same calling convention.
530 void verifyDeoptimizeCallingConvs();
531
532 /// Verify all-or-nothing property of DIFile source attribute within a CU.
533 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
534};
535
536} // end anonymous namespace
537
538/// We know that cond should be true, if not print an error message.
539#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
540 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
541
542/// We know that a debug info condition should be true, if not print
543/// an error message.
544#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
545 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
546
547void Verifier::visit(Instruction &I) {
548 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
549 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
550 InstVisitor<Verifier>::visit(I);
551}
552
553// Helper to recursively iterate over indirect users. By
554// returning false, the callback can ask to stop recursing
555// further.
556static void forEachUser(const Value *User,
557 SmallPtrSet<const Value *, 32> &Visited,
558 llvm::function_ref<bool(const Value *)> Callback) {
559 if (!Visited.insert(User).second)
560 return;
561 for (const Value *TheNextUser : User->materialized_users())
562 if (Callback(TheNextUser))
563 forEachUser(TheNextUser, Visited, Callback);
564}
565
566void Verifier::visitGlobalValue(const GlobalValue &GV) {
567 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
568 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
569
570 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
571 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
572 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
573 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
574
575 if (GV.hasAppendingLinkage()) {
576 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
577 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
578 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
579 }
580
581 if (GV.isDeclarationForLinker())
582 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
583
584 if (GV.hasDLLImportStorageClass()) {
585 Assert(!GV.isDSOLocal(),do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
586 "GlobalValue with DLLImport Storage is dso_local!", &GV)do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
;
587
588 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!((GV.isDeclaration() && GV.hasExternalLinkage
()) || GV.hasAvailableExternallyLinkage())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
589 GV.hasAvailableExternallyLinkage(),do { if (!((GV.isDeclaration() && GV.hasExternalLinkage
()) || GV.hasAvailableExternallyLinkage())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
590 "Global is marked as dllimport, but not external", &GV)do { if (!((GV.isDeclaration() && GV.hasExternalLinkage
()) || GV.hasAvailableExternallyLinkage())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
591 }
592
593 if (GV.isImplicitDSOLocal())
594 Assert(GV.isDSOLocal(),do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
595 "GlobalValue with local linkage or non-default "do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
596 "visibility must be dso_local!",do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
597 &GV)do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
;
598
599 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
600 if (const Instruction *I = dyn_cast<Instruction>(V)) {
601 if (!I->getParent() || !I->getParent()->getParent())
602 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
603 I);
604 else if (I->getParent()->getParent()->getParent() != &M)
605 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
606 I->getParent()->getParent(),
607 I->getParent()->getParent()->getParent());
608 return false;
609 } else if (const Function *F = dyn_cast<Function>(V)) {
610 if (F->getParent() != &M)
611 CheckFailed("Global is used by function in a different module", &GV, &M,
612 F, F->getParent());
613 return false;
614 }
615 return true;
616 });
617}
618
619void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
620 if (GV.hasInitializer()) {
621 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
622 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
623 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
624 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
625 // If the global has common linkage, it must have a zero initializer and
626 // cannot be constant.
627 if (GV.hasCommonLinkage()) {
628 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
629 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
630 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
631 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
632 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
633 }
634 }
635
636 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
637 GV.getName() == "llvm.global_dtors")) {
638 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
639 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
640 // Don't worry about emitting an error for it not being an array,
641 // visitGlobalValue will complain on appending non-array.
642 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
643 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
644 PointerType *FuncPtrTy =
645 FunctionType::get(Type::getVoidTy(Context), false)->
646 getPointerTo(DL.getProgramAddressSpace());
647 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
648 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
649 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
650 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
651 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
652 Assert(STy->getNumElements() == 3,do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
653 "the third field of the element type is mandatory, "do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
654 "specify i8* null to migrate from the obsoleted 2-field form")do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
;
655 Type *ETy = STy->getTypeAtIndex(2);
656 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
657 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
658 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
659 }
660 }
661
662 if (GV.hasName() && (GV.getName() == "llvm.used" ||
663 GV.getName() == "llvm.compiler.used")) {
664 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
665 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
666 Type *GVType = GV.getValueType();
667 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
668 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
669 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
670 if (GV.hasInitializer()) {
671 const Constant *Init = GV.getInitializer();
672 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
673 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
674 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
675 for (Value *Op : InitArray->operands()) {
676 Value *V = Op->stripPointerCasts();
677 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
678 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
679 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
680 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
681 }
682 }
683 }
684 }
685
686 // Visit any debug info attachments.
687 SmallVector<MDNode *, 1> MDs;
688 GV.getMetadata(LLVMContext::MD_dbg, MDs);
689 for (auto *MD : MDs) {
690 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
691 visitDIGlobalVariableExpression(*GVE);
692 else
693 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
694 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
695 }
696
697 // Scalable vectors cannot be global variables, since we don't know
698 // the runtime size. If the global is a struct or an array containing
699 // scalable vectors, that will be caught by the isValidElementType methods
700 // in StructType or ArrayType instead.
701 if (auto *VTy = dyn_cast<VectorType>(GV.getValueType()))
702 Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV)do { if (!(!VTy->isScalable())) { CheckFailed("Globals cannot contain scalable vectors"
, &GV); return; } } while (false)
;
703
704 if (!GV.hasInitializer()) {
705 visitGlobalValue(GV);
706 return;
707 }
708
709 // Walk any aggregate initializers looking for bitcasts between address spaces
710 visitConstantExprsRecursively(GV.getInitializer());
711
712 visitGlobalValue(GV);
713}
714
715void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
716 SmallPtrSet<const GlobalAlias*, 4> Visited;
717 Visited.insert(&GA);
718 visitAliaseeSubExpr(Visited, GA, C);
719}
720
721void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
722 const GlobalAlias &GA, const Constant &C) {
723 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
724 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
725 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
726
727 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
728 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
729
730 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
731 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
732 } else {
733 // Only continue verifying subexpressions of GlobalAliases.
734 // Do not recurse into global initializers.
735 return;
736 }
737 }
738
739 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
740 visitConstantExprsRecursively(CE);
741
742 for (const Use &U : C.operands()) {
743 Value *V = &*U;
744 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
745 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
746 else if (const auto *C2 = dyn_cast<Constant>(V))
747 visitAliaseeSubExpr(Visited, GA, *C2);
748 }
749}
750
751void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
752 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
753 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
754 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
755 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
756 const Constant *Aliasee = GA.getAliasee();
757 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
758 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
759 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
760
761 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
762 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
763
764 visitAliaseeSubExpr(GA, *Aliasee);
765
766 visitGlobalValue(GA);
767}
768
769void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
770 // There used to be various other llvm.dbg.* nodes, but we don't support
771 // upgrading them and we want to reserve the namespace for future uses.
772 if (NMD.getName().startswith("llvm.dbg."))
773 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
774 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
775 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
776 for (const MDNode *MD : NMD.operands()) {
777 if (NMD.getName() == "llvm.dbg.cu")
778 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
779
780 if (!MD)
781 continue;
782
783 visitMDNode(*MD);
784 }
785}
786
787void Verifier::visitMDNode(const MDNode &MD) {
788 // Only visit each node once. Metadata can be mutually recursive, so this
789 // avoids infinite recursion here, as well as being an optimization.
790 if (!MDNodes.insert(&MD).second)
791 return;
792
793 switch (MD.getMetadataID()) {
794 default:
795 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 795)
;
796 case Metadata::MDTupleKind:
797 break;
798#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
799 case Metadata::CLASS##Kind: \
800 visit##CLASS(cast<CLASS>(MD)); \
801 break;
802#include "llvm/IR/Metadata.def"
803 }
804
805 for (const Metadata *Op : MD.operands()) {
806 if (!Op)
807 continue;
808 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
809 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
810 if (auto *N = dyn_cast<MDNode>(Op)) {
811 visitMDNode(*N);
812 continue;
813 }
814 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
815 visitValueAsMetadata(*V, nullptr);
816 continue;
817 }
818 }
819
820 // Check these last, so we diagnose problems in operands first.
821 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
822 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
823}
824
825void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
826 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
827 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
828 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
829
830 auto *L = dyn_cast<LocalAsMetadata>(&MD);
831 if (!L)
832 return;
833
834 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
835
836 // If this was an instruction, bb, or argument, verify that it is in the
837 // function that we expect.
838 Function *ActualF = nullptr;
839 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
840 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
841 ActualF = I->getParent()->getParent();
842 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
843 ActualF = BB->getParent();
844 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
845 ActualF = A->getParent();
846 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 846, __PRETTY_FUNCTION__))
;
847
848 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
849}
850
851void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
852 Metadata *MD = MDV.getMetadata();
853 if (auto *N = dyn_cast<MDNode>(MD)) {
854 visitMDNode(*N);
855 return;
856 }
857
858 // Only visit each node once. Metadata can be mutually recursive, so this
859 // avoids infinite recursion here, as well as being an optimization.
860 if (!MDNodes.insert(MD).second)
861 return;
862
863 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
864 visitValueAsMetadata(*V, F);
865}
866
867static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
868static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
869static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
870
871void Verifier::visitDILocation(const DILocation &N) {
872 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
873 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
874 if (auto *IA = N.getRawInlinedAt())
875 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
876 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
877 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
878}
879
880void Verifier::visitGenericDINode(const GenericDINode &N) {
881 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
882}
883
884void Verifier::visitDIScope(const DIScope &N) {
885 if (auto *F = N.getRawFile())
886 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
887}
888
889void Verifier::visitDISubrange(const DISubrange &N) {
890 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
891 auto Count = N.getCount();
892 AssertDI(Count, "Count must either be a signed constant or a DIVariable",do { if (!(Count)) { DebugInfoCheckFailed("Count must either be a signed constant or a DIVariable"
, &N); return; } } while (false)
893 &N)do { if (!(Count)) { DebugInfoCheckFailed("Count must either be a signed constant or a DIVariable"
, &N); return; } } while (false)
;
894 AssertDI(!Count.is<ConstantInt*>() ||do { if (!(!Count.is<ConstantInt*>() || Count.get<ConstantInt
*>()->getSExtValue() >= -1)) { DebugInfoCheckFailed(
"invalid subrange count", &N); return; } } while (false)
895 Count.get<ConstantInt*>()->getSExtValue() >= -1,do { if (!(!Count.is<ConstantInt*>() || Count.get<ConstantInt
*>()->getSExtValue() >= -1)) { DebugInfoCheckFailed(
"invalid subrange count", &N); return; } } while (false)
896 "invalid subrange count", &N)do { if (!(!Count.is<ConstantInt*>() || Count.get<ConstantInt
*>()->getSExtValue() >= -1)) { DebugInfoCheckFailed(
"invalid subrange count", &N); return; } } while (false)
;
897}
898
899void Verifier::visitDIEnumerator(const DIEnumerator &N) {
900 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
901}
902
903void Verifier::visitDIBasicType(const DIBasicType &N) {
904 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
905 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
906 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
907 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,do { if (!(!(N.isBigEndian() && N.isLittleEndian())))
{ DebugInfoCheckFailed("has conflicting flags", &N); return
; } } while (false)
908 "has conflicting flags", &N)do { if (!(!(N.isBigEndian() && N.isLittleEndian())))
{ DebugInfoCheckFailed("has conflicting flags", &N); return
; } } while (false)
;
909}
910
911void Verifier::visitDIDerivedType(const DIDerivedType &N) {
912 // Common scope checks.
913 visitDIScope(N);
914
915 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
916 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
917 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
918 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
919 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
920 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
921 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
922 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
923 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
924 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
925 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
926 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
927 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
928 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
929 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
930 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
931 }
932
933 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
934 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
935 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
936
937 if (N.getDWARFAddressSpace()) {
938 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
939 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
940 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
941 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
942 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
943 }
944}
945
946/// Detect mutually exclusive flags.
947static bool hasConflictingReferenceFlags(unsigned Flags) {
948 return ((Flags & DINode::FlagLValueReference) &&
949 (Flags & DINode::FlagRValueReference)) ||
950 ((Flags & DINode::FlagTypePassByValue) &&
951 (Flags & DINode::FlagTypePassByReference));
952}
953
954void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
955 auto *Params = dyn_cast<MDTuple>(&RawParams);
956 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
957 for (Metadata *Op : Params->operands()) {
958 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
959 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
960 }
961}
962
963void Verifier::visitDICompositeType(const DICompositeType &N) {
964 // Common scope checks.
965 visitDIScope(N);
966
967 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
968 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
969 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
970 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
971 N.getTag() == dwarf::DW_TAG_class_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
972 N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
973 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
974
975 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
976 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
977 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
978
979 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
980 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
981 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
982 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
983 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
984 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
985 unsigned DIBlockByRefStruct = 1 << 4;
986 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,do { if (!((N.getFlags() & DIBlockByRefStruct) == 0)) { DebugInfoCheckFailed
("DIBlockByRefStruct on DICompositeType is no longer supported"
, &N); return; } } while (false)
987 "DIBlockByRefStruct on DICompositeType is no longer supported", &N)do { if (!((N.getFlags() & DIBlockByRefStruct) == 0)) { DebugInfoCheckFailed
("DIBlockByRefStruct on DICompositeType is no longer supported"
, &N); return; } } while (false)
;
988
989 if (N.isVector()) {
990 const DINodeArray Elements = N.getElements();
991 AssertDI(Elements.size() == 1 &&do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
992 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
993 "invalid vector, expected one element of type subrange", &N)do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
;
994 }
995
996 if (auto *Params = N.getRawTemplateParams())
997 visitTemplateParams(N, *Params);
998
999 if (N.getTag() == dwarf::DW_TAG_class_type ||
1000 N.getTag() == dwarf::DW_TAG_union_type) {
1001 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
1002 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
1003 }
1004
1005 if (auto *D = N.getRawDiscriminator()) {
1006 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
1007 "discriminator can only appear on variant part")do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
;
1008 }
1009}
1010
1011void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1012 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1013 if (auto *Types = N.getRawTypeArray()) {
1014 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
1015 for (Metadata *Ty : N.getTypeArray()->operands()) {
1016 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
1017 }
1018 }
1019 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1020 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1021}
1022
1023void Verifier::visitDIFile(const DIFile &N) {
1024 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1025 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1026 if (Checksum) {
1027 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
1028 "invalid checksum kind", &N)do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
;
1029 size_t Size;
1030 switch (Checksum->Kind) {
1031 case DIFile::CSK_MD5:
1032 Size = 32;
1033 break;
1034 case DIFile::CSK_SHA1:
1035 Size = 40;
1036 break;
1037 }
1038 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N)do { if (!(Checksum->Value.size() == Size)) { DebugInfoCheckFailed
("invalid checksum length", &N); return; } } while (false
)
;
1039 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
1040 "invalid checksum", &N)do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
;
1041 }
1042}
1043
1044void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1045 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
1046 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1047
1048 // Don't bother verifying the compilation directory or producer string
1049 // as those could be empty.
1050 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
1051 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
1052 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
1053 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
1054
1055 verifySourceDebugInfo(N, *N.getFile());
1056
1057 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
1058 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
1059
1060 if (auto *Array = N.getRawEnumTypes()) {
1061 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
1062 for (Metadata *Op : N.getEnumTypes()->operands()) {
1063 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1064 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
1065 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
1066 }
1067 }
1068 if (auto *Array = N.getRawRetainedTypes()) {
1069 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
1070 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1071 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1072 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1073 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1074 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1075 }
1076 }
1077 if (auto *Array = N.getRawGlobalVariables()) {
1078 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1079 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1080 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1081 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1082 }
1083 }
1084 if (auto *Array = N.getRawImportedEntities()) {
1085 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1086 for (Metadata *Op : N.getImportedEntities()->operands()) {
1087 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1088 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1089 }
1090 }
1091 if (auto *Array = N.getRawMacros()) {
1092 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1093 for (Metadata *Op : N.getMacros()->operands()) {
1094 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1095 }
1096 }
1097 CUVisited.insert(&N);
1098}
1099
1100void Verifier::visitDISubprogram(const DISubprogram &N) {
1101 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1102 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1103 if (auto *F = N.getRawFile())
1104 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1105 else
1106 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1107 if (auto *T = N.getRawType())
1108 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1109 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1110 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1111 if (auto *Params = N.getRawTemplateParams())
1112 visitTemplateParams(N, *Params);
1113 if (auto *S = N.getRawDeclaration())
1114 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1115 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1116 if (auto *RawNode = N.getRawRetainedNodes()) {
1117 auto *Node = dyn_cast<MDTuple>(RawNode);
1118 AssertDI(Node, "invalid retained nodes list", &N, RawNode)do { if (!(Node)) { DebugInfoCheckFailed("invalid retained nodes list"
, &N, RawNode); return; } } while (false)
;
1119 for (Metadata *Op : Node->operands()) {
1120 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1121 "invalid retained nodes, expected DILocalVariable or DILabel",do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1122 &N, Node, Op)do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
;
1123 }
1124 }
1125 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1126 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1127
1128 auto *Unit = N.getRawUnit();
1129 if (N.isDefinition()) {
1130 // Subprogram definitions (not part of the type hierarchy).
1131 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1132 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1133 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1134 if (N.getFile())
1135 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1136 } else {
1137 // Subprogram declarations (part of the type hierarchy).
1138 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1139 }
1140
1141 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1142 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1143 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list"
, &N, RawThrownTypes); return; } } while (false)
;
1144 for (Metadata *Op : ThrownTypes->operands())
1145 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
1146 Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
;
1147 }
1148
1149 if (N.areAllCallsDescribed())
1150 AssertDI(N.isDefinition(),do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition"
); return; } } while (false)
1151 "DIFlagAllCallsDescribed must be attached to a definition")do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition"
); return; } } while (false)
;
1152}
1153
1154void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1155 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1156 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1157 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1158 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1159 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
1160}
1161
1162void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1163 visitDILexicalBlockBase(N);
1164
1165 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1166 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1167}
1168
1169void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1170 visitDILexicalBlockBase(N);
1171}
1172
1173void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1174 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_common_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1175 if (auto *S = N.getRawScope())
1176 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1177 if (auto *S = N.getRawDecl())
1178 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S)do { if (!(isa<DIGlobalVariable>(S))) { DebugInfoCheckFailed
("invalid declaration", &N, S); return; } } while (false)
;
1179}
1180
1181void Verifier::visitDINamespace(const DINamespace &N) {
1182 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1183 if (auto *S = N.getRawScope())
1184 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1185}
1186
1187void Verifier::visitDIMacro(const DIMacro &N) {
1188 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1189 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1190 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1191 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1192 if (!N.getValue().empty()) {
1193 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 1193, __PRETTY_FUNCTION__))
;
1194 }
1195}
1196
1197void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1198 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1199 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1200 if (auto *F = N.getRawFile())
1201 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1202
1203 if (auto *Array = N.getRawElements()) {
1204 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1205 for (Metadata *Op : N.getElements()->operands()) {
1206 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1207 }
1208 }
1209}
1210
1211void Verifier::visitDIModule(const DIModule &N) {
1212 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1213 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1214}
1215
1216void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1217 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1218}
1219
1220void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1221 visitDITemplateParameter(N);
1222
1223 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1224 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1225}
1226
1227void Verifier::visitDITemplateValueParameter(
1228 const DITemplateValueParameter &N) {
1229 visitDITemplateParameter(N);
1230
1231 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1232 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1233 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1234 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1235}
1236
1237void Verifier::visitDIVariable(const DIVariable &N) {
1238 if (auto *S = N.getRawScope())
1239 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1240 if (auto *F = N.getRawFile())
1241 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1242}
1243
1244void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1245 // Checks common to all variables.
1246 visitDIVariable(N);
1247
1248 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1249 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1250 AssertDI(N.getType(), "missing global variable type", &N)do { if (!(N.getType())) { DebugInfoCheckFailed("missing global variable type"
, &N); return; } } while (false)
;
1251 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1252 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1253 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1254 }
1255}
1256
1257void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1258 // Checks common to all variables.
1259 visitDIVariable(N);
1260
1261 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1262 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1263 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1264 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1265 if (auto Ty = N.getType())
1266 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType())do { if (!(!isa<DISubroutineType>(Ty))) { DebugInfoCheckFailed
("invalid type", &N, N.getType()); return; } } while (false
)
;
1267}
1268
1269void Verifier::visitDILabel(const DILabel &N) {
1270 if (auto *S = N.getRawScope())
1271 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1272 if (auto *F = N.getRawFile())
1273 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1274
1275 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_label)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1276 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1277 "label requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1278}
1279
1280void Verifier::visitDIExpression(const DIExpression &N) {
1281 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1282}
1283
1284void Verifier::visitDIGlobalVariableExpression(
1285 const DIGlobalVariableExpression &GVE) {
1286 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1287 if (auto *Var = GVE.getVariable())
1288 visitDIGlobalVariable(*Var);
1289 if (auto *Expr = GVE.getExpression()) {
1290 visitDIExpression(*Expr);
1291 if (auto Fragment = Expr->getFragmentInfo())
1292 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1293 }
1294}
1295
1296void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1297 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1298 if (auto *T = N.getRawType())
1299 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1300 if (auto *F = N.getRawFile())
1301 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1302}
1303
1304void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1305 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1306 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1307 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1308 if (auto *S = N.getRawScope())
1309 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1310 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1311 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1312}
1313
1314void Verifier::visitComdat(const Comdat &C) {
1315 // In COFF the Module is invalid if the GlobalValue has private linkage.
