Bug Summary

File:llvm/lib/IR/Verifier.cpp
Warning:line 2558, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Verifier.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/build-llvm/lib/IR -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/build-llvm/lib/IR -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2021-01-24-223304-31662-1 -x c++ /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp

/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// sanity checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15// * Both of a binary operator's parameters are of the same type
16// * Verify that the indices of mem access instructions match other operands
17// * Verify that arithmetic and other things are only performed on first-class
18// types. Verify that shifts & logicals only happen on integrals f.e.
19// * All of the constants in a switch statement are of the correct type
20// * The code is in valid SSA form
21// * It should be illegal to put a label into any other type (like a structure)
22// or to return one. [except constant arrays!]
23// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24// * PHI nodes must have an entry for each predecessor, with no extras.
25// * PHI nodes must be the first thing in a basic block, all grouped together
26// * PHI nodes must have at least one entry
27// * All basic blocks should only end with terminator insts, not contain them
28// * The entry node to a function must not have predecessors
29// * All Instructions must be embedded into a basic block
30// * Functions cannot take a void-typed parameter
31// * Verify that a function's argument list agrees with it's declared type.
32// * It is illegal to specify a name for a void value.
33// * It is illegal to have a internal global value with no initializer
34// * It is illegal to have a ret instruction that returns a value that does not
35// agree with the function return value type.
36// * Function call argument types match the function prototype
37// * A landing pad is defined by a landingpad instruction, and can be jumped to
38// only by the unwind edge of an invoke instruction.
39// * A landingpad instruction must be the first non-PHI instruction in the
40// block.
41// * Landingpad instructions must be in a function with a personality function.
42// * All other things that are tested by asserts spread about the code...
43//
44//===----------------------------------------------------------------------===//
45
46#include "llvm/IR/Verifier.h"
47#include "llvm/ADT/APFloat.h"
48#include "llvm/ADT/APInt.h"
49#include "llvm/ADT/ArrayRef.h"
50#include "llvm/ADT/DenseMap.h"
51#include "llvm/ADT/MapVector.h"
52#include "llvm/ADT/Optional.h"
53#include "llvm/ADT/STLExtras.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/ADT/StringMap.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/Twine.h"
61#include "llvm/ADT/ilist.h"
62#include "llvm/BinaryFormat/Dwarf.h"
63#include "llvm/IR/Argument.h"
64#include "llvm/IR/Attributes.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/CFG.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/Function.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalValue.h"
81#include "llvm/IR/GlobalVariable.h"
82#include "llvm/IR/InlineAsm.h"
83#include "llvm/IR/InstVisitor.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/IntrinsicInst.h"
88#include "llvm/IR/Intrinsics.h"
89#include "llvm/IR/IntrinsicsWebAssembly.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/InitializePasses.h"
101#include "llvm/Pass.h"
102#include "llvm/Support/AtomicOrdering.h"
103#include "llvm/Support/Casting.h"
104#include "llvm/Support/CommandLine.h"
105#include "llvm/Support/Debug.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118static cl::opt<bool> VerifyNoAliasScopeDomination(
119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121 "scopes are not dominating"));
122
123namespace llvm {
124
125struct VerifierSupport {
126 raw_ostream *OS;
127 const Module &M;
128 ModuleSlotTracker MST;
129 Triple TT;
130 const DataLayout &DL;
131 LLVMContext &Context;
132
133 /// Track the brokenness of the module while recursively visiting.
134 bool Broken = false;
135 /// Broken debug info can be "recovered" from by stripping the debug info.
136 bool BrokenDebugInfo = false;
137 /// Whether to treat broken debug info as an error.
138 bool TreatBrokenDebugInfoAsError = true;
139
140 explicit VerifierSupport(raw_ostream *OS, const Module &M)
141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142 Context(M.getContext()) {}
143
144private:
145 void Write(const Module *M) {
146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147 }
148
149 void Write(const Value *V) {
150 if (V)
151 Write(*V);
152 }
153
154 void Write(const Value &V) {
155 if (isa<Instruction>(V)) {
156 V.print(*OS, MST);
157 *OS << '\n';
158 } else {
159 V.printAsOperand(*OS, true, MST);
160 *OS << '\n';
161 }
162 }
163
164 void Write(const Metadata *MD) {
165 if (!MD)
166 return;
167 MD->print(*OS, MST, &M);
168 *OS << '\n';
169 }
170
171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172 Write(MD.get());
173 }
174
175 void Write(const NamedMDNode *NMD) {
176 if (!NMD)
177 return;
178 NMD->print(*OS, MST);
179 *OS << '\n';
180 }
181
182 void Write(Type *T) {
183 if (!T)
184 return;
185 *OS << ' ' << *T;
186 }
187
188 void Write(const Comdat *C) {
189 if (!C)
190 return;
191 *OS << *C;
192 }
193
194 void Write(const APInt *AI) {
195 if (!AI)
196 return;
197 *OS << *AI << '\n';
198 }
199
200 void Write(const unsigned i) { *OS << i << '\n'; }
201
202 template <typename T> void Write(ArrayRef<T> Vs) {
203 for (const T &V : Vs)
204 Write(V);
205 }
206
207 template <typename T1, typename... Ts>
208 void WriteTs(const T1 &V1, const Ts &... Vs) {
209 Write(V1);
210 WriteTs(Vs...);
211 }
212
213 template <typename... Ts> void WriteTs() {}
214
215public:
216 /// A check failed, so printout out the condition and the message.
217 ///
218 /// This provides a nice place to put a breakpoint if you want to see why
219 /// something is not correct.
220 void CheckFailed(const Twine &Message) {
221 if (OS)
222 *OS << Message << '\n';
223 Broken = true;
224 }
225
226 /// A check failed (with values to print).
227 ///
228 /// This calls the Message-only version so that the above is easier to set a
229 /// breakpoint on.
230 template <typename T1, typename... Ts>
231 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
232 CheckFailed(Message);
233 if (OS)
234 WriteTs(V1, Vs...);
235 }
236
237 /// A debug info check failed.
238 void DebugInfoCheckFailed(const Twine &Message) {
239 if (OS)
240 *OS << Message << '\n';
241 Broken |= TreatBrokenDebugInfoAsError;
242 BrokenDebugInfo = true;
243 }
244
245 /// A debug info check failed (with values to print).
246 template <typename T1, typename... Ts>
247 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
248 const Ts &... Vs) {
249 DebugInfoCheckFailed(Message);
250 if (OS)
251 WriteTs(V1, Vs...);
252 }
253};
254
255} // namespace llvm
256
257namespace {
258
259class Verifier : public InstVisitor<Verifier>, VerifierSupport {
260 friend class InstVisitor<Verifier>;
261
262 DominatorTree DT;
263
264 /// When verifying a basic block, keep track of all of the
265 /// instructions we have seen so far.
266 ///
267 /// This allows us to do efficient dominance checks for the case when an
268 /// instruction has an operand that is an instruction in the same block.
269 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
270
271 /// Keep track of the metadata nodes that have been checked already.
272 SmallPtrSet<const Metadata *, 32> MDNodes;
273
274 /// Keep track which DISubprogram is attached to which function.
275 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
276
277 /// Track all DICompileUnits visited.
278 SmallPtrSet<const Metadata *, 2> CUVisited;
279
280 /// The result type for a landingpad.
281 Type *LandingPadResultTy;
282
283 /// Whether we've seen a call to @llvm.localescape in this function
284 /// already.
285 bool SawFrameEscape;
286
287 /// Whether the current function has a DISubprogram attached to it.
288 bool HasDebugInfo = false;
289
290 /// The current source language.
291 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
292
293 /// Whether source was present on the first DIFile encountered in each CU.
294 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
295
296 /// Stores the count of how many objects were passed to llvm.localescape for a
297 /// given function and the largest index passed to llvm.localrecover.
298 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
299
300 // Maps catchswitches and cleanuppads that unwind to siblings to the
301 // terminators that indicate the unwind, used to detect cycles therein.
302 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
303
304 /// Cache of constants visited in search of ConstantExprs.
305 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
306
307 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
308 SmallVector<const Function *, 4> DeoptimizeDeclarations;
309
310 // Verify that this GlobalValue is only used in this module.
311 // This map is used to avoid visiting uses twice. We can arrive at a user
312 // twice, if they have multiple operands. In particular for very large
313 // constant expressions, we can arrive at a particular user many times.
314 SmallPtrSet<const Value *, 32> GlobalValueVisited;
315
316 // Keeps track of duplicate function argument debug info.
317 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
318
319 TBAAVerifier TBAAVerifyHelper;
320
321 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
322
323 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
324
325public:
326 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
327 const Module &M)
328 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
329 SawFrameEscape(false), TBAAVerifyHelper(this) {
330 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
331 }
332
333 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
334
335 bool verify(const Function &F) {
336 assert(F.getParent() == &M &&((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 337, __PRETTY_FUNCTION__))
337 "An instance of this class only works with a specific module!")((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 337, __PRETTY_FUNCTION__))
;
338
339 // First ensure the function is well-enough formed to compute dominance
340 // information, and directly compute a dominance tree. We don't rely on the
341 // pass manager to provide this as it isolates us from a potentially
342 // out-of-date dominator tree and makes it significantly more complex to run
343 // this code outside of a pass manager.
344 // FIXME: It's really gross that we have to cast away constness here.
345 if (!F.empty())
346 DT.recalculate(const_cast<Function &>(F));
347
348 for (const BasicBlock &BB : F) {
349 if (!BB.empty() && BB.back().isTerminator())
350 continue;
351
352 if (OS) {
353 *OS << "Basic Block in function '" << F.getName()
354 << "' does not have terminator!\n";
355 BB.printAsOperand(*OS, true, MST);
356 *OS << "\n";
357 }
358 return false;
359 }
360
361 Broken = false;
362 // FIXME: We strip const here because the inst visitor strips const.
363 visit(const_cast<Function &>(F));
364 verifySiblingFuncletUnwinds();
365 InstsInThisBlock.clear();
366 DebugFnArgs.clear();
367 LandingPadResultTy = nullptr;
368 SawFrameEscape = false;
369 SiblingFuncletInfo.clear();
370 verifyNoAliasScopeDecl();
371 NoAliasScopeDecls.clear();
372
373 return !Broken;
374 }
375
376 /// Verify the module that this instance of \c Verifier was initialized with.
377 bool verify() {
378 Broken = false;
379
380 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
381 for (const Function &F : M)
382 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
383 DeoptimizeDeclarations.push_back(&F);
384
385 // Now that we've visited every function, verify that we never asked to
386 // recover a frame index that wasn't escaped.
387 verifyFrameRecoverIndices();
388 for (const GlobalVariable &GV : M.globals())
389 visitGlobalVariable(GV);
390
391 for (const GlobalAlias &GA : M.aliases())
392 visitGlobalAlias(GA);
393
394 for (const NamedMDNode &NMD : M.named_metadata())
395 visitNamedMDNode(NMD);
396
397 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
398 visitComdat(SMEC.getValue());
399
400 visitModuleFlags(M);
401 visitModuleIdents(M);
402 visitModuleCommandLines(M);
403
404 verifyCompileUnits();
405
406 verifyDeoptimizeCallingConvs();
407 DISubprogramAttachments.clear();
408 return !Broken;
409 }
410
411private:
412 /// Whether a metadata node is allowed to be, or contain, a DILocation.
413 enum class AreDebugLocsAllowed { No, Yes };
414
415 // Verification methods...
416 void visitGlobalValue(const GlobalValue &GV);
417 void visitGlobalVariable(const GlobalVariable &GV);
418 void visitGlobalAlias(const GlobalAlias &GA);
419 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
420 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
421 const GlobalAlias &A, const Constant &C);
422 void visitNamedMDNode(const NamedMDNode &NMD);
423 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
424 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
425 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
426 void visitComdat(const Comdat &C);
427 void visitModuleIdents(const Module &M);
428 void visitModuleCommandLines(const Module &M);
429 void visitModuleFlags(const Module &M);
430 void visitModuleFlag(const MDNode *Op,
431 DenseMap<const MDString *, const MDNode *> &SeenIDs,
432 SmallVectorImpl<const MDNode *> &Requirements);
433 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
434 void visitFunction(const Function &F);
435 void visitBasicBlock(BasicBlock &BB);
436 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
437 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
438 void visitProfMetadata(Instruction &I, MDNode *MD);
439 void visitAnnotationMetadata(MDNode *Annotation);
440
441 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
442#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
443#include "llvm/IR/Metadata.def"
444 void visitDIScope(const DIScope &N);
445 void visitDIVariable(const DIVariable &N);
446 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
447 void visitDITemplateParameter(const DITemplateParameter &N);
448
449 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
450
451 // InstVisitor overrides...
452 using InstVisitor<Verifier>::visit;
453 void visit(Instruction &I);
454
455 void visitTruncInst(TruncInst &I);
456 void visitZExtInst(ZExtInst &I);
457 void visitSExtInst(SExtInst &I);
458 void visitFPTruncInst(FPTruncInst &I);
459 void visitFPExtInst(FPExtInst &I);
460 void visitFPToUIInst(FPToUIInst &I);
461 void visitFPToSIInst(FPToSIInst &I);
462 void visitUIToFPInst(UIToFPInst &I);
463 void visitSIToFPInst(SIToFPInst &I);
464 void visitIntToPtrInst(IntToPtrInst &I);
465 void visitPtrToIntInst(PtrToIntInst &I);
466 void visitBitCastInst(BitCastInst &I);
467 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
468 void visitPHINode(PHINode &PN);
469 void visitCallBase(CallBase &Call);
470 void visitUnaryOperator(UnaryOperator &U);
471 void visitBinaryOperator(BinaryOperator &B);
472 void visitICmpInst(ICmpInst &IC);
473 void visitFCmpInst(FCmpInst &FC);
474 void visitExtractElementInst(ExtractElementInst &EI);
475 void visitInsertElementInst(InsertElementInst &EI);
476 void visitShuffleVectorInst(ShuffleVectorInst &EI);
477 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
478 void visitCallInst(CallInst &CI);
479 void visitInvokeInst(InvokeInst &II);
480 void visitGetElementPtrInst(GetElementPtrInst &GEP);
481 void visitLoadInst(LoadInst &LI);
482 void visitStoreInst(StoreInst &SI);
483 void verifyDominatesUse(Instruction &I, unsigned i);
484 void visitInstruction(Instruction &I);
485 void visitTerminator(Instruction &I);
486 void visitBranchInst(BranchInst &BI);
487 void visitReturnInst(ReturnInst &RI);
488 void visitSwitchInst(SwitchInst &SI);
489 void visitIndirectBrInst(IndirectBrInst &BI);
490 void visitCallBrInst(CallBrInst &CBI);
491 void visitSelectInst(SelectInst &SI);
492 void visitUserOp1(Instruction &I);
493 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
494 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
495 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
496 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
497 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
498 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
499 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
500 void visitFenceInst(FenceInst &FI);
501 void visitAllocaInst(AllocaInst &AI);
502 void visitExtractValueInst(ExtractValueInst &EVI);
503 void visitInsertValueInst(InsertValueInst &IVI);
504 void visitEHPadPredecessors(Instruction &I);
505 void visitLandingPadInst(LandingPadInst &LPI);
506 void visitResumeInst(ResumeInst &RI);
507 void visitCatchPadInst(CatchPadInst &CPI);
508 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
509 void visitCleanupPadInst(CleanupPadInst &CPI);
510 void visitFuncletPadInst(FuncletPadInst &FPI);
511 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
512 void visitCleanupReturnInst(CleanupReturnInst &CRI);
513
514 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
515 void verifySwiftErrorValue(const Value *SwiftErrorVal);
516 void verifyMustTailCall(CallInst &CI);
517 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
518 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
519 const Value *V);
520 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
521 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
522 const Value *V, bool IsIntrinsic);
523 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
524
525 void visitConstantExprsRecursively(const Constant *EntryC);
526 void visitConstantExpr(const ConstantExpr *CE);
527 void verifyStatepoint(const CallBase &Call);
528 void verifyFrameRecoverIndices();
529 void verifySiblingFuncletUnwinds();
530
531 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
532 template <typename ValueOrMetadata>
533 void verifyFragmentExpression(const DIVariable &V,
534 DIExpression::FragmentInfo Fragment,
535 ValueOrMetadata *Desc);
536 void verifyFnArgs(const DbgVariableIntrinsic &I);
537 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
538
539 /// Module-level debug info verification...
540 void verifyCompileUnits();
541
542 /// Module-level verification that all @llvm.experimental.deoptimize
543 /// declarations share the same calling convention.
