Bug Summary

File:build/source/llvm/lib/CodeGen/WinEHPrepare.cpp
Warning:line 212, column 30
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name WinEHPrepare.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/CodeGen -I /build/source/llvm/lib/CodeGen -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/CodeGen/WinEHPrepare.cpp

/build/source/llvm/lib/CodeGen/WinEHPrepare.cpp

1//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass lowers LLVM IR exception handling into something closer to what the
10// backend wants for functions using a personality function from a runtime
11// provided by MSVC. Functions with other personality functions are left alone
12// and may be prepared by other passes. In particular, all supported MSVC
13// personality functions require cleanup code to be outlined, and the C++
14// personality requires catch handler code to be outlined.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/MapVector.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/WinEHFuncInfo.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/EHPersonalities.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Verifier.h"
28#include "llvm/InitializePasses.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/TargetParser/Triple.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/SSAUpdater.h"
38
39using namespace llvm;
40
41#define DEBUG_TYPE"winehprepare" "winehprepare"
42
43static cl::opt<bool> DisableDemotion(
44 "disable-demotion", cl::Hidden,
45 cl::desc(
46 "Clone multicolor basic blocks but do not demote cross scopes"),
47 cl::init(false));
48
49static cl::opt<bool> DisableCleanups(
50 "disable-cleanups", cl::Hidden,
51 cl::desc("Do not remove implausible terminators or other similar cleanups"),
52 cl::init(false));
53
54static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
55 "demote-catchswitch-only", cl::Hidden,
56 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
57
58namespace {
59
60class WinEHPrepare : public FunctionPass {
61public:
62 static char ID; // Pass identification, replacement for typeid.
63 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
64 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
65
66 bool runOnFunction(Function &Fn) override;
67
68 bool doFinalization(Module &M) override;
69
70 void getAnalysisUsage(AnalysisUsage &AU) const override;
71
72 StringRef getPassName() const override {
73 return "Windows exception handling preparation";
74 }
75
76private:
77 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
78 void
79 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
80 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
81 AllocaInst *insertPHILoads(PHINode *PN, Function &F);
82 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
83 DenseMap<BasicBlock *, Value *> &Loads, Function &F);
84 bool prepareExplicitEH(Function &F);
85 void colorFunclets(Function &F);
86
87 void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
88 void cloneCommonBlocks(Function &F);
89 void removeImplausibleInstructions(Function &F);
90 void cleanupPreparedFunclets(Function &F);
91 void verifyPreparedFunclets(Function &F);
92
93 bool DemoteCatchSwitchPHIOnly;
94
95 // All fields are reset by runOnFunction.
96 EHPersonality Personality = EHPersonality::Unknown;
97
98 const DataLayout *DL = nullptr;
99 DenseMap<BasicBlock *, ColorVector> BlockColors;
100 MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
101};
102
103} // end anonymous namespace
104
105char WinEHPrepare::ID = 0;
106INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",static void *initializeWinEHPreparePassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo( "Prepare Windows exceptions"
, "winehprepare", &WinEHPrepare::ID, PassInfo::NormalCtor_t
(callDefaultCtor<WinEHPrepare>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeWinEHPreparePassFlag; void llvm::initializeWinEHPreparePass
(PassRegistry &Registry) { llvm::call_once(InitializeWinEHPreparePassFlag
, initializeWinEHPreparePassOnce, std::ref(Registry)); }
107 false, false)static void *initializeWinEHPreparePassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo( "Prepare Windows exceptions"
, "winehprepare", &WinEHPrepare::ID, PassInfo::NormalCtor_t
(callDefaultCtor<WinEHPrepare>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeWinEHPreparePassFlag; void llvm::initializeWinEHPreparePass
(PassRegistry &Registry) { llvm::call_once(InitializeWinEHPreparePassFlag
, initializeWinEHPreparePassOnce, std::ref(Registry)); }
108
109FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
110 return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
111}
112
113bool WinEHPrepare::runOnFunction(Function &Fn) {
114 if (!Fn.hasPersonalityFn())
115 return false;
116
117 // Classify the personality to see what kind of preparation we need.
118 Personality = classifyEHPersonality(Fn.getPersonalityFn());
119
120 // Do nothing if this is not a scope-based personality.
121 if (!isScopedEHPersonality(Personality))
122 return false;
123
124 DL = &Fn.getParent()->getDataLayout();
125 return prepareExplicitEH(Fn);
126}
127
128bool WinEHPrepare::doFinalization(Module &M) { return false; }
129
130void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
131
132static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
133 const BasicBlock *BB) {
134 CxxUnwindMapEntry UME;
135 UME.ToState = ToState;
136 UME.Cleanup = BB;
137 FuncInfo.CxxUnwindMap.push_back(UME);
138 return FuncInfo.getLastStateNumber();
139}
140
141static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
142 int TryHigh, int CatchHigh,
143 ArrayRef<const CatchPadInst *> Handlers) {
144 WinEHTryBlockMapEntry TBME;
145 TBME.TryLow = TryLow;
146 TBME.TryHigh = TryHigh;
147 TBME.CatchHigh = CatchHigh;
148 assert(TBME.TryLow <= TBME.TryHigh)(static_cast <bool> (TBME.TryLow <= TBME.TryHigh) ? void
(0) : __assert_fail ("TBME.TryLow <= TBME.TryHigh", "llvm/lib/CodeGen/WinEHPrepare.cpp"
, 148, __extension__ __PRETTY_FUNCTION__))
;
149 for (const CatchPadInst *CPI : Handlers) {
150 WinEHHandlerType HT;
151 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
152 if (TypeInfo->isNullValue())
153 HT.TypeDescriptor = nullptr;
154 else
155 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
156 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
157 HT.Handler = CPI->getParent();
158 if (auto *AI =
159 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
160 HT.CatchObj.Alloca = AI;
161 else
162 HT.CatchObj.Alloca = nullptr;
163 TBME.HandlerArray.push_back(HT);
164 }
165 FuncInfo.TryBlockMap.push_back(TBME);
166}
167
168static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
169 for (const User *U : CleanupPad->users())
170 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
171 return CRI->getUnwindDest();
172 return nullptr;
173}
174
175static void calculateStateNumbersForInvokes(const Function *Fn,
176 WinEHFuncInfo &FuncInfo) {
177 auto *F = const_cast<Function *>(Fn);
178 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
179 for (BasicBlock &BB : *F) {
180 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
5
Assuming the object is a 'CastReturnType'
181 if (!II
5.1
'II' is non-null
5.1
'II' is non-null
5.1
'II' is non-null
)
6
Taking false branch
182 continue;
183
184 auto &BBColors = BlockColors[&BB];
185 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation")(static_cast <bool> (BBColors.size() == 1 && "multi-color BB not removed by preparation"
) ? void (0) : __assert_fail ("BBColors.size() == 1 && \"multi-color BB not removed by preparation\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 185, __extension__ __PRETTY_FUNCTION__
))
;
7
Assuming the condition is true
8
'?' condition is true
186 BasicBlock *FuncletEntryBB = BBColors.front();
187
188 BasicBlock *FuncletUnwindDest;
189 auto *FuncletPad =
190 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
9
Assuming the object is not a 'CastReturnType'
191 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock())(static_cast <bool> (FuncletPad || FuncletEntryBB == &
Fn->getEntryBlock()) ? void (0) : __assert_fail ("FuncletPad || FuncletEntryBB == &Fn->getEntryBlock()"
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 191, __extension__ __PRETTY_FUNCTION__
))
;
10
Assuming the condition is true
11
'?' condition is true
192 if (!FuncletPad
11.1
'FuncletPad' is null
11.1
'FuncletPad' is null
11.1
'FuncletPad' is null
)
12
Taking true branch
193 FuncletUnwindDest = nullptr;
194 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
195 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
196 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
197 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
198 else
199 llvm_unreachable("unexpected funclet pad!")::llvm::llvm_unreachable_internal("unexpected funclet pad!", "llvm/lib/CodeGen/WinEHPrepare.cpp"
, 199)
;
200
201 BasicBlock *InvokeUnwindDest = II->getUnwindDest();
13
Calling 'InvokeInst::getUnwindDest'
29
Returning from 'InvokeInst::getUnwindDest'
30
'InvokeUnwindDest' initialized here
202 int BaseState = -1;
203 if (FuncletUnwindDest == InvokeUnwindDest) {
31
Assuming 'FuncletUnwindDest' is equal to 'InvokeUnwindDest'
32
Taking true branch
204 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
205 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
33
Taking false branch
206 BaseState = BaseStateI->second;
207 }
208
209 if (BaseState != -1) {
34
Taking false branch
210 FuncInfo.InvokeStateMap[II] = BaseState;
211 } else {
212 Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
35
Called C++ object pointer is null
213 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!")(static_cast <bool> (FuncInfo.EHPadStateMap.count(PadInst
) && "EH Pad has no state!") ? void (0) : __assert_fail
("FuncInfo.EHPadStateMap.count(PadInst) && \"EH Pad has no state!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 213, __extension__ __PRETTY_FUNCTION__
))
;
214 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
215 }
216 }
217}
218
219// See comments below for calculateSEHStateForAsynchEH().
220// State - incoming State of normal paths
221struct WorkItem {
222 const BasicBlock *Block;
223 int State;
224 WorkItem(const BasicBlock *BB, int St) {
225 Block = BB;
226 State = St;
227 }
228};
229void llvm::calculateCXXStateForAsynchEH(const BasicBlock *BB, int State,
230 WinEHFuncInfo &EHInfo) {
231 SmallVector<struct WorkItem *, 8> WorkList;
232 struct WorkItem *WI = new WorkItem(BB, State);
233 WorkList.push_back(WI);
234
235 while (!WorkList.empty()) {
236 WI = WorkList.pop_back_val();
237 const BasicBlock *BB = WI->Block;
238 int State = WI->State;
239 delete WI;
240 if (EHInfo.BlockToStateMap.count(BB) && EHInfo.BlockToStateMap[BB] <= State)
241 continue; // skip blocks already visited by lower State
242
243 const llvm::Instruction *I = BB->getFirstNonPHI();
244 const llvm::Instruction *TI = BB->getTerminator();
245 if (I->isEHPad())
246 State = EHInfo.EHPadStateMap[I];
247 EHInfo.BlockToStateMap[BB] = State; // Record state, also flag visiting
248
249 if ((isa<CleanupReturnInst>(TI) || isa<CatchReturnInst>(TI)) && State > 0) {
250 // Retrive the new State
251 State = EHInfo.CxxUnwindMap[State].ToState; // Retrive next State
252 } else if (isa<InvokeInst>(TI)) {
253 auto *Call = cast<CallBase>(TI);
254 const Function *Fn = Call->getCalledFunction();
255 if (Fn && Fn->isIntrinsic() &&
256 (Fn->getIntrinsicID() == Intrinsic::seh_scope_begin ||
257 Fn->getIntrinsicID() == Intrinsic::seh_try_begin))
258 // Retrive the new State from seh_scope_begin
259 State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
260 else if (Fn && Fn->isIntrinsic() &&
261 (Fn->getIntrinsicID() == Intrinsic::seh_scope_end ||
262 Fn->getIntrinsicID() == Intrinsic::seh_try_end)) {
263 // In case of conditional ctor, let's retrieve State from Invoke
264 State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
265 // end of current state, retrive new state from UnwindMap
266 State = EHInfo.CxxUnwindMap[State].ToState;
267 }
268 }
269 // Continue push successors into worklist
270 for (auto *SuccBB : successors(BB)) {
271 WI = new WorkItem(SuccBB, State);
272 WorkList.push_back(WI);
273 }
274 }
275}
276
277// The central theory of this routine is based on the following:
278// A _try scope is always a SEME (Single Entry Multiple Exits) region
279// as jumping into a _try is not allowed
280// The single entry must start with a seh_try_begin() invoke with a
281// correct State number that is the initial state of the SEME.
282// Through control-flow, state number is propagated into all blocks.
283// Side exits marked by seh_try_end() will unwind to parent state via
284// existing SEHUnwindMap[].
285// Side exits can ONLY jump into parent scopes (lower state number).
286// Thus, when a block succeeds various states from its predecessors,
287// the lowest State trumphs others.
288// If some exits flow to unreachable, propagation on those paths terminate,
289// not affecting remaining blocks.
290void llvm::calculateSEHStateForAsynchEH(const BasicBlock *BB, int State,
291 WinEHFuncInfo &EHInfo) {
292 SmallVector<struct WorkItem *, 8> WorkList;
293 struct WorkItem *WI = new WorkItem(BB, State);
294 WorkList.push_back(WI);
295
296 while (!WorkList.empty()) {
297 WI = WorkList.pop_back_val();
298 const BasicBlock *BB = WI->Block;
299 int State = WI->State;
300 delete WI;
301 if (EHInfo.BlockToStateMap.count(BB) && EHInfo.BlockToStateMap[BB] <= State)
302 continue; // skip blocks already visited by lower State
303
304 const llvm::Instruction *I = BB->getFirstNonPHI();
305 const llvm::Instruction *TI = BB->getTerminator();
306 if (I->isEHPad())
307 State = EHInfo.EHPadStateMap[I];
308 EHInfo.BlockToStateMap[BB] = State; // Record state
309
310 if (isa<CatchPadInst>(I) && isa<CatchReturnInst>(TI)) {
311 const Constant *FilterOrNull = cast<Constant>(
312 cast<CatchPadInst>(I)->getArgOperand(0)->stripPointerCasts());
313 const Function *Filter = dyn_cast<Function>(FilterOrNull);
314 if (!Filter || !Filter->getName().startswith("__IsLocalUnwind"))
315 State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State
316 } else if ((isa<CleanupReturnInst>(TI) || isa<CatchReturnInst>(TI)) &&
317 State > 0) {
318 // Retrive the new State.
319 State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State
320 } else if (isa<InvokeInst>(TI)) {
321 auto *Call = cast<CallBase>(TI);
322 const Function *Fn = Call->getCalledFunction();
323 if (Fn && Fn->isIntrinsic() &&
324 Fn->getIntrinsicID() == Intrinsic::seh_try_begin)
325 // Retrive the new State from seh_try_begin
326 State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
327 else if (Fn && Fn->isIntrinsic() &&
328 Fn->getIntrinsicID() == Intrinsic::seh_try_end)
329 // end of current state, retrive new state from UnwindMap
330 State = EHInfo.SEHUnwindMap[State].ToState;
331 }
332 // Continue push successors into worklist
333 for (auto *SuccBB : successors(BB)) {
334 WI = new WorkItem(SuccBB, State);
335 WorkList.push_back(WI);
336 }
337 }
338}
339
340// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
341// to. If the unwind edge came from an invoke, return null.
342static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
343 Value *ParentPad) {
344 const Instruction *TI = BB->getTerminator();
345 if (isa<InvokeInst>(TI))
346 return nullptr;
347 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
348 if (CatchSwitch->getParentPad() != ParentPad)
349 return nullptr;
350 return BB;
351 }
352 assert(!TI->isEHPad() && "unexpected EHPad!")(static_cast <bool> (!TI->isEHPad() && "unexpected EHPad!"
) ? void (0) : __assert_fail ("!TI->isEHPad() && \"unexpected EHPad!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 352, __extension__ __PRETTY_FUNCTION__
))
;
353 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
354 if (CleanupPad->getParentPad() != ParentPad)
355 return nullptr;
356 return CleanupPad->getParent();
357}
358
359// Starting from a EHPad, Backward walk through control-flow graph
360// to produce two primary outputs:
361// FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
362static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
363 const Instruction *FirstNonPHI,
364 int ParentState) {
365 const BasicBlock *BB = FirstNonPHI->getParent();
366 assert(BB->isEHPad() && "not a funclet!")(static_cast <bool> (BB->isEHPad() && "not a funclet!"
) ? void (0) : __assert_fail ("BB->isEHPad() && \"not a funclet!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 366, __extension__ __PRETTY_FUNCTION__
))
;
367
368 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
369 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 370, __extension__ __PRETTY_FUNCTION__
))
370 "shouldn't revist catch funclets!")(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 370, __extension__ __PRETTY_FUNCTION__
))
;
371
372 SmallVector<const CatchPadInst *, 2> Handlers;
373 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
374 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
375 Handlers.push_back(CatchPad);
376 }
377 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
378 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
379 for (const BasicBlock *PredBlock : predecessors(BB))
380 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
381 CatchSwitch->getParentPad())))
382 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
383 TryLow);
384 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
385
386 // catchpads are separate funclets in C++ EH due to the way rethrow works.
387 int TryHigh = CatchLow - 1;
388
389 // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
390 // stored in pre-order (outer first, inner next), not post-order
391 // Add to map here. Fix the CatchHigh after children are processed
392 const Module *Mod = BB->getParent()->getParent();
393 bool IsPreOrder = Triple(Mod->getTargetTriple()).isArch64Bit();
394 if (IsPreOrder)
395 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchLow, Handlers);
396 unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1;
397
398 for (const auto *CatchPad : Handlers) {
399 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
400 FuncInfo.EHPadStateMap[CatchPad] = CatchLow;
401 for (const User *U : CatchPad->users()) {
402 const auto *UserI = cast<Instruction>(U);
403 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
404 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
405 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
406 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
407 }
408 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
409 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
410 // If a nested cleanup pad reports a null unwind destination and the
411 // enclosing catch pad doesn't it must be post-dominated by an
412 // unreachable instruction.
413 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
414 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
415 }
416 }
417 }
418 int CatchHigh = FuncInfo.getLastStateNumber();
419 // Now child Catches are processed, update CatchHigh
420 if (IsPreOrder)
421 FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh;
422 else // PostOrder
423 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
424
425 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryLow[" << BB->
getName() << "]: " << TryLow << '\n'; } } while
(false)
;
426 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHighdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryHigh[" << BB->
getName() << "]: " << TryHigh << '\n'; } } while
(false)
427 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryHigh[" << BB->
getName() << "]: " << TryHigh << '\n'; } } while
(false)
;
428 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHighdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "CatchHigh[" << BB->
getName() << "]: " << CatchHigh << '\n'; } }
while (false)
429 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "CatchHigh[" << BB->
getName() << "]: " << CatchHigh << '\n'; } }
while (false)
;
430 } else {
431 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
432
433 // It's possible for a cleanup to be visited twice: it might have multiple
434 // cleanupret instructions.
435 if (FuncInfo.EHPadStateMap.count(CleanupPad))
436 return;
437
438 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
439 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
440 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
441 << BB->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
;
442 for (const BasicBlock *PredBlock : predecessors(BB)) {
443 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
444 CleanupPad->getParentPad()))) {
445 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
446 CleanupState);
447 }
448 }
449 for (const User *U : CleanupPad->users()) {
450 const auto *UserI = cast<Instruction>(U);
451 if (UserI->isEHPad())
452 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
453 "contain exceptional actions");
454 }
455 }
456}
457
458static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
459 const Function *Filter, const BasicBlock *Handler) {
460 SEHUnwindMapEntry Entry;
461 Entry.ToState = ParentState;
462 Entry.IsFinally = false;
463 Entry.Filter = Filter;
464 Entry.Handler = Handler;
465 FuncInfo.SEHUnwindMap.push_back(Entry);
466 return FuncInfo.SEHUnwindMap.size() - 1;
467}
468
469static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
470 const BasicBlock *Handler) {
471 SEHUnwindMapEntry Entry;
472 Entry.ToState = ParentState;
473 Entry.IsFinally = true;
474 Entry.Filter = nullptr;
475 Entry.Handler = Handler;
476 FuncInfo.SEHUnwindMap.push_back(Entry);
477 return FuncInfo.SEHUnwindMap.size() - 1;
478}
479
480// Starting from a EHPad, Backward walk through control-flow graph
481// to produce two primary outputs:
482// FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
483static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
484 const Instruction *FirstNonPHI,
485 int ParentState) {
486 const BasicBlock *BB = FirstNonPHI->getParent();
487 assert(BB->isEHPad() && "no a funclet!")(static_cast <bool> (BB->isEHPad() && "no a funclet!"
) ? void (0) : __assert_fail ("BB->isEHPad() && \"no a funclet!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 487, __extension__ __PRETTY_FUNCTION__
))
;
488
489 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
490 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 491, __extension__ __PRETTY_FUNCTION__
))
491 "shouldn't revist catch funclets!")(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 491, __extension__ __PRETTY_FUNCTION__
))
;
492
493 // Extract the filter function and the __except basic block and create a
494 // state for them.
495 assert(CatchSwitch->getNumHandlers() == 1 &&(static_cast <bool> (CatchSwitch->getNumHandlers() ==
1 && "SEH doesn't have multiple handlers per __try")
? void (0) : __assert_fail ("CatchSwitch->getNumHandlers() == 1 && \"SEH doesn't have multiple handlers per __try\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 496, __extension__ __PRETTY_FUNCTION__
))
496 "SEH doesn't have multiple handlers per __try")(static_cast <bool> (CatchSwitch->getNumHandlers() ==
1 && "SEH doesn't have multiple handlers per __try")
? void (0) : __assert_fail ("CatchSwitch->getNumHandlers() == 1 && \"SEH doesn't have multiple handlers per __try\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 496, __extension__ __PRETTY_FUNCTION__
))
;
497 const auto *CatchPad =
498 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
499 const BasicBlock *CatchPadBB = CatchPad->getParent();
500 const Constant *FilterOrNull =
501 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
502 const Function *Filter = dyn_cast<Function>(FilterOrNull);
503 assert((Filter || FilterOrNull->isNullValue()) &&(static_cast <bool> ((Filter || FilterOrNull->isNullValue
()) && "unexpected filter value") ? void (0) : __assert_fail
("(Filter || FilterOrNull->isNullValue()) && \"unexpected filter value\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 504, __extension__ __PRETTY_FUNCTION__
))
504 "unexpected filter value")(static_cast <bool> ((Filter || FilterOrNull->isNullValue
()) && "unexpected filter value") ? void (0) : __assert_fail
("(Filter || FilterOrNull->isNullValue()) && \"unexpected filter value\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 504, __extension__ __PRETTY_FUNCTION__
))
;
505 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
506
507 // Everything in the __try block uses TryState as its parent state.
508 FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
509 FuncInfo.EHPadStateMap[CatchPad] = TryState;
510 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
TryState << " to BB " << CatchPadBB->getName(
) << '\n'; } } while (false)
511 << CatchPadBB->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
TryState << " to BB " << CatchPadBB->getName(
) << '\n'; } } while (false)
;
512 for (const BasicBlock *PredBlock : predecessors(BB))
513 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
514 CatchSwitch->getParentPad())))
515 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
516 TryState);
517
518 // Everything in the __except block unwinds to ParentState, just like code
519 // outside the __try.
520 for (const User *U : CatchPad->users()) {
521 const auto *UserI = cast<Instruction>(U);
522 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
523 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
524 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
525 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
526 }
527 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
528 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
529 // If a nested cleanup pad reports a null unwind destination and the
530 // enclosing catch pad doesn't it must be post-dominated by an
531 // unreachable instruction.
532 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
533 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
534 }
535 }
536 } else {
537 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
538
539 // It's possible for a cleanup to be visited twice: it might have multiple
540 // cleanupret instructions.
541 if (FuncInfo.EHPadStateMap.count(CleanupPad))
542 return;
543
544 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
545 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
546 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
547 << BB->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
;
548 for (const BasicBlock *PredBlock : predecessors(BB))
549 if ((PredBlock =
550 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
551 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
552 CleanupState);
553 for (const User *U : CleanupPad->users()) {
554 const auto *UserI = cast<Instruction>(U);
555 if (UserI->isEHPad())
556 report_fatal_error("Cleanup funclets for the SEH personality cannot "
557 "contain exceptional actions");
558 }
559 }
560}
561
562static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
563 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
564 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
565 CatchSwitch->unwindsToCaller();
566 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
567 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
568 getCleanupRetUnwindDest(CleanupPad) == nullptr;
569 if (isa<CatchPadInst>(EHPad))
570 return false;
571 llvm_unreachable("unexpected EHPad!")::llvm::llvm_unreachable_internal("unexpected EHPad!", "llvm/lib/CodeGen/WinEHPrepare.cpp"
, 571)
;
572}
573
574void llvm::calculateSEHStateNumbers(const Function *Fn,
575 WinEHFuncInfo &FuncInfo) {
576 // Don't compute state numbers twice.
577 if (!FuncInfo.SEHUnwindMap.empty())
578 return;
579
580 for (const BasicBlock &BB : *Fn) {
581 if (!BB.isEHPad())
582 continue;
583 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
584 if (!isTopLevelPadForMSVC(FirstNonPHI))
585 continue;
586 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
587 }
588
589 calculateStateNumbersForInvokes(Fn, FuncInfo);
590
591 bool IsEHa = Fn->getParent()->getModuleFlag("eh-asynch");
592 if (IsEHa) {
593 const BasicBlock *EntryBB = &(Fn->getEntryBlock());
594 calculateSEHStateForAsynchEH(EntryBB, -1, FuncInfo);
595 }
596}
597
598void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
599 WinEHFuncInfo &FuncInfo) {
600 // Return if it's already been done.
601 if (!FuncInfo.EHPadStateMap.empty())
602 return;
603
604 for (const BasicBlock &BB : *Fn) {
605 if (!BB.isEHPad())
606 continue;
607 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
608 if (!isTopLevelPadForMSVC(FirstNonPHI))
609 continue;
610 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
611 }
612
613 calculateStateNumbersForInvokes(Fn, FuncInfo);
614
615 bool IsEHa = Fn->getParent()->getModuleFlag("eh-asynch");
616 if (IsEHa) {
617 const BasicBlock *EntryBB = &(Fn->getEntryBlock());
618 calculateCXXStateForAsynchEH(EntryBB, -1, FuncInfo);
619 }
620}
621
622static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
623 int TryParentState, ClrHandlerType HandlerType,
624 uint32_t TypeToken, const BasicBlock *Handler) {
625 ClrEHUnwindMapEntry Entry;
626 Entry.HandlerParentState = HandlerParentState;
627 Entry.TryParentState = TryParentState;
628 Entry.Handler = Handler;
629 Entry.HandlerType = HandlerType;
630 Entry.TypeToken = TypeToken;
631 FuncInfo.ClrEHUnwindMap.push_back(Entry);
632 return FuncInfo.ClrEHUnwindMap.size() - 1;
633}
634
635void llvm::calculateClrEHStateNumbers(const Function *Fn,
636 WinEHFuncInfo &FuncInfo) {
637 // Return if it's already been done.
638 if (!FuncInfo.EHPadStateMap.empty())
1
Assuming the condition is false
2
Taking false branch
639 return;
640
641 // This numbering assigns one state number to each catchpad and cleanuppad.
642 // It also computes two tree-like relations over states:
643 // 1) Each state has a "HandlerParentState", which is the state of the next
644 // outer handler enclosing this state's handler (same as nearest ancestor
645 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
646 // 2) Each state has a "TryParentState", which:
647 // a) for a catchpad that's not the last handler on its catchswitch, is
648 // the state of the next catchpad on that catchswitch
649 // b) for all other pads, is the state of the pad whose try region is the
650 // next outer try region enclosing this state's try region. The "try
651 // regions are not present as such in the IR, but will be inferred
652 // based on the placement of invokes and pads which reach each other
653 // by exceptional exits
654 // Catchswitches do not get their own states, but each gets mapped to the
655 // state of its first catchpad.
656
657 // Step one: walk down from outermost to innermost funclets, assigning each
658 // catchpad and cleanuppad a state number. Add an entry to the
659 // ClrEHUnwindMap for each state, recording its HandlerParentState and
660 // handler attributes. Record the TryParentState as well for each catchpad
661 // that's not the last on its catchswitch, but initialize all other entries'
662 // TryParentStates to a sentinel -1 value that the next pass will update.
663
664 // Seed a worklist with pads that have no parent.
665 SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
666 for (const BasicBlock &BB : *Fn) {
667 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
668 const Value *ParentPad;
669 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
670 ParentPad = CPI->getParentPad();
671 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
672 ParentPad = CSI->getParentPad();
673 else
674 continue;
675 if (isa<ConstantTokenNone>(ParentPad))
676 Worklist.emplace_back(FirstNonPHI, -1);
677 }
678
679 // Use the worklist to visit all pads, from outer to inner. Record
680 // HandlerParentState for all pads. Record TryParentState only for catchpads
681 // that aren't the last on their catchswitch (setting all other entries'
682 // TryParentStates to an initial value of -1). This loop is also responsible
683 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
684 // catchswitches.
685 while (!Worklist.empty()) {
3
Loop condition is false. Execution continues on line 738
686 const Instruction *Pad;
687 int HandlerParentState;
688 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
689
690 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
691 // Create the entry for this cleanup with the appropriate handler
692 // properties. Finally and fault handlers are distinguished by arity.
693 ClrHandlerType HandlerType =
694 (Cleanup->arg_size() ? ClrHandlerType::Fault
695 : ClrHandlerType::Finally);
696 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
697 HandlerType, 0, Pad->getParent());
698 // Queue any child EH pads on the worklist.
699 for (const User *U : Cleanup->users())
700 if (const auto *I = dyn_cast<Instruction>(U))
701 if (I->isEHPad())
702 Worklist.emplace_back(I, CleanupState);
703 // Remember this pad's state.
704 FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
705 } else {
706 // Walk the handlers of this catchswitch in reverse order since all but
707 // the last need to set the following one as its TryParentState.
708 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
709 int CatchState = -1, FollowerState = -1;
710 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
711 for (const BasicBlock *CatchBlock : llvm::reverse(CatchBlocks)) {
712 // Create the entry for this catch with the appropriate handler
713 // properties.
714 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
715 uint32_t TypeToken = static_cast<uint32_t>(
716 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
717 CatchState =
718 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
719 ClrHandlerType::Catch, TypeToken, CatchBlock);
720 // Queue any child EH pads on the worklist.
721 for (const User *U : Catch->users())
722 if (const auto *I = dyn_cast<Instruction>(U))
723 if (I->isEHPad())
724 Worklist.emplace_back(I, CatchState);
725 // Remember this catch's state.
726 FuncInfo.EHPadStateMap[Catch] = CatchState;
727 FollowerState = CatchState;
728 }
729 // Associate the catchswitch with the state of its first catch.
730 assert(CatchSwitch->getNumHandlers())(static_cast <bool> (CatchSwitch->getNumHandlers()) ?
void (0) : __assert_fail ("CatchSwitch->getNumHandlers()"
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 730, __extension__ __PRETTY_FUNCTION__
))
;
731 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
732 }
733 }
734
735 // Step two: record the TryParentState of each state. For cleanuppads that
736 // don't have cleanuprets, we may need to infer this from their child pads,
737 // so visit pads in descendant-most to ancestor-most order.
738 for (ClrEHUnwindMapEntry &Entry : llvm::reverse(FuncInfo.ClrEHUnwindMap)) {
739 const Instruction *Pad =
740 cast<const BasicBlock *>(Entry.Handler)->getFirstNonPHI();
741 // For most pads, the TryParentState is the state associated with the
742 // unwind dest of exceptional exits from it.
743 const BasicBlock *UnwindDest;
744 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
745 // If a catch is not the last in its catchswitch, its TryParentState is
746 // the state associated with the next catch in the switch, even though
747 // that's not the unwind dest of exceptions escaping the catch. Those
748 // cases were already assigned a TryParentState in the first pass, so
749 // skip them.
750 if (Entry.TryParentState != -1)
751 continue;
752 // Otherwise, get the unwind dest from the catchswitch.
753 UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
754 } else {
755 const auto *Cleanup = cast<CleanupPadInst>(Pad);
756 UnwindDest = nullptr;
757 for (const User *U : Cleanup->users()) {
758 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
759 // Common and unambiguous case -- cleanupret indicates cleanup's
760 // unwind dest.
761 UnwindDest = CleanupRet->getUnwindDest();
762 break;
763 }
764
765 // Get an unwind dest for the user
766 const BasicBlock *UserUnwindDest = nullptr;
767 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
768 UserUnwindDest = Invoke->getUnwindDest();
769 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
770 UserUnwindDest = CatchSwitch->getUnwindDest();
771 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
772 int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
773 int UserUnwindState =
774 FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
775 if (UserUnwindState != -1)
776 UserUnwindDest = cast<const BasicBlock *>(
777 FuncInfo.ClrEHUnwindMap[UserUnwindState].Handler);
778 }
779
780 // Not having an unwind dest for this user might indicate that it
781 // doesn't unwind, so can't be taken as proof that the cleanup itself
782 // may unwind to caller (see e.g. SimplifyUnreachable and
783 // RemoveUnwindEdge).
784 if (!UserUnwindDest)
785 continue;
786
787 // Now we have an unwind dest for the user, but we need to see if it
788 // unwinds all the way out of the cleanup or if it stays within it.
789 const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
790 const Value *UserUnwindParent;
791 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
792 UserUnwindParent = CSI->getParentPad();
793 else
794 UserUnwindParent =
795 cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
796
797 // The unwind stays within the cleanup iff it targets a child of the
798 // cleanup.
799 if (UserUnwindParent == Cleanup)
800 continue;
801
802 // This unwind exits the cleanup, so its dest is the cleanup's dest.
803 UnwindDest = UserUnwindDest;
804 break;
805 }
806 }
807
808 // Record the state of the unwind dest as the TryParentState.
809 int UnwindDestState;
810
811 // If UnwindDest is null at this point, either the pad in question can
812 // be exited by unwind to caller, or it cannot be exited by unwind. In
813 // either case, reporting such cases as unwinding to caller is correct.
814 // This can lead to EH tables that "look strange" -- if this pad's is in
815 // a parent funclet which has other children that do unwind to an enclosing
816 // pad, the try region for this pad will be missing the "duplicate" EH
817 // clause entries that you'd expect to see covering the whole parent. That
818 // should be benign, since the unwind never actually happens. If it were
819 // an issue, we could add a subsequent pass that pushes unwind dests down
820 // from parents that have them to children that appear to unwind to caller.
821 if (!UnwindDest) {
822 UnwindDestState = -1;
823 } else {
824 UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
825 }
826
827 Entry.TryParentState = UnwindDestState;
828 }
829
830 // Step three: transfer information from pads to invokes.
831 calculateStateNumbersForInvokes(Fn, FuncInfo);
4
Calling 'calculateStateNumbersForInvokes'
832}
833
834void WinEHPrepare::colorFunclets(Function &F) {
835 BlockColors = colorEHFunclets(F);
836
837 // Invert the map from BB to colors to color to BBs.
838 for (BasicBlock &BB : F) {
839 ColorVector &Colors = BlockColors[&BB];
840 for (BasicBlock *Color : Colors)
841 FuncletBlocks[Color].push_back(&BB);
842 }
843}
844
845void WinEHPrepare::demotePHIsOnFunclets(Function &F,
846 bool DemoteCatchSwitchPHIOnly) {
847 // Strip PHI nodes off of EH pads.
848 SmallVector<PHINode *, 16> PHINodes;
849 for (BasicBlock &BB : make_early_inc_range(F)) {
850 if (!BB.isEHPad())
851 continue;
852 if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB.getFirstNonPHI()))
853 continue;
854
855 for (Instruction &I : make_early_inc_range(BB)) {
856 auto *PN = dyn_cast<PHINode>(&I);
857 // Stop at the first non-PHI.
