Bug Summary

File:include/llvm/Support/Error.h
Warning:line 201, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name WasmObjectFile.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/Object -I /build/llvm-toolchain-snapshot-8~svn350071/lib/Object -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/Object -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp

1//===- WasmObjectFile.cpp - Wasm object file implementation ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/ADT/ArrayRef.h"
11#include "llvm/ADT/DenseSet.h"
12#include "llvm/ADT/STLExtras.h"
13#include "llvm/ADT/StringRef.h"
14#include "llvm/ADT/StringSet.h"
15#include "llvm/ADT/Triple.h"
16#include "llvm/BinaryFormat/Wasm.h"
17#include "llvm/MC/SubtargetFeature.h"
18#include "llvm/Object/Binary.h"
19#include "llvm/Object/Error.h"
20#include "llvm/Object/ObjectFile.h"
21#include "llvm/Object/SymbolicFile.h"
22#include "llvm/Object/Wasm.h"
23#include "llvm/Support/Endian.h"
24#include "llvm/Support/Error.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/LEB128.h"
27#include "llvm/Support/ScopedPrinter.h"
28#include <algorithm>
29#include <cassert>
30#include <cstdint>
31#include <cstring>
32#include <system_error>
33
34#define DEBUG_TYPE"wasm-object" "wasm-object"
35
36using namespace llvm;
37using namespace object;
38
39void WasmSymbol::print(raw_ostream &Out) const {
40 Out << "Name=" << Info.Name
41 << ", Kind=" << toString(wasm::WasmSymbolType(Info.Kind))
42 << ", Flags=" << Info.Flags;
43 if (!isTypeData()) {
44 Out << ", ElemIndex=" << Info.ElementIndex;
45 } else if (isDefined()) {
46 Out << ", Segment=" << Info.DataRef.Segment;
47 Out << ", Offset=" << Info.DataRef.Offset;
48 Out << ", Size=" << Info.DataRef.Size;
49 }
50}
51
52#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
53LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void WasmSymbol::dump() const { print(dbgs()); }
54#endif
55
56Expected<std::unique_ptr<WasmObjectFile>>
57ObjectFile::createWasmObjectFile(MemoryBufferRef Buffer) {
58 Error Err = Error::success();
59 auto ObjectFile = llvm::make_unique<WasmObjectFile>(Buffer, Err);
60 if (Err)
61 return std::move(Err);
62
63 return std::move(ObjectFile);
64}
65
66#define VARINT7_MAX((1 << 7) - 1) ((1 << 7) - 1)
67#define VARINT7_MIN(-(1 << 7)) (-(1 << 7))
68#define VARUINT7_MAX(1 << 7) (1 << 7)
69#define VARUINT1_MAX(1) (1)
70
71static uint8_t readUint8(WasmObjectFile::ReadContext &Ctx) {
72 if (Ctx.Ptr == Ctx.End)
73 report_fatal_error("EOF while reading uint8");
74 return *Ctx.Ptr++;
75}
76
77static uint32_t readUint32(WasmObjectFile::ReadContext &Ctx) {
78 if (Ctx.Ptr + 4 > Ctx.End)
79 report_fatal_error("EOF while reading uint32");
80 uint32_t Result = support::endian::read32le(Ctx.Ptr);
81 Ctx.Ptr += 4;
82 return Result;
83}
84
85static int32_t readFloat32(WasmObjectFile::ReadContext &Ctx) {
86 if (Ctx.Ptr + 4 > Ctx.End)
87 report_fatal_error("EOF while reading float64");
88 int32_t Result = 0;
89 memcpy(&Result, Ctx.Ptr, sizeof(Result));
90 Ctx.Ptr += sizeof(Result);
91 return Result;
92}
93
94static int64_t readFloat64(WasmObjectFile::ReadContext &Ctx) {
95 if (Ctx.Ptr + 8 > Ctx.End)
96 report_fatal_error("EOF while reading float64");
97 int64_t Result = 0;
98 memcpy(&Result, Ctx.Ptr, sizeof(Result));
99 Ctx.Ptr += sizeof(Result);
100 return Result;
101}
102
103static uint64_t readULEB128(WasmObjectFile::ReadContext &Ctx) {
104 unsigned Count;
105 const char *Error = nullptr;
106 uint64_t Result = decodeULEB128(Ctx.Ptr, &Count, Ctx.End, &Error);
107 if (Error)
108 report_fatal_error(Error);
109 Ctx.Ptr += Count;
110 return Result;
111}
112
113static StringRef readString(WasmObjectFile::ReadContext &Ctx) {
114 uint32_t StringLen = readULEB128(Ctx);
115 if (Ctx.Ptr + StringLen > Ctx.End)
116 report_fatal_error("EOF while reading string");
117 StringRef Return =
118 StringRef(reinterpret_cast<const char *>(Ctx.Ptr), StringLen);
119 Ctx.Ptr += StringLen;
120 return Return;
121}
122
123static int64_t readLEB128(WasmObjectFile::ReadContext &Ctx) {
124 unsigned Count;
125 const char *Error = nullptr;
126 uint64_t Result = decodeSLEB128(Ctx.Ptr, &Count, Ctx.End, &Error);
127 if (Error)
128 report_fatal_error(Error);
129 Ctx.Ptr += Count;
130 return Result;
131}
132
133static uint8_t readVaruint1(WasmObjectFile::ReadContext &Ctx) {
134 int64_t result = readLEB128(Ctx);
135 if (result > VARUINT1_MAX(1) || result < 0)
136 report_fatal_error("LEB is outside Varuint1 range");
137 return result;
138}
139
140static int32_t readVarint32(WasmObjectFile::ReadContext &Ctx) {
141 int64_t result = readLEB128(Ctx);
142 if (result > INT32_MAX(2147483647) || result < INT32_MIN(-2147483647-1))
143 report_fatal_error("LEB is outside Varint32 range");
144 return result;
145}
146
147static uint32_t readVaruint32(WasmObjectFile::ReadContext &Ctx) {
148 uint64_t result = readULEB128(Ctx);
149 if (result > UINT32_MAX(4294967295U))
150 report_fatal_error("LEB is outside Varuint32 range");
151 return result;
152}
153
154static int64_t readVarint64(WasmObjectFile::ReadContext &Ctx) {
155 return readLEB128(Ctx);
156}
157
158static uint8_t readOpcode(WasmObjectFile::ReadContext &Ctx) {
159 return readUint8(Ctx);
160}
161
162static Error readInitExpr(wasm::WasmInitExpr &Expr,
163 WasmObjectFile::ReadContext &Ctx) {
164 Expr.Opcode = readOpcode(Ctx);
165
166 switch (Expr.Opcode) {
167 case wasm::WASM_OPCODE_I32_CONST:
168 Expr.Value.Int32 = readVarint32(Ctx);
169 break;
170 case wasm::WASM_OPCODE_I64_CONST:
171 Expr.Value.Int64 = readVarint64(Ctx);
172 break;
173 case wasm::WASM_OPCODE_F32_CONST:
174 Expr.Value.Float32 = readFloat32(Ctx);
175 break;
176 case wasm::WASM_OPCODE_F64_CONST:
177 Expr.Value.Float64 = readFloat64(Ctx);
178 break;
179 case wasm::WASM_OPCODE_GET_GLOBAL:
180 Expr.Value.Global = readULEB128(Ctx);
181 break;
182 default:
183 return make_error<GenericBinaryError>("Invalid opcode in init_expr",
184 object_error::parse_failed);
185 }
186
187 uint8_t EndOpcode = readOpcode(Ctx);
188 if (EndOpcode != wasm::WASM_OPCODE_END) {
189 return make_error<GenericBinaryError>("Invalid init_expr",
190 object_error::parse_failed);
191 }
192 return Error::success();
193}
194
195static wasm::WasmLimits readLimits(WasmObjectFile::ReadContext &Ctx) {
196 wasm::WasmLimits Result;
197 Result.Flags = readVaruint32(Ctx);
198 Result.Initial = readVaruint32(Ctx);
199 if (Result.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX)
200 Result.Maximum = readVaruint32(Ctx);
201 return Result;
202}
203
204static wasm::WasmTable readTable(WasmObjectFile::ReadContext &Ctx) {
205 wasm::WasmTable Table;
206 Table.ElemType = readUint8(Ctx);
207 Table.Limits = readLimits(Ctx);
208 return Table;
209}
210
211static Error readSection(WasmSection &Section, WasmObjectFile::ReadContext &Ctx,
212 WasmSectionOrderChecker &Checker) {
213 Section.Offset = Ctx.Ptr - Ctx.Start;
214 Section.Type = readUint8(Ctx);
215 LLVM_DEBUG(dbgs() << "readSection type=" << Section.Type << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("wasm-object")) { dbgs() << "readSection type=" <<
Section.Type << "\n"; } } while (false)
;
216 uint32_t Size = readVaruint32(Ctx);
217 if (Size == 0)
218 return make_error<StringError>("Zero length section",
219 object_error::parse_failed);
220 if (Ctx.Ptr + Size > Ctx.End)
221 return make_error<StringError>("Section too large",
222 object_error::parse_failed);
223 if (Section.Type == wasm::WASM_SEC_CUSTOM) {
224 WasmObjectFile::ReadContext SectionCtx;
225 SectionCtx.Start = Ctx.Ptr;
226 SectionCtx.Ptr = Ctx.Ptr;
227 SectionCtx.End = Ctx.Ptr + Size;
228
229 Section.Name = readString(SectionCtx);
230
231 uint32_t SectionNameSize = SectionCtx.Ptr - SectionCtx.Start;
232 Ctx.Ptr += SectionNameSize;
233 Size -= SectionNameSize;
234 }
235
236 if (!Checker.isValidSectionOrder(Section.Type, Section.Name)) {
237 return make_error<StringError>("Out of order section type: " +
238 llvm::to_string(Section.Type),
239 object_error::parse_failed);
240 }
241
242 Section.Content = ArrayRef<uint8_t>(Ctx.Ptr, Size);
243 Ctx.Ptr += Size;
244 return Error::success();
245}
246
247WasmObjectFile::WasmObjectFile(MemoryBufferRef Buffer, Error &Err)
248 : ObjectFile(Binary::ID_Wasm, Buffer) {
249 ErrorAsOutParameter ErrAsOutParam(&Err);
250 Header.Magic = getData().substr(0, 4);
251 if (Header.Magic != StringRef("\0asm", 4)) {
1
Taking true branch
252 Err =
253 make_error<StringError>("Bad magic number", object_error::parse_failed);
2
Calling 'make_error<llvm::StringError, char const (&)[17], llvm::object::object_error>'
254 return;
255 }
256
257 ReadContext Ctx;
258 Ctx.Start = getPtr(0);
259 Ctx.Ptr = Ctx.Start + 4;
260 Ctx.End = Ctx.Start + getData().size();
261
262 if (Ctx.Ptr + 4 > Ctx.End) {
263 Err = make_error<StringError>("Missing version number",
264 object_error::parse_failed);
265 return;
266 }
267
268 Header.Version = readUint32(Ctx);
269 if (Header.Version != wasm::WasmVersion) {
270 Err = make_error<StringError>("Bad version number",
271 object_error::parse_failed);
272 return;
273 }
274
275 WasmSection Sec;
276 WasmSectionOrderChecker Checker;
277 while (Ctx.Ptr < Ctx.End) {
278 if ((Err = readSection(Sec, Ctx, Checker)))
279 return;
280 if ((Err = parseSection(Sec)))
281 return;
282
283 Sections.push_back(Sec);
284 }
285}
286
287Error WasmObjectFile::parseSection(WasmSection &Sec) {
288 ReadContext Ctx;
289 Ctx.Start = Sec.Content.data();
290 Ctx.End = Ctx.Start + Sec.Content.size();
291 Ctx.Ptr = Ctx.Start;
292 switch (Sec.Type) {
293 case wasm::WASM_SEC_CUSTOM:
294 return parseCustomSection(Sec, Ctx);
295 case wasm::WASM_SEC_TYPE:
296 return parseTypeSection(Ctx);
297 case wasm::WASM_SEC_IMPORT:
298 return parseImportSection(Ctx);
299 case wasm::WASM_SEC_FUNCTION:
300 return parseFunctionSection(Ctx);
301 case wasm::WASM_SEC_TABLE:
302 return parseTableSection(Ctx);
303 case wasm::WASM_SEC_MEMORY:
304 return parseMemorySection(Ctx);
305 case wasm::WASM_SEC_GLOBAL:
306 return parseGlobalSection(Ctx);
307 case wasm::WASM_SEC_EVENT:
308 return parseEventSection(Ctx);
309 case wasm::WASM_SEC_EXPORT:
310 return parseExportSection(Ctx);
311 case wasm::WASM_SEC_START:
312 return parseStartSection(Ctx);
313 case wasm::WASM_SEC_ELEM:
314 return parseElemSection(Ctx);
315 case wasm::WASM_SEC_CODE:
316 return parseCodeSection(Ctx);
317 case wasm::WASM_SEC_DATA:
318 return parseDataSection(Ctx);
319 default:
320 return make_error<GenericBinaryError>("Bad section type",
321 object_error::parse_failed);
322 }
323}
324
325Error WasmObjectFile::parseDylinkSection(ReadContext &Ctx) {
326 // See https://github.com/WebAssembly/tool-conventions/blob/master/DynamicLinking.md
327 DylinkInfo.MemorySize = readVaruint32(Ctx);
328 DylinkInfo.MemoryAlignment = readVaruint32(Ctx);
329 DylinkInfo.TableSize = readVaruint32(Ctx);
330 DylinkInfo.TableAlignment = readVaruint32(Ctx);
331 uint32_t Count = readVaruint32(Ctx);
332 while (Count--) {
333 DylinkInfo.Needed.push_back(readString(Ctx));
334 }
335 if (Ctx.Ptr != Ctx.End)
336 return make_error<GenericBinaryError>("dylink section ended prematurely",
337 object_error::parse_failed);
338 return Error::success();
339}
340
341Error WasmObjectFile::parseNameSection(ReadContext &Ctx) {
342 llvm::DenseSet<uint64_t> Seen;
343 if (Functions.size() != FunctionTypes.size()) {
344 return make_error<GenericBinaryError>("Names must come after code section",
345 object_error::parse_failed);
346 }
347
348 while (Ctx.Ptr < Ctx.End) {
349 uint8_t Type = readUint8(Ctx);
350 uint32_t Size = readVaruint32(Ctx);
351 const uint8_t *SubSectionEnd = Ctx.Ptr + Size;
352 switch (Type) {
353 case wasm::WASM_NAMES_FUNCTION: {
354 uint32_t Count = readVaruint32(Ctx);
355 while (Count--) {
356 uint32_t Index = readVaruint32(Ctx);
357 if (!Seen.insert(Index).second)
358 return make_error<GenericBinaryError>("Function named more than once",
359 object_error::parse_failed);
360 StringRef Name = readString(Ctx);
361 if (!isValidFunctionIndex(Index) || Name.empty())
362 return make_error<GenericBinaryError>("Invalid name entry",
363 object_error::parse_failed);
364 DebugNames.push_back(wasm::WasmFunctionName{Index, Name});
365 if (isDefinedFunctionIndex(Index))
366 getDefinedFunction(Index).DebugName = Name;
367 }
368 break;
369 }
370 // Ignore local names for now
371 case wasm::WASM_NAMES_LOCAL:
372 default:
373 Ctx.Ptr += Size;
374 break;
375 }
376 if (Ctx.Ptr != SubSectionEnd)
377 return make_error<GenericBinaryError>(
378 "Name sub-section ended prematurely", object_error::parse_failed);
379 }
380
381 if (Ctx.Ptr != Ctx.End)
382 return make_error<GenericBinaryError>("Name section ended prematurely",
383 object_error::parse_failed);
384 return Error::success();
385}
386
387Error WasmObjectFile::parseLinkingSection(ReadContext &Ctx) {
388 HasLinkingSection = true;
389 if (Functions.size() != FunctionTypes.size()) {
390 return make_error<GenericBinaryError>(
391 "Linking data must come after code section",
392 object_error::parse_failed);
393 }
394
395 LinkingData.Version = readVaruint32(Ctx);
396 if (LinkingData.Version != wasm::WasmMetadataVersion) {
397 return make_error<GenericBinaryError>(
398 "Unexpected metadata version: " + Twine(LinkingData.Version) +
399 " (Expected: " + Twine(wasm::WasmMetadataVersion) + ")",
400 object_error::parse_failed);
401 }
402
403 const uint8_t *OrigEnd = Ctx.End;
404 while (Ctx.Ptr < OrigEnd) {
405 Ctx.End = OrigEnd;
406 uint8_t Type = readUint8(Ctx);
407 uint32_t Size = readVaruint32(Ctx);
408 LLVM_DEBUG(dbgs() << "readSubsection type=" << int(Type) << " size=" << Sizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("wasm-object")) { dbgs() << "readSubsection type=" <<
int(Type) << " size=" << Size << "\n"; } }
while (false)
409 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("wasm-object")) { dbgs() << "readSubsection type=" <<
int(Type) << " size=" << Size << "\n"; } }
while (false)
;
410 Ctx.End = Ctx.Ptr + Size;
411 switch (Type) {
412 case wasm::WASM_SYMBOL_TABLE:
413 if (Error Err = parseLinkingSectionSymtab(Ctx))
414 return Err;
415 break;
416 case wasm::WASM_SEGMENT_INFO: {
417 uint32_t Count = readVaruint32(Ctx);
418 if (Count > DataSegments.size())
419 return make_error<GenericBinaryError>("Too many segment names",
420 object_error::parse_failed);
421 for (uint32_t i = 0; i < Count; i++) {
422 DataSegments[i].Data.Name = readString(Ctx);
423 DataSegments[i].Data.Alignment = readVaruint32(Ctx);
424 DataSegments[i].Data.Flags = readVaruint32(Ctx);
425 }
426 break;
427 }
428 case wasm::WASM_INIT_FUNCS: {
429 uint32_t Count = readVaruint32(Ctx);
430 LinkingData.InitFunctions.reserve(Count);
431 for (uint32_t i = 0; i < Count; i++) {
432 wasm::WasmInitFunc Init;
433 Init.Priority = readVaruint32(Ctx);
434 Init.Symbol = readVaruint32(Ctx);
435 if (!isValidFunctionSymbol(Init.Symbol))
436 return make_error<GenericBinaryError>("Invalid function symbol: " +
437 Twine(Init.Symbol),
438 object_error::parse_failed);
439 LinkingData.InitFunctions.emplace_back(Init);
440 }
441 break;
442 }
443 case wasm::WASM_COMDAT_INFO:
444 if (Error Err = parseLinkingSectionComdat(Ctx))
445 return Err;
446 break;
447 default:
448 Ctx.Ptr += Size;
449 break;
450 }
451 if (Ctx.Ptr != Ctx.End)
452 return make_error<GenericBinaryError>(
453 "Linking sub-section ended prematurely", object_error::parse_failed);
454 }
455 if (Ctx.Ptr != OrigEnd)
456 return make_error<GenericBinaryError>("Linking section ended prematurely",
457 object_error::parse_failed);
458 return Error::success();
459}
460
461Error WasmObjectFile::parseLinkingSectionSymtab(ReadContext &Ctx) {
462 uint32_t Count = readVaruint32(Ctx);
463 LinkingData.SymbolTable.reserve(Count);
464 Symbols.reserve(Count);
465 StringSet<> SymbolNames;
466
467 std::vector<wasm::WasmImport *> ImportedGlobals;
468 std::vector<wasm::WasmImport *> ImportedFunctions;
469 std::vector<wasm::WasmImport *> ImportedEvents;
470 ImportedGlobals.reserve(Imports.size());
471 ImportedFunctions.reserve(Imports.size());
472 ImportedEvents.reserve(Imports.size());
473 for (auto &I : Imports) {
474 if (I.Kind == wasm::WASM_EXTERNAL_FUNCTION)
475 ImportedFunctions.emplace_back(&I);
476 else if (I.Kind == wasm::WASM_EXTERNAL_GLOBAL)
477 ImportedGlobals.emplace_back(&I);
478 else if (I.Kind == wasm::WASM_EXTERNAL_EVENT)
479 ImportedEvents.emplace_back(&I);
480 }
481
482 while (Count--) {
483 wasm::WasmSymbolInfo Info;
484 const wasm::WasmSignature *Signature = nullptr;
485 const wasm::WasmGlobalType *GlobalType = nullptr;
486 const wasm::WasmEventType *EventType = nullptr;
487
488 Info.Kind = readUint8(Ctx);
489 Info.Flags = readVaruint32(Ctx);
490 bool IsDefined = (Info.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0;
491
492 switch (Info.Kind) {
493 case wasm::WASM_SYMBOL_TYPE_FUNCTION:
494 Info.ElementIndex = readVaruint32(Ctx);
495 if (!isValidFunctionIndex(Info.ElementIndex) ||
496 IsDefined != isDefinedFunctionIndex(Info.ElementIndex))
497 return make_error<GenericBinaryError>("invalid function symbol index",
498 object_error::parse_failed);
499 if (IsDefined) {
500 Info.Name = readString(Ctx);
501 unsigned FuncIndex = Info.ElementIndex - NumImportedFunctions;
502 Signature = &Signatures[FunctionTypes[FuncIndex]];
503 wasm::WasmFunction &Function = Functions[FuncIndex];
504 if (Function.SymbolName.empty())
505 Function.SymbolName = Info.Name;
506 } else {
507 wasm::WasmImport &Import = *ImportedFunctions[Info.ElementIndex];
508 Signature = &Signatures[Import.SigIndex];
509 Info.Name = Import.Field;
510 Info.Module = Import.Module;
511 }
512 break;
513
514 case wasm::WASM_SYMBOL_TYPE_GLOBAL:
515 Info.ElementIndex = readVaruint32(Ctx);
516 if (!isValidGlobalIndex(Info.ElementIndex) ||
517 IsDefined != isDefinedGlobalIndex(Info.ElementIndex))
518 return make_error<GenericBinaryError>("invalid global symbol index",
519 object_error::parse_failed);
520 if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) ==
521 wasm::WASM_SYMBOL_BINDING_WEAK)
522 return make_error<GenericBinaryError>("undefined weak global symbol",
523 object_error::parse_failed);
524 if (IsDefined) {
525 Info.Name = readString(Ctx);
526 unsigned GlobalIndex = Info.ElementIndex - NumImportedGlobals;
527 wasm::WasmGlobal &Global = Globals[GlobalIndex];
528 GlobalType = &Global.Type;
529 if (Global.SymbolName.empty())
530 Global.SymbolName = Info.Name;
531 } else {
532 wasm::WasmImport &Import = *ImportedGlobals[Info.ElementIndex];
533 Info.Name = Import.Field;
534 GlobalType = &Import.Global;
535 }
536 break;
537
538 case wasm::WASM_SYMBOL_TYPE_DATA:
539 Info.Name = readString(Ctx);
540 if (IsDefined) {
541 uint32_t Index = readVaruint32(Ctx);
542 if (Index >= DataSegments.size())
543 return make_error<GenericBinaryError>("invalid data symbol index",
544 object_error::parse_failed);
545 uint32_t Offset = readVaruint32(Ctx);
546 uint32_t Size = readVaruint32(Ctx);
547 if (Offset + Size > DataSegments[Index].Data.Content.size())
548 return make_error<GenericBinaryError>("invalid data symbol offset",
549 object_error::parse_failed);
550 Info.DataRef = wasm::WasmDataReference{Index, Offset, Size};
551 }
552 break;
553
554 case wasm::WASM_SYMBOL_TYPE_SECTION: {
555 if ((Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) !=
556 wasm::WASM_SYMBOL_BINDING_LOCAL)
557 return make_error<GenericBinaryError>(
558 "Section symbols must have local binding",
559 object_error::parse_failed);
560 Info.ElementIndex = readVaruint32(Ctx);
561 // Use somewhat unique section name as symbol name.