1316 // Entities with private linkage don't have entries in the symbol table.
1317 if (TT.isOSBinFormatCOFF())
1318 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1319 Assert(!GV->hasPrivateLinkage(),do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1320 "comdat global value has private linkage", GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1321}
1322
1323void Verifier::visitModuleIdents(const Module &M) {
1324 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1325 if (!Idents)
1326 return;
1327
1328 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1329 // Scan each llvm.ident entry and make sure that this requirement is met.
1330 for (const MDNode *N : Idents->operands()) {
1331 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1332 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1333 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1334 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1335 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1336 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1337 }
1338}
1339
1340void Verifier::visitModuleCommandLines(const Module &M) {
1341 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1342 if (!CommandLines)
1343 return;
1344
1345 // llvm.commandline takes a list of metadata entry. Each entry has only one
1346 // string. Scan each llvm.commandline entry and make sure that this
1347 // requirement is met.
1348 for (const MDNode *N : CommandLines->operands()) {
1349 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata"
, N); return; } } while (false)
1350 "incorrect number of operands in llvm.commandline metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata"
, N); return; } } while (false)
;
1351 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1352 ("invalid value for llvm.commandline metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1353 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1354 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1355 }
1356}
1357
1358void Verifier::visitModuleFlags(const Module &M) {
1359 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1360 if (!Flags) return;
1361
1362 // Scan each flag, and track the flags and requirements.
1363 DenseMap<const MDString*, const MDNode*> SeenIDs;
1364 SmallVector<const MDNode*, 16> Requirements;
1365 for (const MDNode *MDN : Flags->operands())
1366 visitModuleFlag(MDN, SeenIDs, Requirements);
1367
1368 // Validate that the requirements in the module are valid.
1369 for (const MDNode *Requirement : Requirements) {
1370 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1371 const Metadata *ReqValue = Requirement->getOperand(1);
1372
1373 const MDNode *Op = SeenIDs.lookup(Flag);
1374 if (!Op) {
1375 CheckFailed("invalid requirement on flag, flag is not present in module",
1376 Flag);
1377 continue;
1378 }
1379
1380 if (Op->getOperand(2) != ReqValue) {
1381 CheckFailed(("invalid requirement on flag, "
1382 "flag does not have the required value"),
1383 Flag);
1384 continue;
1385 }
1386 }
1387}
1388
1389void
1390Verifier::visitModuleFlag(const MDNode *Op,
1391 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1392 SmallVectorImpl<const MDNode *> &Requirements) {
1393 // Each module flag should have three arguments, the merge behavior (a
1394 // constant int), the flag ID (an MDString), and the value.
1395 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1396 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1397 Module::ModFlagBehavior MFB;
1398 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1399 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1400 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1401 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1402 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1403 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1404 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1405 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1406 }
1407 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1408 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1409 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1410
1411 // Sanity check the values for behaviors with additional requirements.
1412 switch (MFB) {
1413 case Module::Error:
1414 case Module::Warning:
1415 case Module::Override:
1416 // These behavior types accept any value.
1417 break;
1418
1419 case Module::Max: {
1420 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1421 "invalid value for 'max' module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1422 Op->getOperand(2))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
;
1423 break;
1424 }
1425
1426 case Module::Require: {
1427 // The value should itself be an MDNode with two operands, a flag ID (an
1428 // MDString), and a value.
1429 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1430 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1431 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1432 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1433 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1434 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1435 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1436 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1437
1438 // Append it to the list of requirements, to check once all module flags are
1439 // scanned.
1440 Requirements.push_back(Value);
1441 break;
1442 }
1443
1444 case Module::Append:
1445 case Module::AppendUnique: {
1446 // These behavior types require the operand be an MDNode.
1447 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1448 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1449 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1450 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1451 break;
1452 }
1453 }
1454
1455 // Unless this is a "requires" flag, check the ID is unique.
1456 if (MFB != Module::Require) {
1457 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1458 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1459 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1460 }
1461
1462 if (ID->getString() == "wchar_size") {
1463 ConstantInt *Value
1464 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1465 Assert(Value, "wchar_size metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("wchar_size metadata requires constant integer argument"
); return; } } while (false)
;
1466 }
1467
1468 if (ID->getString() == "Linker Options") {
1469 // If the llvm.linker.options named metadata exists, we assume that the
1470 // bitcode reader has upgraded the module flag. Otherwise the flag might
1471 // have been created by a client directly.
1472 Assert(M.getNamedMetadata("llvm.linker.options"),do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
1473 "'Linker Options' named metadata no longer supported")do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
;
1474 }
1475
1476 if (ID->getString() == "SemanticInterposition") {
1477 ConstantInt *Value =
1478 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1479 Assert(Value,do { if (!(Value)) { CheckFailed("SemanticInterposition metadata requires constant integer argument"
); return; } } while (false)
1480 "SemanticInterposition metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("SemanticInterposition metadata requires constant integer argument"
); return; } } while (false)
;
1481 }
1482
1483 if (ID->getString() == "CG Profile") {
1484 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1485 visitModuleFlagCGProfileEntry(MDO);
1486 }
1487}
1488
1489void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1490 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1491 if (!FuncMDO)
1492 return;
1493 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1494 Assert(F && isa<Function>(F->getValue()), "expected a Function or null",do { if (!(F && isa<Function>(F->getValue())
)) { CheckFailed("expected a Function or null", FuncMDO); return
; } } while (false)
1495 FuncMDO)do { if (!(F && isa<Function>(F->getValue())
)) { CheckFailed("expected a Function or null", FuncMDO); return
; } } while (false)
;
1496 };
1497 auto Node = dyn_cast_or_null<MDNode>(MDO);
1498 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO)do { if (!(Node && Node->getNumOperands() == 3)) {
CheckFailed("expected a MDNode triple", MDO); return; } } while
(false)
;
1499 CheckFunction(Node->getOperand(0));
1500 CheckFunction(Node->getOperand(1));
1501 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1502 Assert(Count && Count->getType()->isIntegerTy(),do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
1503 "expected an integer constant", Node->getOperand(2))do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
;
1504}
1505
1506/// Return true if this attribute kind only applies to functions.
1507static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1508 switch (Kind) {
1509 case Attribute::NoReturn:
1510 case Attribute::NoSync:
1511 case Attribute::WillReturn:
1512 case Attribute::NoCfCheck:
1513 case Attribute::NoUnwind:
1514 case Attribute::NoInline:
1515 case Attribute::AlwaysInline:
1516 case Attribute::OptimizeForSize:
1517 case Attribute::StackProtect:
1518 case Attribute::StackProtectReq:
1519 case Attribute::StackProtectStrong:
1520 case Attribute::SafeStack:
1521 case Attribute::ShadowCallStack:
1522 case Attribute::NoRedZone:
1523 case Attribute::NoImplicitFloat:
1524 case Attribute::Naked:
1525 case Attribute::InlineHint:
1526 case Attribute::StackAlignment:
1527 case Attribute::UWTable:
1528 case Attribute::NonLazyBind:
1529 case Attribute::ReturnsTwice:
1530 case Attribute::SanitizeAddress:
1531 case Attribute::SanitizeHWAddress:
1532 case Attribute::SanitizeMemTag:
1533 case Attribute::SanitizeThread:
1534 case Attribute::SanitizeMemory:
1535 case Attribute::MinSize:
1536 case Attribute::NoDuplicate:
1537 case Attribute::Builtin:
1538 case Attribute::NoBuiltin:
1539 case Attribute::Cold:
1540 case Attribute::OptForFuzzing:
1541 case Attribute::OptimizeNone:
1542 case Attribute::JumpTable:
1543 case Attribute::Convergent:
1544 case Attribute::ArgMemOnly:
1545 case Attribute::NoRecurse:
1546 case Attribute::InaccessibleMemOnly:
1547 case Attribute::InaccessibleMemOrArgMemOnly:
1548 case Attribute::AllocSize:
1549 case Attribute::SpeculativeLoadHardening:
1550 case Attribute::Speculatable:
1551 case Attribute::StrictFP:
1552 return true;
1553 default:
1554 break;
1555 }
1556 return false;
1557}
1558
1559/// Return true if this is a function attribute that can also appear on
1560/// arguments.
1561static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1562 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1563 Kind == Attribute::ReadNone || Kind == Attribute::NoFree;
1564}
1565
1566void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1567 const Value *V) {
1568 for (Attribute A : Attrs) {
1569 if (A.isStringAttribute())
1570 continue;
1571
1572 if (A.isIntAttribute() !=
1573 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) {
1574 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1575 V);
1576 return;
1577 }
1578
1579 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1580 if (!IsFunction) {
1581 CheckFailed("Attribute '" + A.getAsString() +
1582 "' only applies to functions!",
1583 V);
1584 return;
1585 }
1586 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1587 CheckFailed("Attribute '" + A.getAsString() +
1588 "' does not apply to functions!",
1589 V);
1590 return;
1591 }
1592 }
1593}
1594
1595// VerifyParameterAttrs - Check the given attributes for an argument or return
1596// value of the specified type. The value V is printed in error messages.
1597void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1598 const Value *V) {
1599 if (!Attrs.hasAttributes())
1600 return;
1601
1602 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1603
1604 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1605 Assert(Attrs.getNumAttributes() == 1,do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes"
, V); return; } } while (false)
1606 "Attribute 'immarg' is incompatible with other attributes", V)do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes"
, V); return; } } while (false)
;
1607 }
1608
1609 // Check for mutually incompatible attributes. Only inreg is compatible with
1610 // sret.
1611 unsigned AttrCount = 0;
1612 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1613 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1614 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1615 Attrs.hasAttribute(Attribute::InReg);
1616 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1617 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1618 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1619 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1620
1621 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1622 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1623 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1624 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1625 V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
;
1626
1627 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1628 Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1629 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1630 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1631 V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
;
1632
1633 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1634 Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1635 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1636 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1637 V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1638
1639 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1640 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1641 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1642 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1643 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
;
1644
1645 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1646 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1647 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1648 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1649 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
;
1650
1651 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1652 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1653 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1654 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1655 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
;
1656
1657 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1658 Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1659 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1660 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1661 V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1662
1663 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1664 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),do { if (!(Attrs.getByValType() == cast<PointerType>(Ty
)->getElementType())) { CheckFailed("Attribute 'byval' type does not match parameter!"
, V); return; } } while (false)
1665 "Attribute 'byval' type does not match parameter!", V)do { if (!(Attrs.getByValType() == cast<PointerType>(Ty
)->getElementType())) { CheckFailed("Attribute 'byval' type does not match parameter!"
, V); return; } } while (false)
;
1666 }
1667
1668 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1669 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1670 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1671 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1672 V)do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
;
1673
1674 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1675 SmallPtrSet<Type*, 4> Visited;
1676 if (!PTy->getElementType()->isSized(&Visited)) {
1677 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1678 !Attrs.hasAttribute(Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1679 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1680 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1681 }
1682 if (!isa<PointerType>(PTy->getElementType()))
1683 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1684 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1685 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1686 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
;
1687 } else {
1688 Assert(!Attrs.hasAttribute(Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1689 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1690 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1691 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1692 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1693 "with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1694 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
;
1695 }
1696}
1697
1698// Check parameter attributes against a function type.
1699// The value V is printed in error messages.
1700void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1701 const Value *V, bool IsIntrinsic) {
1702 if (Attrs.isEmpty())
1703 return;
1704
1705 bool SawNest = false;
1706 bool SawReturned = false;
1707 bool SawSRet = false;
1708 bool SawSwiftSelf = false;
1709 bool SawSwiftError = false;
1710
1711 // Verify return value attributes.
1712 AttributeSet RetAttrs = Attrs.getRetAttributes();
1713 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1714 !RetAttrs.hasAttribute(Attribute::Nest) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1715 !RetAttrs.hasAttribute(Attribute::StructRet) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1716 !RetAttrs.hasAttribute(Attribute::NoCapture) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1717 !RetAttrs.hasAttribute(Attribute::NoFree) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1718 !RetAttrs.hasAttribute(Attribute::Returned) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1719 !RetAttrs.hasAttribute(Attribute::InAlloca) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1720 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1721 !RetAttrs.hasAttribute(Attribute::SwiftError)),do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1722 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1723 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1724 "values!",do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1725 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) && !RetAttrs
.hasAttribute(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1726 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1727 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1728 !RetAttrs.hasAttribute(Attribute::ReadNone)),do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1729 "Attribute '" + RetAttrs.getAsString() +do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1730 "' does not apply to function returns",do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1731 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
;
1732 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1733
1734 // Verify parameter attributes.
1735 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1736 Type *Ty = FT->getParamType(i);
1737 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1738
1739 if (!IsIntrinsic) {
1740 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed
("immarg attribute only applies to intrinsics",V); return; } }
while (false)
1741 "immarg attribute only applies to intrinsics",V)do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed
("immarg attribute only applies to intrinsics",V); return; } }
while (false)
;
1742 }
1743
1744 verifyParameterAttrs(ArgAttrs, Ty, V);
1745
1746 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1747 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1748 SawNest = true;
1749 }
1750
1751 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1752 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1753 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1754 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1755 "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1756 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1757 SawReturned = true;
1758 }
1759
1760 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1761 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1762 Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1763 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1764 SawSRet = true;
1765 }
1766
1767 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1768 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1769 SawSwiftSelf = true;
1770 }
1771
1772 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1773 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1774 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1775 SawSwiftError = true;
1776 }
1777
1778 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1779 Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1780 "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1781 }
1782 }
1783
1784 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1785 return;
1786
1787 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1788
1789 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1790 Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1791 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1792
1793 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1794 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1795 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
;
1796
1797 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1798 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1799 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
;
1800
1801 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1802 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1803 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1804 "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1805 V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1806
1807 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1808 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1809 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1810
1811 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1812 Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1813 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
;
1814
1815 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1816 Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
1817 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
;
1818
1819 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1820 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1821
1822 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
1823 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
;
1824 }
1825
1826 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1827 const GlobalValue *GV = cast<GlobalValue>(V);
1828 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1829 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1830 }
1831
1832 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1833 std::pair<unsigned, Optional<unsigned>> Args =
1834 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1835
1836 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1837 if (ParamNo >= FT->getNumParams()) {
1838 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1839 return false;
1840 }
1841
1842 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1843 CheckFailed("'allocsize' " + Name +
1844 " argument must refer to an integer parameter",
1845 V);
1846 return false;
1847 }
1848
1849 return true;
1850 };
1851
1852 if (!CheckParam("element size", Args.first))
1853 return;
1854
1855 if (Args.second && !CheckParam("number of elements", *Args.second))
1856 return;
1857 }
1858
1859 if (Attrs.hasFnAttribute("frame-pointer")) {
1860 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
1861 "frame-pointer").getValueAsString();
1862 if (FP != "all" && FP != "non-leaf" && FP != "none")
1863 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
1864 }
1865
1866 if (Attrs.hasFnAttribute("patchable-function-prefix")) {
1867 StringRef S = Attrs
1868 .getAttribute(AttributeList::FunctionIndex,
1869 "patchable-function-prefix")
1870 .getValueAsString();
1871 unsigned N;
1872 if (S.getAsInteger(10, N))
1873 CheckFailed(
1874 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
1875 }
1876 if (Attrs.hasFnAttribute("patchable-function-entry")) {
1877 StringRef S = Attrs
1878 .getAttribute(AttributeList::FunctionIndex,
1879 "patchable-function-entry")
1880 .getValueAsString();
1881 unsigned N;
1882 if (S.getAsInteger(10, N))
1883 CheckFailed(
1884 "\"patchable-function-entry\" takes an unsigned integer: " + S, V);
1885 }
1886}
1887
1888void Verifier::verifyFunctionMetadata(
1889 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1890 for (const auto &Pair : MDs) {
1891 if (Pair.first == LLVMContext::MD_prof) {
1892 MDNode *MD = Pair.second;
1893 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
1894 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
1895
1896 // Check first operand.
1897 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1898 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1899 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1900 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1901 MDString *MDS = cast<MDString>(MD->getOperand(0));
1902 StringRef ProfName = MDS->getString();
1903 Assert(ProfName.equals("function_entry_count") ||do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1904 ProfName.equals("synthetic_function_entry_count"),do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1905 "first operand should be 'function_entry_count'"do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1906 " or 'synthetic_function_entry_count'",do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1907 MD)do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
;
1908
1909 // Check second operand.
1910 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1911 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1912 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1913 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1914 }
1915 }
1916}
1917
1918void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1919 if (!ConstantExprVisited.insert(EntryC).second)
1920 return;
1921
1922 SmallVector<const Constant *, 16> Stack;
1923 Stack.push_back(EntryC);
1924
1925 while (!Stack.empty()) {
1926 const Constant *C = Stack.pop_back_val();
1927
1928 // Check this constant expression.
1929 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1930 visitConstantExpr(CE);
1931
1932 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1933 // Global Values get visited separately, but we do need to make sure
1934 // that the global value is in the correct module
1935 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1936 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1937 continue;
1938 }
1939
1940 // Visit all sub-expressions.
1941 for (const Use &U : C->operands()) {
1942 const auto *OpC = dyn_cast<Constant>(U);
1943 if (!OpC)
1944 continue;
1945 if (!ConstantExprVisited.insert(OpC).second)
1946 continue;
1947 Stack.push_back(OpC);
1948 }
1949 }
1950}
1951
1952void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1953 if (CE->getOpcode() == Instruction::BitCast)
1954 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1955 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1956 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1957
1958 if (CE->getOpcode() == Instruction::IntToPtr ||
1959 CE->getOpcode() == Instruction::PtrToInt) {
1960 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1961 ? CE->getType()
1962 : CE->getOperand(0)->getType();
1963 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1964 ? "inttoptr not supported for non-integral pointers"
1965 : "ptrtoint not supported for non-integral pointers";
1966 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1967 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1968 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1969 }
1970}
1971
1972bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1973 // There shouldn't be more attribute sets than there are parameters plus the
1974 // function and return value.
1975 return Attrs.getNumAttrSets() <= Params + 2;
1976}
1977
1978/// Verify that statepoint intrinsic is well formed.
1979void Verifier::verifyStatepoint(const CallBase &Call) {
1980 assert(Call.getCalledFunction() &&((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 1982, __PRETTY_FUNCTION__))
1981 Call.getCalledFunction()->getIntrinsicID() ==((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 1982, __PRETTY_FUNCTION__))
1982 Intrinsic::experimental_gc_statepoint)((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 1982, __PRETTY_FUNCTION__))
;
1983
1984 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
1985 !Call.onlyAccessesArgMemory(),do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
1986 "gc.statepoint must read and write all memory to preserve "do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
1987 "reordering restrictions required by safepoint semantics",do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
1988 Call)do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
;
1989
1990 const int64_t NumPatchBytes =
1991 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1992 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 1992, __PRETTY_FUNCTION__))
;
1993 Assert(NumPatchBytes >= 0,do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
1994 "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
1995 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
1996 Call)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
;
1997
1998 const Value *Target = Call.getArgOperand(2);
1999 auto *PT = dyn_cast<PointerType>(Target->getType());
2000 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, Call, Target); return; } } while (false)
2001 "gc.statepoint callee must be of function pointer type", Call, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, Call, Target); return; } } while (false)
;
2002 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2003
2004 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2005 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2006 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2007 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2008 Call)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
;
2009 const int NumParams = (int)TargetFuncType->getNumParams();
2010 if (TargetFuncType->isVarArg()) {
2011 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, Call); return; } } while (false)
2012 "gc.statepoint mismatch in number of vararg call args", Call)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, Call); return; } } while (false)
;
2013
2014 // TODO: Remove this limitation
2015 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2016 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2017 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2018 Call)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
;
2019 } else
2020 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, Call); return; } } while (false)
2021 "gc.statepoint mismatch in number of call args", Call)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, Call); return; } } while (false)
;
2022
2023 const uint64_t Flags
2024 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2025 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, Call); return; } } while (false)
2026 "unknown flag used in gc.statepoint flags argument", Call)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, Call); return; } } while (false)
;
2027
2028 // Verify that the types of the call parameter arguments match
2029 // the type of the wrapped callee.
