Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/CodeGen/WinEHPrepare.cpp
Warning:line 212, column 30
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name WinEHPrepare.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/CodeGen -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/CodeGen/WinEHPrepare.cpp

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/CodeGen/WinEHPrepare.cpp

1//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass lowers LLVM IR exception handling into something closer to what the
10// backend wants for functions using a personality function from a runtime
11// provided by MSVC. Functions with other personality functions are left alone
12// and may be prepared by other passes. In particular, all supported MSVC
13// personality functions require cleanup code to be outlined, and the C++
14// personality requires catch handler code to be outlined.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/MapVector.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Analysis/EHPersonalities.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/WinEHFuncInfo.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/Verifier.h"
29#include "llvm/InitializePasses.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/SSAUpdater.h"
38
39using namespace llvm;
40
41#define DEBUG_TYPE"winehprepare" "winehprepare"
42
43static cl::opt<bool> DisableDemotion(
44 "disable-demotion", cl::Hidden,
45 cl::desc(
46 "Clone multicolor basic blocks but do not demote cross scopes"),
47 cl::init(false));
48
49static cl::opt<bool> DisableCleanups(
50 "disable-cleanups", cl::Hidden,
51 cl::desc("Do not remove implausible terminators or other similar cleanups"),
52 cl::init(false));
53
54static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
55 "demote-catchswitch-only", cl::Hidden,
56 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
57
58namespace {
59
60class WinEHPrepare : public FunctionPass {
61public:
62 static char ID; // Pass identification, replacement for typeid.
63 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
64 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
65
66 bool runOnFunction(Function &Fn) override;
67
68 bool doFinalization(Module &M) override;
69
70 void getAnalysisUsage(AnalysisUsage &AU) const override;
71
72 StringRef getPassName() const override {
73 return "Windows exception handling preparation";
74 }
75
76private:
77 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
78 void
79 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
80 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
81 AllocaInst *insertPHILoads(PHINode *PN, Function &F);
82 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
83 DenseMap<BasicBlock *, Value *> &Loads, Function &F);
84 bool prepareExplicitEH(Function &F);
85 void colorFunclets(Function &F);
86
87 void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
88 void cloneCommonBlocks(Function &F);
89 void removeImplausibleInstructions(Function &F);
90 void cleanupPreparedFunclets(Function &F);
91 void verifyPreparedFunclets(Function &F);
92
93 bool DemoteCatchSwitchPHIOnly;
94
95 // All fields are reset by runOnFunction.
96 EHPersonality Personality = EHPersonality::Unknown;
97
98 const DataLayout *DL = nullptr;
99 DenseMap<BasicBlock *, ColorVector> BlockColors;
100 MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
101};
102
103} // end anonymous namespace
104
105char WinEHPrepare::ID = 0;
106INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",static void *initializeWinEHPreparePassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo( "Prepare Windows exceptions"
, "winehprepare", &WinEHPrepare::ID, PassInfo::NormalCtor_t
(callDefaultCtor<WinEHPrepare>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeWinEHPreparePassFlag; void llvm::initializeWinEHPreparePass
(PassRegistry &Registry) { llvm::call_once(InitializeWinEHPreparePassFlag
, initializeWinEHPreparePassOnce, std::ref(Registry)); }
107 false, false)static void *initializeWinEHPreparePassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo( "Prepare Windows exceptions"
, "winehprepare", &WinEHPrepare::ID, PassInfo::NormalCtor_t
(callDefaultCtor<WinEHPrepare>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeWinEHPreparePassFlag; void llvm::initializeWinEHPreparePass
(PassRegistry &Registry) { llvm::call_once(InitializeWinEHPreparePassFlag
, initializeWinEHPreparePassOnce, std::ref(Registry)); }
108
109FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
110 return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
111}
112
113bool WinEHPrepare::runOnFunction(Function &Fn) {
114 if (!Fn.hasPersonalityFn())
115 return false;
116
117 // Classify the personality to see what kind of preparation we need.
118 Personality = classifyEHPersonality(Fn.getPersonalityFn());
119
120 // Do nothing if this is not a scope-based personality.
121 if (!isScopedEHPersonality(Personality))
122 return false;
123
124 DL = &Fn.getParent()->getDataLayout();
125 return prepareExplicitEH(Fn);
126}
127
128bool WinEHPrepare::doFinalization(Module &M) { return false; }
129
130void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
131
132static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
133 const BasicBlock *BB) {
134 CxxUnwindMapEntry UME;
135 UME.ToState = ToState;
136 UME.Cleanup = BB;
137 FuncInfo.CxxUnwindMap.push_back(UME);
138 return FuncInfo.getLastStateNumber();
139}
140
141static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
142 int TryHigh, int CatchHigh,
143 ArrayRef<const CatchPadInst *> Handlers) {
144 WinEHTryBlockMapEntry TBME;
145 TBME.TryLow = TryLow;
146 TBME.TryHigh = TryHigh;
147 TBME.CatchHigh = CatchHigh;
148 assert(TBME.TryLow <= TBME.TryHigh)(static_cast <bool> (TBME.TryLow <= TBME.TryHigh) ? void
(0) : __assert_fail ("TBME.TryLow <= TBME.TryHigh", "llvm/lib/CodeGen/WinEHPrepare.cpp"
, 148, __extension__ __PRETTY_FUNCTION__))
;
149 for (const CatchPadInst *CPI : Handlers) {
150 WinEHHandlerType HT;
151 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
152 if (TypeInfo->isNullValue())
153 HT.TypeDescriptor = nullptr;
154 else
155 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
156 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
157 HT.Handler = CPI->getParent();
158 if (auto *AI =
159 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
160 HT.CatchObj.Alloca = AI;
161 else
162 HT.CatchObj.Alloca = nullptr;
163 TBME.HandlerArray.push_back(HT);
164 }
165 FuncInfo.TryBlockMap.push_back(TBME);
166}
167
168static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
169 for (const User *U : CleanupPad->users())
170 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
171 return CRI->getUnwindDest();
172 return nullptr;
173}
174
175static void calculateStateNumbersForInvokes(const Function *Fn,
176 WinEHFuncInfo &FuncInfo) {
177 auto *F = const_cast<Function *>(Fn);
178 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
179 for (BasicBlock &BB : *F) {
180 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
5
Assuming the object is a 'InvokeInst'
181 if (!II
5.1
'II' is non-null
5.1
'II' is non-null
5.1
'II' is non-null
)
6
Taking false branch
182 continue;
183
184 auto &BBColors = BlockColors[&BB];
185 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation")(static_cast <bool> (BBColors.size() == 1 && "multi-color BB not removed by preparation"
) ? void (0) : __assert_fail ("BBColors.size() == 1 && \"multi-color BB not removed by preparation\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 185, __extension__ __PRETTY_FUNCTION__
))
;
7
Assuming the condition is true
8
'?' condition is true
186 BasicBlock *FuncletEntryBB = BBColors.front();
187
188 BasicBlock *FuncletUnwindDest;
189 auto *FuncletPad =
190 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
9
Assuming the object is not a 'FuncletPadInst'
191 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock())(static_cast <bool> (FuncletPad || FuncletEntryBB == &
Fn->getEntryBlock()) ? void (0) : __assert_fail ("FuncletPad || FuncletEntryBB == &Fn->getEntryBlock()"
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 191, __extension__ __PRETTY_FUNCTION__
))
;
10
Assuming the condition is true
11
'?' condition is true
192 if (!FuncletPad
11.1
'FuncletPad' is null
11.1
'FuncletPad' is null
11.1
'FuncletPad' is null
)
12
Taking true branch
193 FuncletUnwindDest = nullptr;
194 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
195 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
196 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
197 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
198 else
199 llvm_unreachable("unexpected funclet pad!")::llvm::llvm_unreachable_internal("unexpected funclet pad!", "llvm/lib/CodeGen/WinEHPrepare.cpp"
, 199)
;
200
201 BasicBlock *InvokeUnwindDest = II->getUnwindDest();
13
Calling 'InvokeInst::getUnwindDest'
29
Returning from 'InvokeInst::getUnwindDest'
30
'InvokeUnwindDest' initialized here
202 int BaseState = -1;
203 if (FuncletUnwindDest == InvokeUnwindDest) {
31
Assuming 'FuncletUnwindDest' is equal to 'InvokeUnwindDest'
32
Taking true branch
204 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
205 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
33
Taking false branch
206 BaseState = BaseStateI->second;
207 }
208
209 if (BaseState != -1) {
34
Taking false branch
210 FuncInfo.InvokeStateMap[II] = BaseState;
211 } else {
212 Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
35
Called C++ object pointer is null
213 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!")(static_cast <bool> (FuncInfo.EHPadStateMap.count(PadInst
) && "EH Pad has no state!") ? void (0) : __assert_fail
("FuncInfo.EHPadStateMap.count(PadInst) && \"EH Pad has no state!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 213, __extension__ __PRETTY_FUNCTION__
))
;
214 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
215 }
216 }
217}
218
219// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
220// to. If the unwind edge came from an invoke, return null.
221static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
222 Value *ParentPad) {
223 const Instruction *TI = BB->getTerminator();
224 if (isa<InvokeInst>(TI))
225 return nullptr;
226 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
227 if (CatchSwitch->getParentPad() != ParentPad)
228 return nullptr;
229 return BB;
230 }
231 assert(!TI->isEHPad() && "unexpected EHPad!")(static_cast <bool> (!TI->isEHPad() && "unexpected EHPad!"
) ? void (0) : __assert_fail ("!TI->isEHPad() && \"unexpected EHPad!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 231, __extension__ __PRETTY_FUNCTION__
))
;
232 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
233 if (CleanupPad->getParentPad() != ParentPad)
234 return nullptr;
235 return CleanupPad->getParent();
236}
237
238// Starting from a EHPad, Backward walk through control-flow graph
239// to produce two primary outputs:
240// FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
241static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
242 const Instruction *FirstNonPHI,
243 int ParentState) {
244 const BasicBlock *BB = FirstNonPHI->getParent();
245 assert(BB->isEHPad() && "not a funclet!")(static_cast <bool> (BB->isEHPad() && "not a funclet!"
) ? void (0) : __assert_fail ("BB->isEHPad() && \"not a funclet!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 245, __extension__ __PRETTY_FUNCTION__
))
;
246
247 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
248 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 249, __extension__ __PRETTY_FUNCTION__
))
249 "shouldn't revist catch funclets!")(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 249, __extension__ __PRETTY_FUNCTION__
))
;
250
251 SmallVector<const CatchPadInst *, 2> Handlers;
252 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
253 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
254 Handlers.push_back(CatchPad);
255 }
256 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
257 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
258 for (const BasicBlock *PredBlock : predecessors(BB))
259 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
260 CatchSwitch->getParentPad())))
261 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
262 TryLow);
263 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
264
265 // catchpads are separate funclets in C++ EH due to the way rethrow works.
266 int TryHigh = CatchLow - 1;
267
268 // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
269 // stored in pre-order (outer first, inner next), not post-order
270 // Add to map here. Fix the CatchHigh after children are processed
271 const Module *Mod = BB->getParent()->getParent();
272 bool IsPreOrder = Triple(Mod->getTargetTriple()).isArch64Bit();
273 if (IsPreOrder)
274 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchLow, Handlers);
275 unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1;
276
277 for (const auto *CatchPad : Handlers) {
278 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
279 for (const User *U : CatchPad->users()) {
280 const auto *UserI = cast<Instruction>(U);
281 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
282 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
283 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
284 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
285 }
286 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
287 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
288 // If a nested cleanup pad reports a null unwind destination and the
289 // enclosing catch pad doesn't it must be post-dominated by an
290 // unreachable instruction.
291 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
292 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
293 }
294 }
295 }
296 int CatchHigh = FuncInfo.getLastStateNumber();
297 // Now child Catches are processed, update CatchHigh
298 if (IsPreOrder)
299 FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh;
300 else // PostOrder
301 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
302
303 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryLow[" << BB->
getName() << "]: " << TryLow << '\n'; } } while
(false)
;
304 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHighdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryHigh[" << BB->
getName() << "]: " << TryHigh << '\n'; } } while
(false)
305 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryHigh[" << BB->
getName() << "]: " << TryHigh << '\n'; } } while
(false)
;
306 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHighdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "CatchHigh[" << BB->
getName() << "]: " << CatchHigh << '\n'; } }
while (false)
307 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "CatchHigh[" << BB->
getName() << "]: " << CatchHigh << '\n'; } }
while (false)
;
308 } else {
309 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
310
311 // It's possible for a cleanup to be visited twice: it might have multiple
312 // cleanupret instructions.