562 StringRef SectionName = Sections[Info.ElementIndex].Name;
563 Info.Name = SectionName;
564 break;
565 }
566
567 case wasm::WASM_SYMBOL_TYPE_EVENT: {
568 Info.ElementIndex = readVaruint32(Ctx);
569 if (!isValidEventIndex(Info.ElementIndex) ||
570 IsDefined != isDefinedEventIndex(Info.ElementIndex))
571 return make_error<GenericBinaryError>("invalid event symbol index",
572 object_error::parse_failed);
573 if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) ==
574 wasm::WASM_SYMBOL_BINDING_WEAK)
575 return make_error<GenericBinaryError>("undefined weak global symbol",
576 object_error::parse_failed);
577 if (IsDefined) {
578 Info.Name = readString(Ctx);
579 unsigned EventIndex = Info.ElementIndex - NumImportedEvents;
580 wasm::WasmEvent &Event = Events[EventIndex];
581 Signature = &Signatures[Event.Type.SigIndex];
582 EventType = &Event.Type;
583 if (Event.SymbolName.empty())
584 Event.SymbolName = Info.Name;
585
586 } else {
587 wasm::WasmImport &Import = *ImportedEvents[Info.ElementIndex];
588 EventType = &Import.Event;
589 Signature = &Signatures[EventType->SigIndex];
590 Info.Name = Import.Field;
591 }
592 break;
593 }
594
595 default:
596 return make_error<GenericBinaryError>("Invalid symbol type",
597 object_error::parse_failed);
598 }
599
600 if ((Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) !=
601 wasm::WASM_SYMBOL_BINDING_LOCAL &&
602 !SymbolNames.insert(Info.Name).second)
603 return make_error<GenericBinaryError>("Duplicate symbol name " +
604 Twine(Info.Name),
605 object_error::parse_failed);
606 LinkingData.SymbolTable.emplace_back(Info);
607 Symbols.emplace_back(LinkingData.SymbolTable.back(), GlobalType, EventType,
608 Signature);
609 LLVM_DEBUG(dbgs() << "Adding symbol: " << Symbols.back() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("wasm-object")) { dbgs() << "Adding symbol: " <<
Symbols.back() << "\n"; } } while (false)
;
610 }
611
612 return Error::success();
613}
614
615Error WasmObjectFile::parseLinkingSectionComdat(ReadContext &Ctx) {
616 uint32_t ComdatCount = readVaruint32(Ctx);
617 StringSet<> ComdatSet;
618 for (unsigned ComdatIndex = 0; ComdatIndex < ComdatCount; ++ComdatIndex) {
619 StringRef Name = readString(Ctx);
620 if (Name.empty() || !ComdatSet.insert(Name).second)
621 return make_error<GenericBinaryError>("Bad/duplicate COMDAT name " +
622 Twine(Name),
623 object_error::parse_failed);
624 LinkingData.Comdats.emplace_back(Name);
625 uint32_t Flags = readVaruint32(Ctx);
626 if (Flags != 0)
627 return make_error<GenericBinaryError>("Unsupported COMDAT flags",
628 object_error::parse_failed);
629
630 uint32_t EntryCount = readVaruint32(Ctx);
631 while (EntryCount--) {
632 unsigned Kind = readVaruint32(Ctx);
633 unsigned Index = readVaruint32(Ctx);
634 switch (Kind) {
635 default:
636 return make_error<GenericBinaryError>("Invalid COMDAT entry type",
637 object_error::parse_failed);
638 case wasm::WASM_COMDAT_DATA:
639 if (Index >= DataSegments.size())
640 return make_error<GenericBinaryError>(
641 "COMDAT data index out of range", object_error::parse_failed);
642 if (DataSegments[Index].Data.Comdat != UINT32_MAX(4294967295U))
643 return make_error<GenericBinaryError>("Data segment in two COMDATs",
644 object_error::parse_failed);
645 DataSegments[Index].Data.Comdat = ComdatIndex;
646 break;
647 case wasm::WASM_COMDAT_FUNCTION:
648 if (!isDefinedFunctionIndex(Index))
649 return make_error<GenericBinaryError>(
650 "COMDAT function index out of range", object_error::parse_failed);
651 if (getDefinedFunction(Index).Comdat != UINT32_MAX(4294967295U))
652 return make_error<GenericBinaryError>("Function in two COMDATs",
653 object_error::parse_failed);
654 getDefinedFunction(Index).Comdat = ComdatIndex;
655 break;
656 }
657 }
658 }
659 return Error::success();
660}
661
662Error WasmObjectFile::parseRelocSection(StringRef Name, ReadContext &Ctx) {
663 uint32_t SectionIndex = readVaruint32(Ctx);
664 if (SectionIndex >= Sections.size())
665 return make_error<GenericBinaryError>("Invalid section index",
666 object_error::parse_failed);
667 WasmSection &Section = Sections[SectionIndex];
668 uint32_t RelocCount = readVaruint32(Ctx);
669 uint32_t EndOffset = Section.Content.size();
670 uint32_t PreviousOffset = 0;
671 while (RelocCount--) {
672 wasm::WasmRelocation Reloc = {};
673 Reloc.Type = readVaruint32(Ctx);
674 Reloc.Offset = readVaruint32(Ctx);
675 if (Reloc.Offset < PreviousOffset)
676 return make_error<GenericBinaryError>("Relocations not in offset order",
677 object_error::parse_failed);
678 PreviousOffset = Reloc.Offset;
679 Reloc.Index = readVaruint32(Ctx);
680 switch (Reloc.Type) {
681 case wasm::R_WEBASSEMBLY_FUNCTION_INDEX_LEB:
682 case wasm::R_WEBASSEMBLY_TABLE_INDEX_SLEB:
683 case wasm::R_WEBASSEMBLY_TABLE_INDEX_I32:
684 if (!isValidFunctionSymbol(Reloc.Index))
685 return make_error<GenericBinaryError>("Bad relocation function index",
686 object_error::parse_failed);
687 break;
688 case wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB:
689 if (Reloc.Index >= Signatures.size())
690 return make_error<GenericBinaryError>("Bad relocation type index",
691 object_error::parse_failed);
692 break;
693 case wasm::R_WEBASSEMBLY_GLOBAL_INDEX_LEB:
694 if (!isValidGlobalSymbol(Reloc.Index))
695 return make_error<GenericBinaryError>("Bad relocation global index",
696 object_error::parse_failed);
697 break;
698 case wasm::R_WEBASSEMBLY_EVENT_INDEX_LEB:
699 if (!isValidEventSymbol(Reloc.Index))
700 return make_error<GenericBinaryError>("Bad relocation event index",
701 object_error::parse_failed);
702 break;
703 case wasm::R_WEBASSEMBLY_MEMORY_ADDR_LEB:
704 case wasm::R_WEBASSEMBLY_MEMORY_ADDR_SLEB:
705 case wasm::R_WEBASSEMBLY_MEMORY_ADDR_I32:
706 if (!isValidDataSymbol(Reloc.Index))
707 return make_error<GenericBinaryError>("Bad relocation data index",
708 object_error::parse_failed);
709 Reloc.Addend = readVarint32(Ctx);
710 break;
711 case wasm::R_WEBASSEMBLY_FUNCTION_OFFSET_I32:
712 if (!isValidFunctionSymbol(Reloc.Index))
713 return make_error<GenericBinaryError>("Bad relocation function index",
714 object_error::parse_failed);
715 Reloc.Addend = readVarint32(Ctx);
716 break;
717 case wasm::R_WEBASSEMBLY_SECTION_OFFSET_I32:
718 if (!isValidSectionSymbol(Reloc.Index))
719 return make_error<GenericBinaryError>("Bad relocation section index",
720 object_error::parse_failed);
721 Reloc.Addend = readVarint32(Ctx);
722 break;
723 default:
724 return make_error<GenericBinaryError>("Bad relocation type: " +
725 Twine(Reloc.Type),
726 object_error::parse_failed);
727 }
728
729 // Relocations must fit inside the section, and must appear in order. They
730 // also shouldn't overlap a function/element boundary, but we don't bother
731 // to check that.