544 void verifyDeoptimizeCallingConvs();
545
546 /// Verify all-or-nothing property of DIFile source attribute within a CU.
547 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
548
549 /// Verify the llvm.experimental.noalias.scope.decl declarations
550 void verifyNoAliasScopeDecl();
551};
552
553} // end anonymous namespace
554
555/// We know that cond should be true, if not print an error message.
556#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
557 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
558
559/// We know that a debug info condition should be true, if not print
560/// an error message.
561#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
562 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
563
564void Verifier::visit(Instruction &I) {
565 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
566 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
567 InstVisitor<Verifier>::visit(I);
568}
569
570// Helper to recursively iterate over indirect users. By
571// returning false, the callback can ask to stop recursing
572// further.
573static void forEachUser(const Value *User,
574 SmallPtrSet<const Value *, 32> &Visited,
575 llvm::function_ref<bool(const Value *)> Callback) {
576 if (!Visited.insert(User).second)
577 return;
578 for (const Value *TheNextUser : User->materialized_users())
579 if (Callback(TheNextUser))
580 forEachUser(TheNextUser, Visited, Callback);
581}
582
583void Verifier::visitGlobalValue(const GlobalValue &GV) {
584 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
585 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
586
587 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
588 Assert(GO->getAlignment() <= Value::MaximumAlignment,do { if (!(GO->getAlignment() <= Value::MaximumAlignment
)) { CheckFailed("huge alignment values are unsupported", GO)
; return; } } while (false)
589 "huge alignment values are unsupported", GO)do { if (!(GO->getAlignment() <= Value::MaximumAlignment
)) { CheckFailed("huge alignment values are unsupported", GO)
; return; } } while (false)
;
590 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
591 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
592
593 if (GV.hasAppendingLinkage()) {
594 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
595 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
596 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
597 }
598
599 if (GV.isDeclarationForLinker())
600 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
601
602 if (GV.hasDLLImportStorageClass()) {
603 Assert(!GV.isDSOLocal(),do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
604 "GlobalValue with DLLImport Storage is dso_local!", &GV)do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
;
605
606 Assert((GV.isDeclaration() &&do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
607 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
608 GV.hasAvailableExternallyLinkage(),do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
609 "Global is marked as dllimport, but not external", &GV)do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage
() || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
610 }
611
612 if (GV.isImplicitDSOLocal())
613 Assert(GV.isDSOLocal(),do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
614 "GlobalValue with local linkage or non-default "do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
615 "visibility must be dso_local!",do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
616 &GV)do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default "
"visibility must be dso_local!", &GV); return; } } while
(false)
;
617
618 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
619 if (const Instruction *I = dyn_cast<Instruction>(V)) {
620 if (!I->getParent() || !I->getParent()->getParent())
621 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
622 I);
623 else if (I->getParent()->getParent()->getParent() != &M)
624 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
625 I->getParent()->getParent(),
626 I->getParent()->getParent()->getParent());
627 return false;
628 } else if (const Function *F = dyn_cast<Function>(V)) {
629 if (F->getParent() != &M)
630 CheckFailed("Global is used by function in a different module", &GV, &M,
631 F, F->getParent());
632 return false;
633 }
634 return true;
635 });
636}
637
638void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
639 if (GV.hasInitializer()) {
640 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
641 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
642 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
643 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
644 // If the global has common linkage, it must have a zero initializer and
645 // cannot be constant.
646 if (GV.hasCommonLinkage()) {
647 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
648 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
649 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
650 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
651 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
652 }
653 }
654
655 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
656 GV.getName() == "llvm.global_dtors")) {
657 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
658 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
659 // Don't worry about emitting an error for it not being an array,
660 // visitGlobalValue will complain on appending non-array.
661 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
662 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
663 PointerType *FuncPtrTy =
664 FunctionType::get(Type::getVoidTy(Context), false)->
665 getPointerTo(DL.getProgramAddressSpace());
666 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
667 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
668 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
669 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
670 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
671 Assert(STy->getNumElements() == 3,do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
672 "the third field of the element type is mandatory, "do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
673 "specify i8* null to migrate from the obsoleted 2-field form")do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form"
); return; } } while (false)
;
674 Type *ETy = STy->getTypeAtIndex(2);
675 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
676 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
677 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
678 }
679 }
680
681 if (GV.hasName() && (GV.getName() == "llvm.used" ||
682 GV.getName() == "llvm.compiler.used")) {
683 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
684 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
685 Type *GVType = GV.getValueType();
686 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
687 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
688 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
689 if (GV.hasInitializer()) {
690 const Constant *Init = GV.getInitializer();
691 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
692 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
693 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
694 for (Value *Op : InitArray->operands()) {
695 Value *V = Op->stripPointerCasts();
696 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
697 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
698 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
699 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
700 }
701 }
702 }
703 }
704
705 // Visit any debug info attachments.
706 SmallVector<MDNode *, 1> MDs;
707 GV.getMetadata(LLVMContext::MD_dbg, MDs);
708 for (auto *MD : MDs) {
709 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
710 visitDIGlobalVariableExpression(*GVE);
711 else
712 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
713 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
714 }
715
716 // Scalable vectors cannot be global variables, since we don't know
717 // the runtime size. If the global is an array containing scalable vectors,
718 // that will be caught by the isValidElementType methods in StructType or
719 // ArrayType instead.
720 Assert(!isa<ScalableVectorType>(GV.getValueType()),do { if (!(!isa<ScalableVectorType>(GV.getValueType()))
) { CheckFailed("Globals cannot contain scalable vectors", &
GV); return; } } while (false)
721 "Globals cannot contain scalable vectors", &GV)do { if (!(!isa<ScalableVectorType>(GV.getValueType()))
) { CheckFailed("Globals cannot contain scalable vectors", &
GV); return; } } while (false)
;
722
723 if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
724 Assert(!STy->containsScalableVectorType(),do { if (!(!STy->containsScalableVectorType())) { CheckFailed
("Globals cannot contain scalable vectors", &GV); return;
} } while (false)
725 "Globals cannot contain scalable vectors", &GV)do { if (!(!STy->containsScalableVectorType())) { CheckFailed
("Globals cannot contain scalable vectors", &GV); return;
} } while (false)
;
726
727 if (!GV.hasInitializer()) {
728 visitGlobalValue(GV);
729 return;
730 }
731
732 // Walk any aggregate initializers looking for bitcasts between address spaces
733 visitConstantExprsRecursively(GV.getInitializer());
734
735 visitGlobalValue(GV);
736}
737
738void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
739 SmallPtrSet<const GlobalAlias*, 4> Visited;
740 Visited.insert(&GA);
741 visitAliaseeSubExpr(Visited, GA, C);
742}
743
744void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
745 const GlobalAlias &GA, const Constant &C) {
746 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
747 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
748 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
749
750 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
751 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
752
753 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
754 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
755 } else {
756 // Only continue verifying subexpressions of GlobalAliases.
757 // Do not recurse into global initializers.
758 return;
759 }
760 }
761
762 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
763 visitConstantExprsRecursively(CE);
764
765 for (const Use &U : C.operands()) {
766 Value *V = &*U;
767 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
768 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
769 else if (const auto *C2 = dyn_cast<Constant>(V))
770 visitAliaseeSubExpr(Visited, GA, *C2);
771 }
772}
773
774void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
775 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
776 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
777 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
778 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
779 const Constant *Aliasee = GA.getAliasee();
780 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
781 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
782 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
783
784 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
785 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
786
787 visitAliaseeSubExpr(GA, *Aliasee);
788
789 visitGlobalValue(GA);
790}
791
792void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
793 // There used to be various other llvm.dbg.* nodes, but we don't support
794 // upgrading them and we want to reserve the namespace for future uses.
795 if (NMD.getName().startswith("llvm.dbg."))
796 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
797 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
798 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
799 for (const MDNode *MD : NMD.operands()) {
800 if (NMD.getName() == "llvm.dbg.cu")
801 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
802
803 if (!MD)
804 continue;
805
806 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
807 }
808}
809
810void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
811 // Only visit each node once. Metadata can be mutually recursive, so this
812 // avoids infinite recursion here, as well as being an optimization.
813 if (!MDNodes.insert(&MD).second)
814 return;
815
816 switch (MD.getMetadataID()) {
817 default:
818 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 818)
;
819 case Metadata::MDTupleKind:
820 break;
821#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
822 case Metadata::CLASS##Kind: \
823 visit##CLASS(cast<CLASS>(MD)); \
824 break;
825#include "llvm/IR/Metadata.def"
826 }
827
828 for (const Metadata *Op : MD.operands()) {
829 if (!Op)
830 continue;
831 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
832 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
833 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,do { if (!(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed
::Yes)) { DebugInfoCheckFailed("DILocation not allowed within this metadata node"
, &MD, Op); return; } } while (false)
834 "DILocation not allowed within this metadata node", &MD, Op)do { if (!(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed
::Yes)) { DebugInfoCheckFailed("DILocation not allowed within this metadata node"
, &MD, Op); return; } } while (false)
;
835 if (auto *N = dyn_cast<MDNode>(Op)) {
836 visitMDNode(*N, AllowLocs);
837 continue;
838 }
839 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
840 visitValueAsMetadata(*V, nullptr);
841 continue;
842 }
843 }
844
845 // Check these last, so we diagnose problems in operands first.
846 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
847 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
848}
849
850void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
851 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
852 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
853 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
854
855 auto *L = dyn_cast<LocalAsMetadata>(&MD);
856 if (!L)
857 return;
858
859 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
860
861 // If this was an instruction, bb, or argument, verify that it is in the
862 // function that we expect.
863 Function *ActualF = nullptr;
864 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
865 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
866 ActualF = I->getParent()->getParent();
867 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
868 ActualF = BB->getParent();
869 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
870 ActualF = A->getParent();
871 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 871, __PRETTY_FUNCTION__))
;
872
873 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
874}
875
876void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
877 Metadata *MD = MDV.getMetadata();
878 if (auto *N = dyn_cast<MDNode>(MD)) {
879 visitMDNode(*N, AreDebugLocsAllowed::No);
880 return;
881 }
882
883 // Only visit each node once. Metadata can be mutually recursive, so this
884 // avoids infinite recursion here, as well as being an optimization.
885 if (!MDNodes.insert(MD).second)
886 return;
887
888 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
889 visitValueAsMetadata(*V, F);
890}
891
892static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
893static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
894static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
895
896void Verifier::visitDILocation(const DILocation &N) {
897 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
898 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
899 if (auto *IA = N.getRawInlinedAt())
900 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
901 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
902 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
903}
904
905void Verifier::visitGenericDINode(const GenericDINode &N) {
906 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
907}
908
909void Verifier::visitDIScope(const DIScope &N) {
910 if (auto *F = N.getRawFile())
911 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
912}
913
914void Verifier::visitDISubrange(const DISubrange &N) {
915 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
916 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
917 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode()
|| N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound"
, &N); return; } } while (false)
918 N.getRawUpperBound(),do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode()
|| N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound"
, &N); return; } } while (false)
919 "Subrange must contain count or upperBound", &N)do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode()
|| N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound"
, &N); return; } } while (false)
;
920 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed
("Subrange can have any one of count or upperBound", &N);
return; } } while (false)
921 "Subrange can have any one of count or upperBound", &N)do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed
("Subrange can have any one of count or upperBound", &N);
return; } } while (false)
;
922 AssertDI(!N.getRawCountNode() || N.getCount(),do { if (!(!N.getRawCountNode() || N.getCount())) { DebugInfoCheckFailed
("Count must either be a signed constant or a DIVariable", &
N); return; } } while (false)
923 "Count must either be a signed constant or a DIVariable", &N)do { if (!(!N.getRawCountNode() || N.getCount())) { DebugInfoCheckFailed
("Count must either be a signed constant or a DIVariable", &
N); return; } } while (false)
;
924 auto Count = N.getCount();
925 AssertDI(!Count || !Count.is<ConstantInt *>() ||do { if (!(!Count || !Count.is<ConstantInt *>() || Count
.get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed
("invalid subrange count", &N); return; } } while (false)
926 Count.get<ConstantInt *>()->getSExtValue() >= -1,do { if (!(!Count || !Count.is<ConstantInt *>() || Count
.get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed
("invalid subrange count", &N); return; } } while (false)
927 "invalid subrange count", &N)do { if (!(!Count || !Count.is<ConstantInt *>() || Count
.get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed
("invalid subrange count", &N); return; } } while (false)
;
928 auto *LBound = N.getRawLowerBound();
929 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
930 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
931 "LowerBound must be signed constant or DIVariable or DIExpression",do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
932 &N)do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound
))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
933 auto *UBound = N.getRawUpperBound();
934 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
935 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
936 "UpperBound must be signed constant or DIVariable or DIExpression",do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
937 &N)do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound
))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
938 auto *Stride = N.getRawStride();
939 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) ||
isa<DIVariable>(Stride) || isa<DIExpression>(Stride
))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
940 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) ||
isa<DIVariable>(Stride) || isa<DIExpression>(Stride
))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
941 "Stride must be signed constant or DIVariable or DIExpression", &N)do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) ||
isa<DIVariable>(Stride) || isa<DIExpression>(Stride
))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
942}
943
944void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
945 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_generic_subrange)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
946 AssertDI(N.getRawCountNode() || N.getRawUpperBound(),do { if (!(N.getRawCountNode() || N.getRawUpperBound())) { DebugInfoCheckFailed
("GenericSubrange must contain count or upperBound", &N);
return; } } while (false)
947 "GenericSubrange must contain count or upperBound", &N)do { if (!(N.getRawCountNode() || N.getRawUpperBound())) { DebugInfoCheckFailed
("GenericSubrange must contain count or upperBound", &N);
return; } } while (false)
;
948 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed
("GenericSubrange can have any one of count or upperBound", &
N); return; } } while (false)
949 "GenericSubrange can have any one of count or upperBound", &N)do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed
("GenericSubrange can have any one of count or upperBound", &
N); return; } } while (false)
;
950 auto *CBound = N.getRawCountNode();
951 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),do { if (!(!CBound || isa<DIVariable>(CBound) || isa<
DIExpression>(CBound))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
952 "Count must be signed constant or DIVariable or DIExpression", &N)do { if (!(!CBound || isa<DIVariable>(CBound) || isa<
DIExpression>(CBound))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
953 auto *LBound = N.getRawLowerBound();
954 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N)do { if (!(LBound)) { DebugInfoCheckFailed("GenericSubrange must contain lowerBound"
, &N); return; } } while (false)
;
955 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),do { if (!(isa<DIVariable>(LBound) || isa<DIExpression
>(LBound))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
956 "LowerBound must be signed constant or DIVariable or DIExpression",do { if (!(isa<DIVariable>(LBound) || isa<DIExpression
>(LBound))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
957 &N)do { if (!(isa<DIVariable>(LBound) || isa<DIExpression
>(LBound))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
958 auto *UBound = N.getRawUpperBound();
959 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),do { if (!(!UBound || isa<DIVariable>(UBound) || isa<
DIExpression>(UBound))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
960 "UpperBound must be signed constant or DIVariable or DIExpression",do { if (!(!UBound || isa<DIVariable>(UBound) || isa<
DIExpression>(UBound))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
961 &N)do { if (!(!UBound || isa<DIVariable>(UBound) || isa<
DIExpression>(UBound))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
962 auto *Stride = N.getRawStride();
963 AssertDI(Stride, "GenericSubrange must contain stride", &N)do { if (!(Stride)) { DebugInfoCheckFailed("GenericSubrange must contain stride"
, &N); return; } } while (false)
;
964 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),do { if (!(isa<DIVariable>(Stride) || isa<DIExpression
>(Stride))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
965 "Stride must be signed constant or DIVariable or DIExpression", &N)do { if (!(isa<DIVariable>(Stride) || isa<DIExpression
>(Stride))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression"
, &N); return; } } while (false)
;
966}
967
968void Verifier::visitDIEnumerator(const DIEnumerator &N) {
969 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
970}
971
972void Verifier::visitDIBasicType(const DIBasicType &N) {
973 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
974 N.getTag() == dwarf::DW_TAG_unspecified_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
975 N.getTag() == dwarf::DW_TAG_string_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
976 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
977}
978
979void Verifier::visitDIStringType(const DIStringType &N) {
980 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_string_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
981 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,do { if (!(!(N.isBigEndian() && N.isLittleEndian())))
{ DebugInfoCheckFailed("has conflicting flags", &N); return
; } } while (false)
982 "has conflicting flags", &N)do { if (!(!(N.isBigEndian() && N.isLittleEndian())))
{ DebugInfoCheckFailed("has conflicting flags", &N); return
; } } while (false)
;
983}
984
985void Verifier::visitDIDerivedType(const DIDerivedType &N) {
986 // Common scope checks.