313 if (FuncInfo.EHPadStateMap.count(CleanupPad))
314 return;
315
316 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
317 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
318 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
319 << BB->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
;
320 for (const BasicBlock *PredBlock : predecessors(BB)) {
321 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
322 CleanupPad->getParentPad()))) {
323 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
324 CleanupState);
325 }
326 }
327 for (const User *U : CleanupPad->users()) {
328 const auto *UserI = cast<Instruction>(U);
329 if (UserI->isEHPad())
330 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
331 "contain exceptional actions");
332 }
333 }
334}
335
336static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
337 const Function *Filter, const BasicBlock *Handler) {
338 SEHUnwindMapEntry Entry;
339 Entry.ToState = ParentState;
340 Entry.IsFinally = false;
341 Entry.Filter = Filter;
342 Entry.Handler = Handler;
343 FuncInfo.SEHUnwindMap.push_back(Entry);
344 return FuncInfo.SEHUnwindMap.size() - 1;
345}
346
347static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
348 const BasicBlock *Handler) {
349 SEHUnwindMapEntry Entry;
350 Entry.ToState = ParentState;
351 Entry.IsFinally = true;
352 Entry.Filter = nullptr;
353 Entry.Handler = Handler;
354 FuncInfo.SEHUnwindMap.push_back(Entry);
355 return FuncInfo.SEHUnwindMap.size() - 1;
356}
357
358// Starting from a EHPad, Backward walk through control-flow graph
359// to produce two primary outputs:
360// FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
361static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
362 const Instruction *FirstNonPHI,
363 int ParentState) {
364 const BasicBlock *BB = FirstNonPHI->getParent();
365 assert(BB->isEHPad() && "no a funclet!")(static_cast <bool> (BB->isEHPad() && "no a funclet!"
) ? void (0) : __assert_fail ("BB->isEHPad() && \"no a funclet!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 365, __extension__ __PRETTY_FUNCTION__
))
;
366
367 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
368 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 369, __extension__ __PRETTY_FUNCTION__
))
369 "shouldn't revist catch funclets!")(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 369, __extension__ __PRETTY_FUNCTION__
))
;
370
371 // Extract the filter function and the __except basic block and create a
372 // state for them.
373 assert(CatchSwitch->getNumHandlers() == 1 &&(static_cast <bool> (CatchSwitch->getNumHandlers() ==
1 && "SEH doesn't have multiple handlers per __try")
? void (0) : __assert_fail ("CatchSwitch->getNumHandlers() == 1 && \"SEH doesn't have multiple handlers per __try\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 374, __extension__ __PRETTY_FUNCTION__
))
374 "SEH doesn't have multiple handlers per __try")(static_cast <bool> (CatchSwitch->getNumHandlers() ==
1 && "SEH doesn't have multiple handlers per __try")
? void (0) : __assert_fail ("CatchSwitch->getNumHandlers() == 1 && \"SEH doesn't have multiple handlers per __try\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 374, __extension__ __PRETTY_FUNCTION__
))
;
375 const auto *CatchPad =
376 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
377 const BasicBlock *CatchPadBB = CatchPad->getParent();
378 const Constant *FilterOrNull =
379 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
380 const Function *Filter = dyn_cast<Function>(FilterOrNull);
381 assert((Filter || FilterOrNull->isNullValue()) &&(static_cast <bool> ((Filter || FilterOrNull->isNullValue
()) && "unexpected filter value") ? void (0) : __assert_fail
("(Filter || FilterOrNull->isNullValue()) && \"unexpected filter value\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 382, __extension__ __PRETTY_FUNCTION__
))
382 "unexpected filter value")(static_cast <bool> ((Filter || FilterOrNull->isNullValue
()) && "unexpected filter value") ? void (0) : __assert_fail
("(Filter || FilterOrNull->isNullValue()) && \"unexpected filter value\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 382, __extension__ __PRETTY_FUNCTION__
))
;
383 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
384
385 // Everything in the __try block uses TryState as its parent state.
386 FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
387 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
TryState << " to BB " << CatchPadBB->getName(
) << '\n'; } } while (false)
388 << CatchPadBB->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
TryState << " to BB " << CatchPadBB->getName(
) << '\n'; } } while (false)
;
389 for (const BasicBlock *PredBlock : predecessors(BB))
390 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
391 CatchSwitch->getParentPad())))
392 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
393 TryState);
394
395 // Everything in the __except block unwinds to ParentState, just like code
396 // outside the __try.
397 for (const User *U : CatchPad->users()) {
398 const auto *UserI = cast<Instruction>(U);
399 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
400 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
401 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
402 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
403 }
404 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
405 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
406 // If a nested cleanup pad reports a null unwind destination and the
407 // enclosing catch pad doesn't it must be post-dominated by an
408 // unreachable instruction.
409 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
410 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
411 }
412 }
413 } else {
414 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
415
416 // It's possible for a cleanup to be visited twice: it might have multiple
417 // cleanupret instructions.
418 if (FuncInfo.EHPadStateMap.count(CleanupPad))
419 return;
420
421 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
422 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
423 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
424 << BB->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
;
425 for (const BasicBlock *PredBlock : predecessors(BB))
426 if ((PredBlock =
427 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
428 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
429 CleanupState);
430 for (const User *U : CleanupPad->users()) {
431 const auto *UserI = cast<Instruction>(U);
432 if (UserI->isEHPad())
433 report_fatal_error("Cleanup funclets for the SEH personality cannot "
434 "contain exceptional actions");
435 }
436 }
437}
438
439static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
440 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
441 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
442 CatchSwitch->unwindsToCaller();
443 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
444 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
445 getCleanupRetUnwindDest(CleanupPad) == nullptr;
446 if (isa<CatchPadInst>(EHPad))
447 return false;
448 llvm_unreachable("unexpected EHPad!")::llvm::llvm_unreachable_internal("unexpected EHPad!", "llvm/lib/CodeGen/WinEHPrepare.cpp"
, 448)
;
449}
450
451void llvm::calculateSEHStateNumbers(const Function *Fn,
452 WinEHFuncInfo &FuncInfo) {
453 // Don't compute state numbers twice.
454 if (!FuncInfo.SEHUnwindMap.empty())
455 return;
456
457 for (const BasicBlock &BB : *Fn) {
458 if (!BB.isEHPad())
459 continue;
460 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
461 if (!isTopLevelPadForMSVC(FirstNonPHI))
462 continue;
463 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
464 }
465
466 calculateStateNumbersForInvokes(Fn, FuncInfo);
467}
468
469void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
470 WinEHFuncInfo &FuncInfo) {
471 // Return if it's already been done.
472 if (!FuncInfo.EHPadStateMap.empty())
473 return;
474
475 for (const BasicBlock &BB : *Fn) {
476 if (!BB.isEHPad())
477 continue;
478 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
479 if (!isTopLevelPadForMSVC(FirstNonPHI))
480 continue;
481 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
482 }
483
484 calculateStateNumbersForInvokes(Fn, FuncInfo);
485}
486
487static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
488 int TryParentState, ClrHandlerType HandlerType,
489 uint32_t TypeToken, const BasicBlock *Handler) {
490 ClrEHUnwindMapEntry Entry;
491 Entry.HandlerParentState = HandlerParentState;
492 Entry.TryParentState = TryParentState;
493 Entry.Handler = Handler;
494 Entry.HandlerType = HandlerType;
495 Entry.TypeToken = TypeToken;
496 FuncInfo.ClrEHUnwindMap.push_back(Entry);
497 return FuncInfo.ClrEHUnwindMap.size() - 1;
498}
499
500void llvm::calculateClrEHStateNumbers(const Function *Fn,
501 WinEHFuncInfo &FuncInfo) {
502 // Return if it's already been done.
503 if (!FuncInfo.EHPadStateMap.empty())
1
Assuming the condition is false
2
Taking false branch
504 return;
505
506 // This numbering assigns one state number to each catchpad and cleanuppad.
507 // It also computes two tree-like relations over states:
508 // 1) Each state has a "HandlerParentState", which is the state of the next
509 // outer handler enclosing this state's handler (same as nearest ancestor
510 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
511 // 2) Each state has a "TryParentState", which:
512 // a) for a catchpad that's not the last handler on its catchswitch, is
513 // the state of the next catchpad on that catchswitch
514 // b) for all other pads, is the state of the pad whose try region is the
515 // next outer try region enclosing this state's try region. The "try
516 // regions are not present as such in the IR, but will be inferred
517 // based on the placement of invokes and pads which reach each other
518 // by exceptional exits
519 // Catchswitches do not get their own states, but each gets mapped to the
520 // state of its first catchpad.
521
522 // Step one: walk down from outermost to innermost funclets, assigning each
523 // catchpad and cleanuppad a state number. Add an entry to the
524 // ClrEHUnwindMap for each state, recording its HandlerParentState and
525 // handler attributes. Record the TryParentState as well for each catchpad
526 // that's not the last on its catchswitch, but initialize all other entries'
527 // TryParentStates to a sentinel -1 value that the next pass will update.
528
529 // Seed a worklist with pads that have no parent.
530 SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
531 for (const BasicBlock &BB : *Fn) {
532 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
533 const Value *ParentPad;
534 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
535 ParentPad = CPI->getParentPad();
536 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
537 ParentPad = CSI->getParentPad();
538 else
539 continue;
540 if (isa<ConstantTokenNone>(ParentPad))
541 Worklist.emplace_back(FirstNonPHI, -1);
542 }
543
544 // Use the worklist to visit all pads, from outer to inner. Record
545 // HandlerParentState for all pads. Record TryParentState only for catchpads
546 // that aren't the last on their catchswitch (setting all other entries'
547 // TryParentStates to an initial value of -1). This loop is also responsible
548 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
549 // catchswitches.
550 while (!Worklist.empty()) {
3
Loop condition is false. Execution continues on line 603
551 const Instruction *Pad;
552 int HandlerParentState;
553 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
554
555 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
556 // Create the entry for this cleanup with the appropriate handler
557 // properties. Finally and fault handlers are distinguished by arity.
558 ClrHandlerType HandlerType =
559 (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
560 : ClrHandlerType::Finally);
561 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
562 HandlerType, 0, Pad->getParent());
563 // Queue any child EH pads on the worklist.
564 for (const User *U : Cleanup->users())
565 if (const auto *I = dyn_cast<Instruction>(U))
566 if (I->isEHPad())
567 Worklist.emplace_back(I, CleanupState);
568 // Remember this pad's state.
569 FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
570 } else {
571 // Walk the handlers of this catchswitch in reverse order since all but
572 // the last need to set the following one as its TryParentState.
573 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
574 int CatchState = -1, FollowerState = -1;
575 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
576 for (const BasicBlock *CatchBlock : llvm::reverse(CatchBlocks)) {
577 // Create the entry for this catch with the appropriate handler
578 // properties.
579 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
580 uint32_t TypeToken = static_cast<uint32_t>(
581 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
582 CatchState =
583 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
584 ClrHandlerType::Catch, TypeToken, CatchBlock);
585 // Queue any child EH pads on the worklist.
586 for (const User *U : Catch->users())
587 if (const auto *I = dyn_cast<Instruction>(U))
588 if (I->isEHPad())
589 Worklist.emplace_back(I, CatchState);
590 // Remember this catch's state.
591 FuncInfo.EHPadStateMap[Catch] = CatchState;
592 FollowerState = CatchState;
593 }
594 // Associate the catchswitch with the state of its first catch.
595 assert(CatchSwitch->getNumHandlers())(static_cast <bool> (CatchSwitch->getNumHandlers()) ?
void (0) : __assert_fail ("CatchSwitch->getNumHandlers()"
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 595, __extension__ __PRETTY_FUNCTION__
))
;
596 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
597 }
598 }
599
600 // Step two: record the TryParentState of each state. For cleanuppads that
601 // don't have cleanuprets, we may need to infer this from their child pads,
602 // so visit pads in descendant-most to ancestor-most order.
603 for (ClrEHUnwindMapEntry &Entry : llvm::reverse(FuncInfo.ClrEHUnwindMap)) {
604 const Instruction *Pad =
605 Entry.Handler.get<const BasicBlock *>()->getFirstNonPHI();
606 // For most pads, the TryParentState is the state associated with the
607 // unwind dest of exceptional exits from it.
608 const BasicBlock *UnwindDest;
609 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
610 // If a catch is not the last in its catchswitch, its TryParentState is
611 // the state associated with the next catch in the switch, even though
612 // that's not the unwind dest of exceptions escaping the catch. Those
613 // cases were already assigned a TryParentState in the first pass, so
614 // skip them.
615 if (Entry.TryParentState != -1)
616 continue;
617 // Otherwise, get the unwind dest from the catchswitch.
618 UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
619 } else {
620 const auto *Cleanup = cast<CleanupPadInst>(Pad);
621 UnwindDest = nullptr;
622 for (const User *U : Cleanup->users()) {
623 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
624 // Common and unambiguous case -- cleanupret indicates cleanup's
625 // unwind dest.
626 UnwindDest = CleanupRet->getUnwindDest();
627 break;
628 }
629
630 // Get an unwind dest for the user
631 const BasicBlock *UserUnwindDest = nullptr;
632 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
633 UserUnwindDest = Invoke->getUnwindDest();
634 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
635 UserUnwindDest = CatchSwitch->getUnwindDest();
636 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
637 int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
638 int UserUnwindState =
639 FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
640 if (UserUnwindState != -1)
641 UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
642 .Handler.get<const BasicBlock *>();
643 }
644
645 // Not having an unwind dest for this user might indicate that it
646 // doesn't unwind, so can't be taken as proof that the cleanup itself
647 // may unwind to caller (see e.g. SimplifyUnreachable and
648 // RemoveUnwindEdge).
649 if (!UserUnwindDest)
650 continue;
651
652 // Now we have an unwind dest for the user, but we need to see if it
653 // unwinds all the way out of the cleanup or if it stays within it.
654 const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
655 const Value *UserUnwindParent;
656 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
657 UserUnwindParent = CSI->getParentPad();
658 else
659 UserUnwindParent =
660 cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
661
662 // The unwind stays within the cleanup iff it targets a child of the
663 // cleanup.
664 if (UserUnwindParent == Cleanup)
665 continue;
666
667 // This unwind exits the cleanup, so its dest is the cleanup's dest.