732 uint64_t Size = 5;
733 if (Reloc.Type == wasm::R_WEBASSEMBLY_TABLE_INDEX_I32 ||
734 Reloc.Type == wasm::R_WEBASSEMBLY_MEMORY_ADDR_I32 ||
735 Reloc.Type == wasm::R_WEBASSEMBLY_SECTION_OFFSET_I32 ||
736 Reloc.Type == wasm::R_WEBASSEMBLY_FUNCTION_OFFSET_I32)
737 Size = 4;
738 if (Reloc.Offset + Size > EndOffset)
739 return make_error<GenericBinaryError>("Bad relocation offset",
740 object_error::parse_failed);
741
742 Section.Relocations.push_back(Reloc);
743 }
744 if (Ctx.Ptr != Ctx.End)
745 return make_error<GenericBinaryError>("Reloc section ended prematurely",
746 object_error::parse_failed);
747 return Error::success();
748}
749
750Error WasmObjectFile::parseCustomSection(WasmSection &Sec, ReadContext &Ctx) {
751 if (Sec.Name == "dylink") {
752 if (Error Err = parseDylinkSection(Ctx))
753 return Err;
754 } else if (Sec.Name == "name") {
755 if (Error Err = parseNameSection(Ctx))
756 return Err;
757 } else if (Sec.Name == "linking") {
758 if (Error Err = parseLinkingSection(Ctx))
759 return Err;
760 } else if (Sec.Name.startswith("reloc.")) {
761 if (Error Err = parseRelocSection(Sec.Name, Ctx))
762 return Err;
763 }
764 return Error::success();
765}
766
767Error WasmObjectFile::parseTypeSection(ReadContext &Ctx) {
768 uint32_t Count = readVaruint32(Ctx);
769 Signatures.reserve(Count);
770 while (Count--) {
771 wasm::WasmSignature Sig;
772 uint8_t Form = readUint8(Ctx);
773 if (Form != wasm::WASM_TYPE_FUNC) {
774 return make_error<GenericBinaryError>("Invalid signature type",
775 object_error::parse_failed);
776 }
777 uint32_t ParamCount = readVaruint32(Ctx);
778 Sig.Params.reserve(ParamCount);
779 while (ParamCount--) {
780 uint32_t ParamType = readUint8(Ctx);
781 Sig.Params.push_back(wasm::ValType(ParamType));
782 }
783 uint32_t ReturnCount = readVaruint32(Ctx);
784 if (ReturnCount) {
785 if (ReturnCount != 1) {
786 return make_error<GenericBinaryError>(
787 "Multiple return types not supported", object_error::parse_failed);
788 }
789 Sig.Returns.push_back(wasm::ValType(readUint8(Ctx)));
790 }
791 Signatures.push_back(std::move(Sig));
792 }
793 if (Ctx.Ptr != Ctx.End)
794 return make_error<GenericBinaryError>("Type section ended prematurely",
795 object_error::parse_failed);
796 return Error::success();
797}
798
799Error WasmObjectFile::parseImportSection(ReadContext &Ctx) {
800 uint32_t Count = readVaruint32(Ctx);
801 Imports.reserve(Count);
802 for (uint32_t i = 0; i < Count; i++) {
803 wasm::WasmImport Im;
804 Im.Module = readString(Ctx);
805 Im.Field = readString(Ctx);
806 Im.Kind = readUint8(Ctx);
807 switch (Im.Kind) {
808 case wasm::WASM_EXTERNAL_FUNCTION:
809 NumImportedFunctions++;
810 Im.SigIndex = readVaruint32(Ctx);
811 break;
812 case wasm::WASM_EXTERNAL_GLOBAL:
813 NumImportedGlobals++;
814 Im.Global.Type = readUint8(Ctx);
815 Im.Global.Mutable = readVaruint1(Ctx);
816 break;
817 case wasm::WASM_EXTERNAL_MEMORY:
818 Im.Memory = readLimits(Ctx);
819 break;
820 case wasm::WASM_EXTERNAL_TABLE:
821 Im.Table = readTable(Ctx);
822 if (Im.Table.ElemType != wasm::WASM_TYPE_ANYFUNC)
823 return make_error<GenericBinaryError>("Invalid table element type",
824 object_error::parse_failed);
825 break;
826 case wasm::WASM_EXTERNAL_EVENT:
827 NumImportedEvents++;
828 Im.Event.Attribute = readVarint32(Ctx);
829 Im.Event.SigIndex = readVarint32(Ctx);
830 break;
831 default:
832 return make_error<GenericBinaryError>("Unexpected import kind",
833 object_error::parse_failed);
834 }
835 Imports.push_back(Im);
836 }
837 if (Ctx.Ptr != Ctx.End)
838 return make_error<GenericBinaryError>("Import section ended prematurely",
839 object_error::parse_failed);
840 return Error::success();
841}
842
843Error WasmObjectFile::parseFunctionSection(ReadContext &Ctx) {
844 uint32_t Count = readVaruint32(Ctx);
845 FunctionTypes.reserve(Count);
846 uint32_t NumTypes = Signatures.size();
847 while (Count--) {
848 uint32_t Type = readVaruint32(Ctx);
849 if (Type >= NumTypes)
850 return make_error<GenericBinaryError>("Invalid function type",
851 object_error::parse_failed);
852 FunctionTypes.push_back(Type);
853 }
854 if (Ctx.Ptr != Ctx.End)
855 return make_error<GenericBinaryError>("Function section ended prematurely",
856 object_error::parse_failed);
857 return Error::success();
858}
859
860Error WasmObjectFile::parseTableSection(ReadContext &Ctx) {
861 uint32_t Count = readVaruint32(Ctx);
862 Tables.reserve(Count);
863 while (Count--) {
864 Tables.push_back(readTable(Ctx));
865 if (Tables.back().ElemType != wasm::WASM_TYPE_ANYFUNC) {
866 return make_error<GenericBinaryError>("Invalid table element type",
867 object_error::parse_failed);
868 }
869 }
870 if (Ctx.Ptr != Ctx.End)
871 return make_error<GenericBinaryError>("Table section ended prematurely",
872 object_error::parse_failed);
873 return Error::success();
874}
875
876Error WasmObjectFile::parseMemorySection(ReadContext &Ctx) {
877 uint32_t Count = readVaruint32(Ctx);
878 Memories.reserve(Count);
879 while (Count--) {
880 Memories.push_back(readLimits(Ctx));
881 }
882 if (Ctx.Ptr != Ctx.End)
883 return make_error<GenericBinaryError>("Memory section ended prematurely",
884 object_error::parse_failed);
885 return Error::success();
886}
887
888Error WasmObjectFile::parseGlobalSection(ReadContext &Ctx) {
889 GlobalSection = Sections.size();
890 uint32_t Count = readVaruint32(Ctx);
891 Globals.reserve(Count);
892 while (Count--) {
893 wasm::WasmGlobal Global;
894 Global.Index = NumImportedGlobals + Globals.size();
895 Global.Type.Type = readUint8(Ctx);
896 Global.Type.Mutable = readVaruint1(Ctx);
897 if (Error Err = readInitExpr(Global.InitExpr, Ctx))
898 return Err;
899 Globals.push_back(Global);
900 }
901 if (Ctx.Ptr != Ctx.End)
902 return make_error<GenericBinaryError>("Global section ended prematurely",
903 object_error::parse_failed);
904 return Error::success();
905}
906
907Error WasmObjectFile::parseEventSection(ReadContext &Ctx) {
908 EventSection = Sections.size();
909 uint32_t Count = readVarint32(Ctx);
910 Events.reserve(Count);
911 while (Count--) {
912 wasm::WasmEvent Event;
913 Event.Index = NumImportedEvents + Events.size();
914 Event.Type.Attribute = readVaruint32(Ctx);
915 Event.Type.SigIndex = readVarint32(Ctx);
916 Events.push_back(Event);
917 }
918
919 if (Ctx.Ptr != Ctx.End)
920 return make_error<GenericBinaryError>("Event section ended prematurely",
921 object_error::parse_failed);
922 return Error::success();
923}
924
925Error WasmObjectFile::parseExportSection(ReadContext &Ctx) {
926 uint32_t Count = readVaruint32(Ctx);
927 Exports.reserve(Count);
928 for (uint32_t i = 0; i < Count; i++) {
929 wasm::WasmExport Ex;
930 Ex.Name = readString(Ctx);
931 Ex.Kind = readUint8(Ctx);
932 Ex.Index = readVaruint32(Ctx);
933 switch (Ex.Kind) {
934 case wasm::WASM_EXTERNAL_FUNCTION:
935 if (!isValidFunctionIndex(Ex.Index))
936 return make_error<GenericBinaryError>("Invalid function export",
937 object_error::parse_failed);
938 break;
939 case wasm::WASM_EXTERNAL_GLOBAL:
940 if (!isValidGlobalIndex(Ex.Index))
941 return make_error<GenericBinaryError>("Invalid global export",
942 object_error::parse_failed);
943 break;
944 case wasm::WASM_EXTERNAL_EVENT:
945 if (!isValidEventIndex(Ex.Index))
946 return make_error<GenericBinaryError>("Invalid event export",
947 object_error::parse_failed);
948 break;
949 case wasm::WASM_EXTERNAL_MEMORY:
950 case wasm::WASM_EXTERNAL_TABLE:
951 break;
952 default:
953 return make_error<GenericBinaryError>("Unexpected export kind",
954 object_error::parse_failed);
955 }
956 Exports.push_back(Ex);
957 }
958 if (Ctx.Ptr != Ctx.End)
959 return make_error<GenericBinaryError>("Export section ended prematurely",
960 object_error::parse_failed);
961 return Error::success();
962}
963
964bool WasmObjectFile::isValidFunctionIndex(uint32_t Index) const {
965 return Index < NumImportedFunctions + FunctionTypes.size();
966}
967
968bool WasmObjectFile::isDefinedFunctionIndex(uint32_t Index) const {
969 return Index >= NumImportedFunctions && isValidFunctionIndex(Index);
970}
971
972bool WasmObjectFile::isValidGlobalIndex(uint32_t Index) const {
973 return Index < NumImportedGlobals + Globals.size();
974}
975
976bool WasmObjectFile::isDefinedGlobalIndex(uint32_t Index) const {
977 return Index >= NumImportedGlobals && isValidGlobalIndex(Index);
978}
979
980bool WasmObjectFile::isValidEventIndex(uint32_t Index) const {
981 return Index < NumImportedEvents + Events.size();
982}
983
984bool WasmObjectFile::isDefinedEventIndex(uint32_t Index) const {
985 return Index >= NumImportedEvents && isValidEventIndex(Index);
986}
987
988bool WasmObjectFile::isValidFunctionSymbol(uint32_t Index) const {
989 return Index < Symbols.size() && Symbols[Index].isTypeFunction();
990}
991
992bool WasmObjectFile::isValidGlobalSymbol(uint32_t Index) const {
993 return Index < Symbols.size() && Symbols[Index].isTypeGlobal();
994}
995
996bool WasmObjectFile::isValidEventSymbol(uint32_t Index) const {
997 return Index < Symbols.size() && Symbols[Index].isTypeEvent();
998}
999
1000bool WasmObjectFile::isValidDataSymbol(uint32_t Index) const {
1001 return Index < Symbols.size() && Symbols[Index].isTypeData();
1002}
1003
1004bool WasmObjectFile::isValidSectionSymbol(uint32_t Index) const {
1005 return Index < Symbols.size() && Symbols[Index].isTypeSection();
1006}
1007
1008wasm::WasmFunction &WasmObjectFile::getDefinedFunction(uint32_t Index) {
1009 assert(isDefinedFunctionIndex(Index))((isDefinedFunctionIndex(Index)) ? static_cast<void> (0
) : __assert_fail ("isDefinedFunctionIndex(Index)", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1009, __PRETTY_FUNCTION__))
;
1010 return Functions[Index - NumImportedFunctions];
1011}
1012
1013wasm::WasmGlobal &WasmObjectFile::getDefinedGlobal(uint32_t Index) {
1014 assert(isDefinedGlobalIndex(Index))((isDefinedGlobalIndex(Index)) ? static_cast<void> (0) :
__assert_fail ("isDefinedGlobalIndex(Index)", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1014, __PRETTY_FUNCTION__))
;
1015 return Globals[Index - NumImportedGlobals];
1016}
1017
1018wasm::WasmEvent &WasmObjectFile::getDefinedEvent(uint32_t Index) {
1019 assert(isDefinedEventIndex(Index))((isDefinedEventIndex(Index)) ? static_cast<void> (0) :
__assert_fail ("isDefinedEventIndex(Index)", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1019, __PRETTY_FUNCTION__))
;
1020 return Events[Index - NumImportedEvents];
1021}
1022
1023Error WasmObjectFile::parseStartSection(ReadContext &Ctx) {
1024 StartFunction = readVaruint32(Ctx);
1025 if (!isValidFunctionIndex(StartFunction))
1026 return make_error<GenericBinaryError>("Invalid start function",
1027 object_error::parse_failed);
1028 return Error::success();
1029}
1030
1031Error WasmObjectFile::parseCodeSection(ReadContext &Ctx) {
1032 CodeSection = Sections.size();
1033 uint32_t FunctionCount = readVaruint32(Ctx);
1034 if (FunctionCount != FunctionTypes.size()) {
1035 return make_error<GenericBinaryError>("Invalid function count",
1036 object_error::parse_failed);
1037 }
1038
1039 while (FunctionCount--) {
1040 wasm::WasmFunction Function;
1041 const uint8_t *FunctionStart = Ctx.Ptr;
1042 uint32_t Size = readVaruint32(Ctx);
1043 const uint8_t *FunctionEnd = Ctx.Ptr + Size;
1044
1045 Function.CodeOffset = Ctx.Ptr - FunctionStart;
1046 Function.Index = NumImportedFunctions + Functions.size();
1047 Function.CodeSectionOffset = FunctionStart - Ctx.Start;
1048 Function.Size = FunctionEnd - FunctionStart;
1049
1050 uint32_t NumLocalDecls = readVaruint32(Ctx);
1051 Function.Locals.reserve(NumLocalDecls);
1052 while (NumLocalDecls--) {
1053 wasm::WasmLocalDecl Decl;
1054 Decl.Count = readVaruint32(Ctx);
1055 Decl.Type = readUint8(Ctx);
1056 Function.Locals.push_back(Decl);
1057 }
1058
1059 uint32_t BodySize = FunctionEnd - Ctx.Ptr;
1060 Function.Body = ArrayRef<uint8_t>(Ctx.Ptr, BodySize);
1061 // This will be set later when reading in the linking metadata section.
1062 Function.Comdat = UINT32_MAX(4294967295U);
1063 Ctx.Ptr += BodySize;
1064 assert(Ctx.Ptr == FunctionEnd)((Ctx.Ptr == FunctionEnd) ? static_cast<void> (0) : __assert_fail
("Ctx.Ptr == FunctionEnd", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1064, __PRETTY_FUNCTION__))
;
1065 Functions.push_back(Function);
1066 }
1067 if (Ctx.Ptr != Ctx.End)
1068 return make_error<GenericBinaryError>("Code section ended prematurely",
1069 object_error::parse_failed);
1070 return Error::success();
1071}
1072
1073Error WasmObjectFile::parseElemSection(ReadContext &Ctx) {
1074 uint32_t Count = readVaruint32(Ctx);
1075 ElemSegments.reserve(Count);
1076 while (Count--) {
1077 wasm::WasmElemSegment Segment;
1078 Segment.TableIndex = readVaruint32(Ctx);
1079 if (Segment.TableIndex != 0) {
1080 return make_error<GenericBinaryError>("Invalid TableIndex",
1081 object_error::parse_failed);
1082 }
1083 if (Error Err = readInitExpr(Segment.Offset, Ctx))
1084 return Err;
1085 uint32_t NumElems = readVaruint32(Ctx);
1086 while (NumElems--) {
1087 Segment.Functions.push_back(readVaruint32(Ctx));
1088 }
1089 ElemSegments.push_back(Segment);
1090 }
1091 if (Ctx.Ptr != Ctx.End)
1092 return make_error<GenericBinaryError>("Elem section ended prematurely",
1093 object_error::parse_failed);
1094 return Error::success();
1095}
1096
1097Error WasmObjectFile::parseDataSection(ReadContext &Ctx) {
1098 DataSection = Sections.size();
1099 uint32_t Count = readVaruint32(Ctx);
1100 DataSegments.reserve(Count);
1101 while (Count--) {
1102 WasmSegment Segment;
1103 Segment.Data.MemoryIndex = readVaruint32(Ctx);
1104 if (Error Err = readInitExpr(Segment.Data.Offset, Ctx))
1105 return Err;
1106 uint32_t Size = readVaruint32(Ctx);
1107 if (Size > (size_t)(Ctx.End - Ctx.Ptr))
1108 return make_error<GenericBinaryError>("Invalid segment size",
1109 object_error::parse_failed);
1110 Segment.Data.Content = ArrayRef<uint8_t>(Ctx.Ptr, Size);
1111 // The rest of these Data fields are set later, when reading in the linking
1112 // metadata section.
1113 Segment.Data.Alignment = 0;
1114 Segment.Data.Flags = 0;
1115 Segment.Data.Comdat = UINT32_MAX(4294967295U);
1116 Segment.SectionOffset = Ctx.Ptr - Ctx.Start;
1117 Ctx.Ptr += Size;
1118 DataSegments.push_back(Segment);
1119 }
1120 if (Ctx.Ptr != Ctx.End)
1121 return make_error<GenericBinaryError>("Data section ended prematurely",
1122 object_error::parse_failed);
1123 return Error::success();
1124}
1125
1126const uint8_t *WasmObjectFile::getPtr(size_t Offset) const {
1127 return reinterpret_cast<const uint8_t *>(getData().data() + Offset);
1128}
1129
1130const wasm::WasmObjectHeader &WasmObjectFile::getHeader() const {
1131 return Header;
1132}
1133
1134void WasmObjectFile::moveSymbolNext(DataRefImpl &Symb) const { Symb.d.a++; }
1135
1136uint32_t WasmObjectFile::getSymbolFlags(DataRefImpl Symb) const {
1137 uint32_t Result = SymbolRef::SF_None;
1138 const WasmSymbol &Sym = getWasmSymbol(Symb);
1139
1140 LLVM_DEBUG(dbgs() << "getSymbolFlags: ptr=" << &Sym << " " << Sym << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("wasm-object")) { dbgs() << "getSymbolFlags: ptr=" <<
&Sym << " " << Sym << "\n"; } } while (
false)
;
1141 if (Sym.isBindingWeak())
1142 Result |= SymbolRef::SF_Weak;
1143 if (!Sym.isBindingLocal())
1144 Result |= SymbolRef::SF_Global;
1145 if (Sym.isHidden())
1146 Result |= SymbolRef::SF_Hidden;
1147 if (!Sym.isDefined())
1148 Result |= SymbolRef::SF_Undefined;
1149 if (Sym.isTypeFunction())
1150 Result |= SymbolRef::SF_Executable;
1151 return Result;
1152}
1153
1154basic_symbol_iterator WasmObjectFile::symbol_begin() const {
1155 DataRefImpl Ref;
1156 Ref.d.a = 0;
1157 return BasicSymbolRef(Ref, this);
1158}
1159
1160basic_symbol_iterator WasmObjectFile::symbol_end() const {
1161 DataRefImpl Ref;
1162 Ref.d.a = Symbols.size();
1163 return BasicSymbolRef(Ref, this);
1164}
1165
1166const WasmSymbol &WasmObjectFile::getWasmSymbol(const DataRefImpl &Symb) const {
1167 return Symbols[Symb.d.a];
1168}
1169
1170const WasmSymbol &WasmObjectFile::getWasmSymbol(const SymbolRef &Symb) const {
1171 return getWasmSymbol(Symb.getRawDataRefImpl());
1172}
1173
1174Expected<StringRef> WasmObjectFile::getSymbolName(DataRefImpl Symb) const {
1175 return getWasmSymbol(Symb).Info.Name;
1176}
1177
1178Expected<uint64_t> WasmObjectFile::getSymbolAddress(DataRefImpl Symb) const {
1179 return getSymbolValue(Symb);
1180}
1181
1182uint64_t WasmObjectFile::getWasmSymbolValue(const WasmSymbol &Sym) const {
1183 switch (Sym.Info.Kind) {
1184 case wasm::WASM_SYMBOL_TYPE_FUNCTION:
1185 case wasm::WASM_SYMBOL_TYPE_GLOBAL:
1186 case wasm::WASM_SYMBOL_TYPE_EVENT:
1187 return Sym.Info.ElementIndex;
1188 case wasm::WASM_SYMBOL_TYPE_DATA: {
1189 // The value of a data symbol is the segment offset, plus the symbol
1190 // offset within the segment.
1191 uint32_t SegmentIndex = Sym.Info.DataRef.Segment;
1192 const wasm::WasmDataSegment &Segment = DataSegments[SegmentIndex].Data;
1193 assert(Segment.Offset.Opcode == wasm::WASM_OPCODE_I32_CONST)((Segment.Offset.Opcode == wasm::WASM_OPCODE_I32_CONST) ? static_cast
<void> (0) : __assert_fail ("Segment.Offset.Opcode == wasm::WASM_OPCODE_I32_CONST"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1193, __PRETTY_FUNCTION__))
;
1194 return Segment.Offset.Value.Int32 + Sym.Info.DataRef.Offset;
1195 }
1196 case wasm::WASM_SYMBOL_TYPE_SECTION:
1197 return 0;
1198 }
1199 llvm_unreachable("invalid symbol type")::llvm::llvm_unreachable_internal("invalid symbol type", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1199)
;
1200}
1201
1202uint64_t WasmObjectFile::getSymbolValueImpl(DataRefImpl Symb) const {
1203 return getWasmSymbolValue(getWasmSymbol(Symb));
1204}
1205
1206uint32_t WasmObjectFile::getSymbolAlignment(DataRefImpl Symb) const {
1207 llvm_unreachable("not yet implemented")::llvm::llvm_unreachable_internal("not yet implemented", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1207)
;
1208 return 0;
1209}
1210
1211uint64_t WasmObjectFile::getCommonSymbolSizeImpl(DataRefImpl Symb) const {
1212 llvm_unreachable("not yet implemented")::llvm::llvm_unreachable_internal("not yet implemented", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1212)
;
1213 return 0;
1214}
1215
1216Expected<SymbolRef::Type>
1217WasmObjectFile::getSymbolType(DataRefImpl Symb) const {
1218 const WasmSymbol &Sym = getWasmSymbol(Symb);
1219
1220 switch (Sym.Info.Kind) {
1221 case wasm::WASM_SYMBOL_TYPE_FUNCTION:
1222 return SymbolRef::ST_Function;
1223 case wasm::WASM_SYMBOL_TYPE_GLOBAL:
1224 return SymbolRef::ST_Other;
1225 case wasm::WASM_SYMBOL_TYPE_DATA:
1226 return SymbolRef::ST_Data;
1227 case wasm::WASM_SYMBOL_TYPE_SECTION:
1228 return SymbolRef::ST_Debug;
1229 case wasm::WASM_SYMBOL_TYPE_EVENT:
1230 return SymbolRef::ST_Other;
1231 }
1232
1233 llvm_unreachable("Unknown WasmSymbol::SymbolType")::llvm::llvm_unreachable_internal("Unknown WasmSymbol::SymbolType"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1233)
;
1234 return SymbolRef::ST_Other;
1235}
1236
1237Expected<section_iterator>
1238WasmObjectFile::getSymbolSection(DataRefImpl Symb) const {
1239 const WasmSymbol &Sym = getWasmSymbol(Symb);
1240 if (Sym.isUndefined())
1241 return section_end();
1242
1243 DataRefImpl Ref;
1244 switch (Sym.Info.Kind) {
1245 case wasm::WASM_SYMBOL_TYPE_FUNCTION:
1246 Ref.d.a = CodeSection;
1247 break;
1248 case wasm::WASM_SYMBOL_TYPE_GLOBAL:
1249 Ref.d.a = GlobalSection;
1250 break;
1251 case wasm::WASM_SYMBOL_TYPE_DATA:
1252 Ref.d.a = DataSection;
1253 break;
1254 case wasm::WASM_SYMBOL_TYPE_SECTION:
1255 Ref.d.a = Sym.Info.ElementIndex;
1256 break;
1257 case wasm::WASM_SYMBOL_TYPE_EVENT:
1258 Ref.d.a = EventSection;
1259 break;
1260 default:
1261 llvm_unreachable("Unknown WasmSymbol::SymbolType")::llvm::llvm_unreachable_internal("Unknown WasmSymbol::SymbolType"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1261)
;
1262 }
1263 return section_iterator(SectionRef(Ref, this));
1264}
1265
1266void WasmObjectFile::moveSectionNext(DataRefImpl &Sec) const { Sec.d.a++; }
1267
1268std::error_code WasmObjectFile::getSectionName(DataRefImpl Sec,
1269 StringRef &Res) const {
1270 const WasmSection &S = Sections[Sec.d.a];
1271#define ECase(X) \
1272 case wasm::WASM_SEC_##X: \
1273 Res = #X; \
1274 break
1275 switch (S.Type) {
1276 ECase(TYPE);
1277 ECase(IMPORT);
1278 ECase(FUNCTION);
1279 ECase(TABLE);
1280 ECase(MEMORY);
1281 ECase(GLOBAL);
1282 ECase(EVENT);
1283 ECase(EXPORT);
1284 ECase(START);
1285 ECase(ELEM);
1286 ECase(CODE);
1287 ECase(DATA);
1288 case wasm::WASM_SEC_CUSTOM:
1289 Res = S.Name;
1290 break;
1291 default:
1292 return object_error::invalid_section_index;
1293 }
1294#undef ECase
1295 return std::error_code();
1296}
1297
1298uint64_t WasmObjectFile::getSectionAddress(DataRefImpl Sec) const { return 0; }
1299
1300uint64_t WasmObjectFile::getSectionIndex(DataRefImpl Sec) const {
1301 return Sec.d.a;
1302}
1303
1304uint64_t WasmObjectFile::getSectionSize(DataRefImpl Sec) const {
1305 const WasmSection &S = Sections[Sec.d.a];
1306 return S.Content.size();
1307}
1308
1309std::error_code WasmObjectFile::getSectionContents(DataRefImpl Sec,
1310 StringRef &Res) const {
1311 const WasmSection &S = Sections[Sec.d.a];
1312 // This will never fail since wasm sections can never be empty (user-sections
1313 // must have a name and non-user sections each have a defined structure).