858 if (!PN)
859 break;
860
861 AllocaInst *SpillSlot = insertPHILoads(PN, F);
862 if (SpillSlot)
863 insertPHIStores(PN, SpillSlot);
864
865 PHINodes.push_back(PN);
866 }
867 }
868
869 for (auto *PN : PHINodes) {
870 // There may be lingering uses on other EH PHIs being removed
871 PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
872 PN->eraseFromParent();
873 }
874}
875
876void WinEHPrepare::cloneCommonBlocks(Function &F) {
877 // We need to clone all blocks which belong to multiple funclets. Values are
878 // remapped throughout the funclet to propagate both the new instructions
879 // *and* the new basic blocks themselves.
880 for (auto &Funclets : FuncletBlocks) {
881 BasicBlock *FuncletPadBB = Funclets.first;
882 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
883 Value *FuncletToken;
884 if (FuncletPadBB == &F.getEntryBlock())
885 FuncletToken = ConstantTokenNone::get(F.getContext());
886 else
887 FuncletToken = FuncletPadBB->getFirstNonPHI();
888
889 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
890 ValueToValueMapTy VMap;
891 for (BasicBlock *BB : BlocksInFunclet) {
892 ColorVector &ColorsForBB = BlockColors[BB];
893 // We don't need to do anything if the block is monochromatic.
894 size_t NumColorsForBB = ColorsForBB.size();
895 if (NumColorsForBB == 1)
896 continue;
897
898 DEBUG_WITH_TYPE("winehprepare-coloring",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
899 dbgs() << " Cloning block \'" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
900 << "\' for funclet \'" << FuncletPadBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
901 << "\'.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
;
902
903 // Create a new basic block and copy instructions into it!
904 BasicBlock *CBB =
905 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
906 // Insert the clone immediately after the original to ensure determinism
907 // and to keep the same relative ordering of any funclet's blocks.
908 CBB->insertInto(&F, BB->getNextNode());
909
910 // Add basic block mapping.
911 VMap[BB] = CBB;
912
913 // Record delta operations that we need to perform to our color mappings.
914 Orig2Clone.emplace_back(BB, CBB);
915 }
916
917 // If nothing was cloned, we're done cloning in this funclet.
918 if (Orig2Clone.empty())
919 continue;
920
921 // Update our color mappings to reflect that one block has lost a color and
922 // another has gained a color.
923 for (auto &BBMapping : Orig2Clone) {
924 BasicBlock *OldBlock = BBMapping.first;
925 BasicBlock *NewBlock = BBMapping.second;
926
927 BlocksInFunclet.push_back(NewBlock);
928 ColorVector &NewColors = BlockColors[NewBlock];
929 assert(NewColors.empty() && "A new block should only have one color!")(static_cast <bool> (NewColors.empty() && "A new block should only have one color!"
) ? void (0) : __assert_fail ("NewColors.empty() && \"A new block should only have one color!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 929, __extension__ __PRETTY_FUNCTION__
))
;
930 NewColors.push_back(FuncletPadBB);
931
932 DEBUG_WITH_TYPE("winehprepare-coloring",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
933 dbgs() << " Assigned color \'" << FuncletPadBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
934 << "\' to block \'" << NewBlock->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
935 << "\'.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
;
936
937 llvm::erase_value(BlocksInFunclet, OldBlock);
938 ColorVector &OldColors = BlockColors[OldBlock];
939 llvm::erase_value(OldColors, FuncletPadBB);
940
941 DEBUG_WITH_TYPE("winehprepare-coloring",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
942 dbgs() << " Removed color \'" << FuncletPadBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
943 << "\' from block \'" << OldBlock->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
944 << "\'.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
;
945 }
946
947 // Loop over all of the instructions in this funclet, fixing up operand
948 // references as we go. This uses VMap to do all the hard work.
949 for (BasicBlock *BB : BlocksInFunclet)
950 // Loop over all instructions, fixing each one as we find it...
951 for (Instruction &I : *BB)
952 RemapInstruction(&I, VMap,
953 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
954
955 // Catchrets targeting cloned blocks need to be updated separately from
956 // the loop above because they are not in the current funclet.
957 SmallVector<CatchReturnInst *, 2> FixupCatchrets;
958 for (auto &BBMapping : Orig2Clone) {
959 BasicBlock *OldBlock = BBMapping.first;
960 BasicBlock *NewBlock = BBMapping.second;
961
962 FixupCatchrets.clear();
963 for (BasicBlock *Pred : predecessors(OldBlock))
964 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
965 if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
966 FixupCatchrets.push_back(CatchRet);
967
968 for (CatchReturnInst *CatchRet : FixupCatchrets)
969 CatchRet->setSuccessor(NewBlock);
970 }
971
972 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
973 unsigned NumPreds = PN->getNumIncomingValues();
974 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
975 ++PredIdx) {
976 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
977 bool EdgeTargetsFunclet;
978 if (auto *CRI =
979 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
980 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
981 } else {
982 ColorVector &IncomingColors = BlockColors[IncomingBlock];
983 assert(!IncomingColors.empty() && "Block not colored!")(static_cast <bool> (!IncomingColors.empty() &&
"Block not colored!") ? void (0) : __assert_fail ("!IncomingColors.empty() && \"Block not colored!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 983, __extension__ __PRETTY_FUNCTION__
))
;
984 assert((IncomingColors.size() == 1 ||(static_cast <bool> ((IncomingColors.size() == 1 || !llvm
::is_contained(IncomingColors, FuncletPadBB)) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || !llvm::is_contained(IncomingColors, FuncletPadBB)) && \"Cloning should leave this funclet's blocks monochromatic\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 986, __extension__ __PRETTY_FUNCTION__
))
985 !llvm::is_contained(IncomingColors, FuncletPadBB)) &&(static_cast <bool> ((IncomingColors.size() == 1 || !llvm
::is_contained(IncomingColors, FuncletPadBB)) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || !llvm::is_contained(IncomingColors, FuncletPadBB)) && \"Cloning should leave this funclet's blocks monochromatic\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 986, __extension__ __PRETTY_FUNCTION__
))
986 "Cloning should leave this funclet's blocks monochromatic")(static_cast <bool> ((IncomingColors.size() == 1 || !llvm
::is_contained(IncomingColors, FuncletPadBB)) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || !llvm::is_contained(IncomingColors, FuncletPadBB)) && \"Cloning should leave this funclet's blocks monochromatic\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 986, __extension__ __PRETTY_FUNCTION__
))
;
987 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
988 }
989 if (IsForOldBlock != EdgeTargetsFunclet)
990 continue;
991 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
992 // Revisit the next entry.
993 --PredIdx;
994 --PredEnd;
995 }
996 };
997
998 for (auto &BBMapping : Orig2Clone) {
999 BasicBlock *OldBlock = BBMapping.first;
1000 BasicBlock *NewBlock = BBMapping.second;
1001 for (PHINode &OldPN : OldBlock->phis()) {
1002 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
1003 }
1004 for (PHINode &NewPN : NewBlock->phis()) {
1005 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
1006 }
1007 }
1008
1009 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
1010 // the PHI nodes for NewBB now.
1011 for (auto &BBMapping : Orig2Clone) {
1012 BasicBlock *OldBlock = BBMapping.first;
1013 BasicBlock *NewBlock = BBMapping.second;
1014 for (BasicBlock *SuccBB : successors(NewBlock)) {
1015 for (PHINode &SuccPN : SuccBB->phis()) {
1016 // Ok, we have a PHI node. Figure out what the incoming value was for
1017 // the OldBlock.
1018 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
1019 if (OldBlockIdx == -1)
1020 break;
1021 Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
1022
1023 // Remap the value if necessary.
1024 if (auto *Inst = dyn_cast<Instruction>(IV)) {
1025 ValueToValueMapTy::iterator I = VMap.find(Inst);
1026 if (I != VMap.end())
1027 IV = I->second;
1028 }
1029
1030 SuccPN.addIncoming(IV, NewBlock);
1031 }
1032 }
1033 }
1034
1035 for (ValueToValueMapTy::value_type VT : VMap) {
1036 // If there were values defined in BB that are used outside the funclet,
1037 // then we now have to update all uses of the value to use either the
1038 // original value, the cloned value, or some PHI derived value. This can
1039 // require arbitrary PHI insertion, of which we are prepared to do, clean
1040 // these up now.
1041 SmallVector<Use *, 16> UsesToRename;
1042
1043 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
1044 if (!OldI)
1045 continue;
1046 auto *NewI = cast<Instruction>(VT.second);
1047 // Scan all uses of this instruction to see if it is used outside of its
1048 // funclet, and if so, record them in UsesToRename.
1049 for (Use &U : OldI->uses()) {
1050 Instruction *UserI = cast<Instruction>(U.getUser());
1051 BasicBlock *UserBB = UserI->getParent();
1052 ColorVector &ColorsForUserBB = BlockColors[UserBB];
1053 assert(!ColorsForUserBB.empty())(static_cast <bool> (!ColorsForUserBB.empty()) ? void (
0) : __assert_fail ("!ColorsForUserBB.empty()", "llvm/lib/CodeGen/WinEHPrepare.cpp"
, 1053, __extension__ __PRETTY_FUNCTION__))
;
1054 if (ColorsForUserBB.size() > 1 ||
1055 *ColorsForUserBB.begin() != FuncletPadBB)
1056 UsesToRename.push_back(&U);
1057 }
1058
1059 // If there are no uses outside the block, we're done with this
1060 // instruction.
1061 if (UsesToRename.empty())
1062 continue;
1063
1064 // We found a use of OldI outside of the funclet. Rename all uses of OldI
1065 // that are outside its funclet to be uses of the appropriate PHI node
1066 // etc.
1067 SSAUpdater SSAUpdate;
1068 SSAUpdate.Initialize(OldI->getType(), OldI->getName());
1069 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
1070 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
1071
1072 while (!UsesToRename.empty())
1073 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
1074 }
1075 }
1076}
1077
1078void WinEHPrepare::removeImplausibleInstructions(Function &F) {
1079 // Remove implausible terminators and replace them with UnreachableInst.
1080 for (auto &Funclet : FuncletBlocks) {
1081 BasicBlock *FuncletPadBB = Funclet.first;
1082 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
1083 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
1084 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
1085 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
1086 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
1087
1088 for (BasicBlock *BB : BlocksInFunclet) {
1089 for (Instruction &I : *BB) {
1090 auto *CB = dyn_cast<CallBase>(&I);
1091 if (!CB)
1092 continue;
1093
1094 Value *FuncletBundleOperand = nullptr;
1095 if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet))
1096 FuncletBundleOperand = BU->Inputs.front();
1097
1098 if (FuncletBundleOperand == FuncletPad)
1099 continue;
1100
1101 // Skip call sites which are nounwind intrinsics or inline asm.
1102 auto *CalledFn =
1103 dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
1104 if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) ||
1105 CB->isInlineAsm()))
1106 continue;
1107
1108 // This call site was not part of this funclet, remove it.
1109 if (isa<InvokeInst>(CB)) {
1110 // Remove the unwind edge if it was an invoke.
1111 removeUnwindEdge(BB);
1112 // Get a pointer to the new call.
1113 BasicBlock::iterator CallI =
1114 std::prev(BB->getTerminator()->getIterator());
1115 auto *CI = cast<CallInst>(&*CallI);
1116 changeToUnreachable(CI);
1117 } else {
1118 changeToUnreachable(&I);
1119 }
1120
1121 // There are no more instructions in the block (except for unreachable),
1122 // we are done.
1123 break;
1124 }
1125
1126 Instruction *TI = BB->getTerminator();
1127 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
1128 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
1129 // The token consumed by a CatchReturnInst must match the funclet token.
1130 bool IsUnreachableCatchret = false;
1131 if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
1132 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
1133 // The token consumed by a CleanupReturnInst must match the funclet token.
1134 bool IsUnreachableCleanupret = false;
1135 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
1136 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
1137 if (IsUnreachableRet || IsUnreachableCatchret ||
1138 IsUnreachableCleanupret) {
1139 changeToUnreachable(TI);
1140 } else if (isa<InvokeInst>(TI)) {
1141 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
1142 // Invokes within a cleanuppad for the MSVC++ personality never
1143 // transfer control to their unwind edge: the personality will
1144 // terminate the program.
1145 removeUnwindEdge(BB);
1146 }
1147 }
1148 }
1149 }
1150}
1151
1152void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
1153 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1154 // branches, etc.
1155 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
1156 SimplifyInstructionsInBlock(&BB);
1157 ConstantFoldTerminator(&BB, /*DeleteDeadConditions=*/true);
1158 MergeBlockIntoPredecessor(&BB);
1159 }
1160
1161 // We might have some unreachable blocks after cleaning up some impossible
1162 // control flow.
1163 removeUnreachableBlocks(F);
1164}
1165
1166#ifndef NDEBUG
1167void WinEHPrepare::verifyPreparedFunclets(Function &F) {
1168 for (BasicBlock &BB : F) {
1169 size_t NumColors = BlockColors[&BB].size();
1170 assert(NumColors == 1 && "Expected monochromatic BB!")(static_cast <bool> (NumColors == 1 && "Expected monochromatic BB!"
) ? void (0) : __assert_fail ("NumColors == 1 && \"Expected monochromatic BB!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 1170, __extension__ __PRETTY_FUNCTION__
))
;
1171 if (NumColors == 0)
1172 report_fatal_error("Uncolored BB!");
1173 if (NumColors > 1)
1174 report_fatal_error("Multicolor BB!");
1175 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&(static_cast <bool> ((DisableDemotion || !(BB.isEHPad()
&& isa<PHINode>(BB.begin()))) && "EH Pad still has a PHI!"
) ? void (0) : __assert_fail ("(DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && \"EH Pad still has a PHI!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 1176, __extension__ __PRETTY_FUNCTION__
))
1176 "EH Pad still has a PHI!")(static_cast <bool> ((DisableDemotion || !(BB.isEHPad()
&& isa<PHINode>(BB.begin()))) && "EH Pad still has a PHI!"
) ? void (0) : __assert_fail ("(DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && \"EH Pad still has a PHI!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 1176, __extension__ __PRETTY_FUNCTION__
))
;
1177 }
1178}
1179#endif
1180
1181bool WinEHPrepare::prepareExplicitEH(Function &F) {
1182 // Remove unreachable blocks. It is not valuable to assign them a color and
1183 // their existence can trick us into thinking values are alive when they are
1184 // not.
1185 removeUnreachableBlocks(F);
1186
1187 // Determine which blocks are reachable from which funclet entries.
1188 colorFunclets(F);
1189
1190 cloneCommonBlocks(F);
1191
1192 if (!DisableDemotion)
1193 demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1194 DemoteCatchSwitchPHIOnlyOpt);
1195
1196 if (!DisableCleanups) {
1197 assert(!verifyFunction(F, &dbgs()))(static_cast <bool> (!verifyFunction(F, &dbgs())) ?
void (0) : __assert_fail ("!verifyFunction(F, &dbgs())",
"llvm/lib/CodeGen/WinEHPrepare.cpp", 1197, __extension__ __PRETTY_FUNCTION__
))
;
1198 removeImplausibleInstructions(F);
1199
1200 assert(!verifyFunction(F, &dbgs()))(static_cast <bool> (!verifyFunction(F, &dbgs())) ?
void (0) : __assert_fail ("!verifyFunction(F, &dbgs())",
"llvm/lib/CodeGen/WinEHPrepare.cpp", 1200, __extension__ __PRETTY_FUNCTION__
))
;
1201 cleanupPreparedFunclets(F);
1202 }
1203
1204 LLVM_DEBUG(verifyPreparedFunclets(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { verifyPreparedFunclets(F); } } while (false
)
;
1205 // Recolor the CFG to verify that all is well.
1206 LLVM_DEBUG(colorFunclets(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { colorFunclets(F); } } while (false)
;
1207 LLVM_DEBUG(verifyPreparedFunclets(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { verifyPreparedFunclets(F); } } while (false
)
;
1208
1209 BlockColors.clear();
1210 FuncletBlocks.clear();
1211
1212 return true;
1213}
1214
1215// TODO: Share loads when one use dominates another, or when a catchpad exit
1216// dominates uses (needs dominators).
1217AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
1218 BasicBlock *PHIBlock = PN->getParent();
1219 AllocaInst *SpillSlot = nullptr;
1220 Instruction *EHPad = PHIBlock->getFirstNonPHI();
1221
1222 if (!EHPad->isTerminator()) {
1223 // If the EHPad isn't a terminator, then we can insert a load in this block
1224 // that will dominate all uses.
1225 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1226 Twine(PN->getName(), ".wineh.spillslot"),
1227 &F.getEntryBlock().front());
1228 Value *V = new LoadInst(PN->getType(), SpillSlot,
1229 Twine(PN->getName(), ".wineh.reload"),
1230 &*PHIBlock->getFirstInsertionPt());
1231 PN->replaceAllUsesWith(V);
1232 return SpillSlot;
1233 }
1234
1235 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1236 // loads of the slot before every use.
1237 DenseMap<BasicBlock *, Value *> Loads;
1238 for (Use &U : llvm::make_early_inc_range(PN->uses())) {
1239 auto *UsingInst = cast<Instruction>(U.getUser());
1240 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1241 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1242 // stores for it separately.
1243 continue;
1244 }
1245 replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1246 }
1247 return SpillSlot;
1248}
1249
1250// TODO: improve store placement. Inserting at def is probably good, but need
1251// to be careful not to introduce interfering stores (needs liveness analysis).
1252// TODO: identify related phi nodes that can share spill slots, and share them
1253// (also needs liveness).
1254void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
1255 AllocaInst *SpillSlot) {
1256 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1257 // stored to the spill slot by the end of the given Block.
1258 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1259
1260 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1261
1262 while (!Worklist.empty()) {
1263 BasicBlock *EHBlock;
1264 Value *InVal;
1265 std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1266
1267 PHINode *PN = dyn_cast<PHINode>(InVal);
1268 if (PN && PN->getParent() == EHBlock) {
1269 // The value is defined by another PHI we need to remove, with no room to
1270 // insert a store after the PHI, so each predecessor needs to store its
1271 // incoming value.
1272 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1273 Value *PredVal = PN->getIncomingValue(i);
1274
1275 // Undef can safely be skipped.
1276 if (isa<UndefValue>(PredVal))
1277 continue;
1278
1279 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1280 }
1281 } else {
1282 // We need to store InVal, which dominates EHBlock, but can't put a store
1283 // in EHBlock, so need to put stores in each predecessor.
1284 for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1285 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1286 }
1287 }
1288 }
1289}
1290
1291void WinEHPrepare::insertPHIStore(
1292 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1293 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1294
1295 if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
1296 // Pred is unsplittable, so we need to queue it on the worklist.
1297 Worklist.push_back({PredBlock, PredVal});
1298 return;
1299 }
1300
1301 // Otherwise, insert the store at the end of the basic block.
1302 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1303}
1304
1305void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
1306 DenseMap<BasicBlock *, Value *> &Loads,
1307 Function &F) {
1308 // Lazilly create the spill slot.
1309 if (!SpillSlot)
1310 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1311 Twine(V->getName(), ".wineh.spillslot"),
1312 &F.getEntryBlock().front());
1313
1314 auto *UsingInst = cast<Instruction>(U.getUser());
1315 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1316 // If this is a PHI node, we can't insert a load of the value before
1317 // the use. Instead insert the load in the predecessor block
1318 // corresponding to the incoming value.
1319 //
1320 // Note that if there are multiple edges from a basic block to this
1321 // PHI node that we cannot have multiple loads. The problem is that
1322 // the resulting PHI node will have multiple values (from each load)
1323 // coming in from the same block, which is illegal SSA form.
1324 // For this reason, we keep track of and reuse loads we insert.
1325 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1326 if (auto *CatchRet =
1327 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1328 // Putting a load above a catchret and use on the phi would still leave
1329 // a cross-funclet def/use. We need to split the edge, change the
1330 // catchret to target the new block, and put the load there.
1331 BasicBlock *PHIBlock = UsingInst->getParent();
1332 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1333 // SplitEdge gives us:
1334 // IncomingBlock:
1335 // ...
1336 // br label %NewBlock
1337 // NewBlock:
1338 // catchret label %PHIBlock
1339 // But we need:
1340 // IncomingBlock:
1341 // ...
1342 // catchret label %NewBlock
1343 // NewBlock:
1344 // br label %PHIBlock
1345 // So move the terminators to each others' blocks and swap their
1346 // successors.
1347 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1348 Goto->removeFromParent();
1349 CatchRet->removeFromParent();
1350 CatchRet->insertInto(IncomingBlock, IncomingBlock->end());
1351 Goto->insertInto(NewBlock, NewBlock->end());
1352 Goto->setSuccessor(0, PHIBlock);
1353 CatchRet->setSuccessor(NewBlock);
1354 // Update the color mapping for the newly split edge.
1355 // Grab a reference to the ColorVector to be inserted before getting the
1356 // reference to the vector we are copying because inserting the new
1357 // element in BlockColors might cause the map to be reallocated.
1358 ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1359 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1360 ColorsForNewBlock = ColorsForPHIBlock;
1361 for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1362 FuncletBlocks[FuncletPad].push_back(NewBlock);
1363 // Treat the new block as incoming for load insertion.
1364 IncomingBlock = NewBlock;
1365 }
1366 Value *&Load = Loads[IncomingBlock];
1367 // Insert the load into the predecessor block
1368 if (!Load)
1369 Load = new LoadInst(V->getType(), SpillSlot,
1370 Twine(V->getName(), ".wineh.reload"),
1371 /*isVolatile=*/false, IncomingBlock->getTerminator());
1372
1373 U.set(Load);
1374 } else {
1375 // Reload right before the old use.
1376 auto *Load = new LoadInst(V->getType(), SpillSlot,
1377 Twine(V->getName(), ".wineh.reload"),
1378 /*isVolatile=*/false, UsingInst);
1379 U.set(Load);
1380 }
1381}
1382
1383void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1384 MCSymbol *InvokeBegin,
1385 MCSymbol *InvokeEnd) {
1386 assert(InvokeStateMap.count(II) &&(static_cast <bool> (InvokeStateMap.count(II) &&
"should get invoke with precomputed state") ? void (0) : __assert_fail
("InvokeStateMap.count(II) && \"should get invoke with precomputed state\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 1387, __extension__ __PRETTY_FUNCTION__
))
1387 "should get invoke with precomputed state")(static_cast <bool> (InvokeStateMap.count(II) &&
"should get invoke with precomputed state") ? void (0) : __assert_fail
("InvokeStateMap.count(II) && \"should get invoke with precomputed state\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 1387, __extension__ __PRETTY_FUNCTION__
))
;
1388 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1389}
1390
1391void WinEHFuncInfo::addIPToStateRange(int State, MCSymbol* InvokeBegin,
1392 MCSymbol* InvokeEnd) {
1393 LabelToStateMap[InvokeBegin] = std::make_pair(State, InvokeEnd);
1394}
1395
1396WinEHFuncInfo::WinEHFuncInfo() = default;

/build/source/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/ADT/iterator.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/CFG.h"
27#include "llvm/IR/Constant.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/InstrTypes.h"
30#include "llvm/IR/Instruction.h"
31#include "llvm/IR/OperandTraits.h"
32#include "llvm/IR/Use.h"
33#include "llvm/IR/User.h"
34#include "llvm/Support/AtomicOrdering.h"
35#include "llvm/Support/ErrorHandling.h"
36#include <cassert>
37#include <cstddef>
38#include <cstdint>
39#include <iterator>
40#include <optional>
41
42namespace llvm {
43
44class APFloat;
45class APInt;
46class BasicBlock;
47class ConstantInt;
48class DataLayout;
49class StringRef;
50class Type;
51class Value;
52
53//===----------------------------------------------------------------------===//
54// AllocaInst Class
55//===----------------------------------------------------------------------===//
56
57/// an instruction to allocate memory on the stack
58class AllocaInst : public UnaryInstruction {
59 Type *AllocatedType;
60
61 using AlignmentField = AlignmentBitfieldElementT<0>;
62 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
63 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
64 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
65 SwiftErrorField>(),
66 "Bitfields must be contiguous");
67
68protected:
69 // Note: Instruction needs to be a friend here to call cloneImpl.
70 friend class Instruction;
71
72 AllocaInst *cloneImpl() const;
73
74public:
75 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
76 const Twine &Name, Instruction *InsertBefore);
77 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
78 const Twine &Name, BasicBlock *InsertAtEnd);
79
80 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
81 Instruction *InsertBefore);
82 AllocaInst(Type *Ty, unsigned AddrSpace,
83 const Twine &Name, BasicBlock *InsertAtEnd);
84
85 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
86 const Twine &Name = "", Instruction *InsertBefore = nullptr);
87 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
88 const Twine &Name, BasicBlock *InsertAtEnd);
89
90 /// Return true if there is an allocation size parameter to the allocation
91 /// instruction that is not 1.
92 bool isArrayAllocation() const;
93
94 /// Get the number of elements allocated. For a simple allocation of a single
95 /// element, this will return a constant 1 value.
96 const Value *getArraySize() const { return getOperand(0); }
97 Value *getArraySize() { return getOperand(0); }
98
99 /// Overload to return most specific pointer type.
100 PointerType *getType() const {
101 return cast<PointerType>(Instruction::getType());
102 }
103
104 /// Return the address space for the allocation.
105 unsigned getAddressSpace() const {
106 return getType()->getAddressSpace();
107 }
108
109 /// Get allocation size in bytes. Returns std::nullopt if size can't be
110 /// determined, e.g. in case of a VLA.
111 std::optional<TypeSize> getAllocationSize(const DataLayout &DL) const;
112
113 /// Get allocation size in bits. Returns std::nullopt if size can't be
114 /// determined, e.g. in case of a VLA.
115 std::optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
116
117 /// Return the type that is being allocated by the instruction.
118 Type *getAllocatedType() const { return AllocatedType; }
119 /// for use only in special circumstances that need to generically
120 /// transform a whole instruction (eg: IR linking and vectorization).
121 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
122
123 /// Return the alignment of the memory that is being allocated by the
124 /// instruction.
125 Align getAlign() const {
126 return Align(1ULL << getSubclassData<AlignmentField>());
127 }
128
129 void setAlignment(Align Align) {
130 setSubclassData<AlignmentField>(Log2(Align));
131 }
132
133 /// Return true if this alloca is in the entry block of the function and is a
134 /// constant size. If so, the code generator will fold it into the
135 /// prolog/epilog code, so it is basically free.
136 bool isStaticAlloca() const;
137
138 /// Return true if this alloca is used as an inalloca argument to a call. Such
139 /// allocas are never considered static even if they are in the entry block.
140 bool isUsedWithInAlloca() const {
141 return getSubclassData<UsedWithInAllocaField>();
142 }
143
144 /// Specify whether this alloca is used to represent the arguments to a call.
145 void setUsedWithInAlloca(bool V) {
146 setSubclassData<UsedWithInAllocaField>(V);
147 }
148
149 /// Return true if this alloca is used as a swifterror argument to a call.
150 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
151 /// Specify whether this alloca is used to represent a swifterror.
152 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
153
154 // Methods for support type inquiry through isa, cast, and dyn_cast:
155 static bool classof(const Instruction *I) {
156 return (I->getOpcode() == Instruction::Alloca);
157 }
158 static bool classof(const Value *V) {
159 return isa<Instruction>(V) && classof(cast<Instruction>(V));
160 }
161
162private:
163 // Shadow Instruction::setInstructionSubclassData with a private forwarding
164 // method so that subclasses cannot accidentally use it.
165 template <typename Bitfield>
166 void setSubclassData(typename Bitfield::Type Value) {
167 Instruction::setSubclassData<Bitfield>(Value);
168 }
169};
170
171//===----------------------------------------------------------------------===//
172// LoadInst Class
173//===----------------------------------------------------------------------===//
174
175/// An instruction for reading from memory. This uses the SubclassData field in
176/// Value to store whether or not the load is volatile.
177class LoadInst : public UnaryInstruction {
178 using VolatileField = BoolBitfieldElementT<0>;
179 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
180 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
181 static_assert(
182 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
183 "Bitfields must be contiguous");
184
185 void AssertOK();
186
187protected:
188 // Note: Instruction needs to be a friend here to call cloneImpl.
189 friend class Instruction;
190
191 LoadInst *cloneImpl() const;
192
193public:
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
195 Instruction *InsertBefore);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
197 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198 Instruction *InsertBefore);
199 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200 BasicBlock *InsertAtEnd);
201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202 Align Align, Instruction *InsertBefore = nullptr);
203 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204 Align Align, BasicBlock *InsertAtEnd);
205 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
206 Align Align, AtomicOrdering Order,
207 SyncScope::ID SSID = SyncScope::System,
208 Instruction *InsertBefore = nullptr);
209 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
210 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
211 BasicBlock *InsertAtEnd);
212
213 /// Return true if this is a load from a volatile memory location.
214 bool isVolatile() const { return getSubclassData<VolatileField>(); }
215
216 /// Specify whether this is a volatile load or not.
217 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
218
219 /// Return the alignment of the access that is being performed.
220 Align getAlign() const {
221 return Align(1ULL << (getSubclassData<AlignmentField>()));
222 }
223
224 void setAlignment(Align Align) {
225 setSubclassData<AlignmentField>(Log2(Align));
226 }
227
228 /// Returns the ordering constraint of this load instruction.
229 AtomicOrdering getOrdering() const {
230 return getSubclassData<OrderingField>();
231 }
232 /// Sets the ordering constraint of this load instruction. May not be Release
233 /// or AcquireRelease.
234 void setOrdering(AtomicOrdering Ordering) {
235 setSubclassData<OrderingField>(Ordering);
236 }
237
238 /// Returns the synchronization scope ID of this load instruction.
239 SyncScope::ID getSyncScopeID() const {
240 return SSID;
241 }
242
243 /// Sets the synchronization scope ID of this load instruction.
244 void setSyncScopeID(SyncScope::ID SSID) {
245 this->SSID = SSID;
246 }
247
248 /// Sets the ordering constraint and the synchronization scope ID of this load
249 /// instruction.
250 void setAtomic(AtomicOrdering Ordering,
251 SyncScope::ID SSID = SyncScope::System) {
252 setOrdering(Ordering);
253 setSyncScopeID(SSID);
254 }
255
256 bool isSimple() const { return !isAtomic() && !isVolatile(); }
257
258 bool isUnordered() const {
259 return (getOrdering() == AtomicOrdering::NotAtomic ||
260 getOrdering() == AtomicOrdering::Unordered) &&
261 !isVolatile();
262 }
263
264 Value *getPointerOperand() { return getOperand(0); }
265 const Value *getPointerOperand() const { return getOperand(0); }
266 static unsigned getPointerOperandIndex() { return 0U; }
267 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
268
269 /// Returns the address space of the pointer operand.
270 unsigned getPointerAddressSpace() const {
271 return getPointerOperandType()->getPointerAddressSpace();
272 }
273
274 // Methods for support type inquiry through isa, cast, and dyn_cast:
275 static bool classof(const Instruction *I) {
276 return I->getOpcode() == Instruction::Load;
277 }
278 static bool classof(const Value *V) {
279 return isa<Instruction>(V) && classof(cast<Instruction>(V));
280 }
281
282private:
283 // Shadow Instruction::setInstructionSubclassData with a private forwarding
284 // method so that subclasses cannot accidentally use it.
285 template <typename Bitfield>
286 void setSubclassData(typename Bitfield::Type Value) {
287 Instruction::setSubclassData<Bitfield>(Value);
288 }
289
290 /// The synchronization scope ID of this load instruction. Not quite enough
291 /// room in SubClassData for everything, so synchronization scope ID gets its
292 /// own field.
293 SyncScope::ID SSID;
294};
295
296//===----------------------------------------------------------------------===//
297// StoreInst Class
298//===----------------------------------------------------------------------===//
299
300/// An instruction for storing to memory.
301class StoreInst : public Instruction {
302 using VolatileField = BoolBitfieldElementT<0>;
303 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
304 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
305 static_assert(
306 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
307 "Bitfields must be contiguous");
308
309 void AssertOK();
310
311protected:
312 // Note: Instruction needs to be a friend here to call cloneImpl.
313 friend class Instruction;
314
315 StoreInst *cloneImpl() const;
316
317public:
318 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
319 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
320 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
321 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
322 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
323 Instruction *InsertBefore = nullptr);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325 BasicBlock *InsertAtEnd);
326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
328 Instruction *InsertBefore = nullptr);
329 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
331
332 // allocate space for exactly two operands
333 void *operator new(size_t S) { return User::operator new(S, 2); }
334 void operator delete(void *Ptr) { User::operator delete(Ptr); }
335
336 /// Return true if this is a store to a volatile memory location.
337 bool isVolatile() const { return getSubclassData<VolatileField>(); }
338
339 /// Specify whether this is a volatile store or not.
340 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
341
342 /// Transparently provide more efficient getOperand methods.
343 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
344
345 Align getAlign() const {
346 return Align(1ULL << (getSubclassData<AlignmentField>()));
347 }
348
349 void setAlignment(Align Align) {
350 setSubclassData<AlignmentField>(Log2(Align));
351 }
352
353 /// Returns the ordering constraint of this store instruction.
354 AtomicOrdering getOrdering() const {
355 return getSubclassData<OrderingField>();
356 }
357
358 /// Sets the ordering constraint of this store instruction. May not be
359 /// Acquire or AcquireRelease.
360 void setOrdering(AtomicOrdering Ordering) {
361 setSubclassData<OrderingField>(Ordering);
362 }
363
364 /// Returns the synchronization scope ID of this store instruction.
365 SyncScope::ID getSyncScopeID() const {
366 return SSID;
367 }
368
369 /// Sets the synchronization scope ID of this store instruction.
370 void setSyncScopeID(SyncScope::ID SSID) {
371 this->SSID = SSID;
372 }
373
374 /// Sets the ordering constraint and the synchronization scope ID of this
375 /// store instruction.
376 void setAtomic(AtomicOrdering Ordering,
377 SyncScope::ID SSID = SyncScope::System) {
378 setOrdering(Ordering);
379 setSyncScopeID(SSID);
380 }
381
382 bool isSimple() const { return !isAtomic() && !isVolatile(); }
383
384 bool isUnordered() const {
385 return (getOrdering() == AtomicOrdering::NotAtomic ||
386 getOrdering() == AtomicOrdering::Unordered) &&
387 !isVolatile();
388 }
389
390 Value *getValueOperand() { return getOperand(0); }
391 const Value *getValueOperand() const { return getOperand(0); }
392
393 Value *getPointerOperand() { return getOperand(1); }
394 const Value *getPointerOperand() const { return getOperand(1); }
395 static unsigned getPointerOperandIndex() { return 1U; }
396 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
397
398 /// Returns the address space of the pointer operand.
399 unsigned getPointerAddressSpace() const {
400 return getPointerOperandType()->getPointerAddressSpace();
401 }
402
403 // Methods for support type inquiry through isa, cast, and dyn_cast:
404 static bool classof(const Instruction *I) {
405 return I->getOpcode() == Instruction::Store;
406 }
407 static bool classof(const Value *V) {
408 return isa<Instruction>(V) && classof(cast<Instruction>(V));
409 }
410
411private:
412 // Shadow Instruction::setInstructionSubclassData with a private forwarding
413 // method so that subclasses cannot accidentally use it.
414 template <typename Bitfield>
415 void setSubclassData(typename Bitfield::Type Value) {
416 Instruction::setSubclassData<Bitfield>(Value);
417 }
418
419 /// The synchronization scope ID of this store instruction. Not quite enough
420 /// room in SubClassData for everything, so synchronization scope ID gets its
421 /// own field.