668 UnwindDest = UserUnwindDest;
669 break;
670 }
671 }
672
673 // Record the state of the unwind dest as the TryParentState.
674 int UnwindDestState;
675
676 // If UnwindDest is null at this point, either the pad in question can
677 // be exited by unwind to caller, or it cannot be exited by unwind. In
678 // either case, reporting such cases as unwinding to caller is correct.
679 // This can lead to EH tables that "look strange" -- if this pad's is in
680 // a parent funclet which has other children that do unwind to an enclosing
681 // pad, the try region for this pad will be missing the "duplicate" EH
682 // clause entries that you'd expect to see covering the whole parent. That
683 // should be benign, since the unwind never actually happens. If it were
684 // an issue, we could add a subsequent pass that pushes unwind dests down
685 // from parents that have them to children that appear to unwind to caller.
686 if (!UnwindDest) {
687 UnwindDestState = -1;
688 } else {
689 UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
690 }
691
692 Entry.TryParentState = UnwindDestState;
693 }
694
695 // Step three: transfer information from pads to invokes.
696 calculateStateNumbersForInvokes(Fn, FuncInfo);
4
Calling 'calculateStateNumbersForInvokes'
697}
698
699void WinEHPrepare::colorFunclets(Function &F) {
700 BlockColors = colorEHFunclets(F);
701
702 // Invert the map from BB to colors to color to BBs.
703 for (BasicBlock &BB : F) {
704 ColorVector &Colors = BlockColors[&BB];
705 for (BasicBlock *Color : Colors)
706 FuncletBlocks[Color].push_back(&BB);
707 }
708}
709
710void WinEHPrepare::demotePHIsOnFunclets(Function &F,
711 bool DemoteCatchSwitchPHIOnly) {
712 // Strip PHI nodes off of EH pads.
713 SmallVector<PHINode *, 16> PHINodes;
714 for (BasicBlock &BB : make_early_inc_range(F)) {
715 if (!BB.isEHPad())
716 continue;
717 if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB.getFirstNonPHI()))
718 continue;
719
720 for (Instruction &I : make_early_inc_range(BB)) {
721 auto *PN = dyn_cast<PHINode>(&I);
722 // Stop at the first non-PHI.
723 if (!PN)
724 break;
725
726 AllocaInst *SpillSlot = insertPHILoads(PN, F);
727 if (SpillSlot)
728 insertPHIStores(PN, SpillSlot);
729
730 PHINodes.push_back(PN);
731 }
732 }
733
734 for (auto *PN : PHINodes) {
735 // There may be lingering uses on other EH PHIs being removed
736 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
737 PN->eraseFromParent();
738 }
739}
740
741void WinEHPrepare::cloneCommonBlocks(Function &F) {
742 // We need to clone all blocks which belong to multiple funclets. Values are
743 // remapped throughout the funclet to propagate both the new instructions
744 // *and* the new basic blocks themselves.
745 for (auto &Funclets : FuncletBlocks) {
746 BasicBlock *FuncletPadBB = Funclets.first;
747 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
748 Value *FuncletToken;
749 if (FuncletPadBB == &F.getEntryBlock())
750 FuncletToken = ConstantTokenNone::get(F.getContext());
751 else
752 FuncletToken = FuncletPadBB->getFirstNonPHI();
753
754 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
755 ValueToValueMapTy VMap;
756 for (BasicBlock *BB : BlocksInFunclet) {
757 ColorVector &ColorsForBB = BlockColors[BB];
758 // We don't need to do anything if the block is monochromatic.
759 size_t NumColorsForBB = ColorsForBB.size();
760 if (NumColorsForBB == 1)
761 continue;
762
763 DEBUG_WITH_TYPE("winehprepare-coloring",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
764 dbgs() << " Cloning block \'" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
765 << "\' for funclet \'" << FuncletPadBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
766 << "\'.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
;
767
768 // Create a new basic block and copy instructions into it!
769 BasicBlock *CBB =
770 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
771 // Insert the clone immediately after the original to ensure determinism
772 // and to keep the same relative ordering of any funclet's blocks.
773 CBB->insertInto(&F, BB->getNextNode());
774
775 // Add basic block mapping.
776 VMap[BB] = CBB;
777
778 // Record delta operations that we need to perform to our color mappings.
779 Orig2Clone.emplace_back(BB, CBB);
780 }
781
782 // If nothing was cloned, we're done cloning in this funclet.
783 if (Orig2Clone.empty())
784 continue;
785
786 // Update our color mappings to reflect that one block has lost a color and
787 // another has gained a color.
788 for (auto &BBMapping : Orig2Clone) {
789 BasicBlock *OldBlock = BBMapping.first;
790 BasicBlock *NewBlock = BBMapping.second;
791
792 BlocksInFunclet.push_back(NewBlock);
793 ColorVector &NewColors = BlockColors[NewBlock];
794 assert(NewColors.empty() && "A new block should only have one color!")(static_cast <bool> (NewColors.empty() && "A new block should only have one color!"
) ? void (0) : __assert_fail ("NewColors.empty() && \"A new block should only have one color!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 794, __extension__ __PRETTY_FUNCTION__
))
;
795 NewColors.push_back(FuncletPadBB);
796
797 DEBUG_WITH_TYPE("winehprepare-coloring",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
798 dbgs() << " Assigned color \'" << FuncletPadBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
799 << "\' to block \'" << NewBlock->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
800 << "\'.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
;
801
802 llvm::erase_value(BlocksInFunclet, OldBlock);
803 ColorVector &OldColors = BlockColors[OldBlock];
804 llvm::erase_value(OldColors, FuncletPadBB);
805
806 DEBUG_WITH_TYPE("winehprepare-coloring",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
807 dbgs() << " Removed color \'" << FuncletPadBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
808 << "\' from block \'" << OldBlock->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
809 << "\'.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
;
810 }
811
812 // Loop over all of the instructions in this funclet, fixing up operand
813 // references as we go. This uses VMap to do all the hard work.
814 for (BasicBlock *BB : BlocksInFunclet)
815 // Loop over all instructions, fixing each one as we find it...
816 for (Instruction &I : *BB)
817 RemapInstruction(&I, VMap,
818 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
819
820 // Catchrets targeting cloned blocks need to be updated separately from
821 // the loop above because they are not in the current funclet.
822 SmallVector<CatchReturnInst *, 2> FixupCatchrets;
823 for (auto &BBMapping : Orig2Clone) {
824 BasicBlock *OldBlock = BBMapping.first;
825 BasicBlock *NewBlock = BBMapping.second;
826
827 FixupCatchrets.clear();
828 for (BasicBlock *Pred : predecessors(OldBlock))
829 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
830 if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
831 FixupCatchrets.push_back(CatchRet);
832
833 for (CatchReturnInst *CatchRet : FixupCatchrets)
834 CatchRet->setSuccessor(NewBlock);
835 }
836
837 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
838 unsigned NumPreds = PN->getNumIncomingValues();
839 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
840 ++PredIdx) {
841 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
842 bool EdgeTargetsFunclet;
843 if (auto *CRI =
844 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
845 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
846 } else {
847 ColorVector &IncomingColors = BlockColors[IncomingBlock];
848 assert(!IncomingColors.empty() && "Block not colored!")(static_cast <bool> (!IncomingColors.empty() &&
"Block not colored!") ? void (0) : __assert_fail ("!IncomingColors.empty() && \"Block not colored!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 848, __extension__ __PRETTY_FUNCTION__
))
;
849 assert((IncomingColors.size() == 1 ||(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 854, __extension__ __PRETTY_FUNCTION__
))
850 llvm::all_of(IncomingColors,(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 854, __extension__ __PRETTY_FUNCTION__
))
851 [&](BasicBlock *Color) {(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 854, __extension__ __PRETTY_FUNCTION__
))
852 return Color != FuncletPadBB;(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 854, __extension__ __PRETTY_FUNCTION__
))
853 })) &&(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 854, __extension__ __PRETTY_FUNCTION__
))
854 "Cloning should leave this funclet's blocks monochromatic")(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 854, __extension__ __PRETTY_FUNCTION__
))
;
855 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
856 }
857 if (IsForOldBlock != EdgeTargetsFunclet)
858 continue;
859 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
860 // Revisit the next entry.
861 --PredIdx;
862 --PredEnd;
863 }
864 };
865
866 for (auto &BBMapping : Orig2Clone) {
867 BasicBlock *OldBlock = BBMapping.first;
868 BasicBlock *NewBlock = BBMapping.second;
869 for (PHINode &OldPN : OldBlock->phis()) {
870 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
871 }
872 for (PHINode &NewPN : NewBlock->phis()) {
873 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
874 }
875 }
876
877 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
878 // the PHI nodes for NewBB now.
879 for (auto &BBMapping : Orig2Clone) {
880 BasicBlock *OldBlock = BBMapping.first;
881 BasicBlock *NewBlock = BBMapping.second;
882 for (BasicBlock *SuccBB : successors(NewBlock)) {
883 for (PHINode &SuccPN : SuccBB->phis()) {
884 // Ok, we have a PHI node. Figure out what the incoming value was for
885 // the OldBlock.
886 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
887 if (OldBlockIdx == -1)
888 break;
889 Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
890
891 // Remap the value if necessary.
892 if (auto *Inst = dyn_cast<Instruction>(IV)) {
893 ValueToValueMapTy::iterator I = VMap.find(Inst);
894 if (I != VMap.end())
895 IV = I->second;
896 }
897
898 SuccPN.addIncoming(IV, NewBlock);
899 }
900 }
901 }
902
903 for (ValueToValueMapTy::value_type VT : VMap) {
904 // If there were values defined in BB that are used outside the funclet,
905 // then we now have to update all uses of the value to use either the
906 // original value, the cloned value, or some PHI derived value. This can
907 // require arbitrary PHI insertion, of which we are prepared to do, clean
908 // these up now.
909 SmallVector<Use *, 16> UsesToRename;
910
911 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
912 if (!OldI)
913 continue;
914 auto *NewI = cast<Instruction>(VT.second);
915 // Scan all uses of this instruction to see if it is used outside of its
916 // funclet, and if so, record them in UsesToRename.
917 for (Use &U : OldI->uses()) {
918 Instruction *UserI = cast<Instruction>(U.getUser());
919 BasicBlock *UserBB = UserI->getParent();
920 ColorVector &ColorsForUserBB = BlockColors[UserBB];
921 assert(!ColorsForUserBB.empty())(static_cast <bool> (!ColorsForUserBB.empty()) ? void (
0) : __assert_fail ("!ColorsForUserBB.empty()", "llvm/lib/CodeGen/WinEHPrepare.cpp"
, 921, __extension__ __PRETTY_FUNCTION__))
;
922 if (ColorsForUserBB.size() > 1 ||
923 *ColorsForUserBB.begin() != FuncletPadBB)
924 UsesToRename.push_back(&U);
925 }
926
927 // If there are no uses outside the block, we're done with this
928 // instruction.
929 if (UsesToRename.empty())
930 continue;
931
932 // We found a use of OldI outside of the funclet. Rename all uses of OldI
933 // that are outside its funclet to be uses of the appropriate PHI node
934 // etc.
935 SSAUpdater SSAUpdate;
936 SSAUpdate.Initialize(OldI->getType(), OldI->getName());
937 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
938 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
939
940 while (!UsesToRename.empty())
941 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
942 }
943 }
944}
945
946void WinEHPrepare::removeImplausibleInstructions(Function &F) {
947 // Remove implausible terminators and replace them with UnreachableInst.
948 for (auto &Funclet : FuncletBlocks) {
949 BasicBlock *FuncletPadBB = Funclet.first;
950 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
951 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
952 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
953 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
954 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
955
956 for (BasicBlock *BB : BlocksInFunclet) {
957 for (Instruction &I : *BB) {
958 auto *CB = dyn_cast<CallBase>(&I);
959 if (!CB)
960 continue;
961
962 Value *FuncletBundleOperand = nullptr;
963 if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet))
964 FuncletBundleOperand = BU->Inputs.front();
965
966 if (FuncletBundleOperand == FuncletPad)
967 continue;
968
969 // Skip call sites which are nounwind intrinsics or inline asm.
970 auto *CalledFn =
971 dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
972 if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) ||
973 CB->isInlineAsm()))
974 continue;
975
976 // This call site was not part of this funclet, remove it.
977 if (isa<InvokeInst>(CB)) {
978 // Remove the unwind edge if it was an invoke.
979 removeUnwindEdge(BB);
980 // Get a pointer to the new call.
981 BasicBlock::iterator CallI =
982 std::prev(BB->getTerminator()->getIterator());
983 auto *CI = cast<CallInst>(&*CallI);
984 changeToUnreachable(CI);
985 } else {
986 changeToUnreachable(&I);
987 }
988
989 // There are no more instructions in the block (except for unreachable),
990 // we are done.
991 break;
992 }
993
994 Instruction *TI = BB->getTerminator();
995 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
996 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
997 // The token consumed by a CatchReturnInst must match the funclet token.
998 bool IsUnreachableCatchret = false;
999 if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
1000 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
1001 // The token consumed by a CleanupReturnInst must match the funclet token.
1002 bool IsUnreachableCleanupret = false;
1003 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
1004 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
1005 if (IsUnreachableRet || IsUnreachableCatchret ||
1006 IsUnreachableCleanupret) {
1007 changeToUnreachable(TI);
1008 } else if (isa<InvokeInst>(TI)) {
1009 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
1010 // Invokes within a cleanuppad for the MSVC++ personality never
1011 // transfer control to their unwind edge: the personality will
1012 // terminate the program.
