Bug Summary

File:llvm/lib/IR/Verifier.cpp
Warning:line 2507, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Verifier.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/build-llvm/lib/IR -I /build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR -I /build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/build-llvm/lib/IR -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-09-26-161721-17566-1 -x c++ /build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp

/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// sanity checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15// * Both of a binary operator's parameters are of the same type
16// * Verify that the indices of mem access instructions match other operands
17// * Verify that arithmetic and other things are only performed on first-class
18// types. Verify that shifts & logicals only happen on integrals f.e.
19// * All of the constants in a switch statement are of the correct type
20// * The code is in valid SSA form
21// * It should be illegal to put a label into any other type (like a structure)
22// or to return one. [except constant arrays!]
23// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24// * PHI nodes must have an entry for each predecessor, with no extras.
25// * PHI nodes must be the first thing in a basic block, all grouped together
26// * PHI nodes must have at least one entry
27// * All basic blocks should only end with terminator insts, not contain them
28// * The entry node to a function must not have predecessors
29// * All Instructions must be embedded into a basic block
30// * Functions cannot take a void-typed parameter
31// * Verify that a function's argument list agrees with it's declared type.
32// * It is illegal to specify a name for a void value.
33// * It is illegal to have a internal global value with no initializer
34// * It is illegal to have a ret instruction that returns a value that does not
35// agree with the function return value type.
36// * Function call argument types match the function prototype
37// * A landing pad is defined by a landingpad instruction, and can be jumped to
38// only by the unwind edge of an invoke instruction.
39// * A landingpad instruction must be the first non-PHI instruction in the
40// block.
41// * Landingpad instructions must be in a function with a personality function.
42// * All other things that are tested by asserts spread about the code...
43//
44//===----------------------------------------------------------------------===//
45
46#include "llvm/IR/Verifier.h"
47#include "llvm/ADT/APFloat.h"
48#include "llvm/ADT/APInt.h"
49#include "llvm/ADT/ArrayRef.h"
50#include "llvm/ADT/DenseMap.h"
51#include "llvm/ADT/MapVector.h"
52#include "llvm/ADT/Optional.h"
53#include "llvm/ADT/STLExtras.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/ADT/StringMap.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/Twine.h"
61#include "llvm/ADT/ilist.h"
62#include "llvm/BinaryFormat/Dwarf.h"
63#include "llvm/IR/Argument.h"
64#include "llvm/IR/Attributes.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/CFG.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/Function.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalValue.h"
81#include "llvm/IR/GlobalVariable.h"
82#include "llvm/IR/InlineAsm.h"
83#include "llvm/IR/InstVisitor.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/IntrinsicInst.h"
88#include "llvm/IR/Intrinsics.h"
89#include "llvm/IR/IntrinsicsWebAssembly.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/InitializePasses.h"
101#include "llvm/Pass.h"
102#include "llvm/Support/AtomicOrdering.h"
103#include "llvm/Support/Casting.h"
104#include "llvm/Support/CommandLine.h"
105#include "llvm/Support/Debug.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118namespace llvm {
119
120struct VerifierSupport {
121 raw_ostream *OS;
122 const Module &M;
123 ModuleSlotTracker MST;
124 Triple TT;
125 const DataLayout &DL;
126 LLVMContext &Context;
127
128 /// Track the brokenness of the module while recursively visiting.
129 bool Broken = false;
130 /// Broken debug info can be "recovered" from by stripping the debug info.
131 bool BrokenDebugInfo = false;
132 /// Whether to treat broken debug info as an error.
133 bool TreatBrokenDebugInfoAsError = true;
134
135 explicit VerifierSupport(raw_ostream *OS, const Module &M)
136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
137 Context(M.getContext()) {}
138
139private:
140 void Write(const Module *M) {
141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142 }
143
144 void Write(const Value *V) {
145 if (V)
146 Write(*V);
147 }
148
149 void Write(const Value &V) {
150 if (isa<Instruction>(V)) {
151 V.print(*OS, MST);
152 *OS << '\n';
153 } else {
154 V.printAsOperand(*OS, true, MST);
155 *OS << '\n';
156 }
157 }
158
159 void Write(const Metadata *MD) {
160 if (!MD)
161 return;
162 MD->print(*OS, MST, &M);
163 *OS << '\n';
164 }
165
166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
167 Write(MD.get());
168 }
169
170 void Write(const NamedMDNode *NMD) {
171 if (!NMD)
172 return;
173 NMD->print(*OS, MST);
174 *OS << '\n';
175 }
176
177 void Write(Type *T) {
178 if (!T)
179 return;
180 *OS << ' ' << *T;
181 }
182
183 void Write(const Comdat *C) {
184 if (!C)
185 return;
186 *OS << *C;
187 }
188
189 void Write(const APInt *AI) {
190 if (!AI)
191 return;
192 *OS << *AI << '\n';
193 }
194
195 void Write(const unsigned i) { *OS << i << '\n'; }
196
197 template <typename T> void Write(ArrayRef<T> Vs) {
198 for (const T &V : Vs)
199 Write(V);
200 }
201
202 template <typename T1, typename... Ts>
203 void WriteTs(const T1 &V1, const Ts &... Vs) {
204 Write(V1);
205 WriteTs(Vs...);
206 }
207
208 template <typename... Ts> void WriteTs() {}
209
210public:
211 /// A check failed, so printout out the condition and the message.
212 ///
213 /// This provides a nice place to put a breakpoint if you want to see why
214 /// something is not correct.
215 void CheckFailed(const Twine &Message) {
216 if (OS)
217 *OS << Message << '\n';
218 Broken = true;
219 }
220
221 /// A check failed (with values to print).
222 ///
223 /// This calls the Message-only version so that the above is easier to set a
224 /// breakpoint on.
225 template <typename T1, typename... Ts>
226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
227 CheckFailed(Message);
228 if (OS)
229 WriteTs(V1, Vs...);
230 }
231
232 /// A debug info check failed.
233 void DebugInfoCheckFailed(const Twine &Message) {
234 if (OS)
235 *OS << Message << '\n';
236 Broken |= TreatBrokenDebugInfoAsError;
237 BrokenDebugInfo = true;
238 }
239
240 /// A debug info check failed (with values to print).
241 template <typename T1, typename... Ts>
242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
243 const Ts &... Vs) {
244 DebugInfoCheckFailed(Message);
245 if (OS)
246 WriteTs(V1, Vs...);
247 }
248};
249
250} // namespace llvm
251
252namespace {
253
254class Verifier : public InstVisitor<Verifier>, VerifierSupport {
255 friend class InstVisitor<Verifier>;
256
257 DominatorTree DT;
258
259 /// When verifying a basic block, keep track of all of the
260 /// instructions we have seen so far.
261 ///
262 /// This allows us to do efficient dominance checks for the case when an
263 /// instruction has an operand that is an instruction in the same block.
264 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
265
266 /// Keep track of the metadata nodes that have been checked already.
267 SmallPtrSet<const Metadata *, 32> MDNodes;
268
269 /// Keep track which DISubprogram is attached to which function.
270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
271
272 /// Track all DICompileUnits visited.
273 SmallPtrSet<const Metadata *, 2> CUVisited;
274
275 /// The result type for a landingpad.
276 Type *LandingPadResultTy;
277
278 /// Whether we've seen a call to @llvm.localescape in this function
279 /// already.
280 bool SawFrameEscape;
281
282 /// Whether the current function has a DISubprogram attached to it.
283 bool HasDebugInfo = false;
284
285 /// The current source language.
286 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
287
288 /// Whether source was present on the first DIFile encountered in each CU.
289 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
290
291 /// Stores the count of how many objects were passed to llvm.localescape for a
292 /// given function and the largest index passed to llvm.localrecover.
293 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
294
295 // Maps catchswitches and cleanuppads that unwind to siblings to the
296 // terminators that indicate the unwind, used to detect cycles therein.
297 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
298
299 /// Cache of constants visited in search of ConstantExprs.
300 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
301
302 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
303 SmallVector<const Function *, 4> DeoptimizeDeclarations;
304
305 // Verify that this GlobalValue is only used in this module.
306 // This map is used to avoid visiting uses twice. We can arrive at a user
307 // twice, if they have multiple operands. In particular for very large
308 // constant expressions, we can arrive at a particular user many times.
309 SmallPtrSet<const Value *, 32> GlobalValueVisited;
310
311 // Keeps track of duplicate function argument debug info.
312 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
313
314 TBAAVerifier TBAAVerifyHelper;
315
316 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
317
318public:
319 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
320 const Module &M)
321 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
322 SawFrameEscape(false), TBAAVerifyHelper(this) {
323 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
324 }
325
326 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
327
328 bool verify(const Function &F) {
329 assert(F.getParent() == &M &&((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 330, __PRETTY_FUNCTION__))
330 "An instance of this class only works with a specific module!")((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 330, __PRETTY_FUNCTION__))
;
331
332 // First ensure the function is well-enough formed to compute dominance
333 // information, and directly compute a dominance tree. We don't rely on the
334 // pass manager to provide this as it isolates us from a potentially
335 // out-of-date dominator tree and makes it significantly more complex to run
336 // this code outside of a pass manager.
337 // FIXME: It's really gross that we have to cast away constness here.
338 if (!F.empty())
339 DT.recalculate(const_cast<Function &>(F));
340
341 for (const BasicBlock &BB : F) {
342 if (!BB.empty() && BB.back().isTerminator())
343 continue;
344
345 if (OS) {
346 *OS << "Basic Block in function '" << F.getName()
347 << "' does not have terminator!\n";
348 BB.printAsOperand(*OS, true, MST);
349 *OS << "\n";
350 }
351 return false;
352 }
353
354 Broken = false;
355 // FIXME: We strip const here because the inst visitor strips const.
356 visit(const_cast<Function &>(F));
357 verifySiblingFuncletUnwinds();
358 InstsInThisBlock.clear();
359 DebugFnArgs.clear();
360 LandingPadResultTy = nullptr;
361 SawFrameEscape = false;
362 SiblingFuncletInfo.clear();
363
364 return !Broken;
365 }
366
367 /// Verify the module that this instance of \c Verifier was initialized with.
368 bool verify() {
369 Broken = false;
370
371 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
372 for (const Function &F : M)
373 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
374 DeoptimizeDeclarations.push_back(&F);
375
376 // Now that we've visited every function, verify that we never asked to
377 // recover a frame index that wasn't escaped.
378 verifyFrameRecoverIndices();
379 for (const GlobalVariable &GV : M.globals())
380 visitGlobalVariable(GV);
381
382 for (const GlobalAlias &GA : M.aliases())
383 visitGlobalAlias(GA);
384
385 for (const NamedMDNode &NMD : M.named_metadata())
386 visitNamedMDNode(NMD);
387
388 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
389 visitComdat(SMEC.getValue());
390
391 visitModuleFlags(M);
392 visitModuleIdents(M);
393 visitModuleCommandLines(M);
394
395 verifyCompileUnits();
396
397 verifyDeoptimizeCallingConvs();
398 DISubprogramAttachments.clear();
399 return !Broken;
400 }
401
402private:
403 /// Whether a metadata node is allowed to be, or contain, a DILocation.
404 enum class AreDebugLocsAllowed { No, Yes };
405
406 // Verification methods...
407 void visitGlobalValue(const GlobalValue &GV);
408 void visitGlobalVariable(const GlobalVariable &GV);
409 void visitGlobalAlias(const GlobalAlias &GA);
410 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
411 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
412 const GlobalAlias &A, const Constant &C);
413 void visitNamedMDNode(const NamedMDNode &NMD);
414 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
415 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
416 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
417 void visitComdat(const Comdat &C);
418 void visitModuleIdents(const Module &M);
419 void visitModuleCommandLines(const Module &M);
420 void visitModuleFlags(const Module &M);
421 void visitModuleFlag(const MDNode *Op,
422 DenseMap<const MDString *, const MDNode *> &SeenIDs,
423 SmallVectorImpl<const MDNode *> &Requirements);
424 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
425 void visitFunction(const Function &F);
426 void visitBasicBlock(BasicBlock &BB);
427 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
428 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
429 void visitProfMetadata(Instruction &I, MDNode *MD);
430
431 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
432#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
433#include "llvm/IR/Metadata.def"
434 void visitDIScope(const DIScope &N);
435 void visitDIVariable(const DIVariable &N);
436 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
437 void visitDITemplateParameter(const DITemplateParameter &N);
438
439 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
440
441 // InstVisitor overrides...
442 using InstVisitor<Verifier>::visit;
443 void visit(Instruction &I);
444
445 void visitTruncInst(TruncInst &I);
446 void visitZExtInst(ZExtInst &I);
447 void visitSExtInst(SExtInst &I);
448 void visitFPTruncInst(FPTruncInst &I);
449 void visitFPExtInst(FPExtInst &I);
450 void visitFPToUIInst(FPToUIInst &I);
451 void visitFPToSIInst(FPToSIInst &I);
452 void visitUIToFPInst(UIToFPInst &I);
453 void visitSIToFPInst(SIToFPInst &I);
454 void visitIntToPtrInst(IntToPtrInst &I);
455 void visitPtrToIntInst(PtrToIntInst &I);
456 void visitBitCastInst(BitCastInst &I);
457 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
458 void visitPHINode(PHINode &PN);
459 void visitCallBase(CallBase &Call);
460 void visitUnaryOperator(UnaryOperator &U);
461 void visitBinaryOperator(BinaryOperator &B);
462 void visitICmpInst(ICmpInst &IC);
463 void visitFCmpInst(FCmpInst &FC);
464 void visitExtractElementInst(ExtractElementInst &EI);
465 void visitInsertElementInst(InsertElementInst &EI);
466 void visitShuffleVectorInst(ShuffleVectorInst &EI);
467 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
468 void visitCallInst(CallInst &CI);
469 void visitInvokeInst(InvokeInst &II);
470 void visitGetElementPtrInst(GetElementPtrInst &GEP);
471 void visitLoadInst(LoadInst &LI);
472 void visitStoreInst(StoreInst &SI);
473 void verifyDominatesUse(Instruction &I, unsigned i);
474 void visitInstruction(Instruction &I);
475 void visitTerminator(Instruction &I);
476 void visitBranchInst(BranchInst &BI);
477 void visitReturnInst(ReturnInst &RI);
478 void visitSwitchInst(SwitchInst &SI);
479 void visitIndirectBrInst(IndirectBrInst &BI);
480 void visitCallBrInst(CallBrInst &CBI);
481 void visitSelectInst(SelectInst &SI);
482 void visitUserOp1(Instruction &I);
483 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
484 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
485 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
486 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
487 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
488 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
489 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
490 void visitFenceInst(FenceInst &FI);
491 void visitAllocaInst(AllocaInst &AI);
492 void visitExtractValueInst(ExtractValueInst &EVI);
493 void visitInsertValueInst(InsertValueInst &IVI);
494 void visitEHPadPredecessors(Instruction &I);
495 void visitLandingPadInst(LandingPadInst &LPI);
496 void visitResumeInst(ResumeInst &RI);
497 void visitCatchPadInst(CatchPadInst &CPI);
498 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
499 void visitCleanupPadInst(CleanupPadInst &CPI);
500 void visitFuncletPadInst(FuncletPadInst &FPI);
501 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
502 void visitCleanupReturnInst(CleanupReturnInst &CRI);
503
504 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
505 void verifySwiftErrorValue(const Value *SwiftErrorVal);
506 void verifyMustTailCall(CallInst &CI);
507 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
508 unsigned ArgNo, std::string &Suffix);
509 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
510 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
511 const Value *V);
512 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
513 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
514 const Value *V, bool IsIntrinsic);
515 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
516
517 void visitConstantExprsRecursively(const Constant *EntryC);
518 void visitConstantExpr(const ConstantExpr *CE);
519 void verifyStatepoint(const CallBase &Call);
520 void verifyFrameRecoverIndices();
521 void verifySiblingFuncletUnwinds();
522
523 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
524 template <typename ValueOrMetadata>
525 void verifyFragmentExpression(const DIVariable &V,
526 DIExpression::FragmentInfo Fragment,
527 ValueOrMetadata *Desc);
528 void verifyFnArgs(const DbgVariableIntrinsic &I);
529 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
530
531 /// Module-level debug info verification...