2030 AttributeList Attrs = Call.getAttributes();
2031 for (int i = 0; i < NumParams; i++) {
2032 Type *ParamType = TargetFuncType->getParamType(i);
2033 Type *ArgType = Call.getArgOperand(5 + i)->getType();
2034 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2035 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2036 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2037 Call)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
;
2038
2039 if (TargetFuncType->isVarArg()) {
2040 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2041 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2042 "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2043 Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
;
2044 }
2045 }
2046
2047 const int EndCallArgsInx = 4 + NumCallArgs;
2048
2049 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2050 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2051 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2052 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2053 Call)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
;
2054 const int NumTransitionArgs =
2055 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2056 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, Call); return; } } while (false)
2057 "gc.statepoint number of transition arguments must be positive", Call)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, Call); return; } } while (false)
;
2058 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2059
2060 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2061 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2062 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2063 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2064 Call)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
;
2065 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2066 Assert(NumDeoptArgs >= 0,do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", Call); return; } } while (false)
2067 "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", Call); return; } } while (false)
2068 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", Call); return; } } while (false)
2069 Call)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", Call); return; } } while (false)
;
2070
2071 const int ExpectedNumArgs =
2072 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2073 Assert(ExpectedNumArgs <= (int)Call.arg_size(),do { if (!(ExpectedNumArgs <= (int)Call.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, Call); return; } } while (false)
2074 "gc.statepoint too few arguments according to length fields", Call)do { if (!(ExpectedNumArgs <= (int)Call.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, Call); return; } } while (false)
;
2075
2076 // Check that the only uses of this gc.statepoint are gc.result or
2077 // gc.relocate calls which are tied to this statepoint and thus part
2078 // of the same statepoint sequence
2079 for (const User *U : Call.users()) {
2080 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2081 Assert(UserCall, "illegal use of statepoint token", Call, U)do { if (!(UserCall)) { CheckFailed("illegal use of statepoint token"
, Call, U); return; } } while (false)
;
2082 if (!UserCall)
2083 continue;
2084 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2085 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2086 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2087 Call, U)do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
;
2088 if (isa<GCResultInst>(UserCall)) {
2089 Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.result connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
2090 "gc.result connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.result connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
;
2091 } else if (isa<GCRelocateInst>(Call)) {
2092 Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
2093 "gc.relocate connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
;
2094 }
2095 }
2096
2097 // Note: It is legal for a single derived pointer to be listed multiple
2098 // times. It's non-optimal, but it is legal. It can also happen after
2099 // insertion if we strip a bitcast away.
2100 // Note: It is really tempting to check that each base is relocated and
2101 // that a derived pointer is never reused as a base pointer. This turns
2102 // out to be problematic since optimizations run after safepoint insertion
2103 // can recognize equality properties that the insertion logic doesn't know
2104 // about. See example statepoint.ll in the verifier subdirectory
2105}
2106
2107void Verifier::verifyFrameRecoverIndices() {
2108 for (auto &Counts : FrameEscapeInfo) {
2109 Function *F = Counts.first;
2110 unsigned EscapedObjectCount = Counts.second.first;
2111 unsigned MaxRecoveredIndex = Counts.second.second;
2112 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2113 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2114 "number of arguments passed to llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2115 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2116 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
;
2117 }
2118}
2119
2120static Instruction *getSuccPad(Instruction *Terminator) {
2121 BasicBlock *UnwindDest;
2122 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2123 UnwindDest = II->getUnwindDest();
2124 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2125 UnwindDest = CSI->getUnwindDest();
2126 else
2127 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2128 return UnwindDest->getFirstNonPHI();
2129}
2130
2131void Verifier::verifySiblingFuncletUnwinds() {
2132 SmallPtrSet<Instruction *, 8> Visited;
2133 SmallPtrSet<Instruction *, 8> Active;
2134 for (const auto &Pair : SiblingFuncletInfo) {
2135 Instruction *PredPad = Pair.first;
2136 if (Visited.count(PredPad))
2137 continue;
2138 Active.insert(PredPad);
2139 Instruction *Terminator = Pair.second;
2140 do {
2141 Instruction *SuccPad = getSuccPad(Terminator);
2142 if (Active.count(SuccPad)) {
2143 // Found a cycle; report error
2144 Instruction *CyclePad = SuccPad;
2145 SmallVector<Instruction *, 8> CycleNodes;
2146 do {
2147 CycleNodes.push_back(CyclePad);
2148 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2149 if (CycleTerminator != CyclePad)
2150 CycleNodes.push_back(CycleTerminator);
2151 CyclePad = getSuccPad(CycleTerminator);
2152 } while (CyclePad != SuccPad);
2153 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
2154 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
2155 }
2156 // Don't re-walk a node we've already checked
2157 if (!Visited.insert(SuccPad).second)
2158 break;
2159 // Walk to this successor if it has a map entry.
2160 PredPad = SuccPad;
2161 auto TermI = SiblingFuncletInfo.find(PredPad);
2162 if (TermI == SiblingFuncletInfo.end())
2163 break;
2164 Terminator = TermI->second;
2165 Active.insert(PredPad);
2166 } while (true);
2167 // Each node only has one successor, so we've walked all the active
2168 // nodes' successors.
2169 Active.clear();
2170 }
2171}
2172
2173// visitFunction - Verify that a function is ok.
2174//
2175void Verifier::visitFunction(const Function &F) {
2176 visitGlobalValue(F);
2177
2178 // Check function arguments.
2179 FunctionType *FT = F.getFunctionType();
2180 unsigned NumArgs = F.arg_size();
2181
2182 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1
Assuming the condition is true
2
Taking false branch
3
Loop condition is false. Exiting loop
2183 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
2184
2185 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
4
Taking false branch
5
Loop condition is false. Exiting loop
2186 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
6
Assuming the condition is true
7
Taking false branch
8
Loop condition is false. Exiting loop
2187 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
2188 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
2189 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
9
Taking false branch
10
Loop condition is false. Exiting loop
2190 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
2191 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
2192
2193 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
11
Assuming the condition is true
12
Taking false branch
13
Loop condition is false. Exiting loop
2194 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
2195
2196 AttributeList Attrs = F.getAttributes();
2197
2198 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
14
Taking false branch
15
Loop condition is false. Exiting loop
2199 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
2200
2201 bool isLLVMdotName = F.getName().size() >= 5 &&
16
Assuming the condition is false
2202 F.getName().substr(0, 5) == "llvm.";
2203
2204 // Check function attributes.
2205 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2206
2207 // On function declarations/definitions, we do not support the builtin
2208 // attribute. We do not check this in VerifyFunctionAttrs since that is
2209 // checking for Attributes that can/can not ever be on functions.
2210 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
17
Assuming the condition is true
18
Taking false branch
19
Loop condition is false. Exiting loop
2211 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
;
2212
2213 // Check that this function meets the restrictions on this calling convention.
2214 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2215 // restrictions can be lifted.
2216 switch (F.getCallingConv()) {
20
Control jumps to 'case C:' at line 2218
2217 default:
2218 case CallingConv::C:
2219 break;
21
Execution continues on line 2245
2220 case CallingConv::AMDGPU_KERNEL:
2221 case CallingConv::SPIR_KERNEL:
2222 Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
2223 "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
;
2224 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2225 case CallingConv::AMDGPU_VS:
2226 case CallingConv::AMDGPU_HS:
2227 case CallingConv::AMDGPU_GS:
2228 case CallingConv::AMDGPU_PS:
2229 case CallingConv::AMDGPU_CS:
2230 Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
2231 "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
;
2232 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2233 case CallingConv::Fast:
2234 case CallingConv::Cold:
2235 case CallingConv::Intel_OCL_BI:
2236 case CallingConv::PTX_Kernel:
2237 case CallingConv::PTX_Device:
2238 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2239 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2240 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2241 break;
2242 }
2243
2244 // Check that the argument values match the function type for this function...
2245 unsigned i = 0;
2246 for (const Argument &Arg : F.args()) {
22
Assuming '__begin1' is equal to '__end1'
2247 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2248 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2249 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2250 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2251 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2252 if (!isLLVMdotName) {
2253 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2254 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2255 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2256 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2257 }
2258
2259 // Check that swifterror argument is only used by loads and stores.
2260 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2261 verifySwiftErrorValue(&Arg);
2262 }
2263 ++i;
2264 }
2265
2266 if (!isLLVMdotName
22.1
'isLLVMdotName' is false
)
23
Taking true branch
2267 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
24
Taking false branch
25
Loop condition is false. Exiting loop
2268 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2269
2270 // Get the function metadata attachments.
2271 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2272 F.getAllMetadata(MDs);
2273 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 2273, __PRETTY_FUNCTION__))
;
26
Assuming the condition is true
27
'?' condition is true
2274 verifyFunctionMetadata(MDs);
2275
2276 // Check validity of the personality function
2277 if (F.hasPersonalityFn()) {
28
Assuming the condition is false
29
Taking false branch
2278 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2279 if (Per)
2280 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2281 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2282 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2283 }
2284
2285 if (F.isMaterializable()) {
30
Assuming the condition is false
31
Taking false branch
2286 // Function has a body somewhere we can't see.
2287 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2288 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2289 } else if (F.isDeclaration()) {
32
Assuming the condition is false
33
Taking false branch
2290 for (const auto &I : MDs) {
2291 // This is used for call site debug information.
2292 AssertDI(I.first != LLVMContext::MD_dbg ||do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2293 !cast<DISubprogram>(I.second)->isDistinct(),do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2294 "function declaration may only have a unique !dbg attachment",do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2295 &F)do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
;
2296 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2297 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2298
2299 // Verify the metadata itself.
2300 visitMDNode(*I.second);
2301 }
2302 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2303 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2304 } else {
2305 // Verify that this function (which has a body) is not named "llvm.*". It
2306 // is not legal to define intrinsics.
2307 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
34
Taking false branch
35
Loop condition is false. Exiting loop
2308
2309 // Check the entry node
2310 const BasicBlock *Entry = &F.getEntryBlock();
2311 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
36
Assuming the condition is false
37
Taking false branch
38
Loop condition is false. Exiting loop
2312 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2313
2314 // The address of the entry block cannot be taken, unless it is dead.
2315 if (Entry->hasAddressTaken()) {
39
Assuming the condition is false
40
Taking false branch
2316 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2317 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2318 }
2319
2320 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2321 // Visit metadata attachments.
2322 for (const auto &I : MDs) {
41
Assuming '__begin3' is equal to '__end3'
2323 // Verify that the attachment is legal.
2324 switch (I.first) {
2325 default:
2326 break;
2327 case LLVMContext::MD_dbg: {
2328 ++NumDebugAttachments;
2329 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2330 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2331 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2332 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2333 auto *SP = cast<DISubprogram>(I.second);
2334 const Function *&AttachedTo = DISubprogramAttachments[SP];
2335 AssertDI(!AttachedTo || AttachedTo == &F,do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
2336 "DISubprogram attached to more than one function", SP, &F)do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
;
2337 AttachedTo = &F;
2338 break;
2339 }
2340 case LLVMContext::MD_prof:
2341 ++NumProfAttachments;
2342 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2343 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2344 break;
2345 }
2346
2347 // Verify the metadata itself.
2348 visitMDNode(*I.second);
2349 }
2350 }
2351
2352 // If this function is actually an intrinsic, verify that it is only used in
2353 // direct call/invokes, never having its "address taken".
2354 // Only do this if the module is materialized, otherwise we don't have all the
2355 // uses.
2356 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
42
Assuming the condition is false
2357 const User *U;
2358 if (F.hasAddressTaken(&U))
2359 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2360 }
2361
2362 auto *N = F.getSubprogram();
2363 HasDebugInfo = (N != nullptr);
43
Assuming the condition is true
2364 if (!HasDebugInfo
43.1
Field 'HasDebugInfo' is true
)
44
Taking false branch
2365 return;
2366
2367 // Check that all !dbg attachments lead to back to N (or, at least, another
2368 // subprogram that describes the same function).
2369 //
2370 // FIXME: Check this incrementally while visiting !dbg attachments.
2371 // FIXME: Only check when N is the canonical subprogram for F.
2372 SmallPtrSet<const MDNode *, 32> Seen;
2373 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2374 // Be careful about using DILocation here since we might be dealing with
2375 // broken code (this is the Verifier after all).
2376 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
46
Assuming 'Node' is a 'DILocation'
2377 if (!DL
46.1
'DL' is non-null
)
47
Taking false branch
2378 return;
2379 if (!Seen.insert(DL).second)
48
Assuming field 'second' is true
49
Taking false branch
2380 return;
2381
2382 Metadata *Parent = DL->getRawScope();
2383 AssertDI(Parent && isa<DILocalScope>(Parent),do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
50
Assuming 'Parent' is non-null
51
Assuming 'Parent' is a 'DILocalScope'
52
Taking false branch
53
Loop condition is false. Exiting loop
2384 "DILocation's scope must be a DILocalScope", N, &F, &I, DL,do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
2385 Parent)do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
;
2386 DILocalScope *Scope = DL->getInlinedAtScope();
2387 if (Scope
53.1
'Scope' is non-null
&& !Seen.insert(Scope).second)
54
Assuming field 'second' is true
55
Taking false branch
2388 return;
2389
2390 DISubprogram *SP = Scope
55.1
'Scope' is non-null
? Scope->getSubprogram() : nullptr;
56
'?' condition is true
57
'SP' initialized here
2391
2392 // Scope and SP could be the same MDNode and we don't want to skip
2393 // validation in that case
2394 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
58
Assuming 'SP' is null
59
Taking false branch
2395 return;
2396
2397 // FIXME: Once N is canonical, check "SP == &N".
2398 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
60
Called C++ object pointer is null
2399 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2400 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2401 visitMDNode(*SP);
2402 };
2403 for (auto &BB : F)
2404 for (auto &I : BB) {
2405 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
45
Calling 'operator()'
2406 // The llvm.loop annotations also contain two DILocations.
2407 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2408 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2409 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2410 if (BrokenDebugInfo)
2411 return;
2412 }
2413}
2414
2415// verifyBasicBlock - Verify that a basic block is well formed...
2416//
2417void Verifier::visitBasicBlock(BasicBlock &BB) {
2418 InstsInThisBlock.clear();
2419
2420 // Ensure that basic blocks have terminators!
2421 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2422
2423 // Check constraints that this basic block imposes on all of the PHI nodes in
2424 // it.
2425 if (isa<PHINode>(BB.front())) {
2426 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2427 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2428 llvm::sort(Preds);
2429 for (const PHINode &PN : BB.phis()) {
2430 // Ensure that PHI nodes have at least one entry!
2431 Assert(PN.getNumIncomingValues() != 0,do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2432 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2433 "the PHI should be removed!",do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2434 &PN)do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
;
2435 Assert(PN.getNumIncomingValues() == Preds.size(),do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2436 "PHINode should have one entry for each predecessor of its "do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2437 "parent basic block!",do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2438 &PN)do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
;
2439
2440 // Get and sort all incoming values in the PHI node...
2441 Values.clear();
2442 Values.reserve(PN.getNumIncomingValues());
2443 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2444 Values.push_back(
2445 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2446 llvm::sort(Values);
2447
2448 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2449 // Check to make sure that if there is more than one entry for a
2450 // particular basic block in this PHI node, that the incoming values are
2451 // all identical.
2452 //
2453 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2454 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2455 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2456 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2457 &PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
;
2458
2459 // Check to make sure that the predecessors and PHI node entries are
2460 // matched up.
2461 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2462 "PHI node entries do not match predecessors!", &PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2463 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
;
2464 }
2465 }
2466 }
2467
2468 // Check that all instructions have their parent pointers set up correctly.
2469 for (auto &I : BB)
2470 {
2471 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2472 }
2473}
2474
2475void Verifier::visitTerminator(Instruction &I) {
2476 // Ensure that terminators only exist at the end of the basic block.
2477 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2478 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2479 visitInstruction(I);
2480}
2481
2482void Verifier::visitBranchInst(BranchInst &BI) {
2483 if (BI.isConditional()) {
2484 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2485 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2486 }
2487 visitTerminator(BI);
2488}
2489
2490void Verifier::visitReturnInst(ReturnInst &RI) {
2491 Function *F = RI.getParent()->getParent();
2492 unsigned N = RI.getNumOperands();
2493 if (F->getReturnType()->isVoidTy())
2494 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2495 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2496 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2497 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2498 else
2499 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2500 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2501 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2502 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2503
2504 // Check to make sure that the return value has necessary properties for
2505 // terminators...
2506 visitTerminator(RI);
2507}
2508
2509void Verifier::visitSwitchInst(SwitchInst &SI) {
2510 // Check to make sure that all of the constants in the switch instruction
2511 // have the same type as the switched-on value.
2512 Type *SwitchTy = SI.getCondition()->getType();
2513 SmallPtrSet<ConstantInt*, 32> Constants;
2514 for (auto &Case : SI.cases()) {
2515 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2516 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2517 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2518 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2519 }
2520
2521 visitTerminator(SI);
2522}
2523
2524void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2525 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2526 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2527 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2528 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2529 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2530
2531 visitTerminator(BI);
2532}
2533
2534void Verifier::visitCallBrInst(CallBrInst &CBI) {
2535 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!"
, &CBI); return; } } while (false)
2536 &CBI)do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!"
, &CBI); return; } } while (false)
;
2537 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2538 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy())
) { CheckFailed("Callbr successors must all have pointer type!"
, &CBI); return; } } while (false)
2539 "Callbr successors must all have pointer type!", &CBI)do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy())
) { CheckFailed("Callbr successors must all have pointer type!"
, &CBI); return; } } while (false)
;
2540 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2541 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock
>(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!"
, &CBI); return; } } while (false)
2542 "Using an unescaped label as a callbr argument!", &CBI)do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock
>(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!"
, &CBI); return; } } while (false)
;
2543 if (isa<BasicBlock>(CBI.getOperand(i)))
2544 for (unsigned j = i + 1; j != e; ++j)
2545 Assert(CBI.getOperand(i) != CBI.getOperand(j),do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed
("Duplicate callbr destination!", &CBI); return; } } while
(false)
2546 "Duplicate callbr destination!", &CBI)do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed
("Duplicate callbr destination!", &CBI); return; } } while
(false)
;
2547 }
2548 {
2549 SmallPtrSet<BasicBlock *, 4> ArgBBs;
2550 for (Value *V : CBI.args())
2551 if (auto *BA = dyn_cast<BlockAddress>(V))
2552 ArgBBs.insert(BA->getBasicBlock());
2553 for (BasicBlock *BB : CBI.getIndirectDests())
2554 Assert(ArgBBs.find(BB) != ArgBBs.end(),do { if (!(ArgBBs.find(BB) != ArgBBs.end())) { CheckFailed("Indirect label missing from arglist."
, &CBI); return; } } while (false)
2555 "Indirect label missing from arglist.", &CBI)do { if (!(ArgBBs.find(BB) != ArgBBs.end())) { CheckFailed("Indirect label missing from arglist."
, &CBI); return; } } while (false)
;
2556 }
2557
2558 visitTerminator(CBI);
2559}
2560
2561void Verifier::visitSelectInst(SelectInst &SI) {
2562 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2563 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2564 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2565
2566 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2567 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2568 visitInstruction(SI);
2569}
2570
2571/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2572/// a pass, if any exist, it's an error.