987 visitDIScope(N);
988
989 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
990 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
991 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
992 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
993 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
994 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
995 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
996 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
997 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
998 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
999 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
1000 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
1001 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
1002 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1003 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
1004 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
1005 }
1006
1007 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1008 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
1009 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
1010
1011 if (N.getDWARFAddressSpace()) {
1012 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
1013 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
1014 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
1015 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
1016 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
1017 }
1018}
1019
1020/// Detect mutually exclusive flags.
1021static bool hasConflictingReferenceFlags(unsigned Flags) {
1022 return ((Flags & DINode::FlagLValueReference) &&
1023 (Flags & DINode::FlagRValueReference)) ||
1024 ((Flags & DINode::FlagTypePassByValue) &&
1025 (Flags & DINode::FlagTypePassByReference));
1026}
1027
1028void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1029 auto *Params = dyn_cast<MDTuple>(&RawParams);
1030 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
1031 for (Metadata *Op : Params->operands()) {
1032 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
1033 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
1034 }
1035}
1036
1037void Verifier::visitDICompositeType(const DICompositeType &N) {
1038 // Common scope checks.
1039 visitDIScope(N);
1040
1041 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1042 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1043 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1044 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1045 N.getTag() == dwarf::DW_TAG_class_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1046 N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1047 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1048
1049 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1050 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
1051 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
1052
1053 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
1054 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
1055 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
1056 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
1057 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1058 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1059 unsigned DIBlockByRefStruct = 1 << 4;
1060 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,do { if (!((N.getFlags() & DIBlockByRefStruct) == 0)) { DebugInfoCheckFailed
("DIBlockByRefStruct on DICompositeType is no longer supported"
, &N); return; } } while (false)
1061 "DIBlockByRefStruct on DICompositeType is no longer supported", &N)do { if (!((N.getFlags() & DIBlockByRefStruct) == 0)) { DebugInfoCheckFailed
("DIBlockByRefStruct on DICompositeType is no longer supported"
, &N); return; } } while (false)
;
1062
1063 if (N.isVector()) {
1064 const DINodeArray Elements = N.getElements();
1065 AssertDI(Elements.size() == 1 &&do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
1066 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
1067 "invalid vector, expected one element of type subrange", &N)do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
;
1068 }
1069
1070 if (auto *Params = N.getRawTemplateParams())
1071 visitTemplateParams(N, *Params);
1072
1073 if (N.getTag() == dwarf::DW_TAG_class_type ||
1074 N.getTag() == dwarf::DW_TAG_union_type) {
1075 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
1076 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
1077 }
1078
1079 if (auto *D = N.getRawDiscriminator()) {
1080 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
1081 "discriminator can only appear on variant part")do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
;
1082 }
1083
1084 if (N.getRawDataLocation()) {
1085 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("dataLocation can only appear in array type"); return; } } while
(false)
1086 "dataLocation can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("dataLocation can only appear in array type"); return; } } while
(false)
;
1087 }
1088
1089 if (N.getRawAssociated()) {
1090 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("associated can only appear in array type"); return; } } while
(false)
1091 "associated can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("associated can only appear in array type"); return; } } while
(false)
;
1092 }
1093
1094 if (N.getRawAllocated()) {
1095 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("allocated can only appear in array type"); return; } } while
(false)
1096 "allocated can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("allocated can only appear in array type"); return; } } while
(false)
;
1097 }
1098
1099 if (N.getRawRank()) {
1100 AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("rank can only appear in array type"); return; } } while (false
)
1101 "rank can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed
("rank can only appear in array type"); return; } } while (false
)
;
1102 }
1103}
1104
1105void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1106 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1107 if (auto *Types = N.getRawTypeArray()) {
1108 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
1109 for (Metadata *Ty : N.getTypeArray()->operands()) {
1110 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
1111 }
1112 }
1113 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1114 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1115}
1116
1117void Verifier::visitDIFile(const DIFile &N) {
1118 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1119 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1120 if (Checksum) {
1121 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
1122 "invalid checksum kind", &N)do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
;
1123 size_t Size;
1124 switch (Checksum->Kind) {
1125 case DIFile::CSK_MD5:
1126 Size = 32;
1127 break;
1128 case DIFile::CSK_SHA1:
1129 Size = 40;
1130 break;
1131 case DIFile::CSK_SHA256:
1132 Size = 64;
1133 break;
1134 }
1135 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N)do { if (!(Checksum->Value.size() == Size)) { DebugInfoCheckFailed
("invalid checksum length", &N); return; } } while (false
)
;
1136 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
1137 "invalid checksum", &N)do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
;
1138 }
1139}
1140
1141void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1142 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
1143 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1144
1145 // Don't bother verifying the compilation directory or producer string
1146 // as those could be empty.
1147 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
1148 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
1149 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
1150 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
1151
1152 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1153
1154 verifySourceDebugInfo(N, *N.getFile());
1155
1156 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
1157 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
1158
1159 if (auto *Array = N.getRawEnumTypes()) {
1160 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
1161 for (Metadata *Op : N.getEnumTypes()->operands()) {
1162 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1163 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
1164 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
1165 }
1166 }
1167 if (auto *Array = N.getRawRetainedTypes()) {
1168 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
1169 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1170 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1171 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1172 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1173 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1174 }
1175 }
1176 if (auto *Array = N.getRawGlobalVariables()) {
1177 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1178 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1179 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1180 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1181 }
1182 }
1183 if (auto *Array = N.getRawImportedEntities()) {
1184 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1185 for (Metadata *Op : N.getImportedEntities()->operands()) {
1186 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1187 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1188 }
1189 }
1190 if (auto *Array = N.getRawMacros()) {
1191 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1192 for (Metadata *Op : N.getMacros()->operands()) {
1193 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1194 }
1195 }
1196 CUVisited.insert(&N);
1197}
1198
1199void Verifier::visitDISubprogram(const DISubprogram &N) {
1200 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1201 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1202 if (auto *F = N.getRawFile())
1203 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1204 else
1205 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1206 if (auto *T = N.getRawType())
1207 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1208 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1209 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1210 if (auto *Params = N.getRawTemplateParams())
1211 visitTemplateParams(N, *Params);
1212 if (auto *S = N.getRawDeclaration())
1213 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1214 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1215 if (auto *RawNode = N.getRawRetainedNodes()) {
1216 auto *Node = dyn_cast<MDTuple>(RawNode);
1217 AssertDI(Node, "invalid retained nodes list", &N, RawNode)do { if (!(Node)) { DebugInfoCheckFailed("invalid retained nodes list"
, &N, RawNode); return; } } while (false)
;
1218 for (Metadata *Op : Node->operands()) {
1219 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1220 "invalid retained nodes, expected DILocalVariable or DILabel",do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1221 &N, Node, Op)do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
;
1222 }
1223 }
1224 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1225 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1226
1227 auto *Unit = N.getRawUnit();
1228 if (N.isDefinition()) {
1229 // Subprogram definitions (not part of the type hierarchy).
1230 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1231 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1232 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1233 if (N.getFile())
1234 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1235 } else {
1236 // Subprogram declarations (part of the type hierarchy).
1237 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1238 }
1239
1240 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1241 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1242 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list"
, &N, RawThrownTypes); return; } } while (false)
;
1243 for (Metadata *Op : ThrownTypes->operands())
1244 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
1245 Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
;
1246 }
1247
1248 if (N.areAllCallsDescribed())
1249 AssertDI(N.isDefinition(),do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition"
); return; } } while (false)
1250 "DIFlagAllCallsDescribed must be attached to a definition")do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition"
); return; } } while (false)
;
1251}
1252
1253void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1254 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1255 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1256 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1257 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1258 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
1259}
1260
1261void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1262 visitDILexicalBlockBase(N);
1263
1264 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1265 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1266}
1267
1268void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1269 visitDILexicalBlockBase(N);
1270}
1271
1272void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1273 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_common_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1274 if (auto *S = N.getRawScope())
1275 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1276 if (auto *S = N.getRawDecl())
1277 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S)do { if (!(isa<DIGlobalVariable>(S))) { DebugInfoCheckFailed
("invalid declaration", &N, S); return; } } while (false)
;
1278}
1279
1280void Verifier::visitDINamespace(const DINamespace &N) {
1281 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1282 if (auto *S = N.getRawScope())
1283 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1284}
1285
1286void Verifier::visitDIMacro(const DIMacro &N) {
1287 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1288 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1289 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1290 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1291 if (!N.getValue().empty()) {
1292 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 1292, __PRETTY_FUNCTION__))
;
1293 }
1294}
1295
1296void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1297 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1298 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1299 if (auto *F = N.getRawFile())
1300 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1301
1302 if (auto *Array = N.getRawElements()) {
1303 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1304 for (Metadata *Op : N.getElements()->operands()) {
1305 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1306 }
1307 }
1308}
1309
1310void Verifier::visitDIModule(const DIModule &N) {
1311 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1312 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1313}
1314
1315void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1316 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1317}
1318
1319void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1320 visitDITemplateParameter(N);
1321
1322 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1323 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1324}
1325
1326void Verifier::visitDITemplateValueParameter(
1327 const DITemplateValueParameter &N) {
1328 visitDITemplateParameter(N);
1329
1330 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1331 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1332 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1333 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1334}
1335
1336void Verifier::visitDIVariable(const DIVariable &N) {
1337 if (auto *S = N.getRawScope())
1338 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1339 if (auto *F = N.getRawFile())
1340 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1341}
1342
1343void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1344 // Checks common to all variables.
1345 visitDIVariable(N);
1346
1347 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1348 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1349 // Assert only if the global variable is not an extern
1350 if (N.isDefinition())
1351 AssertDI(N.getType(), "missing global variable type", &N)do { if (!(N.getType())) { DebugInfoCheckFailed("missing global variable type"
, &N); return; } } while (false)
;
1352 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1353 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1354 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1355 }
1356}
1357
1358void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1359 // Checks common to all variables.
1360 visitDIVariable(N);
1361
1362 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1363 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1364 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1365 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1366 if (auto Ty = N.getType())
1367 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType())do { if (!(!isa<DISubroutineType>(Ty))) { DebugInfoCheckFailed
("invalid type", &N, N.getType()); return; } } while (false
)
;
1368}
1369
1370void Verifier::visitDILabel(const DILabel &N) {
1371 if (auto *S = N.getRawScope())
1372 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1373 if (auto *F = N.getRawFile())
1374 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1375
1376 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_label)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1377 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1378 "label requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1379}
1380
1381void Verifier::visitDIExpression(const DIExpression &N) {
1382 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1383}
1384
1385void Verifier::visitDIGlobalVariableExpression(
1386 const DIGlobalVariableExpression &GVE) {
1387 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1388 if (auto *Var = GVE.getVariable())
1389 visitDIGlobalVariable(*Var);
1390 if (auto *Expr = GVE.getExpression()) {
1391 visitDIExpression(*Expr);
1392 if (auto Fragment = Expr->getFragmentInfo())
1393 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1394 }
1395}
1396
1397void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1398 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1399 if (auto *T = N.getRawType())
1400 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1401 if (auto *F = N.getRawFile())
1402 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1403}
1404
1405void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1406 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1407 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1408 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1409 if (auto *S = N.getRawScope())
1410 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1411 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1412 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1413}
1414
1415void Verifier::visitComdat(const Comdat &C) {
1416 // In COFF the Module is invalid if the GlobalValue has private linkage.
1417 // Entities with private linkage don't have entries in the symbol table.
1418 if (TT.isOSBinFormatCOFF())
1419 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1420 Assert(!GV->hasPrivateLinkage(),do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1421 "comdat global value has private linkage", GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1422}
1423
1424void Verifier::visitModuleIdents(const Module &M) {
1425 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1426 if (!Idents)
1427 return;
1428
1429 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1430 // Scan each llvm.ident entry and make sure that this requirement is met.
1431 for (const MDNode *N : Idents->operands()) {
1432 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1433 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1434 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1435 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1436 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1437 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1438 }
1439}
1440
1441void Verifier::visitModuleCommandLines(const Module &M) {
1442 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1443 if (!CommandLines)
1444 return;
1445
1446 // llvm.commandline takes a list of metadata entry. Each entry has only one
1447 // string. Scan each llvm.commandline entry and make sure that this
1448 // requirement is met.
1449 for (const MDNode *N : CommandLines->operands()) {
1450 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata"
, N); return; } } while (false)
1451 "incorrect number of operands in llvm.commandline metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata"
, N); return; } } while (false)
;
1452 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1453 ("invalid value for llvm.commandline metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1454 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1455 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1456 }
1457}
1458
1459void Verifier::visitModuleFlags(const Module &M) {
1460 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1461 if (!Flags) return;
1462
1463 // Scan each flag, and track the flags and requirements.
1464 DenseMap<const MDString*, const MDNode*> SeenIDs;
1465 SmallVector<const MDNode*, 16> Requirements;
1466 for (const MDNode *MDN : Flags->operands())
1467 visitModuleFlag(MDN, SeenIDs, Requirements);
1468
1469 // Validate that the requirements in the module are valid.
1470 for (const MDNode *Requirement : Requirements) {
1471 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1472 const Metadata *ReqValue = Requirement->getOperand(1);
1473
1474 const MDNode *Op = SeenIDs.lookup(Flag);
1475 if (!Op) {
1476 CheckFailed("invalid requirement on flag, flag is not present in module",
1477 Flag);
1478 continue;
1479 }
1480
1481 if (Op->getOperand(2) != ReqValue) {
1482 CheckFailed(("invalid requirement on flag, "
1483 "flag does not have the required value"),
1484 Flag);
1485 continue;
1486 }
1487 }
1488}
1489
1490void
1491Verifier::visitModuleFlag(const MDNode *Op,
1492 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1493 SmallVectorImpl<const MDNode *> &Requirements) {
1494 // Each module flag should have three arguments, the merge behavior (a
1495 // constant int), the flag ID (an MDString), and the value.
1496 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1497 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1498 Module::ModFlagBehavior MFB;
1499 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1500 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1501 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1502 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1503 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1504 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1505 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1506 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1507 }
1508 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1509 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1510 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1511
1512 // Sanity check the values for behaviors with additional requirements.
1513 switch (MFB) {
1514 case Module::Error:
1515 case Module::Warning:
1516 case Module::Override:
1517 // These behavior types accept any value.
1518 break;
1519
1520 case Module::Max: {
1521 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1522 "invalid value for 'max' module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1523 Op->getOperand(2))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
;
1524 break;
1525 }
1526
1527 case Module::Require: {
1528 // The value should itself be an MDNode with two operands, a flag ID (an
1529 // MDString), and a value.
1530 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1531 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1532 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1533 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1534 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1535 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1536 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1537 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1538
1539 // Append it to the list of requirements, to check once all module flags are
1540 // scanned.
1541 Requirements.push_back(Value);
1542 break;
1543 }
1544
1545 case Module::Append:
1546 case Module::AppendUnique: {
1547 // These behavior types require the operand be an MDNode.
1548 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1549 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1550 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1551 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1552 break;
1553 }
1554 }
1555
1556 // Unless this is a "requires" flag, check the ID is unique.
1557 if (MFB != Module::Require) {
1558 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1559 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1560 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1561 }
1562
1563 if (ID->getString() == "wchar_size") {
1564 ConstantInt *Value
1565 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1566 Assert(Value, "wchar_size metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("wchar_size metadata requires constant integer argument"
); return; } } while (false)
;
1567 }
1568
1569 if (ID->getString() == "Linker Options") {
1570 // If the llvm.linker.options named metadata exists, we assume that the
1571 // bitcode reader has upgraded the module flag. Otherwise the flag might
1572 // have been created by a client directly.