532 void verifyCompileUnits();
533
534 /// Module-level verification that all @llvm.experimental.deoptimize
535 /// declarations share the same calling convention.
536 void verifyDeoptimizeCallingConvs();
537
538 /// Verify all-or-nothing property of DIFile source attribute within a CU.
539 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
540};
541
542} // end anonymous namespace
543
544/// We know that cond should be true, if not print an error message.
545#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
546 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
547
548/// We know that a debug info condition should be true, if not print
549/// an error message.
550#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
551 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
552
553void Verifier::visit(Instruction &I) {
554 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
555 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
556 InstVisitor<Verifier>::visit(I);
557}
558
559// Helper to recursively iterate over indirect users. By
560// returning false, the callback can ask to stop recursing
561// further.
562static void forEachUser(const Value *User,
563 SmallPtrSet<const Value *, 32> &Visited,
564 llvm::function_ref<bool(const Value *)> Callback) {
565 if (!Visited.insert(User).second)
566 return;
567 for (const Value *TheNextUser : User->materialized_users())
568 if (Callback(TheNextUser))
569 forEachUser(TheNextUser, Visited, Callback);
570}
571
572void Verifier::visitGlobalValue(const GlobalValue &GV) {
573 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
574 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
575
576 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
577 Assert(GO->getAlignment() <= Value::MaximumAlignment,do { if (!(GO->getAlignment() <= Value::MaximumAlignment
)) { CheckFailed("huge alignment values are unsupported", GO)
; return; } } while (false)
578 "huge alignment values are unsupported", GO)do { if (!(GO->getAlignment() <= Value::MaximumAlignment
)) { CheckFailed("huge alignment values are unsupported", GO)
; return; } } while (false)
;
579 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
580 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
581
582 if (GV.hasAppendingLinkage()) {
583 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
584 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
585 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
586 }
587
588 if (GV.isDeclarationForLinker())
589 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
590
591 if (GV.hasDLLImportStorageClass()) {
592 Assert(!GV.isDSOLocal(),do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
593 "GlobalValue with DLLImport Storage is dso_local!", &GV)do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
;
594
595 Assert((GV.isDeclaration() &&do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
596 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
597 GV.hasAvailableExternallyLinkage(),do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
598 "Global is marked as dllimport, but not external", &GV)do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
599 }
600
601 if (GV.isImplicitDSOLocal())
602 Assert(GV.isDSOLocal(),do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
603 "GlobalValue with local linkage or non-default "do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
604 "visibility must be dso_local!",do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
605 &GV)do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
;
606
607 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
608 if (const Instruction *I = dyn_cast<Instruction>(V)) {
609 if (!I->getParent() || !I->getParent()->getParent())
610 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
611 I);
612 else if (I->getParent()->getParent()->getParent() != &M)
613 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
614 I->getParent()->getParent(),
615 I->getParent()->getParent()->getParent());
616 return false;
617 } else if (const Function *F = dyn_cast<Function>(V)) {
618 if (F->getParent() != &M)
619 CheckFailed("Global is used by function in a different module", &GV, &M,
620 F, F->getParent());
621 return false;
622 }
623 return true;
624 });
625}
626
627void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
628 if (GV.hasInitializer()) {
629 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
630 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
631 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
632 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
633 // If the global has common linkage, it must have a zero initializer and
634 // cannot be constant.
635 if (GV.hasCommonLinkage()) {
636 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
637 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
638 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
639 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
640 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
641 }
642 }
643
644 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
645 GV.getName() == "llvm.global_dtors")) {
646 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
647 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
648 // Don't worry about emitting an error for it not being an array,
649 // visitGlobalValue will complain on appending non-array.
650 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
651 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
652 PointerType *FuncPtrTy =
653 FunctionType::get(Type::getVoidTy(Context), false)->
654 getPointerTo(DL.getProgramAddressSpace());
655 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
656 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
657 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
658 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
659 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
660 Assert(STy->getNumElements() == 3,do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
661 "the third field of the element type is mandatory, "do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
662 "specify i8* null to migrate from the obsoleted 2-field form")do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
;
663 Type *ETy = STy->getTypeAtIndex(2);
664 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
665 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
666 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
667 }
668 }
669
670 if (GV.hasName() && (GV.getName() == "llvm.used" ||
671 GV.getName() == "llvm.compiler.used")) {
672 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
673 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
674 Type *GVType = GV.getValueType();
675 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
676 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
677 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
678 if (GV.hasInitializer()) {
679 const Constant *Init = GV.getInitializer();
680 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
681 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
682 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
683 for (Value *Op : InitArray->operands()) {
684 Value *V = Op->stripPointerCasts();
685 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
686 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
687 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
688 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
689 }
690 }
691 }
692 }
693
694 // Visit any debug info attachments.
695 SmallVector<MDNode *, 1> MDs;
696 GV.getMetadata(LLVMContext::MD_dbg, MDs);
697 for (auto *MD : MDs) {
698 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
699 visitDIGlobalVariableExpression(*GVE);
700 else
701 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
702 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
703 }
704
705 // Scalable vectors cannot be global variables, since we don't know
706 // the runtime size. If the global is a struct or an array containing
707 // scalable vectors, that will be caught by the isValidElementType methods
708 // in StructType or ArrayType instead.
709 Assert(!isa<ScalableVectorType>(GV.getValueType()),do { if (!(!isa<ScalableVectorType>(GV.getValueType()))
) { CheckFailed("Globals cannot contain scalable vectors", &
GV); return; } } while (false)
710 "Globals cannot contain scalable vectors", &GV)do { if (!(!isa<ScalableVectorType>(GV.getValueType()))
) { CheckFailed("Globals cannot contain scalable vectors", &
GV); return; } } while (false)
;
711
712 if (!GV.hasInitializer()) {
713 visitGlobalValue(GV);
714 return;
715 }
716
717 // Walk any aggregate initializers looking for bitcasts between address spaces
718 visitConstantExprsRecursively(GV.getInitializer());
719
720 visitGlobalValue(GV);
721}
722
723void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
724 SmallPtrSet<const GlobalAlias*, 4> Visited;
725 Visited.insert(&GA);
726 visitAliaseeSubExpr(Visited, GA, C);
727}
728
729void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
730 const GlobalAlias &GA, const Constant &C) {
731 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
732 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
733 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
734
735 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
736 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
737
738 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
739 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
740 } else {
741 // Only continue verifying subexpressions of GlobalAliases.
742 // Do not recurse into global initializers.
743 return;
744 }
745 }
746
747 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
748 visitConstantExprsRecursively(CE);
749
750 for (const Use &U : C.operands()) {
751 Value *V = &*U;
752 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
753 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
754 else if (const auto *C2 = dyn_cast<Constant>(V))
755 visitAliaseeSubExpr(Visited, GA, *C2);
756 }
757}
758
759void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
760 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
761 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
762 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
763 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
764 const Constant *Aliasee = GA.getAliasee();
765 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
766 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
767 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
768
769 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
770 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
771
772 visitAliaseeSubExpr(GA, *Aliasee);
773
774 visitGlobalValue(GA);
775}
776
777void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
778 // There used to be various other llvm.dbg.* nodes, but we don't support
779 // upgrading them and we want to reserve the namespace for future uses.
780 if (NMD.getName().startswith("llvm.dbg."))
781 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
782 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
783 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
784 for (const MDNode *MD : NMD.operands()) {
785 if (NMD.getName() == "llvm.dbg.cu")
786 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
787
788 if (!MD)
789 continue;
790
791 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
792 }
793}
794
795void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
796 // Only visit each node once. Metadata can be mutually recursive, so this
797 // avoids infinite recursion here, as well as being an optimization.
798 if (!MDNodes.insert(&MD).second)
799 return;
800
801 switch (MD.getMetadataID()) {
802 default:
803 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 803)
;
804 case Metadata::MDTupleKind:
805 break;
806#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
807 case Metadata::CLASS##Kind: \
808 visit##CLASS(cast<CLASS>(MD)); \
809 break;
810#include "llvm/IR/Metadata.def"
811 }
812
813 for (const Metadata *Op : MD.operands()) {
814 if (!Op)
815 continue;
816 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
817 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
818 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,do { if (!(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed
::Yes)) { DebugInfoCheckFailed("DILocation not allowed within this metadata node"
, &MD, Op); return; } } while (false)
819 "DILocation not allowed within this metadata node", &MD, Op)do { if (!(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed
::Yes)) { DebugInfoCheckFailed("DILocation not allowed within this metadata node"
, &MD, Op); return; } } while (false)
;
820 if (auto *N = dyn_cast<MDNode>(Op)) {
821 visitMDNode(*N, AllowLocs);
822 continue;
823 }
824 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
825 visitValueAsMetadata(*V, nullptr);
826 continue;
827 }
828 }
829
830 // Check these last, so we diagnose problems in operands first.
831 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
832 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
833}
834
835void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
836 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
837 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
838 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
839
840 auto *L = dyn_cast<LocalAsMetadata>(&MD);
841 if (!L)
842 return;
843
844 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
845
846 // If this was an instruction, bb, or argument, verify that it is in the
847 // function that we expect.
848 Function *ActualF = nullptr;
849 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
850 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
851 ActualF = I->getParent()->getParent();
852 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
853 ActualF = BB->getParent();
854 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
855 ActualF = A->getParent();
856 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 856, __PRETTY_FUNCTION__))
;
857
858 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
859}
860
861void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
862 Metadata *MD = MDV.getMetadata();
863 if (auto *N = dyn_cast<MDNode>(MD)) {
864 visitMDNode(*N, AreDebugLocsAllowed::No);
865 return;
866 }
867
868 // Only visit each node once. Metadata can be mutually recursive, so this
869 // avoids infinite recursion here, as well as being an optimization.
870 if (!MDNodes.insert(MD).second)
871 return;
872
873 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
874 visitValueAsMetadata(*V, F);
875}
876
877static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
878static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
879static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
880
881void Verifier::visitDILocation(const DILocation &N) {
882 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
883 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
884 if (auto *IA = N.getRawInlinedAt())
885 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
886 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
887 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
888}
889
890void Verifier::visitGenericDINode(const GenericDINode &N) {
891 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
892}
893
894void Verifier::visitDIScope(const DIScope &N) {
895 if (auto *F = N.getRawFile())
896 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
897}
898
899void Verifier::visitDISubrange(const DISubrange &N) {
900 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
901 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
902 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode()
|| N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound"
, &N); return; } } while (false)
903 N.getRawUpperBound(),do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode()
|| N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound"
, &N); return; } } while (false)
904 "Subrange must contain count or upperBound", &N)do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode()
|| N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound"
, &N); return; } } while (false)
;
905 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed
("Subrange can have any one of count or upperBound", &N);
return; } } while (false)
906 "Subrange can have any one of count or upperBound", &N)do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed
("Subrange can have any one of count or upperBound", &N);
return; } } while (false)
;
907 AssertDI(!N.getRawCountNode() || N.getCount(),do { if (!(!N.getRawCountNode() || N.getCount())) { DebugInfoCheckFailed
("Count must either be a signed constant or a DIVariable", &
N); return; } } while (false)
908 "Count must either be a signed constant or a DIVariable", &N)do { if (!(!N.getRawCountNode() || N.getCount())) { DebugInfoCheckFailed
("Count must either be a signed constant or a DIVariable", &
N); return; } } while (false)
;
909 auto Count = N.getCount();
910 AssertDI(!Count || !Count.is<ConstantInt *>() ||do { if (!(!Count || !Count.is<ConstantInt *>() || Count
.get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed
("invalid subrange count", &N); return; } } while (false)
911 Count.get<ConstantInt *>()->getSExtValue() >= -1,do { if (!(!Count || !Count.is<ConstantInt *>() || Count
.get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed
("invalid subrange count", &N); return; } } while (false)
912 "invalid subrange count", &N)do { if (!(!Count || !Count.is<ConstantInt *>() || Count
.get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed
("invalid subrange count", &N); return; } } while (false)
;
913 auto *LBound = N.getRawLowerBound();
914 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
915 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
916 "LowerBound must be signed constant or DIVariable or DIExpression",do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
917 &N)do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
918 auto *UBound = N.getRawUpperBound();
919 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
920 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
921 "UpperBound must be signed constant or DIVariable or DIExpression",do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
922 &N)do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
923 auto *Stride = N.getRawStride();
924 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) ||
isa<DIVariable>(Stride) || isa<DIExpression>(Stride
))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
925 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) ||
isa<DIVariable>(Stride) || isa<DIExpression>(Stride
))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
926 "Stride must be signed constant or DIVariable or DIExpression", &N)do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) ||
isa<DIVariable>(Stride) || isa<DIExpression>(Stride
))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
927}
928
929void Verifier::visitDIEnumerator(const DIEnumerator &N) {
930 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
931}
932
933void Verifier::visitDIBasicType(const DIBasicType &N) {
934 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
935 N.getTag() == dwarf::DW_TAG_unspecified_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
936 N.getTag() == dwarf::DW_TAG_string_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
937 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
938}
939
940void Verifier::visitDIStringType(const DIStringType &N) {
941 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_string_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
942 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,do { if (!(!(N.isBigEndian() && N.isLittleEndian())))
{ DebugInfoCheckFailed("has conflicting flags", &N); return
; } } while (false)
943 "has conflicting flags", &N)do { if (!(!(N.isBigEndian() && N.isLittleEndian())))
{ DebugInfoCheckFailed("has conflicting flags", &N); return
; } } while (false)
;
944}
945
946void Verifier::visitDIDerivedType(const DIDerivedType &N) {
947 // Common scope checks.
948 visitDIScope(N);
949
950 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
951 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
952 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
953 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
954 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
955 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
956 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
957 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
958 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
959 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
960 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
961 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
962 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
963 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
964 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
965 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
966 }
967
968 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
969 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
970 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
971
972 if (N.getDWARFAddressSpace()) {
973 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
974 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
975 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
976 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
977 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
978 }
979}
980
981/// Detect mutually exclusive flags.
982static bool hasConflictingReferenceFlags(unsigned Flags) {
983 return ((Flags & DINode::FlagLValueReference) &&
984 (Flags & DINode::FlagRValueReference)) ||
985 ((Flags & DINode::FlagTypePassByValue) &&
986 (Flags & DINode::FlagTypePassByReference));
987}
988
989void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
990 auto *Params = dyn_cast<MDTuple>(&RawParams);
991 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
992 for (Metadata *Op : Params->operands()) {
993 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
994 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
995 }
996}
997
998void Verifier::visitDICompositeType(const DICompositeType &N) {
999 // Common scope checks.