422 SyncScope::ID SSID;
423};
424
425template <>
426struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
427};
428
429DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<StoreInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 429, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this))[i_nocapture
].get()); } void StoreInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 429, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<StoreInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned StoreInst::getNumOperands() const
{ return OperandTraits<StoreInst>::operands(this); } template
<int Idx_nocapture> Use &StoreInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &StoreInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
430
431//===----------------------------------------------------------------------===//
432// FenceInst Class
433//===----------------------------------------------------------------------===//
434
435/// An instruction for ordering other memory operations.
436class FenceInst : public Instruction {
437 using OrderingField = AtomicOrderingBitfieldElementT<0>;
438
439 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
440
441protected:
442 // Note: Instruction needs to be a friend here to call cloneImpl.
443 friend class Instruction;
444
445 FenceInst *cloneImpl() const;
446
447public:
448 // Ordering may only be Acquire, Release, AcquireRelease, or
449 // SequentiallyConsistent.
450 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
451 SyncScope::ID SSID = SyncScope::System,
452 Instruction *InsertBefore = nullptr);
453 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
454 BasicBlock *InsertAtEnd);
455
456 // allocate space for exactly zero operands
457 void *operator new(size_t S) { return User::operator new(S, 0); }
458 void operator delete(void *Ptr) { User::operator delete(Ptr); }
459
460 /// Returns the ordering constraint of this fence instruction.
461 AtomicOrdering getOrdering() const {
462 return getSubclassData<OrderingField>();
463 }
464
465 /// Sets the ordering constraint of this fence instruction. May only be
466 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
467 void setOrdering(AtomicOrdering Ordering) {
468 setSubclassData<OrderingField>(Ordering);
469 }
470
471 /// Returns the synchronization scope ID of this fence instruction.
472 SyncScope::ID getSyncScopeID() const {
473 return SSID;
474 }
475
476 /// Sets the synchronization scope ID of this fence instruction.
477 void setSyncScopeID(SyncScope::ID SSID) {
478 this->SSID = SSID;
479 }
480
481 // Methods for support type inquiry through isa, cast, and dyn_cast:
482 static bool classof(const Instruction *I) {
483 return I->getOpcode() == Instruction::Fence;
484 }
485 static bool classof(const Value *V) {
486 return isa<Instruction>(V) && classof(cast<Instruction>(V));
487 }
488
489private:
490 // Shadow Instruction::setInstructionSubclassData with a private forwarding
491 // method so that subclasses cannot accidentally use it.
492 template <typename Bitfield>
493 void setSubclassData(typename Bitfield::Type Value) {
494 Instruction::setSubclassData<Bitfield>(Value);
495 }
496
497 /// The synchronization scope ID of this fence instruction. Not quite enough
498 /// room in SubClassData for everything, so synchronization scope ID gets its
499 /// own field.
500 SyncScope::ID SSID;
501};
502
503//===----------------------------------------------------------------------===//
504// AtomicCmpXchgInst Class
505//===----------------------------------------------------------------------===//
506
507/// An instruction that atomically checks whether a
508/// specified value is in a memory location, and, if it is, stores a new value
509/// there. The value returned by this instruction is a pair containing the
510/// original value as first element, and an i1 indicating success (true) or
511/// failure (false) as second element.
512///
513class AtomicCmpXchgInst : public Instruction {
514 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
515 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
516 SyncScope::ID SSID);
517
518 template <unsigned Offset>
519 using AtomicOrderingBitfieldElement =
520 typename Bitfield::Element<AtomicOrdering, Offset, 3,
521 AtomicOrdering::LAST>;
522
523protected:
524 // Note: Instruction needs to be a friend here to call cloneImpl.
525 friend class Instruction;
526
527 AtomicCmpXchgInst *cloneImpl() const;
528
529public:
530 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
531 AtomicOrdering SuccessOrdering,
532 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
533 Instruction *InsertBefore = nullptr);
534 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
535 AtomicOrdering SuccessOrdering,
536 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
537 BasicBlock *InsertAtEnd);
538
539 // allocate space for exactly three operands
540 void *operator new(size_t S) { return User::operator new(S, 3); }
541 void operator delete(void *Ptr) { User::operator delete(Ptr); }
542
543 using VolatileField = BoolBitfieldElementT<0>;
544 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
545 using SuccessOrderingField =
546 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
547 using FailureOrderingField =
548 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
549 using AlignmentField =
550 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
551 static_assert(
552 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
553 FailureOrderingField, AlignmentField>(),
554 "Bitfields must be contiguous");
555
556 /// Return the alignment of the memory that is being allocated by the
557 /// instruction.
558 Align getAlign() const {
559 return Align(1ULL << getSubclassData<AlignmentField>());
560 }
561
562 void setAlignment(Align Align) {
563 setSubclassData<AlignmentField>(Log2(Align));
564 }
565
566 /// Return true if this is a cmpxchg from a volatile memory
567 /// location.
568 ///
569 bool isVolatile() const { return getSubclassData<VolatileField>(); }
570
571 /// Specify whether this is a volatile cmpxchg.
572 ///
573 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
574
575 /// Return true if this cmpxchg may spuriously fail.
576 bool isWeak() const { return getSubclassData<WeakField>(); }
577
578 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
579
580 /// Transparently provide more efficient getOperand methods.
581 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
582
583 static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
584 return Ordering != AtomicOrdering::NotAtomic &&
585 Ordering != AtomicOrdering::Unordered;
586 }
587
588 static bool isValidFailureOrdering(AtomicOrdering Ordering) {
589 return Ordering != AtomicOrdering::NotAtomic &&
590 Ordering != AtomicOrdering::Unordered &&
591 Ordering != AtomicOrdering::AcquireRelease &&
592 Ordering != AtomicOrdering::Release;
593 }
594
595 /// Returns the success ordering constraint of this cmpxchg instruction.
596 AtomicOrdering getSuccessOrdering() const {
597 return getSubclassData<SuccessOrderingField>();
598 }
599
600 /// Sets the success ordering constraint of this cmpxchg instruction.
601 void setSuccessOrdering(AtomicOrdering Ordering) {
602 assert(isValidSuccessOrdering(Ordering) &&(static_cast <bool> (isValidSuccessOrdering(Ordering) &&
"invalid CmpXchg success ordering") ? void (0) : __assert_fail
("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\""
, "llvm/include/llvm/IR/Instructions.h", 603, __extension__ __PRETTY_FUNCTION__
))
603 "invalid CmpXchg success ordering")(static_cast <bool> (isValidSuccessOrdering(Ordering) &&
"invalid CmpXchg success ordering") ? void (0) : __assert_fail
("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\""
, "llvm/include/llvm/IR/Instructions.h", 603, __extension__ __PRETTY_FUNCTION__
))
;
604 setSubclassData<SuccessOrderingField>(Ordering);
605 }
606
607 /// Returns the failure ordering constraint of this cmpxchg instruction.
608 AtomicOrdering getFailureOrdering() const {
609 return getSubclassData<FailureOrderingField>();
610 }
611
612 /// Sets the failure ordering constraint of this cmpxchg instruction.
613 void setFailureOrdering(AtomicOrdering Ordering) {
614 assert(isValidFailureOrdering(Ordering) &&(static_cast <bool> (isValidFailureOrdering(Ordering) &&
"invalid CmpXchg failure ordering") ? void (0) : __assert_fail
("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\""
, "llvm/include/llvm/IR/Instructions.h", 615, __extension__ __PRETTY_FUNCTION__
))
615 "invalid CmpXchg failure ordering")(static_cast <bool> (isValidFailureOrdering(Ordering) &&
"invalid CmpXchg failure ordering") ? void (0) : __assert_fail
("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\""
, "llvm/include/llvm/IR/Instructions.h", 615, __extension__ __PRETTY_FUNCTION__
))
;
616 setSubclassData<FailureOrderingField>(Ordering);
617 }
618
619 /// Returns a single ordering which is at least as strong as both the
620 /// success and failure orderings for this cmpxchg.
621 AtomicOrdering getMergedOrdering() const {
622 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
623 return AtomicOrdering::SequentiallyConsistent;
624 if (getFailureOrdering() == AtomicOrdering::Acquire) {
625 if (getSuccessOrdering() == AtomicOrdering::Monotonic)
626 return AtomicOrdering::Acquire;
627 if (getSuccessOrdering() == AtomicOrdering::Release)
628 return AtomicOrdering::AcquireRelease;
629 }
630 return getSuccessOrdering();
631 }
632
633 /// Returns the synchronization scope ID of this cmpxchg instruction.
634 SyncScope::ID getSyncScopeID() const {
635 return SSID;
636 }
637
638 /// Sets the synchronization scope ID of this cmpxchg instruction.
639 void setSyncScopeID(SyncScope::ID SSID) {
640 this->SSID = SSID;
641 }
642
643 Value *getPointerOperand() { return getOperand(0); }
644 const Value *getPointerOperand() const { return getOperand(0); }
645 static unsigned getPointerOperandIndex() { return 0U; }
646
647 Value *getCompareOperand() { return getOperand(1); }
648 const Value *getCompareOperand() const { return getOperand(1); }
649
650 Value *getNewValOperand() { return getOperand(2); }
651 const Value *getNewValOperand() const { return getOperand(2); }
652
653 /// Returns the address space of the pointer operand.
654 unsigned getPointerAddressSpace() const {
655 return getPointerOperand()->getType()->getPointerAddressSpace();
656 }
657
658 /// Returns the strongest permitted ordering on failure, given the
659 /// desired ordering on success.
660 ///
661 /// If the comparison in a cmpxchg operation fails, there is no atomic store
662 /// so release semantics cannot be provided. So this function drops explicit
663 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
664 /// operation would remain SequentiallyConsistent.
665 static AtomicOrdering
666 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
667 switch (SuccessOrdering) {
668 default:
669 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "llvm/include/llvm/IR/Instructions.h", 669)
;
670 case AtomicOrdering::Release:
671 case AtomicOrdering::Monotonic:
672 return AtomicOrdering::Monotonic;
673 case AtomicOrdering::AcquireRelease:
674 case AtomicOrdering::Acquire:
675 return AtomicOrdering::Acquire;
676 case AtomicOrdering::SequentiallyConsistent:
677 return AtomicOrdering::SequentiallyConsistent;
678 }
679 }
680
681 // Methods for support type inquiry through isa, cast, and dyn_cast:
682 static bool classof(const Instruction *I) {
683 return I->getOpcode() == Instruction::AtomicCmpXchg;
684 }
685 static bool classof(const Value *V) {
686 return isa<Instruction>(V) && classof(cast<Instruction>(V));
687 }
688
689private:
690 // Shadow Instruction::setInstructionSubclassData with a private forwarding
691 // method so that subclasses cannot accidentally use it.
692 template <typename Bitfield>
693 void setSubclassData(typename Bitfield::Type Value) {
694 Instruction::setSubclassData<Bitfield>(Value);
695 }
696
697 /// The synchronization scope ID of this cmpxchg instruction. Not quite
698 /// enough room in SubClassData for everything, so synchronization scope ID
699 /// gets its own field.
700 SyncScope::ID SSID;
701};
702
703template <>
704struct OperandTraits<AtomicCmpXchgInst> :
705 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
706};
707
708DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 708, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<AtomicCmpXchgInst
>::op_begin(const_cast<AtomicCmpXchgInst*>(this))[i_nocapture
].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 708, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<AtomicCmpXchgInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned AtomicCmpXchgInst::getNumOperands
() const { return OperandTraits<AtomicCmpXchgInst>::operands
(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &AtomicCmpXchgInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
709
710//===----------------------------------------------------------------------===//
711// AtomicRMWInst Class
712//===----------------------------------------------------------------------===//
713
714/// an instruction that atomically reads a memory location,
715/// combines it with another value, and then stores the result back. Returns
716/// the old value.
717///
718class AtomicRMWInst : public Instruction {
719protected:
720 // Note: Instruction needs to be a friend here to call cloneImpl.
721 friend class Instruction;
722
723 AtomicRMWInst *cloneImpl() const;
724
725public:
726 /// This enumeration lists the possible modifications atomicrmw can make. In
727 /// the descriptions, 'p' is the pointer to the instruction's memory location,
728 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
729 /// instruction. These instructions always return 'old'.
730 enum BinOp : unsigned {
731 /// *p = v
732 Xchg,
733 /// *p = old + v
734 Add,
735 /// *p = old - v
736 Sub,
737 /// *p = old & v
738 And,
739 /// *p = ~(old & v)
740 Nand,
741 /// *p = old | v
742 Or,
743 /// *p = old ^ v
744 Xor,
745 /// *p = old >signed v ? old : v
746 Max,
747 /// *p = old <signed v ? old : v
748 Min,
749 /// *p = old >unsigned v ? old : v
750 UMax,
751 /// *p = old <unsigned v ? old : v
752 UMin,
753
754 /// *p = old + v
755 FAdd,
756
757 /// *p = old - v
758 FSub,
759
760 /// *p = maxnum(old, v)
761 /// \p maxnum matches the behavior of \p llvm.maxnum.*.
762 FMax,
763
764 /// *p = minnum(old, v)
765 /// \p minnum matches the behavior of \p llvm.minnum.*.
766 FMin,
767
768 /// Increment one up to a maximum value.
769 /// *p = (old u>= v) ? 0 : (old + 1)
770 UIncWrap,
771
772 /// Decrement one until a minimum value or zero.
773 /// *p = ((old == 0) || (old u> v)) ? v : (old - 1)
774 UDecWrap,
775
776 FIRST_BINOP = Xchg,
777 LAST_BINOP = UDecWrap,
778 BAD_BINOP
779 };
780
781private:
782 template <unsigned Offset>
783 using AtomicOrderingBitfieldElement =
784 typename Bitfield::Element<AtomicOrdering, Offset, 3,
785 AtomicOrdering::LAST>;
786
787 template <unsigned Offset>
788 using BinOpBitfieldElement =
789 typename Bitfield::Element<BinOp, Offset, 5, BinOp::LAST_BINOP>;
790
791public:
792 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
793 AtomicOrdering Ordering, SyncScope::ID SSID,
794 Instruction *InsertBefore = nullptr);
795 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
796 AtomicOrdering Ordering, SyncScope::ID SSID,
797 BasicBlock *InsertAtEnd);
798
799 // allocate space for exactly two operands
800 void *operator new(size_t S) { return User::operator new(S, 2); }
801 void operator delete(void *Ptr) { User::operator delete(Ptr); }
802
803 using VolatileField = BoolBitfieldElementT<0>;
804 using AtomicOrderingField =
805 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
806 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
807 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
808 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
809 OperationField, AlignmentField>(),
810 "Bitfields must be contiguous");
811
812 BinOp getOperation() const { return getSubclassData<OperationField>(); }
813
814 static StringRef getOperationName(BinOp Op);
815
816 static bool isFPOperation(BinOp Op) {
817 switch (Op) {
818 case AtomicRMWInst::FAdd:
819 case AtomicRMWInst::FSub:
820 case AtomicRMWInst::FMax:
821 case AtomicRMWInst::FMin:
822 return true;
823 default:
824 return false;
825 }
826 }
827
828 void setOperation(BinOp Operation) {
829 setSubclassData<OperationField>(Operation);
830 }
831
832 /// Return the alignment of the memory that is being allocated by the
833 /// instruction.
834 Align getAlign() const {
835 return Align(1ULL << getSubclassData<AlignmentField>());
836 }
837
838 void setAlignment(Align Align) {
839 setSubclassData<AlignmentField>(Log2(Align));
840 }
841
842 /// Return true if this is a RMW on a volatile memory location.
843 ///
844 bool isVolatile() const { return getSubclassData<VolatileField>(); }
845
846 /// Specify whether this is a volatile RMW or not.
847 ///
848 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
849
850 /// Transparently provide more efficient getOperand methods.
851 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
852
853 /// Returns the ordering constraint of this rmw instruction.
854 AtomicOrdering getOrdering() const {
855 return getSubclassData<AtomicOrderingField>();
856 }
857
858 /// Sets the ordering constraint of this rmw instruction.
859 void setOrdering(AtomicOrdering Ordering) {
860 assert(Ordering != AtomicOrdering::NotAtomic &&(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "llvm/include/llvm/IR/Instructions.h", 861, __extension__ __PRETTY_FUNCTION__
))
861 "atomicrmw instructions can only be atomic.")(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "llvm/include/llvm/IR/Instructions.h", 861, __extension__ __PRETTY_FUNCTION__
))
;
862 assert(Ordering != AtomicOrdering::Unordered &&(static_cast <bool> (Ordering != AtomicOrdering::Unordered
&& "atomicrmw instructions cannot be unordered.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::Unordered && \"atomicrmw instructions cannot be unordered.\""
, "llvm/include/llvm/IR/Instructions.h", 863, __extension__ __PRETTY_FUNCTION__
))
863 "atomicrmw instructions cannot be unordered.")(static_cast <bool> (Ordering != AtomicOrdering::Unordered
&& "atomicrmw instructions cannot be unordered.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::Unordered && \"atomicrmw instructions cannot be unordered.\""
, "llvm/include/llvm/IR/Instructions.h", 863, __extension__ __PRETTY_FUNCTION__
))
;
864 setSubclassData<AtomicOrderingField>(Ordering);
865 }
866
867 /// Returns the synchronization scope ID of this rmw instruction.
868 SyncScope::ID getSyncScopeID() const {
869 return SSID;
870 }
871
872 /// Sets the synchronization scope ID of this rmw instruction.
873 void setSyncScopeID(SyncScope::ID SSID) {
874 this->SSID = SSID;
875 }
876
877 Value *getPointerOperand() { return getOperand(0); }
878 const Value *getPointerOperand() const { return getOperand(0); }
879 static unsigned getPointerOperandIndex() { return 0U; }
880
881 Value *getValOperand() { return getOperand(1); }
882 const Value *getValOperand() const { return getOperand(1); }
883
884 /// Returns the address space of the pointer operand.
885 unsigned getPointerAddressSpace() const {
886 return getPointerOperand()->getType()->getPointerAddressSpace();
887 }
888
889 bool isFloatingPointOperation() const {
890 return isFPOperation(getOperation());
891 }
892
893 // Methods for support type inquiry through isa, cast, and dyn_cast:
894 static bool classof(const Instruction *I) {
895 return I->getOpcode() == Instruction::AtomicRMW;
896 }
897 static bool classof(const Value *V) {
898 return isa<Instruction>(V) && classof(cast<Instruction>(V));
899 }
900
901private:
902 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
903 AtomicOrdering Ordering, SyncScope::ID SSID);
904
905 // Shadow Instruction::setInstructionSubclassData with a private forwarding
906 // method so that subclasses cannot accidentally use it.
907 template <typename Bitfield>
908 void setSubclassData(typename Bitfield::Type Value) {
909 Instruction::setSubclassData<Bitfield>(Value);
910 }
911
912 /// The synchronization scope ID of this rmw instruction. Not quite enough
913 /// room in SubClassData for everything, so synchronization scope ID gets its
914 /// own field.
915 SyncScope::ID SSID;
916};
917
918template <>
919struct OperandTraits<AtomicRMWInst>
920 : public FixedNumOperandTraits<AtomicRMWInst,2> {
921};
922
923DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicRMWInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 923, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<AtomicRMWInst
>::op_begin(const_cast<AtomicRMWInst*>(this))[i_nocapture
].get()); } void AtomicRMWInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicRMWInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 923, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands()
const { return OperandTraits<AtomicRMWInst>::operands(
this); } template <int Idx_nocapture> Use &AtomicRMWInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &AtomicRMWInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
924
925//===----------------------------------------------------------------------===//
926// GetElementPtrInst Class
927//===----------------------------------------------------------------------===//
928
929// checkGEPType - Simple wrapper function to give a better assertion failure
930// message on bad indexes for a gep instruction.
931//
932inline Type *checkGEPType(Type *Ty) {
933 assert(Ty && "Invalid GetElementPtrInst indices for type!")(static_cast <bool> (Ty && "Invalid GetElementPtrInst indices for type!"
) ? void (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "llvm/include/llvm/IR/Instructions.h", 933, __extension__ __PRETTY_FUNCTION__
))
;
934 return Ty;
935}
936
937/// an instruction for type-safe pointer arithmetic to
938/// access elements of arrays and structs
939///
940class GetElementPtrInst : public Instruction {
941 Type *SourceElementType;
942 Type *ResultElementType;
943
944 GetElementPtrInst(const GetElementPtrInst &GEPI);
945
946 /// Constructors - Create a getelementptr instruction with a base pointer an
947 /// list of indices. The first ctor can optionally insert before an existing
948 /// instruction, the second appends the new instruction to the specified
949 /// BasicBlock.
950 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
951 ArrayRef<Value *> IdxList, unsigned Values,
952 const Twine &NameStr, Instruction *InsertBefore);
953 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
954 ArrayRef<Value *> IdxList, unsigned Values,
955 const Twine &NameStr, BasicBlock *InsertAtEnd);
956
957 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
958
959protected:
960 // Note: Instruction needs to be a friend here to call cloneImpl.
961 friend class Instruction;
962
963 GetElementPtrInst *cloneImpl() const;
964
965public:
966 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
967 ArrayRef<Value *> IdxList,
968 const Twine &NameStr = "",
969 Instruction *InsertBefore = nullptr) {
970 unsigned Values = 1 + unsigned(IdxList.size());
971 assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type"
) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\""
, "llvm/include/llvm/IR/Instructions.h", 971, __extension__ __PRETTY_FUNCTION__
))
;
972 assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "llvm/include/llvm/IR/Instructions.h", 973, __extension__ __PRETTY_FUNCTION__
))
973 ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "llvm/include/llvm/IR/Instructions.h", 973, __extension__ __PRETTY_FUNCTION__
))
;
974 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
975 NameStr, InsertBefore);
976 }
977
978 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
979 ArrayRef<Value *> IdxList,
980 const Twine &NameStr,
981 BasicBlock *InsertAtEnd) {
982 unsigned Values = 1 + unsigned(IdxList.size());
983 assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type"
) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\""
, "llvm/include/llvm/IR/Instructions.h", 983, __extension__ __PRETTY_FUNCTION__
))
;
984 assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "llvm/include/llvm/IR/Instructions.h", 985, __extension__ __PRETTY_FUNCTION__
))
985 ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "llvm/include/llvm/IR/Instructions.h", 985, __extension__ __PRETTY_FUNCTION__
))
;
986 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
987 NameStr, InsertAtEnd);
988 }
989
990 /// Create an "inbounds" getelementptr. See the documentation for the
991 /// "inbounds" flag in LangRef.html for details.
992 static GetElementPtrInst *
993 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
994 const Twine &NameStr = "",
995 Instruction *InsertBefore = nullptr) {
996 GetElementPtrInst *GEP =
997 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
998 GEP->setIsInBounds(true);
999 return GEP;
1000 }
1001
1002 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
1003 ArrayRef<Value *> IdxList,
1004 const Twine &NameStr,
1005 BasicBlock *InsertAtEnd) {
1006 GetElementPtrInst *GEP =
1007 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
1008 GEP->setIsInBounds(true);
1009 return GEP;
1010 }
1011
1012 /// Transparently provide more efficient getOperand methods.
1013 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1014
1015 Type *getSourceElementType() const { return SourceElementType; }
1016
1017 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1018 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1019
1020 Type *getResultElementType() const {
1021 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1022, __extension__ __PRETTY_FUNCTION__
))
1022 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1022, __extension__ __PRETTY_FUNCTION__
))
;
1023 return ResultElementType;
1024 }
1025
1026 /// Returns the address space of this instruction's pointer type.
1027 unsigned getAddressSpace() const {
1028 // Note that this is always the same as the pointer operand's address space
1029 // and that is cheaper to compute, so cheat here.
1030 return getPointerAddressSpace();
1031 }
1032
1033 /// Returns the result type of a getelementptr with the given source
1034 /// element type and indexes.
1035 ///
1036 /// Null is returned if the indices are invalid for the specified
1037 /// source element type.
1038 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1039 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1040 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1041
1042 /// Return the type of the element at the given index of an indexable
1043 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1044 ///
1045 /// Returns null if the type can't be indexed, or the given index is not
1046 /// legal for the given type.
1047 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1048 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1049
1050 inline op_iterator idx_begin() { return op_begin()+1; }
1051 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1052 inline op_iterator idx_end() { return op_end(); }
1053 inline const_op_iterator idx_end() const { return op_end(); }
1054
1055 inline iterator_range<op_iterator> indices() {
1056 return make_range(idx_begin(), idx_end());
1057 }
1058
1059 inline iterator_range<const_op_iterator> indices() const {
1060 return make_range(idx_begin(), idx_end());
1061 }
1062
1063 Value *getPointerOperand() {
1064 return getOperand(0);
1065 }
1066 const Value *getPointerOperand() const {
1067 return getOperand(0);
1068 }
1069 static unsigned getPointerOperandIndex() {
1070 return 0U; // get index for modifying correct operand.
1071 }
1072
1073 /// Method to return the pointer operand as a
1074 /// PointerType.
1075 Type *getPointerOperandType() const {
1076 return getPointerOperand()->getType();
1077 }
1078
1079 /// Returns the address space of the pointer operand.
1080 unsigned getPointerAddressSpace() const {
1081 return getPointerOperandType()->getPointerAddressSpace();
1082 }
1083
1084 /// Returns the pointer type returned by the GEP
1085 /// instruction, which may be a vector of pointers.
1086 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1087 ArrayRef<Value *> IdxList) {
1088 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1089 unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1090 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1091 Type *PtrTy = OrigPtrTy->isOpaque()
1092 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1093 : PointerType::get(ResultElemTy, AddrSpace);
1094 // Vector GEP
1095 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1096 ElementCount EltCount = PtrVTy->getElementCount();
1097 return VectorType::get(PtrTy, EltCount);
1098 }
1099 for (Value *Index : IdxList)
1100 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1101 ElementCount EltCount = IndexVTy->getElementCount();
1102 return VectorType::get(PtrTy, EltCount);
1103 }
1104 // Scalar GEP
1105 return PtrTy;
1106 }
1107
1108 unsigned getNumIndices() const { // Note: always non-negative
1109 return getNumOperands() - 1;
1110 }
1111
1112 bool hasIndices() const {
1113 return getNumOperands() > 1;
1114 }
1115
1116 /// Return true if all of the indices of this GEP are
1117 /// zeros. If so, the result pointer and the first operand have the same
1118 /// value, just potentially different types.
1119 bool hasAllZeroIndices() const;
1120
1121 /// Return true if all of the indices of this GEP are
1122 /// constant integers. If so, the result pointer and the first operand have
1123 /// a constant offset between them.
1124 bool hasAllConstantIndices() const;
1125
1126 /// Set or clear the inbounds flag on this GEP instruction.
1127 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1128 void setIsInBounds(bool b = true);
1129
1130 /// Determine whether the GEP has the inbounds flag.
1131 bool isInBounds() const;
1132
1133 /// Accumulate the constant address offset of this GEP if possible.
1134 ///
1135 /// This routine accepts an APInt into which it will accumulate the constant
1136 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1137 /// all-constant, it returns false and the value of the offset APInt is
1138 /// undefined (it is *not* preserved!). The APInt passed into this routine
1139 /// must be at least as wide as the IntPtr type for the address space of
1140 /// the base GEP pointer.
1141 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1142 bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1143 MapVector<Value *, APInt> &VariableOffsets,
1144 APInt &ConstantOffset) const;
1145 // Methods for support type inquiry through isa, cast, and dyn_cast:
1146 static bool classof(const Instruction *I) {
1147 return (I->getOpcode() == Instruction::GetElementPtr);
1148 }
1149 static bool classof(const Value *V) {
1150 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1151 }
1152};
1153
1154template <>
1155struct OperandTraits<GetElementPtrInst> :
1156 public VariadicOperandTraits<GetElementPtrInst, 1> {
1157};
1158
1159GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1160 ArrayRef<Value *> IdxList, unsigned Values,
1161 const Twine &NameStr,
1162 Instruction *InsertBefore)
1163 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1164 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1165 Values, InsertBefore),
1166 SourceElementType(PointeeType),
1167 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1168 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1169, __extension__ __PRETTY_FUNCTION__
))
1169 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1169, __extension__ __PRETTY_FUNCTION__
))
;
1170 init(Ptr, IdxList, NameStr);
1171}
1172
1173GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1174 ArrayRef<Value *> IdxList, unsigned Values,
1175 const Twine &NameStr,
1176 BasicBlock *InsertAtEnd)
1177 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1178 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1179 Values, InsertAtEnd),
1180 SourceElementType(PointeeType),
1181 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1182 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1183, __extension__ __PRETTY_FUNCTION__
))
1183 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1183, __extension__ __PRETTY_FUNCTION__
))
;
1184 init(Ptr, IdxList, NameStr);
1185}
1186
1187DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<GetElementPtrInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1187, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<GetElementPtrInst
>::op_begin(const_cast<GetElementPtrInst*>(this))[i_nocapture
].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<GetElementPtrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1187, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<GetElementPtrInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned GetElementPtrInst::getNumOperands
() const { return OperandTraits<GetElementPtrInst>::operands
(this); } template <int Idx_nocapture> Use &GetElementPtrInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &GetElementPtrInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1188
1189//===----------------------------------------------------------------------===//
1190// ICmpInst Class
1191//===----------------------------------------------------------------------===//
1192
1193/// This instruction compares its operands according to the predicate given
1194/// to the constructor. It only operates on integers or pointers. The operands
1195/// must be identical types.
1196/// Represent an integer comparison operator.
1197class ICmpInst: public CmpInst {
1198 void AssertOK() {
1199 assert(isIntPredicate() &&(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "llvm/include/llvm/IR/Instructions.h", 1200, __extension__ __PRETTY_FUNCTION__
))
1200 "Invalid ICmp predicate value")(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "llvm/include/llvm/IR/Instructions.h", 1200, __extension__ __PRETTY_FUNCTION__
))
;
1201 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "llvm/include/llvm/IR/Instructions.h", 1202, __extension__ __PRETTY_FUNCTION__
))
1202 "Both operands to ICmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "llvm/include/llvm/IR/Instructions.h", 1202, __extension__ __PRETTY_FUNCTION__
))
;
1203 // Check that the operands are the right type
1204 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "llvm/include/llvm/IR/Instructions.h", 1206, __extension__ __PRETTY_FUNCTION__
))
1205 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "llvm/include/llvm/IR/Instructions.h", 1206, __extension__ __PRETTY_FUNCTION__
))
1206 "Invalid operand types for ICmp instruction")(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "llvm/include/llvm/IR/Instructions.h", 1206, __extension__ __PRETTY_FUNCTION__
))
;
1207 }
1208
1209protected:
1210 // Note: Instruction needs to be a friend here to call cloneImpl.
1211 friend class Instruction;
1212
1213 /// Clone an identical ICmpInst
1214 ICmpInst *cloneImpl() const;
1215
1216public:
1217 /// Constructor with insert-before-instruction semantics.
1218 ICmpInst(
1219 Instruction *InsertBefore, ///< Where to insert
1220 Predicate pred, ///< The predicate to use for the comparison
1221 Value *LHS, ///< The left-hand-side of the expression
1222 Value *RHS, ///< The right-hand-side of the expression
1223 const Twine &NameStr = "" ///< Name of the instruction
1224 ) : CmpInst(makeCmpResultType(LHS->getType()),
1225 Instruction::ICmp, pred, LHS, RHS, NameStr,
1226 InsertBefore) {
1227#ifndef NDEBUG
1228 AssertOK();
1229#endif
1230 }
1231
1232 /// Constructor with insert-at-end semantics.
1233 ICmpInst(
1234 BasicBlock &InsertAtEnd, ///< Block to insert into.
1235 Predicate pred, ///< The predicate to use for the comparison
1236 Value *LHS, ///< The left-hand-side of the expression
1237 Value *RHS, ///< The right-hand-side of the expression
1238 const Twine &NameStr = "" ///< Name of the instruction
1239 ) : CmpInst(makeCmpResultType(LHS->getType()),
1240 Instruction::ICmp, pred, LHS, RHS, NameStr,
1241 &InsertAtEnd) {
1242#ifndef NDEBUG
1243 AssertOK();
1244#endif
1245 }
1246
1247 /// Constructor with no-insertion semantics
1248 ICmpInst(
1249 Predicate pred, ///< The predicate to use for the comparison
1250 Value *LHS, ///< The left-hand-side of the expression
1251 Value *RHS, ///< The right-hand-side of the expression
1252 const Twine &NameStr = "" ///< Name of the instruction
1253 ) : CmpInst(makeCmpResultType(LHS->getType()),
1254 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1255#ifndef NDEBUG
1256 AssertOK();
1257#endif
1258 }
1259
1260 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1261 /// @returns the predicate that would be the result if the operand were
1262 /// regarded as signed.
1263 /// Return the signed version of the predicate
1264 Predicate getSignedPredicate() const {
1265 return getSignedPredicate(getPredicate());
1266 }
1267
1268 /// This is a static version that you can use without an instruction.
1269 /// Return the signed version of the predicate.
1270 static Predicate getSignedPredicate(Predicate pred);
1271
1272 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1273 /// @returns the predicate that would be the result if the operand were
1274 /// regarded as unsigned.
1275 /// Return the unsigned version of the predicate
1276 Predicate getUnsignedPredicate() const {
1277 return getUnsignedPredicate(getPredicate());
1278 }
1279
1280 /// This is a static version that you can use without an instruction.
1281 /// Return the unsigned version of the predicate.
1282 static Predicate getUnsignedPredicate(Predicate pred);
1283
1284 /// Return true if this predicate is either EQ or NE. This also
1285 /// tests for commutativity.
1286 static bool isEquality(Predicate P) {
1287 return P == ICMP_EQ || P == ICMP_NE;
1288 }
1289
1290 /// Return true if this predicate is either EQ or NE. This also
1291 /// tests for commutativity.
1292 bool isEquality() const {
1293 return isEquality(getPredicate());
1294 }
1295
1296 /// @returns true if the predicate of this ICmpInst is commutative
1297 /// Determine if this relation is commutative.
1298 bool isCommutative() const { return isEquality(); }
1299
1300 /// Return true if the predicate is relational (not EQ or NE).
1301 ///
1302 bool isRelational() const {
1303 return !isEquality();
1304 }
1305
1306 /// Return true if the predicate is relational (not EQ or NE).
1307 ///
1308 static bool isRelational(Predicate P) {
1309 return !isEquality(P);
1310 }
1311
1312 /// Return true if the predicate is SGT or UGT.
1313 ///
1314 static bool isGT(Predicate P) {
1315 return P == ICMP_SGT || P == ICMP_UGT;
1316 }
1317
1318 /// Return true if the predicate is SLT or ULT.
1319 ///
1320 static bool isLT(Predicate P) {
1321 return P == ICMP_SLT || P == ICMP_ULT;
1322 }
1323
1324 /// Return true if the predicate is SGE or UGE.
1325 ///
1326 static bool isGE(Predicate P) {
1327 return P == ICMP_SGE || P == ICMP_UGE;
1328 }
1329
1330 /// Return true if the predicate is SLE or ULE.
1331 ///
1332 static bool isLE(Predicate P) {
1333 return P == ICMP_SLE || P == ICMP_ULE;
1334 }
1335
1336 /// Returns the sequence of all ICmp predicates.