2573///
2574void Verifier::visitUserOp1(Instruction &I) {
2575 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2576}
2577
2578void Verifier::visitTruncInst(TruncInst &I) {
2579 // Get the source and destination types
2580 Type *SrcTy = I.getOperand(0)->getType();
2581 Type *DestTy = I.getType();
2582
2583 // Get the size of the types in bits, we'll need this later
2584 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2585 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2586
2587 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2588 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2589 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2590 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2591 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2592
2593 visitInstruction(I);
2594}
2595
2596void Verifier::visitZExtInst(ZExtInst &I) {
2597 // Get the source and destination types
2598 Type *SrcTy = I.getOperand(0)->getType();
2599 Type *DestTy = I.getType();
2600
2601 // Get the size of the types in bits, we'll need this later
2602 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2603 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2604 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2605 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2606 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2607 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2608
2609 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2610
2611 visitInstruction(I);
2612}
2613
2614void Verifier::visitSExtInst(SExtInst &I) {
2615 // Get the source and destination types
2616 Type *SrcTy = I.getOperand(0)->getType();
2617 Type *DestTy = I.getType();
2618
2619 // Get the size of the types in bits, we'll need this later
2620 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2621 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2622
2623 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2624 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2625 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2626 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2627 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2628
2629 visitInstruction(I);
2630}
2631
2632void Verifier::visitFPTruncInst(FPTruncInst &I) {
2633 // Get the source and destination types
2634 Type *SrcTy = I.getOperand(0)->getType();
2635 Type *DestTy = I.getType();
2636 // Get the size of the types in bits, we'll need this later
2637 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2638 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2639
2640 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2641 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2642 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2643 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2644 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2645
2646 visitInstruction(I);
2647}
2648
2649void Verifier::visitFPExtInst(FPExtInst &I) {
2650 // Get the source and destination types
2651 Type *SrcTy = I.getOperand(0)->getType();
2652 Type *DestTy = I.getType();
2653
2654 // Get the size of the types in bits, we'll need this later
2655 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2656 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2657
2658 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2659 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2660 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2661 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2662 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2663
2664 visitInstruction(I);
2665}
2666
2667void Verifier::visitUIToFPInst(UIToFPInst &I) {
2668 // Get the source and destination types
2669 Type *SrcTy = I.getOperand(0)->getType();
2670 Type *DestTy = I.getType();
2671
2672 bool SrcVec = SrcTy->isVectorTy();
2673 bool DstVec = DestTy->isVectorTy();
2674
2675 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2676 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2677 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2678 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2679 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2680 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2681
2682 if (SrcVec && DstVec)
2683 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2684 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2685 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2686
2687 visitInstruction(I);
2688}
2689
2690void Verifier::visitSIToFPInst(SIToFPInst &I) {
2691 // Get the source and destination types
2692 Type *SrcTy = I.getOperand(0)->getType();
2693 Type *DestTy = I.getType();
2694
2695 bool SrcVec = SrcTy->isVectorTy();
2696 bool DstVec = DestTy->isVectorTy();
2697
2698 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2699 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2700 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2701 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2702 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2703 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2704
2705 if (SrcVec && DstVec)
2706 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2707 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2708 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2709
2710 visitInstruction(I);
2711}
2712
2713void Verifier::visitFPToUIInst(FPToUIInst &I) {
2714 // Get the source and destination types
2715 Type *SrcTy = I.getOperand(0)->getType();
2716 Type *DestTy = I.getType();
2717
2718 bool SrcVec = SrcTy->isVectorTy();
2719 bool DstVec = DestTy->isVectorTy();
2720
2721 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2722 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2723 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2724 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2725 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2726 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2727
2728 if (SrcVec && DstVec)
2729 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2730 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2731 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2732
2733 visitInstruction(I);
2734}
2735
2736void Verifier::visitFPToSIInst(FPToSIInst &I) {
2737 // Get the source and destination types
2738 Type *SrcTy = I.getOperand(0)->getType();
2739 Type *DestTy = I.getType();
2740
2741 bool SrcVec = SrcTy->isVectorTy();
2742 bool DstVec = DestTy->isVectorTy();
2743
2744 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2745 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2746 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2747 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2748 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2749 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2750
2751 if (SrcVec && DstVec)
2752 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2753 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2754 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2755
2756 visitInstruction(I);
2757}
2758
2759void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2760 // Get the source and destination types
2761 Type *SrcTy = I.getOperand(0)->getType();
2762 Type *DestTy = I.getType();
2763
2764 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("PtrToInt source must be pointer"
, &I); return; } } while (false)
;
2765
2766 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2767 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2768 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2769
2770 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("PtrToInt result must be integral"
, &I); return; } } while (false)
;
2771 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2772 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2773
2774 if (SrcTy->isVectorTy()) {
2775 VectorType *VSrc = cast<VectorType>(SrcTy);
2776 VectorType *VDest = cast<VectorType>(DestTy);
2777 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2778 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2779 }
2780
2781 visitInstruction(I);
2782}
2783
2784void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2785 // Get the source and destination types
2786 Type *SrcTy = I.getOperand(0)->getType();
2787 Type *DestTy = I.getType();
2788
2789 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
2790 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
;
2791 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("IntToPtr result must be a pointer"
, &I); return; } } while (false)
;
2792
2793 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2794 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2795 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2796
2797 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2798 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2799 if (SrcTy->isVectorTy()) {
2800 VectorType *VSrc = cast<VectorType>(SrcTy);
2801 VectorType *VDest = cast<VectorType>(DestTy);
2802 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2803 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2804 }
2805 visitInstruction(I);
2806}
2807
2808void Verifier::visitBitCastInst(BitCastInst &I) {
2809 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2810 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2811 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2812 visitInstruction(I);
2813}
2814
2815void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2816 Type *SrcTy = I.getOperand(0)->getType();
2817 Type *DestTy = I.getType();
2818
2819 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2820 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2821 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2822 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2823 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2824 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2825 if (SrcTy->isVectorTy())
2826 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2827 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2828 visitInstruction(I);
2829}
2830
2831/// visitPHINode - Ensure that a PHI node is well formed.
2832///
2833void Verifier::visitPHINode(PHINode &PN) {
2834 // Ensure that the PHI nodes are all grouped together at the top of the block.
2835 // This can be tested by checking whether the instruction before this is
2836 // either nonexistent (because this is begin()) or is a PHI node. If not,
2837 // then there is some other instruction before a PHI.
2838 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2839 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2840 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2841
2842 // Check that a PHI doesn't yield a Token.
2843 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2844
2845 // Check that all of the values of the PHI node have the same type as the
2846 // result, and that the incoming blocks are really basic blocks.
2847 for (Value *IncValue : PN.incoming_values()) {
2848 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2849 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2850 }
2851
2852 // All other PHI node constraints are checked in the visitBasicBlock method.
2853
2854 visitInstruction(PN);
2855}
2856
2857void Verifier::visitCallBase(CallBase &Call) {
2858 Assert(Call.getCalledValue()->getType()->isPointerTy(),do { if (!(Call.getCalledValue()->getType()->isPointerTy
())) { CheckFailed("Called function must be a pointer!", Call
); return; } } while (false)
2859 "Called function must be a pointer!", Call)do { if (!(Call.getCalledValue()->getType()->isPointerTy
())) { CheckFailed("Called function must be a pointer!", Call
); return; } } while (false)
;
2860 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2861
2862 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", Call); return
; } } while (false)
2863 "Called function is not pointer to function type!", Call)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", Call); return
; } } while (false)
;
2864
2865 Assert(FPTy->getElementType() == Call.getFunctionType(),do { if (!(FPTy->getElementType() == Call.getFunctionType(
))) { CheckFailed("Called function is not the same type as the call!"
, Call); return; } } while (false)
2866 "Called function is not the same type as the call!", Call)do { if (!(FPTy->getElementType() == Call.getFunctionType(
))) { CheckFailed("Called function is not the same type as the call!"
, Call); return; } } while (false)
;
2867
2868 FunctionType *FTy = Call.getFunctionType();
2869
2870 // Verify that the correct number of arguments are being passed
2871 if (FTy->isVarArg())
2872 Assert(Call.arg_size() >= FTy->getNumParams(),do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
2873 "Called function requires more parameters than were provided!",do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
2874 Call)do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
;
2875 else
2876 Assert(Call.arg_size() == FTy->getNumParams(),do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", Call
); return; } } while (false)
2877 "Incorrect number of arguments passed to called function!", Call)do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", Call
); return; } } while (false)
;
2878
2879 // Verify that all arguments to the call match the function type.
2880 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2881 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
2882 "Call parameter type does not match function signature!",do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
2883 Call.getArgOperand(i), FTy->getParamType(i), Call)do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
;
2884
2885 AttributeList Attrs = Call.getAttributes();
2886
2887 Assert(verifyAttributeCount(Attrs, Call.arg_size()),do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed
("Attribute after last parameter!", Call); return; } } while (
false)
2888 "Attribute after last parameter!", Call)do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed
("Attribute after last parameter!", Call); return; } } while (
false)
;
2889
2890 bool IsIntrinsic = Call.getCalledFunction() &&
2891 Call.getCalledFunction()->getName().startswith("llvm.");
2892
2893 Function *Callee
2894 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2895
2896 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2897 // Don't allow speculatable on call sites, unless the underlying function
2898 // declaration is also speculatable.
2899 Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", Call);
return; } } while (false)
2900 "speculatable attribute may not apply to call sites", Call)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", Call);
return; } } while (false)
;
2901 }
2902
2903 // Verify call attributes.
2904 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2905
2906 // Conservatively check the inalloca argument.
2907 // We have a bug if we can find that there is an underlying alloca without
2908 // inalloca.
2909 if (Call.hasInAllocaArgument()) {
2910 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2911 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2912 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
2913 "inalloca argument for call has mismatched alloca", AI, Call)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
;
2914 }
2915
2916 // For each argument of the callsite, if it has the swifterror argument,
2917 // make sure the underlying alloca/parameter it comes from has a swifterror as
2918 // well.
2919 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2920 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2921 Value *SwiftErrorArg = Call.getArgOperand(i);
2922 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2923 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
2924 "swifterror argument for call has mismatched alloca", AI, Call)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
;
2925 continue;
2926 }
2927 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2928 Assert(ArgI,do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
2929 "swifterror argument should come from an alloca or parameter",do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
2930 SwiftErrorArg, Call)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
;
2931 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
2932 "swifterror argument for call has mismatched parameter", ArgI,do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
2933 Call)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
;
2934 }
2935
2936 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2937 // Don't allow immarg on call sites, unless the underlying declaration
2938 // also has the matching immarg.
2939 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
2940 "immarg may not apply only to call sites",do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
2941 Call.getArgOperand(i), Call)do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
;
2942 }
2943
2944 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2945 Value *ArgVal = Call.getArgOperand(i);
2946 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP
>(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter"
, ArgVal, Call); return; } } while (false)
2947 "immarg operand has non-immediate parameter", ArgVal, Call)do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP
>(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter"
, ArgVal, Call); return; } } while (false)
;
2948 }
2949 }
2950
2951 if (FTy->isVarArg()) {
2952 // FIXME? is 'nest' even legal here?
2953 bool SawNest = false;
2954 bool SawReturned = false;
2955
2956 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2957 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2958 SawNest = true;
2959 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2960 SawReturned = true;
2961 }
2962
2963 // Check attributes on the varargs part.
2964 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2965 Type *Ty = Call.getArgOperand(Idx)->getType();
2966 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2967 verifyParameterAttrs(ArgAttrs, Ty, &Call);
2968
2969 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2970 Assert(!SawNest, "More than one parameter has attribute nest!", Call)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, Call); return; } } while (false)
;
2971 SawNest = true;
2972 }
2973
2974 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2975 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, Call); return; } } while (false)
2976 Call)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, Call); return; } } while (false)
;
2977 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
2978 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
2979 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
2980 Call)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
;
2981 SawReturned = true;
2982 }
2983
2984 // Statepoint intrinsic is vararg but the wrapped function may be not.
2985 // Allow sret here and check the wrapped function in verifyStatepoint.
2986 if (!Call.getCalledFunction() ||
2987 Call.getCalledFunction()->getIntrinsicID() !=
2988 Intrinsic::experimental_gc_statepoint)
2989 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2990 "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2991 Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
;
2992
2993 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2994 Assert(Idx == Call.arg_size() - 1,do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, Call); return; } } while (false)
2995 "inalloca isn't on the last argument!", Call)do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, Call); return; } } while (false)
;
2996 }
2997 }
2998
2999 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3000 if (!IsIntrinsic) {
3001 for (Type *ParamTy : FTy->params()) {
3002 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, Call); return; } } while (false)
3003 "Function has metadata parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, Call); return; } } while (false)
;
3004 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, Call); return; } } while (false)
3005 "Function has token parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, Call); return; } } while (false)
;
3006 }
3007 }
3008
3009 // Verify that indirect calls don't return tokens.
3010 if (!Call.getCalledFunction())
3011 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
3012 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
3013
3014 if (Function *F = Call.getCalledFunction())
3015 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3016 visitIntrinsicCall(ID, Call);
3017
3018 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3019 // most one "gc-transition", and at most one "cfguardtarget" operand bundle.
3020 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3021 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false;
3022 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3023 OperandBundleUse BU = Call.getOperandBundleAt(i);
3024 uint32_t Tag = BU.getTagID();
3025 if (Tag == LLVMContext::OB_deopt) {
3026 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, Call); return; } } while (false)
;
3027 FoundDeoptBundle = true;
3028 } else if (Tag == LLVMContext::OB_gc_transition) {
3029 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, Call); return; } } while (false)
3030 Call)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, Call); return; } } while (false)
;
3031 FoundGCTransitionBundle = true;
3032 } else if (Tag == LLVMContext::OB_funclet) {
3033 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, Call); return; } } while (false)
;
3034 FoundFuncletBundle = true;
3035 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, Call); return; } } while (false)
3036 "Expected exactly one funclet bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, Call); return; } } while (false)
;
3037 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
3038 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
3039 Call)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
;
3040 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3041 Assert(!FoundCFGuardTargetBundle,do { if (!(!FoundCFGuardTargetBundle)) { CheckFailed("Multiple CFGuardTarget operand bundles"
, Call); return; } } while (false)
3042 "Multiple CFGuardTarget operand bundles", Call)do { if (!(!FoundCFGuardTargetBundle)) { CheckFailed("Multiple CFGuardTarget operand bundles"
, Call); return; } } while (false)
;
3043 FoundCFGuardTargetBundle = true;
3044 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one cfguardtarget bundle operand"
, Call); return; } } while (false)
3045 "Expected exactly one cfguardtarget bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one cfguardtarget bundle operand"
, Call); return; } } while (false)
;
3046 }
3047 }
3048
3049 // Verify that each inlinable callsite of a debug-info-bearing function in a
3050 // debug-info-bearing function has a debug location attached to it. Failure to
3051 // do so causes assertion failures when the inliner sets up inline scope info.
3052 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3053 Call.getCalledFunction()->getSubprogram())
3054 AssertDI(Call.getDebugLoc(),do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3055 "inlinable function call in a function with "do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3056 "debug info must have a !dbg location",do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3057 Call)do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
;
3058
3059 visitInstruction(Call);
3060}
3061
3062/// Two types are "congruent" if they are identical, or if they are both pointer
3063/// types with different pointee types and the same address space.
3064static bool isTypeCongruent(Type *L, Type *R) {
3065 if (L == R)
3066 return true;
3067 PointerType *PL = dyn_cast<PointerType>(L);
3068 PointerType *PR = dyn_cast<PointerType>(R);
3069 if (!PL || !PR)
3070 return false;
3071 return PL->getAddressSpace() == PR->getAddressSpace();
3072}
3073
3074static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3075 static const Attribute::AttrKind ABIAttrs[] = {
3076 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3077 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
3078 Attribute::SwiftError};
3079 AttrBuilder Copy;
3080 for (auto AK : ABIAttrs) {
3081 if (Attrs.hasParamAttribute(I, AK))
3082 Copy.addAttribute(AK);
3083 }
3084 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
3085 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3086 return Copy;
3087}
3088
3089void Verifier::verifyMustTailCall(CallInst &CI) {
3090 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
3091
3092 // - The caller and callee prototypes must match. Pointer types of
3093 // parameters or return types may differ in pointee type, but not
3094 // address space.
3095 Function *F = CI.getParent()->getParent();
3096 FunctionType *CallerTy = F->getFunctionType();
3097 FunctionType *CalleeTy = CI.getFunctionType();
3098 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3099 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
3100 "cannot guarantee tail call due to mismatched parameter counts",do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
3101 &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
3102 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3103 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
3104 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
3105 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
3106 }
3107 }
3108 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
3109 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
3110 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
3111 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
3112
3113 // - The calling conventions of the caller and callee must match.
3114 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
3115 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
3116
3117 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3118 // returned, and inalloca, must match.
3119 AttributeList CallerAttrs = F->getAttributes();
3120 AttributeList CalleeAttrs = CI.getAttributes();
3121 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3122 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3123 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3124 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3125 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3126 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3127 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
3128 }
3129
3130 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3131 // or a pointer bitcast followed by a ret instruction.
3132 // - The ret instruction must return the (possibly bitcasted) value
3133 // produced by the call or void.
3134 Value *RetVal = &CI;
3135 Instruction *Next = CI.getNextNode();
3136
3137 // Handle the optional bitcast.
3138 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3139 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
3140 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
3141 RetVal = BI;
3142 Next = BI->getNextNode();
3143 }
3144
3145 // Check the return.
3146 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3147 Assert(Ret, "musttail call must precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
3148 &CI)do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
3149 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
3150 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
3151}
3152
3153void Verifier::visitCallInst(CallInst &CI) {
3154 visitCallBase(CI);
3155
3156 if (CI.isMustTailCall())
3157 verifyMustTailCall(CI);
3158}
3159
3160void Verifier::visitInvokeInst(InvokeInst &II) {
3161 visitCallBase(II);
3162
3163 // Verify that the first non-PHI instruction of the unwind destination is an
3164 // exception handling instruction.
3165 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3166 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3167 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3168 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
3169
3170 visitTerminator(II);
3171}
3172
3173/// visitUnaryOperator - Check the argument to the unary operator.
3174///
3175void Verifier::visitUnaryOperator(UnaryOperator &U) {
3176 Assert(U.getType() == U.getOperand(0)->getType(),do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3177 "Unary operators must have same type for"do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3178 "operands and result!",do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3179 &U)do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
;
3180
3181 switch (U.getOpcode()) {
3182 // Check that floating-point arithmetic operators are only used with
3183 // floating-point operands.
3184 case Instruction::FNeg:
3185 Assert(U.getType()->isFPOrFPVectorTy(),do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed
("FNeg operator only works with float types!", &U); return
; } } while (false)
3186 "FNeg operator only works with float types!", &U)do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed
("FNeg operator only works with float types!", &U); return
; } } while (false)
;
3187 break;
3188 default:
3189 llvm_unreachable("Unknown UnaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown UnaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 3189)
;
3190 }
3191
3192 visitInstruction(U);
3193}
3194
3195/// visitBinaryOperator - Check that both arguments to the binary operator are
3196/// of the same type!
3197///
3198void Verifier::visitBinaryOperator(BinaryOperator &B) {
3199 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
3200 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
3201
3202 switch (B.getOpcode()) {
3203 // Check that integer arithmetic operators are only used with
3204 // integral operands.
3205 case Instruction::Add:
3206 case Instruction::Sub:
3207 case Instruction::Mul:
3208 case Instruction::SDiv:
3209 case Instruction::UDiv:
3210 case Instruction::SRem:
3211 case Instruction::URem:
3212 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
3213 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
3214 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3215 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3216 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3217 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3218 break;
3219 // Check that floating-point arithmetic operators are only used with
3220 // floating-point operands.
3221 case Instruction::FAdd:
3222 case Instruction::FSub:
3223 case Instruction::FMul:
3224 case Instruction::FDiv:
3225 case Instruction::FRem:
3226 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3227 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3228 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3229 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
3230 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3231 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3232 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3233 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3234 break;
3235 // Check that logical operators are only used with integral operands.
3236 case Instruction::And:
3237 case Instruction::Or:
3238 case Instruction::Xor:
3239 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
3240 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
3241 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3242 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3243 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
3244 break;
3245 case Instruction::Shl:
3246 case Instruction::LShr:
3247 case Instruction::AShr:
3248 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
3249 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
3250 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
3251 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
3252 break;
3253 default:
3254 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 3254)
;
3255 }
3256
3257 visitInstruction(B);
3258}
3259
3260void Verifier::visitICmpInst(ICmpInst &IC) {
3261 // Check that the operands are the same type
3262 Type *Op0Ty = IC.getOperand(0)->getType();
3263 Type *Op1Ty = IC.getOperand(1)->getType();
3264 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
3265 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
3266 // Check that the operands are the right type
3267 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
3268 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
3269 // Check that the predicate is valid.
3270 Assert(IC.isIntPredicate(),do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
3271 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
;
3272
3273 visitInstruction(IC);
3274}
3275
3276void Verifier::visitFCmpInst(FCmpInst &FC) {
3277 // Check that the operands are the same type
3278 Type *Op0Ty = FC.getOperand(0)->getType();
3279 Type *Op1Ty = FC.getOperand(1)->getType();
3280 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
3281 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
3282 // Check that the operands are the right type
3283 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
3284 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
3285 // Check that the predicate is valid.
3286 Assert(FC.isFPPredicate(),do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
3287 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
;
3288
3289 visitInstruction(FC);
3290}
3291
3292void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3293 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3294 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3295 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
3296 visitInstruction(EI);
3297}
3298
3299void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3300 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3301 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3302 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
3303 visitInstruction(IE);
3304}
3305
3306void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3307 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3308 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3309 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
3310 visitInstruction(SV);
3311}
3312
3313void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3314 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3315
3316 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
3317 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
3318 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
3319
3320 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3321 Assert(all_of(do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3322 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3323 "GEP indexes must be integers", &GEP)do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
;
3324 Type *ElTy =
3325 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3326 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
3327
3328 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3329 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3330 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
;
3331
3332 if (GEP.getType()->isVectorTy()) {
3333 // Additional checks for vector GEPs.