1000 visitDIScope(N);
1001
1002 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1003 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1004 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1005 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1006 N.getTag() == dwarf::DW_TAG_class_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1007 N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1008 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1009
1010 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1011 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
1012 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
1013
1014 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
1015 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
1016 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
1017 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
1018 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1019 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1020 unsigned DIBlockByRefStruct = 1 << 4;
1021 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,do { if (!((N.getFlags() & DIBlockByRefStruct) == 0)) { DebugInfoCheckFailed
("DIBlockByRefStruct on DICompositeType is no longer supported"
, &N); return; } } while (false)
1022 "DIBlockByRefStruct on DICompositeType is no longer supported", &N)do { if (!((N.getFlags() & DIBlockByRefStruct) == 0)) { DebugInfoCheckFailed
("DIBlockByRefStruct on DICompositeType is no longer supported"
, &N); return; } } while (false)
;
1023
1024 if (N.isVector()) {
1025 const DINodeArray Elements = N.getElements();
1026 AssertDI(Elements.size() == 1 &&do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
1027 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
1028 "invalid vector, expected one element of type subrange", &N)do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
;
1029 }
1030
1031 if (auto *Params = N.getRawTemplateParams())
1032 visitTemplateParams(N, *Params);
1033
1034 if (N.getTag() == dwarf::DW_TAG_class_type ||
1035 N.getTag() == dwarf::DW_TAG_union_type) {
1036 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
1037 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
1038 }
1039
1040 if (auto *D = N.getRawDiscriminator()) {
1041 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
1042 "discriminator can only appear on variant part")do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
;
1043 }
1044
1045 if (N.getRawDataLocation()) {
1046 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("dataLocation can only appear in array type"); return; } } while
(false)
1047 "dataLocation can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("dataLocation can only appear in array type"); return; } } while
(false)
;
1048 }
1049
1050 if (N.getRawAssociated()) {
1051 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("associated can only appear in array type"); return; } } while
(false)
1052 "associated can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("associated can only appear in array type"); return; } } while
(false)
;
1053 }
1054
1055 if (N.getRawAllocated()) {
1056 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("allocated can only appear in array type"); return; } } while
(false)
1057 "allocated can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("allocated can only appear in array type"); return; } } while
(false)
;
1058 }
1059}
1060
1061void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1062 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1063 if (auto *Types = N.getRawTypeArray()) {
1064 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
1065 for (Metadata *Ty : N.getTypeArray()->operands()) {
1066 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
1067 }
1068 }
1069 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1070 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1071}
1072
1073void Verifier::visitDIFile(const DIFile &N) {
1074 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1075 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1076 if (Checksum) {
1077 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
1078 "invalid checksum kind", &N)do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
;
1079 size_t Size;
1080 switch (Checksum->Kind) {
1081 case DIFile::CSK_MD5:
1082 Size = 32;
1083 break;
1084 case DIFile::CSK_SHA1:
1085 Size = 40;
1086 break;
1087 case DIFile::CSK_SHA256:
1088 Size = 64;
1089 break;
1090 }
1091 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N)do { if (!(Checksum->Value.size() == Size)) { DebugInfoCheckFailed
("invalid checksum length", &N); return; } } while (false
)
;
1092 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
1093 "invalid checksum", &N)do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
;
1094 }
1095}
1096
1097void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1098 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
1099 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1100
1101 // Don't bother verifying the compilation directory or producer string
1102 // as those could be empty.
1103 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
1104 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
1105 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
1106 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
1107
1108 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1109
1110 verifySourceDebugInfo(N, *N.getFile());
1111
1112 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
1113 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
1114
1115 if (auto *Array = N.getRawEnumTypes()) {
1116 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
1117 for (Metadata *Op : N.getEnumTypes()->operands()) {
1118 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1119 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
1120 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
1121 }
1122 }
1123 if (auto *Array = N.getRawRetainedTypes()) {
1124 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
1125 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1126 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1127 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1128 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1129 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1130 }
1131 }
1132 if (auto *Array = N.getRawGlobalVariables()) {
1133 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1134 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1135 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1136 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1137 }
1138 }
1139 if (auto *Array = N.getRawImportedEntities()) {
1140 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1141 for (Metadata *Op : N.getImportedEntities()->operands()) {
1142 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1143 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1144 }
1145 }
1146 if (auto *Array = N.getRawMacros()) {
1147 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1148 for (Metadata *Op : N.getMacros()->operands()) {
1149 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1150 }
1151 }
1152 CUVisited.insert(&N);
1153}
1154
1155void Verifier::visitDISubprogram(const DISubprogram &N) {
1156 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1157 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1158 if (auto *F = N.getRawFile())
1159 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1160 else
1161 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1162 if (auto *T = N.getRawType())
1163 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1164 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1165 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1166 if (auto *Params = N.getRawTemplateParams())
1167 visitTemplateParams(N, *Params);
1168 if (auto *S = N.getRawDeclaration())
1169 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1170 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1171 if (auto *RawNode = N.getRawRetainedNodes()) {
1172 auto *Node = dyn_cast<MDTuple>(RawNode);
1173 AssertDI(Node, "invalid retained nodes list", &N, RawNode)do { if (!(Node)) { DebugInfoCheckFailed("invalid retained nodes list"
, &N, RawNode); return; } } while (false)
;
1174 for (Metadata *Op : Node->operands()) {
1175 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1176 "invalid retained nodes, expected DILocalVariable or DILabel",do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1177 &N, Node, Op)do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
;
1178 }
1179 }
1180 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1181 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1182
1183 auto *Unit = N.getRawUnit();
1184 if (N.isDefinition()) {
1185 // Subprogram definitions (not part of the type hierarchy).
1186 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1187 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1188 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1189 if (N.getFile())
1190 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1191 } else {
1192 // Subprogram declarations (part of the type hierarchy).
1193 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1194 }
1195
1196 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1197 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1198 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list"
, &N, RawThrownTypes); return; } } while (false)
;
1199 for (Metadata *Op : ThrownTypes->operands())
1200 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
1201 Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
;
1202 }
1203
1204 if (N.areAllCallsDescribed())
1205 AssertDI(N.isDefinition(),do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition"
); return; } } while (false)
1206 "DIFlagAllCallsDescribed must be attached to a definition")do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition"
); return; } } while (false)
;
1207}
1208
1209void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1210 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1211 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1212 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1213 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1214 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
1215}
1216
1217void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1218 visitDILexicalBlockBase(N);
1219
1220 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1221 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1222}
1223
1224void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1225 visitDILexicalBlockBase(N);
1226}
1227
1228void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1229 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_common_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1230 if (auto *S = N.getRawScope())
1231 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1232 if (auto *S = N.getRawDecl())
1233 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S)do { if (!(isa<DIGlobalVariable>(S))) { DebugInfoCheckFailed
("invalid declaration", &N, S); return; } } while (false)
;
1234}
1235
1236void Verifier::visitDINamespace(const DINamespace &N) {
1237 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1238 if (auto *S = N.getRawScope())
1239 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1240}
1241
1242void Verifier::visitDIMacro(const DIMacro &N) {
1243 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1244 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1245 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1246 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1247 if (!N.getValue().empty()) {
1248 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 1248, __PRETTY_FUNCTION__))
;
1249 }
1250}
1251
1252void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1253 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1254 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1255 if (auto *F = N.getRawFile())
1256 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1257
1258 if (auto *Array = N.getRawElements()) {
1259 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1260 for (Metadata *Op : N.getElements()->operands()) {
1261 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1262 }
1263 }
1264}
1265
1266void Verifier::visitDIModule(const DIModule &N) {
1267 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1268 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1269}
1270
1271void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1272 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1273}
1274
1275void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1276 visitDITemplateParameter(N);
1277
1278 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1279 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1280}
1281
1282void Verifier::visitDITemplateValueParameter(
1283 const DITemplateValueParameter &N) {
1284 visitDITemplateParameter(N);
1285
1286 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1287 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1288 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1289 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1290}
1291
1292void Verifier::visitDIVariable(const DIVariable &N) {
1293 if (auto *S = N.getRawScope())
1294 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1295 if (auto *F = N.getRawFile())
1296 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1297}
1298
1299void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1300 // Checks common to all variables.
1301 visitDIVariable(N);
1302
1303 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1304 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1305 // Assert only if the global variable is not an extern
1306 if (N.isDefinition())
1307 AssertDI(N.getType(), "missing global variable type", &N)do { if (!(N.getType())) { DebugInfoCheckFailed("missing global variable type"
, &N); return; } } while (false)
;
1308 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1309 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1310 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1311 }
1312}
1313
1314void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1315 // Checks common to all variables.
1316 visitDIVariable(N);
1317
1318 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1319 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1320 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1321 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1322 if (auto Ty = N.getType())
1323 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType())do { if (!(!isa<DISubroutineType>(Ty))) { DebugInfoCheckFailed
("invalid type", &N, N.getType()); return; } } while (false
)
;
1324}
1325
1326void Verifier::visitDILabel(const DILabel &N) {
1327 if (auto *S = N.getRawScope())
1328 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1329 if (auto *F = N.getRawFile())
1330 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1331
1332 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_label)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1333 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1334 "label requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1335}
1336
1337void Verifier::visitDIExpression(const DIExpression &N) {
1338 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1339}
1340
1341void Verifier::visitDIGlobalVariableExpression(
1342 const DIGlobalVariableExpression &GVE) {
1343 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1344 if (auto *Var = GVE.getVariable())
1345 visitDIGlobalVariable(*Var);
1346 if (auto *Expr = GVE.getExpression()) {
1347 visitDIExpression(*Expr);
1348 if (auto Fragment = Expr->getFragmentInfo())
1349 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1350 }
1351}
1352
1353void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1354 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1355 if (auto *T = N.getRawType())
1356 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1357 if (auto *F = N.getRawFile())
1358 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1359}
1360
1361void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1362 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1363 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1364 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1365 if (auto *S = N.getRawScope())
1366 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1367 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1368 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1369}
1370
1371void Verifier::visitComdat(const Comdat &C) {
1372 // In COFF the Module is invalid if the GlobalValue has private linkage.
1373 // Entities with private linkage don't have entries in the symbol table.
1374 if (TT.isOSBinFormatCOFF())
1375 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1376 Assert(!GV->hasPrivateLinkage(),do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1377 "comdat global value has private linkage", GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1378}
1379
1380void Verifier::visitModuleIdents(const Module &M) {
1381 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1382 if (!Idents)
1383 return;
1384
1385 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1386 // Scan each llvm.ident entry and make sure that this requirement is met.
1387 for (const MDNode *N : Idents->operands()) {
1388 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1389 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1390 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1391 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1392 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1393 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1394 }
1395}
1396
1397void Verifier::visitModuleCommandLines(const Module &M) {
1398 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1399 if (!CommandLines)
1400 return;
1401
1402 // llvm.commandline takes a list of metadata entry. Each entry has only one
1403 // string. Scan each llvm.commandline entry and make sure that this
1404 // requirement is met.
1405 for (const MDNode *N : CommandLines->operands()) {
1406 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata"
, N); return; } } while (false)
1407 "incorrect number of operands in llvm.commandline metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata"
, N); return; } } while (false)
;
1408 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1409 ("invalid value for llvm.commandline metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1410 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1411 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1412 }
1413}
1414
1415void Verifier::visitModuleFlags(const Module &M) {
1416 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1417 if (!Flags) return;
1418
1419 // Scan each flag, and track the flags and requirements.
1420 DenseMap<const MDString*, const MDNode*> SeenIDs;
1421 SmallVector<const MDNode*, 16> Requirements;
1422 for (const MDNode *MDN : Flags->operands())
1423 visitModuleFlag(MDN, SeenIDs, Requirements);
1424
1425 // Validate that the requirements in the module are valid.
1426 for (const MDNode *Requirement : Requirements) {
1427 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1428 const Metadata *ReqValue = Requirement->getOperand(1);
1429
1430 const MDNode *Op = SeenIDs.lookup(Flag);
1431 if (!Op) {
1432 CheckFailed("invalid requirement on flag, flag is not present in module",
1433 Flag);
1434 continue;
1435 }
1436
1437 if (Op->getOperand(2) != ReqValue) {
1438 CheckFailed(("invalid requirement on flag, "
1439 "flag does not have the required value"),
1440 Flag);
1441 continue;
1442 }
1443 }
1444}
1445
1446void
1447Verifier::visitModuleFlag(const MDNode *Op,
1448 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1449 SmallVectorImpl<const MDNode *> &Requirements) {
1450 // Each module flag should have three arguments, the merge behavior (a
1451 // constant int), the flag ID (an MDString), and the value.
1452 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1453 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1454 Module::ModFlagBehavior MFB;
1455 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1456 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1457 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1458 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1459 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1460 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1461 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1462 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1463 }
1464 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1465 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1466 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1467
1468 // Sanity check the values for behaviors with additional requirements.
1469 switch (MFB) {
1470 case Module::Error:
1471 case Module::Warning:
1472 case Module::Override:
1473 // These behavior types accept any value.
1474 break;
1475
1476 case Module::Max: {
1477 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1478 "invalid value for 'max' module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1479 Op->getOperand(2))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
;
1480 break;
1481 }
1482
1483 case Module::Require: {
1484 // The value should itself be an MDNode with two operands, a flag ID (an
1485 // MDString), and a value.
1486 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1487 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1488 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1489 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1490 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1491 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1492 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1493 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1494
1495 // Append it to the list of requirements, to check once all module flags are
1496 // scanned.
1497 Requirements.push_back(Value);
1498 break;
1499 }
1500
1501 case Module::Append:
1502 case Module::AppendUnique: {
1503 // These behavior types require the operand be an MDNode.
1504 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1505 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1506 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1507 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1508 break;
1509 }
1510 }
1511
1512 // Unless this is a "requires" flag, check the ID is unique.
1513 if (MFB != Module::Require) {
1514 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1515 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1516 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1517 }
1518
1519 if (ID->getString() == "wchar_size") {
1520 ConstantInt *Value
1521 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1522 Assert(Value, "wchar_size metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("wchar_size metadata requires constant integer argument"
); return; } } while (false)
;
1523 }
1524
1525 if (ID->getString() == "Linker Options") {
1526 // If the llvm.linker.options named metadata exists, we assume that the
1527 // bitcode reader has upgraded the module flag. Otherwise the flag might
1528 // have been created by a client directly.
1529 Assert(M.getNamedMetadata("llvm.linker.options"),do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
1530 "'Linker Options' named metadata no longer supported")do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
;
1531 }
1532
1533 if (ID->getString() == "SemanticInterposition") {
1534 ConstantInt *Value =
1535 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1536 Assert(Value,do { if (!(Value)) { CheckFailed("SemanticInterposition metadata requires constant integer argument"
); return; } } while (false)
1537 "SemanticInterposition metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("SemanticInterposition metadata requires constant integer argument"
); return; } } while (false)
;
1538 }
1539
1540 if (ID->getString() == "CG Profile") {
1541 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1542 visitModuleFlagCGProfileEntry(MDO);
1543 }
1544}
1545
1546void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1547 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1548 if (!FuncMDO)
1549 return;
1550 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1551 Assert(F && isa<Function>(F->getValue()), "expected a Function or null",do { if (!(F && isa<Function>(F->getValue())
)) { CheckFailed("expected a Function or null", FuncMDO); return
; } } while (false)
1552 FuncMDO)do { if (!(F && isa<Function>(F->getValue())
)) { CheckFailed("expected a Function or null", FuncMDO); return
; } } while (false)
;
1553 };
1554 auto Node = dyn_cast_or_null<MDNode>(MDO);
1555 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO)do { if (!(Node && Node->getNumOperands() == 3)) {
CheckFailed("expected a MDNode triple", MDO); return; } } while
(false)
;
1556 CheckFunction(Node->getOperand(0));
1557 CheckFunction(Node->getOperand(1));
1558 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1559 Assert(Count && Count->getType()->isIntegerTy(),do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
1560 "expected an integer constant", Node->getOperand(2))do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
;
1561}
1562
1563/// Return true if this attribute kind only applies to functions.
1564static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1565 switch (Kind) {
1566 case Attribute::NoMerge:
1567 case Attribute::NoReturn:
1568 case Attribute::NoSync:
1569 case Attribute::WillReturn:
1570 case Attribute::NoCfCheck:
1571 case Attribute::NoUnwind:
1572 case Attribute::NoInline:
1573 case Attribute::AlwaysInline:
1574 case Attribute::OptimizeForSize:
1575 case Attribute::StackProtect:
1576 case Attribute::StackProtectReq:
1577 case Attribute::StackProtectStrong:
1578 case Attribute::SafeStack:
1579 case Attribute::ShadowCallStack:
1580 case Attribute::NoRedZone:
1581 case Attribute::NoImplicitFloat:
1582 case Attribute::Naked:
1583 case Attribute::InlineHint:
1584 case Attribute::StackAlignment:
1585 case Attribute::UWTable:
1586 case Attribute::NonLazyBind:
1587 case Attribute::ReturnsTwice:
1588 case Attribute::SanitizeAddress:
1589 case Attribute::SanitizeHWAddress:
1590 case Attribute::SanitizeMemTag:
1591 case Attribute::SanitizeThread:
1592 case Attribute::SanitizeMemory:
1593 case Attribute::MinSize:
1594 case Attribute::NoDuplicate:
1595 case Attribute::Builtin:
1596 case Attribute::NoBuiltin:
1597 case Attribute::Cold:
1598 case Attribute::OptForFuzzing:
1599 case Attribute::OptimizeNone:
1600 case Attribute::JumpTable:
1601 case Attribute::Convergent:
1602 case Attribute::ArgMemOnly:
1603 case Attribute::NoRecurse:
1604 case Attribute::InaccessibleMemOnly:
1605 case Attribute::InaccessibleMemOrArgMemOnly:
1606 case Attribute::AllocSize:
1607 case Attribute::SpeculativeLoadHardening:
1608 case Attribute::Speculatable:
1609 case Attribute::StrictFP:
1610 case Attribute::NullPointerIsValid:
1611 return true;
1612 default:
1613 break;
1614 }
1615 return false;
1616}
1617
1618/// Return true if this is a function attribute that can also appear on
1619/// arguments.