1337 ///
1338 static auto predicates() { return ICmpPredicates(); }
1339
1340 /// Exchange the two operands to this instruction in such a way that it does
1341 /// not modify the semantics of the instruction. The predicate value may be
1342 /// changed to retain the same result if the predicate is order dependent
1343 /// (e.g. ult).
1344 /// Swap operands and adjust predicate.
1345 void swapOperands() {
1346 setPredicate(getSwappedPredicate());
1347 Op<0>().swap(Op<1>());
1348 }
1349
1350 /// Return result of `LHS Pred RHS` comparison.
1351 static bool compare(const APInt &LHS, const APInt &RHS,
1352 ICmpInst::Predicate Pred);
1353
1354 // Methods for support type inquiry through isa, cast, and dyn_cast:
1355 static bool classof(const Instruction *I) {
1356 return I->getOpcode() == Instruction::ICmp;
1357 }
1358 static bool classof(const Value *V) {
1359 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1360 }
1361};
1362
1363//===----------------------------------------------------------------------===//
1364// FCmpInst Class
1365//===----------------------------------------------------------------------===//
1366
1367/// This instruction compares its operands according to the predicate given
1368/// to the constructor. It only operates on floating point values or packed
1369/// vectors of floating point values. The operands must be identical types.
1370/// Represents a floating point comparison operator.
1371class FCmpInst: public CmpInst {
1372 void AssertOK() {
1373 assert(isFPPredicate() && "Invalid FCmp predicate value")(static_cast <bool> (isFPPredicate() && "Invalid FCmp predicate value"
) ? void (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "llvm/include/llvm/IR/Instructions.h", 1373, __extension__ __PRETTY_FUNCTION__
))
;
1374 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "llvm/include/llvm/IR/Instructions.h", 1375, __extension__ __PRETTY_FUNCTION__
))
1375 "Both operands to FCmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "llvm/include/llvm/IR/Instructions.h", 1375, __extension__ __PRETTY_FUNCTION__
))
;
1376 // Check that the operands are the right type
1377 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "llvm/include/llvm/IR/Instructions.h", 1378, __extension__ __PRETTY_FUNCTION__
))
1378 "Invalid operand types for FCmp instruction")(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "llvm/include/llvm/IR/Instructions.h", 1378, __extension__ __PRETTY_FUNCTION__
))
;
1379 }
1380
1381protected:
1382 // Note: Instruction needs to be a friend here to call cloneImpl.
1383 friend class Instruction;
1384
1385 /// Clone an identical FCmpInst
1386 FCmpInst *cloneImpl() const;
1387
1388public:
1389 /// Constructor with insert-before-instruction semantics.
1390 FCmpInst(
1391 Instruction *InsertBefore, ///< Where to insert
1392 Predicate pred, ///< The predicate to use for the comparison
1393 Value *LHS, ///< The left-hand-side of the expression
1394 Value *RHS, ///< The right-hand-side of the expression
1395 const Twine &NameStr = "" ///< Name of the instruction
1396 ) : CmpInst(makeCmpResultType(LHS->getType()),
1397 Instruction::FCmp, pred, LHS, RHS, NameStr,
1398 InsertBefore) {
1399 AssertOK();
1400 }
1401
1402 /// Constructor with insert-at-end semantics.
1403 FCmpInst(
1404 BasicBlock &InsertAtEnd, ///< Block to insert into.
1405 Predicate pred, ///< The predicate to use for the comparison
1406 Value *LHS, ///< The left-hand-side of the expression
1407 Value *RHS, ///< The right-hand-side of the expression
1408 const Twine &NameStr = "" ///< Name of the instruction
1409 ) : CmpInst(makeCmpResultType(LHS->getType()),
1410 Instruction::FCmp, pred, LHS, RHS, NameStr,
1411 &InsertAtEnd) {
1412 AssertOK();
1413 }
1414
1415 /// Constructor with no-insertion semantics
1416 FCmpInst(
1417 Predicate Pred, ///< The predicate to use for the comparison
1418 Value *LHS, ///< The left-hand-side of the expression
1419 Value *RHS, ///< The right-hand-side of the expression
1420 const Twine &NameStr = "", ///< Name of the instruction
1421 Instruction *FlagsSource = nullptr
1422 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1423 RHS, NameStr, nullptr, FlagsSource) {
1424 AssertOK();
1425 }
1426
1427 /// @returns true if the predicate of this instruction is EQ or NE.
1428 /// Determine if this is an equality predicate.
1429 static bool isEquality(Predicate Pred) {
1430 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1431 Pred == FCMP_UNE;
1432 }
1433
1434 /// @returns true if the predicate of this instruction is EQ or NE.
1435 /// Determine if this is an equality predicate.
1436 bool isEquality() const { return isEquality(getPredicate()); }
1437
1438 /// @returns true if the predicate of this instruction is commutative.
1439 /// Determine if this is a commutative predicate.
1440 bool isCommutative() const {
1441 return isEquality() ||
1442 getPredicate() == FCMP_FALSE ||
1443 getPredicate() == FCMP_TRUE ||
1444 getPredicate() == FCMP_ORD ||
1445 getPredicate() == FCMP_UNO;
1446 }
1447
1448 /// @returns true if the predicate is relational (not EQ or NE).
1449 /// Determine if this a relational predicate.
1450 bool isRelational() const { return !isEquality(); }
1451
1452 /// Exchange the two operands to this instruction in such a way that it does
1453 /// not modify the semantics of the instruction. The predicate value may be
1454 /// changed to retain the same result if the predicate is order dependent
1455 /// (e.g. ult).
1456 /// Swap operands and adjust predicate.
1457 void swapOperands() {
1458 setPredicate(getSwappedPredicate());
1459 Op<0>().swap(Op<1>());
1460 }
1461
1462 /// Returns the sequence of all FCmp predicates.
1463 ///
1464 static auto predicates() { return FCmpPredicates(); }
1465
1466 /// Return result of `LHS Pred RHS` comparison.
1467 static bool compare(const APFloat &LHS, const APFloat &RHS,
1468 FCmpInst::Predicate Pred);
1469
1470 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1471 static bool classof(const Instruction *I) {
1472 return I->getOpcode() == Instruction::FCmp;
1473 }
1474 static bool classof(const Value *V) {
1475 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1476 }
1477};
1478
1479//===----------------------------------------------------------------------===//
1480/// This class represents a function call, abstracting a target
1481/// machine's calling convention. This class uses low bit of the SubClassData
1482/// field to indicate whether or not this is a tail call. The rest of the bits
1483/// hold the calling convention of the call.
1484///
1485class CallInst : public CallBase {
1486 CallInst(const CallInst &CI);
1487
1488 /// Construct a CallInst given a range of arguments.
1489 /// Construct a CallInst from a range of arguments
1490 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492 Instruction *InsertBefore);
1493
1494 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1495 const Twine &NameStr, Instruction *InsertBefore)
1496 : CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore) {}
1497
1498 /// Construct a CallInst given a range of arguments.
1499 /// Construct a CallInst from a range of arguments
1500 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1501 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1502 BasicBlock *InsertAtEnd);
1503
1504 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1505 Instruction *InsertBefore);
1506
1507 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1508 BasicBlock *InsertAtEnd);
1509
1510 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1511 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1512 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1513
1514 /// Compute the number of operands to allocate.
1515 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1516 // We need one operand for the called function, plus the input operand
1517 // counts provided.
1518 return 1 + NumArgs + NumBundleInputs;
1519 }
1520
1521protected:
1522 // Note: Instruction needs to be a friend here to call cloneImpl.
1523 friend class Instruction;
1524
1525 CallInst *cloneImpl() const;
1526
1527public:
1528 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1529 Instruction *InsertBefore = nullptr) {
1530 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1531 }
1532
1533 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1534 const Twine &NameStr,
1535 Instruction *InsertBefore = nullptr) {
1536 return new (ComputeNumOperands(Args.size()))
1537 CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore);
1538 }
1539
1540 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1541 ArrayRef<OperandBundleDef> Bundles = std::nullopt,
1542 const Twine &NameStr = "",
1543 Instruction *InsertBefore = nullptr) {
1544 const int NumOperands =
1545 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1546 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1547
1548 return new (NumOperands, DescriptorBytes)
1549 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1550 }
1551
1552 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1553 BasicBlock *InsertAtEnd) {
1554 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1555 }
1556
1557 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1558 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1559 return new (ComputeNumOperands(Args.size()))
1560 CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertAtEnd);
1561 }
1562
1563 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1564 ArrayRef<OperandBundleDef> Bundles,
1565 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1566 const int NumOperands =
1567 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1568 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1569
1570 return new (NumOperands, DescriptorBytes)
1571 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1572 }
1573
1574 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1575 Instruction *InsertBefore = nullptr) {
1576 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1577 InsertBefore);
1578 }
1579
1580 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1581 ArrayRef<OperandBundleDef> Bundles = std::nullopt,
1582 const Twine &NameStr = "",
1583 Instruction *InsertBefore = nullptr) {
1584 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1585 NameStr, InsertBefore);
1586 }
1587
1588 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1589 const Twine &NameStr,
1590 Instruction *InsertBefore = nullptr) {
1591 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1592 InsertBefore);
1593 }
1594
1595 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1596 BasicBlock *InsertAtEnd) {
1597 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1598 InsertAtEnd);
1599 }
1600
1601 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1602 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1603 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1604 InsertAtEnd);
1605 }
1606
1607 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1608 ArrayRef<OperandBundleDef> Bundles,
1609 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1610 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1611 NameStr, InsertAtEnd);
1612 }
1613
1614 /// Create a clone of \p CI with a different set of operand bundles and
1615 /// insert it before \p InsertPt.
1616 ///
1617 /// The returned call instruction is identical \p CI in every way except that
1618 /// the operand bundles for the new instruction are set to the operand bundles
1619 /// in \p Bundles.
1620 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1621 Instruction *InsertPt = nullptr);
1622
1623 /// Generate the IR for a call to malloc:
1624 /// 1. Compute the malloc call's argument as the specified type's size,
1625 /// possibly multiplied by the array size if the array size is not
1626 /// constant 1.
1627 /// 2. Call malloc with that argument.
1628 /// 3. Bitcast the result of the malloc call to the specified type.
1629 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630 Type *AllocTy, Value *AllocSize,
1631 Value *ArraySize = nullptr,
1632 Function *MallocF = nullptr,
1633 const Twine &Name = "");
1634 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1635 Type *AllocTy, Value *AllocSize,
1636 Value *ArraySize = nullptr,
1637 Function *MallocF = nullptr,
1638 const Twine &Name = "");
1639 static Instruction *
1640 CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy,
1641 Value *AllocSize, Value *ArraySize = nullptr,
1642 ArrayRef<OperandBundleDef> Bundles = std::nullopt,
1643 Function *MallocF = nullptr, const Twine &Name = "");
1644 static Instruction *
1645 CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy,
1646 Value *AllocSize, Value *ArraySize = nullptr,
1647 ArrayRef<OperandBundleDef> Bundles = std::nullopt,
1648 Function *MallocF = nullptr, const Twine &Name = "");
1649 /// Generate the IR for a call to the builtin free function.
1650 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1651 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1652 static Instruction *CreateFree(Value *Source,
1653 ArrayRef<OperandBundleDef> Bundles,
1654 Instruction *InsertBefore);
1655 static Instruction *CreateFree(Value *Source,
1656 ArrayRef<OperandBundleDef> Bundles,
1657 BasicBlock *InsertAtEnd);
1658
1659 // Note that 'musttail' implies 'tail'.
1660 enum TailCallKind : unsigned {
1661 TCK_None = 0,
1662 TCK_Tail = 1,
1663 TCK_MustTail = 2,
1664 TCK_NoTail = 3,
1665 TCK_LAST = TCK_NoTail
1666 };
1667
1668 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1669 static_assert(
1670 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1671 "Bitfields must be contiguous");
1672
1673 TailCallKind getTailCallKind() const {
1674 return getSubclassData<TailCallKindField>();
1675 }
1676
1677 bool isTailCall() const {
1678 TailCallKind Kind = getTailCallKind();
1679 return Kind == TCK_Tail || Kind == TCK_MustTail;
1680 }
1681
1682 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1683
1684 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1685
1686 void setTailCallKind(TailCallKind TCK) {
1687 setSubclassData<TailCallKindField>(TCK);
1688 }
1689
1690 void setTailCall(bool IsTc = true) {
1691 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1692 }
1693
1694 /// Return true if the call can return twice
1695 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1696 void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); }
1697
1698 // Methods for support type inquiry through isa, cast, and dyn_cast:
1699 static bool classof(const Instruction *I) {
1700 return I->getOpcode() == Instruction::Call;
1701 }
1702 static bool classof(const Value *V) {
1703 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1704 }
1705
1706 /// Updates profile metadata by scaling it by \p S / \p T.
1707 void updateProfWeight(uint64_t S, uint64_t T);
1708
1709private:
1710 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1711 // method so that subclasses cannot accidentally use it.
1712 template <typename Bitfield>
1713 void setSubclassData(typename Bitfield::Type Value) {
1714 Instruction::setSubclassData<Bitfield>(Value);
1715 }
1716};
1717
1718CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1719 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1720 BasicBlock *InsertAtEnd)
1721 : CallBase(Ty->getReturnType(), Instruction::Call,
1722 OperandTraits<CallBase>::op_end(this) -
1723 (Args.size() + CountBundleInputs(Bundles) + 1),
1724 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1725 InsertAtEnd) {
1726 init(Ty, Func, Args, Bundles, NameStr);
1727}
1728
1729CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1730 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1731 Instruction *InsertBefore)
1732 : CallBase(Ty->getReturnType(), Instruction::Call,
1733 OperandTraits<CallBase>::op_end(this) -
1734 (Args.size() + CountBundleInputs(Bundles) + 1),
1735 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1736 InsertBefore) {
1737 init(Ty, Func, Args, Bundles, NameStr);
1738}
1739
1740//===----------------------------------------------------------------------===//
1741// SelectInst Class
1742//===----------------------------------------------------------------------===//
1743
1744/// This class represents the LLVM 'select' instruction.
1745///
1746class SelectInst : public Instruction {
1747 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1748 Instruction *InsertBefore)
1749 : Instruction(S1->getType(), Instruction::Select,
1750 &Op<0>(), 3, InsertBefore) {
1751 init(C, S1, S2);
1752 setName(NameStr);
1753 }
1754
1755 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1756 BasicBlock *InsertAtEnd)
1757 : Instruction(S1->getType(), Instruction::Select,
1758 &Op<0>(), 3, InsertAtEnd) {
1759 init(C, S1, S2);
1760 setName(NameStr);
1761 }
1762
1763 void init(Value *C, Value *S1, Value *S2) {
1764 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")(static_cast <bool> (!areInvalidOperands(C, S1, S2) &&
"Invalid operands for select") ? void (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "llvm/include/llvm/IR/Instructions.h", 1764, __extension__ __PRETTY_FUNCTION__
))
;
1765 Op<0>() = C;
1766 Op<1>() = S1;
1767 Op<2>() = S2;
1768 }
1769
1770protected:
1771 // Note: Instruction needs to be a friend here to call cloneImpl.
1772 friend class Instruction;
1773
1774 SelectInst *cloneImpl() const;
1775
1776public:
1777 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1778 const Twine &NameStr = "",
1779 Instruction *InsertBefore = nullptr,
1780 Instruction *MDFrom = nullptr) {
1781 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1782 if (MDFrom)
1783 Sel->copyMetadata(*MDFrom);
1784 return Sel;
1785 }
1786
1787 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1788 const Twine &NameStr,
1789 BasicBlock *InsertAtEnd) {
1790 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1791 }
1792
1793 const Value *getCondition() const { return Op<0>(); }
1794 const Value *getTrueValue() const { return Op<1>(); }
1795 const Value *getFalseValue() const { return Op<2>(); }
1796 Value *getCondition() { return Op<0>(); }
1797 Value *getTrueValue() { return Op<1>(); }
1798 Value *getFalseValue() { return Op<2>(); }
1799
1800 void setCondition(Value *V) { Op<0>() = V; }
1801 void setTrueValue(Value *V) { Op<1>() = V; }
1802 void setFalseValue(Value *V) { Op<2>() = V; }
1803
1804 /// Swap the true and false values of the select instruction.
1805 /// This doesn't swap prof metadata.
1806 void swapValues() { Op<1>().swap(Op<2>()); }
1807
1808 /// Return a string if the specified operands are invalid
1809 /// for a select operation, otherwise return null.
1810 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1811
1812 /// Transparently provide more efficient getOperand methods.
1813 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1814
1815 OtherOps getOpcode() const {
1816 return static_cast<OtherOps>(Instruction::getOpcode());
1817 }
1818
1819 // Methods for support type inquiry through isa, cast, and dyn_cast:
1820 static bool classof(const Instruction *I) {
1821 return I->getOpcode() == Instruction::Select;
1822 }
1823 static bool classof(const Value *V) {
1824 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1825 }
1826};
1827
1828template <>
1829struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1830};
1831
1832DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SelectInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1832, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this))[i_nocapture
].get()); } void SelectInst::setOperand(unsigned i_nocapture,
Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<SelectInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1832, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<SelectInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SelectInst::getNumOperands() const
{ return OperandTraits<SelectInst>::operands(this); } template
<int Idx_nocapture> Use &SelectInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SelectInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
1833
1834//===----------------------------------------------------------------------===//
1835// VAArgInst Class
1836//===----------------------------------------------------------------------===//
1837
1838/// This class represents the va_arg llvm instruction, which returns
1839/// an argument of the specified type given a va_list and increments that list
1840///
1841class VAArgInst : public UnaryInstruction {
1842protected:
1843 // Note: Instruction needs to be a friend here to call cloneImpl.
1844 friend class Instruction;
1845
1846 VAArgInst *cloneImpl() const;
1847
1848public:
1849 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1850 Instruction *InsertBefore = nullptr)
1851 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1852 setName(NameStr);
1853 }
1854
1855 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1856 BasicBlock *InsertAtEnd)
1857 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1858 setName(NameStr);
1859 }
1860
1861 Value *getPointerOperand() { return getOperand(0); }
1862 const Value *getPointerOperand() const { return getOperand(0); }
1863 static unsigned getPointerOperandIndex() { return 0U; }
1864
1865 // Methods for support type inquiry through isa, cast, and dyn_cast:
1866 static bool classof(const Instruction *I) {
1867 return I->getOpcode() == VAArg;
1868 }
1869 static bool classof(const Value *V) {
1870 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1871 }
1872};
1873
1874//===----------------------------------------------------------------------===//
1875// ExtractElementInst Class
1876//===----------------------------------------------------------------------===//
1877
1878/// This instruction extracts a single (scalar)
1879/// element from a VectorType value
1880///
1881class ExtractElementInst : public Instruction {
1882 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1883 Instruction *InsertBefore = nullptr);
1884 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1885 BasicBlock *InsertAtEnd);
1886
1887protected:
1888 // Note: Instruction needs to be a friend here to call cloneImpl.
1889 friend class Instruction;
1890
1891 ExtractElementInst *cloneImpl() const;
1892
1893public:
1894 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1895 const Twine &NameStr = "",
1896 Instruction *InsertBefore = nullptr) {
1897 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1898 }
1899
1900 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1901 const Twine &NameStr,
1902 BasicBlock *InsertAtEnd) {
1903 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1904 }
1905
1906 /// Return true if an extractelement instruction can be
1907 /// formed with the specified operands.
1908 static bool isValidOperands(const Value *Vec, const Value *Idx);
1909
1910 Value *getVectorOperand() { return Op<0>(); }
1911 Value *getIndexOperand() { return Op<1>(); }
1912 const Value *getVectorOperand() const { return Op<0>(); }
1913 const Value *getIndexOperand() const { return Op<1>(); }
1914
1915 VectorType *getVectorOperandType() const {
1916 return cast<VectorType>(getVectorOperand()->getType());
1917 }
1918
1919 /// Transparently provide more efficient getOperand methods.
1920 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1921
1922 // Methods for support type inquiry through isa, cast, and dyn_cast:
1923 static bool classof(const Instruction *I) {
1924 return I->getOpcode() == Instruction::ExtractElement;
1925 }
1926 static bool classof(const Value *V) {
1927 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1928 }
1929};
1930
1931template <>
1932struct OperandTraits<ExtractElementInst> :
1933 public FixedNumOperandTraits<ExtractElementInst, 2> {
1934};
1935
1936DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
(static_cast <bool> (i_nocapture < OperandTraits<
ExtractElementInst>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1936, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this))[i_nocapture
].get()); } void ExtractElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ExtractElementInst>::operands(this)
&& "setOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1936, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<ExtractElementInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ExtractElementInst::getNumOperands
() const { return OperandTraits<ExtractElementInst>::operands
(this); } template <int Idx_nocapture> Use &ExtractElementInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &ExtractElementInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1937
1938//===----------------------------------------------------------------------===//
1939// InsertElementInst Class
1940//===----------------------------------------------------------------------===//
1941
1942/// This instruction inserts a single (scalar)
1943/// element into a VectorType value
1944///
1945class InsertElementInst : public Instruction {
1946 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1947 const Twine &NameStr = "",
1948 Instruction *InsertBefore = nullptr);
1949 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1950 BasicBlock *InsertAtEnd);
1951
1952protected:
1953 // Note: Instruction needs to be a friend here to call cloneImpl.
1954 friend class Instruction;
1955
1956 InsertElementInst *cloneImpl() const;
1957
1958public:
1959 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1960 const Twine &NameStr = "",
1961 Instruction *InsertBefore = nullptr) {
1962 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1963 }
1964
1965 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1966 const Twine &NameStr,
1967 BasicBlock *InsertAtEnd) {
1968 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1969 }
1970
1971 /// Return true if an insertelement instruction can be
1972 /// formed with the specified operands.
1973 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1974 const Value *Idx);
1975
1976 /// Overload to return most specific vector type.
1977 ///
1978 VectorType *getType() const {
1979 return cast<VectorType>(Instruction::getType());
1980 }
1981
1982 /// Transparently provide more efficient getOperand methods.
1983 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1984
1985 // Methods for support type inquiry through isa, cast, and dyn_cast:
1986 static bool classof(const Instruction *I) {
1987 return I->getOpcode() == Instruction::InsertElement;
1988 }
1989 static bool classof(const Value *V) {
1990 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1991 }
1992};
1993
1994template <>
1995struct OperandTraits<InsertElementInst> :
1996 public FixedNumOperandTraits<InsertElementInst, 3> {
1997};
1998
1999DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<InsertElementInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1999, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<InsertElementInst
>::op_begin(const_cast<InsertElementInst*>(this))[i_nocapture
].get()); } void InsertElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<InsertElementInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1999, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<InsertElementInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned InsertElementInst::getNumOperands
() const { return OperandTraits<InsertElementInst>::operands
(this); } template <int Idx_nocapture> Use &InsertElementInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &InsertElementInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2000
2001//===----------------------------------------------------------------------===//
2002// ShuffleVectorInst Class
2003//===----------------------------------------------------------------------===//
2004
2005constexpr int PoisonMaskElem = -1;
2006
2007/// This instruction constructs a fixed permutation of two
2008/// input vectors.
2009///
2010/// For each element of the result vector, the shuffle mask selects an element
2011/// from one of the input vectors to copy to the result. Non-negative elements
2012/// in the mask represent an index into the concatenated pair of input vectors.
2013/// PoisonMaskElem (-1) specifies that the result element is poison.
2014///
2015/// For scalable vectors, all the elements of the mask must be 0 or -1. This
2016/// requirement may be relaxed in the future.
2017class ShuffleVectorInst : public Instruction {
2018 SmallVector<int, 4> ShuffleMask;
2019 Constant *ShuffleMaskForBitcode;
2020
2021protected:
2022 // Note: Instruction needs to be a friend here to call cloneImpl.
2023 friend class Instruction;
2024
2025 ShuffleVectorInst *cloneImpl() const;
2026
2027public:
2028 ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr = "",
2029 Instruction *InsertBefore = nullptr);
2030 ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr,
2031 BasicBlock *InsertAtEnd);
2032 ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr = "",
2033 Instruction *InsertBefore = nullptr);
2034 ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr,
2035 BasicBlock *InsertAtEnd);
2036 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2037 const Twine &NameStr = "",
2038 Instruction *InsertBefor = nullptr);
2039 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2040 const Twine &NameStr, BasicBlock *InsertAtEnd);
2041 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2042 const Twine &NameStr = "",
2043 Instruction *InsertBefor = nullptr);
2044 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2045 const Twine &NameStr, BasicBlock *InsertAtEnd);
2046
2047 void *operator new(size_t S) { return User::operator new(S, 2); }
2048 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2049
2050 /// Swap the operands and adjust the mask to preserve the semantics
2051 /// of the instruction.
2052 void commute();
2053
2054 /// Return true if a shufflevector instruction can be
2055 /// formed with the specified operands.
2056 static bool isValidOperands(const Value *V1, const Value *V2,
2057 const Value *Mask);
2058 static bool isValidOperands(const Value *V1, const Value *V2,
2059 ArrayRef<int> Mask);
2060
2061 /// Overload to return most specific vector type.
2062 ///
2063 VectorType *getType() const {
2064 return cast<VectorType>(Instruction::getType());
2065 }
2066
2067 /// Transparently provide more efficient getOperand methods.
2068 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2069
2070 /// Return the shuffle mask value of this instruction for the given element
2071 /// index. Return PoisonMaskElem if the element is undef.
2072 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2073
2074 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2075 /// elements of the mask are returned as PoisonMaskElem.
2076 static void getShuffleMask(const Constant *Mask,
2077 SmallVectorImpl<int> &Result);
2078
2079 /// Return the mask for this instruction as a vector of integers. Undefined
2080 /// elements of the mask are returned as PoisonMaskElem.
2081 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2082 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2083 }
2084
2085 /// Return the mask for this instruction, for use in bitcode.
2086 ///
2087 /// TODO: This is temporary until we decide a new bitcode encoding for
2088 /// shufflevector.
2089 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2090
2091 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2092 Type *ResultTy);
2093
2094 void setShuffleMask(ArrayRef<int> Mask);
2095
2096 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2097
2098 /// Return true if this shuffle returns a vector with a different number of
2099 /// elements than its source vectors.
2100 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2101 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2102 bool changesLength() const {
2103 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2104 ->getElementCount()
2105 .getKnownMinValue();
2106 unsigned NumMaskElts = ShuffleMask.size();
2107 return NumSourceElts != NumMaskElts;
2108 }
2109
2110 /// Return true if this shuffle returns a vector with a greater number of
2111 /// elements than its source vectors.
2112 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2113 bool increasesLength() const {
2114 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2115 ->getElementCount()
2116 .getKnownMinValue();
2117 unsigned NumMaskElts = ShuffleMask.size();
2118 return NumSourceElts < NumMaskElts;
2119 }
2120
2121 /// Return true if this shuffle mask chooses elements from exactly one source
2122 /// vector.
2123 /// Example: <7,5,undef,7>
2124 /// This assumes that vector operands are the same length as the mask.
2125 static bool isSingleSourceMask(ArrayRef<int> Mask);
2126 static bool isSingleSourceMask(const Constant *Mask) {
2127 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2127, __extension__ __PRETTY_FUNCTION__
))
;
2128 SmallVector<int, 16> MaskAsInts;
2129 getShuffleMask(Mask, MaskAsInts);
2130 return isSingleSourceMask(MaskAsInts);
2131 }
2132
2133 /// Return true if this shuffle chooses elements from exactly one source
2134 /// vector without changing the length of that vector.
2135 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2136 /// TODO: Optionally allow length-changing shuffles.
2137 bool isSingleSource() const {
2138 return !changesLength() && isSingleSourceMask(ShuffleMask);
2139 }
2140
2141 /// Return true if this shuffle mask chooses elements from exactly one source
2142 /// vector without lane crossings. A shuffle using this mask is not
2143 /// necessarily a no-op because it may change the number of elements from its
2144 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2145 /// Example: <undef,undef,2,3>
2146 static bool isIdentityMask(ArrayRef<int> Mask);
2147 static bool isIdentityMask(const Constant *Mask) {
2148 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2148, __extension__ __PRETTY_FUNCTION__
))
;
2149
2150 // Not possible to express a shuffle mask for a scalable vector for this
2151 // case.
2152 if (isa<ScalableVectorType>(Mask->getType()))
2153 return false;
2154
2155 SmallVector<int, 16> MaskAsInts;
2156 getShuffleMask(Mask, MaskAsInts);
2157 return isIdentityMask(MaskAsInts);
2158 }
2159
2160 /// Return true if this shuffle chooses elements from exactly one source
2161 /// vector without lane crossings and does not change the number of elements
2162 /// from its input vectors.
2163 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2164 bool isIdentity() const {
2165 // Not possible to express a shuffle mask for a scalable vector for this
2166 // case.
2167 if (isa<ScalableVectorType>(getType()))
2168 return false;
2169
2170 return !changesLength() && isIdentityMask(ShuffleMask);
2171 }
2172
2173 /// Return true if this shuffle lengthens exactly one source vector with
2174 /// undefs in the high elements.
2175 bool isIdentityWithPadding() const;
2176
2177 /// Return true if this shuffle extracts the first N elements of exactly one
2178 /// source vector.
2179 bool isIdentityWithExtract() const;
2180
2181 /// Return true if this shuffle concatenates its 2 source vectors. This
2182 /// returns false if either input is undefined. In that case, the shuffle is
2183 /// is better classified as an identity with padding operation.
2184 bool isConcat() const;
2185
2186 /// Return true if this shuffle mask chooses elements from its source vectors
2187 /// without lane crossings. A shuffle using this mask would be
2188 /// equivalent to a vector select with a constant condition operand.
2189 /// Example: <4,1,6,undef>
2190 /// This returns false if the mask does not choose from both input vectors.
2191 /// In that case, the shuffle is better classified as an identity shuffle.
2192 /// This assumes that vector operands are the same length as the mask
2193 /// (a length-changing shuffle can never be equivalent to a vector select).
2194 static bool isSelectMask(ArrayRef<int> Mask);
2195 static bool isSelectMask(const Constant *Mask) {
2196 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2196, __extension__ __PRETTY_FUNCTION__
))
;
2197 SmallVector<int, 16> MaskAsInts;
2198 getShuffleMask(Mask, MaskAsInts);
2199 return isSelectMask(MaskAsInts);
2200 }
2201
2202 /// Return true if this shuffle chooses elements from its source vectors
2203 /// without lane crossings and all operands have the same number of elements.
2204 /// In other words, this shuffle is equivalent to a vector select with a
2205 /// constant condition operand.
2206 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2207 /// This returns false if the mask does not choose from both input vectors.
2208 /// In that case, the shuffle is better classified as an identity shuffle.
2209 /// TODO: Optionally allow length-changing shuffles.
2210 bool isSelect() const {
2211 return !changesLength() && isSelectMask(ShuffleMask);
2212 }
2213
2214 /// Return true if this shuffle mask swaps the order of elements from exactly
2215 /// one source vector.
2216 /// Example: <7,6,undef,4>
2217 /// This assumes that vector operands are the same length as the mask.
2218 static bool isReverseMask(ArrayRef<int> Mask);
2219 static bool isReverseMask(const Constant *Mask) {
2220 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2220, __extension__ __PRETTY_FUNCTION__
))
;
2221 SmallVector<int, 16> MaskAsInts;
2222 getShuffleMask(Mask, MaskAsInts);
2223 return isReverseMask(MaskAsInts);
2224 }
2225
2226 /// Return true if this shuffle swaps the order of elements from exactly
2227 /// one source vector.
2228 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2229 /// TODO: Optionally allow length-changing shuffles.
2230 bool isReverse() const {
2231 return !changesLength() && isReverseMask(ShuffleMask);
2232 }
2233
2234 /// Return true if this shuffle mask chooses all elements with the same value
2235 /// as the first element of exactly one source vector.
2236 /// Example: <4,undef,undef,4>
2237 /// This assumes that vector operands are the same length as the mask.
2238 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2239 static bool isZeroEltSplatMask(const Constant *Mask) {
2240 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2240, __extension__ __PRETTY_FUNCTION__
))
;
2241 SmallVector<int, 16> MaskAsInts;
2242 getShuffleMask(Mask, MaskAsInts);
2243 return isZeroEltSplatMask(MaskAsInts);
2244 }
2245
2246 /// Return true if all elements of this shuffle are the same value as the
2247 /// first element of exactly one source vector without changing the length
2248 /// of that vector.
2249 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2250 /// TODO: Optionally allow length-changing shuffles.
2251 /// TODO: Optionally allow splats from other elements.
2252 bool isZeroEltSplat() const {
2253 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2254 }
2255
2256 /// Return true if this shuffle mask is a transpose mask.
2257 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2258 /// even- or odd-numbered vector elements from two n-dimensional source
2259 /// vectors and write each result into consecutive elements of an
2260 /// n-dimensional destination vector. Two shuffles are necessary to complete
2261 /// the transpose, one for the even elements and another for the odd elements.
2262 /// This description closely follows how the TRN1 and TRN2 AArch64
2263 /// instructions operate.
2264 ///
2265 /// For example, a simple 2x2 matrix can be transposed with:
2266 ///
2267 /// ; Original matrix
2268 /// m0 = < a, b >
2269 /// m1 = < c, d >
2270 ///
2271 /// ; Transposed matrix
2272 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2273 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2274 ///
2275 /// For matrices having greater than n columns, the resulting nx2 transposed
2276 /// matrix is stored in two result vectors such that one vector contains
2277 /// interleaved elements from all the even-numbered rows and the other vector
2278 /// contains interleaved elements from all the odd-numbered rows. For example,
2279 /// a 2x4 matrix can be transposed with:
2280 ///
2281 /// ; Original matrix
2282 /// m0 = < a, b, c, d >
2283 /// m1 = < e, f, g, h >
2284 ///
2285 /// ; Transposed matrix
2286 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2287 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2288 static bool isTransposeMask(ArrayRef<int> Mask);
2289 static bool isTransposeMask(const Constant *Mask) {
2290 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2290, __extension__ __PRETTY_FUNCTION__
))
;
2291 SmallVector<int, 16> MaskAsInts;
2292 getShuffleMask(Mask, MaskAsInts);
2293 return isTransposeMask(MaskAsInts);
2294 }
2295
2296 /// Return true if this shuffle transposes the elements of its inputs without
2297 /// changing the length of the vectors. This operation may also be known as a
2298 /// merge or interleave. See the description for isTransposeMask() for the
2299 /// exact specification.
2300 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2301 bool isTranspose() const {
2302 return !changesLength() && isTransposeMask(ShuffleMask);
2303 }
2304
2305 /// Return true if this shuffle mask is a splice mask, concatenating the two
2306 /// inputs together and then extracts an original width vector starting from
2307 /// the splice index.
2308 /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
2309 static bool isSpliceMask(ArrayRef<int> Mask, int &Index);
2310 static bool isSpliceMask(const Constant *Mask, int &Index) {
2311 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2311, __extension__ __PRETTY_FUNCTION__
))
;
2312 SmallVector<int, 16> MaskAsInts;
2313 getShuffleMask(Mask, MaskAsInts);
2314 return isSpliceMask(MaskAsInts, Index);
2315 }
2316
2317 /// Return true if this shuffle splices two inputs without changing the length
2318 /// of the vectors. This operation concatenates the two inputs together and
2319 /// then extracts an original width vector starting from the splice index.