3334 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3335 if (GEP.getPointerOperandType()->isVectorTy())
3336 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3337 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3338 for (Value *Idx : Idxs) {
3339 Type *IndexTy = Idx->getType();
3340 if (IndexTy->isVectorTy()) {
3341 unsigned IndexWidth = IndexTy->getVectorNumElements();
3342 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3343 }
3344 Assert(IndexTy->isIntOrIntVectorTy(),do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
3345 "All GEP indices should be of integer type")do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
;
3346 }
3347 }
3348
3349 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3350 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace()
)) { CheckFailed("GEP address space doesn't match type", &
GEP); return; } } while (false)
3351 "GEP address space doesn't match type", &GEP)do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace()
)) { CheckFailed("GEP address space doesn't match type", &
GEP); return; } } while (false)
;
3352 }
3353
3354 visitInstruction(GEP);
3355}
3356
3357static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3358 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3359}
3360
3361void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3362 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 3363, __PRETTY_FUNCTION__))
3363 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 3363, __PRETTY_FUNCTION__))
;
3364
3365 unsigned NumOperands = Range->getNumOperands();
3366 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3367 unsigned NumRanges = NumOperands / 2;
3368 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3369
3370 ConstantRange LastRange(1, true); // Dummy initial value
3371 for (unsigned i = 0; i < NumRanges; ++i) {
3372 ConstantInt *Low =
3373 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3374 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3375 ConstantInt *High =
3376 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3377 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3378 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3379 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3380
3381 APInt HighV = High->getValue();
3382 APInt LowV = Low->getValue();
3383 ConstantRange CurRange(LowV, HighV);
3384 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3385 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3386 if (i != 0) {
3387 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3388 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3389 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3390 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3391 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3392 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3393 }
3394 LastRange = ConstantRange(LowV, HighV);
3395 }
3396 if (NumRanges > 2) {
3397 APInt FirstLow =
3398 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3399 APInt FirstHigh =
3400 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3401 ConstantRange FirstRange(FirstLow, FirstHigh);
3402 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3403 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3404 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3405 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3406 }
3407}
3408
3409void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3410 unsigned Size = DL.getTypeSizeInBits(Ty);
3411 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3412 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3413 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3414}
3415
3416void Verifier::visitLoadInst(LoadInst &LI) {
3417 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3418 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3419 Type *ElTy = LI.getType();
3420 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3421 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3422 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3423 if (LI.isAtomic()) {
3424 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3425 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3426 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3427 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3428 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3429 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3430 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3431 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3432 ElTy, &LI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3433 checkAtomicMemAccessSize(ElTy, &LI);
3434 } else {
3435 Assert(LI.getSyncScopeID() == SyncScope::System,do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
3436 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
;
3437 }
3438
3439 visitInstruction(LI);
3440}
3441
3442void Verifier::visitStoreInst(StoreInst &SI) {
3443 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3444 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3445 Type *ElTy = PTy->getElementType();
3446 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3447 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3448 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3449 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3450 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3451 if (SI.isAtomic()) {
3452 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3453 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3454 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3455 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3456 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3457 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3458 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3459 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3460 ElTy, &SI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3461 checkAtomicMemAccessSize(ElTy, &SI);
3462 } else {
3463 Assert(SI.getSyncScopeID() == SyncScope::System,do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3464 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3465 }
3466 visitInstruction(SI);
3467}
3468
3469/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3470void Verifier::verifySwiftErrorCall(CallBase &Call,
3471 const Value *SwiftErrorVal) {
3472 unsigned Idx = 0;
3473 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3474 if (*I == SwiftErrorVal) {
3475 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3476 "swifterror value when used in a callsite should be marked "do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3477 "with swifterror attribute",do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3478 SwiftErrorVal, Call)do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
;
3479 }
3480 }
3481}
3482
3483void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3484 // Check that swifterror value is only used by loads, stores, or as
3485 // a swifterror argument.
3486 for (const User *U : SwiftErrorVal->users()) {
3487 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3488 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3489 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3490 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3491 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3492 // If it is used by a store, check it is the second operand.
3493 if (auto StoreI = dyn_cast<StoreInst>(U))
3494 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3495 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3496 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3497 if (auto *Call = dyn_cast<CallBase>(U))
3498 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3499 }
3500}
3501
3502void Verifier::visitAllocaInst(AllocaInst &AI) {
3503 SmallPtrSet<Type*, 4> Visited;
3504 PointerType *PTy = AI.getType();
3505 // TODO: Relax this restriction?
3506 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3507 "Allocation instruction pointer not in the stack address space!",do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3508 &AI)do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
;
3509 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3510 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3511 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3512 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3513 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3514 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3515
3516 if (AI.isSwiftError()) {
3517 verifySwiftErrorValue(&AI);
3518 }
3519
3520 visitInstruction(AI);
3521}
3522
3523void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3524
3525 // FIXME: more conditions???
3526 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3527 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3528 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3529 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3530 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3531 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3532 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3533 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3534 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3535 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3536 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3537 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3538 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3539 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3540 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3541
3542 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3543 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3544 Type *ElTy = PTy->getElementType();
3545 Assert(ElTy->isIntOrPtrTy(),do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3546 "cmpxchg operand must have integer or pointer type", ElTy, &CXI)do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3547 checkAtomicMemAccessSize(ElTy, &CXI);
3548 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3549 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3550 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3551 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3552 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3553 visitInstruction(CXI);
3554}
3555
3556void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3557 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3558 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3559 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3560 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3561 auto Op = RMWI.getOperation();
3562 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3563 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3564 Type *ElTy = PTy->getElementType();
3565 if (Op == AtomicRMWInst::Xchg) {
3566 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3567 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3568 " operand must have integer or floating point type!",do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3569 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
;
3570 } else if (AtomicRMWInst::isFPOperation(Op)) {
3571 Assert(ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3572 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3573 " operand must have floating point type!",do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3574 &RMWI, ElTy)do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
;
3575 } else {
3576 Assert(ElTy->isIntegerTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3577 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3578 " operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3579 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3580 }
3581 checkAtomicMemAccessSize(ElTy, &RMWI);
3582 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3583 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3584 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3585 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <=
AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!"
, &RMWI); return; } } while (false)
3586 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <=
AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!"
, &RMWI); return; } } while (false)
;
3587 visitInstruction(RMWI);
3588}
3589
3590void Verifier::visitFenceInst(FenceInst &FI) {
3591 const AtomicOrdering Ordering = FI.getOrdering();
3592 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3593 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3594 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3595 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3596 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3597 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3598 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3599 visitInstruction(FI);
3600}
3601
3602void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3603 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3604 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3605 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3606
3607 visitInstruction(EVI);
3608}
3609
3610void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3611 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3612 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3613 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3614 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3615
3616 visitInstruction(IVI);
3617}
3618
3619static Value *getParentPad(Value *EHPad) {
3620 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3621 return FPI->getParentPad();
3622
3623 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3624}
3625
3626void Verifier::visitEHPadPredecessors(Instruction &I) {
3627 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 3627, __PRETTY_FUNCTION__))
;
3628
3629 BasicBlock *BB = I.getParent();
3630 Function *F = BB->getParent();
3631
3632 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3633
3634 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3635 // The landingpad instruction defines its parent as a landing pad block. The
3636 // landing pad block may be branched to only by the unwind edge of an
3637 // invoke.
3638 for (BasicBlock *PredBB : predecessors(BB)) {
3639 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3640 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3641 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3642 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3643 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3644 }
3645 return;
3646 }
3647 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3648 if (!pred_empty(BB))
3649 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3650 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3651 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3652 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3653 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3654 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3655 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3656 return;
3657 }
3658
3659 // Verify that each pred has a legal terminator with a legal to/from EH
3660 // pad relationship.
3661 Instruction *ToPad = &I;
3662 Value *ToPadParent = getParentPad(ToPad);
3663 for (BasicBlock *PredBB : predecessors(BB)) {
3664 Instruction *TI = PredBB->getTerminator();
3665 Value *FromPad;
3666 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3667 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3668 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3669 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3670 FromPad = Bundle->Inputs[0];
3671 else
3672 FromPad = ConstantTokenNone::get(II->getContext());
3673 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3674 FromPad = CRI->getOperand(0);
3675 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3676 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3677 FromPad = CSI;
3678 } else {
3679 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3680 }
3681
3682 // The edge may exit from zero or more nested pads.
3683 SmallSet<Value *, 8> Seen;
3684 for (;; FromPad = getParentPad(FromPad)) {
3685 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3686 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3687 if (FromPad == ToPadParent) {
3688 // This is a legal unwind edge.
3689 break;
3690 }
3691 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3692 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3693 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3694 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3695 }
3696 }
3697}
3698
3699void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3700 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3701 // isn't a cleanup.
3702 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3703 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3704
3705 visitEHPadPredecessors(LPI);
3706
3707 if (!LandingPadResultTy)
3708 LandingPadResultTy = LPI.getType();
3709 else
3710 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3711 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3712 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3713 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3714
3715 Function *F = LPI.getParent()->getParent();
3716 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3717 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3718
3719 // The landingpad instruction must be the first non-PHI instruction in the
3720 // block.
3721 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3722 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3723 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3724
3725 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3726 Constant *Clause = LPI.getClause(i);
3727 if (LPI.isCatch(i)) {
3728 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3729 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3730 } else {
3731 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3732 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3733 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3734 }
3735 }
3736
3737 visitInstruction(LPI);
3738}
3739
3740void Verifier::visitResumeInst(ResumeInst &RI) {
3741 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3742 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3743
3744 if (!LandingPadResultTy)
3745 LandingPadResultTy = RI.getValue()->getType();
3746 else
3747 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3748 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3749 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3750 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3751
3752 visitTerminator(RI);
3753}
3754
3755void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3756 BasicBlock *BB = CPI.getParent();
3757
3758 Function *F = BB->getParent();
3759 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3760 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3761
3762 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3763 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3764 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3765
3766 // The catchpad instruction must be the first non-PHI instruction in the
3767 // block.
3768 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3769 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3770
3771 visitEHPadPredecessors(CPI);
3772 visitFuncletPadInst(CPI);
3773}
3774
3775void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3776 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3777 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3778 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3779
3780 visitTerminator(CatchReturn);
3781}
3782
3783void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3784 BasicBlock *BB = CPI.getParent();
3785
3786 Function *F = BB->getParent();
3787 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3788 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3789
3790 // The cleanuppad instruction must be the first non-PHI instruction in the
3791 // block.
3792 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3793 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3794 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3795
3796 auto *ParentPad = CPI.getParentPad();
3797 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3798 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3799
3800 visitEHPadPredecessors(CPI);
3801 visitFuncletPadInst(CPI);
3802}
3803
3804void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3805 User *FirstUser = nullptr;
3806 Value *FirstUnwindPad = nullptr;
3807 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3808 SmallSet<FuncletPadInst *, 8> Seen;
3809
3810 while (!Worklist.empty()) {
3811 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3812 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3813 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3814 Value *UnresolvedAncestorPad = nullptr;
3815 for (User *U : CurrentPad->users()) {
3816 BasicBlock *UnwindDest;
3817 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3818 UnwindDest = CRI->getUnwindDest();
3819 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3820 // We allow catchswitch unwind to caller to nest
3821 // within an outer pad that unwinds somewhere else,
3822 // because catchswitch doesn't have a nounwind variant.
3823 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3824 if (CSI->unwindsToCaller())
3825 continue;
3826 UnwindDest = CSI->getUnwindDest();
3827 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3828 UnwindDest = II->getUnwindDest();
3829 } else if (isa<CallInst>(U)) {
3830 // Calls which don't unwind may be found inside funclet
3831 // pads that unwind somewhere else. We don't *require*
3832 // such calls to be annotated nounwind.
3833 continue;
3834 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3835 // The unwind dest for a cleanup can only be found by
3836 // recursive search. Add it to the worklist, and we'll
3837 // search for its first use that determines where it unwinds.
3838 Worklist.push_back(CPI);
3839 continue;
3840 } else {
3841 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3842 continue;
3843 }
3844
3845 Value *UnwindPad;
3846 bool ExitsFPI;
3847 if (UnwindDest) {
3848 UnwindPad = UnwindDest->getFirstNonPHI();
3849 if (!cast<Instruction>(UnwindPad)->isEHPad())
3850 continue;
3851 Value *UnwindParent = getParentPad(UnwindPad);
3852 // Ignore unwind edges that don't exit CurrentPad.
3853 if (UnwindParent == CurrentPad)
3854 continue;
3855 // Determine whether the original funclet pad is exited,
3856 // and if we are scanning nested pads determine how many
3857 // of them are exited so we can stop searching their
3858 // children.
3859 Value *ExitedPad = CurrentPad;
3860 ExitsFPI = false;
3861 do {
3862 if (ExitedPad == &FPI) {
3863 ExitsFPI = true;
3864 // Now we can resolve any ancestors of CurrentPad up to
3865 // FPI, but not including FPI since we need to make sure
3866 // to check all direct users of FPI for consistency.
3867 UnresolvedAncestorPad = &FPI;
3868 break;
3869 }
3870 Value *ExitedParent = getParentPad(ExitedPad);
3871 if (ExitedParent == UnwindParent) {
3872 // ExitedPad is the ancestor-most pad which this unwind
3873 // edge exits, so we can resolve up to it, meaning that
3874 // ExitedParent is the first ancestor still unresolved.
3875 UnresolvedAncestorPad = ExitedParent;
3876 break;
3877 }
3878 ExitedPad = ExitedParent;
3879 } while (!isa<ConstantTokenNone>(ExitedPad));
3880 } else {
3881 // Unwinding to caller exits all pads.
3882 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3883 ExitsFPI = true;
3884 UnresolvedAncestorPad = &FPI;
3885 }
3886
3887 if (ExitsFPI) {
3888 // This unwind edge exits FPI. Make sure it agrees with other
3889 // such edges.
3890 if (FirstUser) {
3891 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3892 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3893 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3894 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3895 } else {
3896 FirstUser = U;
3897 FirstUnwindPad = UnwindPad;
3898 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3899 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3900 getParentPad(UnwindPad) == getParentPad(&FPI))
3901 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3902 }
3903 }
3904 // Make sure we visit all uses of FPI, but for nested pads stop as
3905 // soon as we know where they unwind to.
3906 if (CurrentPad != &FPI)
3907 break;
3908 }
3909 if (UnresolvedAncestorPad) {
3910 if (CurrentPad == UnresolvedAncestorPad) {
3911 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3912 // we've found an unwind edge that exits it, because we need to verify
3913 // all direct uses of FPI.
3914 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 3914, __PRETTY_FUNCTION__))
;
3915 continue;
3916 }
3917 // Pop off the worklist any nested pads that we've found an unwind
3918 // destination for. The pads on the worklist are the uncles,
3919 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3920 // for all ancestors of CurrentPad up to but not including
3921 // UnresolvedAncestorPad.
3922 Value *ResolvedPad = CurrentPad;
3923 while (!Worklist.empty()) {
3924 Value *UnclePad = Worklist.back();
3925 Value *AncestorPad = getParentPad(UnclePad);
3926 // Walk ResolvedPad up the ancestor list until we either find the
3927 // uncle's parent or the last resolved ancestor.
3928 while (ResolvedPad != AncestorPad) {
3929 Value *ResolvedParent = getParentPad(ResolvedPad);
3930 if (ResolvedParent == UnresolvedAncestorPad) {
3931 break;
3932 }
3933 ResolvedPad = ResolvedParent;
3934 }
3935 // If the resolved ancestor search didn't find the uncle's parent,
3936 // then the uncle is not yet resolved.
3937 if (ResolvedPad != AncestorPad)
3938 break;
3939 // This uncle is resolved, so pop it from the worklist.
3940 Worklist.pop_back();
3941 }
3942 }
3943 }
3944
3945 if (FirstUnwindPad) {
3946 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3947 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3948 Value *SwitchUnwindPad;
3949 if (SwitchUnwindDest)
3950 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3951 else
3952 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3953 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3954 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3955 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3956 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3957 }
3958 }
3959
3960 visitInstruction(FPI);
3961}
3962
3963void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3964 BasicBlock *BB = CatchSwitch.getParent();
3965
3966 Function *F = BB->getParent();
3967 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3968 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3969 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3970
3971 // The catchswitch instruction must be the first non-PHI instruction in the
3972 // block.
3973 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3974 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3975 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3976
3977 auto *ParentPad = CatchSwitch.getParentPad();
3978 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3979 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3980
3981 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3982 Instruction *I = UnwindDest->getFirstNonPHI();
3983 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3984 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3985 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3986 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3987
3988 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3989 if (getParentPad(I) == ParentPad)
3990 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3991 }
3992
3993 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3994 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3995
3996 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3997 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3998 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3999 }
4000
4001 visitEHPadPredecessors(CatchSwitch);
4002 visitTerminator(CatchSwitch);
4003}
4004
4005void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4006 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
4007 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
4008 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
4009
4010 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4011 Instruction *I = UnwindDest->getFirstNonPHI();
4012 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
4013 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
4014 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
4015 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
4016 }
4017
4018 visitTerminator(CRI);
4019}
4020
4021void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4022 Instruction *Op = cast<Instruction>(I.getOperand(i));
4023 // If the we have an invalid invoke, don't try to compute the dominance.
4024 // We already reject it in the invoke specific checks and the dominance
4025 // computation doesn't handle multiple edges.
4026 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4027 if (II->getNormalDest() == II->getUnwindDest())
4028 return;
4029 }
4030
4031 // Quick check whether the def has already been encountered in the same block.
4032 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4033 // uses are defined to happen on the incoming edge, not at the instruction.
4034 //
4035 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4036 // wrapping an SSA value, assert that we've already encountered it. See
4037 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4038 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4039 return;
4040
4041 const Use &U = I.getOperandUse(i);
4042 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
4043 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
4044}
4045
4046void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4047 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
4048 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
4049 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),do { if (!((isa<LoadInst>(I) || isa<IntToPtrInst>
(I)))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" and inttoptr instructions, use attributes for calls or invokes"
, &I); return; } } while (false)
4050 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!((isa<LoadInst>(I) || isa<IntToPtrInst>
(I)))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" and inttoptr instructions, use attributes for calls or invokes"
, &I); return; } } while (false)
4051 " and inttoptr instructions, use attributes for calls or invokes", &I)do { if (!((isa<LoadInst>(I) || isa<IntToPtrInst>
(I)))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" and inttoptr instructions, use attributes for calls or invokes"
, &I); return; } } while (false)
;
4052 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
4053 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
4054 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4055 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
4056 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
4057}
4058
4059void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4060 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
4061 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
4062
4063 // Check first operand.
4064 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
4065 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
4066 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
4067 MDString *MDS = cast<MDString>(MD->getOperand(0));
4068 StringRef ProfName = MDS->getString();
4069
4070 // Check consistency of !prof branch_weights metadata.
4071 if (ProfName.equals("branch_weights")) {
4072 unsigned ExpectedNumOperands = 0;
4073 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4074 ExpectedNumOperands = BI->getNumSuccessors();
4075 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4076 ExpectedNumOperands = SI->getNumSuccessors();
4077 else if (isa<CallInst>(&I) || isa<InvokeInst>(&I))
4078 ExpectedNumOperands = 1;
4079 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4080 ExpectedNumOperands = IBI->getNumDestinations();
4081 else if (isa<SelectInst>(&I))
4082 ExpectedNumOperands = 2;
4083 else
4084 CheckFailed("!prof branch_weights are not allowed for this instruction",
4085 MD);
4086
4087 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,do { if (!(MD->getNumOperands() == 1 + ExpectedNumOperands
)) { CheckFailed("Wrong number of operands", MD); return; } }
while (false)
4088 "Wrong number of operands", MD)do { if (!(MD->getNumOperands() == 1 + ExpectedNumOperands
)) { CheckFailed("Wrong number of operands", MD); return; } }
while (false)
;
4089 for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4090 auto &MDO = MD->getOperand(i);
4091 Assert(MDO, "second operand should not be null", MD)do { if (!(MDO)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
4092 Assert(mdconst::dyn_extract<ConstantInt>(MDO),do { if (!(mdconst::dyn_extract<ConstantInt>(MDO))) { CheckFailed
("!prof brunch_weights operand is not a const int"); return; }
} while (false)
4093 "!prof brunch_weights operand is not a const int")do { if (!(mdconst::dyn_extract<ConstantInt>(MDO))) { CheckFailed
("!prof brunch_weights operand is not a const int"); return; }
} while (false)
;
4094 }
4095 }
4096}
4097
4098/// verifyInstruction - Verify that an instruction is well formed.
4099///
4100void Verifier::visitInstruction(Instruction &I) {
4101 BasicBlock *BB = I.getParent();
4102 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
4103
4104 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
4105 for (User *U : I.users()) {
4106 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
4107 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
4108 }
4109 }
4110
4111 // Check that void typed values don't have names
4112 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
4113 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
4114
4115 // Check that the return value of the instruction is either void or a legal
4116 // value type.
4117 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
4118 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
4119
4120 // Check that the instruction doesn't produce metadata. Calls are already
4121 // checked against the callee type.
4122 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
4123 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
4124
4125 // Check that all uses of the instruction, if they are instructions
4126 // themselves, actually have parent basic blocks. If the use is not an
4127 // instruction, it is an error!
4128 for (Use &U : I.uses()) {
4129 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4130 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
4131 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
4132 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
4133 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
4134 else {
4135 CheckFailed("Use of instruction is not an instruction!", U);
4136 return;
4137 }
4138 }
4139
4140 // Get a pointer to the call base of the instruction if it is some form of
4141 // call.
4142 const CallBase *CBI = dyn_cast<CallBase>(&I);
4143
4144 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4145 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
4146
4147 // Check to make sure that only first-class-values are operands to
4148 // instructions.
4149 if (!I.getOperand(i)->getType()->isFirstClassType()) {
4150 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
4151 }
4152
4153 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4154 // Check to make sure that the "address of" an intrinsic function is never
4155 // taken.