1620static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1621 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1622 Kind == Attribute::ReadNone || Kind == Attribute::NoFree ||
1623 Kind == Attribute::Preallocated;
1624}
1625
1626void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1627 const Value *V) {
1628 for (Attribute A : Attrs) {
1629 if (A.isStringAttribute())
1630 continue;
1631
1632 if (A.isIntAttribute() !=
1633 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) {
1634 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1635 V);
1636 return;
1637 }
1638
1639 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1640 if (!IsFunction) {
1641 CheckFailed("Attribute '" + A.getAsString() +
1642 "' only applies to functions!",
1643 V);
1644 return;
1645 }
1646 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1647 CheckFailed("Attribute '" + A.getAsString() +
1648 "' does not apply to functions!",
1649 V);
1650 return;
1651 }
1652 }
1653}
1654
1655// VerifyParameterAttrs - Check the given attributes for an argument or return
1656// value of the specified type. The value V is printed in error messages.
1657void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1658 const Value *V) {
1659 if (!Attrs.hasAttributes())
1660 return;
1661
1662 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1663
1664 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1665 Assert(Attrs.getNumAttributes() == 1,do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes"
, V); return; } } while (false)
1666 "Attribute 'immarg' is incompatible with other attributes", V)do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes"
, V); return; } } while (false)
;
1667 }
1668
1669 // Check for mutually incompatible attributes. Only inreg is compatible with
1670 // sret.
1671 unsigned AttrCount = 0;
1672 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1673 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1674 AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1675 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1676 Attrs.hasAttribute(Attribute::InReg);
1677 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1678 AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1679 Assert(AttrCount <= 1,do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
1680 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
1681 "'byref', and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
1682 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
;
1683
1684 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1685 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1686 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1687 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1688 V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
;
1689
1690 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1691 Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1692 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1693 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1694 V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
;
1695
1696 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1697 Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1698 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1699 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1700 V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1701
1702 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1703 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1704 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1705 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1706 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
;
1707
1708 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1709 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1710 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1711 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1712 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
;
1713
1714 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1715 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1716 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1717 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1718 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
;
1719
1720 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1721 Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1722 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1723 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1724 V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1725
1726 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1727 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),do { if (!(Attrs.getByValType() == cast<PointerType>(Ty
)->getElementType())) { CheckFailed("Attribute 'byval' type does not match parameter!"
, V); return; } } while (false)
1728 "Attribute 'byval' type does not match parameter!", V)do { if (!(Attrs.getByValType() == cast<PointerType>(Ty
)->getElementType())) { CheckFailed("Attribute 'byval' type does not match parameter!"
, V); return; } } while (false)
;
1729 }
1730
1731 if (Attrs.hasAttribute(Attribute::Preallocated)) {
1732 Assert(Attrs.getPreallocatedType() ==do { if (!(Attrs.getPreallocatedType() == cast<PointerType
>(Ty)->getElementType())) { CheckFailed("Attribute 'preallocated' type does not match parameter!"
, V); return; } } while (false)
1733 cast<PointerType>(Ty)->getElementType(),do { if (!(Attrs.getPreallocatedType() == cast<PointerType
>(Ty)->getElementType())) { CheckFailed("Attribute 'preallocated' type does not match parameter!"
, V); return; } } while (false)
1734 "Attribute 'preallocated' type does not match parameter!", V)do { if (!(Attrs.getPreallocatedType() == cast<PointerType
>(Ty)->getElementType())) { CheckFailed("Attribute 'preallocated' type does not match parameter!"
, V); return; } } while (false)
;
1735 }
1736
1737 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1738 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1739 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1740 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1741 V)do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
;
1742
1743 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1744 SmallPtrSet<Type*, 4> Visited;
1745 if (!PTy->getElementType()->isSized(&Visited)) {
1746 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1747 !Attrs.hasAttribute(Attribute::ByRef) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1748 !Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1749 !Attrs.hasAttribute(Attribute::Preallocated),do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1750 "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1751 "support unsized types!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1752 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
;
1753 }
1754 if (!isa<PointerType>(PTy->getElementType()))
1755 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1756 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1757 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1758 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
;
1759
1760 if (Attrs.hasAttribute(Attribute::ByRef)) {
1761 Assert(Attrs.getByRefType() == PTy->getElementType(),do { if (!(Attrs.getByRefType() == PTy->getElementType()))
{ CheckFailed("Attribute 'byref' type does not match parameter!"
, V); return; } } while (false)
1762 "Attribute 'byref' type does not match parameter!", V)do { if (!(Attrs.getByRefType() == PTy->getElementType()))
{ CheckFailed("Attribute 'byref' type does not match parameter!"
, V); return; } } while (false)
;
1763 }
1764 } else {
1765 Assert(!Attrs.hasAttribute(Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1766 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1767 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1768 Assert(!Attrs.hasAttribute(Attribute::ByRef),do { if (!(!Attrs.hasAttribute(Attribute::ByRef))) { CheckFailed
("Attribute 'byref' only applies to parameters with pointer type!"
, V); return; } } while (false)
1769 "Attribute 'byref' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByRef))) { CheckFailed
("Attribute 'byref' only applies to parameters with pointer type!"
, V); return; } } while (false)
1770 V)do { if (!(!Attrs.hasAttribute(Attribute::ByRef))) { CheckFailed
("Attribute 'byref' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1771 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1772 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1773 "with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1774 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
;
1775 }
1776}
1777
1778// Check parameter attributes against a function type.
1779// The value V is printed in error messages.
1780void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1781 const Value *V, bool IsIntrinsic) {
1782 if (Attrs.isEmpty())
1783 return;
1784
1785 bool SawNest = false;
1786 bool SawReturned = false;
1787 bool SawSRet = false;
1788 bool SawSwiftSelf = false;
1789 bool SawSwiftError = false;
1790
1791 // Verify return value attributes.
1792 AttributeSet RetAttrs = Attrs.getRetAttributes();
1793 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1794 !RetAttrs.hasAttribute(Attribute::Nest) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1795 !RetAttrs.hasAttribute(Attribute::StructRet) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1796 !RetAttrs.hasAttribute(Attribute::NoCapture) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1797 !RetAttrs.hasAttribute(Attribute::NoFree) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1798 !RetAttrs.hasAttribute(Attribute::Returned) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1799 !RetAttrs.hasAttribute(Attribute::InAlloca) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1800 !RetAttrs.hasAttribute(Attribute::Preallocated) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1801 !RetAttrs.hasAttribute(Attribute::ByRef) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1802 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1803 !RetAttrs.hasAttribute(Attribute::SwiftError)),do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1804 "Attributes 'byval', 'inalloca', 'preallocated', 'byref', "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1805 "'nest', 'sret', 'nocapture', 'nofree', "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1806 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1807 "values!",do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1808 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1809 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1810 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1811 !RetAttrs.hasAttribute(Attribute::ReadNone)),do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1812 "Attribute '" + RetAttrs.getAsString() +do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1813 "' does not apply to function returns",do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1814 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
;
1815 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1816
1817 // Verify parameter attributes.
1818 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1819 Type *Ty = FT->getParamType(i);
1820 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1821
1822 if (!IsIntrinsic) {
1823 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed
("immarg attribute only applies to intrinsics",V); return; } }
while (false)
1824 "immarg attribute only applies to intrinsics",V)do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed
("immarg attribute only applies to intrinsics",V); return; } }
while (false)
;
1825 }
1826
1827 verifyParameterAttrs(ArgAttrs, Ty, V);
1828
1829 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1830 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1831 SawNest = true;
1832 }
1833
1834 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1835 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1836 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1837 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1838 "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1839 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1840 SawReturned = true;
1841 }
1842
1843 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1844 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1845 Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1846 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1847 SawSRet = true;
1848 }
1849
1850 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1851 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1852 SawSwiftSelf = true;
1853 }
1854
1855 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1856 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1857 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1858 SawSwiftError = true;
1859 }
1860
1861 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1862 Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1863 "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1864 }
1865 }
1866
1867 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1868 return;
1869
1870 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1871
1872 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1873 Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1874 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1875
1876 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1877 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1878 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
;
1879
1880 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1881 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1882 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
;
1883
1884 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1885 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1886 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1887 "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1888 V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1889
1890 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1891 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1892 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1893
1894 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1895 Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1896 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
;
1897
1898 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1899 Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
1900 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
;
1901
1902 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1903 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1904
1905 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
1906 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
;
1907 }
1908
1909 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1910 const GlobalValue *GV = cast<GlobalValue>(V);
1911 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1912 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1913 }
1914
1915 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1916 std::pair<unsigned, Optional<unsigned>> Args =
1917 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1918
1919 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1920 if (ParamNo >= FT->getNumParams()) {
1921 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1922 return false;
1923 }
1924
1925 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1926 CheckFailed("'allocsize' " + Name +
1927 " argument must refer to an integer parameter",
1928 V);
1929 return false;
1930 }
1931
1932 return true;
1933 };
1934
1935 if (!CheckParam("element size", Args.first))
1936 return;
1937
1938 if (Args.second && !CheckParam("number of elements", *Args.second))
1939 return;
1940 }
1941
1942 if (Attrs.hasFnAttribute("frame-pointer")) {
1943 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
1944 "frame-pointer").getValueAsString();
1945 if (FP != "all" && FP != "non-leaf" && FP != "none")
1946 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
1947 }
1948
1949 if (Attrs.hasFnAttribute("patchable-function-prefix")) {
1950 StringRef S = Attrs
1951 .getAttribute(AttributeList::FunctionIndex,
1952 "patchable-function-prefix")
1953 .getValueAsString();
1954 unsigned N;
1955 if (S.getAsInteger(10, N))
1956 CheckFailed(
1957 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
1958 }
1959 if (Attrs.hasFnAttribute("patchable-function-entry")) {
1960 StringRef S = Attrs
1961 .getAttribute(AttributeList::FunctionIndex,
1962 "patchable-function-entry")
1963 .getValueAsString();
1964 unsigned N;
1965 if (S.getAsInteger(10, N))
1966 CheckFailed(
1967 "\"patchable-function-entry\" takes an unsigned integer: " + S, V);
1968 }
1969}
1970
1971void Verifier::verifyFunctionMetadata(
1972 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1973 for (const auto &Pair : MDs) {
1974 if (Pair.first == LLVMContext::MD_prof) {
1975 MDNode *MD = Pair.second;
1976 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
1977 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
1978
1979 // Check first operand.
1980 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1981 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1982 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1983 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1984 MDString *MDS = cast<MDString>(MD->getOperand(0));
1985 StringRef ProfName = MDS->getString();
1986 Assert(ProfName.equals("function_entry_count") ||do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1987 ProfName.equals("synthetic_function_entry_count"),do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1988 "first operand should be 'function_entry_count'"do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1989 " or 'synthetic_function_entry_count'",do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1990 MD)do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
;
1991
1992 // Check second operand.
1993 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1994 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1995 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1996 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1997 }
1998 }
1999}
2000
2001void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2002 if (!ConstantExprVisited.insert(EntryC).second)
2003 return;
2004
2005 SmallVector<const Constant *, 16> Stack;
2006 Stack.push_back(EntryC);
2007
2008 while (!Stack.empty()) {
2009 const Constant *C = Stack.pop_back_val();
2010
2011 // Check this constant expression.
2012 if (const auto *CE = dyn_cast<ConstantExpr>(C))
2013 visitConstantExpr(CE);
2014
2015 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2016 // Global Values get visited separately, but we do need to make sure
2017 // that the global value is in the correct module
2018 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
2019 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
2020 continue;
2021 }
2022
2023 // Visit all sub-expressions.
2024 for (const Use &U : C->operands()) {
2025 const auto *OpC = dyn_cast<Constant>(U);
2026 if (!OpC)
2027 continue;
2028 if (!ConstantExprVisited.insert(OpC).second)
2029 continue;
2030 Stack.push_back(OpC);
2031 }
2032 }
2033}
2034
2035void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2036 if (CE->getOpcode() == Instruction::BitCast)
2037 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
2038 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
2039 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
2040
2041 if (CE->getOpcode() == Instruction::IntToPtr ||
2042 CE->getOpcode() == Instruction::PtrToInt) {
2043 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
2044 ? CE->getType()
2045 : CE->getOperand(0)->getType();
2046 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
2047 ? "inttoptr not supported for non-integral pointers"
2048 : "ptrtoint not supported for non-integral pointers";
2049 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
2050 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
2051 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
2052 }
2053}
2054
2055bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2056 // There shouldn't be more attribute sets than there are parameters plus the
2057 // function and return value.
2058 return Attrs.getNumAttrSets() <= Params + 2;
2059}
2060
2061/// Verify that statepoint intrinsic is well formed.
2062void Verifier::verifyStatepoint(const CallBase &Call) {
2063 assert(Call.getCalledFunction() &&((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 2065, __PRETTY_FUNCTION__))
2064 Call.getCalledFunction()->getIntrinsicID() ==((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 2065, __PRETTY_FUNCTION__))
2065 Intrinsic::experimental_gc_statepoint)((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 2065, __PRETTY_FUNCTION__))
;
2066
2067 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2068 !Call.onlyAccessesArgMemory(),do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2069 "gc.statepoint must read and write all memory to preserve "do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2070 "reordering restrictions required by safepoint semantics",do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2071 Call)do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
;
2072
2073 const int64_t NumPatchBytes =
2074 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2075 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 2075, __PRETTY_FUNCTION__))
;
2076 Assert(NumPatchBytes >= 0,do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
2077 "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
2078 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
2079 Call)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
;
2080
2081 const Value *Target = Call.getArgOperand(2);
2082 auto *PT = dyn_cast<PointerType>(Target->getType());
2083 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, Call, Target); return; } } while (false)
2084 "gc.statepoint callee must be of function pointer type", Call, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, Call, Target); return; } } while (false)
;
2085 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2086
2087 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2088 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2089 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2090 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2091 Call)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
;
2092 const int NumParams = (int)TargetFuncType->getNumParams();
2093 if (TargetFuncType->isVarArg()) {
2094 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, Call); return; } } while (false)
2095 "gc.statepoint mismatch in number of vararg call args", Call)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, Call); return; } } while (false)
;
2096
2097 // TODO: Remove this limitation
2098 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2099 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2100 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2101 Call)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
;
2102 } else
2103 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, Call); return; } } while (false)
2104 "gc.statepoint mismatch in number of call args", Call)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, Call); return; } } while (false)
;
2105
2106 const uint64_t Flags
2107 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2108 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, Call); return; } } while (false)
2109 "unknown flag used in gc.statepoint flags argument", Call)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, Call); return; } } while (false)
;
2110
2111 // Verify that the types of the call parameter arguments match
2112 // the type of the wrapped callee.