1314 Res = StringRef(reinterpret_cast<const char *>(S.Content.data()),
1315 S.Content.size());
1316 return std::error_code();
1317}
1318
1319uint64_t WasmObjectFile::getSectionAlignment(DataRefImpl Sec) const {
1320 return 1;
1321}
1322
1323bool WasmObjectFile::isSectionCompressed(DataRefImpl Sec) const {
1324 return false;
1325}
1326
1327bool WasmObjectFile::isSectionText(DataRefImpl Sec) const {
1328 return getWasmSection(Sec).Type == wasm::WASM_SEC_CODE;
1329}
1330
1331bool WasmObjectFile::isSectionData(DataRefImpl Sec) const {
1332 return getWasmSection(Sec).Type == wasm::WASM_SEC_DATA;
1333}
1334
1335bool WasmObjectFile::isSectionBSS(DataRefImpl Sec) const { return false; }
1336
1337bool WasmObjectFile::isSectionVirtual(DataRefImpl Sec) const { return false; }
1338
1339bool WasmObjectFile::isSectionBitcode(DataRefImpl Sec) const { return false; }
1340
1341relocation_iterator WasmObjectFile::section_rel_begin(DataRefImpl Ref) const {
1342 DataRefImpl RelocRef;
1343 RelocRef.d.a = Ref.d.a;
1344 RelocRef.d.b = 0;
1345 return relocation_iterator(RelocationRef(RelocRef, this));
1346}
1347
1348relocation_iterator WasmObjectFile::section_rel_end(DataRefImpl Ref) const {
1349 const WasmSection &Sec = getWasmSection(Ref);
1350 DataRefImpl RelocRef;
1351 RelocRef.d.a = Ref.d.a;
1352 RelocRef.d.b = Sec.Relocations.size();
1353 return relocation_iterator(RelocationRef(RelocRef, this));
1354}
1355
1356void WasmObjectFile::moveRelocationNext(DataRefImpl &Rel) const { Rel.d.b++; }
1357
1358uint64_t WasmObjectFile::getRelocationOffset(DataRefImpl Ref) const {
1359 const wasm::WasmRelocation &Rel = getWasmRelocation(Ref);
1360 return Rel.Offset;
1361}
1362
1363symbol_iterator WasmObjectFile::getRelocationSymbol(DataRefImpl Ref) const {
1364 const wasm::WasmRelocation &Rel = getWasmRelocation(Ref);
1365 if (Rel.Type == wasm::R_WEBASSEMBLY_TYPE_INDEX_LEB)
1366 return symbol_end();
1367 DataRefImpl Sym;
1368 Sym.d.a = Rel.Index;
1369 Sym.d.b = 0;
1370 return symbol_iterator(SymbolRef(Sym, this));
1371}
1372
1373uint64_t WasmObjectFile::getRelocationType(DataRefImpl Ref) const {
1374 const wasm::WasmRelocation &Rel = getWasmRelocation(Ref);
1375 return Rel.Type;
1376}
1377
1378void WasmObjectFile::getRelocationTypeName(
1379 DataRefImpl Ref, SmallVectorImpl<char> &Result) const {
1380 const wasm::WasmRelocation &Rel = getWasmRelocation(Ref);
1381 StringRef Res = "Unknown";
1382
1383#define WASM_RELOC(name, value) \
1384 case wasm::name: \
1385 Res = #name; \
1386 break;
1387
1388 switch (Rel.Type) {
1389#include "llvm/BinaryFormat/WasmRelocs.def"
1390 }
1391
1392#undef WASM_RELOC
1393
1394 Result.append(Res.begin(), Res.end());
1395}
1396
1397section_iterator WasmObjectFile::section_begin() const {
1398 DataRefImpl Ref;
1399 Ref.d.a = 0;
1400 return section_iterator(SectionRef(Ref, this));
1401}
1402
1403section_iterator WasmObjectFile::section_end() const {
1404 DataRefImpl Ref;
1405 Ref.d.a = Sections.size();
1406 return section_iterator(SectionRef(Ref, this));
1407}
1408
1409uint8_t WasmObjectFile::getBytesInAddress() const { return 4; }
1410
1411StringRef WasmObjectFile::getFileFormatName() const { return "WASM"; }
1412
1413Triple::ArchType WasmObjectFile::getArch() const { return Triple::wasm32; }
1414
1415SubtargetFeatures WasmObjectFile::getFeatures() const {
1416 return SubtargetFeatures();
1417}
1418
1419bool WasmObjectFile::isRelocatableObject() const { return HasLinkingSection; }
1420
1421bool WasmObjectFile::isSharedObject() const { return HasDylinkSection; }
1422
1423const WasmSection &WasmObjectFile::getWasmSection(DataRefImpl Ref) const {
1424 assert(Ref.d.a < Sections.size())((Ref.d.a < Sections.size()) ? static_cast<void> (0)
: __assert_fail ("Ref.d.a < Sections.size()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1424, __PRETTY_FUNCTION__))
;
1425 return Sections[Ref.d.a];
1426}
1427
1428const WasmSection &
1429WasmObjectFile::getWasmSection(const SectionRef &Section) const {
1430 return getWasmSection(Section.getRawDataRefImpl());
1431}
1432
1433const wasm::WasmRelocation &
1434WasmObjectFile::getWasmRelocation(const RelocationRef &Ref) const {
1435 return getWasmRelocation(Ref.getRawDataRefImpl());
1436}
1437
1438const wasm::WasmRelocation &
1439WasmObjectFile::getWasmRelocation(DataRefImpl Ref) const {
1440 assert(Ref.d.a < Sections.size())((Ref.d.a < Sections.size()) ? static_cast<void> (0)
: __assert_fail ("Ref.d.a < Sections.size()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1440, __PRETTY_FUNCTION__))
;
1441 const WasmSection &Sec = Sections[Ref.d.a];
1442 assert(Ref.d.b < Sec.Relocations.size())((Ref.d.b < Sec.Relocations.size()) ? static_cast<void>
(0) : __assert_fail ("Ref.d.b < Sec.Relocations.size()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1442, __PRETTY_FUNCTION__))
;
1443 return Sec.Relocations[Ref.d.b];
1444}
1445
1446int WasmSectionOrderChecker::getSectionOrder(unsigned ID,
1447 StringRef CustomSectionName) {
1448 switch (ID) {
1449 case wasm::WASM_SEC_CUSTOM:
1450 return StringSwitch<unsigned>(CustomSectionName)
1451 .Case("dylink", WASM_SEC_ORDER_DYLINK)
1452 .Case("linking", WASM_SEC_ORDER_LINKING)
1453 .StartsWith("reloc.", WASM_SEC_ORDER_RELOC)
1454 .Case("name", WASM_SEC_ORDER_NAME)
1455 .Case("producers", WASM_SEC_ORDER_PRODUCERS)
1456 .Default(-1);
1457 case wasm::WASM_SEC_TYPE:
1458 return WASM_SEC_ORDER_TYPE;
1459 case wasm::WASM_SEC_IMPORT:
1460 return WASM_SEC_ORDER_IMPORT;
1461 case wasm::WASM_SEC_FUNCTION:
1462 return WASM_SEC_ORDER_FUNCTION;
1463 case wasm::WASM_SEC_TABLE:
1464 return WASM_SEC_ORDER_TABLE;
1465 case wasm::WASM_SEC_MEMORY:
1466 return WASM_SEC_ORDER_MEMORY;
1467 case wasm::WASM_SEC_GLOBAL:
1468 return WASM_SEC_ORDER_GLOBAL;
1469 case wasm::WASM_SEC_EXPORT:
1470 return WASM_SEC_ORDER_EXPORT;
1471 case wasm::WASM_SEC_START:
1472 return WASM_SEC_ORDER_START;
1473 case wasm::WASM_SEC_ELEM:
1474 return WASM_SEC_ORDER_ELEM;
1475 case wasm::WASM_SEC_CODE:
1476 return WASM_SEC_ORDER_CODE;
1477 case wasm::WASM_SEC_DATA:
1478 return WASM_SEC_ORDER_DATA;
1479 case wasm::WASM_SEC_DATACOUNT:
1480 return WASM_SEC_ORDER_DATACOUNT;
1481 case wasm::WASM_SEC_EVENT:
1482 return WASM_SEC_ORDER_EVENT;
1483 default:
1484 llvm_unreachable("invalid section")::llvm::llvm_unreachable_internal("invalid section", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Object/WasmObjectFile.cpp"
, 1484)
;
1485 }
1486}
1487
1488bool WasmSectionOrderChecker::isValidSectionOrder(unsigned ID,
1489 StringRef CustomSectionName) {
1490 int Order = getSectionOrder(ID, CustomSectionName);
1491 if (Order == -1) // Skip unknown sections
1492 return true;
1493 // There can be multiple "reloc." sections. Otherwise there shouldn't be any
1494 // duplicate section orders.
1495 bool IsValid = (LastOrder == Order && Order == WASM_SEC_ORDER_RELOC) ||
1496 LastOrder < Order;
1497 LastOrder = Order;
1498 return IsValid;
1499}

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm-c/Error.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Config/abi-breaking.h"
23#include "llvm/Support/AlignOf.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/ErrorOr.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <cstdlib>
34#include <functional>
35#include <memory>
36#include <new>
37#include <string>
38#include <system_error>
39#include <type_traits>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class ErrorSuccess;
46
47/// Base class for error info classes. Do not extend this directly: Extend
48/// the ErrorInfo template subclass instead.
49class ErrorInfoBase {
50public:
51 virtual ~ErrorInfoBase() = default;
52
53 /// Print an error message to an output stream.
54 virtual void log(raw_ostream &OS) const = 0;
55
56 /// Return the error message as a string.
57 virtual std::string message() const {
58 std::string Msg;
59 raw_string_ostream OS(Msg);
60 log(OS);
61 return OS.str();
62 }
63
64 /// Convert this error to a std::error_code.
65 ///
66 /// This is a temporary crutch to enable interaction with code still
67 /// using std::error_code. It will be removed in the future.
68 virtual std::error_code convertToErrorCode() const = 0;
69
70 // Returns the class ID for this type.
71 static const void *classID() { return &ID; }
72
73 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
74 virtual const void *dynamicClassID() const = 0;
75
76 // Check whether this instance is a subclass of the class identified by
77 // ClassID.
78 virtual bool isA(const void *const ClassID) const {
79 return ClassID == classID();
80 }
81
82 // Check whether this instance is a subclass of ErrorInfoT.
83 template <typename ErrorInfoT> bool isA() const {
84 return isA(ErrorInfoT::classID());
85 }
86
87private:
88 virtual void anchor();
89
90 static char ID;
91};
92
93/// Lightweight error class with error context and mandatory checking.
94///
95/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
96/// are represented by setting the pointer to a ErrorInfoBase subclass
97/// instance containing information describing the failure. Success is
98/// represented by a null pointer value.
99///
100/// Instances of Error also contains a 'Checked' flag, which must be set
101/// before the destructor is called, otherwise the destructor will trigger a
102/// runtime error. This enforces at runtime the requirement that all Error
103/// instances be checked or returned to the caller.
104///
105/// There are two ways to set the checked flag, depending on what state the
106/// Error instance is in. For Error instances indicating success, it
107/// is sufficient to invoke the boolean conversion operator. E.g.:
108///
109/// @code{.cpp}
110/// Error foo(<...>);
111///
112/// if (auto E = foo(<...>))
113/// return E; // <- Return E if it is in the error state.
114/// // We have verified that E was in the success state. It can now be safely
115/// // destroyed.
116/// @endcode
117///
118/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
119/// without testing the return value will raise a runtime error, even if foo
120/// returns success.
121///
122/// For Error instances representing failure, you must use either the
123/// handleErrors or handleAllErrors function with a typed handler. E.g.:
124///
125/// @code{.cpp}
126/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
127/// // Custom error info.
128/// };
129///
130/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
131///
132/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
133/// auto NewE =
134/// handleErrors(E,
135/// [](const MyErrorInfo &M) {
136/// // Deal with the error.
137/// },
138/// [](std::unique_ptr<OtherError> M) -> Error {
139/// if (canHandle(*M)) {
140/// // handle error.
141/// return Error::success();
142/// }
143/// // Couldn't handle this error instance. Pass it up the stack.
144/// return Error(std::move(M));
145/// );
146/// // Note - we must check or return NewE in case any of the handlers
147/// // returned a new error.
148/// @endcode
149///
150/// The handleAllErrors function is identical to handleErrors, except
151/// that it has a void return type, and requires all errors to be handled and
152/// no new errors be returned. It prevents errors (assuming they can all be
153/// handled) from having to be bubbled all the way to the top-level.
154///
155/// *All* Error instances must be checked before destruction, even if
156/// they're moved-assigned or constructed from Success values that have already
157/// been checked. This enforces checking through all levels of the call stack.
158class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
159 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
160 // pointers out of this class to add to the error list.
161 friend class ErrorList;
162 friend class FileError;
163
164 // handleErrors needs to be able to set the Checked flag.
165 template <typename... HandlerTs>
166 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
167
168 // Expected<T> needs to be able to steal the payload when constructed from an
169 // error.
170 template <typename T> friend class Expected;
171
172 // wrap needs to be able to steal the payload.
173 friend LLVMErrorRef wrap(Error);
174
175protected:
176 /// Create a success value. Prefer using 'Error::success()' for readability
177 Error() {
178 setPtr(nullptr);
179 setChecked(false);
180 }
181
182public:
183 /// Create a success value.
184 static ErrorSuccess success();
185
186 // Errors are not copy-constructable.
187 Error(const Error &Other) = delete;
188
189 /// Move-construct an error value. The newly constructed error is considered
190 /// unchecked, even if the source error had been checked. The original error
191 /// becomes a checked Success value, regardless of its original state.
192 Error(Error &&Other) {
193 setChecked(true);
194 *this = std::move(Other);
195 }
196
197 /// Create an error value. Prefer using the 'make_error' function, but
198 /// this constructor can be useful when "re-throwing" errors from handlers.
199 Error(std::unique_ptr<ErrorInfoBase> Payload) {
200 setPtr(Payload.release());
201 setChecked(false);
7
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
202 }
203
204 // Errors are not copy-assignable.
205 Error &operator=(const Error &Other) = delete;
206
207 /// Move-assign an error value. The current error must represent success, you
208 /// you cannot overwrite an unhandled error. The current error is then
209 /// considered unchecked. The source error becomes a checked success value,
210 /// regardless of its original state.
211 Error &operator=(Error &&Other) {
212 // Don't allow overwriting of unchecked values.
213 assertIsChecked();
214 setPtr(Other.getPtr());
215
216 // This Error is unchecked, even if the source error was checked.
217 setChecked(false);
218
219 // Null out Other's payload and set its checked bit.
220 Other.setPtr(nullptr);
221 Other.setChecked(true);
222
223 return *this;
224 }
225
226 /// Destroy a Error. Fails with a call to abort() if the error is
227 /// unchecked.
228 ~Error() {
229 assertIsChecked();
230 delete getPtr();
231 }
232
233 /// Bool conversion. Returns true if this Error is in a failure state,
234 /// and false if it is in an accept state. If the error is in a Success state
235 /// it will be considered checked.
236 explicit operator bool() {
237 setChecked(getPtr() == nullptr);
238 return getPtr() != nullptr;
239 }
240
241 /// Check whether one error is a subclass of another.
242 template <typename ErrT> bool isA() const {
243 return getPtr() && getPtr()->isA(ErrT::classID());
244 }
245
246 /// Returns the dynamic class id of this error, or null if this is a success
247 /// value.
248 const void* dynamicClassID() const {
249 if (!getPtr())
250 return nullptr;
251 return getPtr()->dynamicClassID();
252 }
253
254private:
255#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
256 // assertIsChecked() happens very frequently, but under normal circumstances
257 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
258 // of debug prints can cause the function to be too large for inlining. So
259 // it's important that we define this function out of line so that it can't be
260 // inlined.