4156 Assert(!F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || (CBI && &CBI->
getCalledOperandUse() == &I.getOperandUse(i)))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
4157 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),do { if (!(!F->isIntrinsic() || (CBI && &CBI->
getCalledOperandUse() == &I.getOperandUse(i)))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
4158 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || (CBI && &CBI->
getCalledOperandUse() == &I.getOperandUse(i)))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
4159 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4160 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4161 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4162 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4163 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4164 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4165 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4166 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4167 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4168 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4169 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4170 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
4171 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
4172 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
4173 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4174 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
4175 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
4176 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4177 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
4178 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
4179 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4180 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
4181 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
4182 } else if (isa<Instruction>(I.getOperand(i))) {
4183 verifyDominatesUse(I, i);
4184 } else if (isa<InlineAsm>(I.getOperand(i))) {
4185 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),do { if (!(CBI && &CBI->getCalledOperandUse() ==
&I.getOperandUse(i))) { CheckFailed("Cannot take the address of an inline asm!"
, &I); return; } } while (false)
4186 "Cannot take the address of an inline asm!", &I)do { if (!(CBI && &CBI->getCalledOperandUse() ==
&I.getOperandUse(i))) { CheckFailed("Cannot take the address of an inline asm!"
, &I); return; } } while (false)
;
4187 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4188 if (CE->getType()->isPtrOrPtrVectorTy() ||
4189 !DL.getNonIntegralAddressSpaces().empty()) {
4190 // If we have a ConstantExpr pointer, we need to see if it came from an
4191 // illegal bitcast. If the datalayout string specifies non-integral
4192 // address spaces then we also need to check for illegal ptrtoint and
4193 // inttoptr expressions.
4194 visitConstantExprsRecursively(CE);
4195 }
4196 }
4197 }
4198
4199 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4200 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
4201 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
4202 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
4203 if (ConstantFP *CFP0 =
4204 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4205 const APFloat &Accuracy = CFP0->getValueAPF();
4206 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
4207 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
4208 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
4209 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
4210 } else {
4211 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
4212 }
4213 }
4214
4215 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4216 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
4217 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
4218 visitRangeMetadata(I, Range, I.getType());
4219 }
4220
4221 if (I.getMetadata(LLVMContext::MD_nonnull)) {
4222 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
4223 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
4224 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
4225 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
4226 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
4227 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
4228 }
4229
4230 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4231 visitDereferenceableMetadata(I, MD);
4232
4233 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4234 visitDereferenceableMetadata(I, MD);
4235
4236 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4237 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4238
4239 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4240 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
4241 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
4242 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
4243 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
4244 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
4245 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4246 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
4247 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
4248 uint64_t Align = CI->getZExtValue();
4249 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
4250 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
4251 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
4252 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
4253 }
4254
4255 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4256 visitProfMetadata(I, MD);
4257
4258 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4259 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
4260 visitMDNode(*N);
4261 }
4262
4263 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4264 verifyFragmentExpression(*DII);
4265 verifyNotEntryValue(*DII);
4266 }
4267
4268 InstsInThisBlock.insert(&I);
4269}
4270
4271/// Allow intrinsics to be verified in different ways.
4272void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4273 Function *IF = Call.getCalledFunction();
4274 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
4275 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
4276
4277 // Verify that the intrinsic prototype lines up with what the .td files
4278 // describe.
4279 FunctionType *IFTy = IF->getFunctionType();
4280 bool IsVarArg = IFTy->isVarArg();
4281
4282 SmallVector<Intrinsic::IITDescriptor, 8> Table;
4283 getIntrinsicInfoTableEntries(ID, Table);
4284 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4285
4286 // Walk the descriptors to extract overloaded types.
4287 SmallVector<Type *, 4> ArgTys;
4288 Intrinsic::MatchIntrinsicTypesResult Res =
4289 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4290 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,do { if (!(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet))
{ CheckFailed("Intrinsic has incorrect return type!", IF); return
; } } while (false)
4291 "Intrinsic has incorrect return type!", IF)do { if (!(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet))
{ CheckFailed("Intrinsic has incorrect return type!", IF); return
; } } while (false)
;
4292 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,do { if (!(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg))
{ CheckFailed("Intrinsic has incorrect argument type!", IF);
return; } } while (false)
4293 "Intrinsic has incorrect argument type!", IF)do { if (!(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg))
{ CheckFailed("Intrinsic has incorrect argument type!", IF);
return; } } while (false)
;
4294
4295 // Verify if the intrinsic call matches the vararg property.
4296 if (IsVarArg)
4297 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
4298 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
4299 else
4300 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
4301 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
4302
4303 // All descriptors should be absorbed by now.
4304 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
4305
4306 // Now that we have the intrinsic ID and the actual argument types (and we
4307 // know they are legal for the intrinsic!) get the intrinsic name through the
4308 // usual means. This allows us to verify the mangling of argument types into
4309 // the name.
4310 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4311 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4312 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4313 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4314 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4315 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
4316
4317 // If the intrinsic takes MDNode arguments, verify that they are either global
4318 // or are local to *this* function.
4319 for (Value *V : Call.args())
4320 if (auto *MD = dyn_cast<MetadataAsValue>(V))
4321 visitMetadataAsValue(*MD, Call.getCaller());
4322
4323 switch (ID) {
4324 default:
4325 break;
4326 case Intrinsic::coro_id: {
4327 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4328 if (isa<ConstantPointerNull>(InfoArg))
4329 break;
4330 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4331 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
4332 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
4333 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
4334 Constant *Init = GV->getInitializer();
4335 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
4336 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
4337 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
4338 break;
4339 }
4340#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
4341 case Intrinsic::INTRINSIC:
4342#include "llvm/IR/ConstrainedOps.def"
4343 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4344 break;
4345 case Intrinsic::dbg_declare: // llvm.dbg.declare
4346 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(Call.getArgOperand(0)))
) { CheckFailed("invalid llvm.dbg.declare intrinsic call 1", Call
); return; } } while (false)
4347 "invalid llvm.dbg.declare intrinsic call 1", Call)do { if (!(isa<MetadataAsValue>(Call.getArgOperand(0)))
) { CheckFailed("invalid llvm.dbg.declare intrinsic call 1", Call
); return; } } while (false)
;
4348 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4349 break;
4350 case Intrinsic::dbg_addr: // llvm.dbg.addr
4351 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4352 break;
4353 case Intrinsic::dbg_value: // llvm.dbg.value
4354 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4355 break;
4356 case Intrinsic::dbg_label: // llvm.dbg.label
4357 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4358 break;
4359 case Intrinsic::memcpy:
4360 case Intrinsic::memcpy_inline:
4361 case Intrinsic::memmove:
4362 case Intrinsic::memset: {
4363 const auto *MI = cast<MemIntrinsic>(&Call);
4364 auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4365 return Alignment == 0 || isPowerOf2_32(Alignment);
4366 };
4367 Assert(IsValidAlignment(MI->getDestAlignment()),do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed
("alignment of arg 0 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
4368 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed
("alignment of arg 0 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
4369 Call)do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed
("alignment of arg 0 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
;
4370 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4371 Assert(IsValidAlignment(MTI->getSourceAlignment()),do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) {
CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
4372 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) {
CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
4373 Call)do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) {
CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
;
4374 }
4375
4376 break;
4377 }
4378 case Intrinsic::memcpy_element_unordered_atomic:
4379 case Intrinsic::memmove_element_unordered_atomic:
4380 case Intrinsic::memset_element_unordered_atomic: {
4381 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4382
4383 ConstantInt *ElementSizeCI =
4384 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4385 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4386 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", Call); return; } } while (false)
4387 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", Call); return; } } while (false)
4388 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", Call); return; } } while (false)
4389 Call)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", Call); return; } } while (false)
;
4390
4391 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4392 uint64_t Length = LengthCI->getZExtValue();
4393 uint64_t ElementSize = AMI->getElementSizeInBytes();
4394 Assert((Length % ElementSize) == 0,do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", Call); return; } } while
(false)
4395 "constant length must be a multiple of the element size in the "do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", Call); return; } } while
(false)
4396 "element-wise atomic memory intrinsic",do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", Call); return; } } while
(false)
4397 Call)do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", Call); return; } } while
(false)
;
4398 }
4399
4400 auto IsValidAlignment = [&](uint64_t Alignment) {
4401 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4402 };
4403 uint64_t DstAlignment = AMI->getDestAlignment();
4404 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, Call); return; } } while (false)
4405 "incorrect alignment of the destination argument", Call)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, Call); return; } } while (false)
;
4406 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4407 uint64_t SrcAlignment = AMT->getSourceAlignment();
4408 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, Call); return; } } while (false)
4409 "incorrect alignment of the source argument", Call)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, Call); return; } } while (false)
;
4410 }
4411 break;
4412 }
4413 case Intrinsic::gcroot:
4414 case Intrinsic::gcwrite:
4415 case Intrinsic::gcread:
4416 if (ID == Intrinsic::gcroot) {
4417 AllocaInst *AI =
4418 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4419 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, Call); return; } } while (false)
;
4420 Assert(isa<Constant>(Call.getArgOperand(1)),do { if (!(isa<Constant>(Call.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", Call); return
; } } while (false)
4421 "llvm.gcroot parameter #2 must be a constant.", Call)do { if (!(isa<Constant>(Call.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", Call); return
; } } while (false)
;
4422 if (!AI->getAllocatedType()->isPointerTy()) {
4423 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand
(1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", Call); return
; } } while (false)
4424 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand
(1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", Call); return
; } } while (false)
4425 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand
(1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", Call); return
; } } while (false)
4426 Call)do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand
(1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", Call); return
; } } while (false)
;
4427 }
4428 }
4429
4430 Assert(Call.getParent()->getParent()->hasGC(),do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
4431 "Enclosing function does not use GC.", Call)do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
;
4432 break;
4433 case Intrinsic::init_trampoline:
4434 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(Call.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, Call); return; } } while (false)
4435 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(Call.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, Call); return; } } while (false)
4436 Call)do { if (!(isa<Function>(Call.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, Call); return; } } while (false)
;
4437 break;
4438 case Intrinsic::prefetch:
4439 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(cast<ConstantInt>(Call.getArgOperand(1))->
getZExtValue() < 2 && cast<ConstantInt>(Call
.getArgOperand(2))->getZExtValue() < 4)) { CheckFailed(
"invalid arguments to llvm.prefetch", Call); return; } } while
(false)
4440 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,do { if (!(cast<ConstantInt>(Call.getArgOperand(1))->
getZExtValue() < 2 && cast<ConstantInt>(Call
.getArgOperand(2))->getZExtValue() < 4)) { CheckFailed(
"invalid arguments to llvm.prefetch", Call); return; } } while
(false)
4441 "invalid arguments to llvm.prefetch", Call)do { if (!(cast<ConstantInt>(Call.getArgOperand(1))->
getZExtValue() < 2 && cast<ConstantInt>(Call
.getArgOperand(2))->getZExtValue() < 4)) { CheckFailed(
"invalid arguments to llvm.prefetch", Call); return; } } while
(false)
;
4442 break;
4443 case Intrinsic::stackprotector:
4444 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, Call); return; } } while (false)
4445 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call)do { if (!(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, Call); return; } } while (false)
;
4446 break;
4447 case Intrinsic::localescape: {
4448 BasicBlock *BB = Call.getParent();
4449 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", Call); return
; } } while (false)
4450 "llvm.localescape used outside of entry block", Call)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", Call); return
; } } while (false)
;
4451 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, Call); return; } } while (false)
4452 "multiple calls to llvm.localescape in one function", Call)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, Call); return; } } while (false)
;
4453 for (Value *Arg : Call.args()) {
4454 if (isa<ConstantPointerNull>(Arg))
4455 continue; // Null values are allowed as placeholders.
4456 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4457 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", Call); return
; } } while (false)
4458 "llvm.localescape only accepts static allocas", Call)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", Call); return
; } } while (false)
;
4459 }
4460 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4461 SawFrameEscape = true;
4462 break;
4463 }
4464 case Intrinsic::localrecover: {
4465 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4466 Function *Fn = dyn_cast<Function>(FnArg);
4467 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, Call); return; } } while (false)
4468 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, Call); return; } } while (false)
4469 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, Call); return; } } while (false)
4470 Call)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, Call); return; } } while (false)
;
4471 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4472 auto &Entry = FrameEscapeInfo[Fn];
4473 Entry.second = unsigned(
4474 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4475 break;
4476 }
4477
4478 case Intrinsic::experimental_gc_statepoint:
4479 if (auto *CI = dyn_cast<CallInst>(&Call))
4480 Assert(!CI->isInlineAsm(),do { if (!(!CI->isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CI); return; } } while (false)
4481 "gc.statepoint support for inline assembly unimplemented", CI)do { if (!(!CI->isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CI); return; } } while (false)
;
4482 Assert(Call.getParent()->getParent()->hasGC(),do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
4483 "Enclosing function does not use GC.", Call)do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
;
4484
4485 verifyStatepoint(Call);
4486 break;
4487 case Intrinsic::experimental_gc_result: {
4488 Assert(Call.getParent()->getParent()->hasGC(),do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
4489 "Enclosing function does not use GC.", Call)do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
;
4490 // Are we tied to a statepoint properly?
4491 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4492 const Function *StatepointFn =
4493 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4494 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, Call, Call.getArgOperand(0)); return; } } while (false)
4495 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, Call, Call.getArgOperand(0)); return; } } while (false)
4496 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, Call, Call.getArgOperand(0)); return; } } while (false)
4497 "gc.result operand #1 must be from a statepoint", Call,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, Call, Call.getArgOperand(0)); return; } } while (false)
4498 Call.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, Call, Call.getArgOperand(0)); return; } } while (false)
;
4499
4500 // Assert that result type matches wrapped callee.
4501 const Value *Target = StatepointCall->getArgOperand(2);
4502 auto *PT = cast<PointerType>(Target->getType());
4503 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4504 Assert(Call.getType() == TargetFuncType->getReturnType(),do { if (!(Call.getType() == TargetFuncType->getReturnType
())) { CheckFailed("gc.result result type does not match wrapped callee"
, Call); return; } } while (false)
4505 "gc.result result type does not match wrapped callee", Call)do { if (!(Call.getType() == TargetFuncType->getReturnType
())) { CheckFailed("gc.result result type does not match wrapped callee"
, Call); return; } } while (false)
;
4506 break;
4507 }
4508 case Intrinsic::experimental_gc_relocate: {
4509 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call)do { if (!(Call.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, Call); return; } } while (false)
;
4510
4511 Assert(isa<PointerType>(Call.getType()->getScalarType()),do { if (!(isa<PointerType>(Call.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, Call); return; } } while (false)
4512 "gc.relocate must return a pointer or a vector of pointers", Call)do { if (!(isa<PointerType>(Call.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, Call); return; } } while (false)
;
4513
4514 // Check that this relocate is correctly tied to the statepoint
4515
4516 // This is case for relocate on the unwinding path of an invoke statepoint
4517 if (LandingPadInst *LandingPad =
4518 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4519
4520 const BasicBlock *InvokeBB =
4521 LandingPad->getParent()->getUniquePredecessor();
4522
4523 // Landingpad relocates should have only one predecessor with invoke
4524 // statepoint terminator
4525 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4526 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4527 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4528 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4529 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4530 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4531 } else {
4532 // In all other cases relocate should be tied to the statepoint directly.
4533 // This covers relocates on a normal return path of invoke statepoint and
4534 // relocates of a call statepoint.
4535 auto Token = Call.getArgOperand(0);
4536 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, Call, Token); return; } } while (false)
4537 "gc relocate is incorrectly tied to the statepoint", Call, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, Call, Token); return; } } while (false)
;
4538 }
4539
4540 // Verify rest of the relocate arguments.
4541 const CallBase &StatepointCall =
4542 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4543
4544 // Both the base and derived must be piped through the safepoint.
4545 Value *Base = Call.getArgOperand(1);
4546 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, Call); return; } } while (false)
4547 "gc.relocate operand #2 must be integer offset", Call)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, Call); return; } } while (false)
;
4548
4549 Value *Derived = Call.getArgOperand(2);
4550 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, Call); return; } } while (false)
4551 "gc.relocate operand #3 must be integer offset", Call)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, Call); return; } } while (false)
;
4552
4553 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4554 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4555 // Check the bounds
4556 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCall
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, Call); return; } } while (false)
4557 "gc.relocate: statepoint base index out of bounds", Call)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCall
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, Call); return; } } while (false)
;
4558 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCall.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, Call); return; } } while (false)
4559 "gc.relocate: statepoint derived index out of bounds", Call)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCall.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, Call); return; } } while (false)
;
4560
4561 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4562 // section of the statepoint's argument.