2320 /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
2321 bool isSplice(int &Index) const {
2322 return !changesLength() && isSpliceMask(ShuffleMask, Index);
2323 }
2324
2325 /// Return true if this shuffle mask is an extract subvector mask.
2326 /// A valid extract subvector mask returns a smaller vector from a single
2327 /// source operand. The base extraction index is returned as well.
2328 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2329 int &Index);
2330 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2331 int &Index) {
2332 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2332, __extension__ __PRETTY_FUNCTION__
))
;
2333 // Not possible to express a shuffle mask for a scalable vector for this
2334 // case.
2335 if (isa<ScalableVectorType>(Mask->getType()))
2336 return false;
2337 SmallVector<int, 16> MaskAsInts;
2338 getShuffleMask(Mask, MaskAsInts);
2339 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2340 }
2341
2342 /// Return true if this shuffle mask is an extract subvector mask.
2343 bool isExtractSubvectorMask(int &Index) const {
2344 // Not possible to express a shuffle mask for a scalable vector for this
2345 // case.
2346 if (isa<ScalableVectorType>(getType()))
2347 return false;
2348
2349 int NumSrcElts =
2350 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2351 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2352 }
2353
2354 /// Return true if this shuffle mask is an insert subvector mask.
2355 /// A valid insert subvector mask inserts the lowest elements of a second
2356 /// source operand into an in-place first source operand operand.
2357 /// Both the sub vector width and the insertion index is returned.
2358 static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2359 int &NumSubElts, int &Index);
2360 static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts,
2361 int &NumSubElts, int &Index) {
2362 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2362, __extension__ __PRETTY_FUNCTION__
))
;
2363 // Not possible to express a shuffle mask for a scalable vector for this
2364 // case.
2365 if (isa<ScalableVectorType>(Mask->getType()))
2366 return false;
2367 SmallVector<int, 16> MaskAsInts;
2368 getShuffleMask(Mask, MaskAsInts);
2369 return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index);
2370 }
2371
2372 /// Return true if this shuffle mask is an insert subvector mask.
2373 bool isInsertSubvectorMask(int &NumSubElts, int &Index) const {
2374 // Not possible to express a shuffle mask for a scalable vector for this
2375 // case.
2376 if (isa<ScalableVectorType>(getType()))
2377 return false;
2378
2379 int NumSrcElts =
2380 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2381 return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index);
2382 }
2383
2384 /// Return true if this shuffle mask replicates each of the \p VF elements
2385 /// in a vector \p ReplicationFactor times.
2386 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
2387 /// <0,0,0,1,1,1,2,2,2,3,3,3>
2388 static bool isReplicationMask(ArrayRef<int> Mask, int &ReplicationFactor,
2389 int &VF);
2390 static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor,
2391 int &VF) {
2392 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2392, __extension__ __PRETTY_FUNCTION__
))
;
2393 // Not possible to express a shuffle mask for a scalable vector for this
2394 // case.
2395 if (isa<ScalableVectorType>(Mask->getType()))
2396 return false;
2397 SmallVector<int, 16> MaskAsInts;
2398 getShuffleMask(Mask, MaskAsInts);
2399 return isReplicationMask(MaskAsInts, ReplicationFactor, VF);
2400 }
2401
2402 /// Return true if this shuffle mask is a replication mask.
2403 bool isReplicationMask(int &ReplicationFactor, int &VF) const;
2404
2405 /// Return true if this shuffle mask represents "clustered" mask of size VF,
2406 /// i.e. each index between [0..VF) is used exactly once in each submask of
2407 /// size VF.
2408 /// For example, the mask for \p VF=4 is:
2409 /// 0, 1, 2, 3, 3, 2, 0, 1 - "clustered", because each submask of size 4
2410 /// (0,1,2,3 and 3,2,0,1) uses indices [0..VF) exactly one time.
2411 /// 0, 1, 2, 3, 3, 3, 1, 0 - not "clustered", because
2412 /// element 3 is used twice in the second submask
2413 /// (3,3,1,0) and index 2 is not used at all.
2414 static bool isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF);
2415
2416 /// Return true if this shuffle mask is a one-use-single-source("clustered")
2417 /// mask.
2418 bool isOneUseSingleSourceMask(int VF) const;
2419
2420 /// Change values in a shuffle permute mask assuming the two vector operands
2421 /// of length InVecNumElts have swapped position.
2422 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2423 unsigned InVecNumElts) {
2424 for (int &Idx : Mask) {
2425 if (Idx == -1)
2426 continue;
2427 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2428 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "llvm/include/llvm/IR/Instructions.h", 2429, __extension__ __PRETTY_FUNCTION__
))
2429 "shufflevector mask index out of range")(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "llvm/include/llvm/IR/Instructions.h", 2429, __extension__ __PRETTY_FUNCTION__
))
;
2430 }
2431 }
2432
2433 /// Return if this shuffle interleaves its two input vectors together.
2434 bool isInterleave(unsigned Factor);
2435
2436 /// Return true if the mask interleaves one or more input vectors together.
2437 ///
2438 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
2439 /// E.g. For a Factor of 2 (LaneLen=4):
2440 /// <0, 4, 1, 5, 2, 6, 3, 7>
2441 /// E.g. For a Factor of 3 (LaneLen=4):
2442 /// <4, 0, 9, 5, 1, 10, 6, 2, 11, 7, 3, 12>
2443 /// E.g. For a Factor of 4 (LaneLen=2):
2444 /// <0, 2, 6, 4, 1, 3, 7, 5>
2445 ///
2446 /// NumInputElts is the total number of elements in the input vectors.
2447 ///
2448 /// StartIndexes are the first indexes of each vector being interleaved,
2449 /// substituting any indexes that were undef
2450 /// E.g. <4, -1, 2, 5, 1, 3> (Factor=3): StartIndexes=<4, 0, 2>
2451 ///
2452 /// Note that this does not check if the input vectors are consecutive:
2453 /// It will return true for masks such as
2454 /// <0, 4, 6, 1, 5, 7> (Factor=3, LaneLen=2)
2455 static bool isInterleaveMask(ArrayRef<int> Mask, unsigned Factor,
2456 unsigned NumInputElts,
2457 SmallVectorImpl<unsigned> &StartIndexes);
2458 static bool isInterleaveMask(ArrayRef<int> Mask, unsigned Factor,
2459 unsigned NumInputElts) {
2460 SmallVector<unsigned, 8> StartIndexes;
2461 return isInterleaveMask(Mask, Factor, NumInputElts, StartIndexes);
2462 }
2463
2464 // Methods for support type inquiry through isa, cast, and dyn_cast:
2465 static bool classof(const Instruction *I) {
2466 return I->getOpcode() == Instruction::ShuffleVector;
2467 }
2468 static bool classof(const Value *V) {
2469 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2470 }
2471};
2472
2473template <>
2474struct OperandTraits<ShuffleVectorInst>
2475 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2476
2477DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<ShuffleVectorInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2477, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<ShuffleVectorInst
>::op_begin(const_cast<ShuffleVectorInst*>(this))[i_nocapture
].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ShuffleVectorInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2477, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<ShuffleVectorInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ShuffleVectorInst::getNumOperands
() const { return OperandTraits<ShuffleVectorInst>::operands
(this); } template <int Idx_nocapture> Use &ShuffleVectorInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &ShuffleVectorInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2478
2479//===----------------------------------------------------------------------===//
2480// ExtractValueInst Class
2481//===----------------------------------------------------------------------===//
2482
2483/// This instruction extracts a struct member or array
2484/// element value from an aggregate value.
2485///
2486class ExtractValueInst : public UnaryInstruction {
2487 SmallVector<unsigned, 4> Indices;
2488
2489 ExtractValueInst(const ExtractValueInst &EVI);
2490
2491 /// Constructors - Create a extractvalue instruction with a base aggregate
2492 /// value and a list of indices. The first ctor can optionally insert before
2493 /// an existing instruction, the second appends the new instruction to the
2494 /// specified BasicBlock.
2495 inline ExtractValueInst(Value *Agg,
2496 ArrayRef<unsigned> Idxs,
2497 const Twine &NameStr,
2498 Instruction *InsertBefore);
2499 inline ExtractValueInst(Value *Agg,
2500 ArrayRef<unsigned> Idxs,
2501 const Twine &NameStr, BasicBlock *InsertAtEnd);
2502
2503 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2504
2505protected:
2506 // Note: Instruction needs to be a friend here to call cloneImpl.
2507 friend class Instruction;
2508
2509 ExtractValueInst *cloneImpl() const;
2510
2511public:
2512 static ExtractValueInst *Create(Value *Agg,
2513 ArrayRef<unsigned> Idxs,
2514 const Twine &NameStr = "",
2515 Instruction *InsertBefore = nullptr) {
2516 return new
2517 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2518 }
2519
2520 static ExtractValueInst *Create(Value *Agg,
2521 ArrayRef<unsigned> Idxs,
2522 const Twine &NameStr,
2523 BasicBlock *InsertAtEnd) {
2524 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2525 }
2526
2527 /// Returns the type of the element that would be extracted
2528 /// with an extractvalue instruction with the specified parameters.
2529 ///
2530 /// Null is returned if the indices are invalid for the specified type.
2531 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2532
2533 using idx_iterator = const unsigned*;
2534
2535 inline idx_iterator idx_begin() const { return Indices.begin(); }
2536 inline idx_iterator idx_end() const { return Indices.end(); }
2537 inline iterator_range<idx_iterator> indices() const {
2538 return make_range(idx_begin(), idx_end());
2539 }
2540
2541 Value *getAggregateOperand() {
2542 return getOperand(0);
2543 }
2544 const Value *getAggregateOperand() const {
2545 return getOperand(0);
2546 }
2547 static unsigned getAggregateOperandIndex() {
2548 return 0U; // get index for modifying correct operand
2549 }
2550
2551 ArrayRef<unsigned> getIndices() const {
2552 return Indices;
2553 }
2554
2555 unsigned getNumIndices() const {
2556 return (unsigned)Indices.size();
2557 }
2558
2559 bool hasIndices() const {
2560 return true;
2561 }
2562
2563 // Methods for support type inquiry through isa, cast, and dyn_cast:
2564 static bool classof(const Instruction *I) {
2565 return I->getOpcode() == Instruction::ExtractValue;
2566 }
2567 static bool classof(const Value *V) {
2568 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2569 }
2570};
2571
2572ExtractValueInst::ExtractValueInst(Value *Agg,
2573 ArrayRef<unsigned> Idxs,
2574 const Twine &NameStr,
2575 Instruction *InsertBefore)
2576 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2577 ExtractValue, Agg, InsertBefore) {
2578 init(Idxs, NameStr);
2579}
2580
2581ExtractValueInst::ExtractValueInst(Value *Agg,
2582 ArrayRef<unsigned> Idxs,
2583 const Twine &NameStr,
2584 BasicBlock *InsertAtEnd)
2585 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2586 ExtractValue, Agg, InsertAtEnd) {
2587 init(Idxs, NameStr);
2588}
2589
2590//===----------------------------------------------------------------------===//
2591// InsertValueInst Class
2592//===----------------------------------------------------------------------===//
2593
2594/// This instruction inserts a struct field of array element
2595/// value into an aggregate value.
2596///
2597class InsertValueInst : public Instruction {
2598 SmallVector<unsigned, 4> Indices;
2599
2600 InsertValueInst(const InsertValueInst &IVI);
2601
2602 /// Constructors - Create a insertvalue instruction with a base aggregate
2603 /// value, a value to insert, and a list of indices. The first ctor can
2604 /// optionally insert before an existing instruction, the second appends
2605 /// the new instruction to the specified BasicBlock.
2606 inline InsertValueInst(Value *Agg, Value *Val,
2607 ArrayRef<unsigned> Idxs,
2608 const Twine &NameStr,
2609 Instruction *InsertBefore);
2610 inline InsertValueInst(Value *Agg, Value *Val,
2611 ArrayRef<unsigned> Idxs,
2612 const Twine &NameStr, BasicBlock *InsertAtEnd);
2613
2614 /// Constructors - These two constructors are convenience methods because one
2615 /// and two index insertvalue instructions are so common.
2616 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2617 const Twine &NameStr = "",
2618 Instruction *InsertBefore = nullptr);
2619 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2620 BasicBlock *InsertAtEnd);
2621
2622 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2623 const Twine &NameStr);
2624
2625protected:
2626 // Note: Instruction needs to be a friend here to call cloneImpl.
2627 friend class Instruction;
2628
2629 InsertValueInst *cloneImpl() const;
2630
2631public:
2632 // allocate space for exactly two operands
2633 void *operator new(size_t S) { return User::operator new(S, 2); }
2634 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2635
2636 static InsertValueInst *Create(Value *Agg, Value *Val,
2637 ArrayRef<unsigned> Idxs,
2638 const Twine &NameStr = "",
2639 Instruction *InsertBefore = nullptr) {
2640 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2641 }
2642
2643 static InsertValueInst *Create(Value *Agg, Value *Val,
2644 ArrayRef<unsigned> Idxs,
2645 const Twine &NameStr,
2646 BasicBlock *InsertAtEnd) {
2647 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2648 }
2649
2650 /// Transparently provide more efficient getOperand methods.
2651 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2652
2653 using idx_iterator = const unsigned*;
2654
2655 inline idx_iterator idx_begin() const { return Indices.begin(); }
2656 inline idx_iterator idx_end() const { return Indices.end(); }
2657 inline iterator_range<idx_iterator> indices() const {
2658 return make_range(idx_begin(), idx_end());
2659 }
2660
2661 Value *getAggregateOperand() {
2662 return getOperand(0);
2663 }
2664 const Value *getAggregateOperand() const {
2665 return getOperand(0);
2666 }
2667 static unsigned getAggregateOperandIndex() {
2668 return 0U; // get index for modifying correct operand
2669 }
2670
2671 Value *getInsertedValueOperand() {
2672 return getOperand(1);
2673 }
2674 const Value *getInsertedValueOperand() const {
2675 return getOperand(1);
2676 }
2677 static unsigned getInsertedValueOperandIndex() {
2678 return 1U; // get index for modifying correct operand
2679 }
2680
2681 ArrayRef<unsigned> getIndices() const {
2682 return Indices;
2683 }
2684
2685 unsigned getNumIndices() const {
2686 return (unsigned)Indices.size();
2687 }
2688
2689 bool hasIndices() const {
2690 return true;
2691 }
2692
2693 // Methods for support type inquiry through isa, cast, and dyn_cast:
2694 static bool classof(const Instruction *I) {
2695 return I->getOpcode() == Instruction::InsertValue;
2696 }
2697 static bool classof(const Value *V) {
2698 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2699 }
2700};
2701
2702template <>
2703struct OperandTraits<InsertValueInst> :
2704 public FixedNumOperandTraits<InsertValueInst, 2> {
2705};
2706
2707InsertValueInst::InsertValueInst(Value *Agg,
2708 Value *Val,
2709 ArrayRef<unsigned> Idxs,
2710 const Twine &NameStr,
2711 Instruction *InsertBefore)
2712 : Instruction(Agg->getType(), InsertValue,
2713 OperandTraits<InsertValueInst>::op_begin(this),
2714 2, InsertBefore) {
2715 init(Agg, Val, Idxs, NameStr);
2716}
2717
2718InsertValueInst::InsertValueInst(Value *Agg,
2719 Value *Val,
2720 ArrayRef<unsigned> Idxs,
2721 const Twine &NameStr,
2722 BasicBlock *InsertAtEnd)
2723 : Instruction(Agg->getType(), InsertValue,
2724 OperandTraits<InsertValueInst>::op_begin(this),
2725 2, InsertAtEnd) {
2726 init(Agg, Val, Idxs, NameStr);
2727}
2728
2729DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<InsertValueInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2729, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<InsertValueInst
>::op_begin(const_cast<InsertValueInst*>(this))[i_nocapture
].get()); } void InsertValueInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<InsertValueInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2729, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<InsertValueInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned InsertValueInst::getNumOperands
() const { return OperandTraits<InsertValueInst>::operands
(this); } template <int Idx_nocapture> Use &InsertValueInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &InsertValueInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2730
2731//===----------------------------------------------------------------------===//
2732// PHINode Class
2733//===----------------------------------------------------------------------===//
2734
2735// PHINode - The PHINode class is used to represent the magical mystical PHI
2736// node, that can not exist in nature, but can be synthesized in a computer
2737// scientist's overactive imagination.
2738//
2739class PHINode : public Instruction {
2740 /// The number of operands actually allocated. NumOperands is
2741 /// the number actually in use.
2742 unsigned ReservedSpace;
2743
2744 PHINode(const PHINode &PN);
2745
2746 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2747 const Twine &NameStr = "",
2748 Instruction *InsertBefore = nullptr)
2749 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2750 ReservedSpace(NumReservedValues) {
2751 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "llvm/include/llvm/IR/Instructions.h", 2751, __extension__ __PRETTY_FUNCTION__
))
;
2752 setName(NameStr);
2753 allocHungoffUses(ReservedSpace);
2754 }
2755
2756 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2757 BasicBlock *InsertAtEnd)
2758 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2759 ReservedSpace(NumReservedValues) {
2760 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "llvm/include/llvm/IR/Instructions.h", 2760, __extension__ __PRETTY_FUNCTION__
))
;
2761 setName(NameStr);
2762 allocHungoffUses(ReservedSpace);
2763 }
2764
2765protected:
2766 // Note: Instruction needs to be a friend here to call cloneImpl.
2767 friend class Instruction;
2768
2769 PHINode *cloneImpl() const;
2770
2771 // allocHungoffUses - this is more complicated than the generic
2772 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2773 // values and pointers to the incoming blocks, all in one allocation.
2774 void allocHungoffUses(unsigned N) {
2775 User::allocHungoffUses(N, /* IsPhi */ true);
2776 }
2777
2778public:
2779 /// Constructors - NumReservedValues is a hint for the number of incoming
2780 /// edges that this phi node will have (use 0 if you really have no idea).
2781 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2782 const Twine &NameStr = "",
2783 Instruction *InsertBefore = nullptr) {
2784 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2785 }
2786
2787 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2788 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2789 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2790 }
2791
2792 /// Provide fast operand accessors
2793 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2794
2795 // Block iterator interface. This provides access to the list of incoming
2796 // basic blocks, which parallels the list of incoming values.
2797 // Please note that we are not providing non-const iterators for blocks to
2798 // force all updates go through an interface function.
2799
2800 using block_iterator = BasicBlock **;
2801 using const_block_iterator = BasicBlock * const *;
2802
2803 const_block_iterator block_begin() const {
2804 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2805 }
2806
2807 const_block_iterator block_end() const {
2808 return block_begin() + getNumOperands();
2809 }
2810
2811 iterator_range<const_block_iterator> blocks() const {
2812 return make_range(block_begin(), block_end());
2813 }
2814
2815 op_range incoming_values() { return operands(); }
2816
2817 const_op_range incoming_values() const { return operands(); }
2818
2819 /// Return the number of incoming edges
2820 ///
2821 unsigned getNumIncomingValues() const { return getNumOperands(); }
2822
2823 /// Return incoming value number x
2824 ///
2825 Value *getIncomingValue(unsigned i) const {
2826 return getOperand(i);
2827 }
2828 void setIncomingValue(unsigned i, Value *V) {
2829 assert(V && "PHI node got a null value!")(static_cast <bool> (V && "PHI node got a null value!"
) ? void (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "llvm/include/llvm/IR/Instructions.h", 2829, __extension__ __PRETTY_FUNCTION__
))
;
2830 assert(getType() == V->getType() &&(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "llvm/include/llvm/IR/Instructions.h", 2831, __extension__ __PRETTY_FUNCTION__
))
2831 "All operands to PHI node must be the same type as the PHI node!")(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "llvm/include/llvm/IR/Instructions.h", 2831, __extension__ __PRETTY_FUNCTION__
))
;
2832 setOperand(i, V);
2833 }
2834
2835 static unsigned getOperandNumForIncomingValue(unsigned i) {
2836 return i;
2837 }
2838
2839 static unsigned getIncomingValueNumForOperand(unsigned i) {
2840 return i;
2841 }
2842
2843 /// Return incoming basic block number @p i.
2844 ///
2845 BasicBlock *getIncomingBlock(unsigned i) const {
2846 return block_begin()[i];
2847 }
2848
2849 /// Return incoming basic block corresponding
2850 /// to an operand of the PHI.
2851 ///
2852 BasicBlock *getIncomingBlock(const Use &U) const {
2853 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")(static_cast <bool> (this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? void (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "llvm/include/llvm/IR/Instructions.h", 2853, __extension__ __PRETTY_FUNCTION__
))
;
2854 return getIncomingBlock(unsigned(&U - op_begin()));
2855 }
2856
2857 /// Return incoming basic block corresponding
2858 /// to value use iterator.
2859 ///
2860 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2861 return getIncomingBlock(I.getUse());
2862 }
2863
2864 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2865 const_cast<block_iterator>(block_begin())[i] = BB;
2866 }
2867
2868 /// Copies the basic blocks from \p BBRange to the incoming basic block list
2869 /// of this PHINode, starting at \p ToIdx.
2870 void copyIncomingBlocks(iterator_range<const_block_iterator> BBRange,
2871 uint32_t ToIdx = 0) {
2872 copy(BBRange, const_cast<block_iterator>(block_begin()) + ToIdx);
2873 }
2874
2875 /// Replace every incoming basic block \p Old to basic block \p New.
2876 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2877 assert(New && Old && "PHI node got a null basic block!")(static_cast <bool> (New && Old && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "llvm/include/llvm/IR/Instructions.h", 2877, __extension__ __PRETTY_FUNCTION__
))
;
2878 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2879 if (getIncomingBlock(Op) == Old)
2880 setIncomingBlock(Op, New);
2881 }
2882
2883 /// Add an incoming value to the end of the PHI list
2884 ///
2885 void addIncoming(Value *V, BasicBlock *BB) {
2886 if (getNumOperands() == ReservedSpace)
2887 growOperands(); // Get more space!
2888 // Initialize some new operands.
2889 setNumHungOffUseOperands(getNumOperands() + 1);
2890 setIncomingValue(getNumOperands() - 1, V);
2891 setIncomingBlock(getNumOperands() - 1, BB);
2892 }
2893
2894 /// Remove an incoming value. This is useful if a
2895 /// predecessor basic block is deleted. The value removed is returned.
2896 ///
2897 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2898 /// is true), the PHI node is destroyed and any uses of it are replaced with
2899 /// dummy values. The only time there should be zero incoming values to a PHI
2900 /// node is when the block is dead, so this strategy is sound.
2901 ///
2902 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2903
2904 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2905 int Idx = getBasicBlockIndex(BB);
2906 assert(Idx >= 0 && "Invalid basic block argument to remove!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument to remove!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "llvm/include/llvm/IR/Instructions.h", 2906, __extension__ __PRETTY_FUNCTION__
))
;
2907 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2908 }
2909
2910 /// Return the first index of the specified basic
2911 /// block in the value list for this PHI. Returns -1 if no instance.
2912 ///
2913 int getBasicBlockIndex(const BasicBlock *BB) const {
2914 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2915 if (block_begin()[i] == BB)
2916 return i;
2917 return -1;
2918 }
2919
2920 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2921 int Idx = getBasicBlockIndex(BB);
2922 assert(Idx >= 0 && "Invalid basic block argument!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "llvm/include/llvm/IR/Instructions.h", 2922, __extension__ __PRETTY_FUNCTION__
))
;
2923 return getIncomingValue(Idx);
2924 }
2925
2926 /// Set every incoming value(s) for block \p BB to \p V.
2927 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2928 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "llvm/include/llvm/IR/Instructions.h", 2928, __extension__ __PRETTY_FUNCTION__
))
;
2929 bool Found = false;
2930 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2931 if (getIncomingBlock(Op) == BB) {
2932 Found = true;
2933 setIncomingValue(Op, V);
2934 }
2935 (void)Found;
2936 assert(Found && "Invalid basic block argument to set!")(static_cast <bool> (Found && "Invalid basic block argument to set!"
) ? void (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "llvm/include/llvm/IR/Instructions.h", 2936, __extension__ __PRETTY_FUNCTION__
))
;
2937 }
2938
2939 /// If the specified PHI node always merges together the
2940 /// same value, return the value, otherwise return null.
2941 Value *hasConstantValue() const;
2942
2943 /// Whether the specified PHI node always merges
2944 /// together the same value, assuming undefs are equal to a unique
2945 /// non-undef value.
2946 bool hasConstantOrUndefValue() const;
2947
2948 /// If the PHI node is complete which means all of its parent's predecessors
2949 /// have incoming value in this PHI, return true, otherwise return false.
2950 bool isComplete() const {
2951 return llvm::all_of(predecessors(getParent()),
2952 [this](const BasicBlock *Pred) {
2953 return getBasicBlockIndex(Pred) >= 0;
2954 });
2955 }
2956
2957 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2958 static bool classof(const Instruction *I) {
2959 return I->getOpcode() == Instruction::PHI;
2960 }
2961 static bool classof(const Value *V) {
2962 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2963 }
2964
2965private:
2966 void growOperands();
2967};
2968
2969template <>
2970struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2971};
2972
2973DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { (static_cast <bool> (i_nocapture < OperandTraits
<PHINode>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2973, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<PHINode
>::op_begin(const_cast<PHINode*>(this))[i_nocapture]
.get()); } void PHINode::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2973, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<PHINode>::op_begin(this)[i_nocapture]
= Val_nocapture; } unsigned PHINode::getNumOperands() const {
return OperandTraits<PHINode>::operands(this); } template
<int Idx_nocapture> Use &PHINode::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &PHINode::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
2974
2975//===----------------------------------------------------------------------===//
2976// LandingPadInst Class
2977//===----------------------------------------------------------------------===//
2978
2979//===---------------------------------------------------------------------------
2980/// The landingpad instruction holds all of the information
2981/// necessary to generate correct exception handling. The landingpad instruction
2982/// cannot be moved from the top of a landing pad block, which itself is
2983/// accessible only from the 'unwind' edge of an invoke. This uses the
2984/// SubclassData field in Value to store whether or not the landingpad is a
2985/// cleanup.
2986///
2987class LandingPadInst : public Instruction {
2988 using CleanupField = BoolBitfieldElementT<0>;
2989
2990 /// The number of operands actually allocated. NumOperands is
2991 /// the number actually in use.
2992 unsigned ReservedSpace;
2993
2994 LandingPadInst(const LandingPadInst &LP);
2995
2996public:
2997 enum ClauseType { Catch, Filter };
2998
2999private:
3000 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
3001 const Twine &NameStr, Instruction *InsertBefore);
3002 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
3003 const Twine &NameStr, BasicBlock *InsertAtEnd);
3004
3005 // Allocate space for exactly zero operands.
3006 void *operator new(size_t S) { return User::operator new(S); }
3007
3008 void growOperands(unsigned Size);
3009 void init(unsigned NumReservedValues, const Twine &NameStr);
3010
3011protected:
3012 // Note: Instruction needs to be a friend here to call cloneImpl.
3013 friend class Instruction;
3014
3015 LandingPadInst *cloneImpl() const;
3016
3017public:
3018 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3019
3020 /// Constructors - NumReservedClauses is a hint for the number of incoming
3021 /// clauses that this landingpad will have (use 0 if you really have no idea).
3022 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
3023 const Twine &NameStr = "",
3024 Instruction *InsertBefore = nullptr);
3025 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
3026 const Twine &NameStr, BasicBlock *InsertAtEnd);
3027
3028 /// Provide fast operand accessors
3029 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3030
3031 /// Return 'true' if this landingpad instruction is a
3032 /// cleanup. I.e., it should be run when unwinding even if its landing pad
3033 /// doesn't catch the exception.
3034 bool isCleanup() const { return getSubclassData<CleanupField>(); }
3035
3036 /// Indicate that this landingpad instruction is a cleanup.
3037 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
3038
3039 /// Add a catch or filter clause to the landing pad.
3040 void addClause(Constant *ClauseVal);
3041
3042 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
3043 /// determine what type of clause this is.
3044 Constant *getClause(unsigned Idx) const {
3045 return cast<Constant>(getOperandList()[Idx]);
3046 }
3047
3048 /// Return 'true' if the clause and index Idx is a catch clause.
3049 bool isCatch(unsigned Idx) const {
3050 return !isa<ArrayType>(getOperandList()[Idx]->getType());
3051 }
3052
3053 /// Return 'true' if the clause and index Idx is a filter clause.
3054 bool isFilter(unsigned Idx) const {
3055 return isa<ArrayType>(getOperandList()[Idx]->getType());
3056 }
3057
3058 /// Get the number of clauses for this landing pad.
3059 unsigned getNumClauses() const { return getNumOperands(); }
3060
3061 /// Grow the size of the operand list to accommodate the new
3062 /// number of clauses.
3063 void reserveClauses(unsigned Size) { growOperands(Size); }
3064
3065 // Methods for support type inquiry through isa, cast, and dyn_cast:
3066 static bool classof(const Instruction *I) {
3067 return I->getOpcode() == Instruction::LandingPad;
3068 }
3069 static bool classof(const Value *V) {
3070 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3071 }
3072};
3073
3074template <>
3075struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
3076};
3077
3078DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3078, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<LandingPadInst
>::op_begin(const_cast<LandingPadInst*>(this))[i_nocapture
].get()); } void LandingPadInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<LandingPadInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3078, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<LandingPadInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned LandingPadInst::getNumOperands(
) const { return OperandTraits<LandingPadInst>::operands
(this); } template <int Idx_nocapture> Use &LandingPadInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &LandingPadInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
3079
3080//===----------------------------------------------------------------------===//
3081// ReturnInst Class
3082//===----------------------------------------------------------------------===//
3083
3084//===---------------------------------------------------------------------------
3085/// Return a value (possibly void), from a function. Execution
3086/// does not continue in this function any longer.
3087///
3088class ReturnInst : public Instruction {
3089 ReturnInst(const ReturnInst &RI);
3090
3091private:
3092 // ReturnInst constructors:
3093 // ReturnInst() - 'ret void' instruction
3094 // ReturnInst( null) - 'ret void' instruction
3095 // ReturnInst(Value* X) - 'ret X' instruction
3096 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
3097 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
3098 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
3099 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
3100 //
3101 // NOTE: If the Value* passed is of type void then the constructor behaves as
3102 // if it was passed NULL.
3103 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
3104 Instruction *InsertBefore = nullptr);
3105 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
3106 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
3107
3108protected:
3109 // Note: Instruction needs to be a friend here to call cloneImpl.
3110 friend class Instruction;
3111
3112 ReturnInst *cloneImpl() const;
3113
3114public:
3115 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
3116 Instruction *InsertBefore = nullptr) {
3117 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
3118 }
3119
3120 static ReturnInst* Create(LLVMContext &C, Value *retVal,
3121 BasicBlock *InsertAtEnd) {
3122 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
3123 }
3124
3125 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
3126 return new(0) ReturnInst(C, InsertAtEnd);
3127 }
3128
3129 /// Provide fast operand accessors
3130 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3131
3132 /// Convenience accessor. Returns null if there is no return value.
3133 Value *getReturnValue() const {
3134 return getNumOperands() != 0 ? getOperand(0) : nullptr;
3135 }
3136
3137 unsigned getNumSuccessors() const { return 0; }
3138
3139 // Methods for support type inquiry through isa, cast, and dyn_cast:
3140 static bool classof(const Instruction *I) {
3141 return (I->getOpcode() == Instruction::Ret);
3142 }
3143 static bool classof(const Value *V) {
3144 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3145 }
3146
3147private:
3148 BasicBlock *getSuccessor(unsigned idx) const {
3149 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 3149)
;
3150 }
3151
3152 void setSuccessor(unsigned idx, BasicBlock *B) {
3153 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 3153)
;
3154 }
3155};
3156
3157template <>
3158struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3159};
3160
3161DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<ReturnInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3161, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this))[i_nocapture
].get()); } void ReturnInst::setOperand(unsigned i_nocapture,
Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3161, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const
{ return OperandTraits<ReturnInst>::operands(this); } template
<int Idx_nocapture> Use &ReturnInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ReturnInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3162
3163//===----------------------------------------------------------------------===//
3164// BranchInst Class
3165//===----------------------------------------------------------------------===//
3166
3167//===---------------------------------------------------------------------------
3168/// Conditional or Unconditional Branch instruction.
3169///
3170class BranchInst : public Instruction {
3171 /// Ops list - Branches are strange. The operands are ordered:
3172 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3173 /// they don't have to check for cond/uncond branchness. These are mostly
3174 /// accessed relative from op_end().
3175 BranchInst(const BranchInst &BI);
3176 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3177 // BranchInst(BB *B) - 'br B'
3178 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3179 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3180 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3181 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3182 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3183 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3184 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3185 Instruction *InsertBefore = nullptr);
3186 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3187 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3188 BasicBlock *InsertAtEnd);
3189
3190 void AssertOK();
3191
3192protected:
3193 // Note: Instruction needs to be a friend here to call cloneImpl.
3194 friend class Instruction;
3195
3196 BranchInst *cloneImpl() const;
3197
3198public:
3199 /// Iterator type that casts an operand to a basic block.
3200 ///
3201 /// This only makes sense because the successors are stored as adjacent
3202 /// operands for branch instructions.
3203 struct succ_op_iterator
3204 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3205 std::random_access_iterator_tag, BasicBlock *,
3206 ptrdiff_t, BasicBlock *, BasicBlock *> {
3207 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3208
3209 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3210 BasicBlock *operator->() const { return operator*(); }
3211 };
3212
3213 /// The const version of `succ_op_iterator`.
3214 struct const_succ_op_iterator
3215 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3216 std::random_access_iterator_tag,
3217 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3218 const BasicBlock *> {
3219 explicit const_succ_op_iterator(const_value_op_iterator I)
3220 : iterator_adaptor_base(I) {}
3221
3222 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3223 const BasicBlock *operator->() const { return operator*(); }
3224 };
3225
3226 static BranchInst *Create(BasicBlock *IfTrue,
3227 Instruction *InsertBefore = nullptr) {
3228 return new(1) BranchInst(IfTrue, InsertBefore);
3229 }
3230
3231 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3232 Value *Cond, Instruction *InsertBefore = nullptr) {
3233 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3234 }
3235
3236 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3237 return new(1) BranchInst(IfTrue, InsertAtEnd);
3238 }
3239
3240 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3241 Value *Cond, BasicBlock *InsertAtEnd) {
3242 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3243 }
3244
3245 /// Transparently provide more efficient getOperand methods.
3246 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3247
3248 bool isUnconditional() const { return getNumOperands() == 1; }
3249 bool isConditional() const { return getNumOperands() == 3; }
3250
3251 Value *getCondition() const {
3252 assert(isConditional() && "Cannot get condition of an uncond branch!")(static_cast <bool> (isConditional() && "Cannot get condition of an uncond branch!"
) ? void (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "llvm/include/llvm/IR/Instructions.h", 3252, __extension__ __PRETTY_FUNCTION__
))
;
3253 return Op<-3>();
3254 }
3255
3256 void setCondition(Value *V) {
3257 assert(isConditional() && "Cannot set condition of unconditional branch!")(static_cast <bool> (isConditional() && "Cannot set condition of unconditional branch!"