261 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
262 void fatalUncheckedError() const;
263#endif
264
265 void assertIsChecked() {
266#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
267 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
268 fatalUncheckedError();
269#endif
270 }
271
272 ErrorInfoBase *getPtr() const {
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298 Payload = reinterpret_cast<ErrorInfoBase*>(
299 (reinterpret_cast<uintptr_t>(Payload) &
300 ~static_cast<uintptr_t>(0x1)) |
301 (V ? 0 : 1));
302 }
303
304 std::unique_ptr<ErrorInfoBase> takePayload() {
305 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
306 setPtr(nullptr);
307 setChecked(true);
308 return Tmp;
309 }
310
311 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
312 if (auto P = E.getPtr())
313 P->log(OS);
314 else
315 OS << "success";
316 return OS;
317 }
318
319 ErrorInfoBase *Payload = nullptr;
320};
321
322/// Subclass of Error for the sole purpose of identifying the success path in
323/// the type system. This allows to catch invalid conversion to Expected<T> at
324/// compile time.
325class ErrorSuccess final : public Error {};
326
327inline ErrorSuccess Error::success() { return ErrorSuccess(); }
328
329/// Make a Error instance representing failure using the given error info
330/// type.
331template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
332 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
3
Calling 'make_unique<llvm::StringError, char const (&)[17], llvm::object::object_error>'
5
Returned allocated memory
6
Calling constructor for 'Error'
333}
334
335/// Base class for user error types. Users should declare their error types
336/// like:
337///
338/// class MyError : public ErrorInfo<MyError> {
339/// ....
340/// };
341///
342/// This class provides an implementation of the ErrorInfoBase::kind
343/// method, which is used by the Error RTTI system.
344template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
345class ErrorInfo : public ParentErrT {
346public:
347 using ParentErrT::ParentErrT; // inherit constructors
348
349 static const void *classID() { return &ThisErrT::ID; }
350
351 const void *dynamicClassID() const override { return &ThisErrT::ID; }
352
353 bool isA(const void *const ClassID) const override {
354 return ClassID == classID() || ParentErrT::isA(ClassID);
355 }
356};
357
358/// Special ErrorInfo subclass representing a list of ErrorInfos.
359/// Instances of this class are constructed by joinError.
360class ErrorList final : public ErrorInfo<ErrorList> {
361 // handleErrors needs to be able to iterate the payload list of an
362 // ErrorList.
363 template <typename... HandlerTs>
364 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
365
366 // joinErrors is implemented in terms of join.
367 friend Error joinErrors(Error, Error);
368
369public:
370 void log(raw_ostream &OS) const override {
371 OS << "Multiple errors:\n";
372 for (auto &ErrPayload : Payloads) {
373 ErrPayload->log(OS);
374 OS << "\n";
375 }
376 }
377
378 std::error_code convertToErrorCode() const override;
379
380 // Used by ErrorInfo::classID.
381 static char ID;
382
383private:
384 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
385 std::unique_ptr<ErrorInfoBase> Payload2) {
386 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
387 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
;
388 Payloads.push_back(std::move(Payload1));
389 Payloads.push_back(std::move(Payload2));
390 }
391
392 static Error join(Error E1, Error E2) {
393 if (!E1)
394 return E2;
395 if (!E2)
396 return E1;
397 if (E1.isA<ErrorList>()) {
398 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
399 if (E2.isA<ErrorList>()) {
400 auto E2Payload = E2.takePayload();
401 auto &E2List = static_cast<ErrorList &>(*E2Payload);
402 for (auto &Payload : E2List.Payloads)
403 E1List.Payloads.push_back(std::move(Payload));
404 } else
405 E1List.Payloads.push_back(E2.takePayload());
406
407 return E1;
408 }
409 if (E2.isA<ErrorList>()) {
410 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
411 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
412 return E2;
413 }
414 return Error(std::unique_ptr<ErrorList>(
415 new ErrorList(E1.takePayload(), E2.takePayload())));
416 }
417
418 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
419};
420
421/// Concatenate errors. The resulting Error is unchecked, and contains the
422/// ErrorInfo(s), if any, contained in E1, followed by the
423/// ErrorInfo(s), if any, contained in E2.
424inline Error joinErrors(Error E1, Error E2) {
425 return ErrorList::join(std::move(E1), std::move(E2));
426}
427
428/// Tagged union holding either a T or a Error.
429///
430/// This class parallels ErrorOr, but replaces error_code with Error. Since
431/// Error cannot be copied, this class replaces getError() with
432/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
433/// error class type.
434template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
435 template <class T1> friend class ExpectedAsOutParameter;
436 template <class OtherT> friend class Expected;
437
438 static const bool isRef = std::is_reference<T>::value;
439
440 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
441
442 using error_type = std::unique_ptr<ErrorInfoBase>;
443
444public:
445 using storage_type = typename std::conditional<isRef, wrap, T>::type;
446 using value_type = T;
447
448private:
449 using reference = typename std::remove_reference<T>::type &;
450 using const_reference = const typename std::remove_reference<T>::type &;
451 using pointer = typename std::remove_reference<T>::type *;
452 using const_pointer = const typename std::remove_reference<T>::type *;
453
454public:
455 /// Create an Expected<T> error value from the given Error.
456 Expected(Error Err)
457 : HasError(true)
458#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
459 // Expected is unchecked upon construction in Debug builds.
460 , Unchecked(true)
461#endif
462 {
463 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 463, __PRETTY_FUNCTION__))
;
464 new (getErrorStorage()) error_type(Err.takePayload());
465 }
466
467 /// Forbid to convert from Error::success() implicitly, this avoids having
468 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
469 /// but triggers the assertion above.
470 Expected(ErrorSuccess) = delete;
471
472 /// Create an Expected<T> success value from the given OtherT value, which
473 /// must be convertible to T.
474 template <typename OtherT>
475 Expected(OtherT &&Val,
476 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
477 * = nullptr)
478 : HasError(false)
479#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
480 // Expected is unchecked upon construction in Debug builds.
481 , Unchecked(true)
482#endif
483 {
484 new (getStorage()) storage_type(std::forward<OtherT>(Val));
485 }
486
487 /// Move construct an Expected<T> value.
488 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
489
490 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
491 /// must be convertible to T.
492 template <class OtherT>
493 Expected(Expected<OtherT> &&Other,
494 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
495 * = nullptr) {
496 moveConstruct(std::move(Other));
497 }
498
499 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
500 /// isn't convertible to T.
501 template <class OtherT>
502 explicit Expected(
503 Expected<OtherT> &&Other,
504 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
505 nullptr) {
506 moveConstruct(std::move(Other));
507 }
508
509 /// Move-assign from another Expected<T>.
510 Expected &operator=(Expected &&Other) {
511 moveAssign(std::move(Other));
512 return *this;
513 }
514
515 /// Destroy an Expected<T>.
516 ~Expected() {
517 assertIsChecked();
518 if (!HasError)
519 getStorage()->~storage_type();
520 else
521 getErrorStorage()->~error_type();
522 }
523
524 /// Return false if there is an error.
525 explicit operator bool() {
526#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
527 Unchecked = HasError;
528#endif
529 return !HasError;
530 }
531
532 /// Returns a reference to the stored T value.
533 reference get() {
534 assertIsChecked();
535 return *getStorage();
536 }
537
538 /// Returns a const reference to the stored T value.
539 const_reference get() const {
540 assertIsChecked();
541 return const_cast<Expected<T> *>(this)->get();
542 }
543
544 /// Check that this Expected<T> is an error of type ErrT.
545 template <typename ErrT> bool errorIsA() const {
546 return HasError && (*getErrorStorage())->template isA<ErrT>();
547 }
548
549 /// Take ownership of the stored error.
550 /// After calling this the Expected<T> is in an indeterminate state that can
551 /// only be safely destructed. No further calls (beside the destructor) should
552 /// be made on the Expected<T> vaule.
553 Error takeError() {
554#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
555 Unchecked = false;
556#endif
557 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
558 }
559
560 /// Returns a pointer to the stored T value.
561 pointer operator->() {
562 assertIsChecked();
563 return toPointer(getStorage());
564 }
565
566 /// Returns a const pointer to the stored T value.
567 const_pointer operator->() const {
568 assertIsChecked();
569 return toPointer(getStorage());
570 }
571
572 /// Returns a reference to the stored T value.
573 reference operator*() {
574 assertIsChecked();
575 return *getStorage();
576 }
577
578 /// Returns a const reference to the stored T value.
579 const_reference operator*() const {
580 assertIsChecked();
581 return *getStorage();
582 }
583
584private:
585 template <class T1>
586 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
587 return &a == &b;
588 }
589
590 template <class T1, class T2>
591 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
592 return false;
593 }
594
595 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
596 HasError = Other.HasError;
597#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
598 Unchecked = true;
599 Other.Unchecked = false;
600#endif
601
602 if (!HasError)
603 new (getStorage()) storage_type(std::move(*Other.getStorage()));
604 else
605 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
606 }
607
608 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
609 assertIsChecked();
610
611 if (compareThisIfSameType(*this, Other))
612 return;
613
614 this->~Expected();
615 new (this) Expected(std::move(Other));
616 }
617
618 pointer toPointer(pointer Val) { return Val; }
619
620 const_pointer toPointer(const_pointer Val) const { return Val; }
621
622 pointer toPointer(wrap *Val) { return &Val->get(); }
623
624 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
625
626 storage_type *getStorage() {
627 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 627, __PRETTY_FUNCTION__))
;
628 return reinterpret_cast<storage_type *>(TStorage.buffer);
629 }
630
631 const storage_type *getStorage() const {
632 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 632, __PRETTY_FUNCTION__))
;
633 return reinterpret_cast<const storage_type *>(TStorage.buffer);
634 }
635
636 error_type *getErrorStorage() {
637 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 637, __PRETTY_FUNCTION__))
;
638 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
639 }
640
641 const error_type *getErrorStorage() const {
642 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 642, __PRETTY_FUNCTION__))
;
643 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
644 }
645
646 // Used by ExpectedAsOutParameter to reset the checked flag.
647 void setUnchecked() {
648#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
649 Unchecked = true;
650#endif
651 }
652
653#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
654 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
655 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
656 void fatalUncheckedExpected() const {
657 dbgs() << "Expected<T> must be checked before access or destruction.\n";
658 if (HasError) {
659 dbgs() << "Unchecked Expected<T> contained error:\n";
660 (*getErrorStorage())->log(dbgs());
661 } else
662 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
663 "values in success mode must still be checked prior to being "
664 "destroyed).\n";
665 abort();
666 }
667#endif
668
669 void assertIsChecked() {
670#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
671 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
672 fatalUncheckedExpected();
673#endif
674 }
675
676 union {
677 AlignedCharArrayUnion<storage_type> TStorage;
678 AlignedCharArrayUnion<error_type> ErrorStorage;
679 };
680 bool HasError : 1;
681#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
682 bool Unchecked : 1;
683#endif
684};
685
686/// Report a serious error, calling any installed error handler. See
687/// ErrorHandling.h.
688LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
689 bool gen_crash_diag = true);
690
691/// Report a fatal error if Err is a failure value.
692///
693/// This function can be used to wrap calls to fallible functions ONLY when it
694/// is known that the Error will always be a success value. E.g.
695///
696/// @code{.cpp}
697/// // foo only attempts the fallible operation if DoFallibleOperation is
698/// // true. If DoFallibleOperation is false then foo always returns
699/// // Error::success().
700/// Error foo(bool DoFallibleOperation);
701///
702/// cantFail(foo(false));
703/// @endcode
704inline void cantFail(Error Err, const char *Msg = nullptr) {
705 if (Err) {
706 if (!Msg)
707 Msg = "Failure value returned from cantFail wrapped call";
708 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 708)
;
709 }
710}
711
712/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
713/// returns the contained value.
714///
715/// This function can be used to wrap calls to fallible functions ONLY when it
716/// is known that the Error will always be a success value. E.g.
717///
718/// @code{.cpp}
719/// // foo only attempts the fallible operation if DoFallibleOperation is
720/// // true. If DoFallibleOperation is false then foo always returns an int.
721/// Expected<int> foo(bool DoFallibleOperation);
722///
723/// int X = cantFail(foo(false));
724/// @endcode
725template <typename T>
726T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
727 if (ValOrErr)
728 return std::move(*ValOrErr);
729 else {
730 if (!Msg)
731 Msg = "Failure value returned from cantFail wrapped call";
732 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 732)
;
733 }
734}
735
736/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
737/// returns the contained reference.
738///
739/// This function can be used to wrap calls to fallible functions ONLY when it
740/// is known that the Error will always be a success value. E.g.
741///
742/// @code{.cpp}
743/// // foo only attempts the fallible operation if DoFallibleOperation is
744/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
745/// Expected<Bar&> foo(bool DoFallibleOperation);
746///
747/// Bar &X = cantFail(foo(false));
748/// @endcode
749template <typename T>
750T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
751 if (ValOrErr)
752 return *ValOrErr;
753 else {
754 if (!Msg)
755 Msg = "Failure value returned from cantFail wrapped call";
756 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 756)
;
757 }
758}
759
760/// Helper for testing applicability of, and applying, handlers for
761/// ErrorInfo types.
762template <typename HandlerT>
763class ErrorHandlerTraits
764 : public ErrorHandlerTraits<decltype(
765 &std::remove_reference<HandlerT>::type::operator())> {};
766
767// Specialization functions of the form 'Error (const ErrT&)'.
768template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
769public:
770 static bool appliesTo(const ErrorInfoBase &E) {
771 return E.template isA<ErrT>();
772 }
773
774 template <typename HandlerT>
775 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
776 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 776, __PRETTY_FUNCTION__))
;
777 return H(static_cast<ErrT &>(*E));
778 }
779};
780
781// Specialization functions of the form 'void (const ErrT&)'.
782template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 790, __PRETTY_FUNCTION__))
;
791 H(static_cast<ErrT &>(*E));
792 return Error::success();
793 }
794};
795
796/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 806, __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 return H(std::move(SubE));
809 }
810};
811
812/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
813template <typename ErrT>
814class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
815public:
816 static bool appliesTo(const ErrorInfoBase &E) {
817 return E.template isA<ErrT>();
818 }
819
820 template <typename HandlerT>
821 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
822 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 822, __PRETTY_FUNCTION__))
;
823 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
824 H(std::move(SubE));
825 return Error::success();
826 }
827};
828
829// Specialization for member functions of the form 'RetT (const ErrT&)'.
830template <typename C, typename RetT, typename ErrT>
831class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
832 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
833
834// Specialization for member functions of the form 'RetT (const ErrT&) const'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
837 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
838
839// Specialization for member functions of the form 'RetT (const ErrT&)'.
840template <typename C, typename RetT, typename ErrT>
841class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
842 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
843
844// Specialization for member functions of the form 'RetT (const ErrT&) const'.
845template <typename C, typename RetT, typename ErrT>
846class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
847 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
848
849/// Specialization for member functions of the form
850/// 'RetT (std::unique_ptr<ErrT>)'.
851template <typename C, typename RetT, typename ErrT>
852class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
853 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
854
855/// Specialization for member functions of the form
856/// 'RetT (std::unique_ptr<ErrT>) const'.
857template <typename C, typename RetT, typename ErrT>
858class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
859 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
860
861inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
862 return Error(std::move(Payload));
863}
864
865template <typename HandlerT, typename... HandlerTs>
866Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
867 HandlerT &&Handler, HandlerTs &&... Handlers) {
868 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
869 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
870 std::move(Payload));
871 return handleErrorImpl(std::move(Payload),
872 std::forward<HandlerTs>(Handlers)...);
873}
874
875/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
876/// unhandled errors (or Errors returned by handlers) are re-concatenated and
877/// returned.
878/// Because this function returns an error, its result must also be checked
879/// or returned. If you intend to handle all errors use handleAllErrors
880/// (which returns void, and will abort() on unhandled errors) instead.
881template <typename... HandlerTs>
882Error handleErrors(Error E, HandlerTs &&... Hs) {
883 if (!E)
884 return Error::success();
885
886 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
887
888 if (Payload->isA<ErrorList>()) {
889 ErrorList &List = static_cast<ErrorList &>(*Payload);
890 Error R;
891 for (auto &P : List.Payloads)
892 R = ErrorList::join(
893 std::move(R),
894 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
895 return R;
896 }
897
898 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
899}
900
901/// Behaves the same as handleErrors, except that by contract all errors
902/// *must* be handled by the given handlers (i.e. there must be no remaining
903/// errors after running the handlers, or llvm_unreachable is called).
904template <typename... HandlerTs>
905void handleAllErrors(Error E, HandlerTs &&... Handlers) {
906 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
907}
908
909/// Check that E is a non-error, then drop it.
910/// If E is an error, llvm_unreachable will be called.
911inline void handleAllErrors(Error E) {
912 cantFail(std::move(E));
913}
914
915/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
916///
917/// If the incoming value is a success value it is returned unmodified. If it
918/// is a failure value then it the contained error is passed to handleErrors.
919/// If handleErrors is able to handle the error then the RecoveryPath functor
920/// is called to supply the final result. If handleErrors is not able to
921/// handle all errors then the unhandled errors are returned.
922///
923/// This utility enables the follow pattern:
924///
925/// @code{.cpp}
926/// enum FooStrategy { Aggressive, Conservative };
927/// Expected<Foo> foo(FooStrategy S);
928///
929/// auto ResultOrErr =
930/// handleExpected(
931/// foo(Aggressive),
932/// []() { return foo(Conservative); },
933/// [](AggressiveStrategyError&) {
934/// // Implicitly conusme this - we'll recover by using a conservative
935/// // strategy.
936/// });
937///
938/// @endcode
939template <typename T, typename RecoveryFtor, typename... HandlerTs>
940Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
941 HandlerTs &&... Handlers) {
942 if (ValOrErr)
943 return ValOrErr;
944
945 if (auto Err = handleErrors(ValOrErr.takeError(),
946 std::forward<HandlerTs>(Handlers)...))
947 return std::move(Err);
948
949 return RecoveryPath();
950}
951
952/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
953/// will be printed before the first one is logged. A newline will be printed
954/// after each error.
955///
956/// This function is compatible with the helpers from Support/WithColor.h. You
957/// can pass any of them as the OS. Please consider using them instead of
958/// including 'error: ' in the ErrorBanner.
959///
960/// This is useful in the base level of your program to allow clean termination
961/// (allowing clean deallocation of resources, etc.), while reporting error
962/// information to the user.
963void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
964
965/// Write all error messages (if any) in E to a string. The newline character
966/// is used to separate error messages.