1573 Assert(M.getNamedMetadata("llvm.linker.options"),do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
1574 "'Linker Options' named metadata no longer supported")do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
;
1575 }
1576
1577 if (ID->getString() == "SemanticInterposition") {
1578 ConstantInt *Value =
1579 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1580 Assert(Value,do { if (!(Value)) { CheckFailed("SemanticInterposition metadata requires constant integer argument"
); return; } } while (false)
1581 "SemanticInterposition metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("SemanticInterposition metadata requires constant integer argument"
); return; } } while (false)
;
1582 }
1583
1584 if (ID->getString() == "CG Profile") {
1585 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1586 visitModuleFlagCGProfileEntry(MDO);
1587 }
1588}
1589
1590void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1591 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1592 if (!FuncMDO)
1593 return;
1594 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1595 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),do { if (!(F && isa<Function>(F->getValue()->
stripPointerCasts()))) { CheckFailed("expected a Function or null"
, FuncMDO); return; } } while (false)
1596 "expected a Function or null", FuncMDO)do { if (!(F && isa<Function>(F->getValue()->
stripPointerCasts()))) { CheckFailed("expected a Function or null"
, FuncMDO); return; } } while (false)
;
1597 };
1598 auto Node = dyn_cast_or_null<MDNode>(MDO);
1599 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO)do { if (!(Node && Node->getNumOperands() == 3)) {
CheckFailed("expected a MDNode triple", MDO); return; } } while
(false)
;
1600 CheckFunction(Node->getOperand(0));
1601 CheckFunction(Node->getOperand(1));
1602 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1603 Assert(Count && Count->getType()->isIntegerTy(),do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
1604 "expected an integer constant", Node->getOperand(2))do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
;
1605}
1606
1607/// Return true if this attribute kind only applies to functions.
1608static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1609 switch (Kind) {
1610 case Attribute::NoMerge:
1611 case Attribute::NoReturn:
1612 case Attribute::NoSync:
1613 case Attribute::WillReturn:
1614 case Attribute::NoCallback:
1615 case Attribute::NoCfCheck:
1616 case Attribute::NoUnwind:
1617 case Attribute::NoInline:
1618 case Attribute::AlwaysInline:
1619 case Attribute::OptimizeForSize:
1620 case Attribute::StackProtect:
1621 case Attribute::StackProtectReq:
1622 case Attribute::StackProtectStrong:
1623 case Attribute::SafeStack:
1624 case Attribute::ShadowCallStack:
1625 case Attribute::NoRedZone:
1626 case Attribute::NoImplicitFloat:
1627 case Attribute::Naked:
1628 case Attribute::InlineHint:
1629 case Attribute::StackAlignment:
1630 case Attribute::UWTable:
1631 case Attribute::NonLazyBind:
1632 case Attribute::ReturnsTwice:
1633 case Attribute::SanitizeAddress:
1634 case Attribute::SanitizeHWAddress:
1635 case Attribute::SanitizeMemTag:
1636 case Attribute::SanitizeThread:
1637 case Attribute::SanitizeMemory:
1638 case Attribute::MinSize:
1639 case Attribute::NoDuplicate:
1640 case Attribute::Builtin:
1641 case Attribute::NoBuiltin:
1642 case Attribute::Cold:
1643 case Attribute::Hot:
1644 case Attribute::OptForFuzzing:
1645 case Attribute::OptimizeNone:
1646 case Attribute::JumpTable:
1647 case Attribute::Convergent:
1648 case Attribute::ArgMemOnly:
1649 case Attribute::NoRecurse:
1650 case Attribute::InaccessibleMemOnly:
1651 case Attribute::InaccessibleMemOrArgMemOnly:
1652 case Attribute::AllocSize:
1653 case Attribute::SpeculativeLoadHardening:
1654 case Attribute::Speculatable:
1655 case Attribute::StrictFP:
1656 case Attribute::NullPointerIsValid:
1657 case Attribute::MustProgress:
1658 return true;
1659 default:
1660 break;
1661 }
1662 return false;
1663}
1664
1665/// Return true if this is a function attribute that can also appear on
1666/// arguments.
1667static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1668 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1669 Kind == Attribute::ReadNone || Kind == Attribute::NoFree ||
1670 Kind == Attribute::Preallocated;
1671}
1672
1673void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1674 const Value *V) {
1675 for (Attribute A : Attrs) {
1676 if (A.isStringAttribute())
1677 continue;
1678
1679 if (A.isIntAttribute() !=
1680 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) {
1681 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1682 V);
1683 return;
1684 }
1685
1686 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1687 if (!IsFunction) {
1688 CheckFailed("Attribute '" + A.getAsString() +
1689 "' only applies to functions!",
1690 V);
1691 return;
1692 }
1693 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1694 CheckFailed("Attribute '" + A.getAsString() +
1695 "' does not apply to functions!",
1696 V);
1697 return;
1698 }
1699 }
1700}
1701
1702// VerifyParameterAttrs - Check the given attributes for an argument or return
1703// value of the specified type. The value V is printed in error messages.
1704void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1705 const Value *V) {
1706 if (!Attrs.hasAttributes())
1707 return;
1708
1709 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1710
1711 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1712 Assert(Attrs.getNumAttributes() == 1,do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes"
, V); return; } } while (false)
1713 "Attribute 'immarg' is incompatible with other attributes", V)do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes"
, V); return; } } while (false)
;
1714 }
1715
1716 // Check for mutually incompatible attributes. Only inreg is compatible with
1717 // sret.
1718 unsigned AttrCount = 0;
1719 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1720 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1721 AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1722 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1723 Attrs.hasAttribute(Attribute::InReg);
1724 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1725 AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1726 Assert(AttrCount <= 1,do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
1727 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
1728 "'byref', and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
1729 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"'byref', and 'sret' are incompatible!", V); return; } } while
(false)
;
1730
1731 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1732 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1733 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1734 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1735 V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
;
1736
1737 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1738 Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1739 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1740 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1741 V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
;
1742
1743 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1744 Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1745 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1746 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1747 V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1748
1749 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1750 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1751 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1752 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1753 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
;
1754
1755 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1756 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1757 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1758 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1759 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
;
1760
1761 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1762 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1763 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1764 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1765 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
;
1766
1767 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1768 Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1769 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1770 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1771 V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1772
1773 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1774 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1775 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1776 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1777 V)do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
;
1778
1779 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1780 SmallPtrSet<Type*, 4> Visited;
1781 if (!PTy->getElementType()->isSized(&Visited)) {
1782 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1783 !Attrs.hasAttribute(Attribute::ByRef) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1784 !Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1785 !Attrs.hasAttribute(Attribute::Preallocated),do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1786 "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1787 "support unsized types!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
1788 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::ByRef) && !Attrs.hasAttribute
(Attribute::InAlloca) && !Attrs.hasAttribute(Attribute
::Preallocated))) { CheckFailed("Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
"support unsized types!", V); return; } } while (false)
;
1789 }
1790 if (!isa<PointerType>(PTy->getElementType()))
1791 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1792 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1793 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1794 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
;
1795
1796 if (Attrs.hasAttribute(Attribute::ByRef)) {
1797 Assert(Attrs.getByRefType() == PTy->getElementType(),do { if (!(Attrs.getByRefType() == PTy->getElementType()))
{ CheckFailed("Attribute 'byref' type does not match parameter!"
, V); return; } } while (false)
1798 "Attribute 'byref' type does not match parameter!", V)do { if (!(Attrs.getByRefType() == PTy->getElementType()))
{ CheckFailed("Attribute 'byref' type does not match parameter!"
, V); return; } } while (false)
;
1799 }
1800
1801 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1802 Assert(Attrs.getByValType() == PTy->getElementType(),do { if (!(Attrs.getByValType() == PTy->getElementType()))
{ CheckFailed("Attribute 'byval' type does not match parameter!"
, V); return; } } while (false)
1803 "Attribute 'byval' type does not match parameter!", V)do { if (!(Attrs.getByValType() == PTy->getElementType()))
{ CheckFailed("Attribute 'byval' type does not match parameter!"
, V); return; } } while (false)
;
1804 }
1805
1806 if (Attrs.hasAttribute(Attribute::Preallocated)) {
1807 Assert(Attrs.getPreallocatedType() == PTy->getElementType(),do { if (!(Attrs.getPreallocatedType() == PTy->getElementType
())) { CheckFailed("Attribute 'preallocated' type does not match parameter!"
, V); return; } } while (false)
1808 "Attribute 'preallocated' type does not match parameter!", V)do { if (!(Attrs.getPreallocatedType() == PTy->getElementType
())) { CheckFailed("Attribute 'preallocated' type does not match parameter!"
, V); return; } } while (false)
;
1809 }
1810 } else {
1811 Assert(!Attrs.hasAttribute(Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1812 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1813 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1814 Assert(!Attrs.hasAttribute(Attribute::ByRef),do { if (!(!Attrs.hasAttribute(Attribute::ByRef))) { CheckFailed
("Attribute 'byref' only applies to parameters with pointer type!"
, V); return; } } while (false)
1815 "Attribute 'byref' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByRef))) { CheckFailed
("Attribute 'byref' only applies to parameters with pointer type!"
, V); return; } } while (false)
1816 V)do { if (!(!Attrs.hasAttribute(Attribute::ByRef))) { CheckFailed
("Attribute 'byref' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1817 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1818 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1819 "with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1820 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
;
1821 }
1822}
1823
1824// Check parameter attributes against a function type.
1825// The value V is printed in error messages.
1826void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1827 const Value *V, bool IsIntrinsic) {
1828 if (Attrs.isEmpty())
1829 return;
1830
1831 bool SawNest = false;
1832 bool SawReturned = false;
1833 bool SawSRet = false;
1834 bool SawSwiftSelf = false;
1835 bool SawSwiftError = false;
1836
1837 // Verify return value attributes.
1838 AttributeSet RetAttrs = Attrs.getRetAttributes();
1839 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1840 !RetAttrs.hasAttribute(Attribute::Nest) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1841 !RetAttrs.hasAttribute(Attribute::StructRet) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1842 !RetAttrs.hasAttribute(Attribute::NoCapture) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1843 !RetAttrs.hasAttribute(Attribute::NoFree) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1844 !RetAttrs.hasAttribute(Attribute::Returned) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1845 !RetAttrs.hasAttribute(Attribute::InAlloca) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1846 !RetAttrs.hasAttribute(Attribute::Preallocated) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1847 !RetAttrs.hasAttribute(Attribute::ByRef) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1848 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1849 !RetAttrs.hasAttribute(Attribute::SwiftError)),do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1850 "Attributes 'byval', 'inalloca', 'preallocated', 'byref', "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1851 "'nest', 'sret', 'nocapture', 'nofree', "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1852 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1853 "values!",do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1854 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::NoFree) && !RetAttrs.hasAttribute(Attribute::Returned
) && !RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) && !
RetAttrs.hasAttribute(Attribute::ByRef) && !RetAttrs.
hasAttribute(Attribute::SwiftSelf) && !RetAttrs.hasAttribute
(Attribute::SwiftError)))) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
"'nest', 'sret', 'nocapture', 'nofree', " "'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1855 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1856 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1857 !RetAttrs.hasAttribute(Attribute::ReadNone)),do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1858 "Attribute '" + RetAttrs.getAsString() +do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1859 "' does not apply to function returns",do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1860 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
;
1861 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1862
1863 // Verify parameter attributes.
1864 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1865 Type *Ty = FT->getParamType(i);
1866 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1867
1868 if (!IsIntrinsic) {
1869 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed
("immarg attribute only applies to intrinsics",V); return; } }
while (false)
1870 "immarg attribute only applies to intrinsics",V)do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed
("immarg attribute only applies to intrinsics",V); return; } }
while (false)
;
1871 }
1872
1873 verifyParameterAttrs(ArgAttrs, Ty, V);
1874
1875 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1876 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1877 SawNest = true;
1878 }
1879
1880 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1881 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1882 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1883 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1884 "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1885 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1886 SawReturned = true;
1887 }
1888
1889 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1890 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1891 Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1892 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1893 SawSRet = true;
1894 }
1895
1896 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1897 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1898 SawSwiftSelf = true;
1899 }
1900
1901 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1902 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1903 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1904 SawSwiftError = true;
1905 }
1906
1907 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1908 Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1909 "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1910 }
1911 }
1912
1913 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1914 return;
1915
1916 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1917
1918 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1919 Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1920 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1921
1922 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1923 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1924 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
;
1925
1926 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1927 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1928 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
;
1929
1930 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1931 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1932 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1933 "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1934 V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1935
1936 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1937 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1938 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1939
1940 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1941 Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1942 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
;
1943
1944 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1945 Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
1946 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
;
1947
1948 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1949 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1950
1951 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
1952 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
;
1953 }
1954
1955 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1956 const GlobalValue *GV = cast<GlobalValue>(V);
1957 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1958 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1959 }
1960
1961 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1962 std::pair<unsigned, Optional<unsigned>> Args =
1963 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1964
1965 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1966 if (ParamNo >= FT->getNumParams()) {
1967 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1968 return false;
1969 }
1970
1971 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1972 CheckFailed("'allocsize' " + Name +
1973 " argument must refer to an integer parameter",
1974 V);
1975 return false;
1976 }
1977
1978 return true;
1979 };
1980
1981 if (!CheckParam("element size", Args.first))
1982 return;
1983
1984 if (Args.second && !CheckParam("number of elements", *Args.second))
1985 return;
1986 }
1987
1988 if (Attrs.hasFnAttribute("frame-pointer")) {
1989 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
1990 "frame-pointer").getValueAsString();
1991 if (FP != "all" && FP != "non-leaf" && FP != "none")
1992 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
1993 }
1994
1995 if (Attrs.hasFnAttribute("patchable-function-prefix")) {
1996 StringRef S = Attrs
1997 .getAttribute(AttributeList::FunctionIndex,
1998 "patchable-function-prefix")
1999 .getValueAsString();
2000 unsigned N;
2001 if (S.getAsInteger(10, N))
2002 CheckFailed(
2003 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
2004 }
2005 if (Attrs.hasFnAttribute("patchable-function-entry")) {
2006 StringRef S = Attrs
2007 .getAttribute(AttributeList::FunctionIndex,
2008 "patchable-function-entry")
2009 .getValueAsString();
2010 unsigned N;
2011 if (S.getAsInteger(10, N))
2012 CheckFailed(
2013 "\"patchable-function-entry\" takes an unsigned integer: " + S, V);
2014 }
2015}
2016
2017void Verifier::verifyFunctionMetadata(
2018 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2019 for (const auto &Pair : MDs) {
2020 if (Pair.first == LLVMContext::MD_prof) {
2021 MDNode *MD = Pair.second;
2022 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
2023 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
2024
2025 // Check first operand.
2026 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
2027 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
2028 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
2029 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
2030 MDString *MDS = cast<MDString>(MD->getOperand(0));
2031 StringRef ProfName = MDS->getString();
2032 Assert(ProfName.equals("function_entry_count") ||do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
2033 ProfName.equals("synthetic_function_entry_count"),do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
2034 "first operand should be 'function_entry_count'"do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
2035 " or 'synthetic_function_entry_count'",do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
2036 MD)do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
;
2037
2038 // Check second operand.
2039 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
2040 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
2041 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
2042 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
2043 }
2044 }
2045}
2046
2047void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2048 if (!ConstantExprVisited.insert(EntryC).second)
2049 return;
2050
2051 SmallVector<const Constant *, 16> Stack;
2052 Stack.push_back(EntryC);
2053
2054 while (!Stack.empty()) {
2055 const Constant *C = Stack.pop_back_val();
2056
2057 // Check this constant expression.
2058 if (const auto *CE = dyn_cast<ConstantExpr>(C))
2059 visitConstantExpr(CE);
2060
2061 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2062 // Global Values get visited separately, but we do need to make sure
2063 // that the global value is in the correct module
2064 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
2065 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
2066 continue;
2067 }
2068
2069 // Visit all sub-expressions.
2070 for (const Use &U : C->operands()) {
2071 const auto *OpC = dyn_cast<Constant>(U);
2072 if (!OpC)
2073 continue;
2074 if (!ConstantExprVisited.insert(OpC).second)
2075 continue;
2076 Stack.push_back(OpC);
2077 }
2078 }
2079}
2080
2081void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2082 if (CE->getOpcode() == Instruction::BitCast)
2083 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
2084 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
2085 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
2086
2087 if (CE->getOpcode() == Instruction::IntToPtr ||
2088 CE->getOpcode() == Instruction::PtrToInt) {
2089 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
2090 ? CE->getType()
2091 : CE->getOperand(0)->getType();
2092 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
2093 ? "inttoptr not supported for non-integral pointers"
2094 : "ptrtoint not supported for non-integral pointers";
2095 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
2096 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
2097 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
2098 }
2099}
2100
2101bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2102 // There shouldn't be more attribute sets than there are parameters plus the
2103 // function and return value.
2104 return Attrs.getNumAttrSets() <= Params + 2;
2105}
2106
2107/// Verify that statepoint intrinsic is well formed.