1013 removeUnwindEdge(BB);
1014 }
1015 }
1016 }
1017 }
1018}
1019
1020void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
1021 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1022 // branches, etc.
1023 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
1024 SimplifyInstructionsInBlock(&BB);
1025 ConstantFoldTerminator(&BB, /*DeleteDeadConditions=*/true);
1026 MergeBlockIntoPredecessor(&BB);
1027 }
1028
1029 // We might have some unreachable blocks after cleaning up some impossible
1030 // control flow.
1031 removeUnreachableBlocks(F);
1032}
1033
1034#ifndef NDEBUG
1035void WinEHPrepare::verifyPreparedFunclets(Function &F) {
1036 for (BasicBlock &BB : F) {
1037 size_t NumColors = BlockColors[&BB].size();
1038 assert(NumColors == 1 && "Expected monochromatic BB!")(static_cast <bool> (NumColors == 1 && "Expected monochromatic BB!"
) ? void (0) : __assert_fail ("NumColors == 1 && \"Expected monochromatic BB!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 1038, __extension__ __PRETTY_FUNCTION__
))
;
1039 if (NumColors == 0)
1040 report_fatal_error("Uncolored BB!");
1041 if (NumColors > 1)
1042 report_fatal_error("Multicolor BB!");
1043 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&(static_cast <bool> ((DisableDemotion || !(BB.isEHPad()
&& isa<PHINode>(BB.begin()))) && "EH Pad still has a PHI!"
) ? void (0) : __assert_fail ("(DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && \"EH Pad still has a PHI!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 1044, __extension__ __PRETTY_FUNCTION__
))
1044 "EH Pad still has a PHI!")(static_cast <bool> ((DisableDemotion || !(BB.isEHPad()
&& isa<PHINode>(BB.begin()))) && "EH Pad still has a PHI!"
) ? void (0) : __assert_fail ("(DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && \"EH Pad still has a PHI!\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 1044, __extension__ __PRETTY_FUNCTION__
))
;
1045 }
1046}
1047#endif
1048
1049bool WinEHPrepare::prepareExplicitEH(Function &F) {
1050 // Remove unreachable blocks. It is not valuable to assign them a color and
1051 // their existence can trick us into thinking values are alive when they are
1052 // not.
1053 removeUnreachableBlocks(F);
1054
1055 // Determine which blocks are reachable from which funclet entries.
1056 colorFunclets(F);
1057
1058 cloneCommonBlocks(F);
1059
1060 if (!DisableDemotion)
1061 demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1062 DemoteCatchSwitchPHIOnlyOpt);
1063
1064 if (!DisableCleanups) {
1065 assert(!verifyFunction(F, &dbgs()))(static_cast <bool> (!verifyFunction(F, &dbgs())) ?
void (0) : __assert_fail ("!verifyFunction(F, &dbgs())",
"llvm/lib/CodeGen/WinEHPrepare.cpp", 1065, __extension__ __PRETTY_FUNCTION__
))
;
1066 removeImplausibleInstructions(F);
1067
1068 assert(!verifyFunction(F, &dbgs()))(static_cast <bool> (!verifyFunction(F, &dbgs())) ?
void (0) : __assert_fail ("!verifyFunction(F, &dbgs())",
"llvm/lib/CodeGen/WinEHPrepare.cpp", 1068, __extension__ __PRETTY_FUNCTION__
))
;
1069 cleanupPreparedFunclets(F);
1070 }
1071
1072 LLVM_DEBUG(verifyPreparedFunclets(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { verifyPreparedFunclets(F); } } while (false
)
;
1073 // Recolor the CFG to verify that all is well.
1074 LLVM_DEBUG(colorFunclets(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { colorFunclets(F); } } while (false)
;
1075 LLVM_DEBUG(verifyPreparedFunclets(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { verifyPreparedFunclets(F); } } while (false
)
;
1076
1077 BlockColors.clear();
1078 FuncletBlocks.clear();
1079
1080 return true;
1081}
1082
1083// TODO: Share loads when one use dominates another, or when a catchpad exit
1084// dominates uses (needs dominators).
1085AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
1086 BasicBlock *PHIBlock = PN->getParent();
1087 AllocaInst *SpillSlot = nullptr;
1088 Instruction *EHPad = PHIBlock->getFirstNonPHI();
1089
1090 if (!EHPad->isTerminator()) {
1091 // If the EHPad isn't a terminator, then we can insert a load in this block
1092 // that will dominate all uses.
1093 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1094 Twine(PN->getName(), ".wineh.spillslot"),
1095 &F.getEntryBlock().front());
1096 Value *V = new LoadInst(PN->getType(), SpillSlot,
1097 Twine(PN->getName(), ".wineh.reload"),
1098 &*PHIBlock->getFirstInsertionPt());
1099 PN->replaceAllUsesWith(V);
1100 return SpillSlot;
1101 }
1102
1103 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1104 // loads of the slot before every use.
1105 DenseMap<BasicBlock *, Value *> Loads;
1106 for (Use &U : llvm::make_early_inc_range(PN->uses())) {
1107 auto *UsingInst = cast<Instruction>(U.getUser());
1108 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1109 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1110 // stores for it separately.
1111 continue;
1112 }
1113 replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1114 }
1115 return SpillSlot;
1116}
1117
1118// TODO: improve store placement. Inserting at def is probably good, but need
1119// to be careful not to introduce interfering stores (needs liveness analysis).
1120// TODO: identify related phi nodes that can share spill slots, and share them
1121// (also needs liveness).
1122void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
1123 AllocaInst *SpillSlot) {
1124 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1125 // stored to the spill slot by the end of the given Block.
1126 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1127
1128 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1129
1130 while (!Worklist.empty()) {
1131 BasicBlock *EHBlock;
1132 Value *InVal;
1133 std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1134
1135 PHINode *PN = dyn_cast<PHINode>(InVal);
1136 if (PN && PN->getParent() == EHBlock) {
1137 // The value is defined by another PHI we need to remove, with no room to
1138 // insert a store after the PHI, so each predecessor needs to store its
1139 // incoming value.
1140 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1141 Value *PredVal = PN->getIncomingValue(i);
1142
1143 // Undef can safely be skipped.
1144 if (isa<UndefValue>(PredVal))
1145 continue;
1146
1147 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1148 }
1149 } else {
1150 // We need to store InVal, which dominates EHBlock, but can't put a store
1151 // in EHBlock, so need to put stores in each predecessor.
1152 for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1153 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1154 }
1155 }
1156 }
1157}
1158
1159void WinEHPrepare::insertPHIStore(
1160 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1161 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1162
1163 if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
1164 // Pred is unsplittable, so we need to queue it on the worklist.
1165 Worklist.push_back({PredBlock, PredVal});
1166 return;
1167 }
1168
1169 // Otherwise, insert the store at the end of the basic block.
1170 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1171}
1172
1173void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
1174 DenseMap<BasicBlock *, Value *> &Loads,
1175 Function &F) {
1176 // Lazilly create the spill slot.
1177 if (!SpillSlot)
1178 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1179 Twine(V->getName(), ".wineh.spillslot"),
1180 &F.getEntryBlock().front());
1181
1182 auto *UsingInst = cast<Instruction>(U.getUser());
1183 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1184 // If this is a PHI node, we can't insert a load of the value before
1185 // the use. Instead insert the load in the predecessor block
1186 // corresponding to the incoming value.
1187 //
1188 // Note that if there are multiple edges from a basic block to this
1189 // PHI node that we cannot have multiple loads. The problem is that
1190 // the resulting PHI node will have multiple values (from each load)
1191 // coming in from the same block, which is illegal SSA form.
1192 // For this reason, we keep track of and reuse loads we insert.
1193 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1194 if (auto *CatchRet =
1195 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1196 // Putting a load above a catchret and use on the phi would still leave
1197 // a cross-funclet def/use. We need to split the edge, change the
1198 // catchret to target the new block, and put the load there.
1199 BasicBlock *PHIBlock = UsingInst->getParent();
1200 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1201 // SplitEdge gives us:
1202 // IncomingBlock:
1203 // ...
1204 // br label %NewBlock
1205 // NewBlock:
1206 // catchret label %PHIBlock
1207 // But we need:
1208 // IncomingBlock:
1209 // ...
1210 // catchret label %NewBlock
1211 // NewBlock:
1212 // br label %PHIBlock
1213 // So move the terminators to each others' blocks and swap their
1214 // successors.
1215 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1216 Goto->removeFromParent();
1217 CatchRet->removeFromParent();
1218 IncomingBlock->getInstList().push_back(CatchRet);
1219 NewBlock->getInstList().push_back(Goto);
1220 Goto->setSuccessor(0, PHIBlock);
1221 CatchRet->setSuccessor(NewBlock);
1222 // Update the color mapping for the newly split edge.
1223 // Grab a reference to the ColorVector to be inserted before getting the
1224 // reference to the vector we are copying because inserting the new
1225 // element in BlockColors might cause the map to be reallocated.
1226 ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1227 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1228 ColorsForNewBlock = ColorsForPHIBlock;
1229 for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1230 FuncletBlocks[FuncletPad].push_back(NewBlock);
1231 // Treat the new block as incoming for load insertion.
1232 IncomingBlock = NewBlock;
1233 }
1234 Value *&Load = Loads[IncomingBlock];
1235 // Insert the load into the predecessor block
1236 if (!Load)
1237 Load = new LoadInst(V->getType(), SpillSlot,
1238 Twine(V->getName(), ".wineh.reload"),
1239 /*isVolatile=*/false, IncomingBlock->getTerminator());
1240
1241 U.set(Load);
1242 } else {
1243 // Reload right before the old use.
1244 auto *Load = new LoadInst(V->getType(), SpillSlot,
1245 Twine(V->getName(), ".wineh.reload"),
1246 /*isVolatile=*/false, UsingInst);
1247 U.set(Load);
1248 }
1249}
1250
1251void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1252 MCSymbol *InvokeBegin,
1253 MCSymbol *InvokeEnd) {
1254 assert(InvokeStateMap.count(II) &&(static_cast <bool> (InvokeStateMap.count(II) &&
"should get invoke with precomputed state") ? void (0) : __assert_fail
("InvokeStateMap.count(II) && \"should get invoke with precomputed state\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 1255, __extension__ __PRETTY_FUNCTION__
))
1255 "should get invoke with precomputed state")(static_cast <bool> (InvokeStateMap.count(II) &&
"should get invoke with precomputed state") ? void (0) : __assert_fail
("InvokeStateMap.count(II) && \"should get invoke with precomputed state\""
, "llvm/lib/CodeGen/WinEHPrepare.cpp", 1255, __extension__ __PRETTY_FUNCTION__
))
;
1256 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1257}
1258
1259WinEHFuncInfo::WinEHFuncInfo() = default;

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/IR/CFG.h"
28#include "llvm/IR/Constant.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/InstrTypes.h"
31#include "llvm/IR/Instruction.h"
32#include "llvm/IR/OperandTraits.h"
33#include "llvm/IR/Use.h"
34#include "llvm/IR/User.h"
35#include "llvm/Support/AtomicOrdering.h"
36#include "llvm/Support/ErrorHandling.h"
37#include <cassert>
38#include <cstddef>
39#include <cstdint>
40#include <iterator>
41
42namespace llvm {
43
44class APFloat;
45class APInt;
46class BasicBlock;
47class ConstantInt;
48class DataLayout;
49class StringRef;
50class Type;
51class Value;
52
53//===----------------------------------------------------------------------===//
54// AllocaInst Class
55//===----------------------------------------------------------------------===//
56
57/// an instruction to allocate memory on the stack
58class AllocaInst : public UnaryInstruction {
59 Type *AllocatedType;
60
61 using AlignmentField = AlignmentBitfieldElementT<0>;
62 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
63 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
64 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
65 SwiftErrorField>(),
66 "Bitfields must be contiguous");
67
68protected:
69 // Note: Instruction needs to be a friend here to call cloneImpl.
70 friend class Instruction;
71
72 AllocaInst *cloneImpl() const;
73
74public:
75 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
76 const Twine &Name, Instruction *InsertBefore);
77 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
78 const Twine &Name, BasicBlock *InsertAtEnd);
79
80 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
81 Instruction *InsertBefore);
82 AllocaInst(Type *Ty, unsigned AddrSpace,
83 const Twine &Name, BasicBlock *InsertAtEnd);
84
85 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
86 const Twine &Name = "", Instruction *InsertBefore = nullptr);
87 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
88 const Twine &Name, BasicBlock *InsertAtEnd);
89
90 /// Return true if there is an allocation size parameter to the allocation
91 /// instruction that is not 1.
92 bool isArrayAllocation() const;
93
94 /// Get the number of elements allocated. For a simple allocation of a single
95 /// element, this will return a constant 1 value.
96 const Value *getArraySize() const { return getOperand(0); }
97 Value *getArraySize() { return getOperand(0); }
98
99 /// Overload to return most specific pointer type.
100 PointerType *getType() const {
101 return cast<PointerType>(Instruction::getType());
102 }
103
104 /// Return the address space for the allocation.
105 unsigned getAddressSpace() const {
106 return getType()->getAddressSpace();
107 }
108
109 /// Get allocation size in bits. Returns None if size can't be determined,
110 /// e.g. in case of a VLA.
111 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
112
113 /// Return the type that is being allocated by the instruction.