2113 AttributeList Attrs = Call.getAttributes();
2114 for (int i = 0; i < NumParams; i++) {
2115 Type *ParamType = TargetFuncType->getParamType(i);
2116 Type *ArgType = Call.getArgOperand(5 + i)->getType();
2117 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2118 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2119 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2120 Call)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
;
2121
2122 if (TargetFuncType->isVarArg()) {
2123 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2124 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2125 "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2126 Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
;
2127 }
2128 }
2129
2130 const int EndCallArgsInx = 4 + NumCallArgs;
2131
2132 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2133 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2134 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2135 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2136 Call)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
;
2137 const int NumTransitionArgs =
2138 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2139 Assert(NumTransitionArgs == 0,do { if (!(NumTransitionArgs == 0)) { CheckFailed("gc.statepoint w/inline transition bundle is deprecated"
, Call); return; } } while (false)
2140 "gc.statepoint w/inline transition bundle is deprecated", Call)do { if (!(NumTransitionArgs == 0)) { CheckFailed("gc.statepoint w/inline transition bundle is deprecated"
, Call); return; } } while (false)
;
2141 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2142
2143 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2144 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2145 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2146 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2147 Call)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
;
2148 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2149 Assert(NumDeoptArgs == 0,do { if (!(NumDeoptArgs == 0)) { CheckFailed("gc.statepoint w/inline deopt operands is deprecated"
, Call); return; } } while (false)
2150 "gc.statepoint w/inline deopt operands is deprecated", Call)do { if (!(NumDeoptArgs == 0)) { CheckFailed("gc.statepoint w/inline deopt operands is deprecated"
, Call); return; } } while (false)
;
2151
2152 const int ExpectedNumArgs = 7 + NumCallArgs;
2153 Assert(ExpectedNumArgs == (int)Call.arg_size(),do { if (!(ExpectedNumArgs == (int)Call.arg_size())) { CheckFailed
("gc.statepoint too many arguments", Call); return; } } while
(false)
2154 "gc.statepoint too many arguments", Call)do { if (!(ExpectedNumArgs == (int)Call.arg_size())) { CheckFailed
("gc.statepoint too many arguments", Call); return; } } while
(false)
;
2155
2156 // Check that the only uses of this gc.statepoint are gc.result or
2157 // gc.relocate calls which are tied to this statepoint and thus part
2158 // of the same statepoint sequence
2159 for (const User *U : Call.users()) {
2160 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2161 Assert(UserCall, "illegal use of statepoint token", Call, U)do { if (!(UserCall)) { CheckFailed("illegal use of statepoint token"
, Call, U); return; } } while (false)
;
2162 if (!UserCall)
2163 continue;
2164 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2165 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2166 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2167 Call, U)do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
;
2168 if (isa<GCResultInst>(UserCall)) {
2169 Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.result connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
2170 "gc.result connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.result connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
;
2171 } else if (isa<GCRelocateInst>(Call)) {
2172 Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
2173 "gc.relocate connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
;
2174 }
2175 }
2176
2177 // Note: It is legal for a single derived pointer to be listed multiple
2178 // times. It's non-optimal, but it is legal. It can also happen after
2179 // insertion if we strip a bitcast away.
2180 // Note: It is really tempting to check that each base is relocated and
2181 // that a derived pointer is never reused as a base pointer. This turns
2182 // out to be problematic since optimizations run after safepoint insertion
2183 // can recognize equality properties that the insertion logic doesn't know
2184 // about. See example statepoint.ll in the verifier subdirectory
2185}
2186
2187void Verifier::verifyFrameRecoverIndices() {
2188 for (auto &Counts : FrameEscapeInfo) {
2189 Function *F = Counts.first;
2190 unsigned EscapedObjectCount = Counts.second.first;
2191 unsigned MaxRecoveredIndex = Counts.second.second;
2192 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2193 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2194 "number of arguments passed to llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2195 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2196 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
;
2197 }
2198}
2199
2200static Instruction *getSuccPad(Instruction *Terminator) {
2201 BasicBlock *UnwindDest;
2202 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2203 UnwindDest = II->getUnwindDest();
2204 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2205 UnwindDest = CSI->getUnwindDest();
2206 else
2207 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2208 return UnwindDest->getFirstNonPHI();
2209}
2210
2211void Verifier::verifySiblingFuncletUnwinds() {
2212 SmallPtrSet<Instruction *, 8> Visited;
2213 SmallPtrSet<Instruction *, 8> Active;
2214 for (const auto &Pair : SiblingFuncletInfo) {
2215 Instruction *PredPad = Pair.first;
2216 if (Visited.count(PredPad))
2217 continue;
2218 Active.insert(PredPad);
2219 Instruction *Terminator = Pair.second;
2220 do {
2221 Instruction *SuccPad = getSuccPad(Terminator);
2222 if (Active.count(SuccPad)) {
2223 // Found a cycle; report error
2224 Instruction *CyclePad = SuccPad;
2225 SmallVector<Instruction *, 8> CycleNodes;
2226 do {
2227 CycleNodes.push_back(CyclePad);
2228 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2229 if (CycleTerminator != CyclePad)
2230 CycleNodes.push_back(CycleTerminator);
2231 CyclePad = getSuccPad(CycleTerminator);
2232 } while (CyclePad != SuccPad);
2233 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
2234 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
2235 }
2236 // Don't re-walk a node we've already checked
2237 if (!Visited.insert(SuccPad).second)
2238 break;
2239 // Walk to this successor if it has a map entry.
2240 PredPad = SuccPad;
2241 auto TermI = SiblingFuncletInfo.find(PredPad);
2242 if (TermI == SiblingFuncletInfo.end())
2243 break;
2244 Terminator = TermI->second;
2245 Active.insert(PredPad);
2246 } while (true);
2247 // Each node only has one successor, so we've walked all the active
2248 // nodes' successors.
2249 Active.clear();
2250 }
2251}
2252
2253// visitFunction - Verify that a function is ok.
2254//
2255void Verifier::visitFunction(const Function &F) {
2256 visitGlobalValue(F);
2257
2258 // Check function arguments.
2259 FunctionType *FT = F.getFunctionType();
2260 unsigned NumArgs = F.arg_size();
2261
2262 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1
Assuming the condition is true
2
Taking false branch
3
Loop condition is false. Exiting loop
2263 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
2264
2265 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
4
Taking false branch
5
Loop condition is false. Exiting loop
2266 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
6
Assuming the condition is true
7
Taking false branch
8
Loop condition is false. Exiting loop
2267 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
2268 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
2269 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
9
Taking false branch
10
Loop condition is false. Exiting loop
2270 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
2271 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
2272
2273 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
11
Assuming the condition is true
12
Taking false branch
13
Loop condition is false. Exiting loop
2274 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
2275
2276 AttributeList Attrs = F.getAttributes();
2277
2278 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
14
Taking false branch
15
Loop condition is false. Exiting loop
2279 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
2280
2281 bool isLLVMdotName = F.getName().size() >= 5 &&
16
Assuming the condition is false
2282 F.getName().substr(0, 5) == "llvm.";
2283
2284 // Check function attributes.
2285 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2286
2287 // On function declarations/definitions, we do not support the builtin
2288 // attribute. We do not check this in VerifyFunctionAttrs since that is
2289 // checking for Attributes that can/can not ever be on functions.
2290 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
17
Assuming the condition is true
18
Taking false branch
19
Loop condition is false. Exiting loop
2291 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
;
2292
2293 // Check that this function meets the restrictions on this calling convention.
2294 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2295 // restrictions can be lifted.
2296 switch (F.getCallingConv()) {
20
Control jumps to 'case C:' at line 2298
2297 default:
2298 case CallingConv::C:
2299 break;
21
Execution continues on line 2347
2300 case CallingConv::AMDGPU_KERNEL:
2301 case CallingConv::SPIR_KERNEL:
2302 Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
2303 "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
;
2304 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2305 case CallingConv::AMDGPU_VS:
2306 case CallingConv::AMDGPU_HS:
2307 case CallingConv::AMDGPU_GS:
2308 case CallingConv::AMDGPU_PS:
2309 case CallingConv::AMDGPU_CS:
2310 Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
2311 "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
;
2312 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2313 const unsigned StackAS = DL.getAllocaAddrSpace();
2314 unsigned i = 0;
2315 for (const Argument &Arg : F.args()) {
2316 Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal),do { if (!(!Attrs.hasParamAttribute(i, Attribute::ByVal))) { CheckFailed
("Calling convention disallows byval", &F); return; } } while
(false)
2317 "Calling convention disallows byval", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::ByVal))) { CheckFailed
("Calling convention disallows byval", &F); return; } } while
(false)
;
2318 Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated),do { if (!(!Attrs.hasParamAttribute(i, Attribute::Preallocated
))) { CheckFailed("Calling convention disallows preallocated"
, &F); return; } } while (false)
2319 "Calling convention disallows preallocated", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::Preallocated
))) { CheckFailed("Calling convention disallows preallocated"
, &F); return; } } while (false)
;
2320 Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca),do { if (!(!Attrs.hasParamAttribute(i, Attribute::InAlloca)))
{ CheckFailed("Calling convention disallows inalloca", &
F); return; } } while (false)
2321 "Calling convention disallows inalloca", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::InAlloca)))
{ CheckFailed("Calling convention disallows inalloca", &
F); return; } } while (false)
;
2322
2323 if (Attrs.hasParamAttribute(i, Attribute::ByRef)) {
2324 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2325 // value here.
2326 Assert(Arg.getType()->getPointerAddressSpace() != StackAS,do { if (!(Arg.getType()->getPointerAddressSpace() != StackAS
)) { CheckFailed("Calling convention disallows stack byref", &
F); return; } } while (false)
2327 "Calling convention disallows stack byref", &F)do { if (!(Arg.getType()->getPointerAddressSpace() != StackAS
)) { CheckFailed("Calling convention disallows stack byref", &
F); return; } } while (false)
;
2328 }
2329
2330 ++i;
2331 }
2332 }
2333
2334 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2335 case CallingConv::Fast:
2336 case CallingConv::Cold:
2337 case CallingConv::Intel_OCL_BI:
2338 case CallingConv::PTX_Kernel:
2339 case CallingConv::PTX_Device:
2340 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2341 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2342 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2343 break;
2344 }
2345
2346 // Check that the argument values match the function type for this function...
2347 unsigned i = 0;
2348 for (const Argument &Arg : F.args()) {
22
Assuming '__begin1' is equal to '__end1'
2349 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2350 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2351 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2352 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2353 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2354 if (!isLLVMdotName) {
2355 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2356 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2357 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2358 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2359 }
2360
2361 // Check that swifterror argument is only used by loads and stores.
2362 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2363 verifySwiftErrorValue(&Arg);
2364 }
2365 ++i;
2366 }
2367
2368 if (!isLLVMdotName
22.1
'isLLVMdotName' is false
22.1
'isLLVMdotName' is false
)
23
Taking true branch
2369 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
24
Taking false branch
25
Loop condition is false. Exiting loop
2370 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2371
2372 // Get the function metadata attachments.
2373 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2374 F.getAllMetadata(MDs);
2375 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 2375, __PRETTY_FUNCTION__))
;
26
Assuming the condition is true
27
'?' condition is true
2376 verifyFunctionMetadata(MDs);
2377
2378 // Check validity of the personality function
2379 if (F.hasPersonalityFn()) {
28
Assuming the condition is false
29
Taking false branch
2380 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2381 if (Per)
2382 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2383 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2384 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2385 }
2386
2387 if (F.isMaterializable()) {
30
Assuming the condition is false
31
Taking false branch
2388 // Function has a body somewhere we can't see.
2389 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2390 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2391 } else if (F.isDeclaration()) {
32
Assuming the condition is false
33
Taking false branch
2392 for (const auto &I : MDs) {
2393 // This is used for call site debug information.
2394 AssertDI(I.first != LLVMContext::MD_dbg ||do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2395 !cast<DISubprogram>(I.second)->isDistinct(),do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2396 "function declaration may only have a unique !dbg attachment",do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2397 &F)do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
;
2398 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2399 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2400
2401 // Verify the metadata itself.
2402 visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2403 }
2404 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2405 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2406 } else {
2407 // Verify that this function (which has a body) is not named "llvm.*". It
2408 // is not legal to define intrinsics.
2409 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
34
Taking false branch
35
Loop condition is false. Exiting loop
2410
2411 // Check the entry node
2412 const BasicBlock *Entry = &F.getEntryBlock();
2413 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
36
Assuming the condition is false
37
Taking false branch
38
Loop condition is false. Exiting loop
2414 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2415
2416 // The address of the entry block cannot be taken, unless it is dead.
2417 if (Entry->hasAddressTaken()) {
39
Assuming the condition is false
40
Taking false branch
2418 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2419 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2420 }
2421
2422 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2423 // Visit metadata attachments.
2424 for (const auto &I : MDs) {
41
Assuming '__begin3' is equal to '__end3'
2425 // Verify that the attachment is legal.
2426 auto AllowLocs = AreDebugLocsAllowed::No;
2427 switch (I.first) {
2428 default:
2429 break;
2430 case LLVMContext::MD_dbg: {
2431 ++NumDebugAttachments;
2432 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2433 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2434 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2435 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2436 AssertDI(cast<DISubprogram>(I.second)->isDistinct(),do { if (!(cast<DISubprogram>(I.second)->isDistinct(
))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment"
, &F); return; } } while (false)
2437 "function definition may only have a distinct !dbg attachment",do { if (!(cast<DISubprogram>(I.second)->isDistinct(
))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment"
, &F); return; } } while (false)
2438 &F)do { if (!(cast<DISubprogram>(I.second)->isDistinct(
))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment"
, &F); return; } } while (false)
;
2439
2440 auto *SP = cast<DISubprogram>(I.second);
2441 const Function *&AttachedTo = DISubprogramAttachments[SP];
2442 AssertDI(!AttachedTo || AttachedTo == &F,do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
2443 "DISubprogram attached to more than one function", SP, &F)do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
;
2444 AttachedTo = &F;
2445 AllowLocs = AreDebugLocsAllowed::Yes;
2446 break;
2447 }
2448 case LLVMContext::MD_prof:
2449 ++NumProfAttachments;
2450 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2451 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2452 break;
2453 }
2454
2455 // Verify the metadata itself.
2456 visitMDNode(*I.second, AllowLocs);
2457 }
2458 }
2459
2460 // If this function is actually an intrinsic, verify that it is only used in
2461 // direct call/invokes, never having its "address taken".
2462 // Only do this if the module is materialized, otherwise we don't have all the
2463 // uses.
2464 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
42
Assuming the condition is false
2465 const User *U;
2466 if (F.hasAddressTaken(&U))
2467 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2468 }
2469
2470 auto *N = F.getSubprogram();
2471 HasDebugInfo = (N != nullptr);
43
Assuming the condition is true
2472 if (!HasDebugInfo
43.1
Field 'HasDebugInfo' is true
43.1
Field 'HasDebugInfo' is true
)
44
Taking false branch
2473 return;
2474
2475 // Check that all !dbg attachments lead to back to N.
2476 //
2477 // FIXME: Check this incrementally while visiting !dbg attachments.
2478 // FIXME: Only check when N is the canonical subprogram for F.
2479 SmallPtrSet<const MDNode *, 32> Seen;
2480 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2481 // Be careful about using DILocation here since we might be dealing with
2482 // broken code (this is the Verifier after all).
2483 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
46
Assuming 'Node' is a 'DILocation'
2484 if (!DL
46.1
'DL' is non-null
46.1
'DL' is non-null
)
47
Taking false branch
2485 return;
2486 if (!Seen.insert(DL).second)
48
Assuming field 'second' is true
49
Taking false branch
2487 return;
2488
2489 Metadata *Parent = DL->getRawScope();
2490 AssertDI(Parent && isa<DILocalScope>(Parent),do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
50
Assuming 'Parent' is non-null
51
Assuming 'Parent' is a 'DILocalScope'
52
Taking false branch
53
Loop condition is false. Exiting loop
2491 "DILocation's scope must be a DILocalScope", N, &F, &I, DL,do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
2492 Parent)do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
;
2493
2494 DILocalScope *Scope = DL->getInlinedAtScope();
54
Calling 'DILocation::getInlinedAtScope'
61
Returning from 'DILocation::getInlinedAtScope'
2495 Assert(Scope, "Failed to find DILocalScope", DL)do { if (!(Scope)) { CheckFailed("Failed to find DILocalScope"
, DL); return; } } while (false)
;
62
Taking false branch
63
Loop condition is false. Exiting loop
2496
2497 if (!Seen.insert(Scope).second)
64
Assuming field 'second' is true
65
Taking false branch
2498 return;
2499
2500 DISubprogram *SP = Scope->getSubprogram();
66
'SP' initialized here
2501
2502 // Scope and SP could be the same MDNode and we don't want to skip
2503 // validation in that case
2504 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
67
Assuming 'SP' is null
68
Taking false branch
2505 return;
2506
2507 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
69
Called C++ object pointer is null
2508 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2509 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2510 };
2511 for (auto &BB : F)
2512 for (auto &I : BB) {
2513 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
45
Calling 'operator()'
2514 // The llvm.loop annotations also contain two DILocations.