4563 Assert(StatepointCall.arg_size() > 0,do { if (!(StatepointCall.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4564 "gc.statepoint: insufficient arguments")do { if (!(StatepointCall.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4565 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(3)))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4566 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(3)))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4567 const unsigned NumCallArgs =
4568 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4569 Assert(StatepointCall.arg_size() > NumCallArgs + 5,do { if (!(StatepointCall.arg_size() > NumCallArgs + 5)) {
CheckFailed("gc.statepoint: mismatch in number of call arguments"
); return; } } while (false)
4570 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCall.arg_size() > NumCallArgs + 5)) {
CheckFailed("gc.statepoint: mismatch in number of call arguments"
); return; } } while (false)
;
4571 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(NumCallArgs + 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4572 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(NumCallArgs + 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4573 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(NumCallArgs + 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4574 const int NumTransitionArgs =
4575 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4576 ->getZExtValue();
4577 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4578 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(DeoptArgsStart)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4579 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(DeoptArgsStart)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4580 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(DeoptArgsStart)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4581 const int NumDeoptArgs =
4582 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4583 ->getZExtValue();
4584 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4585 const int GCParamArgsEnd = StatepointCall.arg_size();
4586 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4587 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4588 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4589 Call)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
;
4590 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4591 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4592 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4593 Call)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
;
4594
4595 // Relocated value must be either a pointer type or vector-of-pointer type,
4596 // but gc_relocate does not need to return the same pointer type as the
4597 // relocated pointer. It can be casted to the correct type later if it's
4598 // desired. However, they must have the same address space and 'vectorness'
4599 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4600 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, Call); return; } } while (false)
4601 "gc.relocate: relocated value must be a gc pointer", Call)do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, Call); return; } } while (false)
;
4602
4603 auto ResultType = Call.getType();
4604 auto DerivedType = Relocate.getDerivedPtr()->getType();
4605 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, Call); return; } } while (false)
4606 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, Call); return; } } while (false)
4607 Call)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, Call); return; } } while (false)
;
4608 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, Call); return; } } while (false)
4609 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, Call); return; } } while (false)
4610 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, Call); return; } } while (false)
4611 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, Call); return; } } while (false)
4612 Call)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, Call); return; } } while (false)
;
4613 break;
4614 }
4615 case Intrinsic::eh_exceptioncode:
4616 case Intrinsic::eh_exceptionpointer: {
4617 Assert(isa<CatchPadInst>(Call.getArgOperand(0)),do { if (!(isa<CatchPadInst>(Call.getArgOperand(0)))) {
CheckFailed("eh.exceptionpointer argument must be a catchpad"
, Call); return; } } while (false)
4618 "eh.exceptionpointer argument must be a catchpad", Call)do { if (!(isa<CatchPadInst>(Call.getArgOperand(0)))) {
CheckFailed("eh.exceptionpointer argument must be a catchpad"
, Call); return; } } while (false)
;
4619 break;
4620 }
4621 case Intrinsic::masked_load: {
4622 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",do { if (!(Call.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, Call); return; } } while (false)
4623 Call)do { if (!(Call.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, Call); return; } } while (false)
;
4624
4625 Value *Ptr = Call.getArgOperand(0);
4626 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4627 Value *Mask = Call.getArgOperand(2);
4628 Value *PassThru = Call.getArgOperand(3);
4629 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", Call); return; } } while
(false)
4630 Call)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", Call); return; } } while
(false)
;
4631 Assert(Alignment->getValue().isPowerOf2(),do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed
("masked_load: alignment must be a power of 2", Call); return
; } } while (false)
4632 "masked_load: alignment must be a power of 2", Call)do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed
("masked_load: alignment must be a power of 2", Call); return
; } } while (false)
;
4633
4634 // DataTy is the overloaded type
4635 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4636 Assert(DataTy == Call.getType(),do { if (!(DataTy == Call.getType())) { CheckFailed("masked_load: return must match pointer type"
, Call); return; } } while (false)
4637 "masked_load: return must match pointer type", Call)do { if (!(DataTy == Call.getType())) { CheckFailed("masked_load: return must match pointer type"
, Call); return; } } while (false)
;
4638 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, Call); return; } } while (false)
4639 "masked_load: pass through and data type must match", Call)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, Call); return; } } while (false)
;
4640 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, Call); return; } } while (false)
4641 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, Call); return; } } while (false)
4642 "masked_load: vector mask must be same length as data", Call)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, Call); return; } } while (false)
;
4643 break;
4644 }
4645 case Intrinsic::masked_store: {
4646 Value *Val = Call.getArgOperand(0);
4647 Value *Ptr = Call.getArgOperand(1);
4648 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4649 Value *Mask = Call.getArgOperand(3);
4650 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", Call); return; } } while
(false)
4651 Call)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", Call); return; } } while
(false)
;
4652 Assert(Alignment->getValue().isPowerOf2(),do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed
("masked_store: alignment must be a power of 2", Call); return
; } } while (false)
4653 "masked_store: alignment must be a power of 2", Call)do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed
("masked_store: alignment must be a power of 2", Call); return
; } } while (false)
;
4654
4655 // DataTy is the overloaded type
4656 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4657 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, Call); return; } } while (false)
4658 "masked_store: storee must match pointer type", Call)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, Call); return; } } while (false)
;
4659 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, Call); return; } } while (false)
4660 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, Call); return; } } while (false)
4661 "masked_store: vector mask must be same length as data", Call)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, Call); return; } } while (false)
;
4662 break;
4663 }
4664
4665 case Intrinsic::masked_gather: {
4666 const APInt &Alignment =
4667 cast<ConstantInt>(Call.getArgOperand(1))->getValue();
4668 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),do { if (!(Alignment.isNullValue() || Alignment.isPowerOf2())
) { CheckFailed("masked_gather: alignment must be 0 or a power of 2"
, Call); return; } } while (false)
4669 "masked_gather: alignment must be 0 or a power of 2", Call)do { if (!(Alignment.isNullValue() || Alignment.isPowerOf2())
) { CheckFailed("masked_gather: alignment must be 0 or a power of 2"
, Call); return; } } while (false)
;
4670 break;
4671 }
4672 case Intrinsic::masked_scatter: {
4673 const APInt &Alignment =
4674 cast<ConstantInt>(Call.getArgOperand(2))->getValue();
4675 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),do { if (!(Alignment.isNullValue() || Alignment.isPowerOf2())
) { CheckFailed("masked_scatter: alignment must be 0 or a power of 2"
, Call); return; } } while (false)
4676 "masked_scatter: alignment must be 0 or a power of 2", Call)do { if (!(Alignment.isNullValue() || Alignment.isPowerOf2())
) { CheckFailed("masked_scatter: alignment must be 0 or a power of 2"
, Call); return; } } while (false)
;
4677 break;
4678 }
4679
4680 case Intrinsic::experimental_guard: {
4681 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call)do { if (!(isa<CallInst>(Call))) { CheckFailed("experimental_guard cannot be invoked"
, Call); return; } } while (false)
;
4682 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4683 "experimental_guard must have exactly one "do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4684 "\"deopt\" operand bundle")do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4685 break;
4686 }
4687
4688 case Intrinsic::experimental_deoptimize: {
4689 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",do { if (!(isa<CallInst>(Call))) { CheckFailed("experimental_deoptimize cannot be invoked"
, Call); return; } } while (false)
4690 Call)do { if (!(isa<CallInst>(Call))) { CheckFailed("experimental_deoptimize cannot be invoked"
, Call); return; } } while (false)
;
4691 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4692 "experimental_deoptimize must have exactly one "do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4693 "\"deopt\" operand bundle")do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4694 Assert(Call.getType() == Call.getFunction()->getReturnType(),do { if (!(Call.getType() == Call.getFunction()->getReturnType
())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4695 "experimental_deoptimize return type must match caller return type")do { if (!(Call.getType() == Call.getFunction()->getReturnType
())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4696
4697 if (isa<CallInst>(Call)) {
4698 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4699 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4700 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4701
4702 if (!Call.getType()->isVoidTy() && RI)
4703 Assert(RI->getReturnValue() == &Call,do { if (!(RI->getReturnValue() == &Call)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4704 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == &Call)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4705 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == &Call)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4706 }
4707
4708 break;
4709 }
4710 case Intrinsic::sadd_sat:
4711 case Intrinsic::uadd_sat:
4712 case Intrinsic::ssub_sat:
4713 case Intrinsic::usub_sat: {
4714 Value *Op1 = Call.getArgOperand(0);
4715 Value *Op2 = Call.getArgOperand(1);
4716 Assert(Op1->getType()->isIntOrIntVectorTy(),do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
4717 "first operand of [us][add|sub]_sat must be an int type or vector "do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
4718 "of ints")do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
;
4719 Assert(Op2->getType()->isIntOrIntVectorTy(),do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
4720 "second operand of [us][add|sub]_sat must be an int type or vector "do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
4721 "of ints")do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
;
4722 break;
4723 }
4724 case Intrinsic::smul_fix:
4725 case Intrinsic::smul_fix_sat:
4726 case Intrinsic::umul_fix:
4727 case Intrinsic::umul_fix_sat:
4728 case Intrinsic::sdiv_fix:
4729 case Intrinsic::sdiv_fix_sat:
4730 case Intrinsic::udiv_fix:
4731 case Intrinsic::udiv_fix_sat: {
4732 Value *Op1 = Call.getArgOperand(0);
4733 Value *Op2 = Call.getArgOperand(1);
4734 Assert(Op1->getType()->isIntOrIntVectorTy(),do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us][mul|div]_fix[_sat] must be an int type or "
"vector of ints"); return; } } while (false)
4735 "first operand of [us][mul|div]_fix[_sat] must be an int type or "do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us][mul|div]_fix[_sat] must be an int type or "
"vector of ints"); return; } } while (false)
4736 "vector of ints")do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us][mul|div]_fix[_sat] must be an int type or "
"vector of ints"); return; } } while (false)
;
4737 Assert(Op2->getType()->isIntOrIntVectorTy(),do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us][mul|div]_fix[_sat] must be an int type or "
"vector of ints"); return; } } while (false)
4738 "second operand of [us][mul|div]_fix[_sat] must be an int type or "do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us][mul|div]_fix[_sat] must be an int type or "
"vector of ints"); return; } } while (false)
4739 "vector of ints")do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us][mul|div]_fix[_sat] must be an int type or "
"vector of ints"); return; } } while (false)
;
4740
4741 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4742 Assert(Op3->getType()->getBitWidth() <= 32,do { if (!(Op3->getType()->getBitWidth() <= 32)) { CheckFailed
("third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"
); return; } } while (false)
4743 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits")do { if (!(Op3->getType()->getBitWidth() <= 32)) { CheckFailed
("third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"
); return; } } while (false)
;
4744
4745 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
4746 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
4747 Assert(do { if (!(Op3->getZExtValue() < Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of s[mul|div]_fix[_sat] must be less than the width of "
"the operands"); return; } } while (false)
4748 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),do { if (!(Op3->getZExtValue() < Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of s[mul|div]_fix[_sat] must be less than the width of "
"the operands"); return; } } while (false)
4749 "the scale of s[mul|div]_fix[_sat] must be less than the width of "do { if (!(Op3->getZExtValue() < Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of s[mul|div]_fix[_sat] must be less than the width of "
"the operands"); return; } } while (false)
4750 "the operands")do { if (!(Op3->getZExtValue() < Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of s[mul|div]_fix[_sat] must be less than the width of "
"the operands"); return; } } while (false)
;
4751 } else {
4752 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),do { if (!(Op3->getZExtValue() <= Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of u[mul|div]_fix[_sat] must be less than or equal "
"to the width of the operands"); return; } } while (false)
4753 "the scale of u[mul|div]_fix[_sat] must be less than or equal "do { if (!(Op3->getZExtValue() <= Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of u[mul|div]_fix[_sat] must be less than or equal "
"to the width of the operands"); return; } } while (false)
4754 "to the width of the operands")do { if (!(Op3->getZExtValue() <= Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of u[mul|div]_fix[_sat] must be less than or equal "
"to the width of the operands"); return; } } while (false)
;
4755 }
4756 break;
4757 }
4758 case Intrinsic::lround:
4759 case Intrinsic::llround:
4760 case Intrinsic::lrint:
4761 case Intrinsic::llrint: {
4762 Type *ValTy = Call.getArgOperand(0)->getType();
4763 Type *ResultTy = Call.getType();
4764 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy
())) { CheckFailed("Intrinsic does not support vectors", &
Call); return; } } while (false)
4765 "Intrinsic does not support vectors", &Call)do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy
())) { CheckFailed("Intrinsic does not support vectors", &
Call); return; } } while (false)
;
4766 break;
4767 }
4768 };
4769}
4770
4771/// Carefully grab the subprogram from a local scope.
4772///
4773/// This carefully grabs the subprogram from a local scope, avoiding the
4774/// built-in assertions that would typically fire.
4775static DISubprogram *getSubprogram(Metadata *LocalScope) {
4776 if (!LocalScope)
4777 return nullptr;
4778
4779 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4780 return SP;
4781
4782 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4783 return getSubprogram(LB->getRawScope());
4784
4785 // Just return null; broken scope chains are checked elsewhere.
4786 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"
) ? static_cast<void> (0) : __assert_fail ("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 4786, __PRETTY_FUNCTION__))
;
4787 return nullptr;
4788}
4789
4790void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4791 unsigned NumOperands;
4792 bool HasRoundingMD;
4793 switch (FPI.getIntrinsicID()) {
4794#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
4795 case Intrinsic::INTRINSIC: \
4796 NumOperands = NARG; \
4797 HasRoundingMD = ROUND_MODE; \
4798 break;
4799#include "llvm/IR/ConstrainedOps.def"
4800 default:
4801 llvm_unreachable("Invalid constrained FP intrinsic!")::llvm::llvm_unreachable_internal("Invalid constrained FP intrinsic!"
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 4801)
;
4802 }
4803 NumOperands += (1 + HasRoundingMD);
4804 // Compare intrinsics carry an extra predicate metadata operand.
4805 if (isa<ConstrainedFPCmpIntrinsic>(FPI))
4806 NumOperands += 1;
4807 Assert((FPI.getNumArgOperands() == NumOperands),do { if (!((FPI.getNumArgOperands() == NumOperands))) { CheckFailed
("invalid arguments for constrained FP intrinsic", &FPI);
return; } } while (false)
4808 "invalid arguments for constrained FP intrinsic", &FPI)do { if (!((FPI.getNumArgOperands() == NumOperands))) { CheckFailed
("invalid arguments for constrained FP intrinsic", &FPI);
return; } } while (false)
;
4809
4810 switch (FPI.getIntrinsicID()) {
4811 case Intrinsic::experimental_constrained_lrint:
4812 case Intrinsic::experimental_constrained_llrint: {
4813 Type *ValTy = FPI.getArgOperand(0)->getType();
4814 Type *ResultTy = FPI.getType();
4815 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy
())) { CheckFailed("Intrinsic does not support vectors", &
FPI); return; } } while (false)
4816 "Intrinsic does not support vectors", &FPI)do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy
())) { CheckFailed("Intrinsic does not support vectors", &
FPI); return; } } while (false)
;
4817 }
4818 break;
4819
4820 case Intrinsic::experimental_constrained_lround:
4821 case Intrinsic::experimental_constrained_llround: {
4822 Type *ValTy = FPI.getArgOperand(0)->getType();
4823 Type *ResultTy = FPI.getType();
4824 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy
())) { CheckFailed("Intrinsic does not support vectors", &
FPI); return; } } while (false)
4825 "Intrinsic does not support vectors", &FPI)do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy
())) { CheckFailed("Intrinsic does not support vectors", &
FPI); return; } } while (false)
;
4826 break;
4827 }
4828
4829 case Intrinsic::experimental_constrained_fcmp:
4830 case Intrinsic::experimental_constrained_fcmps: {
4831 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
4832 Assert(CmpInst::isFPPredicate(Pred),do { if (!(CmpInst::isFPPredicate(Pred))) { CheckFailed("invalid predicate for constrained FP comparison intrinsic"
, &FPI); return; } } while (false)
4833 "invalid predicate for constrained FP comparison intrinsic", &FPI)do { if (!(CmpInst::isFPPredicate(Pred))) { CheckFailed("invalid predicate for constrained FP comparison intrinsic"
, &FPI); return; } } while (false)
;
4834 break;
4835 }
4836
4837 case Intrinsic::experimental_constrained_fptosi:
4838 case Intrinsic::experimental_constrained_fptoui: {
4839 Value *Operand = FPI.getArgOperand(0);
4840 uint64_t NumSrcElem = 0;
4841 Assert(Operand->getType()->isFPOrFPVectorTy(),do { if (!(Operand->getType()->isFPOrFPVectorTy())) { CheckFailed
("Intrinsic first argument must be floating point", &FPI)
; return; } } while (false)
4842 "Intrinsic first argument must be floating point", &FPI)do { if (!(Operand->getType()->isFPOrFPVectorTy())) { CheckFailed
("Intrinsic first argument must be floating point", &FPI)
; return; } } while (false)
;
4843 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4844 NumSrcElem = OperandT->getNumElements();
4845 }
4846
4847 Operand = &FPI;
4848 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),do { if (!((NumSrcElem > 0) == Operand->getType()->isVectorTy
())) { CheckFailed("Intrinsic first argument and result disagree on vector use"
, &FPI); return; } } while (false)
4849 "Intrinsic first argument and result disagree on vector use", &FPI)do { if (!((NumSrcElem > 0) == Operand->getType()->isVectorTy
())) { CheckFailed("Intrinsic first argument and result disagree on vector use"
, &FPI); return; } } while (false)
;
4850 Assert(Operand->getType()->isIntOrIntVectorTy(),do { if (!(Operand->getType()->isIntOrIntVectorTy())) {
CheckFailed("Intrinsic result must be an integer", &FPI)
; return; } } while (false)
4851 "Intrinsic result must be an integer", &FPI)do { if (!(Operand->getType()->isIntOrIntVectorTy())) {
CheckFailed("Intrinsic result must be an integer", &FPI)
; return; } } while (false)
;
4852 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4853 Assert(NumSrcElem == OperandT->getNumElements(),do { if (!(NumSrcElem == OperandT->getNumElements())) { CheckFailed
("Intrinsic first argument and result vector lengths must be equal"
, &FPI); return; } } while (false)
4854 "Intrinsic first argument and result vector lengths must be equal",do { if (!(NumSrcElem == OperandT->getNumElements())) { CheckFailed
("Intrinsic first argument and result vector lengths must be equal"
, &FPI); return; } } while (false)
4855 &FPI)do { if (!(NumSrcElem == OperandT->getNumElements())) { CheckFailed
("Intrinsic first argument and result vector lengths must be equal"
, &FPI); return; } } while (false)
;
4856 }
4857 }
4858 break;
4859
4860 case Intrinsic::experimental_constrained_sitofp:
4861 case Intrinsic::experimental_constrained_uitofp: {
4862 Value *Operand = FPI.getArgOperand(0);
4863 uint64_t NumSrcElem = 0;
4864 Assert(Operand->getType()->isIntOrIntVectorTy(),do { if (!(Operand->getType()->isIntOrIntVectorTy())) {
CheckFailed("Intrinsic first argument must be integer", &
FPI); return; } } while (false)
4865 "Intrinsic first argument must be integer", &FPI)do { if (!(Operand->getType()->isIntOrIntVectorTy())) {
CheckFailed("Intrinsic first argument must be integer", &
FPI); return; } } while (false)
;
4866 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4867 NumSrcElem = OperandT->getNumElements();
4868 }
4869
4870 Operand = &FPI;
4871 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),do { if (!((NumSrcElem > 0) == Operand->getType()->isVectorTy
())) { CheckFailed("Intrinsic first argument and result disagree on vector use"
, &FPI); return; } } while (false)
4872 "Intrinsic first argument and result disagree on vector use", &FPI)do { if (!((NumSrcElem > 0) == Operand->getType()->isVectorTy
())) { CheckFailed("Intrinsic first argument and result disagree on vector use"
, &FPI); return; } } while (false)
;
4873 Assert(Operand->getType()->isFPOrFPVectorTy(),do { if (!(Operand->getType()->isFPOrFPVectorTy())) { CheckFailed
("Intrinsic result must be a floating point", &FPI); return
; } } while (false)
4874 "Intrinsic result must be a floating point", &FPI)do { if (!(Operand->getType()->isFPOrFPVectorTy())) { CheckFailed
("Intrinsic result must be a floating point", &FPI); return
; } } while (false)
;
4875 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4876 Assert(NumSrcElem == OperandT->getNumElements(),do { if (!(NumSrcElem == OperandT->getNumElements())) { CheckFailed
("Intrinsic first argument and result vector lengths must be equal"
, &FPI); return; } } while (false)
4877 "Intrinsic first argument and result vector lengths must be equal",do { if (!(NumSrcElem == OperandT->getNumElements())) { CheckFailed
("Intrinsic first argument and result vector lengths must be equal"
, &FPI); return; } } while (false)
4878 &FPI)do { if (!(NumSrcElem == OperandT->getNumElements())) { CheckFailed
("Intrinsic first argument and result vector lengths must be equal"
, &FPI); return; } } while (false)
;
4879 }
4880 } break;
4881
4882 case Intrinsic::experimental_constrained_fptrunc:
4883 case Intrinsic::experimental_constrained_fpext: {
4884 Value *Operand = FPI.getArgOperand(0);
4885 Type *OperandTy = Operand->getType();
4886 Value *Result = &FPI;
4887 Type *ResultTy = Result->getType();
4888 Assert(OperandTy->isFPOrFPVectorTy(),do { if (!(OperandTy->isFPOrFPVectorTy())) { CheckFailed("Intrinsic first argument must be FP or FP vector"
, &FPI); return; } } while (false)
4889 "Intrinsic first argument must be FP or FP vector", &FPI)do { if (!(OperandTy->isFPOrFPVectorTy())) { CheckFailed("Intrinsic first argument must be FP or FP vector"
, &FPI); return; } } while (false)
;
4890 Assert(ResultTy->isFPOrFPVectorTy(),do { if (!(ResultTy->isFPOrFPVectorTy())) { CheckFailed("Intrinsic result must be FP or FP vector"
, &FPI); return; } } while (false)
4891 "Intrinsic result must be FP or FP vector", &FPI)do { if (!(ResultTy->isFPOrFPVectorTy())) { CheckFailed("Intrinsic result must be FP or FP vector"
, &FPI); return; } } while (false)
;
4892 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),do { if (!(OperandTy->isVectorTy() == ResultTy->isVectorTy
())) { CheckFailed("Intrinsic first argument and result disagree on vector use"
, &FPI); return; } } while (false)
4893 "Intrinsic first argument and result disagree on vector use", &FPI)do { if (!(OperandTy->isVectorTy() == ResultTy->isVectorTy
())) { CheckFailed("Intrinsic first argument and result disagree on vector use"
, &FPI); return; } } while (false)
;
4894 if (OperandTy->isVectorTy()) {
4895 auto *OperandVecTy = cast<VectorType>(OperandTy);
4896 auto *ResultVecTy = cast<VectorType>(ResultTy);
4897 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),do { if (!(OperandVecTy->getNumElements() == ResultVecTy->
getNumElements())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal"
, &FPI); return; } } while (false)
4898 "Intrinsic first argument and result vector lengths must be equal",do { if (!(OperandVecTy->getNumElements() == ResultVecTy->
getNumElements())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal"
, &FPI); return; } } while (false)
4899 &FPI)do { if (!(OperandVecTy->getNumElements() == ResultVecTy->
getNumElements())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal"
, &FPI); return; } } while (false)
;
4900 }
4901 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4902 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),do { if (!(OperandTy->getScalarSizeInBits() > ResultTy->
getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be larger than result type"
, &FPI); return; } } while (false)
4903 "Intrinsic first argument's type must be larger than result type",do { if (!(OperandTy->getScalarSizeInBits() > ResultTy->
getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be larger than result type"
, &FPI); return; } } while (false)
4904 &FPI)do { if (!(OperandTy->getScalarSizeInBits() > ResultTy->
getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be larger than result type"
, &FPI); return; } } while (false)
;
4905 } else {
4906 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),do { if (!(OperandTy->getScalarSizeInBits() < ResultTy->
getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be smaller than result type"
, &FPI); return; } } while (false)
4907 "Intrinsic first argument's type must be smaller than result type",do { if (!(OperandTy->getScalarSizeInBits() < ResultTy->
getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be smaller than result type"
, &FPI); return; } } while (false)
4908 &FPI)do { if (!(OperandTy->getScalarSizeInBits() < ResultTy->
getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be smaller than result type"
, &FPI); return; } } while (false)
;
4909 }
4910 }
4911 break;
4912
4913 default:
4914 break;
4915 }
4916
4917 // If a non-metadata argument is passed in a metadata slot then the
4918 // error will be caught earlier when the incorrect argument doesn't
4919 // match the specification in the intrinsic call table. Thus, no
4920 // argument type check is needed here.
4921
4922 Assert(FPI.getExceptionBehavior().hasValue(),do { if (!(FPI.getExceptionBehavior().hasValue())) { CheckFailed
("invalid exception behavior argument", &FPI); return; } }
while (false)
4923 "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior().hasValue())) { CheckFailed
("invalid exception behavior argument", &FPI); return; } }
while (false)
;
4924 if (HasRoundingMD) {
4925 Assert(FPI.getRoundingMode().hasValue(),do { if (!(FPI.getRoundingMode().hasValue())) { CheckFailed("invalid rounding mode argument"
, &FPI); return; } } while (false)
4926 "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode().hasValue())) { CheckFailed("invalid rounding mode argument"
, &FPI); return; } } while (false)
;
4927 }
4928}
4929
4930void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4931 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4932 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4933 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4934 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4935 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4936 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4937 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4938 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4939 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4940 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4941
4942 // Ignore broken !dbg attachments; they're checked elsewhere.