114 Type *getAllocatedType() const { return AllocatedType; }
115 /// for use only in special circumstances that need to generically
116 /// transform a whole instruction (eg: IR linking and vectorization).
117 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
118
119 /// Return the alignment of the memory that is being allocated by the
120 /// instruction.
121 Align getAlign() const {
122 return Align(1ULL << getSubclassData<AlignmentField>());
123 }
124
125 void setAlignment(Align Align) {
126 setSubclassData<AlignmentField>(Log2(Align));
127 }
128
129 // FIXME: Remove this one transition to Align is over.
130 uint64_t getAlignment() const { return getAlign().value(); }
131
132 /// Return true if this alloca is in the entry block of the function and is a
133 /// constant size. If so, the code generator will fold it into the
134 /// prolog/epilog code, so it is basically free.
135 bool isStaticAlloca() const;
136
137 /// Return true if this alloca is used as an inalloca argument to a call. Such
138 /// allocas are never considered static even if they are in the entry block.
139 bool isUsedWithInAlloca() const {
140 return getSubclassData<UsedWithInAllocaField>();
141 }
142
143 /// Specify whether this alloca is used to represent the arguments to a call.
144 void setUsedWithInAlloca(bool V) {
145 setSubclassData<UsedWithInAllocaField>(V);
146 }
147
148 /// Return true if this alloca is used as a swifterror argument to a call.
149 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
150 /// Specify whether this alloca is used to represent a swifterror.
151 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
152
153 // Methods for support type inquiry through isa, cast, and dyn_cast:
154 static bool classof(const Instruction *I) {
155 return (I->getOpcode() == Instruction::Alloca);
156 }
157 static bool classof(const Value *V) {
158 return isa<Instruction>(V) && classof(cast<Instruction>(V));
159 }
160
161private:
162 // Shadow Instruction::setInstructionSubclassData with a private forwarding
163 // method so that subclasses cannot accidentally use it.
164 template <typename Bitfield>
165 void setSubclassData(typename Bitfield::Type Value) {
166 Instruction::setSubclassData<Bitfield>(Value);
167 }
168};
169
170//===----------------------------------------------------------------------===//
171// LoadInst Class
172//===----------------------------------------------------------------------===//
173
174/// An instruction for reading from memory. This uses the SubclassData field in
175/// Value to store whether or not the load is volatile.
176class LoadInst : public UnaryInstruction {
177 using VolatileField = BoolBitfieldElementT<0>;
178 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
179 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
180 static_assert(
181 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
182 "Bitfields must be contiguous");
183
184 void AssertOK();
185
186protected:
187 // Note: Instruction needs to be a friend here to call cloneImpl.
188 friend class Instruction;
189
190 LoadInst *cloneImpl() const;
191
192public:
193 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
194 Instruction *InsertBefore);
195 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197 Instruction *InsertBefore);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 BasicBlock *InsertAtEnd);
200 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 Align Align, Instruction *InsertBefore = nullptr);
202 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, BasicBlock *InsertAtEnd);
204 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
205 Align Align, AtomicOrdering Order,
206 SyncScope::ID SSID = SyncScope::System,
207 Instruction *InsertBefore = nullptr);
208 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
209 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
210 BasicBlock *InsertAtEnd);
211
212 /// Return true if this is a load from a volatile memory location.
213 bool isVolatile() const { return getSubclassData<VolatileField>(); }
214
215 /// Specify whether this is a volatile load or not.
216 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
217
218 /// Return the alignment of the access that is being performed.
219 /// FIXME: Remove this function once transition to Align is over.
220 /// Use getAlign() instead.
221 uint64_t getAlignment() const { return getAlign().value(); }
222
223 /// Return the alignment of the access that is being performed.
224 Align getAlign() const {
225 return Align(1ULL << (getSubclassData<AlignmentField>()));
226 }
227
228 void setAlignment(Align Align) {
229 setSubclassData<AlignmentField>(Log2(Align));
230 }
231
232 /// Returns the ordering constraint of this load instruction.
233 AtomicOrdering getOrdering() const {
234 return getSubclassData<OrderingField>();
235 }
236 /// Sets the ordering constraint of this load instruction. May not be Release
237 /// or AcquireRelease.
238 void setOrdering(AtomicOrdering Ordering) {
239 setSubclassData<OrderingField>(Ordering);
240 }
241
242 /// Returns the synchronization scope ID of this load instruction.
243 SyncScope::ID getSyncScopeID() const {
244 return SSID;
245 }
246
247 /// Sets the synchronization scope ID of this load instruction.
248 void setSyncScopeID(SyncScope::ID SSID) {
249 this->SSID = SSID;
250 }
251
252 /// Sets the ordering constraint and the synchronization scope ID of this load
253 /// instruction.
254 void setAtomic(AtomicOrdering Ordering,
255 SyncScope::ID SSID = SyncScope::System) {
256 setOrdering(Ordering);
257 setSyncScopeID(SSID);
258 }
259
260 bool isSimple() const { return !isAtomic() && !isVolatile(); }
261
262 bool isUnordered() const {
263 return (getOrdering() == AtomicOrdering::NotAtomic ||
264 getOrdering() == AtomicOrdering::Unordered) &&
265 !isVolatile();
266 }
267
268 Value *getPointerOperand() { return getOperand(0); }
269 const Value *getPointerOperand() const { return getOperand(0); }
270 static unsigned getPointerOperandIndex() { return 0U; }
271 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
272
273 /// Returns the address space of the pointer operand.
274 unsigned getPointerAddressSpace() const {
275 return getPointerOperandType()->getPointerAddressSpace();
276 }
277
278 // Methods for support type inquiry through isa, cast, and dyn_cast:
279 static bool classof(const Instruction *I) {
280 return I->getOpcode() == Instruction::Load;
281 }
282 static bool classof(const Value *V) {
283 return isa<Instruction>(V) && classof(cast<Instruction>(V));
284 }
285
286private:
287 // Shadow Instruction::setInstructionSubclassData with a private forwarding
288 // method so that subclasses cannot accidentally use it.
289 template <typename Bitfield>
290 void setSubclassData(typename Bitfield::Type Value) {
291 Instruction::setSubclassData<Bitfield>(Value);
292 }
293
294 /// The synchronization scope ID of this load instruction. Not quite enough
295 /// room in SubClassData for everything, so synchronization scope ID gets its
296 /// own field.
297 SyncScope::ID SSID;
298};
299
300//===----------------------------------------------------------------------===//
301// StoreInst Class
302//===----------------------------------------------------------------------===//
303
304/// An instruction for storing to memory.
305class StoreInst : public Instruction {
306 using VolatileField = BoolBitfieldElementT<0>;
307 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
308 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
309 static_assert(
310 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
311 "Bitfields must be contiguous");
312
313 void AssertOK();
314
315protected:
316 // Note: Instruction needs to be a friend here to call cloneImpl.
317 friend class Instruction;
318
319 StoreInst *cloneImpl() const;
320
321public:
322 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
323 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
325 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327 Instruction *InsertBefore = nullptr);
328 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
329 BasicBlock *InsertAtEnd);
330 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
331 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
332 Instruction *InsertBefore = nullptr);
333 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
334 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
335
336 // allocate space for exactly two operands
337 void *operator new(size_t S) { return User::operator new(S, 2); }
338 void operator delete(void *Ptr) { User::operator delete(Ptr); }
339
340 /// Return true if this is a store to a volatile memory location.
341 bool isVolatile() const { return getSubclassData<VolatileField>(); }
342
343 /// Specify whether this is a volatile store or not.
344 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
345
346 /// Transparently provide more efficient getOperand methods.
347 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
348
349 /// Return the alignment of the access that is being performed
350 /// FIXME: Remove this function once transition to Align is over.
351 /// Use getAlign() instead.
352 uint64_t getAlignment() const { return getAlign().value(); }
353
354 Align getAlign() const {
355 return Align(1ULL << (getSubclassData<AlignmentField>()));
356 }
357
358 void setAlignment(Align Align) {
359 setSubclassData<AlignmentField>(Log2(Align));
360 }
361
362 /// Returns the ordering constraint of this store instruction.
363 AtomicOrdering getOrdering() const {
364 return getSubclassData<OrderingField>();
365 }
366
367 /// Sets the ordering constraint of this store instruction. May not be
368 /// Acquire or AcquireRelease.
369 void setOrdering(AtomicOrdering Ordering) {
370 setSubclassData<OrderingField>(Ordering);
371 }
372
373 /// Returns the synchronization scope ID of this store instruction.
374 SyncScope::ID getSyncScopeID() const {
375 return SSID;
376 }
377
378 /// Sets the synchronization scope ID of this store instruction.
379 void setSyncScopeID(SyncScope::ID SSID) {
380 this->SSID = SSID;
381 }
382
383 /// Sets the ordering constraint and the synchronization scope ID of this
384 /// store instruction.
385 void setAtomic(AtomicOrdering Ordering,
386 SyncScope::ID SSID = SyncScope::System) {
387 setOrdering(Ordering);
388 setSyncScopeID(SSID);
389 }
390
391 bool isSimple() const { return !isAtomic() && !isVolatile(); }
392
393 bool isUnordered() const {
394 return (getOrdering() == AtomicOrdering::NotAtomic ||
395 getOrdering() == AtomicOrdering::Unordered) &&
396 !isVolatile();
397 }
398
399 Value *getValueOperand() { return getOperand(0); }
400 const Value *getValueOperand() const { return getOperand(0); }
401
402 Value *getPointerOperand() { return getOperand(1); }
403 const Value *getPointerOperand() const { return getOperand(1); }
404 static unsigned getPointerOperandIndex() { return 1U; }
405 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
406
407 /// Returns the address space of the pointer operand.
408 unsigned getPointerAddressSpace() const {
409 return getPointerOperandType()->getPointerAddressSpace();
410 }
411
412 // Methods for support type inquiry through isa, cast, and dyn_cast:
413 static bool classof(const Instruction *I) {
414 return I->getOpcode() == Instruction::Store;
415 }
416 static bool classof(const Value *V) {
417 return isa<Instruction>(V) && classof(cast<Instruction>(V));
418 }
419
420private:
421 // Shadow Instruction::setInstructionSubclassData with a private forwarding
422 // method so that subclasses cannot accidentally use it.
423 template <typename Bitfield>
424 void setSubclassData(typename Bitfield::Type Value) {
425 Instruction::setSubclassData<Bitfield>(Value);
426 }
427
428 /// The synchronization scope ID of this store instruction. Not quite enough
429 /// room in SubClassData for everything, so synchronization scope ID gets its
430 /// own field.
431 SyncScope::ID SSID;
432};
433
434template <>
435struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
436};
437
438DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<StoreInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 438, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this))[i_nocapture
].get()); } void StoreInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 438, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<StoreInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned StoreInst::getNumOperands() const
{ return OperandTraits<StoreInst>::operands(this); } template
<int Idx_nocapture> Use &StoreInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &StoreInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
439
440//===----------------------------------------------------------------------===//
441// FenceInst Class
442//===----------------------------------------------------------------------===//
443
444/// An instruction for ordering other memory operations.
445class FenceInst : public Instruction {
446 using OrderingField = AtomicOrderingBitfieldElementT<0>;
447
448 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
449
450protected:
451 // Note: Instruction needs to be a friend here to call cloneImpl.
452 friend class Instruction;
453
454 FenceInst *cloneImpl() const;
455
456public:
457 // Ordering may only be Acquire, Release, AcquireRelease, or
458 // SequentiallyConsistent.
459 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
460 SyncScope::ID SSID = SyncScope::System,
461 Instruction *InsertBefore = nullptr);
462 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
463 BasicBlock *InsertAtEnd);
464
465 // allocate space for exactly zero operands
466 void *operator new(size_t S) { return User::operator new(S, 0); }
467 void operator delete(void *Ptr) { User::operator delete(Ptr); }
468
469 /// Returns the ordering constraint of this fence instruction.
470 AtomicOrdering getOrdering() const {
471 return getSubclassData<OrderingField>();
472 }
473
474 /// Sets the ordering constraint of this fence instruction. May only be
475 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
476 void setOrdering(AtomicOrdering Ordering) {
477 setSubclassData<OrderingField>(Ordering);
478 }
479
480 /// Returns the synchronization scope ID of this fence instruction.
481 SyncScope::ID getSyncScopeID() const {
482 return SSID;
483 }
484
485 /// Sets the synchronization scope ID of this fence instruction.
486 void setSyncScopeID(SyncScope::ID SSID) {
487 this->SSID = SSID;
488 }
489
490 // Methods for support type inquiry through isa, cast, and dyn_cast:
491 static bool classof(const Instruction *I) {
492 return I->getOpcode() == Instruction::Fence;
493 }
494 static bool classof(const Value *V) {
495 return isa<Instruction>(V) && classof(cast<Instruction>(V));
496 }
497
498private:
499 // Shadow Instruction::setInstructionSubclassData with a private forwarding
500 // method so that subclasses cannot accidentally use it.
501 template <typename Bitfield>
502 void setSubclassData(typename Bitfield::Type Value) {
503 Instruction::setSubclassData<Bitfield>(Value);
504 }
505
506 /// The synchronization scope ID of this fence instruction. Not quite enough
507 /// room in SubClassData for everything, so synchronization scope ID gets its
508 /// own field.