967inline std::string toString(Error E) {
968 SmallVector<std::string, 2> Errors;
969 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
970 Errors.push_back(EI.message());
971 });
972 return join(Errors.begin(), Errors.end(), "\n");
973}
974
975/// Consume a Error without doing anything. This method should be used
976/// only where an error can be considered a reasonable and expected return
977/// value.
978///
979/// Uses of this method are potentially indicative of design problems: If it's
980/// legitimate to do nothing while processing an "error", the error-producer
981/// might be more clearly refactored to return an Optional<T>.
982inline void consumeError(Error Err) {
983 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
984}
985
986/// Helper for converting an Error to a bool.
987///
988/// This method returns true if Err is in an error state, or false if it is
989/// in a success state. Puts Err in a checked state in both cases (unlike
990/// Error::operator bool(), which only does this for success states).
991inline bool errorToBool(Error Err) {
992 bool IsError = static_cast<bool>(Err);
993 if (IsError)
994 consumeError(std::move(Err));
995 return IsError;
996}
997
998/// Helper for Errors used as out-parameters.
999///
1000/// This helper is for use with the Error-as-out-parameter idiom, where an error
1001/// is passed to a function or method by reference, rather than being returned.
1002/// In such cases it is helpful to set the checked bit on entry to the function
1003/// so that the error can be written to (unchecked Errors abort on assignment)
1004/// and clear the checked bit on exit so that clients cannot accidentally forget
1005/// to check the result. This helper performs these actions automatically using
1006/// RAII:
1007///
1008/// @code{.cpp}
1009/// Result foo(Error &Err) {
1010/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1011/// // <body of foo>
1012/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1013/// }
1014/// @endcode
1015///
1016/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1017/// used with optional Errors (Error pointers that are allowed to be null). If
1018/// ErrorAsOutParameter took an Error reference, an instance would have to be
1019/// created inside every condition that verified that Error was non-null. By
1020/// taking an Error pointer we can just create one instance at the top of the
1021/// function.
1022class ErrorAsOutParameter {
1023public:
1024 ErrorAsOutParameter(Error *Err) : Err(Err) {
1025 // Raise the checked bit if Err is success.
1026 if (Err)
1027 (void)!!*Err;
1028 }
1029
1030 ~ErrorAsOutParameter() {
1031 // Clear the checked bit.
1032 if (Err && !*Err)
1033 *Err = Error::success();
1034 }
1035
1036private:
1037 Error *Err;
1038};
1039
1040/// Helper for Expected<T>s used as out-parameters.
1041///
1042/// See ErrorAsOutParameter.
1043template <typename T>
1044class ExpectedAsOutParameter {
1045public:
1046 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1047 : ValOrErr(ValOrErr) {
1048 if (ValOrErr)
1049 (void)!!*ValOrErr;
1050 }
1051
1052 ~ExpectedAsOutParameter() {
1053 if (ValOrErr)
1054 ValOrErr->setUnchecked();
1055 }
1056
1057private:
1058 Expected<T> *ValOrErr;
1059};
1060
1061/// This class wraps a std::error_code in a Error.
1062///
1063/// This is useful if you're writing an interface that returns a Error
1064/// (or Expected) and you want to call code that still returns
1065/// std::error_codes.
1066class ECError : public ErrorInfo<ECError> {
1067 friend Error errorCodeToError(std::error_code);
1068
1069public:
1070 void setErrorCode(std::error_code EC) { this->EC = EC; }
1071 std::error_code convertToErrorCode() const override { return EC; }
1072 void log(raw_ostream &OS) const override { OS << EC.message(); }
1073
1074 // Used by ErrorInfo::classID.
1075 static char ID;
1076
1077protected:
1078 ECError() = default;
1079 ECError(std::error_code EC) : EC(EC) {}
1080
1081 std::error_code EC;
1082};
1083
1084/// The value returned by this function can be returned from convertToErrorCode
1085/// for Error values where no sensible translation to std::error_code exists.
1086/// It should only be used in this situation, and should never be used where a
1087/// sensible conversion to std::error_code is available, as attempts to convert
1088/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1089///error to try to convert such a value).
1090std::error_code inconvertibleErrorCode();
1091
1092/// Helper for converting an std::error_code to a Error.
1093Error errorCodeToError(std::error_code EC);
1094
1095/// Helper for converting an ECError to a std::error_code.
1096///
1097/// This method requires that Err be Error() or an ECError, otherwise it
1098/// will trigger a call to abort().
1099std::error_code errorToErrorCode(Error Err);
1100
1101/// Convert an ErrorOr<T> to an Expected<T>.
1102template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1103 if (auto EC = EO.getError())
1104 return errorCodeToError(EC);
1105 return std::move(*EO);
1106}
1107
1108/// Convert an Expected<T> to an ErrorOr<T>.
1109template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1110 if (auto Err = E.takeError())
1111 return errorToErrorCode(std::move(Err));
1112 return std::move(*E);
1113}
1114
1115/// This class wraps a string in an Error.
1116///
1117/// StringError is useful in cases where the client is not expected to be able
1118/// to consume the specific error message programmatically (for example, if the
1119/// error message is to be presented to the user).
1120///
1121/// StringError can also be used when additional information is to be printed
1122/// along with a error_code message. Depending on the constructor called, this
1123/// class can either display:
1124/// 1. the error_code message (ECError behavior)
1125/// 2. a string
1126/// 3. the error_code message and a string
1127///
1128/// These behaviors are useful when subtyping is required; for example, when a
1129/// specific library needs an explicit error type. In the example below,
1130/// PDBError is derived from StringError:
1131///
1132/// @code{.cpp}
1133/// Expected<int> foo() {
1134/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1135/// "Additional information");
1136/// }
1137/// @endcode
1138///
1139class StringError : public ErrorInfo<StringError> {
1140public:
1141 static char ID;
1142
1143 // Prints EC + S and converts to EC
1144 StringError(std::error_code EC, const Twine &S = Twine());
1145
1146 // Prints S and converts to EC
1147 StringError(const Twine &S, std::error_code EC);
1148
1149 void log(raw_ostream &OS) const override;
1150 std::error_code convertToErrorCode() const override;
1151
1152 const std::string &getMessage() const { return Msg; }
1153
1154private:
1155 std::string Msg;
1156 std::error_code EC;
1157 const bool PrintMsgOnly = false;
1158};
1159
1160/// Create formatted StringError object.
1161template <typename... Ts>
1162Error createStringError(std::error_code EC, char const *Fmt,
1163 const Ts &... Vals) {
1164 std::string Buffer;
1165 raw_string_ostream Stream(Buffer);
1166 Stream << format(Fmt, Vals...);
1167 return make_error<StringError>(Stream.str(), EC);
1168}
1169
1170Error createStringError(std::error_code EC, char const *Msg);
1171
1172/// This class wraps a filename and another Error.
1173///
1174/// In some cases, an error needs to live along a 'source' name, in order to
1175/// show more detailed information to the user.
1176class FileError final : public ErrorInfo<FileError> {
1177
1178 friend Error createFileError(std::string, Error);
1179
1180public:
1181 void log(raw_ostream &OS) const override {
1182 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1182, __PRETTY_FUNCTION__))
;
1183 OS << "'" << FileName << "': ";
1184 Err->log(OS);
1185 }
1186
1187 Error takeError() { return Error(std::move(Err)); }
1188
1189 std::error_code convertToErrorCode() const override;
1190
1191 // Used by ErrorInfo::classID.
1192 static char ID;
1193
1194private:
1195 FileError(std::string F, std::unique_ptr<ErrorInfoBase> E) {
1196 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1196, __PRETTY_FUNCTION__))
;
1197 assert(!F.empty() &&((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1198, __PRETTY_FUNCTION__))
1198 "The file name provided to FileError must not be empty.")((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1198, __PRETTY_FUNCTION__))
;
1199 FileName = F;
1200 Err = std::move(E);
1201 }
1202
1203 static Error build(std::string F, Error E) {
1204 return Error(std::unique_ptr<FileError>(new FileError(F, E.takePayload())));
1205 }
1206
1207 std::string FileName;
1208 std::unique_ptr<ErrorInfoBase> Err;
1209};
1210
1211/// Concatenate a source file path and/or name with an Error. The resulting
1212/// Error is unchecked.
1213inline Error createFileError(std::string F, Error E) {
1214 return FileError::build(F, std::move(E));
1215}
1216
1217Error createFileError(std::string F, ErrorSuccess) = delete;
1218
1219/// Helper for check-and-exit error handling.
1220///
1221/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1222///
1223class ExitOnError {
1224public:
1225 /// Create an error on exit helper.
1226 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1227 : Banner(std::move(Banner)),
1228 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1229
1230 /// Set the banner string for any errors caught by operator().
1231 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1232
1233 /// Set the exit-code mapper function.
1234 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1235 this->GetExitCode = std::move(GetExitCode);
1236 }
1237
1238 /// Check Err. If it's in a failure state log the error(s) and exit.
1239 void operator()(Error Err) const { checkError(std::move(Err)); }
1240
1241 /// Check E. If it's in a success state then return the contained value. If
1242 /// it's in a failure state log the error(s) and exit.
1243 template <typename T> T operator()(Expected<T> &&E) const {
1244 checkError(E.takeError());
1245 return std::move(*E);
1246 }
1247
1248 /// Check E. If it's in a success state then return the contained reference. If
1249 /// it's in a failure state log the error(s) and exit.
1250 template <typename T> T& operator()(Expected<T&> &&E) const {
1251 checkError(E.takeError());
1252 return *E;
1253 }
1254
1255private:
1256 void checkError(Error Err) const {
1257 if (Err) {
1258 int ExitCode = GetExitCode(Err);
1259 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1260 exit(ExitCode);
1261 }
1262 }
1263
1264 std::string Banner;
1265 std::function<int(const Error &)> GetExitCode;
1266};
1267
1268/// Conversion from Error to LLVMErrorRef for C error bindings.
1269inline LLVMErrorRef wrap(Error Err) {
1270 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1271}
1272
1273/// Conversion from LLVMErrorRef to Error for C error bindings.
1274inline Error unwrap(LLVMErrorRef ErrRef) {
1275 return Error(std::unique_ptr<ErrorInfoBase>(
1276 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1277}
1278
1279} // end namespace llvm
1280
1281#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Config/abi-breaking.h"
25#include "llvm/Support/ErrorHandling.h"
26#include <algorithm>
27#include <cassert>
28#include <cstddef>
29#include <cstdint>
30#include <cstdlib>
31#include <functional>
32#include <initializer_list>
33#include <iterator>
34#include <limits>
35#include <memory>
36#include <tuple>
37#include <type_traits>
38#include <utility>
39
40#ifdef EXPENSIVE_CHECKS
41#include <random> // for std::mt19937
42#endif
43
44namespace llvm {
45
46// Only used by compiler if both template types are the same. Useful when
47// using SFINAE to test for the existence of member functions.
48template <typename T, T> struct SameType;
49
50namespace detail {
51
52template <typename RangeT>
53using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
54
55template <typename RangeT>
56using ValueOfRange = typename std::remove_reference<decltype(
57 *std::begin(std::declval<RangeT &>()))>::type;
58
59} // end namespace detail
60
61//===----------------------------------------------------------------------===//
62// Extra additions to <type_traits>
63//===----------------------------------------------------------------------===//
64
65template <typename T>
66struct negation : std::integral_constant<bool, !bool(T::value)> {};
67
68template <typename...> struct conjunction : std::true_type {};
69template <typename B1> struct conjunction<B1> : B1 {};
70template <typename B1, typename... Bn>
71struct conjunction<B1, Bn...>
72 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
73
74template <typename T> struct make_const_ptr {
75 using type =
76 typename std::add_pointer<typename std::add_const<T>::type>::type;
77};
78//===----------------------------------------------------------------------===//
79// Extra additions to <functional>
80//===----------------------------------------------------------------------===//
81
82template <class Ty> struct identity {
83 using argument_type = Ty;
84
85 Ty &operator()(Ty &self) const {
86 return self;
87 }
88 const Ty &operator()(const Ty &self) const {
89 return self;
90 }
91};
92
93template <class Ty> struct less_ptr {
94 bool operator()(const Ty* left, const Ty* right) const {
95 return *left < *right;
96 }
97};
98
99template <class Ty> struct greater_ptr {
100 bool operator()(const Ty* left, const Ty* right) const {
101 return *right < *left;
102 }
103};
104
105/// An efficient, type-erasing, non-owning reference to a callable. This is
106/// intended for use as the type of a function parameter that is not used
107/// after the function in question returns.
108///
109/// This class does not own the callable, so it is not in general safe to store
110/// a function_ref.
111template<typename Fn> class function_ref;
112
113template<typename Ret, typename ...Params>
114class function_ref<Ret(Params...)> {
115 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
116 intptr_t callable;
117
118 template<typename Callable>
119 static Ret callback_fn(intptr_t callable, Params ...params) {
120 return (*reinterpret_cast<Callable*>(callable))(
121 std::forward<Params>(params)...);
122 }
123
124public:
125 function_ref() = default;
126 function_ref(std::nullptr_t) {}
127
128 template <typename Callable>
129 function_ref(Callable &&callable,
130 typename std::enable_if<
131 !std::is_same<typename std::remove_reference<Callable>::type,
132 function_ref>::value>::type * = nullptr)
133 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
134 callable(reinterpret_cast<intptr_t>(&callable)) {}
135
136 Ret operator()(Params ...params) const {
137 return callback(callable, std::forward<Params>(params)...);
138 }
139
140 operator bool() const { return callback; }
141};
142
143// deleter - Very very very simple method that is used to invoke operator
144// delete on something. It is used like this:
145//
146// for_each(V.begin(), B.end(), deleter<Interval>);
147template <class T>
148inline void deleter(T *Ptr) {
149 delete Ptr;
150}
151
152//===----------------------------------------------------------------------===//
153// Extra additions to <iterator>
154//===----------------------------------------------------------------------===//
155
156namespace adl_detail {
157
158using std::begin;
159
160template <typename ContainerTy>
161auto adl_begin(ContainerTy &&container)
162 -> decltype(begin(std::forward<ContainerTy>(container))) {
163 return begin(std::forward<ContainerTy>(container));
164}
165
166using std::end;
167
168template <typename ContainerTy>
169auto adl_end(ContainerTy &&container)
170 -> decltype(end(std::forward<ContainerTy>(container))) {
171 return end(std::forward<ContainerTy>(container));
172}
173
174using std::swap;
175
176template <typename T>
177void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
178 std::declval<T>()))) {
179 swap(std::forward<T>(lhs), std::forward<T>(rhs));
180}
181
182} // end namespace adl_detail
183
184template <typename ContainerTy>
185auto adl_begin(ContainerTy &&container)
186 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
187 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
188}
189
190template <typename ContainerTy>
191auto adl_end(ContainerTy &&container)
192 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
193 return adl_detail::adl_end(std::forward<ContainerTy>(container));
194}
195
196template <typename T>
197void adl_swap(T &&lhs, T &&rhs) noexcept(
198 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
199 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
200}
201
202/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
203template <typename T>
204constexpr bool empty(const T &RangeOrContainer) {
205 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
206}
207
208// mapped_iterator - This is a simple iterator adapter that causes a function to
209// be applied whenever operator* is invoked on the iterator.
210
211template <typename ItTy, typename FuncTy,
212 typename FuncReturnTy =
213 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
214class mapped_iterator
215 : public iterator_adaptor_base<
216 mapped_iterator<ItTy, FuncTy>, ItTy,
217 typename std::iterator_traits<ItTy>::iterator_category,
218 typename std::remove_reference<FuncReturnTy>::type> {
219public:
220 mapped_iterator(ItTy U, FuncTy F)
221 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
222
223 ItTy getCurrent() { return this->I; }
224
225 FuncReturnTy operator*() { return F(*this->I); }
226
227private:
228 FuncTy F;
229};
230
231// map_iterator - Provide a convenient way to create mapped_iterators, just like
232// make_pair is useful for creating pairs...
233template <class ItTy, class FuncTy>
234inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
235 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
236}
237
238/// Helper to determine if type T has a member called rbegin().
239template <typename Ty> class has_rbegin_impl {
240 using yes = char[1];
241 using no = char[2];
242
243 template <typename Inner>
244 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
245
246 template <typename>
247 static no& test(...);
248
249public:
250 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
251};
252
253/// Metafunction to determine if T& or T has a member called rbegin().
254template <typename Ty>
255struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
256};
257
258// Returns an iterator_range over the given container which iterates in reverse.
259// Note that the container must have rbegin()/rend() methods for this to work.
260template <typename ContainerTy>
261auto reverse(ContainerTy &&C,
262 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
263 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
264 return make_range(C.rbegin(), C.rend());
265}
266
267// Returns a std::reverse_iterator wrapped around the given iterator.
268template <typename IteratorTy>
269std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
270 return std::reverse_iterator<IteratorTy>(It);
271}
272
273// Returns an iterator_range over the given container which iterates in reverse.
274// Note that the container must have begin()/end() methods which return
275// bidirectional iterators for this to work.
276template <typename ContainerTy>
277auto reverse(
278 ContainerTy &&C,
279 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
280 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
281 llvm::make_reverse_iterator(std::begin(C)))) {
282 return make_range(llvm::make_reverse_iterator(std::end(C)),
283 llvm::make_reverse_iterator(std::begin(C)));
284}
285
286/// An iterator adaptor that filters the elements of given inner iterators.
287///
288/// The predicate parameter should be a callable object that accepts the wrapped
289/// iterator's reference type and returns a bool. When incrementing or
290/// decrementing the iterator, it will call the predicate on each element and
291/// skip any where it returns false.
292///
293/// \code
294/// int A[] = { 1, 2, 3, 4 };
295/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
296/// // R contains { 1, 3 }.
297/// \endcode
298///
299/// Note: filter_iterator_base implements support for forward iteration.
300/// filter_iterator_impl exists to provide support for bidirectional iteration,
301/// conditional on whether the wrapped iterator supports it.
302template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
303class filter_iterator_base
304 : public iterator_adaptor_base<
305 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
306 WrappedIteratorT,
307 typename std::common_type<
308 IterTag, typename std::iterator_traits<
309 WrappedIteratorT>::iterator_category>::type> {
310 using BaseT = iterator_adaptor_base<
311 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
312 WrappedIteratorT,
313 typename std::common_type<
314 IterTag, typename std::iterator_traits<
315 WrappedIteratorT>::iterator_category>::type>;
316
317protected:
318 WrappedIteratorT End;
319 PredicateT Pred;
320
321 void findNextValid() {
322 while (this->I != End && !Pred(*this->I))
323 BaseT::operator++();
324 }
325
326 // Construct the iterator. The begin iterator needs to know where the end
327 // is, so that it can properly stop when it gets there. The end iterator only
328 // needs the predicate to support bidirectional iteration.