) ? void (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "llvm/include/llvm/IR/Instructions.h", 3257, __extension__ __PRETTY_FUNCTION__
))
;
3258 Op<-3>() = V;
3259 }
3260
3261 unsigned getNumSuccessors() const { return 1+isConditional(); }
3262
3263 BasicBlock *getSuccessor(unsigned i) const {
3264 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (i < getNumSuccessors() &&
"Successor # out of range for Branch!") ? void (0) : __assert_fail
("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "llvm/include/llvm/IR/Instructions.h", 3264, __extension__ __PRETTY_FUNCTION__
))
;
3265 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3266 }
3267
3268 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3269 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor # out of range for Branch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "llvm/include/llvm/IR/Instructions.h", 3269, __extension__ __PRETTY_FUNCTION__
))
;
3270 *(&Op<-1>() - idx) = NewSucc;
3271 }
3272
3273 /// Swap the successors of this branch instruction.
3274 ///
3275 /// Swaps the successors of the branch instruction. This also swaps any
3276 /// branch weight metadata associated with the instruction so that it
3277 /// continues to map correctly to each operand.
3278 void swapSuccessors();
3279
3280 iterator_range<succ_op_iterator> successors() {
3281 return make_range(
3282 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3283 succ_op_iterator(value_op_end()));
3284 }
3285
3286 iterator_range<const_succ_op_iterator> successors() const {
3287 return make_range(const_succ_op_iterator(
3288 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3289 const_succ_op_iterator(value_op_end()));
3290 }
3291
3292 // Methods for support type inquiry through isa, cast, and dyn_cast:
3293 static bool classof(const Instruction *I) {
3294 return (I->getOpcode() == Instruction::Br);
3295 }
3296 static bool classof(const Value *V) {
3297 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3298 }
3299};
3300
3301template <>
3302struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3303};
3304
3305DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<BranchInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3305, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this))[i_nocapture
].get()); } void BranchInst::setOperand(unsigned i_nocapture,
Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<BranchInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3305, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<BranchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned BranchInst::getNumOperands() const
{ return OperandTraits<BranchInst>::operands(this); } template
<int Idx_nocapture> Use &BranchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &BranchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3306
3307//===----------------------------------------------------------------------===//
3308// SwitchInst Class
3309//===----------------------------------------------------------------------===//
3310
3311//===---------------------------------------------------------------------------
3312/// Multiway switch
3313///
3314class SwitchInst : public Instruction {
3315 unsigned ReservedSpace;
3316
3317 // Operand[0] = Value to switch on
3318 // Operand[1] = Default basic block destination
3319 // Operand[2n ] = Value to match
3320 // Operand[2n+1] = BasicBlock to go to on match
3321 SwitchInst(const SwitchInst &SI);
3322
3323 /// Create a new switch instruction, specifying a value to switch on and a
3324 /// default destination. The number of additional cases can be specified here
3325 /// to make memory allocation more efficient. This constructor can also
3326 /// auto-insert before another instruction.
3327 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3328 Instruction *InsertBefore);
3329
3330 /// Create a new switch instruction, specifying a value to switch on and a
3331 /// default destination. The number of additional cases can be specified here
3332 /// to make memory allocation more efficient. This constructor also
3333 /// auto-inserts at the end of the specified BasicBlock.
3334 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3335 BasicBlock *InsertAtEnd);
3336
3337 // allocate space for exactly zero operands
3338 void *operator new(size_t S) { return User::operator new(S); }
3339
3340 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3341 void growOperands();
3342
3343protected:
3344 // Note: Instruction needs to be a friend here to call cloneImpl.
3345 friend class Instruction;
3346
3347 SwitchInst *cloneImpl() const;
3348
3349public:
3350 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3351
3352 // -2
3353 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3354
3355 template <typename CaseHandleT> class CaseIteratorImpl;
3356
3357 /// A handle to a particular switch case. It exposes a convenient interface
3358 /// to both the case value and the successor block.
3359 ///
3360 /// We define this as a template and instantiate it to form both a const and
3361 /// non-const handle.
3362 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3363 class CaseHandleImpl {
3364 // Directly befriend both const and non-const iterators.
3365 friend class SwitchInst::CaseIteratorImpl<
3366 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3367
3368 protected:
3369 // Expose the switch type we're parameterized with to the iterator.
3370 using SwitchInstType = SwitchInstT;
3371
3372 SwitchInstT *SI;
3373 ptrdiff_t Index;
3374
3375 CaseHandleImpl() = default;
3376 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3377
3378 public:
3379 /// Resolves case value for current case.
3380 ConstantIntT *getCaseValue() const {
3381 assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3382, __extension__ __PRETTY_FUNCTION__
))
3382 "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3382, __extension__ __PRETTY_FUNCTION__
))
;
3383 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3384 }
3385
3386 /// Resolves successor for current case.
3387 BasicBlockT *getCaseSuccessor() const {
3388 assert(((unsigned)Index < SI->getNumCases() ||(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3390, __extension__ __PRETTY_FUNCTION__
))
3389 (unsigned)Index == DefaultPseudoIndex) &&(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3390, __extension__ __PRETTY_FUNCTION__
))
3390 "Index out the number of cases.")(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3390, __extension__ __PRETTY_FUNCTION__
))
;
3391 return SI->getSuccessor(getSuccessorIndex());
3392 }
3393
3394 /// Returns number of current case.
3395 unsigned getCaseIndex() const { return Index; }
3396
3397 /// Returns successor index for current case successor.
3398 unsigned getSuccessorIndex() const {
3399 assert(((unsigned)Index == DefaultPseudoIndex ||(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3401, __extension__ __PRETTY_FUNCTION__
))
3400 (unsigned)Index < SI->getNumCases()) &&(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3401, __extension__ __PRETTY_FUNCTION__
))
3401 "Index out the number of cases.")(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3401, __extension__ __PRETTY_FUNCTION__
))
;
3402 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3403 }
3404
3405 bool operator==(const CaseHandleImpl &RHS) const {
3406 assert(SI == RHS.SI && "Incompatible operators.")(static_cast <bool> (SI == RHS.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "llvm/include/llvm/IR/Instructions.h", 3406, __extension__ __PRETTY_FUNCTION__
))
;
3407 return Index == RHS.Index;
3408 }
3409 };
3410
3411 using ConstCaseHandle =
3412 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3413
3414 class CaseHandle
3415 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3416 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3417
3418 public:
3419 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3420
3421 /// Sets the new value for current case.
3422 void setValue(ConstantInt *V) const {
3423 assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3424, __extension__ __PRETTY_FUNCTION__
))
3424 "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3424, __extension__ __PRETTY_FUNCTION__
))
;
3425 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3426 }
3427
3428 /// Sets the new successor for current case.
3429 void setSuccessor(BasicBlock *S) const {
3430 SI->setSuccessor(getSuccessorIndex(), S);
3431 }
3432 };
3433
3434 template <typename CaseHandleT>
3435 class CaseIteratorImpl
3436 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3437 std::random_access_iterator_tag,
3438 const CaseHandleT> {
3439 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3440
3441 CaseHandleT Case;
3442
3443 public:
3444 /// Default constructed iterator is in an invalid state until assigned to
3445 /// a case for a particular switch.
3446 CaseIteratorImpl() = default;
3447
3448 /// Initializes case iterator for given SwitchInst and for given
3449 /// case number.
3450 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3451
3452 /// Initializes case iterator for given SwitchInst and for given
3453 /// successor index.
3454 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3455 unsigned SuccessorIndex) {
3456 assert(SuccessorIndex < SI->getNumSuccessors() &&(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors
() && "Successor index # out of range!") ? void (0) :
__assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3457, __extension__ __PRETTY_FUNCTION__
))
3457 "Successor index # out of range!")(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors
() && "Successor index # out of range!") ? void (0) :
__assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3457, __extension__ __PRETTY_FUNCTION__
))
;
3458 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3459 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3460 }
3461
3462 /// Support converting to the const variant. This will be a no-op for const
3463 /// variant.
3464 operator CaseIteratorImpl<ConstCaseHandle>() const {
3465 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3466 }
3467
3468 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3469 // Check index correctness after addition.
3470 // Note: Index == getNumCases() means end().
3471 assert(Case.Index + N >= 0 &&(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3473, __extension__ __PRETTY_FUNCTION__
))
3472 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3473, __extension__ __PRETTY_FUNCTION__
))
3473 "Case.Index out the number of cases.")(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3473, __extension__ __PRETTY_FUNCTION__
))
;
3474 Case.Index += N;
3475 return *this;
3476 }
3477 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3478 // Check index correctness after subtraction.
3479 // Note: Case.Index == getNumCases() means end().
3480 assert(Case.Index - N >= 0 &&(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3482, __extension__ __PRETTY_FUNCTION__
))
3481 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3482, __extension__ __PRETTY_FUNCTION__
))
3482 "Case.Index out the number of cases.")(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3482, __extension__ __PRETTY_FUNCTION__
))
;
3483 Case.Index -= N;
3484 return *this;
3485 }
3486 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3487 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "llvm/include/llvm/IR/Instructions.h", 3487, __extension__ __PRETTY_FUNCTION__
))
;
3488 return Case.Index - RHS.Case.Index;
3489 }
3490 bool operator==(const CaseIteratorImpl &RHS) const {
3491 return Case == RHS.Case;
3492 }
3493 bool operator<(const CaseIteratorImpl &RHS) const {
3494 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "llvm/include/llvm/IR/Instructions.h", 3494, __extension__ __PRETTY_FUNCTION__
))
;
3495 return Case.Index < RHS.Case.Index;
3496 }
3497 const CaseHandleT &operator*() const { return Case; }
3498 };
3499
3500 using CaseIt = CaseIteratorImpl<CaseHandle>;
3501 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3502
3503 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3504 unsigned NumCases,
3505 Instruction *InsertBefore = nullptr) {
3506 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3507 }
3508
3509 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3510 unsigned NumCases, BasicBlock *InsertAtEnd) {
3511 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3512 }
3513
3514 /// Provide fast operand accessors
3515 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3516
3517 // Accessor Methods for Switch stmt
3518 Value *getCondition() const { return getOperand(0); }
3519 void setCondition(Value *V) { setOperand(0, V); }
3520
3521 BasicBlock *getDefaultDest() const {
3522 return cast<BasicBlock>(getOperand(1));
3523 }
3524
3525 void setDefaultDest(BasicBlock *DefaultCase) {
3526 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3527 }
3528
3529 /// Return the number of 'cases' in this switch instruction, excluding the
3530 /// default case.
3531 unsigned getNumCases() const {
3532 return getNumOperands()/2 - 1;
3533 }
3534
3535 /// Returns a read/write iterator that points to the first case in the
3536 /// SwitchInst.
3537 CaseIt case_begin() {
3538 return CaseIt(this, 0);
3539 }
3540
3541 /// Returns a read-only iterator that points to the first case in the
3542 /// SwitchInst.
3543 ConstCaseIt case_begin() const {
3544 return ConstCaseIt(this, 0);
3545 }
3546
3547 /// Returns a read/write iterator that points one past the last in the
3548 /// SwitchInst.
3549 CaseIt case_end() {
3550 return CaseIt(this, getNumCases());
3551 }
3552
3553 /// Returns a read-only iterator that points one past the last in the
3554 /// SwitchInst.
3555 ConstCaseIt case_end() const {
3556 return ConstCaseIt(this, getNumCases());
3557 }
3558
3559 /// Iteration adapter for range-for loops.
3560 iterator_range<CaseIt> cases() {
3561 return make_range(case_begin(), case_end());
3562 }
3563
3564 /// Constant iteration adapter for range-for loops.
3565 iterator_range<ConstCaseIt> cases() const {
3566 return make_range(case_begin(), case_end());
3567 }
3568
3569 /// Returns an iterator that points to the default case.
3570 /// Note: this iterator allows to resolve successor only. Attempt
3571 /// to resolve case value causes an assertion.
3572 /// Also note, that increment and decrement also causes an assertion and
3573 /// makes iterator invalid.
3574 CaseIt case_default() {
3575 return CaseIt(this, DefaultPseudoIndex);
3576 }
3577 ConstCaseIt case_default() const {
3578 return ConstCaseIt(this, DefaultPseudoIndex);
3579 }
3580
3581 /// Search all of the case values for the specified constant. If it is
3582 /// explicitly handled, return the case iterator of it, otherwise return
3583 /// default case iterator to indicate that it is handled by the default
3584 /// handler.
3585 CaseIt findCaseValue(const ConstantInt *C) {
3586 return CaseIt(
3587 this,
3588 const_cast<const SwitchInst *>(this)->findCaseValue(C)->getCaseIndex());
3589 }
3590 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3591 ConstCaseIt I = llvm::find_if(cases(), [C](const ConstCaseHandle &Case) {
3592 return Case.getCaseValue() == C;
3593 });
3594 if (I != case_end())
3595 return I;
3596
3597 return case_default();
3598 }
3599
3600 /// Finds the unique case value for a given successor. Returns null if the
3601 /// successor is not found, not unique, or is the default case.
3602 ConstantInt *findCaseDest(BasicBlock *BB) {
3603 if (BB == getDefaultDest())
3604 return nullptr;
3605
3606 ConstantInt *CI = nullptr;
3607 for (auto Case : cases()) {
3608 if (Case.getCaseSuccessor() != BB)
3609 continue;
3610
3611 if (CI)
3612 return nullptr; // Multiple cases lead to BB.
3613
3614 CI = Case.getCaseValue();
3615 }
3616
3617 return CI;
3618 }
3619
3620 /// Add an entry to the switch instruction.
3621 /// Note:
3622 /// This action invalidates case_end(). Old case_end() iterator will
3623 /// point to the added case.
3624 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3625
3626 /// This method removes the specified case and its successor from the switch
3627 /// instruction. Note that this operation may reorder the remaining cases at
3628 /// index idx and above.
3629 /// Note:
3630 /// This action invalidates iterators for all cases following the one removed,
3631 /// including the case_end() iterator. It returns an iterator for the next
3632 /// case.
3633 CaseIt removeCase(CaseIt I);
3634
3635 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3636 BasicBlock *getSuccessor(unsigned idx) const {
3637 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor idx out of range for switch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "llvm/include/llvm/IR/Instructions.h", 3637, __extension__ __PRETTY_FUNCTION__
))
;
3638 return cast<BasicBlock>(getOperand(idx*2+1));
3639 }
3640 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3641 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor # out of range for switch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "llvm/include/llvm/IR/Instructions.h", 3641, __extension__ __PRETTY_FUNCTION__
))
;
3642 setOperand(idx * 2 + 1, NewSucc);
3643 }
3644
3645 // Methods for support type inquiry through isa, cast, and dyn_cast:
3646 static bool classof(const Instruction *I) {
3647 return I->getOpcode() == Instruction::Switch;
3648 }
3649 static bool classof(const Value *V) {
3650 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3651 }
3652};
3653
3654/// A wrapper class to simplify modification of SwitchInst cases along with
3655/// their prof branch_weights metadata.
3656class SwitchInstProfUpdateWrapper {
3657 SwitchInst &SI;
3658 std::optional<SmallVector<uint32_t, 8>> Weights;
3659 bool Changed = false;
3660
3661protected:
3662 MDNode *buildProfBranchWeightsMD();
3663
3664 void init();
3665
3666public:
3667 using CaseWeightOpt = std::optional<uint32_t>;
3668 SwitchInst *operator->() { return &SI; }
3669 SwitchInst &operator*() { return SI; }
3670 operator SwitchInst *() { return &SI; }
3671
3672 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3673
3674 ~SwitchInstProfUpdateWrapper() {
3675 if (Changed)
3676 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3677 }
3678
3679 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3680 /// correspondent branch weight.
3681 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3682
3683 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3684 /// specified branch weight for the added case.
3685 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3686
3687 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3688 /// this object to not touch the underlying SwitchInst in destructor.
3689 SymbolTableList<Instruction>::iterator eraseFromParent();
3690
3691 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3692 CaseWeightOpt getSuccessorWeight(unsigned idx);
3693
3694 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3695};
3696
3697template <>
3698struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3699};
3700
3701DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SwitchInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3701, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this))[i_nocapture
].get()); } void SwitchInst::setOperand(unsigned i_nocapture,
Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<SwitchInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3701, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const
{ return OperandTraits<SwitchInst>::operands(this); } template
<int Idx_nocapture> Use &SwitchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SwitchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3702
3703//===----------------------------------------------------------------------===//
3704// IndirectBrInst Class
3705//===----------------------------------------------------------------------===//
3706
3707//===---------------------------------------------------------------------------
3708/// Indirect Branch Instruction.
3709///
3710class IndirectBrInst : public Instruction {
3711 unsigned ReservedSpace;
3712
3713 // Operand[0] = Address to jump to
3714 // Operand[n+1] = n-th destination
3715 IndirectBrInst(const IndirectBrInst &IBI);
3716
3717 /// Create a new indirectbr instruction, specifying an
3718 /// Address to jump to. The number of expected destinations can be specified
3719 /// here to make memory allocation more efficient. This constructor can also
3720 /// autoinsert before another instruction.
3721 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3722
3723 /// Create a new indirectbr instruction, specifying an
3724 /// Address to jump to. The number of expected destinations can be specified
3725 /// here to make memory allocation more efficient. This constructor also
3726 /// autoinserts at the end of the specified BasicBlock.
3727 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3728
3729 // allocate space for exactly zero operands
3730 void *operator new(size_t S) { return User::operator new(S); }
3731
3732 void init(Value *Address, unsigned NumDests);
3733 void growOperands();
3734
3735protected:
3736 // Note: Instruction needs to be a friend here to call cloneImpl.
3737 friend class Instruction;
3738
3739 IndirectBrInst *cloneImpl() const;
3740
3741public:
3742 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3743
3744 /// Iterator type that casts an operand to a basic block.
3745 ///
3746 /// This only makes sense because the successors are stored as adjacent
3747 /// operands for indirectbr instructions.
3748 struct succ_op_iterator
3749 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3750 std::random_access_iterator_tag, BasicBlock *,
3751 ptrdiff_t, BasicBlock *, BasicBlock *> {
3752 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3753
3754 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3755 BasicBlock *operator->() const { return operator*(); }
3756 };
3757
3758 /// The const version of `succ_op_iterator`.
3759 struct const_succ_op_iterator
3760 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3761 std::random_access_iterator_tag,
3762 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3763 const BasicBlock *> {
3764 explicit const_succ_op_iterator(const_value_op_iterator I)
3765 : iterator_adaptor_base(I) {}
3766
3767 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3768 const BasicBlock *operator->() const { return operator*(); }
3769 };
3770
3771 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3772 Instruction *InsertBefore = nullptr) {
3773 return new IndirectBrInst(Address, NumDests, InsertBefore);
3774 }
3775
3776 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3777 BasicBlock *InsertAtEnd) {
3778 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3779 }
3780
3781 /// Provide fast operand accessors.
3782 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3783
3784 // Accessor Methods for IndirectBrInst instruction.
3785 Value *getAddress() { return getOperand(0); }
3786 const Value *getAddress() const { return getOperand(0); }
3787 void setAddress(Value *V) { setOperand(0, V); }
3788
3789 /// return the number of possible destinations in this
3790 /// indirectbr instruction.
3791 unsigned getNumDestinations() const { return getNumOperands()-1; }
3792
3793 /// Return the specified destination.
3794 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3795 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3796
3797 /// Add a destination.
3798 ///
3799 void addDestination(BasicBlock *Dest);
3800
3801 /// This method removes the specified successor from the
3802 /// indirectbr instruction.
3803 void removeDestination(unsigned i);
3804
3805 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3806 BasicBlock *getSuccessor(unsigned i) const {
3807 return cast<BasicBlock>(getOperand(i+1));
3808 }
3809 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3810 setOperand(i + 1, NewSucc);
3811 }
3812
3813 iterator_range<succ_op_iterator> successors() {
3814 return make_range(succ_op_iterator(std::next(value_op_begin())),
3815 succ_op_iterator(value_op_end()));
3816 }
3817
3818 iterator_range<const_succ_op_iterator> successors() const {
3819 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3820 const_succ_op_iterator(value_op_end()));
3821 }
3822
3823 // Methods for support type inquiry through isa, cast, and dyn_cast:
3824 static bool classof(const Instruction *I) {
3825 return I->getOpcode() == Instruction::IndirectBr;
3826 }
3827 static bool classof(const Value *V) {
3828 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3829 }
3830};
3831
3832template <>
3833struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3834};
3835
3836DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3836, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<IndirectBrInst
>::op_begin(const_cast<IndirectBrInst*>(this))[i_nocapture
].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<IndirectBrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3836, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<IndirectBrInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands(
) const { return OperandTraits<IndirectBrInst>::operands
(this); } template <int Idx_nocapture> Use &IndirectBrInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &IndirectBrInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
3837
3838//===----------------------------------------------------------------------===//
3839// InvokeInst Class
3840//===----------------------------------------------------------------------===//
3841
3842/// Invoke instruction. The SubclassData field is used to hold the
3843/// calling convention of the call.
3844///
3845class InvokeInst : public CallBase {
3846 /// The number of operands for this call beyond the called function,
3847 /// arguments, and operand bundles.
3848 static constexpr int NumExtraOperands = 2;
3849
3850 /// The index from the end of the operand array to the normal destination.
3851 static constexpr int NormalDestOpEndIdx = -3;
3852
3853 /// The index from the end of the operand array to the unwind destination.
3854 static constexpr int UnwindDestOpEndIdx = -2;
3855
3856 InvokeInst(const InvokeInst &BI);
3857
3858 /// Construct an InvokeInst given a range of arguments.
3859 ///
3860 /// Construct an InvokeInst from a range of arguments
3861 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3862 BasicBlock *IfException, ArrayRef<Value *> Args,
3863 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3864 const Twine &NameStr, Instruction *InsertBefore);
3865
3866 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3867 BasicBlock *IfException, ArrayRef<Value *> Args,
3868 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3869 const Twine &NameStr, BasicBlock *InsertAtEnd);
3870
3871 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3872 BasicBlock *IfException, ArrayRef<Value *> Args,
3873 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3874
3875 /// Compute the number of operands to allocate.
3876 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3877 // We need one operand for the called function, plus our extra operands and
3878 // the input operand counts provided.
3879 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3880 }
3881
3882protected:
3883 // Note: Instruction needs to be a friend here to call cloneImpl.
3884 friend class Instruction;
3885
3886 InvokeInst *cloneImpl() const;
3887
3888public:
3889 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3890 BasicBlock *IfException, ArrayRef<Value *> Args,
3891 const Twine &NameStr,
3892 Instruction *InsertBefore = nullptr) {
3893 int NumOperands = ComputeNumOperands(Args.size());
3894 return new (NumOperands)
3895 InvokeInst(Ty, Func, IfNormal, IfException, Args, std::nullopt,
3896 NumOperands, NameStr, InsertBefore);
3897 }
3898
3899 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3900 BasicBlock *IfException, ArrayRef<Value *> Args,
3901 ArrayRef<OperandBundleDef> Bundles = std::nullopt,
3902 const Twine &NameStr = "",
3903 Instruction *InsertBefore = nullptr) {
3904 int NumOperands =
3905 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3906 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3907
3908 return new (NumOperands, DescriptorBytes)
3909 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3910 NameStr, InsertBefore);
3911 }
3912
3913 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3914 BasicBlock *IfException, ArrayRef<Value *> Args,
3915 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3916 int NumOperands = ComputeNumOperands(Args.size());
3917 return new (NumOperands)
3918 InvokeInst(Ty, Func, IfNormal, IfException, Args, std::nullopt,
3919 NumOperands, NameStr, InsertAtEnd);
3920 }
3921
3922 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3923 BasicBlock *IfException, ArrayRef<Value *> Args,
3924 ArrayRef<OperandBundleDef> Bundles,
3925 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3926 int NumOperands =
3927 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3928 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3929
3930 return new (NumOperands, DescriptorBytes)
3931 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3932 NameStr, InsertAtEnd);
3933 }
3934
3935 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3936 BasicBlock *IfException, ArrayRef<Value *> Args,
3937 const Twine &NameStr,
3938 Instruction *InsertBefore = nullptr) {
3939 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3940 IfException, Args, std::nullopt, NameStr, InsertBefore);
3941 }
3942
3943 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3944 BasicBlock *IfException, ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles = std::nullopt,
3946 const Twine &NameStr = "",
3947 Instruction *InsertBefore = nullptr) {
3948 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3949 IfException, Args, Bundles, NameStr, InsertBefore);
3950 }
3951
3952 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3953 BasicBlock *IfException, ArrayRef<Value *> Args,
3954 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3955 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3956 IfException, Args, NameStr, InsertAtEnd);
3957 }
3958
3959 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3960 BasicBlock *IfException, ArrayRef<Value *> Args,
3961 ArrayRef<OperandBundleDef> Bundles,
3962 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3963 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3964 IfException, Args, Bundles, NameStr, InsertAtEnd);
3965 }
3966
3967 /// Create a clone of \p II with a different set of operand bundles and
3968 /// insert it before \p InsertPt.
3969 ///
3970 /// The returned invoke instruction is identical to \p II in every way except
3971 /// that the operand bundles for the new instruction are set to the operand
3972 /// bundles in \p Bundles.
3973 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3974 Instruction *InsertPt = nullptr);
3975
3976 // get*Dest - Return the destination basic blocks...
3977 BasicBlock *getNormalDest() const {
3978 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3979 }
3980 BasicBlock *getUnwindDest() const {
3981 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
14
Calling 'cast<llvm::BasicBlock, llvm::Use>'
27
Returning from 'cast<llvm::BasicBlock, llvm::Use>'
28
Returning pointer
3982 }
3983 void setNormalDest(BasicBlock *B) {
3984 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3985 }
3986 void setUnwindDest(BasicBlock *B) {
3987 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3988 }
3989
3990 /// Get the landingpad instruction from the landing pad
3991 /// block (the unwind destination).
3992 LandingPadInst *getLandingPadInst() const;
3993
3994 BasicBlock *getSuccessor(unsigned i) const {
3995 assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!"
) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "llvm/include/llvm/IR/Instructions.h", 3995, __extension__ __PRETTY_FUNCTION__
))
;
3996 return i == 0 ? getNormalDest() : getUnwindDest();
3997 }
3998
3999 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4000 assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!"
) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "llvm/include/llvm/IR/Instructions.h", 4000, __extension__ __PRETTY_FUNCTION__
))
;
4001 if (i == 0)
4002 setNormalDest(NewSucc);
4003 else
4004 setUnwindDest(NewSucc);
4005 }
4006
4007 unsigned getNumSuccessors() const { return 2; }
4008
4009 // Methods for support type inquiry through isa, cast, and dyn_cast:
4010 static bool classof(const Instruction *I) {
4011 return (I->getOpcode() == Instruction::Invoke);
4012 }
4013 static bool classof(const Value *V) {
4014 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4015 }
4016
4017private:
4018 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4019 // method so that subclasses cannot accidentally use it.
4020 template <typename Bitfield>
4021 void setSubclassData(typename Bitfield::Type Value) {
4022 Instruction::setSubclassData<Bitfield>(Value);
4023 }
4024};
4025
4026InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
4027 BasicBlock *IfException, ArrayRef<Value *> Args,
4028 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4029 const Twine &NameStr, Instruction *InsertBefore)
4030 : CallBase(Ty->getReturnType(), Instruction::Invoke,
4031 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4032 InsertBefore) {
4033 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
4034}
4035
4036InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
4037 BasicBlock *IfException, ArrayRef<Value *> Args,
4038 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4039 const Twine &NameStr, BasicBlock *InsertAtEnd)
4040 : CallBase(Ty->getReturnType(), Instruction::Invoke,
4041 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4042 InsertAtEnd) {
4043 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
4044}
4045
4046//===----------------------------------------------------------------------===//
4047// CallBrInst Class
4048//===----------------------------------------------------------------------===//
4049
4050/// CallBr instruction, tracking function calls that may not return control but
4051/// instead transfer it to a third location. The SubclassData field is used to
4052/// hold the calling convention of the call.
4053///
4054class CallBrInst : public CallBase {
4055
4056 unsigned NumIndirectDests;
4057
4058 CallBrInst(const CallBrInst &BI);
4059
4060 /// Construct a CallBrInst given a range of arguments.
4061 ///
4062 /// Construct a CallBrInst from a range of arguments
4063 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4064 ArrayRef<BasicBlock *> IndirectDests,
4065 ArrayRef<Value *> Args,
4066 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4067 const Twine &NameStr, Instruction *InsertBefore);
4068
4069 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4070 ArrayRef<BasicBlock *> IndirectDests,
4071 ArrayRef<Value *> Args,
4072 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4073 const Twine &NameStr, BasicBlock *InsertAtEnd);
4074
4075 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
4076 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
4077 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
4078
4079 /// Compute the number of operands to allocate.
4080 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
4081 int NumBundleInputs = 0) {
4082 // We need one operand for the called function, plus our extra operands and
4083 // the input operand counts provided.
4084 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
4085 }
4086
4087protected:
4088 // Note: Instruction needs to be a friend here to call cloneImpl.
4089 friend class Instruction;
4090
4091 CallBrInst *cloneImpl() const;
4092
4093public:
4094 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4095 BasicBlock *DefaultDest,
4096 ArrayRef<BasicBlock *> IndirectDests,
4097 ArrayRef<Value *> Args, const Twine &NameStr,
4098 Instruction *InsertBefore = nullptr) {
4099 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4100 return new (NumOperands)
4101 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, std::nullopt,
4102 NumOperands, NameStr, InsertBefore);
4103 }
4104
4105 static CallBrInst *
4106 Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4107 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
4108 ArrayRef<OperandBundleDef> Bundles = std::nullopt,
4109 const Twine &NameStr = "", Instruction *InsertBefore = nullptr) {
4110 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4111 CountBundleInputs(Bundles));
4112 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4113
4114 return new (NumOperands, DescriptorBytes)
4115 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4116 NumOperands, NameStr, InsertBefore);
4117 }
4118
4119 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4120 BasicBlock *DefaultDest,
4121 ArrayRef<BasicBlock *> IndirectDests,
4122 ArrayRef<Value *> Args, const Twine &NameStr,
4123 BasicBlock *InsertAtEnd) {
4124 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4125 return new (NumOperands)
4126 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, std::nullopt,
4127 NumOperands, NameStr, InsertAtEnd);
4128 }
4129
4130 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4131 BasicBlock *DefaultDest,
4132 ArrayRef<BasicBlock *> IndirectDests,
4133 ArrayRef<Value *> Args,
4134 ArrayRef<OperandBundleDef> Bundles,
4135 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4136 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4137 CountBundleInputs(Bundles));
4138 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4139
4140 return new (NumOperands, DescriptorBytes)
4141 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4142 NumOperands, NameStr, InsertAtEnd);
4143 }
4144
4145 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4146 ArrayRef<BasicBlock *> IndirectDests,
4147 ArrayRef<Value *> Args, const Twine &NameStr,
4148 Instruction *InsertBefore = nullptr) {
4149 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4150 IndirectDests, Args, NameStr, InsertBefore);
4151 }
4152
4153 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4154 ArrayRef<BasicBlock *> IndirectDests,
4155 ArrayRef<Value *> Args,
4156 ArrayRef<OperandBundleDef> Bundles = std::nullopt,
4157 const Twine &NameStr = "",
4158 Instruction *InsertBefore = nullptr) {
4159 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4160 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4161 }
4162
4163 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4164 ArrayRef<BasicBlock *> IndirectDests,
4165 ArrayRef<Value *> Args, const Twine &NameStr,
4166 BasicBlock *InsertAtEnd) {
4167 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4168 IndirectDests, Args, NameStr, InsertAtEnd);
4169 }
4170
4171 static CallBrInst *Create(FunctionCallee Func,
4172 BasicBlock *DefaultDest,
4173 ArrayRef<BasicBlock *> IndirectDests,
4174 ArrayRef<Value *> Args,
4175 ArrayRef<OperandBundleDef> Bundles,
4176 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4177 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4178 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4179 }
4180
4181 /// Create a clone of \p CBI with a different set of operand bundles and
4182 /// insert it before \p InsertPt.
4183 ///
4184 /// The returned callbr instruction is identical to \p CBI in every way
4185 /// except that the operand bundles for the new instruction are set to the
4186 /// operand bundles in \p Bundles.
4187 static CallBrInst *Create(CallBrInst *CBI,
4188 ArrayRef<OperandBundleDef> Bundles,
4189 Instruction *InsertPt = nullptr);
4190
4191 /// Return the number of callbr indirect dest labels.
4192 ///
4193 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4194
4195 /// getIndirectDestLabel - Return the i-th indirect dest label.
4196 ///
4197 Value *getIndirectDestLabel(unsigned i) const {
4198 assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() &&
"Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "llvm/include/llvm/IR/Instructions.h", 4198, __extension__ __PRETTY_FUNCTION__
))
;
4199 return getOperand(i + arg_size() + getNumTotalBundleOperands() + 1);
4200 }
4201
4202 Value *getIndirectDestLabelUse(unsigned i) const {
4203 assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() &&
"Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "llvm/include/llvm/IR/Instructions.h", 4203, __extension__ __PRETTY_FUNCTION__
))
;
4204 return getOperandUse(i + arg_size() + getNumTotalBundleOperands() + 1);
4205 }
4206
4207 // Return the destination basic blocks...
4208 BasicBlock *getDefaultDest() const {
4209 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4210 }
4211 BasicBlock *getIndirectDest(unsigned i) const {
4212 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4213 }
4214 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4215 SmallVector<BasicBlock *, 16> IndirectDests;
4216 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4217 IndirectDests.push_back(getIndirectDest(i));
4218 return IndirectDests;
4219 }
4220 void setDefaultDest(BasicBlock *B) {
4221 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4222 }
4223 void setIndirectDest(unsigned i, BasicBlock *B) {
4224 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4225 }
4226
4227 BasicBlock *getSuccessor(unsigned i) const {
4228 assert(i < getNumSuccessors() + 1 &&(static_cast <bool> (i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "llvm/include/llvm/IR/Instructions.h", 4229, __extension__ __PRETTY_FUNCTION__
))
4229 "Successor # out of range for callbr!")(static_cast <bool> (i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "llvm/include/llvm/IR/Instructions.h", 4229, __extension__ __PRETTY_FUNCTION__
))
;
4230 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4231 }
4232
4233 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4234 assert(i < getNumIndirectDests() + 1 &&(static_cast <bool> (i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "llvm/include/llvm/IR/Instructions.h", 4235, __extension__ __PRETTY_FUNCTION__
))
4235 "Successor # out of range for callbr!")(static_cast <bool> (i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "llvm/include/llvm/IR/Instructions.h", 4235, __extension__ __PRETTY_FUNCTION__
))
;
4236 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4237 }
4238
4239 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4240
4241 // Methods for support type inquiry through isa, cast, and dyn_cast:
4242 static bool classof(const Instruction *I) {
4243 return (I->getOpcode() == Instruction::CallBr);
4244 }
4245 static bool classof(const Value *V) {
4246 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4247 }
4248
4249private:
4250 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4251 // method so that subclasses cannot accidentally use it.