509 SyncScope::ID SSID;
510};
511
512//===----------------------------------------------------------------------===//
513// AtomicCmpXchgInst Class
514//===----------------------------------------------------------------------===//
515
516/// An instruction that atomically checks whether a
517/// specified value is in a memory location, and, if it is, stores a new value
518/// there. The value returned by this instruction is a pair containing the
519/// original value as first element, and an i1 indicating success (true) or
520/// failure (false) as second element.
521///
522class AtomicCmpXchgInst : public Instruction {
523 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
524 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
525 SyncScope::ID SSID);
526
527 template <unsigned Offset>
528 using AtomicOrderingBitfieldElement =
529 typename Bitfield::Element<AtomicOrdering, Offset, 3,
530 AtomicOrdering::LAST>;
531
532protected:
533 // Note: Instruction needs to be a friend here to call cloneImpl.
534 friend class Instruction;
535
536 AtomicCmpXchgInst *cloneImpl() const;
537
538public:
539 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
540 AtomicOrdering SuccessOrdering,
541 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
542 Instruction *InsertBefore = nullptr);
543 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
544 AtomicOrdering SuccessOrdering,
545 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
546 BasicBlock *InsertAtEnd);
547
548 // allocate space for exactly three operands
549 void *operator new(size_t S) { return User::operator new(S, 3); }
550 void operator delete(void *Ptr) { User::operator delete(Ptr); }
551
552 using VolatileField = BoolBitfieldElementT<0>;
553 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
554 using SuccessOrderingField =
555 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
556 using FailureOrderingField =
557 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
558 using AlignmentField =
559 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
560 static_assert(
561 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
562 FailureOrderingField, AlignmentField>(),
563 "Bitfields must be contiguous");
564
565 /// Return the alignment of the memory that is being allocated by the
566 /// instruction.
567 Align getAlign() const {
568 return Align(1ULL << getSubclassData<AlignmentField>());
569 }
570
571 void setAlignment(Align Align) {
572 setSubclassData<AlignmentField>(Log2(Align));
573 }
574
575 /// Return true if this is a cmpxchg from a volatile memory
576 /// location.
577 ///
578 bool isVolatile() const { return getSubclassData<VolatileField>(); }
579
580 /// Specify whether this is a volatile cmpxchg.
581 ///
582 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
583
584 /// Return true if this cmpxchg may spuriously fail.
585 bool isWeak() const { return getSubclassData<WeakField>(); }
586
587 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
588
589 /// Transparently provide more efficient getOperand methods.
590 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
591
592 static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
593 return Ordering != AtomicOrdering::NotAtomic &&
594 Ordering != AtomicOrdering::Unordered;
595 }
596
597 static bool isValidFailureOrdering(AtomicOrdering Ordering) {
598 return Ordering != AtomicOrdering::NotAtomic &&
599 Ordering != AtomicOrdering::Unordered &&
600 Ordering != AtomicOrdering::AcquireRelease &&
601 Ordering != AtomicOrdering::Release;
602 }
603
604 /// Returns the success ordering constraint of this cmpxchg instruction.
605 AtomicOrdering getSuccessOrdering() const {
606 return getSubclassData<SuccessOrderingField>();
607 }
608
609 /// Sets the success ordering constraint of this cmpxchg instruction.
610 void setSuccessOrdering(AtomicOrdering Ordering) {
611 assert(isValidSuccessOrdering(Ordering) &&(static_cast <bool> (isValidSuccessOrdering(Ordering) &&
"invalid CmpXchg success ordering") ? void (0) : __assert_fail
("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\""
, "llvm/include/llvm/IR/Instructions.h", 612, __extension__ __PRETTY_FUNCTION__
))
612 "invalid CmpXchg success ordering")(static_cast <bool> (isValidSuccessOrdering(Ordering) &&
"invalid CmpXchg success ordering") ? void (0) : __assert_fail
("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\""
, "llvm/include/llvm/IR/Instructions.h", 612, __extension__ __PRETTY_FUNCTION__
))
;
613 setSubclassData<SuccessOrderingField>(Ordering);
614 }
615
616 /// Returns the failure ordering constraint of this cmpxchg instruction.
617 AtomicOrdering getFailureOrdering() const {
618 return getSubclassData<FailureOrderingField>();
619 }
620
621 /// Sets the failure ordering constraint of this cmpxchg instruction.
622 void setFailureOrdering(AtomicOrdering Ordering) {
623 assert(isValidFailureOrdering(Ordering) &&(static_cast <bool> (isValidFailureOrdering(Ordering) &&
"invalid CmpXchg failure ordering") ? void (0) : __assert_fail
("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\""
, "llvm/include/llvm/IR/Instructions.h", 624, __extension__ __PRETTY_FUNCTION__
))
624 "invalid CmpXchg failure ordering")(static_cast <bool> (isValidFailureOrdering(Ordering) &&
"invalid CmpXchg failure ordering") ? void (0) : __assert_fail
("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\""
, "llvm/include/llvm/IR/Instructions.h", 624, __extension__ __PRETTY_FUNCTION__
))
;
625 setSubclassData<FailureOrderingField>(Ordering);
626 }
627
628 /// Returns a single ordering which is at least as strong as both the
629 /// success and failure orderings for this cmpxchg.
630 AtomicOrdering getMergedOrdering() const {
631 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
632 return AtomicOrdering::SequentiallyConsistent;
633 if (getFailureOrdering() == AtomicOrdering::Acquire) {
634 if (getSuccessOrdering() == AtomicOrdering::Monotonic)
635 return AtomicOrdering::Acquire;
636 if (getSuccessOrdering() == AtomicOrdering::Release)
637 return AtomicOrdering::AcquireRelease;
638 }
639 return getSuccessOrdering();
640 }
641
642 /// Returns the synchronization scope ID of this cmpxchg instruction.
643 SyncScope::ID getSyncScopeID() const {
644 return SSID;
645 }
646
647 /// Sets the synchronization scope ID of this cmpxchg instruction.
648 void setSyncScopeID(SyncScope::ID SSID) {
649 this->SSID = SSID;
650 }
651
652 Value *getPointerOperand() { return getOperand(0); }
653 const Value *getPointerOperand() const { return getOperand(0); }
654 static unsigned getPointerOperandIndex() { return 0U; }
655
656 Value *getCompareOperand() { return getOperand(1); }
657 const Value *getCompareOperand() const { return getOperand(1); }
658
659 Value *getNewValOperand() { return getOperand(2); }
660 const Value *getNewValOperand() const { return getOperand(2); }
661
662 /// Returns the address space of the pointer operand.
663 unsigned getPointerAddressSpace() const {
664 return getPointerOperand()->getType()->getPointerAddressSpace();
665 }
666
667 /// Returns the strongest permitted ordering on failure, given the
668 /// desired ordering on success.
669 ///
670 /// If the comparison in a cmpxchg operation fails, there is no atomic store
671 /// so release semantics cannot be provided. So this function drops explicit
672 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
673 /// operation would remain SequentiallyConsistent.
674 static AtomicOrdering
675 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
676 switch (SuccessOrdering) {
677 default:
678 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "llvm/include/llvm/IR/Instructions.h", 678)
;
679 case AtomicOrdering::Release:
680 case AtomicOrdering::Monotonic:
681 return AtomicOrdering::Monotonic;
682 case AtomicOrdering::AcquireRelease:
683 case AtomicOrdering::Acquire:
684 return AtomicOrdering::Acquire;
685 case AtomicOrdering::SequentiallyConsistent:
686 return AtomicOrdering::SequentiallyConsistent;
687 }
688 }
689
690 // Methods for support type inquiry through isa, cast, and dyn_cast:
691 static bool classof(const Instruction *I) {
692 return I->getOpcode() == Instruction::AtomicCmpXchg;
693 }
694 static bool classof(const Value *V) {
695 return isa<Instruction>(V) && classof(cast<Instruction>(V));
696 }
697
698private:
699 // Shadow Instruction::setInstructionSubclassData with a private forwarding
700 // method so that subclasses cannot accidentally use it.
701 template <typename Bitfield>
702 void setSubclassData(typename Bitfield::Type Value) {
703 Instruction::setSubclassData<Bitfield>(Value);
704 }
705
706 /// The synchronization scope ID of this cmpxchg instruction. Not quite
707 /// enough room in SubClassData for everything, so synchronization scope ID
708 /// gets its own field.
709 SyncScope::ID SSID;
710};
711
712template <>
713struct OperandTraits<AtomicCmpXchgInst> :
714 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
715};
716
717DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 717, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<AtomicCmpXchgInst
>::op_begin(const_cast<AtomicCmpXchgInst*>(this))[i_nocapture
].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 717, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<AtomicCmpXchgInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned AtomicCmpXchgInst::getNumOperands
() const { return OperandTraits<AtomicCmpXchgInst>::operands
(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &AtomicCmpXchgInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
718
719//===----------------------------------------------------------------------===//
720// AtomicRMWInst Class
721//===----------------------------------------------------------------------===//
722
723/// an instruction that atomically reads a memory location,
724/// combines it with another value, and then stores the result back. Returns
725/// the old value.
726///
727class AtomicRMWInst : public Instruction {
728protected:
729 // Note: Instruction needs to be a friend here to call cloneImpl.
730 friend class Instruction;
731
732 AtomicRMWInst *cloneImpl() const;
733
734public:
735 /// This enumeration lists the possible modifications atomicrmw can make. In
736 /// the descriptions, 'p' is the pointer to the instruction's memory location,
737 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
738 /// instruction. These instructions always return 'old'.
739 enum BinOp : unsigned {
740 /// *p = v
741 Xchg,
742 /// *p = old + v
743 Add,
744 /// *p = old - v
745 Sub,
746 /// *p = old & v
747 And,
748 /// *p = ~(old & v)
749 Nand,
750 /// *p = old | v
751 Or,
752 /// *p = old ^ v
753 Xor,
754 /// *p = old >signed v ? old : v
755 Max,
756 /// *p = old <signed v ? old : v
757 Min,
758 /// *p = old >unsigned v ? old : v
759 UMax,
760 /// *p = old <unsigned v ? old : v
761 UMin,
762
763 /// *p = old + v
764 FAdd,
765
766 /// *p = old - v
767 FSub,
768
769 FIRST_BINOP = Xchg,
770 LAST_BINOP = FSub,
771 BAD_BINOP
772 };
773
774private:
775 template <unsigned Offset>
776 using AtomicOrderingBitfieldElement =
777 typename Bitfield::Element<AtomicOrdering, Offset, 3,
778 AtomicOrdering::LAST>;
779
780 template <unsigned Offset>
781 using BinOpBitfieldElement =
782 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
783
784public:
785 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
786 AtomicOrdering Ordering, SyncScope::ID SSID,
787 Instruction *InsertBefore = nullptr);
788 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
789 AtomicOrdering Ordering, SyncScope::ID SSID,
790 BasicBlock *InsertAtEnd);
791
792 // allocate space for exactly two operands
793 void *operator new(size_t S) { return User::operator new(S, 2); }
794 void operator delete(void *Ptr) { User::operator delete(Ptr); }
795
796 using VolatileField = BoolBitfieldElementT<0>;
797 using AtomicOrderingField =
798 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
799 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
800 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
801 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
802 OperationField, AlignmentField>(),
803 "Bitfields must be contiguous");
804
805 BinOp getOperation() const { return getSubclassData<OperationField>(); }
806
807 static StringRef getOperationName(BinOp Op);
808
809 static bool isFPOperation(BinOp Op) {
810 switch (Op) {
811 case AtomicRMWInst::FAdd:
812 case AtomicRMWInst::FSub:
813 return true;
814 default:
815 return false;
816 }
817 }
818
819 void setOperation(BinOp Operation) {
820 setSubclassData<OperationField>(Operation);
821 }
822
823 /// Return the alignment of the memory that is being allocated by the
824 /// instruction.
825 Align getAlign() const {
826 return Align(1ULL << getSubclassData<AlignmentField>());
827 }
828
829 void setAlignment(Align Align) {
830 setSubclassData<AlignmentField>(Log2(Align));
831 }
832
833 /// Return true if this is a RMW on a volatile memory location.
834 ///
835 bool isVolatile() const { return getSubclassData<VolatileField>(); }
836
837 /// Specify whether this is a volatile RMW or not.
838 ///
839 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
840
841 /// Transparently provide more efficient getOperand methods.
842 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
843
844 /// Returns the ordering constraint of this rmw instruction.
845 AtomicOrdering getOrdering() const {
846 return getSubclassData<AtomicOrderingField>();
847 }
848
849 /// Sets the ordering constraint of this rmw instruction.
850 void setOrdering(AtomicOrdering Ordering) {
851 assert(Ordering != AtomicOrdering::NotAtomic &&(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "llvm/include/llvm/IR/Instructions.h", 852, __extension__ __PRETTY_FUNCTION__
))
852 "atomicrmw instructions can only be atomic.")(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "llvm/include/llvm/IR/Instructions.h", 852, __extension__ __PRETTY_FUNCTION__
))
;
853 setSubclassData<AtomicOrderingField>(Ordering);
854 }
855
856 /// Returns the synchronization scope ID of this rmw instruction.
857 SyncScope::ID getSyncScopeID() const {
858 return SSID;
859 }
860
861 /// Sets the synchronization scope ID of this rmw instruction.
862 void setSyncScopeID(SyncScope::ID SSID) {
863 this->SSID = SSID;
864 }
865
866 Value *getPointerOperand() { return getOperand(0); }
867 const Value *getPointerOperand() const { return getOperand(0); }
868 static unsigned getPointerOperandIndex() { return 0U; }
869
870 Value *getValOperand() { return getOperand(1); }
871 const Value *getValOperand() const { return getOperand(1); }
872
873 /// Returns the address space of the pointer operand.