2515 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2516 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2517 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2518 if (BrokenDebugInfo)
2519 return;
2520 }
2521}
2522
2523// verifyBasicBlock - Verify that a basic block is well formed...
2524//
2525void Verifier::visitBasicBlock(BasicBlock &BB) {
2526 InstsInThisBlock.clear();
2527
2528 // Ensure that basic blocks have terminators!
2529 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2530
2531 // Check constraints that this basic block imposes on all of the PHI nodes in
2532 // it.
2533 if (isa<PHINode>(BB.front())) {
2534 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2535 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2536 llvm::sort(Preds);
2537 for (const PHINode &PN : BB.phis()) {
2538 // Ensure that PHI nodes have at least one entry!
2539 Assert(PN.getNumIncomingValues() != 0,do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2540 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2541 "the PHI should be removed!",do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2542 &PN)do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
;
2543 Assert(PN.getNumIncomingValues() == Preds.size(),do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2544 "PHINode should have one entry for each predecessor of its "do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2545 "parent basic block!",do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2546 &PN)do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
;
2547
2548 // Get and sort all incoming values in the PHI node...
2549 Values.clear();
2550 Values.reserve(PN.getNumIncomingValues());
2551 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2552 Values.push_back(
2553 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2554 llvm::sort(Values);
2555
2556 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2557 // Check to make sure that if there is more than one entry for a
2558 // particular basic block in this PHI node, that the incoming values are
2559 // all identical.
2560 //
2561 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2562 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2563 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2564 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2565 &PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
;
2566
2567 // Check to make sure that the predecessors and PHI node entries are
2568 // matched up.
2569 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2570 "PHI node entries do not match predecessors!", &PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2571 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
;
2572 }
2573 }
2574 }
2575
2576 // Check that all instructions have their parent pointers set up correctly.
2577 for (auto &I : BB)
2578 {
2579 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2580 }
2581}
2582
2583void Verifier::visitTerminator(Instruction &I) {
2584 // Ensure that terminators only exist at the end of the basic block.
2585 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2586 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2587 visitInstruction(I);
2588}
2589
2590void Verifier::visitBranchInst(BranchInst &BI) {
2591 if (BI.isConditional()) {
2592 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2593 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2594 }
2595 visitTerminator(BI);
2596}
2597
2598void Verifier::visitReturnInst(ReturnInst &RI) {
2599 Function *F = RI.getParent()->getParent();
2600 unsigned N = RI.getNumOperands();
2601 if (F->getReturnType()->isVoidTy())
2602 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2603 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2604 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2605 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2606 else
2607 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2608 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2609 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2610 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2611
2612 // Check to make sure that the return value has necessary properties for
2613 // terminators...
2614 visitTerminator(RI);
2615}
2616
2617void Verifier::visitSwitchInst(SwitchInst &SI) {
2618 // Check to make sure that all of the constants in the switch instruction
2619 // have the same type as the switched-on value.
2620 Type *SwitchTy = SI.getCondition()->getType();
2621 SmallPtrSet<ConstantInt*, 32> Constants;
2622 for (auto &Case : SI.cases()) {
2623 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2624 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2625 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2626 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2627 }
2628
2629 visitTerminator(SI);
2630}
2631
2632void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2633 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2634 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2635 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2636 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2637 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2638
2639 visitTerminator(BI);
2640}
2641
2642void Verifier::visitCallBrInst(CallBrInst &CBI) {
2643 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!"
, &CBI); return; } } while (false)
2644 &CBI)do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!"
, &CBI); return; } } while (false)
;
2645 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2646 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy())
) { CheckFailed("Callbr successors must all have pointer type!"
, &CBI); return; } } while (false)
2647 "Callbr successors must all have pointer type!", &CBI)do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy())
) { CheckFailed("Callbr successors must all have pointer type!"
, &CBI); return; } } while (false)
;
2648 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2649 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock
>(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!"
, &CBI); return; } } while (false)
2650 "Using an unescaped label as a callbr argument!", &CBI)do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock
>(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!"
, &CBI); return; } } while (false)
;
2651 if (isa<BasicBlock>(CBI.getOperand(i)))
2652 for (unsigned j = i + 1; j != e; ++j)
2653 Assert(CBI.getOperand(i) != CBI.getOperand(j),do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed
("Duplicate callbr destination!", &CBI); return; } } while
(false)
2654 "Duplicate callbr destination!", &CBI)do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed
("Duplicate callbr destination!", &CBI); return; } } while
(false)
;
2655 }
2656 {
2657 SmallPtrSet<BasicBlock *, 4> ArgBBs;
2658 for (Value *V : CBI.args())
2659 if (auto *BA = dyn_cast<BlockAddress>(V))
2660 ArgBBs.insert(BA->getBasicBlock());
2661 for (BasicBlock *BB : CBI.getIndirectDests())
2662 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI)do { if (!(ArgBBs.count(BB))) { CheckFailed("Indirect label missing from arglist."
, &CBI); return; } } while (false)
;
2663 }
2664
2665 visitTerminator(CBI);
2666}
2667
2668void Verifier::visitSelectInst(SelectInst &SI) {
2669 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2670 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2671 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2672
2673 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2674 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2675 visitInstruction(SI);
2676}
2677
2678/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2679/// a pass, if any exist, it's an error.
2680///
2681void Verifier::visitUserOp1(Instruction &I) {
2682 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2683}
2684
2685void Verifier::visitTruncInst(TruncInst &I) {
2686 // Get the source and destination types
2687 Type *SrcTy = I.getOperand(0)->getType();
2688 Type *DestTy = I.getType();
2689
2690 // Get the size of the types in bits, we'll need this later
2691 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2692 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2693
2694 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2695 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2696 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2697 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2698 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2699
2700 visitInstruction(I);
2701}
2702
2703void Verifier::visitZExtInst(ZExtInst &I) {
2704 // Get the source and destination types
2705 Type *SrcTy = I.getOperand(0)->getType();
2706 Type *DestTy = I.getType();
2707
2708 // Get the size of the types in bits, we'll need this later
2709 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2710 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2711 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2712 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2713 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2714 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2715
2716 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2717
2718 visitInstruction(I);
2719}
2720
2721void Verifier::visitSExtInst(SExtInst &I) {
2722 // Get the source and destination types
2723 Type *SrcTy = I.getOperand(0)->getType();
2724 Type *DestTy = I.getType();
2725
2726 // Get the size of the types in bits, we'll need this later
2727 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2728 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2729
2730 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2731 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2732 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2733 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2734 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2735
2736 visitInstruction(I);
2737}
2738
2739void Verifier::visitFPTruncInst(FPTruncInst &I) {
2740 // Get the source and destination types
2741 Type *SrcTy = I.getOperand(0)->getType();
2742 Type *DestTy = I.getType();
2743 // Get the size of the types in bits, we'll need this later
2744 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2745 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2746
2747 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2748 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2749 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2750 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2751 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2752
2753 visitInstruction(I);
2754}
2755
2756void Verifier::visitFPExtInst(FPExtInst &I) {
2757 // Get the source and destination types
2758 Type *SrcTy = I.getOperand(0)->getType();
2759 Type *DestTy = I.getType();
2760
2761 // Get the size of the types in bits, we'll need this later
2762 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2763 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2764
2765 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2766 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2767 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2768 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2769 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2770
2771 visitInstruction(I);
2772}
2773
2774void Verifier::visitUIToFPInst(UIToFPInst &I) {
2775 // Get the source and destination types
2776 Type *SrcTy = I.getOperand(0)->getType();
2777 Type *DestTy = I.getType();
2778
2779 bool SrcVec = SrcTy->isVectorTy();
2780 bool DstVec = DestTy->isVectorTy();
2781
2782 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2783 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2784 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2785 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2786 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2787 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2788
2789 if (SrcVec && DstVec)
2790 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("UIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2791 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("UIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2792 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("UIToFP source and dest vector length mismatch",
&I); return; } } while (false)
;
2793
2794 visitInstruction(I);
2795}
2796
2797void Verifier::visitSIToFPInst(SIToFPInst &I) {
2798 // Get the source and destination types
2799 Type *SrcTy = I.getOperand(0)->getType();
2800 Type *DestTy = I.getType();
2801
2802 bool SrcVec = SrcTy->isVectorTy();
2803 bool DstVec = DestTy->isVectorTy();
2804
2805 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2806 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2807 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2808 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2809 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2810 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2811
2812 if (SrcVec && DstVec)
2813 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("SIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2814 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("SIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2815 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("SIToFP source and dest vector length mismatch",
&I); return; } } while (false)
;
2816
2817 visitInstruction(I);
2818}
2819
2820void Verifier::visitFPToUIInst(FPToUIInst &I) {
2821 // Get the source and destination types
2822 Type *SrcTy = I.getOperand(0)->getType();
2823 Type *DestTy = I.getType();
2824
2825 bool SrcVec = SrcTy->isVectorTy();
2826 bool DstVec = DestTy->isVectorTy();
2827
2828 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2829 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2830 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2831 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2832 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2833 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2834
2835 if (SrcVec && DstVec)
2836 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToUI source and dest vector length mismatch",
&I); return; } } while (false)
2837 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToUI source and dest vector length mismatch",
&I); return; } } while (false)
2838 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToUI source and dest vector length mismatch",
&I); return; } } while (false)
;
2839
2840 visitInstruction(I);
2841}
2842
2843void Verifier::visitFPToSIInst(FPToSIInst &I) {
2844 // Get the source and destination types
2845 Type *SrcTy = I.getOperand(0)->getType();
2846 Type *DestTy = I.getType();
2847
2848 bool SrcVec = SrcTy->isVectorTy();
2849 bool DstVec = DestTy->isVectorTy();
2850
2851 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2852 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2853 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2854 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2855 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2856 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2857
2858 if (SrcVec && DstVec)
2859 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToSI source and dest vector length mismatch",
&I); return; } } while (false)
2860 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToSI source and dest vector length mismatch",
&I); return; } } while (false)
2861 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToSI source and dest vector length mismatch",
&I); return; } } while (false)
;
2862
2863 visitInstruction(I);
2864}
2865
2866void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2867 // Get the source and destination types
2868 Type *SrcTy = I.getOperand(0)->getType();
2869 Type *DestTy = I.getType();
2870
2871 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("PtrToInt source must be pointer"
, &I); return; } } while (false)
;
2872
2873 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2874 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2875 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2876
2877 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("PtrToInt result must be integral"
, &I); return; } } while (false)
;
2878 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2879 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2880
2881 if (SrcTy->isVectorTy()) {
2882 auto *VSrc = cast<VectorType>(SrcTy);
2883 auto *VDest = cast<VectorType>(DestTy);
2884 Assert(VSrc->getElementCount() == VDest->getElementCount(),do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2885 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2886 }
2887
2888 visitInstruction(I);
2889}
2890
2891void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2892 // Get the source and destination types
2893 Type *SrcTy = I.getOperand(0)->getType();
2894 Type *DestTy = I.getType();
2895
2896 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
2897 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
;
2898 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("IntToPtr result must be a pointer"
, &I); return; } } while (false)
;
2899
2900 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2901 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2902 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2903
2904 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2905 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2906 if (SrcTy->isVectorTy()) {
2907 auto *VSrc = cast<VectorType>(SrcTy);
2908 auto *VDest = cast<VectorType>(DestTy);
2909 Assert(VSrc->getElementCount() == VDest->getElementCount(),do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2910 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2911 }
2912 visitInstruction(I);
2913}
2914
2915void Verifier::visitBitCastInst(BitCastInst &I) {
2916 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2917 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2918 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2919 visitInstruction(I);
2920}
2921
2922void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2923 Type *SrcTy = I.getOperand(0)->getType();
2924 Type *DestTy = I.getType();
2925
2926 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2927 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2928 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2929 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2930 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2931 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2932 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
2933 Assert(cast<FixedVectorType>(SrcVTy)->getNumElements() ==do { if (!(cast<FixedVectorType>(SrcVTy)->getNumElements
() == cast<FixedVectorType>(DestTy)->getNumElements(
))) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2934 cast<FixedVectorType>(DestTy)->getNumElements(),do { if (!(cast<FixedVectorType>(SrcVTy)->getNumElements
() == cast<FixedVectorType>(DestTy)->getNumElements(
))) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2935 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(cast<FixedVectorType>(SrcVTy)->getNumElements
() == cast<FixedVectorType>(DestTy)->getNumElements(
))) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2936 visitInstruction(I);
2937}
2938
2939/// visitPHINode - Ensure that a PHI node is well formed.
2940///
2941void Verifier::visitPHINode(PHINode &PN) {
2942 // Ensure that the PHI nodes are all grouped together at the top of the block.
2943 // This can be tested by checking whether the instruction before this is
2944 // either nonexistent (because this is begin()) or is a PHI node. If not,
2945 // then there is some other instruction before a PHI.
2946 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2947 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2948 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2949
2950 // Check that a PHI doesn't yield a Token.
2951 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2952
2953 // Check that all of the values of the PHI node have the same type as the
2954 // result, and that the incoming blocks are really basic blocks.
2955 for (Value *IncValue : PN.incoming_values()) {
2956 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2957 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2958 }
2959
2960 // All other PHI node constraints are checked in the visitBasicBlock method.
2961
2962 visitInstruction(PN);
2963}
2964
2965void Verifier::visitCallBase(CallBase &Call) {
2966 Assert(Call.getCalledOperand()->getType()->isPointerTy(),do { if (!(Call.getCalledOperand()->getType()->isPointerTy
())) { CheckFailed("Called function must be a pointer!", Call
); return; } } while (false)
2967 "Called function must be a pointer!", Call)do { if (!(Call.getCalledOperand()->getType()->isPointerTy
())) { CheckFailed("Called function must be a pointer!", Call
); return; } } while (false)
;
2968 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
2969
2970 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", Call); return
; } } while (false)
2971 "Called function is not pointer to function type!", Call)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", Call); return
; } } while (false)
;
2972
2973 Assert(FPTy->getElementType() == Call.getFunctionType(),do { if (!(FPTy->getElementType() == Call.getFunctionType(
))) { CheckFailed("Called function is not the same type as the call!"
, Call); return; } } while (false)
2974 "Called function is not the same type as the call!", Call)do { if (!(FPTy->getElementType() == Call.getFunctionType(
))) { CheckFailed("Called function is not the same type as the call!"
, Call); return; } } while (false)
;
2975
2976 FunctionType *FTy = Call.getFunctionType();
2977
2978 // Verify that the correct number of arguments are being passed
2979 if (FTy->isVarArg())
2980 Assert(Call.arg_size() >= FTy->getNumParams(),do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
2981 "Called function requires more parameters than were provided!",do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
2982 Call)do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
;
2983 else
2984 Assert(Call.arg_size() == FTy->getNumParams(),do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", Call
); return; } } while (false)
2985 "Incorrect number of arguments passed to called function!", Call)do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", Call
); return; } } while (false)
;
2986
2987 // Verify that all arguments to the call match the function type.
2988 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2989 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
2990 "Call parameter type does not match function signature!",do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
2991 Call.getArgOperand(i), FTy->getParamType(i), Call)do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
;
2992
2993 AttributeList Attrs = Call.getAttributes();
2994
2995 Assert(verifyAttributeCount(Attrs, Call.arg_size()),do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed
("Attribute after last parameter!", Call); return; } } while (
false)
2996 "Attribute after last parameter!", Call)do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed
("Attribute after last parameter!", Call); return; } } while (
false)
;
2997
2998 bool IsIntrinsic = Call.getCalledFunction() &&
2999 Call.getCalledFunction()->getName().startswith("llvm.");
3000
3001 Function *Callee =
3002 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3003
3004 if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
3005 // Don't allow speculatable on call sites, unless the underlying function
3006 // declaration is also speculatable.