2108void Verifier::verifyStatepoint(const CallBase &Call) {
2109 assert(Call.getCalledFunction() &&((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 2111, __PRETTY_FUNCTION__))
2110 Call.getCalledFunction()->getIntrinsicID() ==((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 2111, __PRETTY_FUNCTION__))
2111 Intrinsic::experimental_gc_statepoint)((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 2111, __PRETTY_FUNCTION__))
;
2112
2113 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2114 !Call.onlyAccessesArgMemory(),do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2115 "gc.statepoint must read and write all memory to preserve "do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2116 "reordering restrictions required by safepoint semantics",do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
2117 Call)do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
;
2118
2119 const int64_t NumPatchBytes =
2120 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2121 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 2121, __PRETTY_FUNCTION__))
;
2122 Assert(NumPatchBytes >= 0,do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
2123 "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
2124 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
2125 Call)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
;
2126
2127 const Value *Target = Call.getArgOperand(2);
2128 auto *PT = dyn_cast<PointerType>(Target->getType());
2129 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, Call, Target); return; } } while (false)
2130 "gc.statepoint callee must be of function pointer type", Call, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, Call, Target); return; } } while (false)
;
2131 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2132
2133 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2134 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2135 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2136 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
2137 Call)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
;
2138 const int NumParams = (int)TargetFuncType->getNumParams();
2139 if (TargetFuncType->isVarArg()) {
2140 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, Call); return; } } while (false)
2141 "gc.statepoint mismatch in number of vararg call args", Call)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, Call); return; } } while (false)
;
2142
2143 // TODO: Remove this limitation
2144 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2145 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2146 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
2147 Call)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
;
2148 } else
2149 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, Call); return; } } while (false)
2150 "gc.statepoint mismatch in number of call args", Call)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, Call); return; } } while (false)
;
2151
2152 const uint64_t Flags
2153 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2154 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, Call); return; } } while (false)
2155 "unknown flag used in gc.statepoint flags argument", Call)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, Call); return; } } while (false)
;
2156
2157 // Verify that the types of the call parameter arguments match
2158 // the type of the wrapped callee.
2159 AttributeList Attrs = Call.getAttributes();
2160 for (int i = 0; i < NumParams; i++) {
2161 Type *ParamType = TargetFuncType->getParamType(i);
2162 Type *ArgType = Call.getArgOperand(5 + i)->getType();
2163 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2164 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2165 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
2166 Call)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
;
2167
2168 if (TargetFuncType->isVarArg()) {
2169 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2170 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2171 "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2172 Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
;
2173 }
2174 }
2175
2176 const int EndCallArgsInx = 4 + NumCallArgs;
2177
2178 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2179 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2180 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2181 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
2182 Call)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
;
2183 const int NumTransitionArgs =
2184 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2185 Assert(NumTransitionArgs == 0,do { if (!(NumTransitionArgs == 0)) { CheckFailed("gc.statepoint w/inline transition bundle is deprecated"
, Call); return; } } while (false)
2186 "gc.statepoint w/inline transition bundle is deprecated", Call)do { if (!(NumTransitionArgs == 0)) { CheckFailed("gc.statepoint w/inline transition bundle is deprecated"
, Call); return; } } while (false)
;
2187 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2188
2189 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2190 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2191 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2192 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
2193 Call)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
;
2194 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2195 Assert(NumDeoptArgs == 0,do { if (!(NumDeoptArgs == 0)) { CheckFailed("gc.statepoint w/inline deopt operands is deprecated"
, Call); return; } } while (false)
2196 "gc.statepoint w/inline deopt operands is deprecated", Call)do { if (!(NumDeoptArgs == 0)) { CheckFailed("gc.statepoint w/inline deopt operands is deprecated"
, Call); return; } } while (false)
;
2197
2198 const int ExpectedNumArgs = 7 + NumCallArgs;
2199 Assert(ExpectedNumArgs == (int)Call.arg_size(),do { if (!(ExpectedNumArgs == (int)Call.arg_size())) { CheckFailed
("gc.statepoint too many arguments", Call); return; } } while
(false)
2200 "gc.statepoint too many arguments", Call)do { if (!(ExpectedNumArgs == (int)Call.arg_size())) { CheckFailed
("gc.statepoint too many arguments", Call); return; } } while
(false)
;
2201
2202 // Check that the only uses of this gc.statepoint are gc.result or
2203 // gc.relocate calls which are tied to this statepoint and thus part
2204 // of the same statepoint sequence
2205 for (const User *U : Call.users()) {
2206 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2207 Assert(UserCall, "illegal use of statepoint token", Call, U)do { if (!(UserCall)) { CheckFailed("illegal use of statepoint token"
, Call, U); return; } } while (false)
;
2208 if (!UserCall)
2209 continue;
2210 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2211 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2212 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2213 Call, U)do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
;
2214 if (isa<GCResultInst>(UserCall)) {
2215 Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.result connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
2216 "gc.result connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.result connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
;
2217 } else if (isa<GCRelocateInst>(Call)) {
2218 Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
2219 "gc.relocate connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
;
2220 }
2221 }
2222
2223 // Note: It is legal for a single derived pointer to be listed multiple
2224 // times. It's non-optimal, but it is legal. It can also happen after
2225 // insertion if we strip a bitcast away.
2226 // Note: It is really tempting to check that each base is relocated and
2227 // that a derived pointer is never reused as a base pointer. This turns
2228 // out to be problematic since optimizations run after safepoint insertion
2229 // can recognize equality properties that the insertion logic doesn't know
2230 // about. See example statepoint.ll in the verifier subdirectory
2231}
2232
2233void Verifier::verifyFrameRecoverIndices() {
2234 for (auto &Counts : FrameEscapeInfo) {
2235 Function *F = Counts.first;
2236 unsigned EscapedObjectCount = Counts.second.first;
2237 unsigned MaxRecoveredIndex = Counts.second.second;
2238 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2239 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2240 "number of arguments passed to llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2241 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2242 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
;
2243 }
2244}
2245
2246static Instruction *getSuccPad(Instruction *Terminator) {
2247 BasicBlock *UnwindDest;
2248 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2249 UnwindDest = II->getUnwindDest();
2250 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2251 UnwindDest = CSI->getUnwindDest();
2252 else
2253 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2254 return UnwindDest->getFirstNonPHI();
2255}
2256
2257void Verifier::verifySiblingFuncletUnwinds() {
2258 SmallPtrSet<Instruction *, 8> Visited;
2259 SmallPtrSet<Instruction *, 8> Active;
2260 for (const auto &Pair : SiblingFuncletInfo) {
2261 Instruction *PredPad = Pair.first;
2262 if (Visited.count(PredPad))
2263 continue;
2264 Active.insert(PredPad);
2265 Instruction *Terminator = Pair.second;
2266 do {
2267 Instruction *SuccPad = getSuccPad(Terminator);
2268 if (Active.count(SuccPad)) {
2269 // Found a cycle; report error
2270 Instruction *CyclePad = SuccPad;
2271 SmallVector<Instruction *, 8> CycleNodes;
2272 do {
2273 CycleNodes.push_back(CyclePad);
2274 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2275 if (CycleTerminator != CyclePad)
2276 CycleNodes.push_back(CycleTerminator);
2277 CyclePad = getSuccPad(CycleTerminator);
2278 } while (CyclePad != SuccPad);
2279 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
2280 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
2281 }
2282 // Don't re-walk a node we've already checked
2283 if (!Visited.insert(SuccPad).second)
2284 break;
2285 // Walk to this successor if it has a map entry.
2286 PredPad = SuccPad;
2287 auto TermI = SiblingFuncletInfo.find(PredPad);
2288 if (TermI == SiblingFuncletInfo.end())
2289 break;
2290 Terminator = TermI->second;
2291 Active.insert(PredPad);
2292 } while (true);
2293 // Each node only has one successor, so we've walked all the active
2294 // nodes' successors.
2295 Active.clear();
2296 }
2297}
2298
2299// visitFunction - Verify that a function is ok.
2300//
2301void Verifier::visitFunction(const Function &F) {
2302 visitGlobalValue(F);
2303
2304 // Check function arguments.
2305 FunctionType *FT = F.getFunctionType();
2306 unsigned NumArgs = F.arg_size();
2307
2308 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1
Assuming the condition is true
2
Taking false branch
3
Loop condition is false. Exiting loop
2309 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
2310
2311 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
4
Taking false branch
5
Loop condition is false. Exiting loop
2312 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
6
Assuming the condition is true
7
Taking false branch
8
Loop condition is false. Exiting loop
2313 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
2314 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
2315 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
9
Taking false branch
10
Loop condition is false. Exiting loop
2316 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
2317 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
2318
2319 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
11
Assuming the condition is true
12
Taking false branch
13
Loop condition is false. Exiting loop
2320 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
2321
2322 AttributeList Attrs = F.getAttributes();
2323
2324 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
14
Taking false branch
15
Loop condition is false. Exiting loop
2325 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
2326
2327 bool isLLVMdotName = F.getName().size() >= 5 &&
16
Assuming the condition is false
2328 F.getName().substr(0, 5) == "llvm.";
2329
2330 // Check function attributes.
2331 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2332
2333 // On function declarations/definitions, we do not support the builtin
2334 // attribute. We do not check this in VerifyFunctionAttrs since that is
2335 // checking for Attributes that can/can not ever be on functions.
2336 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
17
Assuming the condition is true
18
Taking false branch
19
Loop condition is false. Exiting loop
2337 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
;
2338
2339 // Check that this function meets the restrictions on this calling convention.
2340 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2341 // restrictions can be lifted.
2342 switch (F.getCallingConv()) {
20
Control jumps to 'case C:' at line 2344
2343 default:
2344 case CallingConv::C:
2345 break;
21
Execution continues on line 2398
2346 case CallingConv::X86_INTR: {
2347 Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal),do { if (!(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute
::ByVal))) { CheckFailed("Calling convention parameter requires byval"
, &F); return; } } while (false)
2348 "Calling convention parameter requires byval", &F)do { if (!(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute
::ByVal))) { CheckFailed("Calling convention parameter requires byval"
, &F); return; } } while (false)
;
2349 break;
2350 }
2351 case CallingConv::AMDGPU_KERNEL:
2352 case CallingConv::SPIR_KERNEL:
2353 Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
2354 "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
;
2355 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2356 case CallingConv::AMDGPU_VS:
2357 case CallingConv::AMDGPU_HS:
2358 case CallingConv::AMDGPU_GS:
2359 case CallingConv::AMDGPU_PS:
2360 case CallingConv::AMDGPU_CS:
2361 Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
2362 "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
;
2363 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2364 const unsigned StackAS = DL.getAllocaAddrSpace();
2365 unsigned i = 0;
2366 for (const Argument &Arg : F.args()) {
2367 Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal),do { if (!(!Attrs.hasParamAttribute(i, Attribute::ByVal))) { CheckFailed
("Calling convention disallows byval", &F); return; } } while
(false)
2368 "Calling convention disallows byval", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::ByVal))) { CheckFailed
("Calling convention disallows byval", &F); return; } } while
(false)
;
2369 Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated),do { if (!(!Attrs.hasParamAttribute(i, Attribute::Preallocated
))) { CheckFailed("Calling convention disallows preallocated"
, &F); return; } } while (false)
2370 "Calling convention disallows preallocated", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::Preallocated
))) { CheckFailed("Calling convention disallows preallocated"
, &F); return; } } while (false)
;
2371 Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca),do { if (!(!Attrs.hasParamAttribute(i, Attribute::InAlloca)))
{ CheckFailed("Calling convention disallows inalloca", &
F); return; } } while (false)
2372 "Calling convention disallows inalloca", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::InAlloca)))
{ CheckFailed("Calling convention disallows inalloca", &
F); return; } } while (false)
;
2373
2374 if (Attrs.hasParamAttribute(i, Attribute::ByRef)) {
2375 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2376 // value here.
2377 Assert(Arg.getType()->getPointerAddressSpace() != StackAS,do { if (!(Arg.getType()->getPointerAddressSpace() != StackAS
)) { CheckFailed("Calling convention disallows stack byref", &
F); return; } } while (false)
2378 "Calling convention disallows stack byref", &F)do { if (!(Arg.getType()->getPointerAddressSpace() != StackAS
)) { CheckFailed("Calling convention disallows stack byref", &
F); return; } } while (false)
;
2379 }
2380
2381 ++i;
2382 }
2383 }
2384
2385 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2386 case CallingConv::Fast:
2387 case CallingConv::Cold:
2388 case CallingConv::Intel_OCL_BI:
2389 case CallingConv::PTX_Kernel:
2390 case CallingConv::PTX_Device:
2391 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2392 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2393 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2394 break;
2395 }
2396
2397 // Check that the argument values match the function type for this function...
2398 unsigned i = 0;
2399 for (const Argument &Arg : F.args()) {
22
Assuming '__begin1' is equal to '__end1'
2400 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2401 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2402 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2403 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2404 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2405 if (!isLLVMdotName) {
2406 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2407 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2408 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2409 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2410 }
2411
2412 // Check that swifterror argument is only used by loads and stores.
2413 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2414 verifySwiftErrorValue(&Arg);
2415 }
2416 ++i;
2417 }
2418
2419 if (!isLLVMdotName
22.1
'isLLVMdotName' is false
22.1
'isLLVMdotName' is false
)
23
Taking true branch
2420 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
24
Taking false branch
25
Loop condition is false. Exiting loop
2421 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2422
2423 // Get the function metadata attachments.
2424 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2425 F.getAllMetadata(MDs);
2426 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 2426, __PRETTY_FUNCTION__))
;
26
Assuming the condition is true
27
'?' condition is true
2427 verifyFunctionMetadata(MDs);
2428
2429 // Check validity of the personality function
2430 if (F.hasPersonalityFn()) {
28
Assuming the condition is false
29
Taking false branch
2431 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2432 if (Per)
2433 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2434 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2435 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2436 }
2437
2438 if (F.isMaterializable()) {
30
Assuming the condition is false
31
Taking false branch
2439 // Function has a body somewhere we can't see.
2440 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2441 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2442 } else if (F.isDeclaration()) {
32
Assuming the condition is false
33
Taking false branch
2443 for (const auto &I : MDs) {
2444 // This is used for call site debug information.
2445 AssertDI(I.first != LLVMContext::MD_dbg ||do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2446 !cast<DISubprogram>(I.second)->isDistinct(),do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2447 "function declaration may only have a unique !dbg attachment",do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
2448 &F)do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram
>(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment"
, &F); return; } } while (false)
;
2449 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2450 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2451
2452 // Verify the metadata itself.
2453 visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2454 }
2455 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2456 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2457 } else {
2458 // Verify that this function (which has a body) is not named "llvm.*". It
2459 // is not legal to define intrinsics.
2460 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
34
Taking false branch
35
Loop condition is false. Exiting loop
2461
2462 // Check the entry node
2463 const BasicBlock *Entry = &F.getEntryBlock();
2464 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
36
Assuming the condition is false
37
Taking false branch
38
Loop condition is false. Exiting loop
2465 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2466
2467 // The address of the entry block cannot be taken, unless it is dead.
2468 if (Entry->hasAddressTaken()) {
39
Assuming the condition is false
40
Taking false branch
2469 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2470 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2471 }
2472
2473 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2474 // Visit metadata attachments.
2475 for (const auto &I : MDs) {
41
Assuming '__begin3' is equal to '__end3'
2476 // Verify that the attachment is legal.
2477 auto AllowLocs = AreDebugLocsAllowed::No;
2478 switch (I.first) {
2479 default:
2480 break;
2481 case LLVMContext::MD_dbg: {
2482 ++NumDebugAttachments;
2483 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2484 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2485 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2486 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2487 AssertDI(cast<DISubprogram>(I.second)->isDistinct(),do { if (!(cast<DISubprogram>(I.second)->isDistinct(
))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment"
, &F); return; } } while (false)
2488 "function definition may only have a distinct !dbg attachment",do { if (!(cast<DISubprogram>(I.second)->isDistinct(
))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment"
, &F); return; } } while (false)
2489 &F)do { if (!(cast<DISubprogram>(I.second)->isDistinct(
))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment"
, &F); return; } } while (false)
;
2490
2491 auto *SP = cast<DISubprogram>(I.second);
2492 const Function *&AttachedTo = DISubprogramAttachments[SP];
2493 AssertDI(!AttachedTo || AttachedTo == &F,do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
2494 "DISubprogram attached to more than one function", SP, &F)do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
;
2495 AttachedTo = &F;
2496 AllowLocs = AreDebugLocsAllowed::Yes;
2497 break;
2498 }
2499 case LLVMContext::MD_prof:
2500 ++NumProfAttachments;
2501 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2502 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2503 break;
2504 }
2505
2506 // Verify the metadata itself.
2507 visitMDNode(*I.second, AllowLocs);
2508 }
2509 }
2510
2511 // If this function is actually an intrinsic, verify that it is only used in
2512 // direct call/invokes, never having its "address taken".