874 unsigned getPointerAddressSpace() const {
875 return getPointerOperand()->getType()->getPointerAddressSpace();
876 }
877
878 bool isFloatingPointOperation() const {
879 return isFPOperation(getOperation());
880 }
881
882 // Methods for support type inquiry through isa, cast, and dyn_cast:
883 static bool classof(const Instruction *I) {
884 return I->getOpcode() == Instruction::AtomicRMW;
885 }
886 static bool classof(const Value *V) {
887 return isa<Instruction>(V) && classof(cast<Instruction>(V));
888 }
889
890private:
891 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
892 AtomicOrdering Ordering, SyncScope::ID SSID);
893
894 // Shadow Instruction::setInstructionSubclassData with a private forwarding
895 // method so that subclasses cannot accidentally use it.
896 template <typename Bitfield>
897 void setSubclassData(typename Bitfield::Type Value) {
898 Instruction::setSubclassData<Bitfield>(Value);
899 }
900
901 /// The synchronization scope ID of this rmw instruction. Not quite enough
902 /// room in SubClassData for everything, so synchronization scope ID gets its
903 /// own field.
904 SyncScope::ID SSID;
905};
906
907template <>
908struct OperandTraits<AtomicRMWInst>
909 : public FixedNumOperandTraits<AtomicRMWInst,2> {
910};
911
912DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicRMWInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 912, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<AtomicRMWInst
>::op_begin(const_cast<AtomicRMWInst*>(this))[i_nocapture
].get()); } void AtomicRMWInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicRMWInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 912, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands()
const { return OperandTraits<AtomicRMWInst>::operands(
this); } template <int Idx_nocapture> Use &AtomicRMWInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &AtomicRMWInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
913
914//===----------------------------------------------------------------------===//
915// GetElementPtrInst Class
916//===----------------------------------------------------------------------===//
917
918// checkGEPType - Simple wrapper function to give a better assertion failure
919// message on bad indexes for a gep instruction.
920//
921inline Type *checkGEPType(Type *Ty) {
922 assert(Ty && "Invalid GetElementPtrInst indices for type!")(static_cast <bool> (Ty && "Invalid GetElementPtrInst indices for type!"
) ? void (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "llvm/include/llvm/IR/Instructions.h", 922, __extension__ __PRETTY_FUNCTION__
))
;
923 return Ty;
924}
925
926/// an instruction for type-safe pointer arithmetic to
927/// access elements of arrays and structs
928///
929class GetElementPtrInst : public Instruction {
930 Type *SourceElementType;
931 Type *ResultElementType;
932
933 GetElementPtrInst(const GetElementPtrInst &GEPI);
934
935 /// Constructors - Create a getelementptr instruction with a base pointer an
936 /// list of indices. The first ctor can optionally insert before an existing
937 /// instruction, the second appends the new instruction to the specified
938 /// BasicBlock.
939 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
940 ArrayRef<Value *> IdxList, unsigned Values,
941 const Twine &NameStr, Instruction *InsertBefore);
942 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
943 ArrayRef<Value *> IdxList, unsigned Values,
944 const Twine &NameStr, BasicBlock *InsertAtEnd);
945
946 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
947
948protected:
949 // Note: Instruction needs to be a friend here to call cloneImpl.
950 friend class Instruction;
951
952 GetElementPtrInst *cloneImpl() const;
953
954public:
955 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
956 ArrayRef<Value *> IdxList,
957 const Twine &NameStr = "",
958 Instruction *InsertBefore = nullptr) {
959 unsigned Values = 1 + unsigned(IdxList.size());
960 assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type"
) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\""
, "llvm/include/llvm/IR/Instructions.h", 960, __extension__ __PRETTY_FUNCTION__
))
;
961 assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "llvm/include/llvm/IR/Instructions.h", 962, __extension__ __PRETTY_FUNCTION__
))
962 ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "llvm/include/llvm/IR/Instructions.h", 962, __extension__ __PRETTY_FUNCTION__
))
;
963 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
964 NameStr, InsertBefore);
965 }
966
967 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
968 ArrayRef<Value *> IdxList,
969 const Twine &NameStr,
970 BasicBlock *InsertAtEnd) {
971 unsigned Values = 1 + unsigned(IdxList.size());
972 assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type"
) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\""
, "llvm/include/llvm/IR/Instructions.h", 972, __extension__ __PRETTY_FUNCTION__
))
;
973 assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "llvm/include/llvm/IR/Instructions.h", 974, __extension__ __PRETTY_FUNCTION__
))
974 ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "llvm/include/llvm/IR/Instructions.h", 974, __extension__ __PRETTY_FUNCTION__
))
;
975 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
976 NameStr, InsertAtEnd);
977 }
978
979 /// Create an "inbounds" getelementptr. See the documentation for the
980 /// "inbounds" flag in LangRef.html for details.
981 static GetElementPtrInst *
982 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
983 const Twine &NameStr = "",
984 Instruction *InsertBefore = nullptr) {
985 GetElementPtrInst *GEP =
986 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
987 GEP->setIsInBounds(true);
988 return GEP;
989 }
990
991 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
992 ArrayRef<Value *> IdxList,
993 const Twine &NameStr,
994 BasicBlock *InsertAtEnd) {
995 GetElementPtrInst *GEP =
996 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
997 GEP->setIsInBounds(true);
998 return GEP;
999 }
1000
1001 /// Transparently provide more efficient getOperand methods.
1002 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1003
1004 Type *getSourceElementType() const { return SourceElementType; }
1005
1006 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1007 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1008
1009 Type *getResultElementType() const {
1010 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1011, __extension__ __PRETTY_FUNCTION__
))
1011 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1011, __extension__ __PRETTY_FUNCTION__
))
;
1012 return ResultElementType;
1013 }
1014
1015 /// Returns the address space of this instruction's pointer type.
1016 unsigned getAddressSpace() const {
1017 // Note that this is always the same as the pointer operand's address space
1018 // and that is cheaper to compute, so cheat here.
1019 return getPointerAddressSpace();
1020 }
1021
1022 /// Returns the result type of a getelementptr with the given source
1023 /// element type and indexes.
1024 ///
1025 /// Null is returned if the indices are invalid for the specified
1026 /// source element type.
1027 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1028 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1029 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1030
1031 /// Return the type of the element at the given index of an indexable
1032 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1033 ///
1034 /// Returns null if the type can't be indexed, or the given index is not
1035 /// legal for the given type.
1036 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1037 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1038
1039 inline op_iterator idx_begin() { return op_begin()+1; }
1040 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1041 inline op_iterator idx_end() { return op_end(); }
1042 inline const_op_iterator idx_end() const { return op_end(); }
1043
1044 inline iterator_range<op_iterator> indices() {
1045 return make_range(idx_begin(), idx_end());
1046 }
1047
1048 inline iterator_range<const_op_iterator> indices() const {
1049 return make_range(idx_begin(), idx_end());
1050 }
1051
1052 Value *getPointerOperand() {
1053 return getOperand(0);
1054 }
1055 const Value *getPointerOperand() const {
1056 return getOperand(0);
1057 }
1058 static unsigned getPointerOperandIndex() {
1059 return 0U; // get index for modifying correct operand.
1060 }
1061
1062 /// Method to return the pointer operand as a
1063 /// PointerType.
1064 Type *getPointerOperandType() const {
1065 return getPointerOperand()->getType();
1066 }
1067
1068 /// Returns the address space of the pointer operand.
1069 unsigned getPointerAddressSpace() const {
1070 return getPointerOperandType()->getPointerAddressSpace();
1071 }
1072
1073 /// Returns the pointer type returned by the GEP
1074 /// instruction, which may be a vector of pointers.
1075 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1076 ArrayRef<Value *> IdxList) {
1077 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1078 unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1079 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1080 Type *PtrTy = OrigPtrTy->isOpaque()
1081 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1082 : PointerType::get(ResultElemTy, AddrSpace);
1083 // Vector GEP
1084 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1085 ElementCount EltCount = PtrVTy->getElementCount();
1086 return VectorType::get(PtrTy, EltCount);
1087 }
1088 for (Value *Index : IdxList)
1089 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1090 ElementCount EltCount = IndexVTy->getElementCount();
1091 return VectorType::get(PtrTy, EltCount);
1092 }
1093 // Scalar GEP
1094 return PtrTy;
1095 }
1096
1097 unsigned getNumIndices() const { // Note: always non-negative
1098 return getNumOperands() - 1;
1099 }
1100
1101 bool hasIndices() const {
1102 return getNumOperands() > 1;
1103 }
1104
1105 /// Return true if all of the indices of this GEP are
1106 /// zeros. If so, the result pointer and the first operand have the same
1107 /// value, just potentially different types.
1108 bool hasAllZeroIndices() const;
1109
1110 /// Return true if all of the indices of this GEP are
1111 /// constant integers. If so, the result pointer and the first operand have
1112 /// a constant offset between them.
1113 bool hasAllConstantIndices() const;
1114
1115 /// Set or clear the inbounds flag on this GEP instruction.
1116 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1117 void setIsInBounds(bool b = true);
1118
1119 /// Determine whether the GEP has the inbounds flag.
1120 bool isInBounds() const;
1121
1122 /// Accumulate the constant address offset of this GEP if possible.
1123 ///
1124 /// This routine accepts an APInt into which it will accumulate the constant
1125 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1126 /// all-constant, it returns false and the value of the offset APInt is
1127 /// undefined (it is *not* preserved!). The APInt passed into this routine
1128 /// must be at least as wide as the IntPtr type for the address space of
1129 /// the base GEP pointer.
1130 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1131 bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1132 MapVector<Value *, APInt> &VariableOffsets,
1133 APInt &ConstantOffset) const;
1134 // Methods for support type inquiry through isa, cast, and dyn_cast:
1135 static bool classof(const Instruction *I) {
1136 return (I->getOpcode() == Instruction::GetElementPtr);
1137 }
1138 static bool classof(const Value *V) {
1139 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1140 }
1141};
1142
1143template <>
1144struct OperandTraits<GetElementPtrInst> :
1145 public VariadicOperandTraits<GetElementPtrInst, 1> {
1146};
1147
1148GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1149 ArrayRef<Value *> IdxList, unsigned Values,
1150 const Twine &NameStr,
1151 Instruction *InsertBefore)
1152 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1153 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1154 Values, InsertBefore),
1155 SourceElementType(PointeeType),
1156 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1157 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1158, __extension__ __PRETTY_FUNCTION__
))
1158 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1158, __extension__ __PRETTY_FUNCTION__
))
;
1159 init(Ptr, IdxList, NameStr);
1160}
1161
1162GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1163 ArrayRef<Value *> IdxList, unsigned Values,
1164 const Twine &NameStr,
1165 BasicBlock *InsertAtEnd)
1166 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1167 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1168 Values, InsertAtEnd),
1169 SourceElementType(PointeeType),
1170 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1171 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1172, __extension__ __PRETTY_FUNCTION__
))
1172 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "llvm/include/llvm/IR/Instructions.h", 1172, __extension__ __PRETTY_FUNCTION__
))
;
1173 init(Ptr, IdxList, NameStr);
1174}
1175
1176DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<GetElementPtrInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1176, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<GetElementPtrInst
>::op_begin(const_cast<GetElementPtrInst*>(this))[i_nocapture
].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<GetElementPtrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1176, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<GetElementPtrInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned GetElementPtrInst::getNumOperands
() const { return OperandTraits<GetElementPtrInst>::operands
(this); } template <int Idx_nocapture> Use &GetElementPtrInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &GetElementPtrInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1177
1178//===----------------------------------------------------------------------===//
1179// ICmpInst Class
1180//===----------------------------------------------------------------------===//
1181
1182/// This instruction compares its operands according to the predicate given
1183/// to the constructor. It only operates on integers or pointers. The operands
1184/// must be identical types.
1185/// Represent an integer comparison operator.
1186class ICmpInst: public CmpInst {
1187 void AssertOK() {
1188 assert(isIntPredicate() &&(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "llvm/include/llvm/IR/Instructions.h", 1189, __extension__ __PRETTY_FUNCTION__
))
1189 "Invalid ICmp predicate value")(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "llvm/include/llvm/IR/Instructions.h", 1189, __extension__ __PRETTY_FUNCTION__
))
;
1190 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "llvm/include/llvm/IR/Instructions.h", 1191, __extension__ __PRETTY_FUNCTION__
))
1191 "Both operands to ICmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "llvm/include/llvm/IR/Instructions.h", 1191, __extension__ __PRETTY_FUNCTION__
))
;
1192 // Check that the operands are the right type
1193 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "llvm/include/llvm/IR/Instructions.h", 1195, __extension__ __PRETTY_FUNCTION__
))
1194 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "llvm/include/llvm/IR/Instructions.h", 1195, __extension__ __PRETTY_FUNCTION__
))
1195 "Invalid operand types for ICmp instruction")(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "llvm/include/llvm/IR/Instructions.h", 1195, __extension__ __PRETTY_FUNCTION__
))
;
1196 }
1197
1198protected:
1199 // Note: Instruction needs to be a friend here to call cloneImpl.
1200 friend class Instruction;
1201
1202 /// Clone an identical ICmpInst
1203 ICmpInst *cloneImpl() const;
1204
1205public:
1206 /// Constructor with insert-before-instruction semantics.