3007 Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", Call);
return; } } while (false)
3008 "speculatable attribute may not apply to call sites", Call)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", Call);
return; } } while (false)
;
3009 }
3010
3011 if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
3012 Assert(Call.getCalledFunction()->getIntrinsicID() ==do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
3013 Intrinsic::call_preallocated_arg,do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
3014 "preallocated as a call site attribute can only be on "do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
3015 "llvm.call.preallocated.arg")do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
;
3016 }
3017
3018 // Verify call attributes.
3019 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
3020
3021 // Conservatively check the inalloca argument.
3022 // We have a bug if we can find that there is an underlying alloca without
3023 // inalloca.
3024 if (Call.hasInAllocaArgument()) {
3025 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3026 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3027 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
3028 "inalloca argument for call has mismatched alloca", AI, Call)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
;
3029 }
3030
3031 // For each argument of the callsite, if it has the swifterror argument,
3032 // make sure the underlying alloca/parameter it comes from has a swifterror as
3033 // well.
3034 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3035 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3036 Value *SwiftErrorArg = Call.getArgOperand(i);
3037 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3038 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
3039 "swifterror argument for call has mismatched alloca", AI, Call)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
;
3040 continue;
3041 }
3042 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3043 Assert(ArgI,do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
3044 "swifterror argument should come from an alloca or parameter",do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
3045 SwiftErrorArg, Call)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
;
3046 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
3047 "swifterror argument for call has mismatched parameter", ArgI,do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
3048 Call)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
;
3049 }
3050
3051 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
3052 // Don't allow immarg on call sites, unless the underlying declaration
3053 // also has the matching immarg.
3054 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
3055 "immarg may not apply only to call sites",do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
3056 Call.getArgOperand(i), Call)do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
;
3057 }
3058
3059 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3060 Value *ArgVal = Call.getArgOperand(i);
3061 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP
>(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter"
, ArgVal, Call); return; } } while (false)
3062 "immarg operand has non-immediate parameter", ArgVal, Call)do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP
>(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter"
, ArgVal, Call); return; } } while (false)
;
3063 }
3064
3065 if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3066 Value *ArgVal = Call.getArgOperand(i);
3067 bool hasOB =
3068 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3069 bool isMustTail = Call.isMustTailCall();
3070 Assert(hasOB != isMustTail,do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
3071 "preallocated operand either requires a preallocated bundle or "do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
3072 "the call to be musttail (but not both)",do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
3073 ArgVal, Call)do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
;
3074 }
3075 }
3076
3077 if (FTy->isVarArg()) {
3078 // FIXME? is 'nest' even legal here?
3079 bool SawNest = false;
3080 bool SawReturned = false;
3081
3082 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3083 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
3084 SawNest = true;
3085 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
3086 SawReturned = true;
3087 }
3088
3089 // Check attributes on the varargs part.
3090 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3091 Type *Ty = Call.getArgOperand(Idx)->getType();
3092 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
3093 verifyParameterAttrs(ArgAttrs, Ty, &Call);
3094
3095 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3096 Assert(!SawNest, "More than one parameter has attribute nest!", Call)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, Call); return; } } while (false)
;
3097 SawNest = true;
3098 }
3099
3100 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3101 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, Call); return; } } while (false)
3102 Call)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, Call); return; } } while (false)
;
3103 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
3104 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
3105 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
3106 Call)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
;
3107 SawReturned = true;
3108 }
3109
3110 // Statepoint intrinsic is vararg but the wrapped function may be not.
3111 // Allow sret here and check the wrapped function in verifyStatepoint.
3112 if (!Call.getCalledFunction() ||
3113 Call.getCalledFunction()->getIntrinsicID() !=
3114 Intrinsic::experimental_gc_statepoint)
3115 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
3116 "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
3117 Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
;
3118
3119 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3120 Assert(Idx == Call.arg_size() - 1,do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, Call); return; } } while (false)
3121 "inalloca isn't on the last argument!", Call)do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, Call); return; } } while (false)
;
3122 }
3123 }
3124
3125 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3126 if (!IsIntrinsic) {
3127 for (Type *ParamTy : FTy->params()) {
3128 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, Call); return; } } while (false)
3129 "Function has metadata parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, Call); return; } } while (false)
;
3130 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, Call); return; } } while (false)
3131 "Function has token parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, Call); return; } } while (false)
;
3132 }
3133 }
3134
3135 // Verify that indirect calls don't return tokens.
3136 if (!Call.getCalledFunction())
3137 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
3138 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
3139
3140 if (Function *F = Call.getCalledFunction())
3141 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3142 visitIntrinsicCall(ID, Call);
3143
3144 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3145 // most one "gc-transition", at most one "cfguardtarget",
3146 // and at most one "preallocated" operand bundle.
3147 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3148 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3149 FoundPreallocatedBundle = false, FoundGCLiveBundle = false;;
3150 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3151 OperandBundleUse BU = Call.getOperandBundleAt(i);
3152 uint32_t Tag = BU.getTagID();
3153 if (Tag == LLVMContext::OB_deopt) {
3154 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, Call); return; } } while (false)
;
3155 FoundDeoptBundle = true;
3156 } else if (Tag == LLVMContext::OB_gc_transition) {
3157 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, Call); return; } } while (false)
3158 Call)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, Call); return; } } while (false)
;
3159 FoundGCTransitionBundle = true;
3160 } else if (Tag == LLVMContext::OB_funclet) {
3161 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, Call); return; } } while (false)
;
3162 FoundFuncletBundle = true;
3163 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, Call); return; } } while (false)
3164 "Expected exactly one funclet bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, Call); return; } } while (false)
;
3165 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
3166 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
3167 Call)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
;
3168 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3169 Assert(!FoundCFGuardTargetBundle,do { if (!(!FoundCFGuardTargetBundle)) { CheckFailed("Multiple CFGuardTarget operand bundles"
, Call); return; } } while (false)
3170 "Multiple CFGuardTarget operand bundles", Call)do { if (!(!FoundCFGuardTargetBundle)) { CheckFailed("Multiple CFGuardTarget operand bundles"
, Call); return; } } while (false)
;
3171 FoundCFGuardTargetBundle = true;
3172 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one cfguardtarget bundle operand"
, Call); return; } } while (false)
3173 "Expected exactly one cfguardtarget bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one cfguardtarget bundle operand"
, Call); return; } } while (false)
;
3174 } else if (Tag == LLVMContext::OB_preallocated) {
3175 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",do { if (!(!FoundPreallocatedBundle)) { CheckFailed("Multiple preallocated operand bundles"
, Call); return; } } while (false)
3176 Call)do { if (!(!FoundPreallocatedBundle)) { CheckFailed("Multiple preallocated operand bundles"
, Call); return; } } while (false)
;
3177 FoundPreallocatedBundle = true;
3178 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one preallocated bundle operand"
, Call); return; } } while (false)
3179 "Expected exactly one preallocated bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one preallocated bundle operand"
, Call); return; } } while (false)
;
3180 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3181 Assert(Input &&do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3182 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3183 "\"preallocated\" argument must be a token from "do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3184 "llvm.call.preallocated.setup",do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3185 Call)do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
;
3186 } else if (Tag == LLVMContext::OB_gc_live) {
3187 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",do { if (!(!FoundGCLiveBundle)) { CheckFailed("Multiple gc-live operand bundles"
, Call); return; } } while (false)
3188 Call)do { if (!(!FoundGCLiveBundle)) { CheckFailed("Multiple gc-live operand bundles"
, Call); return; } } while (false)
;
3189 FoundGCLiveBundle = true;
3190 }
3191 }
3192
3193 // Verify that each inlinable callsite of a debug-info-bearing function in a
3194 // debug-info-bearing function has a debug location attached to it. Failure to
3195 // do so causes assertion failures when the inliner sets up inline scope info.
3196 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3197 Call.getCalledFunction()->getSubprogram())
3198 AssertDI(Call.getDebugLoc(),do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3199 "inlinable function call in a function with "do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3200 "debug info must have a !dbg location",do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3201 Call)do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
;
3202
3203 visitInstruction(Call);
3204}
3205
3206/// Two types are "congruent" if they are identical, or if they are both pointer
3207/// types with different pointee types and the same address space.
3208static bool isTypeCongruent(Type *L, Type *R) {
3209 if (L == R)
3210 return true;
3211 PointerType *PL = dyn_cast<PointerType>(L);
3212 PointerType *PR = dyn_cast<PointerType>(R);
3213 if (!PL || !PR)
3214 return false;
3215 return PL->getAddressSpace() == PR->getAddressSpace();
3216}
3217
3218static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3219 static const Attribute::AttrKind ABIAttrs[] = {
3220 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3221 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError,
3222 Attribute::Preallocated, Attribute::ByRef};
3223 AttrBuilder Copy;
3224 for (auto AK : ABIAttrs) {
3225 if (Attrs.hasParamAttribute(I, AK))
3226 Copy.addAttribute(AK);
3227 }
3228
3229 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3230 if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
3231 (Attrs.hasParamAttribute(I, Attribute::ByVal) ||
3232 Attrs.hasParamAttribute(I, Attribute::ByRef)))
3233 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3234 return Copy;
3235}
3236
3237void Verifier::verifyMustTailCall(CallInst &CI) {
3238 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
3239
3240 // - The caller and callee prototypes must match. Pointer types of
3241 // parameters or return types may differ in pointee type, but not
3242 // address space.
3243 Function *F = CI.getParent()->getParent();
3244 FunctionType *CallerTy = F->getFunctionType();
3245 FunctionType *CalleeTy = CI.getFunctionType();
3246 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3247 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
3248 "cannot guarantee tail call due to mismatched parameter counts",do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
3249 &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
3250 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3251 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
3252 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
3253 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
3254 }
3255 }
3256 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
3257 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
3258 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
3259 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
3260
3261 // - The calling conventions of the caller and callee must match.
3262 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
3263 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
3264
3265 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3266 // returned, preallocated, and inalloca, must match.
3267 AttributeList CallerAttrs = F->getAttributes();
3268 AttributeList CalleeAttrs = CI.getAttributes();
3269 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3270 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3271 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3272 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3273 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3274 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3275 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
3276 }
3277
3278 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3279 // or a pointer bitcast followed by a ret instruction.
3280 // - The ret instruction must return the (possibly bitcasted) value
3281 // produced by the call or void.
3282 Value *RetVal = &CI;
3283 Instruction *Next = CI.getNextNode();
3284
3285 // Handle the optional bitcast.
3286 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3287 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
3288 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
3289 RetVal = BI;
3290 Next = BI->getNextNode();
3291 }
3292
3293 // Check the return.
3294 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3295 Assert(Ret, "musttail call must precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
3296 &CI)do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
3297 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
3298 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
3299}
3300
3301void Verifier::visitCallInst(CallInst &CI) {
3302 visitCallBase(CI);
3303
3304 if (CI.isMustTailCall())
3305 verifyMustTailCall(CI);
3306}
3307
3308void Verifier::visitInvokeInst(InvokeInst &II) {
3309 visitCallBase(II);
3310
3311 // Verify that the first non-PHI instruction of the unwind destination is an
3312 // exception handling instruction.
3313 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3314 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3315 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3316 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
3317
3318 visitTerminator(II);
3319}
3320
3321/// visitUnaryOperator - Check the argument to the unary operator.
3322///
3323void Verifier::visitUnaryOperator(UnaryOperator &U) {
3324 Assert(U.getType() == U.getOperand(0)->getType(),do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3325 "Unary operators must have same type for"do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3326 "operands and result!",do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3327 &U)do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
;
3328
3329 switch (U.getOpcode()) {
3330 // Check that floating-point arithmetic operators are only used with
3331 // floating-point operands.
3332 case Instruction::FNeg:
3333 Assert(U.getType()->isFPOrFPVectorTy(),do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed
("FNeg operator only works with float types!", &U); return
; } } while (false)
3334 "FNeg operator only works with float types!", &U)do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed
("FNeg operator only works with float types!", &U); return
; } } while (false)
;
3335 break;
3336 default:
3337 llvm_unreachable("Unknown UnaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown UnaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 3337)
;
3338 }
3339
3340 visitInstruction(U);
3341}
3342
3343/// visitBinaryOperator - Check that both arguments to the binary operator are
3344/// of the same type!
3345///
3346void Verifier::visitBinaryOperator(BinaryOperator &B) {
3347 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
3348 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
3349
3350 switch (B.getOpcode()) {
3351 // Check that integer arithmetic operators are only used with
3352 // integral operands.
3353 case Instruction::Add:
3354 case Instruction::Sub:
3355 case Instruction::Mul:
3356 case Instruction::SDiv:
3357 case Instruction::UDiv:
3358 case Instruction::SRem:
3359 case Instruction::URem:
3360 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
3361 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
3362 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3363 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3364 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3365 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3366 break;
3367 // Check that floating-point arithmetic operators are only used with
3368 // floating-point operands.
3369 case Instruction::FAdd:
3370 case Instruction::FSub:
3371 case Instruction::FMul:
3372 case Instruction::FDiv:
3373 case Instruction::FRem:
3374 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3375 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3376 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3377 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
3378 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3379 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3380 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3381 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3382 break;
3383 // Check that logical operators are only used with integral operands.
3384 case Instruction::And:
3385 case Instruction::Or:
3386 case Instruction::Xor:
3387 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
3388 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
3389 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3390 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3391 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
3392 break;
3393 case Instruction::Shl:
3394 case Instruction::LShr:
3395 case Instruction::AShr:
3396 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
3397 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
3398 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
3399 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
3400 break;
3401 default:
3402 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 3402)
;
3403 }
3404
3405 visitInstruction(B);
3406}
3407
3408void Verifier::visitICmpInst(ICmpInst &IC) {
3409 // Check that the operands are the same type
3410 Type *Op0Ty = IC.getOperand(0)->getType();
3411 Type *Op1Ty = IC.getOperand(1)->getType();
3412 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
3413 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
3414 // Check that the operands are the right type
3415 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
3416 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
3417 // Check that the predicate is valid.
3418 Assert(IC.isIntPredicate(),do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
3419 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
;
3420
3421 visitInstruction(IC);
3422}
3423
3424void Verifier::visitFCmpInst(FCmpInst &FC) {
3425 // Check that the operands are the same type
3426 Type *Op0Ty = FC.getOperand(0)->getType();
3427 Type *Op1Ty = FC.getOperand(1)->getType();
3428 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
3429 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
3430 // Check that the operands are the right type
3431 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
3432 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
3433 // Check that the predicate is valid.
3434 Assert(FC.isFPPredicate(),do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
3435 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
;
3436
3437 visitInstruction(FC);
3438}
3439
3440void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3441 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3442 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3443 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
3444 visitInstruction(EI);
3445}
3446
3447void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3448 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3449 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3450 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
3451 visitInstruction(IE);
3452}
3453
3454void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3455 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3456 SV.getShuffleMask()),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3457 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
3458 visitInstruction(SV);
3459}
3460
3461void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3462 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3463
3464 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
3465 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
3466 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
3467
3468 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3469 Assert(all_of(do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3470 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3471 "GEP indexes must be integers", &GEP)do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
;
3472 Type *ElTy =
3473 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3474 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
3475
3476 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3477 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3478 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
;
3479
3480 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3481 // Additional checks for vector GEPs.