329 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
330 PredicateT Pred)
331 : BaseT(Begin), End(End), Pred(Pred) {
332 findNextValid();
333 }
334
335public:
336 using BaseT::operator++;
337
338 filter_iterator_base &operator++() {
339 BaseT::operator++();
340 findNextValid();
341 return *this;
342 }
343};
344
345/// Specialization of filter_iterator_base for forward iteration only.
346template <typename WrappedIteratorT, typename PredicateT,
347 typename IterTag = std::forward_iterator_tag>
348class filter_iterator_impl
349 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
350 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
351
352public:
353 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
354 PredicateT Pred)
355 : BaseT(Begin, End, Pred) {}
356};
357
358/// Specialization of filter_iterator_base for bidirectional iteration.
359template <typename WrappedIteratorT, typename PredicateT>
360class filter_iterator_impl<WrappedIteratorT, PredicateT,
361 std::bidirectional_iterator_tag>
362 : public filter_iterator_base<WrappedIteratorT, PredicateT,
363 std::bidirectional_iterator_tag> {
364 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
365 std::bidirectional_iterator_tag>;
366 void findPrevValid() {
367 while (!this->Pred(*this->I))
368 BaseT::operator--();
369 }
370
371public:
372 using BaseT::operator--;
373
374 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
375 PredicateT Pred)
376 : BaseT(Begin, End, Pred) {}
377
378 filter_iterator_impl &operator--() {
379 BaseT::operator--();
380 findPrevValid();
381 return *this;
382 }
383};
384
385namespace detail {
386
387template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
388 using type = std::forward_iterator_tag;
389};
390
391template <> struct fwd_or_bidi_tag_impl<true> {
392 using type = std::bidirectional_iterator_tag;
393};
394
395/// Helper which sets its type member to forward_iterator_tag if the category
396/// of \p IterT does not derive from bidirectional_iterator_tag, and to
397/// bidirectional_iterator_tag otherwise.
398template <typename IterT> struct fwd_or_bidi_tag {
399 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
400 std::bidirectional_iterator_tag,
401 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
402};
403
404} // namespace detail
405
406/// Defines filter_iterator to a suitable specialization of
407/// filter_iterator_impl, based on the underlying iterator's category.
408template <typename WrappedIteratorT, typename PredicateT>
409using filter_iterator = filter_iterator_impl<
410 WrappedIteratorT, PredicateT,
411 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
412
413/// Convenience function that takes a range of elements and a predicate,
414/// and return a new filter_iterator range.
415///
416/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
417/// lifetime of that temporary is not kept by the returned range object, and the
418/// temporary is going to be dropped on the floor after the make_iterator_range
419/// full expression that contains this function call.
420template <typename RangeT, typename PredicateT>
421iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
422make_filter_range(RangeT &&Range, PredicateT Pred) {
423 using FilterIteratorT =
424 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
425 return make_range(
426 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
427 std::end(std::forward<RangeT>(Range)), Pred),
428 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
429 std::end(std::forward<RangeT>(Range)), Pred));
430}
431
432/// A pseudo-iterator adaptor that is designed to implement "early increment"
433/// style loops.
434///
435/// This is *not a normal iterator* and should almost never be used directly. It
436/// is intended primarily to be used with range based for loops and some range
437/// algorithms.
438///
439/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
440/// somewhere between them. The constraints of these iterators are:
441///
442/// - On construction or after being incremented, it is comparable and
443/// dereferencable. It is *not* incrementable.
444/// - After being dereferenced, it is neither comparable nor dereferencable, it
445/// is only incrementable.
446///
447/// This means you can only dereference the iterator once, and you can only
448/// increment it once between dereferences.
449template <typename WrappedIteratorT>
450class early_inc_iterator_impl
451 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
452 WrappedIteratorT, std::input_iterator_tag> {
453 using BaseT =
454 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
455 WrappedIteratorT, std::input_iterator_tag>;
456
457 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
458
459protected:
460#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
461 bool IsEarlyIncremented = false;
462#endif
463
464public:
465 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
466
467 using BaseT::operator*;
468 typename BaseT::reference operator*() {
469#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
470 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 470, __PRETTY_FUNCTION__))
;
471 IsEarlyIncremented = true;
472#endif
473 return *(this->I)++;
474 }
475
476 using BaseT::operator++;
477 early_inc_iterator_impl &operator++() {
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 479, __PRETTY_FUNCTION__))
;
480 IsEarlyIncremented = false;
481#endif
482 return *this;
483 }
484
485 using BaseT::operator==;
486 bool operator==(const early_inc_iterator_impl &RHS) const {
487#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
488 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 488, __PRETTY_FUNCTION__))
;
489#endif
490 return BaseT::operator==(RHS);
491 }
492};
493
494/// Make a range that does early increment to allow mutation of the underlying
495/// range without disrupting iteration.
496///
497/// The underlying iterator will be incremented immediately after it is
498/// dereferenced, allowing deletion of the current node or insertion of nodes to
499/// not disrupt iteration provided they do not invalidate the *next* iterator --
500/// the current iterator can be invalidated.
501///
502/// This requires a very exact pattern of use that is only really suitable to
503/// range based for loops and other range algorithms that explicitly guarantee
504/// to dereference exactly once each element, and to increment exactly once each
505/// element.
506template <typename RangeT>
507iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
508make_early_inc_range(RangeT &&Range) {
509 using EarlyIncIteratorT =
510 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
511 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
512 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
513}
514
515// forward declarations required by zip_shortest/zip_first/zip_longest
516template <typename R, typename UnaryPredicate>
517bool all_of(R &&range, UnaryPredicate P);
518template <typename R, typename UnaryPredicate>
519bool any_of(R &&range, UnaryPredicate P);
520
521template <size_t... I> struct index_sequence;
522
523template <class... Ts> struct index_sequence_for;
524
525namespace detail {
526
527using std::declval;
528
529// We have to alias this since inlining the actual type at the usage site
530// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
531template<typename... Iters> struct ZipTupleType {
532 using type = std::tuple<decltype(*declval<Iters>())...>;
533};
534
535template <typename ZipType, typename... Iters>
536using zip_traits = iterator_facade_base<
537 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
538 typename std::iterator_traits<
539 Iters>::iterator_category...>::type,
540 // ^ TODO: Implement random access methods.
541 typename ZipTupleType<Iters...>::type,
542 typename std::iterator_traits<typename std::tuple_element<
543 0, std::tuple<Iters...>>::type>::difference_type,
544 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
545 // inner iterators have the same difference_type. It would fail if, for
546 // instance, the second field's difference_type were non-numeric while the
547 // first is.
548 typename ZipTupleType<Iters...>::type *,
549 typename ZipTupleType<Iters...>::type>;
550
551template <typename ZipType, typename... Iters>
552struct zip_common : public zip_traits<ZipType, Iters...> {
553 using Base = zip_traits<ZipType, Iters...>;
554 using value_type = typename Base::value_type;
555
556 std::tuple<Iters...> iterators;
557
558protected:
559 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
560 return value_type(*std::get<Ns>(iterators)...);
561 }
562
563 template <size_t... Ns>
564 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
565 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
571 }
572
573public:
574 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
575
576 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
577
578 const value_type operator*() const {
579 return deref(index_sequence_for<Iters...>{});
580 }
581
582 ZipType &operator++() {
583 iterators = tup_inc(index_sequence_for<Iters...>{});
584 return *reinterpret_cast<ZipType *>(this);
585 }
586
587 ZipType &operator--() {
588 static_assert(Base::IsBidirectional,
589 "All inner iterators must be at least bidirectional.");
590 iterators = tup_dec(index_sequence_for<Iters...>{});
591 return *reinterpret_cast<ZipType *>(this);
592 }
593};
594
595template <typename... Iters>
596struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
597 using Base = zip_common<zip_first<Iters...>, Iters...>;
598
599 bool operator==(const zip_first<Iters...> &other) const {
600 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
601 }
602
603 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
604};
605
606template <typename... Iters>
607class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
608 template <size_t... Ns>
609 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
610 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
611 std::get<Ns>(other.iterators)...},
612 identity<bool>{});
613 }
614
615public:
616 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
617
618 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
619
620 bool operator==(const zip_shortest<Iters...> &other) const {
621 return !test(other, index_sequence_for<Iters...>{});
622 }
623};
624
625template <template <typename...> class ItType, typename... Args> class zippy {
626public:
627 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
628 using iterator_category = typename iterator::iterator_category;
629 using value_type = typename iterator::value_type;
630 using difference_type = typename iterator::difference_type;
631 using pointer = typename iterator::pointer;
632 using reference = typename iterator::reference;
633
634private:
635 std::tuple<Args...> ts;
636
637 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
638 return iterator(std::begin(std::get<Ns>(ts))...);
639 }
640 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
641 return iterator(std::end(std::get<Ns>(ts))...);
642 }
643
644public:
645 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
646
647 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
648 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
649};
650
651} // end namespace detail
652
653/// zip iterator for two or more iteratable types.
654template <typename T, typename U, typename... Args>
655detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
656 Args &&... args) {
657 return detail::zippy<detail::zip_shortest, T, U, Args...>(
658 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
659}
660
661/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
662/// be the shortest.
663template <typename T, typename U, typename... Args>
664detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
665 Args &&... args) {
666 return detail::zippy<detail::zip_first, T, U, Args...>(
667 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
668}
669
670namespace detail {
671template <typename Iter>
672static Iter next_or_end(const Iter &I, const Iter &End) {
673 if (I == End)
674 return End;
675 return std::next(I);
676}
677
678template <typename Iter>
679static auto deref_or_none(const Iter &I, const Iter &End)
680 -> llvm::Optional<typename std::remove_const<
681 typename std::remove_reference<decltype(*I)>::type>::type> {
682 if (I == End)
683 return None;
684 return *I;
685}
686
687template <typename Iter> struct ZipLongestItemType {
688 using type =
689 llvm::Optional<typename std::remove_const<typename std::remove_reference<
690 decltype(*std::declval<Iter>())>::type>::type>;
691};
692
693template <typename... Iters> struct ZipLongestTupleType {
694 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
695};
696
697template <typename... Iters>
698class zip_longest_iterator
699 : public iterator_facade_base<
700 zip_longest_iterator<Iters...>,
701 typename std::common_type<
702 std::forward_iterator_tag,
703 typename std::iterator_traits<Iters>::iterator_category...>::type,
704 typename ZipLongestTupleType<Iters...>::type,
705 typename std::iterator_traits<typename std::tuple_element<
706 0, std::tuple<Iters...>>::type>::difference_type,
707 typename ZipLongestTupleType<Iters...>::type *,
708 typename ZipLongestTupleType<Iters...>::type> {
709public:
710 using value_type = typename ZipLongestTupleType<Iters...>::type;
711
712private:
713 std::tuple<Iters...> iterators;
714 std::tuple<Iters...> end_iterators;
715
716 template <size_t... Ns>
717 bool test(const zip_longest_iterator<Iters...> &other,
718 index_sequence<Ns...>) const {
719 return llvm::any_of(
720 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
721 std::get<Ns>(other.iterators)...},
722 identity<bool>{});
723 }
724
725 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
726 return value_type(
727 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
728 }
729
730 template <size_t... Ns>
731 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
732 return std::tuple<Iters...>(
733 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
734 }
735
736public:
737 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
738 : iterators(std::forward<Iters>(ts.first)...),
739 end_iterators(std::forward<Iters>(ts.second)...) {}
740
741 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
742
743 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
744
745 zip_longest_iterator<Iters...> &operator++() {
746 iterators = tup_inc(index_sequence_for<Iters...>{});
747 return *this;
748 }
749
750 bool operator==(const zip_longest_iterator<Iters...> &other) const {
751 return !test(other, index_sequence_for<Iters...>{});
752 }
753};
754
755template <typename... Args> class zip_longest_range {
756public:
757 using iterator =
758 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
759 using iterator_category = typename iterator::iterator_category;
760 using value_type = typename iterator::value_type;
761 using difference_type = typename iterator::difference_type;
762 using pointer = typename iterator::pointer;
763 using reference = typename iterator::reference;
764
765private:
766 std::tuple<Args...> ts;
767
768 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
769 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
770 adl_end(std::get<Ns>(ts)))...);
771 }
772
773 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778public:
779 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
780
781 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
782 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
783};
784} // namespace detail
785
786/// Iterate over two or more iterators at the same time. Iteration continues
787/// until all iterators reach the end. The llvm::Optional only contains a value
788/// if the iterator has not reached the end.
789template <typename T, typename U, typename... Args>
790detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
791 Args &&... args) {
792 return detail::zip_longest_range<T, U, Args...>(
793 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
794}
795
796/// Iterator wrapper that concatenates sequences together.
797///
798/// This can concatenate different iterators, even with different types, into
799/// a single iterator provided the value types of all the concatenated
800/// iterators expose `reference` and `pointer` types that can be converted to
801/// `ValueT &` and `ValueT *` respectively. It doesn't support more
802/// interesting/customized pointer or reference types.
803///
804/// Currently this only supports forward or higher iterator categories as
805/// inputs and always exposes a forward iterator interface.
806template <typename ValueT, typename... IterTs>
807class concat_iterator
808 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
809 std::forward_iterator_tag, ValueT> {
810 using BaseT = typename concat_iterator::iterator_facade_base;
811
812 /// We store both the current and end iterators for each concatenated
813 /// sequence in a tuple of pairs.
814 ///
815 /// Note that something like iterator_range seems nice at first here, but the
816 /// range properties are of little benefit and end up getting in the way
817 /// because we need to do mutation on the current iterators.
818 std::tuple<IterTs...> Begins;
819 std::tuple<IterTs...> Ends;
820
821 /// Attempts to increment a specific iterator.
822 ///
823 /// Returns true if it was able to increment the iterator. Returns false if
824 /// the iterator is already at the end iterator.
825 template <size_t Index> bool incrementHelper() {
826 auto &Begin = std::get<Index>(Begins);
827 auto &End = std::get<Index>(Ends);
828 if (Begin == End)
829 return false;
830
831 ++Begin;
832 return true;
833 }
834
835 /// Increments the first non-end iterator.
836 ///
837 /// It is an error to call this with all iterators at the end.
838 template <size_t... Ns> void increment(index_sequence<Ns...>) {
839 // Build a sequence of functions to increment each iterator if possible.
840 bool (concat_iterator::*IncrementHelperFns[])() = {
841 &concat_iterator::incrementHelper<Ns>...};
842
843 // Loop over them, and stop as soon as we succeed at incrementing one.
844 for (auto &IncrementHelperFn : IncrementHelperFns)
845 if ((this->*IncrementHelperFn)())
846 return;
847
848 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 848)
;
849 }
850
851 /// Returns null if the specified iterator is at the end. Otherwise,
852 /// dereferences the iterator and returns the address of the resulting
853 /// reference.
854 template <size_t Index> ValueT *getHelper() const {
855 auto &Begin = std::get<Index>(Begins);
856 auto &End = std::get<Index>(Ends);
857 if (Begin == End)
858 return nullptr;
859
860 return &*Begin;
861 }
862
863 /// Finds the first non-end iterator, dereferences, and returns the resulting
864 /// reference.
865 ///
866 /// It is an error to call this with all iterators at the end.
867 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
868 // Build a sequence of functions to get from iterator if possible.
869 ValueT *(concat_iterator::*GetHelperFns[])() const = {
870 &concat_iterator::getHelper<Ns>...};
871
872 // Loop over them, and return the first result we find.
873 for (auto &GetHelperFn : GetHelperFns)
874 if (ValueT *P = (this->*GetHelperFn)())
875 return *P;
876
877 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 877)
;
878 }
879
880public:
881 /// Constructs an iterator from a squence of ranges.
882 ///
883 /// We need the full range to know how to switch between each of the
884 /// iterators.
885 template <typename... RangeTs>
886 explicit concat_iterator(RangeTs &&... Ranges)
887 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
888
889 using BaseT::operator++;
890
891 concat_iterator &operator++() {
892 increment(index_sequence_for<IterTs...>());
893 return *this;
894 }
895
896 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
897
898 bool operator==(const concat_iterator &RHS) const {
899 return Begins == RHS.Begins && Ends == RHS.Ends;
900 }
901};
902
903namespace detail {
904
905/// Helper to store a sequence of ranges being concatenated and access them.
906///
907/// This is designed to facilitate providing actual storage when temporaries
908/// are passed into the constructor such that we can use it as part of range
909/// based for loops.
910template <typename ValueT, typename... RangeTs> class concat_range {
911public:
912 using iterator =
913 concat_iterator<ValueT,
914 decltype(std::begin(std::declval<RangeTs &>()))...>;
915
916private:
917 std::tuple<RangeTs...> Ranges;
918
919 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
920 return iterator(std::get<Ns>(Ranges)...);
921 }
922 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
923 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
924 std::end(std::get<Ns>(Ranges)))...);
925 }
926
927public:
928 concat_range(RangeTs &&... Ranges)
929 : Ranges(std::forward<RangeTs>(Ranges)...) {}
930
931 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
932 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
933};
934
935} // end namespace detail
936
937/// Concatenated range across two or more ranges.
938///
939/// The desired value type must be explicitly specified.
940template <typename ValueT, typename... RangeTs>
941detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
942 static_assert(sizeof...(RangeTs) > 1,
943 "Need more than one range to concatenate!");
944 return detail::concat_range<ValueT, RangeTs...>(
945 std::forward<RangeTs>(Ranges)...);
946}
947
948//===----------------------------------------------------------------------===//
949// Extra additions to <utility>
950//===----------------------------------------------------------------------===//
951
952/// Function object to check whether the first component of a std::pair
953/// compares less than the first component of another std::pair.
954struct less_first {
955 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
956 return lhs.first < rhs.first;
957 }
958};
959
960/// Function object to check whether the second component of a std::pair
961/// compares less than the second component of another std::pair.
962struct less_second {
963 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
964 return lhs.second < rhs.second;
965 }
966};
967
968/// \brief Function object to apply a binary function to the first component of
969/// a std::pair.
970template<typename FuncTy>
971struct on_first {
972 FuncTy func;
973
974 template <typename T>
975 auto operator()(const T &lhs, const T &rhs) const
976 -> decltype(func(lhs.first, rhs.first)) {
977 return func(lhs.first, rhs.first);
978 }
979};
980
981// A subset of N3658. More stuff can be added as-needed.
982
983/// Represents a compile-time sequence of integers.
984template <class T, T... I> struct integer_sequence {
985 using value_type = T;
986
987 static constexpr size_t size() { return sizeof...(I); }
988};
989
990/// Alias for the common case of a sequence of size_ts.