4252 template <typename Bitfield>
4253 void setSubclassData(typename Bitfield::Type Value) {
4254 Instruction::setSubclassData<Bitfield>(Value);
4255 }
4256};
4257
4258CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4259 ArrayRef<BasicBlock *> IndirectDests,
4260 ArrayRef<Value *> Args,
4261 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4262 const Twine &NameStr, Instruction *InsertBefore)
4263 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4264 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4265 InsertBefore) {
4266 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4267}
4268
4269CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4270 ArrayRef<BasicBlock *> IndirectDests,
4271 ArrayRef<Value *> Args,
4272 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4273 const Twine &NameStr, BasicBlock *InsertAtEnd)
4274 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4275 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4276 InsertAtEnd) {
4277 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4278}
4279
4280//===----------------------------------------------------------------------===//
4281// ResumeInst Class
4282//===----------------------------------------------------------------------===//
4283
4284//===---------------------------------------------------------------------------
4285/// Resume the propagation of an exception.
4286///
4287class ResumeInst : public Instruction {
4288 ResumeInst(const ResumeInst &RI);
4289
4290 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4291 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4292
4293protected:
4294 // Note: Instruction needs to be a friend here to call cloneImpl.
4295 friend class Instruction;
4296
4297 ResumeInst *cloneImpl() const;
4298
4299public:
4300 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4301 return new(1) ResumeInst(Exn, InsertBefore);
4302 }
4303
4304 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4305 return new(1) ResumeInst(Exn, InsertAtEnd);
4306 }
4307
4308 /// Provide fast operand accessors
4309 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4310
4311 /// Convenience accessor.
4312 Value *getValue() const { return Op<0>(); }
4313
4314 unsigned getNumSuccessors() const { return 0; }
4315
4316 // Methods for support type inquiry through isa, cast, and dyn_cast:
4317 static bool classof(const Instruction *I) {
4318 return I->getOpcode() == Instruction::Resume;
4319 }
4320 static bool classof(const Value *V) {
4321 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4322 }
4323
4324private:
4325 BasicBlock *getSuccessor(unsigned idx) const {
4326 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 4326)
;
4327 }
4328
4329 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4330 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 4330)
;
4331 }
4332};
4333
4334template <>
4335struct OperandTraits<ResumeInst> :
4336 public FixedNumOperandTraits<ResumeInst, 1> {
4337};
4338
4339DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<ResumeInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4339, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this))[i_nocapture
].get()); } void ResumeInst::setOperand(unsigned i_nocapture,
Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ResumeInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4339, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const
{ return OperandTraits<ResumeInst>::operands(this); } template
<int Idx_nocapture> Use &ResumeInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ResumeInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
4340
4341//===----------------------------------------------------------------------===//
4342// CatchSwitchInst Class
4343//===----------------------------------------------------------------------===//
4344class CatchSwitchInst : public Instruction {
4345 using UnwindDestField = BoolBitfieldElementT<0>;
4346
4347 /// The number of operands actually allocated. NumOperands is
4348 /// the number actually in use.
4349 unsigned ReservedSpace;
4350
4351 // Operand[0] = Outer scope
4352 // Operand[1] = Unwind block destination
4353 // Operand[n] = BasicBlock to go to on match
4354 CatchSwitchInst(const CatchSwitchInst &CSI);
4355
4356 /// Create a new switch instruction, specifying a
4357 /// default destination. The number of additional handlers can be specified
4358 /// here to make memory allocation more efficient.
4359 /// This constructor can also autoinsert before another instruction.
4360 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4361 unsigned NumHandlers, const Twine &NameStr,
4362 Instruction *InsertBefore);
4363
4364 /// Create a new switch instruction, specifying a
4365 /// default destination. The number of additional handlers can be specified
4366 /// here to make memory allocation more efficient.
4367 /// This constructor also autoinserts at the end of the specified BasicBlock.
4368 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4369 unsigned NumHandlers, const Twine &NameStr,
4370 BasicBlock *InsertAtEnd);
4371
4372 // allocate space for exactly zero operands
4373 void *operator new(size_t S) { return User::operator new(S); }
4374
4375 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4376 void growOperands(unsigned Size);
4377
4378protected:
4379 // Note: Instruction needs to be a friend here to call cloneImpl.
4380 friend class Instruction;
4381
4382 CatchSwitchInst *cloneImpl() const;
4383
4384public:
4385 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4386
4387 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4388 unsigned NumHandlers,
4389 const Twine &NameStr = "",
4390 Instruction *InsertBefore = nullptr) {
4391 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4392 InsertBefore);
4393 }
4394
4395 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4396 unsigned NumHandlers, const Twine &NameStr,
4397 BasicBlock *InsertAtEnd) {
4398 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4399 InsertAtEnd);
4400 }
4401
4402 /// Provide fast operand accessors
4403 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4404
4405 // Accessor Methods for CatchSwitch stmt
4406 Value *getParentPad() const { return getOperand(0); }
4407 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4408
4409 // Accessor Methods for CatchSwitch stmt
4410 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4411 bool unwindsToCaller() const { return !hasUnwindDest(); }
4412 BasicBlock *getUnwindDest() const {
4413 if (hasUnwindDest())
4414 return cast<BasicBlock>(getOperand(1));
4415 return nullptr;
4416 }
4417 void setUnwindDest(BasicBlock *UnwindDest) {
4418 assert(UnwindDest)(static_cast <bool> (UnwindDest) ? void (0) : __assert_fail
("UnwindDest", "llvm/include/llvm/IR/Instructions.h", 4418, __extension__
__PRETTY_FUNCTION__))
;
4419 assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail
("hasUnwindDest()", "llvm/include/llvm/IR/Instructions.h", 4419
, __extension__ __PRETTY_FUNCTION__))
;
4420 setOperand(1, UnwindDest);
4421 }
4422
4423 /// return the number of 'handlers' in this catchswitch
4424 /// instruction, except the default handler
4425 unsigned getNumHandlers() const {
4426 if (hasUnwindDest())
4427 return getNumOperands() - 2;
4428 return getNumOperands() - 1;
4429 }
4430
4431private:
4432 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4433 static const BasicBlock *handler_helper(const Value *V) {
4434 return cast<BasicBlock>(V);
4435 }
4436
4437public:
4438 using DerefFnTy = BasicBlock *(*)(Value *);
4439 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4440 using handler_range = iterator_range<handler_iterator>;
4441 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4442 using const_handler_iterator =
4443 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4444 using const_handler_range = iterator_range<const_handler_iterator>;
4445
4446 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4447 handler_iterator handler_begin() {
4448 op_iterator It = op_begin() + 1;
4449 if (hasUnwindDest())
4450 ++It;
4451 return handler_iterator(It, DerefFnTy(handler_helper));
4452 }
4453
4454 /// Returns an iterator that points to the first handler in the
4455 /// CatchSwitchInst.
4456 const_handler_iterator handler_begin() const {
4457 const_op_iterator It = op_begin() + 1;
4458 if (hasUnwindDest())
4459 ++It;
4460 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4461 }
4462
4463 /// Returns a read-only iterator that points one past the last
4464 /// handler in the CatchSwitchInst.
4465 handler_iterator handler_end() {
4466 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4467 }
4468
4469 /// Returns an iterator that points one past the last handler in the
4470 /// CatchSwitchInst.
4471 const_handler_iterator handler_end() const {
4472 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4473 }
4474
4475 /// iteration adapter for range-for loops.
4476 handler_range handlers() {
4477 return make_range(handler_begin(), handler_end());
4478 }
4479
4480 /// iteration adapter for range-for loops.
4481 const_handler_range handlers() const {
4482 return make_range(handler_begin(), handler_end());
4483 }
4484
4485 /// Add an entry to the switch instruction...
4486 /// Note:
4487 /// This action invalidates handler_end(). Old handler_end() iterator will
4488 /// point to the added handler.
4489 void addHandler(BasicBlock *Dest);
4490
4491 void removeHandler(handler_iterator HI);
4492
4493 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4494 BasicBlock *getSuccessor(unsigned Idx) const {
4495 assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "llvm/include/llvm/IR/Instructions.h", 4496, __extension__ __PRETTY_FUNCTION__
))
4496 "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "llvm/include/llvm/IR/Instructions.h", 4496, __extension__ __PRETTY_FUNCTION__
))
;
4497 return cast<BasicBlock>(getOperand(Idx + 1));
4498 }
4499 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4500 assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "llvm/include/llvm/IR/Instructions.h", 4501, __extension__ __PRETTY_FUNCTION__
))
4501 "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "llvm/include/llvm/IR/Instructions.h", 4501, __extension__ __PRETTY_FUNCTION__
))
;
4502 setOperand(Idx + 1, NewSucc);
4503 }
4504
4505 // Methods for support type inquiry through isa, cast, and dyn_cast:
4506 static bool classof(const Instruction *I) {
4507 return I->getOpcode() == Instruction::CatchSwitch;
4508 }
4509 static bool classof(const Value *V) {
4510 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4511 }
4512};
4513
4514template <>
4515struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4516
4517DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<CatchSwitchInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4517, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<CatchSwitchInst
>::op_begin(const_cast<CatchSwitchInst*>(this))[i_nocapture
].get()); } void CatchSwitchInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<CatchSwitchInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4517, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<CatchSwitchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands
() const { return OperandTraits<CatchSwitchInst>::operands
(this); } template <int Idx_nocapture> Use &CatchSwitchInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &CatchSwitchInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
4518
4519//===----------------------------------------------------------------------===//
4520// CleanupPadInst Class
4521//===----------------------------------------------------------------------===//
4522class CleanupPadInst : public FuncletPadInst {
4523private:
4524 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4525 unsigned Values, const Twine &NameStr,
4526 Instruction *InsertBefore)
4527 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4528 NameStr, InsertBefore) {}
4529 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4530 unsigned Values, const Twine &NameStr,
4531 BasicBlock *InsertAtEnd)
4532 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4533 NameStr, InsertAtEnd) {}
4534
4535public:
4536 static CleanupPadInst *Create(Value *ParentPad,
4537 ArrayRef<Value *> Args = std::nullopt,
4538 const Twine &NameStr = "",
4539 Instruction *InsertBefore = nullptr) {
4540 unsigned Values = 1 + Args.size();
4541 return new (Values)
4542 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4543 }
4544
4545 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4546 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4547 unsigned Values = 1 + Args.size();
4548 return new (Values)
4549 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4550 }
4551
4552 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4553 static bool classof(const Instruction *I) {
4554 return I->getOpcode() == Instruction::CleanupPad;
4555 }
4556 static bool classof(const Value *V) {
4557 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4558 }
4559};
4560
4561//===----------------------------------------------------------------------===//
4562// CatchPadInst Class
4563//===----------------------------------------------------------------------===//
4564class CatchPadInst : public FuncletPadInst {
4565private:
4566 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4567 unsigned Values, const Twine &NameStr,
4568 Instruction *InsertBefore)
4569 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4570 NameStr, InsertBefore) {}
4571 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4572 unsigned Values, const Twine &NameStr,
4573 BasicBlock *InsertAtEnd)
4574 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4575 NameStr, InsertAtEnd) {}
4576
4577public:
4578 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4579 const Twine &NameStr = "",
4580 Instruction *InsertBefore = nullptr) {
4581 unsigned Values = 1 + Args.size();
4582 return new (Values)
4583 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4584 }
4585
4586 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4587 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4588 unsigned Values = 1 + Args.size();
4589 return new (Values)
4590 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4591 }
4592
4593 /// Convenience accessors
4594 CatchSwitchInst *getCatchSwitch() const {
4595 return cast<CatchSwitchInst>(Op<-1>());
4596 }
4597 void setCatchSwitch(Value *CatchSwitch) {
4598 assert(CatchSwitch)(static_cast <bool> (CatchSwitch) ? void (0) : __assert_fail
("CatchSwitch", "llvm/include/llvm/IR/Instructions.h", 4598,
__extension__ __PRETTY_FUNCTION__))
;
4599 Op<-1>() = CatchSwitch;
4600 }
4601
4602 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4603 static bool classof(const Instruction *I) {
4604 return I->getOpcode() == Instruction::CatchPad;
4605 }
4606 static bool classof(const Value *V) {
4607 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4608 }
4609};
4610
4611//===----------------------------------------------------------------------===//
4612// CatchReturnInst Class
4613//===----------------------------------------------------------------------===//
4614
4615class CatchReturnInst : public Instruction {
4616 CatchReturnInst(const CatchReturnInst &RI);
4617 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4618 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4619
4620 void init(Value *CatchPad, BasicBlock *BB);
4621
4622protected:
4623 // Note: Instruction needs to be a friend here to call cloneImpl.
4624 friend class Instruction;
4625
4626 CatchReturnInst *cloneImpl() const;
4627
4628public:
4629 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4630 Instruction *InsertBefore = nullptr) {
4631 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "llvm/include/llvm/IR/Instructions.h", 4631, __extension__
__PRETTY_FUNCTION__))
;
4632 assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB"
, "llvm/include/llvm/IR/Instructions.h", 4632, __extension__ __PRETTY_FUNCTION__
))
;
4633 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4634 }
4635
4636 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4637 BasicBlock *InsertAtEnd) {
4638 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "llvm/include/llvm/IR/Instructions.h", 4638, __extension__
__PRETTY_FUNCTION__))
;
4639 assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB"
, "llvm/include/llvm/IR/Instructions.h", 4639, __extension__ __PRETTY_FUNCTION__
))
;
4640 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4641 }
4642
4643 /// Provide fast operand accessors
4644 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4645
4646 /// Convenience accessors.
4647 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4648 void setCatchPad(CatchPadInst *CatchPad) {
4649 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "llvm/include/llvm/IR/Instructions.h", 4649, __extension__
__PRETTY_FUNCTION__))
;
4650 Op<0>() = CatchPad;
4651 }
4652
4653 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4654 void setSuccessor(BasicBlock *NewSucc) {
4655 assert(NewSucc)(static_cast <bool> (NewSucc) ? void (0) : __assert_fail
("NewSucc", "llvm/include/llvm/IR/Instructions.h", 4655, __extension__
__PRETTY_FUNCTION__))
;
4656 Op<1>() = NewSucc;
4657 }
4658 unsigned getNumSuccessors() const { return 1; }
4659
4660 /// Get the parentPad of this catchret's catchpad's catchswitch.
4661 /// The successor block is implicitly a member of this funclet.
4662 Value *getCatchSwitchParentPad() const {
4663 return getCatchPad()->getCatchSwitch()->getParentPad();
4664 }
4665
4666 // Methods for support type inquiry through isa, cast, and dyn_cast:
4667 static bool classof(const Instruction *I) {
4668 return (I->getOpcode() == Instruction::CatchRet);
4669 }
4670 static bool classof(const Value *V) {
4671 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4672 }
4673
4674private:
4675 BasicBlock *getSuccessor(unsigned Idx) const {
4676 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchret!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "llvm/include/llvm/IR/Instructions.h", 4676, __extension__ __PRETTY_FUNCTION__
))
;
4677 return getSuccessor();
4678 }
4679
4680 void setSuccessor(unsigned Idx, BasicBlock *B) {
4681 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchret!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "llvm/include/llvm/IR/Instructions.h", 4681, __extension__ __PRETTY_FUNCTION__
))
;
4682 setSuccessor(B);
4683 }
4684};
4685
4686template <>
4687struct OperandTraits<CatchReturnInst>
4688 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4689
4690DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<CatchReturnInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4690, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<CatchReturnInst
>::op_begin(const_cast<CatchReturnInst*>(this))[i_nocapture
].get()); } void CatchReturnInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<CatchReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4690, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<CatchReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands
() const { return OperandTraits<CatchReturnInst>::operands
(this); } template <int Idx_nocapture> Use &CatchReturnInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &CatchReturnInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
4691
4692//===----------------------------------------------------------------------===//
4693// CleanupReturnInst Class
4694//===----------------------------------------------------------------------===//
4695
4696class CleanupReturnInst : public Instruction {
4697 using UnwindDestField = BoolBitfieldElementT<0>;
4698
4699private:
4700 CleanupReturnInst(const CleanupReturnInst &RI);
4701 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4702 Instruction *InsertBefore = nullptr);
4703 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4704 BasicBlock *InsertAtEnd);
4705
4706 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4707
4708protected:
4709 // Note: Instruction needs to be a friend here to call cloneImpl.
4710 friend class Instruction;
4711
4712 CleanupReturnInst *cloneImpl() const;
4713
4714public:
4715 static CleanupReturnInst *Create(Value *CleanupPad,
4716 BasicBlock *UnwindBB = nullptr,
4717 Instruction *InsertBefore = nullptr) {
4718 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "llvm/include/llvm/IR/Instructions.h", 4718, __extension__
__PRETTY_FUNCTION__))
;
4719 unsigned Values = 1;
4720 if (UnwindBB)
4721 ++Values;
4722 return new (Values)
4723 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4724 }
4725
4726 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4727 BasicBlock *InsertAtEnd) {
4728 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "llvm/include/llvm/IR/Instructions.h", 4728, __extension__
__PRETTY_FUNCTION__))
;
4729 unsigned Values = 1;
4730 if (UnwindBB)
4731 ++Values;
4732 return new (Values)
4733 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4734 }
4735
4736 /// Provide fast operand accessors
4737 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4738
4739 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4740 bool unwindsToCaller() const { return !hasUnwindDest(); }
4741
4742 /// Convenience accessor.
4743 CleanupPadInst *getCleanupPad() const {
4744 return cast<CleanupPadInst>(Op<0>());
4745 }
4746 void setCleanupPad(CleanupPadInst *CleanupPad) {
4747 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "llvm/include/llvm/IR/Instructions.h", 4747, __extension__
__PRETTY_FUNCTION__))
;
4748 Op<0>() = CleanupPad;
4749 }
4750
4751 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4752
4753 BasicBlock *getUnwindDest() const {
4754 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4755 }
4756 void setUnwindDest(BasicBlock *NewDest) {
4757 assert(NewDest)(static_cast <bool> (NewDest) ? void (0) : __assert_fail
("NewDest", "llvm/include/llvm/IR/Instructions.h", 4757, __extension__
__PRETTY_FUNCTION__))
;
4758 assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail
("hasUnwindDest()", "llvm/include/llvm/IR/Instructions.h", 4758
, __extension__ __PRETTY_FUNCTION__))
;
4759 Op<1>() = NewDest;
4760 }
4761
4762 // Methods for support type inquiry through isa, cast, and dyn_cast:
4763 static bool classof(const Instruction *I) {
4764 return (I->getOpcode() == Instruction::CleanupRet);
4765 }
4766 static bool classof(const Value *V) {
4767 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4768 }
4769
4770private:
4771 BasicBlock *getSuccessor(unsigned Idx) const {
4772 assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail
("Idx == 0", "llvm/include/llvm/IR/Instructions.h", 4772, __extension__
__PRETTY_FUNCTION__))
;
4773 return getUnwindDest();
4774 }
4775
4776 void setSuccessor(unsigned Idx, BasicBlock *B) {
4777 assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail
("Idx == 0", "llvm/include/llvm/IR/Instructions.h", 4777, __extension__
__PRETTY_FUNCTION__))
;
4778 setUnwindDest(B);
4779 }
4780
4781 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4782 // method so that subclasses cannot accidentally use it.
4783 template <typename Bitfield>
4784 void setSubclassData(typename Bitfield::Type Value) {
4785 Instruction::setSubclassData<Bitfield>(Value);
4786 }
4787};
4788
4789template <>
4790struct OperandTraits<CleanupReturnInst>
4791 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4792
4793DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<CleanupReturnInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4793, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<CleanupReturnInst
>::op_begin(const_cast<CleanupReturnInst*>(this))[i_nocapture
].get()); } void CleanupReturnInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<CleanupReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4793, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<CleanupReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned CleanupReturnInst::getNumOperands
() const { return OperandTraits<CleanupReturnInst>::operands
(this); } template <int Idx_nocapture> Use &CleanupReturnInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &CleanupReturnInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
4794
4795//===----------------------------------------------------------------------===//
4796// UnreachableInst Class
4797//===----------------------------------------------------------------------===//
4798
4799//===---------------------------------------------------------------------------
4800/// This function has undefined behavior. In particular, the
4801/// presence of this instruction indicates some higher level knowledge that the
4802/// end of the block cannot be reached.
4803///
4804class UnreachableInst : public Instruction {
4805protected:
4806 // Note: Instruction needs to be a friend here to call cloneImpl.
4807 friend class Instruction;
4808
4809 UnreachableInst *cloneImpl() const;
4810
4811public:
4812 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4813 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4814
4815 // allocate space for exactly zero operands
4816 void *operator new(size_t S) { return User::operator new(S, 0); }
4817 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4818
4819 unsigned getNumSuccessors() const { return 0; }
4820
4821 // Methods for support type inquiry through isa, cast, and dyn_cast:
4822 static bool classof(const Instruction *I) {
4823 return I->getOpcode() == Instruction::Unreachable;
4824 }
4825 static bool classof(const Value *V) {
4826 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4827 }
4828
4829private:
4830 BasicBlock *getSuccessor(unsigned idx) const {
4831 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 4831)
;
4832 }
4833
4834 void setSuccessor(unsigned idx, BasicBlock *B) {
4835 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 4835)
;
4836 }
4837};
4838
4839//===----------------------------------------------------------------------===//
4840// TruncInst Class
4841//===----------------------------------------------------------------------===//
4842
4843/// This class represents a truncation of integer types.
4844class TruncInst : public CastInst {
4845protected:
4846 // Note: Instruction needs to be a friend here to call cloneImpl.
4847 friend class Instruction;
4848
4849 /// Clone an identical TruncInst
4850 TruncInst *cloneImpl() const;
4851
4852public:
4853 /// Constructor with insert-before-instruction semantics
4854 TruncInst(
4855 Value *S, ///< The value to be truncated
4856 Type *Ty, ///< The (smaller) type to truncate to
4857 const Twine &NameStr = "", ///< A name for the new instruction
4858 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4859 );
4860
4861 /// Constructor with insert-at-end-of-block semantics
4862 TruncInst(
4863 Value *S, ///< The value to be truncated
4864 Type *Ty, ///< The (smaller) type to truncate to
4865 const Twine &NameStr, ///< A name for the new instruction
4866 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4867 );
4868
4869 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4870 static bool classof(const Instruction *I) {
4871 return I->getOpcode() == Trunc;
4872 }
4873 static bool classof(const Value *V) {
4874 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4875 }
4876};
4877
4878//===----------------------------------------------------------------------===//
4879// ZExtInst Class
4880//===----------------------------------------------------------------------===//
4881
4882/// This class represents zero extension of integer types.
4883class ZExtInst : public CastInst {
4884protected:
4885 // Note: Instruction needs to be a friend here to call cloneImpl.
4886 friend class Instruction;
4887
4888 /// Clone an identical ZExtInst
4889 ZExtInst *cloneImpl() const;
4890
4891public:
4892 /// Constructor with insert-before-instruction semantics
4893 ZExtInst(
4894 Value *S, ///< The value to be zero extended
4895 Type *Ty, ///< The type to zero extend to
4896 const Twine &NameStr = "", ///< A name for the new instruction
4897 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4898 );
4899
4900 /// Constructor with insert-at-end semantics.
4901 ZExtInst(
4902 Value *S, ///< The value to be zero extended
4903 Type *Ty, ///< The type to zero extend to
4904 const Twine &NameStr, ///< A name for the new instruction
4905 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4906 );
4907
4908 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4909 static bool classof(const Instruction *I) {
4910 return I->getOpcode() == ZExt;
4911 }
4912 static bool classof(const Value *V) {
4913 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4914 }
4915};
4916
4917//===----------------------------------------------------------------------===//
4918// SExtInst Class
4919//===----------------------------------------------------------------------===//
4920
4921/// This class represents a sign extension of integer types.
4922class SExtInst : public CastInst {
4923protected:
4924 // Note: Instruction needs to be a friend here to call cloneImpl.
4925 friend class Instruction;
4926
4927 /// Clone an identical SExtInst
4928 SExtInst *cloneImpl() const;
4929
4930public:
4931 /// Constructor with insert-before-instruction semantics
4932 SExtInst(
4933 Value *S, ///< The value to be sign extended
4934 Type *Ty, ///< The type to sign extend to
4935 const Twine &NameStr = "", ///< A name for the new instruction
4936 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4937 );
4938
4939 /// Constructor with insert-at-end-of-block semantics
4940 SExtInst(
4941 Value *S, ///< The value to be sign extended
4942 Type *Ty, ///< The type to sign extend to
4943 const Twine &NameStr, ///< A name for the new instruction
4944 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4945 );
4946
4947 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4948 static bool classof(const Instruction *I) {
4949 return I->getOpcode() == SExt;
4950 }
4951 static bool classof(const Value *V) {
4952 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4953 }
4954};
4955
4956//===----------------------------------------------------------------------===//
4957// FPTruncInst Class
4958//===----------------------------------------------------------------------===//
4959
4960/// This class represents a truncation of floating point types.
4961class FPTruncInst : public CastInst {
4962protected:
4963 // Note: Instruction needs to be a friend here to call cloneImpl.
4964 friend class Instruction;
4965
4966 /// Clone an identical FPTruncInst
4967 FPTruncInst *cloneImpl() const;
4968
4969public:
4970 /// Constructor with insert-before-instruction semantics
4971 FPTruncInst(
4972 Value *S, ///< The value to be truncated
4973 Type *Ty, ///< The type to truncate to
4974 const Twine &NameStr = "", ///< A name for the new instruction
4975 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4976 );
4977
4978 /// Constructor with insert-before-instruction semantics
4979 FPTruncInst(
4980 Value *S, ///< The value to be truncated
4981 Type *Ty, ///< The type to truncate to
4982 const Twine &NameStr, ///< A name for the new instruction
4983 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4984 );
4985
4986 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4987 static bool classof(const Instruction *I) {
4988 return I->getOpcode() == FPTrunc;
4989 }
4990 static bool classof(const Value *V) {
4991 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4992 }
4993};
4994
4995//===----------------------------------------------------------------------===//
4996// FPExtInst Class
4997//===----------------------------------------------------------------------===//
4998
4999/// This class represents an extension of floating point types.
5000class FPExtInst : public CastInst {
5001protected:
5002 // Note: Instruction needs to be a friend here to call cloneImpl.
5003 friend class Instruction;
5004
5005 /// Clone an identical FPExtInst
5006 FPExtInst *cloneImpl() const;
5007
5008public:
5009 /// Constructor with insert-before-instruction semantics
5010 FPExtInst(
5011 Value *S, ///< The value to be extended
5012 Type *Ty, ///< The type to extend to
5013 const Twine &NameStr = "", ///< A name for the new instruction
5014 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5015 );
5016
5017 /// Constructor with insert-at-end-of-block semantics
5018 FPExtInst(
5019 Value *S, ///< The value to be extended
5020 Type *Ty, ///< The type to extend to
5021 const Twine &NameStr, ///< A name for the new instruction
5022 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5023 );
5024
5025 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5026 static bool classof(const Instruction *I) {
5027 return I->getOpcode() == FPExt;
5028 }
5029 static bool classof(const Value *V) {
5030 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5031 }
5032};
5033
5034//===----------------------------------------------------------------------===//
5035// UIToFPInst Class
5036//===----------------------------------------------------------------------===//
5037
5038/// This class represents a cast unsigned integer to floating point.
5039class UIToFPInst : public CastInst {
5040protected:
5041 // Note: Instruction needs to be a friend here to call cloneImpl.
5042 friend class Instruction;
5043
5044 /// Clone an identical UIToFPInst
5045 UIToFPInst *cloneImpl() const;
5046
5047public:
5048 /// Constructor with insert-before-instruction semantics
5049 UIToFPInst(
5050 Value *S, ///< The value to be converted
5051 Type *Ty, ///< The type to convert to
5052 const Twine &NameStr = "", ///< A name for the new instruction
5053 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5054 );
5055
5056 /// Constructor with insert-at-end-of-block semantics
5057 UIToFPInst(
5058 Value *S, ///< The value to be converted
5059 Type *Ty, ///< The type to convert to
5060 const Twine &NameStr, ///< A name for the new instruction
5061 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5062 );
5063
5064 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5065 static bool classof(const Instruction *I) {
5066 return I->getOpcode() == UIToFP;
5067 }
5068 static bool classof(const Value *V) {
5069 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5070 }
5071};
5072
5073//===----------------------------------------------------------------------===//
5074// SIToFPInst Class
5075//===----------------------------------------------------------------------===//
5076
5077/// This class represents a cast from signed integer to floating point.
5078class SIToFPInst : public CastInst {
5079protected:
5080 // Note: Instruction needs to be a friend here to call cloneImpl.
5081 friend class Instruction;
5082
5083 /// Clone an identical SIToFPInst
5084 SIToFPInst *cloneImpl() const;
5085
5086public:
5087 /// Constructor with insert-before-instruction semantics
5088 SIToFPInst(
5089 Value *S, ///< The value to be converted
5090 Type *Ty, ///< The type to convert to
5091 const Twine &NameStr = "", ///< A name for the new instruction
5092 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5093 );
5094
5095 /// Constructor with insert-at-end-of-block semantics
5096 SIToFPInst(
5097 Value *S, ///< The value to be converted
5098 Type *Ty, ///< The type to convert to
5099 const Twine &NameStr, ///< A name for the new instruction
5100 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5101 );
5102
5103 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5104 static bool classof(const Instruction *I) {
5105 return I->getOpcode() == SIToFP;
5106 }
5107 static bool classof(const Value *V) {
5108 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5109 }
5110};
5111
5112//===----------------------------------------------------------------------===//
5113// FPToUIInst Class
5114//===----------------------------------------------------------------------===//
5115
5116/// This class represents a cast from floating point to unsigned integer
5117class FPToUIInst : public CastInst {
5118protected:
5119 // Note: Instruction needs to be a friend here to call cloneImpl.
5120 friend class Instruction;
5121
5122 /// Clone an identical FPToUIInst
5123 FPToUIInst *cloneImpl() const;
5124
5125public:
5126 /// Constructor with insert-before-instruction semantics
5127 FPToUIInst(
5128 Value *S, ///< The value to be converted
5129 Type *Ty, ///< The type to convert to
5130 const Twine &NameStr = "", ///< A name for the new instruction
5131 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5132 );
5133
5134 /// Constructor with insert-at-end-of-block semantics
5135 FPToUIInst(
5136 Value *S, ///< The value to be converted
5137 Type *Ty, ///< The type to convert to
5138 const Twine &NameStr, ///< A name for the new instruction
5139 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5140 );
5141
5142 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5143 static bool classof(const Instruction *I) {
5144 return I->getOpcode() == FPToUI;
5145 }
5146 static bool classof(const Value *V) {
5147 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5148 }
5149};
5150
5151//===----------------------------------------------------------------------===//
5152// FPToSIInst Class
5153//===----------------------------------------------------------------------===//
5154
5155/// This class represents a cast from floating point to signed integer.
5156class FPToSIInst : public CastInst {
5157protected:
5158 // Note: Instruction needs to be a friend here to call cloneImpl.
5159 friend class Instruction;
5160
5161 /// Clone an identical FPToSIInst
5162 FPToSIInst *cloneImpl() const;
5163
5164public:
5165 /// Constructor with insert-before-instruction semantics
5166 FPToSIInst(
5167 Value *S, ///< The value to be converted
5168 Type *Ty, ///< The type to convert to
5169 const Twine &NameStr = "", ///< A name for the new instruction
5170 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5171 );
5172
5173 /// Constructor with insert-at-end-of-block semantics
5174 FPToSIInst(
5175 Value *S, ///< The value to be converted
5176 Type *Ty, ///< The type to convert to
5177 const Twine &NameStr, ///< A name for the new instruction
5178 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5179 );
5180
5181 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5182 static bool classof(const Instruction *I) {
5183 return I->getOpcode() == FPToSI;
5184 }
5185 static bool classof(const Value *V) {
5186 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5187 }
5188};
5189
5190//===----------------------------------------------------------------------===//
5191// IntToPtrInst Class
5192//===----------------------------------------------------------------------===//
5193
5194/// This class represents a cast from an integer to a pointer.
5195class IntToPtrInst : public CastInst {
5196public:
5197 // Note: Instruction needs to be a friend here to call cloneImpl.
5198 friend class Instruction;
5199
5200 /// Constructor with insert-before-instruction semantics
5201 IntToPtrInst(
5202 Value *S, ///< The value to be converted
5203 Type *Ty, ///< The type to convert to
5204 const Twine &NameStr = "", ///< A name for the new instruction
5205 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5206 );
5207
5208 /// Constructor with insert-at-end-of-block semantics
5209 IntToPtrInst(
5210 Value *S, ///< The value to be converted
5211 Type *Ty, ///< The type to convert to
5212 const Twine &NameStr, ///< A name for the new instruction
5213 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5214 );
5215
5216 /// Clone an identical IntToPtrInst.
5217 IntToPtrInst *cloneImpl() const;
5218
5219 /// Returns the address space of this instruction's pointer type.
5220 unsigned getAddressSpace() const {
5221 return getType()->getPointerAddressSpace();
5222 }
5223
5224 // Methods for support type inquiry through isa, cast, and dyn_cast:
5225 static bool classof(const Instruction *I) {
5226 return I->getOpcode() == IntToPtr;
5227 }
5228 static bool classof(const Value *V) {
5229 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5230 }
5231};
5232
5233//===----------------------------------------------------------------------===//
5234// PtrToIntInst Class
5235//===----------------------------------------------------------------------===//
5236
5237/// This class represents a cast from a pointer to an integer.
5238class PtrToIntInst : public CastInst {
5239protected:
5240 // Note: Instruction needs to be a friend here to call cloneImpl.
5241 friend class Instruction;
5242
5243 /// Clone an identical PtrToIntInst.
5244 PtrToIntInst *cloneImpl() const;
5245
5246public:
5247 /// Constructor with insert-before-instruction semantics
5248 PtrToIntInst(
5249 Value *S, ///< The value to be converted
5250 Type *Ty, ///< The type to convert to
5251 const Twine &NameStr = "", ///< A name for the new instruction
5252 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5253 );
5254
5255 /// Constructor with insert-at-end-of-block semantics
5256 PtrToIntInst(
5257 Value *S, ///< The value to be converted
5258 Type *Ty, ///< The type to convert to
5259 const Twine &NameStr, ///< A name for the new instruction
5260 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5261 );
5262
5263 /// Gets the pointer operand.
5264 Value *getPointerOperand() { return getOperand(0); }
5265 /// Gets the pointer operand.
5266 const Value *getPointerOperand() const { return getOperand(0); }
5267 /// Gets the operand index of the pointer operand.
5268 static unsigned getPointerOperandIndex() { return 0U; }
5269
5270 /// Returns the address space of the pointer operand.
5271 unsigned getPointerAddressSpace() const {
5272 return getPointerOperand()->getType()->getPointerAddressSpace();
5273 }
5274
5275 // Methods for support type inquiry through isa, cast, and dyn_cast:
5276 static bool classof(const Instruction *I) {
5277 return I->getOpcode() == PtrToInt;
5278 }
5279 static bool classof(const Value *V) {
5280 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5281 }
5282};
5283
5284//===----------------------------------------------------------------------===//
5285// BitCastInst Class
5286//===----------------------------------------------------------------------===//
5287
5288/// This class represents a no-op cast from one type to another.
5289class BitCastInst : public CastInst {
5290protected:
5291 // Note: Instruction needs to be a friend here to call cloneImpl.
5292 friend class Instruction;
5293
5294 /// Clone an identical BitCastInst.