3482 ElementCount GEPWidth = GEPVTy->getElementCount();
3483 if (GEP.getPointerOperandType()->isVectorTy())
3484 Assert(do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3485 GEPWidth ==do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3486 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3487 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3488 for (Value *Idx : Idxs) {
3489 Type *IndexTy = Idx->getType();
3490 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3491 ElementCount IndexWidth = IndexVTy->getElementCount();
3492 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3493 }
3494 Assert(IndexTy->isIntOrIntVectorTy(),do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
3495 "All GEP indices should be of integer type")do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
;
3496 }
3497 }
3498
3499 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3500 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace()
)) { CheckFailed("GEP address space doesn't match type", &
GEP); return; } } while (false)
3501 "GEP address space doesn't match type", &GEP)do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace()
)) { CheckFailed("GEP address space doesn't match type", &
GEP); return; } } while (false)
;
3502 }
3503
3504 visitInstruction(GEP);
3505}
3506
3507static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3508 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3509}
3510
3511void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3512 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 3513, __PRETTY_FUNCTION__))
3513 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 3513, __PRETTY_FUNCTION__))
;
3514
3515 unsigned NumOperands = Range->getNumOperands();
3516 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3517 unsigned NumRanges = NumOperands / 2;
3518 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3519
3520 ConstantRange LastRange(1, true); // Dummy initial value
3521 for (unsigned i = 0; i < NumRanges; ++i) {
3522 ConstantInt *Low =
3523 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3524 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3525 ConstantInt *High =
3526 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3527 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3528 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3529 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3530
3531 APInt HighV = High->getValue();
3532 APInt LowV = Low->getValue();
3533 ConstantRange CurRange(LowV, HighV);
3534 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3535 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3536 if (i != 0) {
3537 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3538 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3539 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3540 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3541 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3542 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3543 }
3544 LastRange = ConstantRange(LowV, HighV);
3545 }
3546 if (NumRanges > 2) {
3547 APInt FirstLow =
3548 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3549 APInt FirstHigh =
3550 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3551 ConstantRange FirstRange(FirstLow, FirstHigh);
3552 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3553 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3554 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3555 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3556 }
3557}
3558
3559void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3560 unsigned Size = DL.getTypeSizeInBits(Ty);
3561 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3562 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3563 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3564}
3565
3566void Verifier::visitLoadInst(LoadInst &LI) {
3567 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3568 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3569 Type *ElTy = LI.getType();
3570 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3571 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3572 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3573 if (LI.isAtomic()) {
3574 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3575 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3576 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3577 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3578 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3579 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3580 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3581 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3582 ElTy, &LI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3583 checkAtomicMemAccessSize(ElTy, &LI);
3584 } else {
3585 Assert(LI.getSyncScopeID() == SyncScope::System,do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
3586 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
;
3587 }
3588
3589 visitInstruction(LI);
3590}
3591
3592void Verifier::visitStoreInst(StoreInst &SI) {
3593 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3594 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3595 Type *ElTy = PTy->getElementType();
3596 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3597 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3598 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3599 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3600 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3601 if (SI.isAtomic()) {
3602 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3603 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3604 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3605 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3606 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3607 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3608 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3609 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3610 ElTy, &SI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3611 checkAtomicMemAccessSize(ElTy, &SI);
3612 } else {
3613 Assert(SI.getSyncScopeID() == SyncScope::System,do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3614 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3615 }
3616 visitInstruction(SI);
3617}
3618
3619/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3620void Verifier::verifySwiftErrorCall(CallBase &Call,
3621 const Value *SwiftErrorVal) {
3622 unsigned Idx = 0;
3623 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3624 if (*I == SwiftErrorVal) {
3625 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3626 "swifterror value when used in a callsite should be marked "do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3627 "with swifterror attribute",do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3628 SwiftErrorVal, Call)do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
;
3629 }
3630 }
3631}
3632
3633void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3634 // Check that swifterror value is only used by loads, stores, or as
3635 // a swifterror argument.
3636 for (const User *U : SwiftErrorVal->users()) {
3637 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3638 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3639 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3640 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3641 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3642 // If it is used by a store, check it is the second operand.
3643 if (auto StoreI = dyn_cast<StoreInst>(U))
3644 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3645 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3646 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3647 if (auto *Call = dyn_cast<CallBase>(U))
3648 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3649 }
3650}
3651
3652void Verifier::visitAllocaInst(AllocaInst &AI) {
3653 SmallPtrSet<Type*, 4> Visited;
3654 PointerType *PTy = AI.getType();
3655 // TODO: Relax this restriction?
3656 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3657 "Allocation instruction pointer not in the stack address space!",do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3658 &AI)do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
;
3659 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3660 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3661 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3662 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3663 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3664 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3665
3666 if (AI.isSwiftError()) {
3667 verifySwiftErrorValue(&AI);
3668 }
3669
3670 visitInstruction(AI);
3671}
3672
3673void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3674
3675 // FIXME: more conditions???
3676 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3677 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3678 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3679 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3680 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3681 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3682 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3683 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3684 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3685 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3686 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3687 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3688 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3689 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3690 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3691
3692 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3693 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3694 Type *ElTy = PTy->getElementType();
3695 Assert(ElTy->isIntOrPtrTy(),do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3696 "cmpxchg operand must have integer or pointer type", ElTy, &CXI)do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3697 checkAtomicMemAccessSize(ElTy, &CXI);
3698 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3699 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3700 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3701 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3702 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3703 visitInstruction(CXI);
3704}
3705
3706void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3707 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3708 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3709 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3710 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3711 auto Op = RMWI.getOperation();
3712 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3713 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3714 Type *ElTy = PTy->getElementType();
3715 if (Op == AtomicRMWInst::Xchg) {
3716 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3717 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3718 " operand must have integer or floating point type!",do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3719 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
;
3720 } else if (AtomicRMWInst::isFPOperation(Op)) {
3721 Assert(ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3722 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3723 " operand must have floating point type!",do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3724 &RMWI, ElTy)do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
;
3725 } else {
3726 Assert(ElTy->isIntegerTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3727 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3728 " operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3729 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3730 }
3731 checkAtomicMemAccessSize(ElTy, &RMWI);
3732 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3733 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3734 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3735 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <=
AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!"
, &RMWI); return; } } while (false)
3736 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <=
AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!"
, &RMWI); return; } } while (false)
;
3737 visitInstruction(RMWI);
3738}
3739
3740void Verifier::visitFenceInst(FenceInst &FI) {
3741 const AtomicOrdering Ordering = FI.getOrdering();
3742 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3743 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3744 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3745 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3746 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3747 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3748 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3749 visitInstruction(FI);
3750}
3751
3752void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3753 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3754 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3755 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3756
3757 visitInstruction(EVI);
3758}
3759
3760void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3761 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3762 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3763 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3764 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3765
3766 visitInstruction(IVI);
3767}
3768
3769static Value *getParentPad(Value *EHPad) {
3770 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3771 return FPI->getParentPad();
3772
3773 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3774}
3775
3776void Verifier::visitEHPadPredecessors(Instruction &I) {
3777 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 3777, __PRETTY_FUNCTION__))
;
3778
3779 BasicBlock *BB = I.getParent();
3780 Function *F = BB->getParent();
3781
3782 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3783
3784 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3785 // The landingpad instruction defines its parent as a landing pad block. The
3786 // landing pad block may be branched to only by the unwind edge of an
3787 // invoke.
3788 for (BasicBlock *PredBB : predecessors(BB)) {
3789 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3790 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3791 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3792 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3793 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3794 }
3795 return;
3796 }
3797 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3798 if (!pred_empty(BB))
3799 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3800 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3801 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3802 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3803 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3804 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3805 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3806 return;
3807 }
3808
3809 // Verify that each pred has a legal terminator with a legal to/from EH
3810 // pad relationship.
3811 Instruction *ToPad = &I;
3812 Value *ToPadParent = getParentPad(ToPad);
3813 for (BasicBlock *PredBB : predecessors(BB)) {
3814 Instruction *TI = PredBB->getTerminator();
3815 Value *FromPad;
3816 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3817 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3818 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3819 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3820 FromPad = Bundle->Inputs[0];
3821 else
3822 FromPad = ConstantTokenNone::get(II->getContext());
3823 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3824 FromPad = CRI->getOperand(0);
3825 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3826 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3827 FromPad = CSI;
3828 } else {
3829 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3830 }
3831
3832 // The edge may exit from zero or more nested pads.
3833 SmallSet<Value *, 8> Seen;
3834 for (;; FromPad = getParentPad(FromPad)) {
3835 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3836 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3837 if (FromPad == ToPadParent) {
3838 // This is a legal unwind edge.
3839 break;
3840 }
3841 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3842 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3843 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3844 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3845 }
3846 }
3847}
3848
3849void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3850 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3851 // isn't a cleanup.
3852 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3853 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3854
3855 visitEHPadPredecessors(LPI);
3856
3857 if (!LandingPadResultTy)
3858 LandingPadResultTy = LPI.getType();
3859 else
3860 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3861 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3862 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3863 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3864
3865 Function *F = LPI.getParent()->getParent();
3866 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3867 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3868
3869 // The landingpad instruction must be the first non-PHI instruction in the
3870 // block.
3871 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3872 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3873 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3874
3875 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3876 Constant *Clause = LPI.getClause(i);
3877 if (LPI.isCatch(i)) {
3878 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3879 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3880 } else {
3881 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3882 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3883 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3884 }
3885 }
3886
3887 visitInstruction(LPI);
3888}
3889
3890void Verifier::visitResumeInst(ResumeInst &RI) {
3891 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3892 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3893
3894 if (!LandingPadResultTy)
3895 LandingPadResultTy = RI.getValue()->getType();
3896 else
3897 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3898 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3899 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3900 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3901
3902 visitTerminator(RI);
3903}
3904
3905void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3906 BasicBlock *BB = CPI.getParent();
3907
3908 Function *F = BB->getParent();
3909 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3910 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3911
3912 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3913 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3914 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3915
3916 // The catchpad instruction must be the first non-PHI instruction in the
3917 // block.
3918 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3919 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3920
3921 visitEHPadPredecessors(CPI);
3922 visitFuncletPadInst(CPI);
3923}
3924
3925void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3926 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3927 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3928 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3929
3930 visitTerminator(CatchReturn);
3931}
3932
3933void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3934 BasicBlock *BB = CPI.getParent();
3935
3936 Function *F = BB->getParent();
3937 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3938 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3939
3940 // The cleanuppad instruction must be the first non-PHI instruction in the
3941 // block.
3942 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3943 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3944 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3945
3946 auto *ParentPad = CPI.getParentPad();
3947 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3948 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3949
3950 visitEHPadPredecessors(CPI);
3951 visitFuncletPadInst(CPI);
3952}
3953
3954void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3955 User *FirstUser = nullptr;
3956 Value *FirstUnwindPad = nullptr;
3957 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3958 SmallSet<FuncletPadInst *, 8> Seen;
3959
3960 while (!Worklist.empty()) {
3961 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3962 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3963 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3964 Value *UnresolvedAncestorPad = nullptr;
3965 for (User *U : CurrentPad->users()) {
3966 BasicBlock *UnwindDest;
3967 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3968 UnwindDest = CRI->getUnwindDest();
3969 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3970 // We allow catchswitch unwind to caller to nest
3971 // within an outer pad that unwinds somewhere else,
3972 // because catchswitch doesn't have a nounwind variant.
3973 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3974 if (CSI->unwindsToCaller())
3975 continue;
3976 UnwindDest = CSI->getUnwindDest();
3977 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3978 UnwindDest = II->getUnwindDest();
3979 } else if (isa<CallInst>(U)) {
3980 // Calls which don't unwind may be found inside funclet
3981 // pads that unwind somewhere else. We don't *require*
3982 // such calls to be annotated nounwind.
3983 continue;
3984 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3985 // The unwind dest for a cleanup can only be found by
3986 // recursive search. Add it to the worklist, and we'll
3987 // search for its first use that determines where it unwinds.
3988 Worklist.push_back(CPI);
3989 continue;
3990 } else {
3991 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3992 continue;
3993 }
3994
3995 Value *UnwindPad;
3996 bool ExitsFPI;
3997 if (UnwindDest) {
3998 UnwindPad = UnwindDest->getFirstNonPHI();
3999 if (!cast<Instruction>(UnwindPad)->isEHPad())
4000 continue;
4001 Value *UnwindParent = getParentPad(UnwindPad);
4002 // Ignore unwind edges that don't exit CurrentPad.
4003 if (UnwindParent == CurrentPad)
4004 continue;
4005 // Determine whether the original funclet pad is exited,
4006 // and if we are scanning nested pads determine how many
4007 // of them are exited so we can stop searching their
4008 // children.
4009 Value *ExitedPad = CurrentPad;
4010 ExitsFPI = false;
4011 do {
4012 if (ExitedPad == &FPI) {
4013 ExitsFPI = true;
4014 // Now we can resolve any ancestors of CurrentPad up to
4015 // FPI, but not including FPI since we need to make sure
4016 // to check all direct users of FPI for consistency.
4017 UnresolvedAncestorPad = &FPI;
4018 break;
4019 }
4020 Value *ExitedParent = getParentPad(ExitedPad);
4021 if (ExitedParent == UnwindParent) {
4022 // ExitedPad is the ancestor-most pad which this unwind
4023 // edge exits, so we can resolve up to it, meaning that
4024 // ExitedParent is the first ancestor still unresolved.
4025 UnresolvedAncestorPad = ExitedParent;
4026 break;
4027 }
4028 ExitedPad = ExitedParent;
4029 } while (!isa<ConstantTokenNone>(ExitedPad));
4030 } else {
4031 // Unwinding to caller exits all pads.
4032 UnwindPad = ConstantTokenNone::get(FPI.getContext());
4033 ExitsFPI = true;
4034 UnresolvedAncestorPad = &FPI;
4035 }
4036
4037 if (ExitsFPI) {
4038 // This unwind edge exits FPI. Make sure it agrees with other
4039 // such edges.
4040 if (FirstUser) {
4041 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
4042 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
4043 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
4044 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
4045 } else {
4046 FirstUser = U;
4047 FirstUnwindPad = UnwindPad;
4048 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4049 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4050 getParentPad(UnwindPad) == getParentPad(&FPI))
4051 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4052 }
4053 }
4054 // Make sure we visit all uses of FPI, but for nested pads stop as
4055 // soon as we know where they unwind to.
4056 if (CurrentPad != &FPI)
4057 break;
4058 }
4059 if (UnresolvedAncestorPad) {
4060 if (CurrentPad == UnresolvedAncestorPad) {
4061 // When CurrentPad is FPI itself, we don't mark it as resolved even if
4062 // we've found an unwind edge that exits it, because we need to verify
4063 // all direct uses of FPI.
4064 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/build/llvm-toolchain-snapshot-12~++20200926111128+c6c5629f2fb/llvm/lib/IR/Verifier.cpp"
, 4064, __PRETTY_FUNCTION__))
;
4065 continue;
4066 }
4067 // Pop off the worklist any nested pads that we've found an unwind
4068 // destination for. The pads on the worklist are the uncles,
4069 // great-uncles, etc. of CurrentPad. We've found an unwind destination
4070 // for all ancestors of CurrentPad up to but not including
4071 // UnresolvedAncestorPad.
4072 Value *ResolvedPad = CurrentPad;
4073 while (!Worklist.empty()) {
4074 Value *UnclePad = Worklist.back();
4075 Value *AncestorPad = getParentPad(UnclePad);
4076 // Walk ResolvedPad up the ancestor list until we either find the
4077 // uncle's parent or the last resolved ancestor.
4078 while (ResolvedPad != AncestorPad) {
4079 Value *ResolvedParent = getParentPad(ResolvedPad);
4080 if (ResolvedParent == UnresolvedAncestorPad) {
4081 break;
4082 }
4083 ResolvedPad = ResolvedParent;
4084 }
4085 // If the resolved ancestor search didn't find the uncle's parent,
4086 // then the uncle is not yet resolved.
4087 if (ResolvedPad != AncestorPad)
4088 break;
4089 // This uncle is resolved, so pop it from the worklist.
4090 Worklist.pop_back();
4091 }
4092 }
4093 }
4094
4095 if (FirstUnwindPad) {
4096 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4097 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4098 Value *SwitchUnwindPad;
4099 if (SwitchUnwindDest)
4100 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4101 else
4102 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4103 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
4104 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
4105 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
4106 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
4107 }
4108 }
4109
4110 visitInstruction(FPI);
4111}
4112
4113void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4114 BasicBlock *BB = CatchSwitch.getParent();
4115
4116 Function *F = BB->getParent();
4117 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
4118 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
4119 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
4120
4121 // The catchswitch instruction must be the first non-PHI instruction in the
4122 // block.
4123 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
4124 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
4125 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
4126
4127 auto *ParentPad = CatchSwitch.getParentPad();
4128 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
4129 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
4130
4131 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4132 Instruction *I = UnwindDest->getFirstNonPHI();
4133 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
4134 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
4135 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
4136 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
4137