991template <size_t... I>
992struct index_sequence : integer_sequence<std::size_t, I...> {};
993
994template <std::size_t N, std::size_t... I>
995struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
996template <std::size_t... I>
997struct build_index_impl<0, I...> : index_sequence<I...> {};
998
999/// Creates a compile-time integer sequence for a parameter pack.
1000template <class... Ts>
1001struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1002
1003/// Utility type to build an inheritance chain that makes it easy to rank
1004/// overload candidates.
1005template <int N> struct rank : rank<N - 1> {};
1006template <> struct rank<0> {};
1007
1008/// traits class for checking whether type T is one of any of the given
1009/// types in the variadic list.
1010template <typename T, typename... Ts> struct is_one_of {
1011 static const bool value = false;
1012};
1013
1014template <typename T, typename U, typename... Ts>
1015struct is_one_of<T, U, Ts...> {
1016 static const bool value =
1017 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1018};
1019
1020/// traits class for checking whether type T is a base class for all
1021/// the given types in the variadic list.
1022template <typename T, typename... Ts> struct are_base_of {
1023 static const bool value = true;
1024};
1025
1026template <typename T, typename U, typename... Ts>
1027struct are_base_of<T, U, Ts...> {
1028 static const bool value =
1029 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1030};
1031
1032//===----------------------------------------------------------------------===//
1033// Extra additions for arrays
1034//===----------------------------------------------------------------------===//
1035
1036/// Find the length of an array.
1037template <class T, std::size_t N>
1038constexpr inline size_t array_lengthof(T (&)[N]) {
1039 return N;
1040}
1041
1042/// Adapt std::less<T> for array_pod_sort.
1043template<typename T>
1044inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1045 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1046 *reinterpret_cast<const T*>(P2)))
1047 return -1;
1048 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1049 *reinterpret_cast<const T*>(P1)))
1050 return 1;
1051 return 0;
1052}
1053
1054/// get_array_pod_sort_comparator - This is an internal helper function used to
1055/// get type deduction of T right.
1056template<typename T>
1057inline int (*get_array_pod_sort_comparator(const T &))
1058 (const void*, const void*) {
1059 return array_pod_sort_comparator<T>;
1060}
1061
1062/// array_pod_sort - This sorts an array with the specified start and end
1063/// extent. This is just like std::sort, except that it calls qsort instead of
1064/// using an inlined template. qsort is slightly slower than std::sort, but
1065/// most sorts are not performance critical in LLVM and std::sort has to be
1066/// template instantiated for each type, leading to significant measured code
1067/// bloat. This function should generally be used instead of std::sort where
1068/// possible.
1069///
1070/// This function assumes that you have simple POD-like types that can be
1071/// compared with std::less and can be moved with memcpy. If this isn't true,
1072/// you should use std::sort.
1073///
1074/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1075/// default to std::less.
1076template<class IteratorTy>
1077inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1078 // Don't inefficiently call qsort with one element or trigger undefined
1079 // behavior with an empty sequence.
1080 auto NElts = End - Start;
1081 if (NElts <= 1) return;
1082#ifdef EXPENSIVE_CHECKS
1083 std::mt19937 Generator(std::random_device{}());
1084 std::shuffle(Start, End, Generator);
1085#endif
1086 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1087}
1088
1089template <class IteratorTy>
1090inline void array_pod_sort(
1091 IteratorTy Start, IteratorTy End,
1092 int (*Compare)(
1093 const typename std::iterator_traits<IteratorTy>::value_type *,
1094 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1095 // Don't inefficiently call qsort with one element or trigger undefined
1096 // behavior with an empty sequence.
1097 auto NElts = End - Start;
1098 if (NElts <= 1) return;
1099#ifdef EXPENSIVE_CHECKS
1100 std::mt19937 Generator(std::random_device{}());
1101 std::shuffle(Start, End, Generator);
1102#endif
1103 qsort(&*Start, NElts, sizeof(*Start),
1104 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1105}
1106
1107// Provide wrappers to std::sort which shuffle the elements before sorting
1108// to help uncover non-deterministic behavior (PR35135).
1109template <typename IteratorTy>
1110inline void sort(IteratorTy Start, IteratorTy End) {
1111#ifdef EXPENSIVE_CHECKS
1112 std::mt19937 Generator(std::random_device{}());
1113 std::shuffle(Start, End, Generator);
1114#endif
1115 std::sort(Start, End);
1116}
1117
1118template <typename Container> inline void sort(Container &&C) {
1119 llvm::sort(adl_begin(C), adl_end(C));
1120}
1121
1122template <typename IteratorTy, typename Compare>
1123inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1124#ifdef EXPENSIVE_CHECKS
1125 std::mt19937 Generator(std::random_device{}());
1126 std::shuffle(Start, End, Generator);
1127#endif
1128 std::sort(Start, End, Comp);
1129}
1130
1131template <typename Container, typename Compare>
1132inline void sort(Container &&C, Compare Comp) {
1133 llvm::sort(adl_begin(C), adl_end(C), Comp);
1134}
1135
1136//===----------------------------------------------------------------------===//
1137// Extra additions to <algorithm>
1138//===----------------------------------------------------------------------===//
1139
1140/// For a container of pointers, deletes the pointers and then clears the
1141/// container.
1142template<typename Container>
1143void DeleteContainerPointers(Container &C) {
1144 for (auto V : C)
1145 delete V;
1146 C.clear();
1147}
1148
1149/// In a container of pairs (usually a map) whose second element is a pointer,
1150/// deletes the second elements and then clears the container.
1151template<typename Container>
1152void DeleteContainerSeconds(Container &C) {
1153 for (auto &V : C)
1154 delete V.second;
1155 C.clear();
1156}
1157
1158/// Get the size of a range. This is a wrapper function around std::distance
1159/// which is only enabled when the operation is O(1).
1160template <typename R>
1161auto size(R &&Range, typename std::enable_if<
1162 std::is_same<typename std::iterator_traits<decltype(
1163 Range.begin())>::iterator_category,
1164 std::random_access_iterator_tag>::value,
1165 void>::type * = nullptr)
1166 -> decltype(std::distance(Range.begin(), Range.end())) {
1167 return std::distance(Range.begin(), Range.end());
1168}
1169
1170/// Provide wrappers to std::for_each which take ranges instead of having to
1171/// pass begin/end explicitly.
1172template <typename R, typename UnaryPredicate>
1173UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1174 return std::for_each(adl_begin(Range), adl_end(Range), P);
1175}
1176
1177/// Provide wrappers to std::all_of which take ranges instead of having to pass
1178/// begin/end explicitly.
1179template <typename R, typename UnaryPredicate>
1180bool all_of(R &&Range, UnaryPredicate P) {
1181 return std::all_of(adl_begin(Range), adl_end(Range), P);
1182}
1183
1184/// Provide wrappers to std::any_of which take ranges instead of having to pass
1185/// begin/end explicitly.
1186template <typename R, typename UnaryPredicate>
1187bool any_of(R &&Range, UnaryPredicate P) {
1188 return std::any_of(adl_begin(Range), adl_end(Range), P);
1189}
1190
1191/// Provide wrappers to std::none_of which take ranges instead of having to pass
1192/// begin/end explicitly.
1193template <typename R, typename UnaryPredicate>
1194bool none_of(R &&Range, UnaryPredicate P) {
1195 return std::none_of(adl_begin(Range), adl_end(Range), P);
1196}
1197
1198/// Provide wrappers to std::find which take ranges instead of having to pass
1199/// begin/end explicitly.
1200template <typename R, typename T>
1201auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1202 return std::find(adl_begin(Range), adl_end(Range), Val);
1203}
1204
1205/// Provide wrappers to std::find_if which take ranges instead of having to pass
1206/// begin/end explicitly.
1207template <typename R, typename UnaryPredicate>
1208auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1209 return std::find_if(adl_begin(Range), adl_end(Range), P);
1210}
1211
1212template <typename R, typename UnaryPredicate>
1213auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217/// Provide wrappers to std::remove_if which take ranges instead of having to
1218/// pass begin/end explicitly.
1219template <typename R, typename UnaryPredicate>
1220auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1221 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1222}
1223
1224/// Provide wrappers to std::copy_if which take ranges instead of having to
1225/// pass begin/end explicitly.
1226template <typename R, typename OutputIt, typename UnaryPredicate>
1227OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1228 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1229}
1230
1231template <typename R, typename OutputIt>
1232OutputIt copy(R &&Range, OutputIt Out) {
1233 return std::copy(adl_begin(Range), adl_end(Range), Out);
1234}
1235
1236/// Wrapper function around std::find to detect if an element exists
1237/// in a container.
1238template <typename R, typename E>
1239bool is_contained(R &&Range, const E &Element) {
1240 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1241}
1242
1243/// Wrapper function around std::count to count the number of times an element
1244/// \p Element occurs in the given range \p Range.
1245template <typename R, typename E>
1246auto count(R &&Range, const E &Element) ->
1247 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1248 return std::count(adl_begin(Range), adl_end(Range), Element);
1249}
1250
1251/// Wrapper function around std::count_if to count the number of times an
1252/// element satisfying a given predicate occurs in a range.
1253template <typename R, typename UnaryPredicate>
1254auto count_if(R &&Range, UnaryPredicate P) ->
1255 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1256 return std::count_if(adl_begin(Range), adl_end(Range), P);
1257}
1258
1259/// Wrapper function around std::transform to apply a function to a range and
1260/// store the result elsewhere.
1261template <typename R, typename OutputIt, typename UnaryPredicate>
1262OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1263 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1264}
1265
1266/// Provide wrappers to std::partition which take ranges instead of having to
1267/// pass begin/end explicitly.
1268template <typename R, typename UnaryPredicate>
1269auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1270 return std::partition(adl_begin(Range), adl_end(Range), P);
1271}
1272
1273/// Provide wrappers to std::lower_bound which take ranges instead of having to
1274/// pass begin/end explicitly.
1275template <typename R, typename ForwardIt>
1276auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1277 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1278}
1279
1280template <typename R, typename ForwardIt, typename Compare>
1281auto lower_bound(R &&Range, ForwardIt I, Compare C)
1282 -> decltype(adl_begin(Range)) {
1283 return std::lower_bound(adl_begin(Range), adl_end(Range), I, C);
1284}
1285
1286/// Provide wrappers to std::upper_bound which take ranges instead of having to
1287/// pass begin/end explicitly.
1288template <typename R, typename ForwardIt>
1289auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1290 return std::upper_bound(adl_begin(Range), adl_end(Range), I);
1291}
1292
1293template <typename R, typename ForwardIt, typename Compare>
1294auto upper_bound(R &&Range, ForwardIt I, Compare C)
1295 -> decltype(adl_begin(Range)) {
1296 return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
1297}
1298/// Wrapper function around std::equal to detect if all elements
1299/// in a container are same.
1300template <typename R>
1301bool is_splat(R &&Range) {
1302 size_t range_size = size(Range);
1303 return range_size != 0 && (range_size == 1 ||
1304 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1305}
1306
1307/// Given a range of type R, iterate the entire range and return a
1308/// SmallVector with elements of the vector. This is useful, for example,
1309/// when you want to iterate a range and then sort the results.
1310template <unsigned Size, typename R>
1311SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1312to_vector(R &&Range) {
1313 return {adl_begin(Range), adl_end(Range)};
1314}
1315
1316/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1317/// `erase_if` which is equivalent to:
1318///
1319/// C.erase(remove_if(C, pred), C.end());
1320///
1321/// This version works for any container with an erase method call accepting
1322/// two iterators.
1323template <typename Container, typename UnaryPredicate>
1324void erase_if(Container &C, UnaryPredicate P) {
1325 C.erase(remove_if(C, P), C.end());
1326}
1327
1328//===----------------------------------------------------------------------===//
1329// Extra additions to <memory>
1330//===----------------------------------------------------------------------===//
1331
1332// Implement make_unique according to N3656.
1333
1334/// Constructs a `new T()` with the given args and returns a
1335/// `unique_ptr<T>` which owns the object.
1336///
1337/// Example:
1338///
1339/// auto p = make_unique<int>();
1340/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1341template <class T, class... Args>
1342typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1343make_unique(Args &&... args) {
1344 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
4
Memory is allocated
1345}
1346
1347/// Constructs a `new T[n]` with the given args and returns a
1348/// `unique_ptr<T[]>` which owns the object.
1349///
1350/// \param n size of the new array.
1351///
1352/// Example:
1353///
1354/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1355template <class T>
1356typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1357 std::unique_ptr<T>>::type
1358make_unique(size_t n) {
1359 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1360}
1361
1362/// This function isn't used and is only here to provide better compile errors.
1363template <class T, class... Args>
1364typename std::enable_if<std::extent<T>::value != 0>::type
1365make_unique(Args &&...) = delete;
1366
1367struct FreeDeleter {
1368 void operator()(void* v) {
1369 ::free(v);
1370 }
1371};
1372
1373template<typename First, typename Second>
1374struct pair_hash {
1375 size_t operator()(const std::pair<First, Second> &P) const {
1376 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1377 }
1378};
1379
1380/// A functor like C++14's std::less<void> in its absence.
1381struct less {
1382 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1383 return std::forward<A>(a) < std::forward<B>(b);
1384 }
1385};
1386
1387/// A functor like C++14's std::equal<void> in its absence.
1388struct equal {
1389 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1390 return std::forward<A>(a) == std::forward<B>(b);
1391 }
1392};
1393
1394/// Binary functor that adapts to any other binary functor after dereferencing
1395/// operands.
1396template <typename T> struct deref {
1397 T func;
1398
1399 // Could be further improved to cope with non-derivable functors and
1400 // non-binary functors (should be a variadic template member function
1401 // operator()).
1402 template <typename A, typename B>
1403 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1404 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1404, __PRETTY_FUNCTION__))
;
1405 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1405, __PRETTY_FUNCTION__))
;
1406 return func(*lhs, *rhs);
1407 }
1408};
1409
1410namespace detail {
1411
1412template <typename R> class enumerator_iter;
1413
1414template <typename R> struct result_pair {
1415 friend class enumerator_iter<R>;
1416
1417 result_pair() = default;
1418 result_pair(std::size_t Index, IterOfRange<R> Iter)
1419 : Index(Index), Iter(Iter) {}
1420
1421 result_pair<R> &operator=(const result_pair<R> &Other) {
1422 Index = Other.Index;
1423 Iter = Other.Iter;
1424 return *this;
1425 }
1426
1427 std::size_t index() const { return Index; }
1428 const ValueOfRange<R> &value() const { return *Iter; }
1429 ValueOfRange<R> &value() { return *Iter; }
1430
1431private:
1432 std::size_t Index = std::numeric_limits<std::size_t>::max();
1433 IterOfRange<R> Iter;
1434};
1435
1436template <typename R>
1437class enumerator_iter
1438 : public iterator_facade_base<
1439 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1440 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1441 typename std::iterator_traits<IterOfRange<R>>::pointer,
1442 typename std::iterator_traits<IterOfRange<R>>::reference> {
1443 using result_type = result_pair<R>;
1444
1445public:
1446 explicit enumerator_iter(IterOfRange<R> EndIter)
1447 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1448
1449 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1450 : Result(Index, Iter) {}
1451
1452 result_type &operator*() { return Result; }
1453 const result_type &operator*() const { return Result; }
1454
1455 enumerator_iter<R> &operator++() {
1456 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1456, __PRETTY_FUNCTION__))
;
1457 ++Result.Iter;
1458 ++Result.Index;
1459 return *this;
1460 }
1461
1462 bool operator==(const enumerator_iter<R> &RHS) const {
1463 // Don't compare indices here, only iterators. It's possible for an end
1464 // iterator to have different indices depending on whether it was created
1465 // by calling std::end() versus incrementing a valid iterator.
1466 return Result.Iter == RHS.Result.Iter;
1467 }
1468
1469 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1470 Result = Other.Result;
1471 return *this;
1472 }
1473
1474private:
1475 result_type Result;
1476};
1477
1478template <typename R> class enumerator {
1479public:
1480 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1481
1482 enumerator_iter<R> begin() {
1483 return enumerator_iter<R>(0, std::begin(TheRange));
1484 }
1485
1486 enumerator_iter<R> end() {
1487 return enumerator_iter<R>(std::end(TheRange));
1488 }
1489
1490private:
1491 R TheRange;
1492};
1493
1494} // end namespace detail
1495
1496/// Given an input range, returns a new range whose values are are pair (A,B)
1497/// such that A is the 0-based index of the item in the sequence, and B is
1498/// the value from the original sequence. Example:
1499///
1500/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1501/// for (auto X : enumerate(Items)) {
1502/// printf("Item %d - %c\n", X.index(), X.value());
1503/// }
1504///
1505/// Output:
1506/// Item 0 - A
1507/// Item 1 - B
1508/// Item 2 - C
1509/// Item 3 - D
1510///
1511template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1512 return detail::enumerator<R>(std::forward<R>(TheRange));
1513}
1514
1515namespace detail {
1516
1517template <typename F, typename Tuple, std::size_t... I>
1518auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1519 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1520 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1521}
1522
1523} // end namespace detail
1524
1525/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1526/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1527/// return the result.
1528template <typename F, typename Tuple>
1529auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1530 std::forward<F>(f), std::forward<Tuple>(t),
1531 build_index_impl<
1532 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1533 using Indices = build_index_impl<
1534 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1535
1536 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1537 Indices{});
1538}
1539
1540/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1541/// time. Not meant for use with random-access iterators.
1542template <typename IterTy>
1543bool hasNItems(
1544 IterTy &&Begin, IterTy &&End, unsigned N,
1545 typename std::enable_if<
1546 !std::is_same<
1547 typename std::iterator_traits<typename std::remove_reference<
1548 decltype(Begin)>::type>::iterator_category,
1549 std::random_access_iterator_tag>::value,
1550 void>::type * = nullptr) {
1551 for (; N; --N, ++Begin)
1552 if (Begin == End)
1553 return false; // Too few.
1554 return Begin == End;
1555}
1556
1557/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1558/// time. Not meant for use with random-access iterators.
1559template <typename IterTy>
1560bool hasNItemsOrMore(
1561 IterTy &&Begin, IterTy &&End, unsigned N,
1562 typename std::enable_if<
1563 !std::is_same<
1564 typename std::iterator_traits<typename std::remove_reference<
1565 decltype(Begin)>::type>::iterator_category,
1566 std::random_access_iterator_tag>::value,
1567 void>::type * = nullptr) {
1568 for (; N; --N, ++Begin)
1569 if (Begin == End)
1570 return false; // Too few.
1571 return true;
1572}
1573
1574} // end namespace llvm
1575
1576#endif // LLVM_ADT_STLEXTRAS_H