2513 // Only do this if the module is materialized, otherwise we don't have all the
2514 // uses.
2515 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
42
Assuming the condition is false
2516 const User *U;
2517 if (F.hasAddressTaken(&U))
2518 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2519 }
2520
2521 auto *N = F.getSubprogram();
2522 HasDebugInfo = (N != nullptr);
43
Assuming the condition is true
2523 if (!HasDebugInfo
43.1
Field 'HasDebugInfo' is true
43.1
Field 'HasDebugInfo' is true
)
44
Taking false branch
2524 return;
2525
2526 // Check that all !dbg attachments lead to back to N.
2527 //
2528 // FIXME: Check this incrementally while visiting !dbg attachments.
2529 // FIXME: Only check when N is the canonical subprogram for F.
2530 SmallPtrSet<const MDNode *, 32> Seen;
2531 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2532 // Be careful about using DILocation here since we might be dealing with
2533 // broken code (this is the Verifier after all).
2534 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
46
Assuming 'Node' is a 'DILocation'
2535 if (!DL
46.1
'DL' is non-null
46.1
'DL' is non-null
)
47
Taking false branch
2536 return;
2537 if (!Seen.insert(DL).second)
48
Assuming field 'second' is true
49
Taking false branch
2538 return;
2539
2540 Metadata *Parent = DL->getRawScope();
2541 AssertDI(Parent && isa<DILocalScope>(Parent),do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
50
Assuming 'Parent' is non-null
51
Assuming 'Parent' is a 'DILocalScope'
52
Taking false branch
53
Loop condition is false. Exiting loop
2542 "DILocation's scope must be a DILocalScope", N, &F, &I, DL,do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
2543 Parent)do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
;
2544
2545 DILocalScope *Scope = DL->getInlinedAtScope();
54
Calling 'DILocation::getInlinedAtScope'
61
Returning from 'DILocation::getInlinedAtScope'
2546 Assert(Scope, "Failed to find DILocalScope", DL)do { if (!(Scope)) { CheckFailed("Failed to find DILocalScope"
, DL); return; } } while (false)
;
62
Taking false branch
63
Loop condition is false. Exiting loop
2547
2548 if (!Seen.insert(Scope).second)
64
Assuming field 'second' is true
65
Taking false branch
2549 return;
2550
2551 DISubprogram *SP = Scope->getSubprogram();
66
'SP' initialized here
2552
2553 // Scope and SP could be the same MDNode and we don't want to skip
2554 // validation in that case
2555 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
67
Assuming 'SP' is null
68
Taking false branch
2556 return;
2557
2558 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
69
Called C++ object pointer is null
2559 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2560 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2561 };
2562 for (auto &BB : F)
2563 for (auto &I : BB) {
2564 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
45
Calling 'operator()'
2565 // The llvm.loop annotations also contain two DILocations.
2566 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2567 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2568 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2569 if (BrokenDebugInfo)
2570 return;
2571 }
2572}
2573
2574// verifyBasicBlock - Verify that a basic block is well formed...
2575//
2576void Verifier::visitBasicBlock(BasicBlock &BB) {
2577 InstsInThisBlock.clear();
2578
2579 // Ensure that basic blocks have terminators!
2580 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2581
2582 // Check constraints that this basic block imposes on all of the PHI nodes in
2583 // it.
2584 if (isa<PHINode>(BB.front())) {
2585 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2586 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2587 llvm::sort(Preds);
2588 for (const PHINode &PN : BB.phis()) {
2589 Assert(PN.getNumIncomingValues() == Preds.size(),do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2590 "PHINode should have one entry for each predecessor of its "do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2591 "parent basic block!",do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2592 &PN)do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
;
2593
2594 // Get and sort all incoming values in the PHI node...
2595 Values.clear();
2596 Values.reserve(PN.getNumIncomingValues());
2597 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2598 Values.push_back(
2599 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2600 llvm::sort(Values);
2601
2602 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2603 // Check to make sure that if there is more than one entry for a
2604 // particular basic block in this PHI node, that the incoming values are
2605 // all identical.
2606 //
2607 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2608 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2609 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2610 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2611 &PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
;
2612
2613 // Check to make sure that the predecessors and PHI node entries are
2614 // matched up.
2615 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2616 "PHI node entries do not match predecessors!", &PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2617 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
;
2618 }
2619 }
2620 }
2621
2622 // Check that all instructions have their parent pointers set up correctly.
2623 for (auto &I : BB)
2624 {
2625 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2626 }
2627}
2628
2629void Verifier::visitTerminator(Instruction &I) {
2630 // Ensure that terminators only exist at the end of the basic block.
2631 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2632 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2633 visitInstruction(I);
2634}
2635
2636void Verifier::visitBranchInst(BranchInst &BI) {
2637 if (BI.isConditional()) {
2638 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2639 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2640 }
2641 visitTerminator(BI);
2642}
2643
2644void Verifier::visitReturnInst(ReturnInst &RI) {
2645 Function *F = RI.getParent()->getParent();
2646 unsigned N = RI.getNumOperands();
2647 if (F->getReturnType()->isVoidTy())
2648 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2649 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2650 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2651 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2652 else
2653 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2654 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2655 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2656 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2657
2658 // Check to make sure that the return value has necessary properties for
2659 // terminators...
2660 visitTerminator(RI);
2661}
2662
2663void Verifier::visitSwitchInst(SwitchInst &SI) {
2664 // Check to make sure that all of the constants in the switch instruction
2665 // have the same type as the switched-on value.
2666 Type *SwitchTy = SI.getCondition()->getType();
2667 SmallPtrSet<ConstantInt*, 32> Constants;
2668 for (auto &Case : SI.cases()) {
2669 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2670 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2671 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2672 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2673 }
2674
2675 visitTerminator(SI);
2676}
2677
2678void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2679 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2680 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2681 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2682 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2683 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2684
2685 visitTerminator(BI);
2686}
2687
2688void Verifier::visitCallBrInst(CallBrInst &CBI) {
2689 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!"
, &CBI); return; } } while (false)
2690 &CBI)do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!"
, &CBI); return; } } while (false)
;
2691 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2692 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy())
) { CheckFailed("Callbr successors must all have pointer type!"
, &CBI); return; } } while (false)
2693 "Callbr successors must all have pointer type!", &CBI)do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy())
) { CheckFailed("Callbr successors must all have pointer type!"
, &CBI); return; } } while (false)
;
2694 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2695 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock
>(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!"
, &CBI); return; } } while (false)
2696 "Using an unescaped label as a callbr argument!", &CBI)do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock
>(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!"
, &CBI); return; } } while (false)
;
2697 if (isa<BasicBlock>(CBI.getOperand(i)))
2698 for (unsigned j = i + 1; j != e; ++j)
2699 Assert(CBI.getOperand(i) != CBI.getOperand(j),do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed
("Duplicate callbr destination!", &CBI); return; } } while
(false)
2700 "Duplicate callbr destination!", &CBI)do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed
("Duplicate callbr destination!", &CBI); return; } } while
(false)
;
2701 }
2702 {
2703 SmallPtrSet<BasicBlock *, 4> ArgBBs;
2704 for (Value *V : CBI.args())
2705 if (auto *BA = dyn_cast<BlockAddress>(V))
2706 ArgBBs.insert(BA->getBasicBlock());
2707 for (BasicBlock *BB : CBI.getIndirectDests())
2708 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI)do { if (!(ArgBBs.count(BB))) { CheckFailed("Indirect label missing from arglist."
, &CBI); return; } } while (false)
;
2709 }
2710
2711 visitTerminator(CBI);
2712}
2713
2714void Verifier::visitSelectInst(SelectInst &SI) {
2715 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2716 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2717 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2718
2719 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2720 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2721 visitInstruction(SI);
2722}
2723
2724/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2725/// a pass, if any exist, it's an error.
2726///
2727void Verifier::visitUserOp1(Instruction &I) {
2728 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2729}
2730
2731void Verifier::visitTruncInst(TruncInst &I) {
2732 // Get the source and destination types
2733 Type *SrcTy = I.getOperand(0)->getType();
2734 Type *DestTy = I.getType();
2735
2736 // Get the size of the types in bits, we'll need this later
2737 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2738 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2739
2740 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2741 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2742 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2743 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2744 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2745
2746 visitInstruction(I);
2747}
2748
2749void Verifier::visitZExtInst(ZExtInst &I) {
2750 // Get the source and destination types
2751 Type *SrcTy = I.getOperand(0)->getType();
2752 Type *DestTy = I.getType();
2753
2754 // Get the size of the types in bits, we'll need this later
2755 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2756 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2757 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2758 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2759 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2760 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2761
2762 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2763
2764 visitInstruction(I);
2765}
2766
2767void Verifier::visitSExtInst(SExtInst &I) {
2768 // Get the source and destination types
2769 Type *SrcTy = I.getOperand(0)->getType();
2770 Type *DestTy = I.getType();
2771
2772 // Get the size of the types in bits, we'll need this later
2773 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2774 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2775
2776 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2777 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2778 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2779 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2780 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2781
2782 visitInstruction(I);
2783}
2784
2785void Verifier::visitFPTruncInst(FPTruncInst &I) {
2786 // Get the source and destination types
2787 Type *SrcTy = I.getOperand(0)->getType();
2788 Type *DestTy = I.getType();
2789 // Get the size of the types in bits, we'll need this later
2790 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2791 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2792
2793 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2794 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2795 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2796 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2797 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2798
2799 visitInstruction(I);
2800}
2801
2802void Verifier::visitFPExtInst(FPExtInst &I) {
2803 // Get the source and destination types
2804 Type *SrcTy = I.getOperand(0)->getType();
2805 Type *DestTy = I.getType();
2806
2807 // Get the size of the types in bits, we'll need this later
2808 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2809 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2810
2811 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2812 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2813 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2814 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2815 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2816
2817 visitInstruction(I);
2818}
2819
2820void Verifier::visitUIToFPInst(UIToFPInst &I) {
2821 // Get the source and destination types
2822 Type *SrcTy = I.getOperand(0)->getType();
2823 Type *DestTy = I.getType();
2824
2825 bool SrcVec = SrcTy->isVectorTy();
2826 bool DstVec = DestTy->isVectorTy();
2827
2828 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2829 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2830 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2831 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2832 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2833 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2834
2835 if (SrcVec && DstVec)
2836 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("UIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2837 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("UIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2838 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("UIToFP source and dest vector length mismatch",
&I); return; } } while (false)
;
2839
2840 visitInstruction(I);
2841}
2842
2843void Verifier::visitSIToFPInst(SIToFPInst &I) {
2844 // Get the source and destination types
2845 Type *SrcTy = I.getOperand(0)->getType();
2846 Type *DestTy = I.getType();
2847
2848 bool SrcVec = SrcTy->isVectorTy();
2849 bool DstVec = DestTy->isVectorTy();
2850
2851 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2852 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2853 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2854 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2855 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2856 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2857
2858 if (SrcVec && DstVec)
2859 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("SIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2860 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("SIToFP source and dest vector length mismatch",
&I); return; } } while (false)
2861 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("SIToFP source and dest vector length mismatch",
&I); return; } } while (false)
;
2862
2863 visitInstruction(I);
2864}
2865
2866void Verifier::visitFPToUIInst(FPToUIInst &I) {
2867 // Get the source and destination types
2868 Type *SrcTy = I.getOperand(0)->getType();
2869 Type *DestTy = I.getType();
2870
2871 bool SrcVec = SrcTy->isVectorTy();
2872 bool DstVec = DestTy->isVectorTy();
2873
2874 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2875 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2876 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2877 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2878 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2879 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2880
2881 if (SrcVec && DstVec)
2882 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToUI source and dest vector length mismatch",
&I); return; } } while (false)
2883 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToUI source and dest vector length mismatch",
&I); return; } } while (false)
2884 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToUI source and dest vector length mismatch",
&I); return; } } while (false)
;
2885
2886 visitInstruction(I);
2887}
2888
2889void Verifier::visitFPToSIInst(FPToSIInst &I) {
2890 // Get the source and destination types
2891 Type *SrcTy = I.getOperand(0)->getType();
2892 Type *DestTy = I.getType();
2893
2894 bool SrcVec = SrcTy->isVectorTy();
2895 bool DstVec = DestTy->isVectorTy();
2896
2897 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2898 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2899 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2900 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2901 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2902 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2903
2904 if (SrcVec && DstVec)
2905 Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToSI source and dest vector length mismatch",
&I); return; } } while (false)
2906 cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToSI source and dest vector length mismatch",
&I); return; } } while (false)
2907 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount(
) == cast<VectorType>(DestTy)->getElementCount())) {
CheckFailed("FPToSI source and dest vector length mismatch",
&I); return; } } while (false)
;
2908
2909 visitInstruction(I);
2910}
2911
2912void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2913 // Get the source and destination types
2914 Type *SrcTy = I.getOperand(0)->getType();
2915 Type *DestTy = I.getType();
2916
2917 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("PtrToInt source must be pointer"
, &I); return; } } while (false)
;
2918
2919 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2920 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2921 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2922
2923 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("PtrToInt result must be integral"
, &I); return; } } while (false)
;
2924 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2925 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2926
2927 if (SrcTy->isVectorTy()) {
2928 auto *VSrc = cast<VectorType>(SrcTy);
2929 auto *VDest = cast<VectorType>(DestTy);
2930 Assert(VSrc->getElementCount() == VDest->getElementCount(),do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2931 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2932 }
2933
2934 visitInstruction(I);
2935}
2936
2937void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2938 // Get the source and destination types
2939 Type *SrcTy = I.getOperand(0)->getType();
2940 Type *DestTy = I.getType();
2941
2942 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
2943 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
;
2944 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("IntToPtr result must be a pointer"
, &I); return; } } while (false)
;
2945
2946 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2947 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2948 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2949
2950 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2951 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2952 if (SrcTy->isVectorTy()) {
2953 auto *VSrc = cast<VectorType>(SrcTy);
2954 auto *VDest = cast<VectorType>(DestTy);
2955 Assert(VSrc->getElementCount() == VDest->getElementCount(),do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2956 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getElementCount() == VDest->getElementCount
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2957 }
2958 visitInstruction(I);
2959}
2960
2961void Verifier::visitBitCastInst(BitCastInst &I) {
2962 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2963 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2964 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2965 visitInstruction(I);
2966}
2967
2968void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2969 Type *SrcTy = I.getOperand(0)->getType();
2970 Type *DestTy = I.getType();
2971
2972 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2973 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2974 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2975 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2976 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2977 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2978 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
2979 Assert(SrcVTy->getElementCount() ==do { if (!(SrcVTy->getElementCount() == cast<VectorType
>(DestTy)->getElementCount())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2980 cast<VectorType>(DestTy)->getElementCount(),do { if (!(SrcVTy->getElementCount() == cast<VectorType
>(DestTy)->getElementCount())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2981 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcVTy->getElementCount() == cast<VectorType
>(DestTy)->getElementCount())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2982 visitInstruction(I);
2983}
2984
2985/// visitPHINode - Ensure that a PHI node is well formed.
2986///
2987void Verifier::visitPHINode(PHINode &PN) {
2988 // Ensure that the PHI nodes are all grouped together at the top of the block.
2989 // This can be tested by checking whether the instruction before this is
2990 // either nonexistent (because this is begin()) or is a PHI node. If not,
2991 // then there is some other instruction before a PHI.
2992 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2993 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2994 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2995
2996 // Check that a PHI doesn't yield a Token.
2997 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2998
2999 // Check that all of the values of the PHI node have the same type as the
3000 // result, and that the incoming blocks are really basic blocks.
3001 for (Value *IncValue : PN.incoming_values()) {
3002 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
3003 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
3004 }
3005
3006 // All other PHI node constraints are checked in the visitBasicBlock method.
3007
3008 visitInstruction(PN);
3009}
3010
3011void Verifier::visitCallBase(CallBase &Call) {
3012 Assert(Call.getCalledOperand()->getType()->isPointerTy(),do { if (!(Call.getCalledOperand()->getType()->isPointerTy
())) { CheckFailed("Called function must be a pointer!", Call
); return; } } while (false)
3013 "Called function must be a pointer!", Call)do { if (!(Call.getCalledOperand()->getType()->isPointerTy
())) { CheckFailed("Called function must be a pointer!", Call
); return; } } while (false)
;
3014 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3015
3016 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", Call); return
; } } while (false)
3017 "Called function is not pointer to function type!", Call)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", Call); return
; } } while (false)
;
3018
3019 Assert(FPTy->getElementType() == Call.getFunctionType(),do { if (!(FPTy->getElementType() == Call.getFunctionType(
))) { CheckFailed("Called function is not the same type as the call!"