5295 BitCastInst *cloneImpl() const;
5296
5297public:
5298 /// Constructor with insert-before-instruction semantics
5299 BitCastInst(
5300 Value *S, ///< The value to be casted
5301 Type *Ty, ///< The type to casted to
5302 const Twine &NameStr = "", ///< A name for the new instruction
5303 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5304 );
5305
5306 /// Constructor with insert-at-end-of-block semantics
5307 BitCastInst(
5308 Value *S, ///< The value to be casted
5309 Type *Ty, ///< The type to casted to
5310 const Twine &NameStr, ///< A name for the new instruction
5311 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5312 );
5313
5314 // Methods for support type inquiry through isa, cast, and dyn_cast:
5315 static bool classof(const Instruction *I) {
5316 return I->getOpcode() == BitCast;
5317 }
5318 static bool classof(const Value *V) {
5319 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5320 }
5321};
5322
5323//===----------------------------------------------------------------------===//
5324// AddrSpaceCastInst Class
5325//===----------------------------------------------------------------------===//
5326
5327/// This class represents a conversion between pointers from one address space
5328/// to another.
5329class AddrSpaceCastInst : public CastInst {
5330protected:
5331 // Note: Instruction needs to be a friend here to call cloneImpl.
5332 friend class Instruction;
5333
5334 /// Clone an identical AddrSpaceCastInst.
5335 AddrSpaceCastInst *cloneImpl() const;
5336
5337public:
5338 /// Constructor with insert-before-instruction semantics
5339 AddrSpaceCastInst(
5340 Value *S, ///< The value to be casted
5341 Type *Ty, ///< The type to casted to
5342 const Twine &NameStr = "", ///< A name for the new instruction
5343 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5344 );
5345
5346 /// Constructor with insert-at-end-of-block semantics
5347 AddrSpaceCastInst(
5348 Value *S, ///< The value to be casted
5349 Type *Ty, ///< The type to casted to
5350 const Twine &NameStr, ///< A name for the new instruction
5351 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5352 );
5353
5354 // Methods for support type inquiry through isa, cast, and dyn_cast:
5355 static bool classof(const Instruction *I) {
5356 return I->getOpcode() == AddrSpaceCast;
5357 }
5358 static bool classof(const Value *V) {
5359 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5360 }
5361
5362 /// Gets the pointer operand.
5363 Value *getPointerOperand() {
5364 return getOperand(0);
5365 }
5366
5367 /// Gets the pointer operand.
5368 const Value *getPointerOperand() const {
5369 return getOperand(0);
5370 }
5371
5372 /// Gets the operand index of the pointer operand.
5373 static unsigned getPointerOperandIndex() {
5374 return 0U;
5375 }
5376
5377 /// Returns the address space of the pointer operand.
5378 unsigned getSrcAddressSpace() const {
5379 return getPointerOperand()->getType()->getPointerAddressSpace();
5380 }
5381
5382 /// Returns the address space of the result.
5383 unsigned getDestAddressSpace() const {
5384 return getType()->getPointerAddressSpace();
5385 }
5386};
5387
5388//===----------------------------------------------------------------------===//
5389// Helper functions
5390//===----------------------------------------------------------------------===//
5391
5392/// A helper function that returns the pointer operand of a load or store
5393/// instruction. Returns nullptr if not load or store.
5394inline const Value *getLoadStorePointerOperand(const Value *V) {
5395 if (auto *Load = dyn_cast<LoadInst>(V))
5396 return Load->getPointerOperand();
5397 if (auto *Store = dyn_cast<StoreInst>(V))
5398 return Store->getPointerOperand();
5399 return nullptr;
5400}
5401inline Value *getLoadStorePointerOperand(Value *V) {
5402 return const_cast<Value *>(
5403 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5404}
5405
5406/// A helper function that returns the pointer operand of a load, store
5407/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5408inline const Value *getPointerOperand(const Value *V) {
5409 if (auto *Ptr = getLoadStorePointerOperand(V))
5410 return Ptr;
5411 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5412 return Gep->getPointerOperand();
5413 return nullptr;
5414}
5415inline Value *getPointerOperand(Value *V) {
5416 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5417}
5418
5419/// A helper function that returns the alignment of load or store instruction.
5420inline Align getLoadStoreAlignment(Value *I) {
5421 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5422, __extension__ __PRETTY_FUNCTION__
))
5422 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5422, __extension__ __PRETTY_FUNCTION__
))
;
5423 if (auto *LI = dyn_cast<LoadInst>(I))
5424 return LI->getAlign();
5425 return cast<StoreInst>(I)->getAlign();
5426}
5427
5428/// A helper function that returns the address space of the pointer operand of
5429/// load or store instruction.
5430inline unsigned getLoadStoreAddressSpace(Value *I) {
5431 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5432, __extension__ __PRETTY_FUNCTION__
))
5432 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5432, __extension__ __PRETTY_FUNCTION__
))
;
5433 if (auto *LI = dyn_cast<LoadInst>(I))
5434 return LI->getPointerAddressSpace();
5435 return cast<StoreInst>(I)->getPointerAddressSpace();
5436}
5437
5438/// A helper function that returns the type of a load or store instruction.
5439inline Type *getLoadStoreType(Value *I) {
5440 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5441, __extension__ __PRETTY_FUNCTION__
))
5441 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5441, __extension__ __PRETTY_FUNCTION__
))
;
5442 if (auto *LI = dyn_cast<LoadInst>(I))
5443 return LI->getType();
5444 return cast<StoreInst>(I)->getValueOperand()->getType();
5445}
5446
5447/// A helper function that returns an atomic operation's sync scope; returns
5448/// std::nullopt if it is not an atomic operation.
5449inline std::optional<SyncScope::ID> getAtomicSyncScopeID(const Instruction *I) {
5450 if (!I->isAtomic())
5451 return std::nullopt;
5452 if (auto *AI = dyn_cast<LoadInst>(I))
5453 return AI->getSyncScopeID();
5454 if (auto *AI = dyn_cast<StoreInst>(I))
5455 return AI->getSyncScopeID();
5456 if (auto *AI = dyn_cast<FenceInst>(I))
5457 return AI->getSyncScopeID();
5458 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I))
5459 return AI->getSyncScopeID();
5460 if (auto *AI = dyn_cast<AtomicRMWInst>(I))
5461 return AI->getSyncScopeID();
5462 llvm_unreachable("unhandled atomic operation")::llvm::llvm_unreachable_internal("unhandled atomic operation"
, "llvm/include/llvm/IR/Instructions.h", 5462)
;
5463}
5464
5465//===----------------------------------------------------------------------===//
5466// FreezeInst Class
5467//===----------------------------------------------------------------------===//
5468
5469/// This class represents a freeze function that returns random concrete
5470/// value if an operand is either a poison value or an undef value
5471class FreezeInst : public UnaryInstruction {
5472protected:
5473 // Note: Instruction needs to be a friend here to call cloneImpl.
5474 friend class Instruction;
5475
5476 /// Clone an identical FreezeInst
5477 FreezeInst *cloneImpl() const;
5478
5479public:
5480 explicit FreezeInst(Value *S,
5481 const Twine &NameStr = "",
5482 Instruction *InsertBefore = nullptr);
5483 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5484
5485 // Methods for support type inquiry through isa, cast, and dyn_cast:
5486 static inline bool classof(const Instruction *I) {
5487 return I->getOpcode() == Freeze;
5488 }
5489 static inline bool classof(const Value *V) {
5490 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5491 }
5492};
5493
5494} // end namespace llvm
5495
5496#endif // LLVM_IR_INSTRUCTIONS_H

/build/source/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(),
10// cast_if_present<X>(), and dyn_cast_if_present<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <optional>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// simplify_type
28//===----------------------------------------------------------------------===//
29
30/// Define a template that can be specialized by smart pointers to reflect the
31/// fact that they are automatically dereferenced, and are not involved with the
32/// template selection process... the default implementation is a noop.
33// TODO: rename this and/or replace it with other cast traits.
34template <typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template <typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From &Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val));
49 }
50};
51
52// TODO: add this namespace once everyone is switched to using the new
53// interface.
54// namespace detail {
55
56//===----------------------------------------------------------------------===//
57// isa_impl
58//===----------------------------------------------------------------------===//
59
60// The core of the implementation of isa<X> is here; To and From should be
61// the names of classes. This template can be specialized to customize the
62// implementation of isa<> without rewriting it from scratch.
63template <typename To, typename From, typename Enabler = void> struct isa_impl {
64 static inline bool doit(const From &Val) { return To::classof(&Val); }
65};
66
67// Always allow upcasts, and perform no dynamic check for them.
68template <typename To, typename From>
69struct isa_impl<To, From, std::enable_if_t<std::is_base_of_v<To, From>>> {
70 static inline bool doit(const From &) { return true; }
71};
72
73template <typename To, typename From> struct isa_impl_cl {
74 static inline bool doit(const From &Val) {
75 return isa_impl<To, From>::doit(Val);
76 }
77};
78
79template <typename To, typename From> struct isa_impl_cl<To, const From> {
80 static inline bool doit(const From &Val) {
81 return isa_impl<To, From>::doit(Val);
82 }
83};
84
85template <typename To, typename From>
86struct isa_impl_cl<To, const std::unique_ptr<From>> {
87 static inline bool doit(const std::unique_ptr<From> &Val) {
88 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 88, __extension__ __PRETTY_FUNCTION__
))
;
89 return isa_impl_cl<To, From>::doit(*Val);
90 }
91};
92
93template <typename To, typename From> struct isa_impl_cl<To, From *> {
94 static inline bool doit(const From *Val) {
95 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 95, __extension__ __PRETTY_FUNCTION__
))
;
96 return isa_impl<To, From>::doit(*Val);
97 }
98};
99
100template <typename To, typename From> struct isa_impl_cl<To, From *const> {
101 static inline bool doit(const From *Val) {
102 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 102, __extension__ __PRETTY_FUNCTION__
))
;
103 return isa_impl<To, From>::doit(*Val);
104 }
105};
106
107template <typename To, typename From> struct isa_impl_cl<To, const From *> {
108 static inline bool doit(const From *Val) {
109 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 109, __extension__ __PRETTY_FUNCTION__
))
;
110 return isa_impl<To, From>::doit(*Val);
111 }
112};
113
114template <typename To, typename From>
115struct isa_impl_cl<To, const From *const> {
116 static inline bool doit(const From *Val) {
117 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 117, __extension__ __PRETTY_FUNCTION__
))
;
118 return isa_impl<To, From>::doit(*Val);
119 }
120};
121
122template <typename To, typename From, typename SimpleFrom>
123struct isa_impl_wrap {
124 // When From != SimplifiedType, we can simplify the type some more by using
125 // the simplify_type template.
126 static bool doit(const From &Val) {
127 return isa_impl_wrap<To, SimpleFrom,
128 typename simplify_type<SimpleFrom>::SimpleType>::
129 doit(simplify_type<const From>::getSimplifiedValue(Val));
130 }
131};
132
133template <typename To, typename FromTy>
134struct isa_impl_wrap<To, FromTy, FromTy> {
135 // When From == SimpleType, we are as simple as we are going to get.
136 static bool doit(const FromTy &Val) {
137 return isa_impl_cl<To, FromTy>::doit(Val);
138 }
139};
140
141//===----------------------------------------------------------------------===//
142// cast_retty + cast_retty_impl
143//===----------------------------------------------------------------------===//
144
145template <class To, class From> struct cast_retty;
146
147// Calculate what type the 'cast' function should return, based on a requested
148// type of To and a source type of From.
149template <class To, class From> struct cast_retty_impl {
150 using ret_type = To &; // Normal case, return Ty&
151};
152template <class To, class From> struct cast_retty_impl<To, const From> {
153 using ret_type = const To &; // Normal case, return Ty&
154};
155
156template <class To, class From> struct cast_retty_impl<To, From *> {
157 using ret_type = To *; // Pointer arg case, return Ty*
158};
159
160template <class To, class From> struct cast_retty_impl<To, const From *> {
161 using ret_type = const To *; // Constant pointer arg case, return const Ty*
162};
163
164template <class To, class From> struct cast_retty_impl<To, const From *const> {
165 using ret_type = const To *; // Constant pointer arg case, return const Ty*
166};
167
168template <class To, class From>
169struct cast_retty_impl<To, std::unique_ptr<From>> {
170private:
171 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
172 using ResultType = std::remove_pointer_t<PointerType>;
173
174public:
175 using ret_type = std::unique_ptr<ResultType>;
176};
177
178template <class To, class From, class SimpleFrom> struct cast_retty_wrap {
179 // When the simplified type and the from type are not the same, use the type
180 // simplifier to reduce the type, then reuse cast_retty_impl to get the
181 // resultant type.
182 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
183};
184
185template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> {
186 // When the simplified type is equal to the from type, use it directly.
187 using ret_type = typename cast_retty_impl<To, FromTy>::ret_type;
188};
189
190template <class To, class From> struct cast_retty {
191 using ret_type = typename cast_retty_wrap<
192 To, From, typename simplify_type<From>::SimpleType>::ret_type;
193};
194
195//===----------------------------------------------------------------------===//
196// cast_convert_val
197//===----------------------------------------------------------------------===//
198
199// Ensure the non-simple values are converted using the simplify_type template
200// that may be specialized by smart pointers...
201//
202template <class To, class From, class SimpleFrom> struct cast_convert_val {
203 // This is not a simple type, use the template to simplify it...
204 static typename cast_retty<To, From>::ret_type doit(const From &Val) {
205 return cast_convert_val<To, SimpleFrom,
206 typename simplify_type<SimpleFrom>::SimpleType>::
207 doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)));
208 }
209};
210
211template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> {
212 // If it's a reference, switch to a pointer to do the cast and then deref it.
213 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
214 return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type>
215 *)&const_cast<FromTy &>(Val);
216 }
217};
218
219template <class To, class FromTy>
220struct cast_convert_val<To, FromTy *, FromTy *> {
221 // If it's a pointer, we can use c-style casting directly.
222 static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) {
223 return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>(
224 Val);
225 }
226};
227
228//===----------------------------------------------------------------------===//
229// is_simple_type
230//===----------------------------------------------------------------------===//
231
232template <class X> struct is_simple_type {
233 static const bool value =
234 std::is_same_v<X, typename simplify_type<X>::SimpleType>;
235};
236
237// } // namespace detail
238
239//===----------------------------------------------------------------------===//
240// CastIsPossible
241//===----------------------------------------------------------------------===//
242
243/// This struct provides a way to check if a given cast is possible. It provides
244/// a static function called isPossible that is used to check if a cast can be
245/// performed. It should be overridden like this:
246///
247/// template<> struct CastIsPossible<foo, bar> {
248/// static inline bool isPossible(const bar &b) {
249/// return bar.isFoo();
250/// }
251/// };
252template <typename To, typename From, typename Enable = void>
253struct CastIsPossible {
254 static inline bool isPossible(const From &f) {
255 return isa_impl_wrap<
256 To, const From,
257 typename simplify_type<const From>::SimpleType>::doit(f);
258 }
259};
260
261// Needed for optional unwrapping. This could be implemented with isa_impl, but
262// we want to implement things in the new method and move old implementations
263// over. In fact, some of the isa_impl templates should be moved over to
264// CastIsPossible.
265template <typename To, typename From>
266struct CastIsPossible<To, std::optional<From>> {
267 static inline bool isPossible(const std::optional<From> &f) {
268 assert(f && "CastIsPossible::isPossible called on a nullopt!")(static_cast <bool> (f && "CastIsPossible::isPossible called on a nullopt!"
) ? void (0) : __assert_fail ("f && \"CastIsPossible::isPossible called on a nullopt!\""
, "llvm/include/llvm/Support/Casting.h", 268, __extension__ __PRETTY_FUNCTION__
))
;
269 return isa_impl_wrap<
270 To, const From,
271 typename simplify_type<const From>::SimpleType>::doit(*f);
272 }
273};
274
275/// Upcasting (from derived to base) and casting from a type to itself should
276/// always be possible.
277template <typename To, typename From>
278struct CastIsPossible<To, From, std::enable_if_t<std::is_base_of_v<To, From>>> {
279 static inline bool isPossible(const From &f) { return true; }
280};
281
282//===----------------------------------------------------------------------===//
283// Cast traits
284//===----------------------------------------------------------------------===//
285
286/// All of these cast traits are meant to be implementations for useful casts
287/// that users may want to use that are outside the standard behavior. An
288/// example of how to use a special cast called `CastTrait` is:
289///
290/// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {};
291///
292/// Essentially, if your use case falls directly into one of the use cases
293/// supported by a given cast trait, simply inherit your special CastInfo
294/// directly from one of these to avoid having to reimplement the boilerplate
295/// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also
296/// provide a subset of those functions.
297
298/// This cast trait just provides castFailed for the specified `To` type to make
299/// CastInfo specializations more declarative. In order to use this, the target
300/// result type must be `To` and `To` must be constructible from `nullptr`.
301template <typename To> struct NullableValueCastFailed {
302 static To castFailed() { return To(nullptr); }
303};
304
305/// This cast trait just provides the default implementation of doCastIfPossible
306/// to make CastInfo specializations more declarative. The `Derived` template
307/// parameter *must* be provided for forwarding castFailed and doCast.
308template <typename To, typename From, typename Derived>
309struct DefaultDoCastIfPossible {
310 static To doCastIfPossible(From f) {
311 if (!Derived::isPossible(f))
312 return Derived::castFailed();
313 return Derived::doCast(f);
314 }
315};
316
317namespace detail {
318/// A helper to derive the type to use with `Self` for cast traits, when the
319/// provided CRTP derived type is allowed to be void.
320template <typename OptionalDerived, typename Default>
321using SelfType = std::conditional_t<std::is_same_v<OptionalDerived, void>,
322 Default, OptionalDerived>;
323} // namespace detail
324
325/// This cast trait provides casting for the specific case of casting to a
326/// value-typed object from a pointer-typed object. Note that `To` must be
327/// nullable/constructible from a pointer to `From` to use this cast.
328template <typename To, typename From, typename Derived = void>
329struct ValueFromPointerCast
330 : public CastIsPossible<To, From *>,
331 public NullableValueCastFailed<To>,
332 public DefaultDoCastIfPossible<
333 To, From *,
334 detail::SelfType<Derived, ValueFromPointerCast<To, From>>> {
335 static inline To doCast(From *f) { return To(f); }
336};
337
338/// This cast trait provides std::unique_ptr casting. It has the semantics of
339/// moving the contents of the input unique_ptr into the output unique_ptr
340/// during the cast. It's also a good example of how to implement a move-only
341/// cast.
342template <typename To, typename From, typename Derived = void>
343struct UniquePtrCast : public CastIsPossible<To, From *> {
344 using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>;
345 using CastResultType = std::unique_ptr<
346 std::remove_reference_t<typename cast_retty<To, From>::ret_type>>;
347
348 static inline CastResultType doCast(std::unique_ptr<From> &&f) {
349 return CastResultType((typename CastResultType::element_type *)f.release());
350 }
351
352 static inline CastResultType castFailed() { return CastResultType(nullptr); }
353
354 static inline CastResultType doCastIfPossible(std::unique_ptr<From> &&f) {
355 if (!Self::isPossible(f))
356 return castFailed();
357 return doCast(f);
358 }
359};
360
361/// This cast trait provides std::optional<T> casting. This means that if you
362/// have a value type, you can cast it to another value type and have dyn_cast
363/// return an std::optional<T>.
364template <typename To, typename From, typename Derived = void>
365struct OptionalValueCast
366 : public CastIsPossible<To, From>,
367 public DefaultDoCastIfPossible<
368 std::optional<To>, From,
369 detail::SelfType<Derived, OptionalValueCast<To, From>>> {
370 static inline std::optional<To> castFailed() { return std::optional<To>{}; }
371
372 static inline std::optional<To> doCast(const From &f) { return To(f); }
373};
374
375/// Provides a cast trait that strips `const` from types to make it easier to
376/// implement a const-version of a non-const cast. It just removes boilerplate
377/// and reduces the amount of code you as the user need to implement. You can
378/// use it like this:
379///
380/// template<> struct CastInfo<foo, bar> {
381/// ...verbose implementation...
382/// };
383///
384/// template<> struct CastInfo<foo, const bar> : public
385/// ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {};
386///
387template <typename To, typename From, typename ForwardTo>
388struct ConstStrippingForwardingCast {
389 // Remove the pointer if it exists, then we can get rid of consts/volatiles.
390 using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>;
391 // Now if it's a pointer, add it back. Otherwise, we want a ref.
392 using NonConstFrom =
393 std::conditional_t<std::is_pointer_v<From>, DecayedFrom *, DecayedFrom &>;
394
395 static inline bool isPossible(const From &f) {
396 return ForwardTo::isPossible(const_cast<NonConstFrom>(f));
397 }
398
399 static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); }
400
401 static inline decltype(auto) doCast(const From &f) {
402 return ForwardTo::doCast(const_cast<NonConstFrom>(f));
403 }
404
405 static inline decltype(auto) doCastIfPossible(const From &f) {
406 return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f));
407 }
408};
409
410/// Provides a cast trait that uses a defined pointer to pointer cast as a base
411/// for reference-to-reference casts. Note that it does not provide castFailed
412/// and doCastIfPossible because a pointer-to-pointer cast would likely just
413/// return `nullptr` which could cause nullptr dereference. You can use it like
414/// this:
415///
416/// template <> struct CastInfo<foo, bar *> { ... verbose implementation... };
417///
418/// template <>
419/// struct CastInfo<foo, bar>
420/// : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {};
421///
422template <typename To, typename From, typename ForwardTo>
423struct ForwardToPointerCast {
424 static inline bool isPossible(const From &f) {
425 return ForwardTo::isPossible(&f);
426 }
427
428 static inline decltype(auto) doCast(const From &f) {
429 return *ForwardTo::doCast(&f);
430 }
431};
432
433//===----------------------------------------------------------------------===//
434// CastInfo
435//===----------------------------------------------------------------------===//
436
437/// This struct provides a method for customizing the way a cast is performed.
438/// It inherits from CastIsPossible, to support the case of declaring many
439/// CastIsPossible specializations without having to specialize the full
440/// CastInfo.
441///
442/// In order to specialize different behaviors, specify different functions in
443/// your CastInfo specialization.
444/// For isa<> customization, provide:
445///
446/// `static bool isPossible(const From &f)`
447///
448/// For cast<> customization, provide:
449///
450/// `static To doCast(const From &f)`
451///
452/// For dyn_cast<> and the *_if_present<> variants' customization, provide:
453///
454/// `static To castFailed()` and `static To doCastIfPossible(const From &f)`
455///
456/// Your specialization might look something like this:
457///
458/// template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> {
459/// static inline foo doCast(const bar &b) {
460/// return foo(const_cast<bar &>(b));
461/// }
462/// static inline foo castFailed() { return foo(); }
463/// static inline foo doCastIfPossible(const bar &b) {
464/// if (!CastInfo<foo, bar>::isPossible(b))
465/// return castFailed();
466/// return doCast(b);
467/// }
468/// };
469
470// The default implementations of CastInfo don't use cast traits for now because
471// we need to specify types all over the place due to the current expected
472// casting behavior and the way cast_retty works. New use cases can and should
473// take advantage of the cast traits whenever possible!
474
475template <typename To, typename From, typename Enable = void>
476struct CastInfo : public CastIsPossible<To, From> {
477 using Self = CastInfo<To, From, Enable>;
478
479 using CastReturnType = typename cast_retty<To, From>::ret_type;
480
481 static inline CastReturnType doCast(const From &f) {
482 return cast_convert_val<
22
Returning pointer
483 To, From,
484 typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f));
21
Passing value via 1st parameter 'Val'
485 }
486
487 // This assumes that you can construct the cast return type from `nullptr`.
488 // This is largely to support legacy use cases - if you don't want this
489 // behavior you should specialize CastInfo for your use case.
490 static inline CastReturnType castFailed() { return CastReturnType(nullptr); }
491
492 static inline CastReturnType doCastIfPossible(const From &f) {
493 if (!Self::isPossible(f))
494 return castFailed();
495 return doCast(f);
496 }
497};
498
499/// This struct provides an overload for CastInfo where From has simplify_type
500/// defined. This simply forwards to the appropriate CastInfo with the
501/// simplified type/value, so you don't have to implement both.
502template <typename To, typename From>
503struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> {
504 using Self = CastInfo<To, From>;
505 using SimpleFrom = typename simplify_type<From>::SimpleType;
506 using SimplifiedSelf = CastInfo<To, SimpleFrom>;
507
508 static inline bool isPossible(From &f) {
509 return SimplifiedSelf::isPossible(
510 simplify_type<From>::getSimplifiedValue(f));
511 }
512
513 static inline decltype(auto) doCast(From &f) {
514 return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f));
18
Assigning value
19
Passing value via 1st parameter 'f'
20
Calling 'CastInfo::doCast'
23
Returning from 'CastInfo::doCast'
24
Returning pointer
515 }
516
517 static inline decltype(auto) castFailed() {
518 return SimplifiedSelf::castFailed();
519 }
520
521 static inline decltype(auto) doCastIfPossible(From &f) {
522 return SimplifiedSelf::doCastIfPossible(
523 simplify_type<From>::getSimplifiedValue(f));
524 }
525};
526
527//===----------------------------------------------------------------------===//
528// Pre-specialized CastInfo
529//===----------------------------------------------------------------------===//
530
531/// Provide a CastInfo specialized for std::unique_ptr.
532template <typename To, typename From>
533struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {};
534
535/// Provide a CastInfo specialized for std::optional<From>. It's assumed that if
536/// the input is std::optional<From> that the output can be std::optional<To>.
537/// If that's not the case, specialize CastInfo for your use case.
538template <typename To, typename From>
539struct CastInfo<To, std::optional<From>> : public OptionalValueCast<To, From> {
540};
541
542/// isa<X> - Return true if the parameter to the template is an instance of one
543/// of the template type arguments. Used like this:
544///
545/// if (isa<Type>(myVal)) { ... }
546/// if (isa<Type0, Type1, Type2>(myVal)) { ... }
547template <typename To, typename From>
548[[nodiscard]] inline bool isa(const From &Val) {
549 return CastInfo<To, const From>::isPossible(Val);
550}
551
552template <typename First, typename Second, typename... Rest, typename From>
553[[nodiscard]] inline bool isa(const From &Val) {
554 return isa<First>(Val) || isa<Second, Rest...>(Val);
555}
556
557/// cast<X> - Return the argument parameter cast to the specified type. This
558/// casting operator asserts that the type is correct, so it does not return
559/// null on failure. It does not allow a null argument (use cast_if_present for
560/// that). It is typically used like this:
561///
562/// cast<Instruction>(myVal)->getParent()
563
564template <typename To, typename From>
565[[nodiscard]] inline decltype(auto) cast(const From &Val) {
566 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 566, __extension__ __PRETTY_FUNCTION__
))
;
15
Assuming 'Val' is a 'class llvm::BasicBlock &'
16
'?' condition is true
567 return CastInfo<To, const From>::doCast(Val);
17
Calling 'CastInfo::doCast'
25
Returning from 'CastInfo::doCast'
26
Returning pointer
568}
569
570template <typename To, typename From>
571[[nodiscard]] inline decltype(auto) cast(From &Val) {
572 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 572, __extension__ __PRETTY_FUNCTION__
))
;
573 return CastInfo<To, From>::doCast(Val);
574}
575
576template <typename To, typename From>
577[[nodiscard]] inline decltype(auto) cast(From *Val) {
578 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 578, __extension__ __PRETTY_FUNCTION__
))
;
579 return CastInfo<To, From *>::doCast(Val);
580}
581
582template <typename To, typename From>
583[[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) {
584 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 584, __extension__ __PRETTY_FUNCTION__
))
;
585 return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val));
586}
587
588//===----------------------------------------------------------------------===//
589// ValueIsPresent
590//===----------------------------------------------------------------------===//
591
592template <typename T>
593constexpr bool IsNullable =
594 std::is_pointer_v<T> || std::is_constructible_v<T, std::nullptr_t>;
595
596/// ValueIsPresent provides a way to check if a value is, well, present. For
597/// pointers, this is the equivalent of checking against nullptr, for Optionals
598/// this is the equivalent of checking hasValue(). It also provides a method for
599/// unwrapping a value (think calling .value() on an optional).
600
601// Generic values can't *not* be present.
602template <typename T, typename Enable = void> struct ValueIsPresent {
603 using UnwrappedType = T;
604 static inline bool isPresent(const T &t) { return true; }
605 static inline decltype(auto) unwrapValue(T &t) { return t; }
606};
607
608// Optional provides its own way to check if something is present.
609template <typename T> struct ValueIsPresent<std::optional<T>> {
610 using UnwrappedType = T;
611 static inline bool isPresent(const std::optional<T> &t) {
612 return t.has_value();
613 }
614 static inline decltype(auto) unwrapValue(std::optional<T> &t) { return *t; }
615};
616
617// If something is "nullable" then we just compare it to nullptr to see if it
618// exists.
619template <typename T>
620struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> {
621 using UnwrappedType = T;
622 static inline bool isPresent(const T &t) { return t != T(nullptr); }
623 static inline decltype(auto) unwrapValue(T &t) { return t; }
624};
625
626namespace detail {
627// Convenience function we can use to check if a value is present. Because of
628// simplify_type, we have to call it on the simplified type for now.
629template <typename T> inline bool isPresent(const T &t) {
630 return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent(
631 simplify_type<T>::getSimplifiedValue(const_cast<T &>(t)));
632}
633
634// Convenience function we can use to unwrap a value.
635template <typename T> inline decltype(auto) unwrapValue(T &t) {
636 return ValueIsPresent<T>::unwrapValue(t);
637}
638} // namespace detail
639
640/// dyn_cast<X> - Return the argument parameter cast to the specified type. This
641/// casting operator returns null if the argument is of the wrong type, so it
642/// can be used to test for a type as well as cast if successful. The value
643/// passed in must be present, if not, use dyn_cast_if_present. This should be
644/// used in the context of an if statement like this:
645///
646/// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
647
648template <typename To, typename From>
649[[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) {
650 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 650, __extension__ __PRETTY_FUNCTION__
))
;
651 return CastInfo<To, const From>::doCastIfPossible(Val);
652}
653
654template <typename To, typename From>
655[[nodiscard]] inline decltype(auto) dyn_cast(From &Val) {
656 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 656, __extension__ __PRETTY_FUNCTION__
))
;
657 return CastInfo<To, From>::doCastIfPossible(Val);
658}
659
660template <typename To, typename From>
661[[nodiscard]] inline decltype(auto) dyn_cast(From *Val) {
662 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 662, __extension__ __PRETTY_FUNCTION__
))
;
663 return CastInfo<To, From *>::doCastIfPossible(Val);
664}
665
666template <typename To, typename From>
667[[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &&Val) {
668 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 668, __extension__ __PRETTY_FUNCTION__
))
;
669 return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible(
670 std::forward<std::unique_ptr<From> &&>(Val));
671}
672
673/// isa_and_present<X> - Functionally identical to isa, except that a null value
674/// is accepted.
675template <typename... X, class Y>
676[[nodiscard]] inline bool isa_and_present(const Y &Val) {
677 if (!detail::isPresent(Val))
678 return false;
679 return isa<X...>(Val);
680}
681
682template <typename... X, class Y>
683[[nodiscard]] inline bool isa_and_nonnull(const Y &Val) {
684 return isa_and_present<X...>(Val);
685}
686
687/// cast_if_present<X> - Functionally identical to cast, except that a null
688/// value is accepted.
689template <class X, class Y>
690[[nodiscard]] inline auto cast_if_present(const Y &Val) {
691 if (!detail::isPresent(Val))
692 return CastInfo<X, const Y>::castFailed();
693 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 693, __extension__ __PRETTY_FUNCTION__
))
;
694 return cast<X>(detail::unwrapValue(Val));
695}
696
697template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) {
698 if (!detail::isPresent(Val))
699 return CastInfo<X, Y>::castFailed();
700 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 700, __extension__ __PRETTY_FUNCTION__
))
;
701 return cast<X>(detail::unwrapValue(Val));
702}
703
704template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) {
705 if (!detail::isPresent(Val))
706 return CastInfo<X, Y *>::castFailed();
707 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 707, __extension__ __PRETTY_FUNCTION__
))
;
708 return cast<X>(detail::unwrapValue(Val));
709}
710
711template <class X, class Y>
712[[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) {
713 if (!detail::isPresent(Val))
714 return UniquePtrCast<X, Y>::castFailed();
715 return UniquePtrCast<X, Y>::doCast(std::move(Val));
716}
717
718// Provide a forwarding from cast_or_null to cast_if_present for current
719// users. This is deprecated and will be removed in a future patch, use
720// cast_if_present instead.
721template <class X, class Y> auto cast_or_null(const Y &Val) {
722 return cast_if_present<X>(Val);
723}
724
725template <class X, class Y> auto cast_or_null(Y &Val) {
726 return cast_if_present<X>(Val);
727}
728
729template <class X, class Y> auto cast_or_null(Y *Val) {
730 return cast_if_present<X>(Val);
731}
732
733template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) {
734 return cast_if_present<X>(std::move(Val));
735}
736
737/// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a
738/// null (or none in the case of optionals) value is accepted.
739template <class X, class Y> auto dyn_cast_if_present(const Y &Val) {
740 if (!detail::isPresent(Val))
741 return CastInfo<X, const Y>::castFailed();
742 return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val));
743}
744
745template <class X, class Y> auto dyn_cast_if_present(Y &Val) {
746 if (!detail::isPresent(Val))
747 return CastInfo<X, Y>::castFailed();
748 return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val));
749}
750
751template <class X, class Y> auto dyn_cast_if_present(Y *Val) {
752 if (!detail::isPresent(Val))
753 return CastInfo<X, Y *>::castFailed();
754 return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val));
755}
756
757// Forwards to dyn_cast_if_present to avoid breaking current users. This is
758// deprecated and will be removed in a future patch, use
759// cast_if_present instead.
760template <class X, class Y> auto dyn_cast_or_null(const Y &Val) {
761 return dyn_cast_if_present<X>(Val);
762}
763
764template <class X, class Y> auto dyn_cast_or_null(Y &Val) {
765 return dyn_cast_if_present<X>(Val);
766}
767
768template <class X, class Y> auto dyn_cast_or_null(Y *Val) {
769 return dyn_cast_if_present<X>(Val);
770}
771
772/// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
773/// taking ownership of the input pointer iff isa<X>(Val) is true. If the
774/// cast is successful, From refers to nullptr on exit and the casted value
775/// is returned. If the cast is unsuccessful, the function returns nullptr
776/// and From is unchanged.
777template <class X, class Y>
778[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
779unique_dyn_cast(std::unique_ptr<Y> &Val) {
780 if (!isa<X>(Val))
781 return nullptr;
782 return cast<X>(std::move(Val));
783}
784
785template <class X, class Y>
786[[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
787 return unique_dyn_cast<X, Y>(Val);
788}
789
790// unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast,
791// except that a null value is accepted.
792template <class X, class Y>
793[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
794unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) {
795 if (!Val)
796 return nullptr;
797 return unique_dyn_cast<X, Y>(Val);
798}
799
800template <class X, class Y>
801[[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
802 return unique_dyn_cast_or_null<X, Y>(Val);
803}
804
805} // end namespace llvm
806
807#endif // LLVM_SUPPORT_CASTING_H