4943 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4944 if (!isa<DILocation>(N))
4945 return;
4946
4947 BasicBlock *BB = DII.getParent();
4948 Function *F = BB ? BB->getParent() : nullptr;
4949
4950 // The scopes for variables and !dbg attachments must agree.
4951 DILocalVariable *Var = DII.getVariable();
4952 DILocation *Loc = DII.getDebugLoc();
4953 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { DebugInfoCheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4954 &DII, BB, F)do { if (!(Loc)) { DebugInfoCheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4955
4956 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4957 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4958 if (!VarSP || !LocSP)
4959 return; // Broken scope chains are checked elsewhere.
4960
4961 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4962 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4963 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4964 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4965
4966 // This check is redundant with one in visitLocalVariable().
4967 AssertDI(isType(Var->getRawType()), "invalid type ref", Var,do { if (!(isType(Var->getRawType()))) { DebugInfoCheckFailed
("invalid type ref", Var, Var->getRawType()); return; } } while
(false)
4968 Var->getRawType())do { if (!(isType(Var->getRawType()))) { DebugInfoCheckFailed
("invalid type ref", Var, Var->getRawType()); return; } } while
(false)
;
4969 verifyFnArgs(DII);
4970}
4971
4972void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4973 AssertDI(isa<DILabel>(DLI.getRawLabel()),do { if (!(isa<DILabel>(DLI.getRawLabel()))) { DebugInfoCheckFailed
("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI
, DLI.getRawLabel()); return; } } while (false)
4974 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,do { if (!(isa<DILabel>(DLI.getRawLabel()))) { DebugInfoCheckFailed
("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI
, DLI.getRawLabel()); return; } } while (false)
4975 DLI.getRawLabel())do { if (!(isa<DILabel>(DLI.getRawLabel()))) { DebugInfoCheckFailed
("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI
, DLI.getRawLabel()); return; } } while (false)
;
4976
4977 // Ignore broken !dbg attachments; they're checked elsewhere.
4978 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4979 if (!isa<DILocation>(N))
4980 return;
4981
4982 BasicBlock *BB = DLI.getParent();
4983 Function *F = BB ? BB->getParent() : nullptr;
4984
4985 // The scopes for variables and !dbg attachments must agree.
4986 DILabel *Label = DLI.getLabel();
4987 DILocation *Loc = DLI.getDebugLoc();
4988 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DLI, BB, F); return; } } while (false)
4989 &DLI, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DLI, BB, F); return; } } while (false)
;
4990
4991 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4992 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4993 if (!LabelSP || !LocSP)
4994 return;
4995
4996 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4997 " label and !dbg attachment",do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4998 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4999 Loc->getScope()->getSubprogram())do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
5000}
5001
5002void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5003 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5004 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5005
5006 // We don't know whether this intrinsic verified correctly.
5007 if (!V || !E || !E->isValid())
5008 return;
5009
5010 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5011 auto Fragment = E->getFragmentInfo();
5012 if (!Fragment)
5013 return;
5014
5015 // The frontend helps out GDB by emitting the members of local anonymous
5016 // unions as artificial local variables with shared storage. When SROA splits
5017 // the storage for artificial local variables that are smaller than the entire
5018 // union, the overhang piece will be outside of the allotted space for the
5019 // variable and this check fails.
5020 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5021 if (V->isArtificial())
5022 return;
5023
5024 verifyFragmentExpression(*V, *Fragment, &I);
5025}
5026
5027template <typename ValueOrMetadata>
5028void Verifier::verifyFragmentExpression(const DIVariable &V,
5029 DIExpression::FragmentInfo Fragment,
5030 ValueOrMetadata *Desc) {
5031 // If there's no size, the type is broken, but that should be checked
5032 // elsewhere.
5033 auto VarSize = V.getSizeInBits();
5034 if (!VarSize)
5035 return;
5036
5037 unsigned FragSize = Fragment.SizeInBits;
5038 unsigned FragOffset = Fragment.OffsetInBits;
5039 AssertDI(FragSize + FragOffset <= *VarSize,do { if (!(FragSize + FragOffset <= *VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", Desc, &
V); return; } } while (false)
5040 "fragment is larger than or outside of variable", Desc, &V)do { if (!(FragSize + FragOffset <= *VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", Desc, &
V); return; } } while (false)
;
5041 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V)do { if (!(FragSize != *VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, Desc, &V); return; } } while (false)
;
5042}
5043
5044void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5045 // This function does not take the scope of noninlined function arguments into
5046 // account. Don't run it if current function is nodebug, because it may
5047 // contain inlined debug intrinsics.
5048 if (!HasDebugInfo)
5049 return;
5050
5051 // For performance reasons only check non-inlined ones.
5052 if (I.getDebugLoc()->getInlinedAt())
5053 return;
5054
5055 DILocalVariable *Var = I.getVariable();
5056 AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable"
); return; } } while (false)
;
5057
5058 unsigned ArgNo = Var->getArg();
5059 if (!ArgNo)
5060 return;
5061
5062 // Verify there are no duplicate function argument debug info entries.
5063 // These will cause hard-to-debug assertions in the DWARF backend.
5064 if (DebugFnArgs.size() < ArgNo)
5065 DebugFnArgs.resize(ArgNo, nullptr);
5066
5067 auto *Prev = DebugFnArgs[ArgNo - 1];
5068 DebugFnArgs[ArgNo - 1] = Var;
5069 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
5070 Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
;
5071}
5072
5073void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5074 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5075
5076 // We don't know whether this intrinsic verified correctly.
5077 if (!E || !E->isValid())
5078 return;
5079
5080 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I)do { if (!(!E->isEntryValue())) { DebugInfoCheckFailed("Entry values are only allowed in MIR"
, &I); return; } } while (false)
;
5081}
5082
5083void Verifier::verifyCompileUnits() {
5084 // When more than one Module is imported into the same context, such as during
5085 // an LTO build before linking the modules, ODR type uniquing may cause types
5086 // to point to a different CU. This check does not make sense in this case.
5087 if (M.getContext().isODRUniquingDebugTypes())
5088 return;
5089 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5090 SmallPtrSet<const Metadata *, 2> Listed;
5091 if (CUs)
5092 Listed.insert(CUs->op_begin(), CUs->op_end());
5093 for (auto *CU : CUVisited)
5094 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu"
, CU); return; } } while (false)
;
5095 CUVisited.clear();
5096}
5097
5098void Verifier::verifyDeoptimizeCallingConvs() {
5099 if (DeoptimizeDeclarations.empty())
5100 return;
5101
5102 const Function *First = DeoptimizeDeclarations[0];
5103 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5104 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
5105 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
5106 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
5107 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
5108 }
5109}
5110
5111void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5112 bool HasSource = F.getSource().hasValue();
5113 if (!HasSourceDebugInfo.count(&U))
5114 HasSourceDebugInfo[&U] = HasSource;
5115 AssertDI(HasSource == HasSourceDebugInfo[&U],do { if (!(HasSource == HasSourceDebugInfo[&U])) { DebugInfoCheckFailed
("inconsistent use of embedded source"); return; } } while (false
)
5116 "inconsistent use of embedded source")do { if (!(HasSource == HasSourceDebugInfo[&U])) { DebugInfoCheckFailed
("inconsistent use of embedded source"); return; } } while (false
)
;
5117}
5118
5119//===----------------------------------------------------------------------===//
5120// Implement the public interfaces to this file...
5121//===----------------------------------------------------------------------===//
5122
5123bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5124 Function &F = const_cast<Function &>(f);
5125
5126 // Don't use a raw_null_ostream. Printing IR is expensive.
5127 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5128
5129 // Note that this function's return value is inverted from what you would
5130 // expect of a function called "verify".
5131 return !V.verify(F);
5132}
5133
5134bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5135 bool *BrokenDebugInfo) {
5136 // Don't use a raw_null_ostream. Printing IR is expensive.
5137 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5138
5139 bool Broken = false;
5140 for (const Function &F : M)
5141 Broken |= !V.verify(F);
5142
5143 Broken |= !V.verify();
5144 if (BrokenDebugInfo)
5145 *BrokenDebugInfo = V.hasBrokenDebugInfo();
5146 // Note that this function's return value is inverted from what you would
5147 // expect of a function called "verify".
5148 return Broken;
5149}
5150
5151namespace {
5152
5153struct VerifierLegacyPass : public FunctionPass {
5154 static char ID;
5155
5156 std::unique_ptr<Verifier> V;
5157 bool FatalErrors = true;
5158
5159 VerifierLegacyPass() : FunctionPass(ID) {
5160 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5161 }
5162 explicit VerifierLegacyPass(bool FatalErrors)
5163 : FunctionPass(ID),
5164 FatalErrors(FatalErrors) {
5165 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5166 }
5167
5168 bool doInitialization(Module &M) override {
5169 V = std::make_unique<Verifier>(
5170 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5171 return false;
5172 }
5173
5174 bool runOnFunction(Function &F) override {
5175 if (!V->verify(F) && FatalErrors) {
5176 errs() << "in function " << F.getName() << '\n';
5177 report_fatal_error("Broken function found, compilation aborted!");
5178 }
5179 return false;
5180 }
5181
5182 bool doFinalization(Module &M) override {
5183 bool HasErrors = false;
5184 for (Function &F : M)
5185 if (F.isDeclaration())
5186 HasErrors |= !V->verify(F);
5187
5188 HasErrors |= !V->verify();
5189 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5190 report_fatal_error("Broken module found, compilation aborted!");
5191 return false;
5192 }
5193
5194 void getAnalysisUsage(AnalysisUsage &AU) const override {
5195 AU.setPreservesAll();
5196 }
5197};
5198
5199} // end anonymous namespace
5200
5201/// Helper to issue failure from the TBAA verification
5202template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5203 if (Diagnostic)
5204 return Diagnostic->CheckFailed(Args...);
5205}
5206
5207#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
5208 do { \
5209 if (!(C)) { \
5210 CheckFailed(__VA_ARGS__); \
5211 return false; \
5212 } \
5213 } while (false)
5214
5215/// Verify that \p BaseNode can be used as the "base type" in the struct-path
5216/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
5217/// struct-type node describing an aggregate data structure (like a struct).
5218TBAAVerifier::TBAABaseNodeSummary
5219TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5220 bool IsNewFormat) {
5221 if (BaseNode->getNumOperands() < 2) {
5222 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5223 return {true, ~0u};
5224 }
5225
5226 auto Itr = TBAABaseNodes.find(BaseNode);
5227 if (Itr != TBAABaseNodes.end())
5228 return Itr->second;
5229
5230 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5231 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5232 (void)InsertResult;
5233 assert(InsertResult.second && "We just checked!")((InsertResult.second && "We just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 5233, __PRETTY_FUNCTION__))
;
5234 return Result;
5235}
5236
5237TBAAVerifier::TBAABaseNodeSummary
5238TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5239 bool IsNewFormat) {
5240 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5241
5242 if (BaseNode->getNumOperands() == 2) {
5243 // Scalar nodes can only be accessed at offset 0.
5244 return isValidScalarTBAANode(BaseNode)
5245 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5246 : InvalidNode;
5247 }
5248
5249 if (IsNewFormat) {
5250 if (BaseNode->getNumOperands() % 3 != 0) {
5251 CheckFailed("Access tag nodes must have the number of operands that is a "
5252 "multiple of 3!", BaseNode);
5253 return InvalidNode;
5254 }
5255 } else {
5256 if (BaseNode->getNumOperands() % 2 != 1) {
5257 CheckFailed("Struct tag nodes must have an odd number of operands!",
5258 BaseNode);
5259 return InvalidNode;
5260 }
5261 }
5262
5263 // Check the type size field.
5264 if (IsNewFormat) {
5265 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5266 BaseNode->getOperand(1));
5267 if (!TypeSizeNode) {
5268 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5269 return InvalidNode;
5270 }
5271 }
5272
5273 // Check the type name field. In the new format it can be anything.
5274 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5275 CheckFailed("Struct tag nodes have a string as their first operand",
5276 BaseNode);
5277 return InvalidNode;
5278 }
5279
5280 bool Failed = false;
5281
5282 Optional<APInt> PrevOffset;
5283 unsigned BitWidth = ~0u;
5284
5285 // We've already checked that BaseNode is not a degenerate root node with one
5286 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5287 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5288 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5289 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5290 Idx += NumOpsPerField) {
5291 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5292 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5293 if (!isa<MDNode>(FieldTy)) {
5294 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5295 Failed = true;
5296 continue;
5297 }
5298
5299 auto *OffsetEntryCI =
5300 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5301 if (!OffsetEntryCI) {
5302 CheckFailed("Offset entries must be constants!", &I, BaseNode);
5303 Failed = true;
5304 continue;
5305 }
5306
5307 if (BitWidth == ~0u)
5308 BitWidth = OffsetEntryCI->getBitWidth();
5309
5310 if (OffsetEntryCI->getBitWidth() != BitWidth) {
5311 CheckFailed(
5312 "Bitwidth between the offsets and struct type entries must match", &I,
5313 BaseNode);
5314 Failed = true;
5315 continue;
5316 }
5317
5318 // NB! As far as I can tell, we generate a non-strictly increasing offset
5319 // sequence only from structs that have zero size bit fields. When
5320 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5321 // pick the field lexically the latest in struct type metadata node. This
5322 // mirrors the actual behavior of the alias analysis implementation.
5323 bool IsAscending =
5324 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5325
5326 if (!IsAscending) {
5327 CheckFailed("Offsets must be increasing!", &I, BaseNode);
5328 Failed = true;
5329 }
5330
5331 PrevOffset = OffsetEntryCI->getValue();
5332
5333 if (IsNewFormat) {
5334 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5335 BaseNode->getOperand(Idx + 2));
5336 if (!MemberSizeNode) {
5337 CheckFailed("Member size entries must be constants!", &I, BaseNode);
5338 Failed = true;
5339 continue;
5340 }
5341 }
5342 }
5343
5344 return Failed ? InvalidNode
5345 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5346}
5347
5348static bool IsRootTBAANode(const MDNode *MD) {
5349 return MD->getNumOperands() < 2;
5350}
5351
5352static bool IsScalarTBAANodeImpl(const MDNode *MD,
5353 SmallPtrSetImpl<const MDNode *> &Visited) {
5354 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5355 return false;
5356
5357 if (!isa<MDString>(MD->getOperand(0)))
5358 return false;
5359
5360 if (MD->getNumOperands() == 3) {
5361 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5362 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5363 return false;
5364 }
5365
5366 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5367 return Parent && Visited.insert(Parent).second &&
5368 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5369}
5370
5371bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5372 auto ResultIt = TBAAScalarNodes.find(MD);
5373 if (ResultIt != TBAAScalarNodes.end())
5374 return ResultIt->second;
5375
5376 SmallPtrSet<const MDNode *, 4> Visited;
5377 bool Result = IsScalarTBAANodeImpl(MD, Visited);
5378 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5379 (void)InsertResult;
5380 assert(InsertResult.second && "Just checked!")((InsertResult.second && "Just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 5380, __PRETTY_FUNCTION__))
;
5381
5382 return Result;
5383}
5384
5385/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
5386/// Offset in place to be the offset within the field node returned.
5387///
5388/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5389MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5390 const MDNode *BaseNode,
5391 APInt &Offset,
5392 bool IsNewFormat) {
5393 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")((BaseNode->getNumOperands() >= 2 && "Invalid base node!"
) ? static_cast<void> (0) : __assert_fail ("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/build/llvm-toolchain-snapshot-11~++20200301100617+211fb91f106/llvm/lib/IR/Verifier.cpp"
, 5393, __PRETTY_FUNCTION__))
;
5394
5395 // Scalar nodes have only one possible "field" -- their parent in the access
5396 // hierarchy. Offset must be zero at this point, but our caller is supposed
5397 // to Assert that.
5398 if (BaseNode->getNumOperands() == 2)
5399 return cast<MDNode>(BaseNode->getOperand(1));
5400
5401 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5402 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5403 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5404 Idx += NumOpsPerField) {
5405 auto *OffsetEntryCI =
5406 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5407 if (OffsetEntryCI->getValue().ugt(Offset)) {
5408 if (Idx == FirstFieldOpNo) {
5409 CheckFailed("Could not find TBAA parent in struct type node", &I,
5410 BaseNode, &Offset);
5411 return nullptr;
5412 }
5413
5414 unsigned PrevIdx = Idx - NumOpsPerField;
5415 auto *PrevOffsetEntryCI =
5416 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5417 Offset -= PrevOffsetEntryCI->getValue();
5418 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5419 }
5420 }
5421
5422 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5423 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5424 BaseNode->getOperand(LastIdx + 1));
5425 Offset -= LastOffsetEntryCI->getValue();
5426 return cast<MDNode>(BaseNode->getOperand(LastIdx));
5427}
5428
5429static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5430 if (!Type || Type->getNumOperands() < 3)
5431 return false;
5432
5433 // In the new format type nodes shall have a reference to the parent type as
5434 // its first operand.
5435 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5436 if (!Parent)
5437 return false;
5438
5439 return true;
5440}
5441
5442bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5443 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
5444 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
5445 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
5446 "This instruction shall not have a TBAA access tag!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
;
5447
5448 bool IsStructPathTBAA =
5449 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5450
5451 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
5452 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
5453 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
5454
5455 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5456 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5457
5458 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5459
5460 if (IsNewFormat) {
5461 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,do { if (!(MD->getNumOperands() == 4 || MD->getNumOperands
() == 5)) { CheckFailed("Access tag metadata must have either 4 or 5 operands"
, &I, MD); return false; } } while (false)
5462 "Access tag metadata must have either 4 or 5 operands", &I, MD)do { if (!(MD->getNumOperands() == 4 || MD->getNumOperands
() == 5)) { CheckFailed("Access tag metadata must have either 4 or 5 operands"
, &I, MD); return false; } } while (false)
;
5463 } else {
5464 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
5465 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
5466 }
5467
5468 // Check the access size field.
5469 if (IsNewFormat) {
5470 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5471 MD->getOperand(3));
5472 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD)do { if (!(AccessSizeNode)) { CheckFailed("Access size field must be a constant"
, &I, MD); return false; } } while (false)
;
5473 }
5474
5475 // Check the immutability flag.
5476 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5477 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5478 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5479 MD->getOperand(ImmutabilityFlagOpNo));
5480 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
5481 "Immutability tag on struct tag metadata must be a constant",do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
5482 &I, MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
5483 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
5484 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
5485 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
5486 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
5487 }
5488
5489 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
5490 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
5491 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
5492 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
5493
5494 if (!IsNewFormat) {
5495 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
5496 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
5497 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
5498 }
5499
5500 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5501 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
5502
5503 APInt Offset = OffsetCI->getValue();
5504 bool SeenAccessTypeInPath = false;
5505
5506 SmallPtrSet<MDNode *, 4> StructPath;
5507
5508 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5509 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5510 IsNewFormat)) {
5511 if (!StructPath.insert(BaseNode).second) {
5512 CheckFailed("Cycle detected in struct path", &I, MD);
5513 return false;
5514 }
5515
5516 bool Invalid;
5517 unsigned BaseNodeBitWidth;
5518 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5519 IsNewFormat);
5520
5521 // If the base node is invalid in itself, then we've already printed all the
5522 // errors we wanted to print.
5523 if (Invalid)
5524 return false;
5525
5526 SeenAccessTypeInPath |= BaseNode == AccessType;
5527
5528 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5529 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
5530 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
5531
5532 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5533 (BaseNodeBitWidth == 0 && Offset == 0) ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5534 (IsNewFormat && BaseNodeBitWidth == ~0u),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5535 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5536 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
5537
5538 if (IsNewFormat && SeenAccessTypeInPath)
5539 break;
5540 }
5541
5542 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
5543 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
5544 return true;
5545}
5546
5547char VerifierLegacyPass::ID = 0;
5548INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
5549
5550FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5551 return new VerifierLegacyPass(FatalErrors);
5552}
5553
5554AnalysisKey VerifierAnalysis::Key;
5555VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5556 ModuleAnalysisManager &) {
5557 Result Res;
5558 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5559 return Res;
5560}
5561
5562VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5563 FunctionAnalysisManager &) {
5564 return { llvm::verifyFunction(F, &dbgs()), false };
5565}
5566
5567PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5568 auto Res = AM.getResult<VerifierAnalysis>(M);
5569 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5570 report_fatal_error("Broken module found, compilation aborted!");
5571
5572 return PreservedAnalyses::all();
5573}
5574
5575PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5576 auto res = AM.getResult<VerifierAnalysis>(F);
5577 if (res.IRBroken && FatalErrors)
5578 report_fatal_error("Broken function found, compilation aborted!");
5579
5580 return PreservedAnalyses::all();
5581}