, Call); return; } } while (false)
3020 "Called function is not the same type as the call!", Call)do { if (!(FPTy->getElementType() == Call.getFunctionType(
))) { CheckFailed("Called function is not the same type as the call!"
, Call); return; } } while (false)
;
3021
3022 FunctionType *FTy = Call.getFunctionType();
3023
3024 // Verify that the correct number of arguments are being passed
3025 if (FTy->isVarArg())
3026 Assert(Call.arg_size() >= FTy->getNumParams(),do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
3027 "Called function requires more parameters than were provided!",do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
3028 Call)do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
;
3029 else
3030 Assert(Call.arg_size() == FTy->getNumParams(),do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", Call
); return; } } while (false)
3031 "Incorrect number of arguments passed to called function!", Call)do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", Call
); return; } } while (false)
;
3032
3033 // Verify that all arguments to the call match the function type.
3034 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3035 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
3036 "Call parameter type does not match function signature!",do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
3037 Call.getArgOperand(i), FTy->getParamType(i), Call)do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
;
3038
3039 AttributeList Attrs = Call.getAttributes();
3040
3041 Assert(verifyAttributeCount(Attrs, Call.arg_size()),do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed
("Attribute after last parameter!", Call); return; } } while (
false)
3042 "Attribute after last parameter!", Call)do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed
("Attribute after last parameter!", Call); return; } } while (
false)
;
3043
3044 bool IsIntrinsic = Call.getCalledFunction() &&
3045 Call.getCalledFunction()->getName().startswith("llvm.");
3046
3047 Function *Callee =
3048 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3049
3050 if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
3051 // Don't allow speculatable on call sites, unless the underlying function
3052 // declaration is also speculatable.
3053 Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", Call);
return; } } while (false)
3054 "speculatable attribute may not apply to call sites", Call)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", Call);
return; } } while (false)
;
3055 }
3056
3057 if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
3058 Assert(Call.getCalledFunction()->getIntrinsicID() ==do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
3059 Intrinsic::call_preallocated_arg,do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
3060 "preallocated as a call site attribute can only be on "do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
3061 "llvm.call.preallocated.arg")do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic
::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg"); return; } } while (false)
;
3062 }
3063
3064 // Verify call attributes.
3065 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
3066
3067 // Conservatively check the inalloca argument.
3068 // We have a bug if we can find that there is an underlying alloca without
3069 // inalloca.
3070 if (Call.hasInAllocaArgument()) {
3071 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3072 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3073 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
3074 "inalloca argument for call has mismatched alloca", AI, Call)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
;
3075 }
3076
3077 // For each argument of the callsite, if it has the swifterror argument,
3078 // make sure the underlying alloca/parameter it comes from has a swifterror as
3079 // well.
3080 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3081 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3082 Value *SwiftErrorArg = Call.getArgOperand(i);
3083 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3084 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
3085 "swifterror argument for call has mismatched alloca", AI, Call)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
;
3086 continue;
3087 }
3088 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3089 Assert(ArgI,do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
3090 "swifterror argument should come from an alloca or parameter",do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
3091 SwiftErrorArg, Call)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
;
3092 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
3093 "swifterror argument for call has mismatched parameter", ArgI,do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
3094 Call)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
;
3095 }
3096
3097 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
3098 // Don't allow immarg on call sites, unless the underlying declaration
3099 // also has the matching immarg.
3100 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
3101 "immarg may not apply only to call sites",do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
3102 Call.getArgOperand(i), Call)do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
;
3103 }
3104
3105 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3106 Value *ArgVal = Call.getArgOperand(i);
3107 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP
>(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter"
, ArgVal, Call); return; } } while (false)
3108 "immarg operand has non-immediate parameter", ArgVal, Call)do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP
>(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter"
, ArgVal, Call); return; } } while (false)
;
3109 }
3110
3111 if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3112 Value *ArgVal = Call.getArgOperand(i);
3113 bool hasOB =
3114 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3115 bool isMustTail = Call.isMustTailCall();
3116 Assert(hasOB != isMustTail,do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
3117 "preallocated operand either requires a preallocated bundle or "do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
3118 "the call to be musttail (but not both)",do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
3119 ArgVal, Call)do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)", ArgVal, Call); return
; } } while (false)
;
3120 }
3121 }
3122
3123 if (FTy->isVarArg()) {
3124 // FIXME? is 'nest' even legal here?
3125 bool SawNest = false;
3126 bool SawReturned = false;
3127
3128 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3129 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
3130 SawNest = true;
3131 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
3132 SawReturned = true;
3133 }
3134
3135 // Check attributes on the varargs part.
3136 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3137 Type *Ty = Call.getArgOperand(Idx)->getType();
3138 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
3139 verifyParameterAttrs(ArgAttrs, Ty, &Call);
3140
3141 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3142 Assert(!SawNest, "More than one parameter has attribute nest!", Call)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, Call); return; } } while (false)
;
3143 SawNest = true;
3144 }
3145
3146 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3147 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, Call); return; } } while (false)
3148 Call)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, Call); return; } } while (false)
;
3149 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
3150 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
3151 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
3152 Call)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
;
3153 SawReturned = true;
3154 }
3155
3156 // Statepoint intrinsic is vararg but the wrapped function may be not.
3157 // Allow sret here and check the wrapped function in verifyStatepoint.
3158 if (!Call.getCalledFunction() ||
3159 Call.getCalledFunction()->getIntrinsicID() !=
3160 Intrinsic::experimental_gc_statepoint)
3161 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
3162 "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
3163 Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
;
3164
3165 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3166 Assert(Idx == Call.arg_size() - 1,do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, Call); return; } } while (false)
3167 "inalloca isn't on the last argument!", Call)do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, Call); return; } } while (false)
;
3168 }
3169 }
3170
3171 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3172 if (!IsIntrinsic) {
3173 for (Type *ParamTy : FTy->params()) {
3174 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, Call); return; } } while (false)
3175 "Function has metadata parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, Call); return; } } while (false)
;
3176 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, Call); return; } } while (false)
3177 "Function has token parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, Call); return; } } while (false)
;
3178 }
3179 }
3180
3181 // Verify that indirect calls don't return tokens.
3182 if (!Call.getCalledFunction())
3183 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
3184 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
3185
3186 if (Function *F = Call.getCalledFunction())
3187 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3188 visitIntrinsicCall(ID, Call);
3189
3190 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3191 // most one "gc-transition", at most one "cfguardtarget",
3192 // and at most one "preallocated" operand bundle.
3193 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3194 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3195 FoundPreallocatedBundle = false, FoundGCLiveBundle = false;;
3196 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3197 OperandBundleUse BU = Call.getOperandBundleAt(i);
3198 uint32_t Tag = BU.getTagID();
3199 if (Tag == LLVMContext::OB_deopt) {
3200 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, Call); return; } } while (false)
;
3201 FoundDeoptBundle = true;
3202 } else if (Tag == LLVMContext::OB_gc_transition) {
3203 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, Call); return; } } while (false)
3204 Call)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, Call); return; } } while (false)
;
3205 FoundGCTransitionBundle = true;
3206 } else if (Tag == LLVMContext::OB_funclet) {
3207 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, Call); return; } } while (false)
;
3208 FoundFuncletBundle = true;
3209 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, Call); return; } } while (false)
3210 "Expected exactly one funclet bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, Call); return; } } while (false)
;
3211 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
3212 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
3213 Call)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
;
3214 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3215 Assert(!FoundCFGuardTargetBundle,do { if (!(!FoundCFGuardTargetBundle)) { CheckFailed("Multiple CFGuardTarget operand bundles"
, Call); return; } } while (false)
3216 "Multiple CFGuardTarget operand bundles", Call)do { if (!(!FoundCFGuardTargetBundle)) { CheckFailed("Multiple CFGuardTarget operand bundles"
, Call); return; } } while (false)
;
3217 FoundCFGuardTargetBundle = true;
3218 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one cfguardtarget bundle operand"
, Call); return; } } while (false)
3219 "Expected exactly one cfguardtarget bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one cfguardtarget bundle operand"
, Call); return; } } while (false)
;
3220 } else if (Tag == LLVMContext::OB_preallocated) {
3221 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",do { if (!(!FoundPreallocatedBundle)) { CheckFailed("Multiple preallocated operand bundles"
, Call); return; } } while (false)
3222 Call)do { if (!(!FoundPreallocatedBundle)) { CheckFailed("Multiple preallocated operand bundles"
, Call); return; } } while (false)
;
3223 FoundPreallocatedBundle = true;
3224 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one preallocated bundle operand"
, Call); return; } } while (false)
3225 "Expected exactly one preallocated bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one preallocated bundle operand"
, Call); return; } } while (false)
;
3226 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3227 Assert(Input &&do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3228 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3229 "\"preallocated\" argument must be a token from "do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3230 "llvm.call.preallocated.setup",do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
3231 Call)do { if (!(Input && Input->getIntrinsicID() == Intrinsic
::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup", Call); return; } } while (false
)
;
3232 } else if (Tag == LLVMContext::OB_gc_live) {
3233 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",do { if (!(!FoundGCLiveBundle)) { CheckFailed("Multiple gc-live operand bundles"
, Call); return; } } while (false)
3234 Call)do { if (!(!FoundGCLiveBundle)) { CheckFailed("Multiple gc-live operand bundles"
, Call); return; } } while (false)
;
3235 FoundGCLiveBundle = true;
3236 }
3237 }
3238
3239 // Verify that each inlinable callsite of a debug-info-bearing function in a
3240 // debug-info-bearing function has a debug location attached to it. Failure to
3241 // do so causes assertion failures when the inliner sets up inline scope info.
3242 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3243 Call.getCalledFunction()->getSubprogram())
3244 AssertDI(Call.getDebugLoc(),do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3245 "inlinable function call in a function with "do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3246 "debug info must have a !dbg location",do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
3247 Call)do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
;
3248
3249 visitInstruction(Call);
3250}
3251
3252/// Two types are "congruent" if they are identical, or if they are both pointer
3253/// types with different pointee types and the same address space.
3254static bool isTypeCongruent(Type *L, Type *R) {
3255 if (L == R)
3256 return true;
3257 PointerType *PL = dyn_cast<PointerType>(L);
3258 PointerType *PR = dyn_cast<PointerType>(R);
3259 if (!PL || !PR)
3260 return false;
3261 return PL->getAddressSpace() == PR->getAddressSpace();
3262}
3263
3264static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3265 static const Attribute::AttrKind ABIAttrs[] = {
3266 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3267 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError,
3268 Attribute::Preallocated, Attribute::ByRef};
3269 AttrBuilder Copy;
3270 for (auto AK : ABIAttrs) {
3271 if (Attrs.hasParamAttribute(I, AK))
3272 Copy.addAttribute(AK);
3273 }
3274
3275 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3276 if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
3277 (Attrs.hasParamAttribute(I, Attribute::ByVal) ||
3278 Attrs.hasParamAttribute(I, Attribute::ByRef)))
3279 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3280 return Copy;
3281}
3282
3283void Verifier::verifyMustTailCall(CallInst &CI) {
3284 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
3285
3286 // - The caller and callee prototypes must match. Pointer types of
3287 // parameters or return types may differ in pointee type, but not
3288 // address space.
3289 Function *F = CI.getParent()->getParent();
3290 FunctionType *CallerTy = F->getFunctionType();
3291 FunctionType *CalleeTy = CI.getFunctionType();
3292 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3293 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
3294 "cannot guarantee tail call due to mismatched parameter counts",do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
3295 &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
3296 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3297 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
3298 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
3299 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
3300 }
3301 }
3302 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
3303 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
3304 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
3305 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
3306
3307 // - The calling conventions of the caller and callee must match.
3308 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
3309 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
3310
3311 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3312 // returned, preallocated, and inalloca, must match.
3313 AttributeList CallerAttrs = F->getAttributes();
3314 AttributeList CalleeAttrs = CI.getAttributes();
3315 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3316 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3317 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3318 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3319 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3320 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3321 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
3322 }
3323
3324 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3325 // or a pointer bitcast followed by a ret instruction.
3326 // - The ret instruction must return the (possibly bitcasted) value
3327 // produced by the call or void.
3328 Value *RetVal = &CI;
3329 Instruction *Next = CI.getNextNode();
3330
3331 // Handle the optional bitcast.
3332 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3333 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
3334 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
3335 RetVal = BI;
3336 Next = BI->getNextNode();
3337 }
3338
3339 // Check the return.
3340 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3341 Assert(Ret, "musttail call must precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
3342 &CI)do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
3343 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
3344 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
3345}
3346
3347void Verifier::visitCallInst(CallInst &CI) {
3348 visitCallBase(CI);
3349
3350 if (CI.isMustTailCall())
3351 verifyMustTailCall(CI);
3352}
3353
3354void Verifier::visitInvokeInst(InvokeInst &II) {
3355 visitCallBase(II);
3356
3357 // Verify that the first non-PHI instruction of the unwind destination is an
3358 // exception handling instruction.
3359 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3360 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3361 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3362 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
3363
3364 visitTerminator(II);
3365}
3366
3367/// visitUnaryOperator - Check the argument to the unary operator.
3368///
3369void Verifier::visitUnaryOperator(UnaryOperator &U) {
3370 Assert(U.getType() == U.getOperand(0)->getType(),do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3371 "Unary operators must have same type for"do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3372 "operands and result!",do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3373 &U)do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
;
3374
3375 switch (U.getOpcode()) {
3376 // Check that floating-point arithmetic operators are only used with
3377 // floating-point operands.
3378 case Instruction::FNeg:
3379 Assert(U.getType()->isFPOrFPVectorTy(),do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed
("FNeg operator only works with float types!", &U); return
; } } while (false)
3380 "FNeg operator only works with float types!", &U)do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed
("FNeg operator only works with float types!", &U); return
; } } while (false)
;
3381 break;
3382 default:
3383 llvm_unreachable("Unknown UnaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown UnaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 3383)
;
3384 }
3385
3386 visitInstruction(U);
3387}
3388
3389/// visitBinaryOperator - Check that both arguments to the binary operator are
3390/// of the same type!
3391///
3392void Verifier::visitBinaryOperator(BinaryOperator &B) {
3393 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
3394 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
3395
3396 switch (B.getOpcode()) {
3397 // Check that integer arithmetic operators are only used with
3398 // integral operands.
3399 case Instruction::Add:
3400 case Instruction::Sub:
3401 case Instruction::Mul:
3402 case Instruction::SDiv:
3403 case Instruction::UDiv:
3404 case Instruction::SRem:
3405 case Instruction::URem:
3406 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
3407 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
3408 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3409 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3410 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3411 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3412 break;
3413 // Check that floating-point arithmetic operators are only used with
3414 // floating-point operands.
3415 case Instruction::FAdd:
3416 case Instruction::FSub:
3417 case Instruction::FMul:
3418 case Instruction::FDiv:
3419 case Instruction::FRem:
3420 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3421 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3422 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3423 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
3424 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3425 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3426 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3427 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3428 break;
3429 // Check that logical operators are only used with integral operands.
3430 case Instruction::And:
3431 case Instruction::Or:
3432 case Instruction::Xor:
3433 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
3434 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
3435 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3436 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3437 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
3438 break;
3439 case Instruction::Shl:
3440 case Instruction::LShr:
3441 case Instruction::AShr:
3442 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
3443 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
3444 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
3445 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
3446 break;
3447 default:
3448 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 3448)
;
3449 }
3450
3451 visitInstruction(B);
3452}
3453
3454void Verifier::visitICmpInst(ICmpInst &IC) {
3455 // Check that the operands are the same type
3456 Type *Op0Ty = IC.getOperand(0)->getType();
3457 Type *Op1Ty = IC.getOperand(1)->getType();
3458 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
3459 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
3460 // Check that the operands are the right type
3461 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
3462 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
3463 // Check that the predicate is valid.
3464 Assert(IC.isIntPredicate(),do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
3465 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
;
3466
3467 visitInstruction(IC);
3468}
3469
3470void Verifier::visitFCmpInst(FCmpInst &FC) {
3471 // Check that the operands are the same type
3472 Type *Op0Ty = FC.getOperand(0)->getType();
3473 Type *Op1Ty = FC.getOperand(1)->getType();
3474 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
3475 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
3476 // Check that the operands are the right type
3477 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
3478 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
3479 // Check that the predicate is valid.
3480 Assert(FC.isFPPredicate(),do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
3481 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
;
3482
3483 visitInstruction(FC);
3484}
3485
3486void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3487 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3488 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3489 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
3490 visitInstruction(EI);
3491}
3492
3493void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3494 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3495 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3496 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
3497 visitInstruction(IE);
3498}
3499
3500void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3501 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3502 SV.getShuffleMask()),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3503 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
3504 visitInstruction(SV);
3505}
3506
3507void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3508 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3509
3510 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
3511 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
3512 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
3513
3514 SmallVector<Value *, 16> Idxs(GEP.indices());
3515 Assert(all_of(do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3516 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3517 "GEP indexes must be integers", &GEP)do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
;
3518 Type *ElTy =
3519 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3520 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
3521
3522 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3523 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3524 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
;
3525
3526 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3527 // Additional checks for vector GEPs.
3528 ElementCount GEPWidth = GEPVTy->getElementCount();
3529 if (GEP.getPointerOperandType()->isVectorTy())
3530 Assert(do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3531 GEPWidth ==do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3532 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3533 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType
())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3534 for (Value *Idx : Idxs) {
3535 Type *IndexTy = Idx->getType();
3536 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3537 ElementCount IndexWidth = IndexVTy->getElementCount();
3538 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3539 }
3540 Assert(IndexTy->isIntOrIntVectorTy(),do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
3541 "All GEP indices should be of integer type")do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
;
3542 }
3543 }
3544
3545 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3546 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace()
)) { CheckFailed("GEP address space doesn't match type", &
GEP); return; } } while (false)
3547 "GEP address space doesn't match type", &GEP)do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace()
)) { CheckFailed("GEP address space doesn't match type", &
GEP); return; } } while (false)
;
3548 }
3549
3550 visitInstruction(GEP);
3551}
3552
3553static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3554 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3555}
3556
3557void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3558 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 3559, __PRETTY_FUNCTION__))
3559 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 3559, __PRETTY_FUNCTION__))
;
3560
3561 unsigned NumOperands = Range->getNumOperands();
3562 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3563 unsigned NumRanges = NumOperands / 2;
3564 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3565
3566 ConstantRange LastRange(1, true); // Dummy initial value
3567 for (unsigned i = 0; i < NumRanges; ++i) {
3568 ConstantInt *Low =
3569 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3570 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3571 ConstantInt *High =
3572 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3573 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3574 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3575 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3576
3577 APInt HighV = High->getValue();
3578 APInt LowV = Low->getValue();
3579 ConstantRange CurRange(LowV, HighV);
3580 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3581 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3582 if (i != 0) {
3583 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3584 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3585 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3586 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3587 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3588 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3589 }
3590 LastRange = ConstantRange(LowV, HighV);
3591 }
3592 if (NumRanges > 2) {
3593 APInt FirstLow =
3594 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3595 APInt FirstHigh =
3596 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3597 ConstantRange FirstRange(FirstLow, FirstHigh);
3598 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3599 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3600 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3601 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3602 }
3603}
3604
3605void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3606 unsigned Size = DL.getTypeSizeInBits(Ty);
3607 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3608 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3609 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3610}
3611
3612void Verifier::visitLoadInst(LoadInst &LI) {
3613 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3614 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3615 Type *ElTy = LI.getType();
3616 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3617 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3618 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3619 if (LI.isAtomic()) {
3620 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3621 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3622 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3623 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3624 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3625 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3626 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3627 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3628 ElTy, &LI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3629 checkAtomicMemAccessSize(ElTy, &LI);
3630 } else {
3631 Assert(LI.getSyncScopeID() == SyncScope::System,do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
3632 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
;
3633 }
3634
3635 visitInstruction(LI);
3636}
3637
3638void Verifier::visitStoreInst(StoreInst &SI) {
3639 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3640 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3641 Type *ElTy = PTy->getElementType();
3642 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3643 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3644 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3645 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3646 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3647 if (SI.isAtomic()) {
3648 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3649 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3650 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3651 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3652 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3653 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3654 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3655 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3656 ElTy, &SI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3657 checkAtomicMemAccessSize(ElTy, &SI);
3658 } else {
3659 Assert(SI.getSyncScopeID() == SyncScope::System,do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3660 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3661 }
3662 visitInstruction(SI);
3663}
3664
3665/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3666void Verifier::verifySwiftErrorCall(CallBase &Call,
3667 const Value *SwiftErrorVal) {
3668 unsigned Idx = 0;
3669 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3670 if (*I == SwiftErrorVal) {
3671 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3672 "swifterror value when used in a callsite should be marked "do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3673 "with swifterror attribute",do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3674 SwiftErrorVal, Call)do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
;
3675 }
3676 }
3677}
3678
3679void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3680 // Check that swifterror value is only used by loads, stores, or as
3681 // a swifterror argument.
3682 for (const User *U : SwiftErrorVal->users()) {
3683 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3684 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3685 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3686 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3687 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3688 // If it is used by a store, check it is the second operand.
3689 if (auto StoreI = dyn_cast<StoreInst>(U))
3690 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3691 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3692 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3693 if (auto *Call = dyn_cast<CallBase>(U))
3694 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3695 }
3696}
3697
3698void Verifier::visitAllocaInst(AllocaInst &AI) {
3699 SmallPtrSet<Type*, 4> Visited;
3700 PointerType *PTy = AI.getType();
3701 // TODO: Relax this restriction?
3702 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3703 "Allocation instruction pointer not in the stack address space!",do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3704 &AI)do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
;
3705 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3706 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3707 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3708 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3709 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3710 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3711
3712 if (AI.isSwiftError()) {
3713 verifySwiftErrorValue(&AI);
3714 }
3715
3716 visitInstruction(AI);
3717}
3718
3719void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3720
3721 // FIXME: more conditions???
3722 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3723 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3724 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3725 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3726 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3727 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3728 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3729 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3730 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3731 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3732 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3733 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3734 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3735 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3736 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3737
3738 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3739 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3740 Type *ElTy = PTy->getElementType();
3741 Assert(ElTy->isIntOrPtrTy(),do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3742 "cmpxchg operand must have integer or pointer type", ElTy, &CXI)do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3743 checkAtomicMemAccessSize(ElTy, &CXI);
3744 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3745 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3746 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3747 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3748 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3749 visitInstruction(CXI);
3750}
3751
3752void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3753 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3754 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3755 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3756 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3757 auto Op = RMWI.getOperation();
3758 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3759 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3760 Type *ElTy = PTy->getElementType();
3761 if (Op == AtomicRMWInst::Xchg) {
3762 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3763 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3764 " operand must have integer or floating point type!",do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3765 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
;
3766 } else if (AtomicRMWInst::isFPOperation(Op)) {
3767 Assert(ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3768 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3769 " operand must have floating point type!",do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3770 &RMWI, ElTy)do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
;
3771 } else {
3772 Assert(ElTy->isIntegerTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3773 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3774 " operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3775 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3776 }
3777 checkAtomicMemAccessSize(ElTy, &RMWI);
3778 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3779 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3780 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3781 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <=
AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!"
, &RMWI); return; } } while (false)
3782 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <=
AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!"
, &RMWI); return; } } while (false)
;
3783 visitInstruction(RMWI);
3784}
3785
3786void Verifier::visitFenceInst(FenceInst &FI) {
3787 const AtomicOrdering Ordering = FI.getOrdering();
3788 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3789 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3790 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3791 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3792 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3793 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3794 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3795 visitInstruction(FI);
3796}
3797
3798void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3799 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3800 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3801 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3802
3803 visitInstruction(EVI);
3804}
3805
3806void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3807 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3808 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3809 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3810 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3811
3812 visitInstruction(IVI);
3813}
3814
3815static Value *getParentPad(Value *EHPad) {
3816 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3817 return FPI->getParentPad();
3818
3819 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3820}
3821
3822void Verifier::visitEHPadPredecessors(Instruction &I) {
3823 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 3823, __PRETTY_FUNCTION__))
;
3824
3825 BasicBlock *BB = I.getParent();
3826 Function *F = BB->getParent();
3827
3828 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3829
3830 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3831 // The landingpad instruction defines its parent as a landing pad block. The
3832 // landing pad block may be branched to only by the unwind edge of an
3833 // invoke.
3834 for (BasicBlock *PredBB : predecessors(BB)) {
3835 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3836 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3837 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3838 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3839 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3840 }
3841 return;
3842 }
3843 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3844 if (!pred_empty(BB))
3845 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3846 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3847 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3848 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3849 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3850 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3851 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3852 return;
3853 }
3854
3855 // Verify that each pred has a legal terminator with a legal to/from EH
3856 // pad relationship.
3857 Instruction *ToPad = &I;
3858 Value *ToPadParent = getParentPad(ToPad);
3859 for (BasicBlock *PredBB : predecessors(BB)) {
3860 Instruction *TI = PredBB->getTerminator();
3861 Value *FromPad;
3862 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3863 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3864 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3865 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3866 FromPad = Bundle->Inputs[0];
3867 else
3868 FromPad = ConstantTokenNone::get(II->getContext());
3869 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3870 FromPad = CRI->getOperand(0);
3871 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3872 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3873 FromPad = CSI;
3874 } else {
3875 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3876 }
3877
3878 // The edge may exit from zero or more nested pads.
3879 SmallSet<Value *, 8> Seen;
3880 for (;; FromPad = getParentPad(FromPad)) {
3881 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3882 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3883 if (FromPad == ToPadParent) {
3884 // This is a legal unwind edge.
3885 break;
3886 }
3887 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3888 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3889 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3890 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3891 }
3892 }
3893}
3894
3895void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3896 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3897 // isn't a cleanup.
3898 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3899 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3900
3901 visitEHPadPredecessors(LPI);
3902
3903 if (!LandingPadResultTy)
3904 LandingPadResultTy = LPI.getType();
3905 else
3906 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3907 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3908 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3909 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3910
3911 Function *F = LPI.getParent()->getParent();
3912 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3913 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3914
3915 // The landingpad instruction must be the first non-PHI instruction in the
3916 // block.
3917 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3918 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3919 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3920
3921 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3922 Constant *Clause = LPI.getClause(i);
3923 if (LPI.isCatch(i)) {
3924 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3925 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3926 } else {
3927 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3928 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3929 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3930 }
3931 }
3932
3933 visitInstruction(LPI);
3934}
3935
3936void Verifier::visitResumeInst(ResumeInst &RI) {
3937 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3938 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3939
3940 if (!LandingPadResultTy)
3941 LandingPadResultTy = RI.getValue()->getType();
3942 else
3943 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3944 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3945 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3946 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3947
3948 visitTerminator(RI);
3949}
3950
3951void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3952 BasicBlock *BB = CPI.getParent();
3953
3954 Function *F = BB->getParent();
3955 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3956 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3957
3958 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3959 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3960 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3961
3962 // The catchpad instruction must be the first non-PHI instruction in the
3963 // block.
3964 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3965 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3966
3967 visitEHPadPredecessors(CPI);
3968 visitFuncletPadInst(CPI);
3969}
3970
3971void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3972 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3973 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3974 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3975
3976 visitTerminator(CatchReturn);
3977}
3978
3979void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3980 BasicBlock *BB = CPI.getParent();
3981
3982 Function *F = BB->getParent();
3983 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3984 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3985
3986 // The cleanuppad instruction must be the first non-PHI instruction in the
3987 // block.
3988 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3989 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3990 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3991
3992 auto *ParentPad = CPI.getParentPad();
3993 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3994 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3995
3996 visitEHPadPredecessors(CPI);
3997 visitFuncletPadInst(CPI);
3998}
3999
4000void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4001 User *FirstUser = nullptr;
4002 Value *FirstUnwindPad = nullptr;
4003 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4004 SmallSet<FuncletPadInst *, 8> Seen;
4005
4006 while (!Worklist.empty()) {
4007 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4008 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
4009 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
4010 Value *UnresolvedAncestorPad = nullptr;
4011 for (User *U : CurrentPad->users()) {
4012 BasicBlock *UnwindDest;
4013 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4014 UnwindDest = CRI->getUnwindDest();
4015 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4016 // We allow catchswitch unwind to caller to nest
4017 // within an outer pad that unwinds somewhere else,
4018 // because catchswitch doesn't have a nounwind variant.
4019 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4020 if (CSI->unwindsToCaller())
4021 continue;
4022 UnwindDest = CSI->getUnwindDest();
4023 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4024 UnwindDest = II->getUnwindDest();
4025 } else if (isa<CallInst>(U)) {
4026 // Calls which don't unwind may be found inside funclet
4027 // pads that unwind somewhere else. We don't *require*
4028 // such calls to be annotated nounwind.
4029 continue;
4030 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4031 // The unwind dest for a cleanup can only be found by
4032 // recursive search. Add it to the worklist, and we'll
4033 // search for its first use that determines where it unwinds.
4034 Worklist.push_back(CPI);
4035 continue;
4036 } else {
4037 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
4038 continue;
4039 }
4040
4041 Value *UnwindPad;
4042 bool ExitsFPI;
4043 if (UnwindDest) {
4044 UnwindPad = UnwindDest->getFirstNonPHI();
4045 if (!cast<Instruction>(UnwindPad)->isEHPad())
4046 continue;
4047 Value *UnwindParent = getParentPad(UnwindPad);
4048 // Ignore unwind edges that don't exit CurrentPad.
4049 if (UnwindParent == CurrentPad)
4050 continue;
4051 // Determine whether the original funclet pad is exited,
4052 // and if we are scanning nested pads determine how many
4053 // of them are exited so we can stop searching their
4054 // children.
4055 Value *ExitedPad = CurrentPad;
4056 ExitsFPI = false;
4057 do {
4058 if (ExitedPad == &FPI) {
4059 ExitsFPI = true;
4060 // Now we can resolve any ancestors of CurrentPad up to
4061 // FPI, but not including FPI since we need to make sure
4062 // to check all direct users of FPI for consistency.
4063 UnresolvedAncestorPad = &FPI;
4064 break;
4065 }
4066 Value *ExitedParent = getParentPad(ExitedPad);
4067 if (ExitedParent == UnwindParent) {
4068 // ExitedPad is the ancestor-most pad which this unwind
4069 // edge exits, so we can resolve up to it, meaning that
4070 // ExitedParent is the first ancestor still unresolved.
4071 UnresolvedAncestorPad = ExitedParent;
4072 break;
4073 }
4074 ExitedPad = ExitedParent;
4075 } while (!isa<ConstantTokenNone>(ExitedPad));
4076 } else {
4077 // Unwinding to caller exits all pads.
4078 UnwindPad = ConstantTokenNone::get(FPI.getContext());
4079 ExitsFPI = true;
4080 UnresolvedAncestorPad = &FPI;
4081 }
4082
4083 if (ExitsFPI) {
4084 // This unwind edge exits FPI. Make sure it agrees with other
4085 // such edges.
4086 if (FirstUser) {
4087 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
4088 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
4089 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
4090 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
4091 } else {
4092 FirstUser = U;
4093 FirstUnwindPad = UnwindPad;
4094 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4095 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4096 getParentPad(UnwindPad) == getParentPad(&FPI))
4097 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4098 }
4099 }
4100 // Make sure we visit all uses of FPI, but for nested pads stop as
4101 // soon as we know where they unwind to.
4102 if (CurrentPad != &FPI)
4103 break;
4104 }
4105 if (UnresolvedAncestorPad) {
4106 if (CurrentPad == UnresolvedAncestorPad) {
4107 // When CurrentPad is FPI itself, we don't mark it as resolved even if
4108 // we've found an unwind edge that exits it, because we need to verify
4109 // all direct uses of FPI.
4110 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/IR/Verifier.cpp"
, 4110, __PRETTY_FUNCTION__))
;
4111 continue;
4112 }
4113 // Pop off the worklist any nested pads that we've found an unwind
4114 // destination for. The pads on the worklist are the uncles,
4115 // great-uncles, etc. of CurrentPad. We've found an unwind destination
4116 // for all ancestors of CurrentPad up to but not including
4117 // UnresolvedAncestorPad.
4118 Value *ResolvedPad = CurrentPad;
4119 while (!Worklist.empty()) {
4120 Value *UnclePad = Worklist.back();
4121 Value *AncestorPad = getParentPad(UnclePad);
4122 // Walk ResolvedPad up the ancestor list until we either find the
4123 // uncle's parent or the last resolved ancestor.
4124 while (ResolvedPad != AncestorPad) {
4125 Value *ResolvedParent = getParentPad(ResolvedPad);
4126 if (ResolvedParent == UnresolvedAncestorPad) {
4127 break;
4128 }
4129 ResolvedPad = ResolvedParent;
4130 }
4131 // If the resolved ancestor search didn't find the uncle's parent,
4132 // then the uncle is not yet resolved.