1207 ICmpInst(
1208 Instruction *InsertBefore, ///< Where to insert
1209 Predicate pred, ///< The predicate to use for the comparison
1210 Value *LHS, ///< The left-hand-side of the expression
1211 Value *RHS, ///< The right-hand-side of the expression
1212 const Twine &NameStr = "" ///< Name of the instruction
1213 ) : CmpInst(makeCmpResultType(LHS->getType()),
1214 Instruction::ICmp, pred, LHS, RHS, NameStr,
1215 InsertBefore) {
1216#ifndef NDEBUG
1217 AssertOK();
1218#endif
1219 }
1220
1221 /// Constructor with insert-at-end semantics.
1222 ICmpInst(
1223 BasicBlock &InsertAtEnd, ///< Block to insert into.
1224 Predicate pred, ///< The predicate to use for the comparison
1225 Value *LHS, ///< The left-hand-side of the expression
1226 Value *RHS, ///< The right-hand-side of the expression
1227 const Twine &NameStr = "" ///< Name of the instruction
1228 ) : CmpInst(makeCmpResultType(LHS->getType()),
1229 Instruction::ICmp, pred, LHS, RHS, NameStr,
1230 &InsertAtEnd) {
1231#ifndef NDEBUG
1232 AssertOK();
1233#endif
1234 }
1235
1236 /// Constructor with no-insertion semantics
1237 ICmpInst(
1238 Predicate pred, ///< The predicate to use for the comparison
1239 Value *LHS, ///< The left-hand-side of the expression
1240 Value *RHS, ///< The right-hand-side of the expression
1241 const Twine &NameStr = "" ///< Name of the instruction
1242 ) : CmpInst(makeCmpResultType(LHS->getType()),
1243 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1244#ifndef NDEBUG
1245 AssertOK();
1246#endif
1247 }
1248
1249 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1250 /// @returns the predicate that would be the result if the operand were
1251 /// regarded as signed.
1252 /// Return the signed version of the predicate
1253 Predicate getSignedPredicate() const {
1254 return getSignedPredicate(getPredicate());
1255 }
1256
1257 /// This is a static version that you can use without an instruction.
1258 /// Return the signed version of the predicate.
1259 static Predicate getSignedPredicate(Predicate pred);
1260
1261 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1262 /// @returns the predicate that would be the result if the operand were
1263 /// regarded as unsigned.
1264 /// Return the unsigned version of the predicate
1265 Predicate getUnsignedPredicate() const {
1266 return getUnsignedPredicate(getPredicate());
1267 }
1268
1269 /// This is a static version that you can use without an instruction.
1270 /// Return the unsigned version of the predicate.
1271 static Predicate getUnsignedPredicate(Predicate pred);
1272
1273 /// Return true if this predicate is either EQ or NE. This also
1274 /// tests for commutativity.
1275 static bool isEquality(Predicate P) {
1276 return P == ICMP_EQ || P == ICMP_NE;
1277 }
1278
1279 /// Return true if this predicate is either EQ or NE. This also
1280 /// tests for commutativity.
1281 bool isEquality() const {
1282 return isEquality(getPredicate());
1283 }
1284
1285 /// @returns true if the predicate of this ICmpInst is commutative
1286 /// Determine if this relation is commutative.
1287 bool isCommutative() const { return isEquality(); }
1288
1289 /// Return true if the predicate is relational (not EQ or NE).
1290 ///
1291 bool isRelational() const {
1292 return !isEquality();
1293 }
1294
1295 /// Return true if the predicate is relational (not EQ or NE).
1296 ///
1297 static bool isRelational(Predicate P) {
1298 return !isEquality(P);
1299 }
1300
1301 /// Return true if the predicate is SGT or UGT.
1302 ///
1303 static bool isGT(Predicate P) {
1304 return P == ICMP_SGT || P == ICMP_UGT;
1305 }
1306
1307 /// Return true if the predicate is SLT or ULT.
1308 ///
1309 static bool isLT(Predicate P) {
1310 return P == ICMP_SLT || P == ICMP_ULT;
1311 }
1312
1313 /// Return true if the predicate is SGE or UGE.
1314 ///
1315 static bool isGE(Predicate P) {
1316 return P == ICMP_SGE || P == ICMP_UGE;
1317 }
1318
1319 /// Return true if the predicate is SLE or ULE.
1320 ///
1321 static bool isLE(Predicate P) {
1322 return P == ICMP_SLE || P == ICMP_ULE;
1323 }
1324
1325 /// Returns the sequence of all ICmp predicates.
1326 ///
1327 static auto predicates() { return ICmpPredicates(); }
1328
1329 /// Exchange the two operands to this instruction in such a way that it does
1330 /// not modify the semantics of the instruction. The predicate value may be
1331 /// changed to retain the same result if the predicate is order dependent
1332 /// (e.g. ult).
1333 /// Swap operands and adjust predicate.
1334 void swapOperands() {
1335 setPredicate(getSwappedPredicate());
1336 Op<0>().swap(Op<1>());
1337 }
1338
1339 /// Return result of `LHS Pred RHS` comparison.
1340 static bool compare(const APInt &LHS, const APInt &RHS,
1341 ICmpInst::Predicate Pred);
1342
1343 // Methods for support type inquiry through isa, cast, and dyn_cast:
1344 static bool classof(const Instruction *I) {
1345 return I->getOpcode() == Instruction::ICmp;
1346 }
1347 static bool classof(const Value *V) {
1348 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1349 }
1350};
1351
1352//===----------------------------------------------------------------------===//
1353// FCmpInst Class
1354//===----------------------------------------------------------------------===//
1355
1356/// This instruction compares its operands according to the predicate given
1357/// to the constructor. It only operates on floating point values or packed
1358/// vectors of floating point values. The operands must be identical types.
1359/// Represents a floating point comparison operator.
1360class FCmpInst: public CmpInst {
1361 void AssertOK() {
1362 assert(isFPPredicate() && "Invalid FCmp predicate value")(static_cast <bool> (isFPPredicate() && "Invalid FCmp predicate value"
) ? void (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "llvm/include/llvm/IR/Instructions.h", 1362, __extension__ __PRETTY_FUNCTION__
))
;
1363 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "llvm/include/llvm/IR/Instructions.h", 1364, __extension__ __PRETTY_FUNCTION__
))
1364 "Both operands to FCmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "llvm/include/llvm/IR/Instructions.h", 1364, __extension__ __PRETTY_FUNCTION__
))
;
1365 // Check that the operands are the right type
1366 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "llvm/include/llvm/IR/Instructions.h", 1367, __extension__ __PRETTY_FUNCTION__
))
1367 "Invalid operand types for FCmp instruction")(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "llvm/include/llvm/IR/Instructions.h", 1367, __extension__ __PRETTY_FUNCTION__
))
;
1368 }
1369
1370protected:
1371 // Note: Instruction needs to be a friend here to call cloneImpl.
1372 friend class Instruction;
1373
1374 /// Clone an identical FCmpInst
1375 FCmpInst *cloneImpl() const;
1376
1377public:
1378 /// Constructor with insert-before-instruction semantics.
1379 FCmpInst(
1380 Instruction *InsertBefore, ///< Where to insert
1381 Predicate pred, ///< The predicate to use for the comparison
1382 Value *LHS, ///< The left-hand-side of the expression
1383 Value *RHS, ///< The right-hand-side of the expression
1384 const Twine &NameStr = "" ///< Name of the instruction
1385 ) : CmpInst(makeCmpResultType(LHS->getType()),
1386 Instruction::FCmp, pred, LHS, RHS, NameStr,
1387 InsertBefore) {
1388 AssertOK();
1389 }
1390
1391 /// Constructor with insert-at-end semantics.
1392 FCmpInst(
1393 BasicBlock &InsertAtEnd, ///< Block to insert into.
1394 Predicate pred, ///< The predicate to use for the comparison
1395 Value *LHS, ///< The left-hand-side of the expression
1396 Value *RHS, ///< The right-hand-side of the expression
1397 const Twine &NameStr = "" ///< Name of the instruction
1398 ) : CmpInst(makeCmpResultType(LHS->getType()),
1399 Instruction::FCmp, pred, LHS, RHS, NameStr,
1400 &InsertAtEnd) {
1401 AssertOK();
1402 }
1403
1404 /// Constructor with no-insertion semantics
1405 FCmpInst(
1406 Predicate Pred, ///< The predicate to use for the comparison
1407 Value *LHS, ///< The left-hand-side of the expression
1408 Value *RHS, ///< The right-hand-side of the expression
1409 const Twine &NameStr = "", ///< Name of the instruction
1410 Instruction *FlagsSource = nullptr
1411 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1412 RHS, NameStr, nullptr, FlagsSource) {
1413 AssertOK();
1414 }
1415
1416 /// @returns true if the predicate of this instruction is EQ or NE.
1417 /// Determine if this is an equality predicate.
1418 static bool isEquality(Predicate Pred) {
1419 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1420 Pred == FCMP_UNE;
1421 }
1422
1423 /// @returns true if the predicate of this instruction is EQ or NE.
1424 /// Determine if this is an equality predicate.
1425 bool isEquality() const { return isEquality(getPredicate()); }
1426
1427 /// @returns true if the predicate of this instruction is commutative.
1428 /// Determine if this is a commutative predicate.
1429 bool isCommutative() const {
1430 return isEquality() ||
1431 getPredicate() == FCMP_FALSE ||
1432 getPredicate() == FCMP_TRUE ||
1433 getPredicate() == FCMP_ORD ||
1434 getPredicate() == FCMP_UNO;
1435 }
1436
1437 /// @returns true if the predicate is relational (not EQ or NE).
1438 /// Determine if this a relational predicate.
1439 bool isRelational() const { return !isEquality(); }
1440
1441 /// Exchange the two operands to this instruction in such a way that it does
1442 /// not modify the semantics of the instruction. The predicate value may be
1443 /// changed to retain the same result if the predicate is order dependent
1444 /// (e.g. ult).
1445 /// Swap operands and adjust predicate.
1446 void swapOperands() {
1447 setPredicate(getSwappedPredicate());
1448 Op<0>().swap(Op<1>());
1449 }
1450
1451 /// Returns the sequence of all FCmp predicates.
1452 ///
1453 static auto predicates() { return FCmpPredicates(); }
1454
1455 /// Return result of `LHS Pred RHS` comparison.
1456 static bool compare(const APFloat &LHS, const APFloat &RHS,
1457 FCmpInst::Predicate Pred);
1458
1459 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1460 static bool classof(const Instruction *I) {
1461 return I->getOpcode() == Instruction::FCmp;
1462 }
1463 static bool classof(const Value *V) {
1464 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1465 }
1466};
1467
1468//===----------------------------------------------------------------------===//
1469/// This class represents a function call, abstracting a target
1470/// machine's calling convention. This class uses low bit of the SubClassData
1471/// field to indicate whether or not this is a tail call. The rest of the bits
1472/// hold the calling convention of the call.
1473///
1474class CallInst : public CallBase {
1475 CallInst(const CallInst &CI);
1476
1477 /// Construct a CallInst given a range of arguments.
1478 /// Construct a CallInst from a range of arguments
1479 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1480 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1481 Instruction *InsertBefore);
1482
1483 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1484 const Twine &NameStr, Instruction *InsertBefore)
1485 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1486
1487 /// Construct a CallInst given a range of arguments.
1488 /// Construct a CallInst from a range of arguments
1489 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1490 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1491 BasicBlock *InsertAtEnd);
1492
1493 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1494 Instruction *InsertBefore);
1495
1496 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1497 BasicBlock *InsertAtEnd);
1498
1499 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1500 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1501 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1502
1503 /// Compute the number of operands to allocate.
1504 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1505 // We need one operand for the called function, plus the input operand
1506 // counts provided.
1507 return 1 + NumArgs + NumBundleInputs;
1508 }
1509
1510protected:
1511 // Note: Instruction needs to be a friend here to call cloneImpl.
1512 friend class Instruction;
1513
1514 CallInst *cloneImpl() const;
1515
1516public:
1517 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1518 Instruction *InsertBefore = nullptr) {
1519 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1520 }
1521
1522 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1523 const Twine &NameStr,
1524 Instruction *InsertBefore = nullptr) {
1525 return new (ComputeNumOperands(Args.size()))
1526 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1527 }
1528
1529 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1530 ArrayRef<OperandBundleDef> Bundles = None,
1531 const Twine &NameStr = "",
1532 Instruction *InsertBefore = nullptr) {
1533 const int NumOperands =
1534 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1535 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1536
1537 return new (NumOperands, DescriptorBytes)
1538 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1539 }
1540
1541 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1542 BasicBlock *InsertAtEnd) {
1543 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1544 }
1545
1546 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1547 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1548 return new (ComputeNumOperands(Args.size()))
1549 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1550 }
1551
1552 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1553 ArrayRef<OperandBundleDef> Bundles,
1554 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1555 const int NumOperands =
1556 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1557 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1558
1559 return new (NumOperands, DescriptorBytes)
1560 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1561 }
1562
1563 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1564 Instruction *InsertBefore = nullptr) {
1565 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1566 InsertBefore);
1567 }
1568
1569 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1570 ArrayRef<OperandBundleDef> Bundles = None,
1571 const Twine &NameStr = "",
1572 Instruction *InsertBefore = nullptr) {
1573 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1574 NameStr, InsertBefore);
1575 }
1576
1577 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1578 const Twine &NameStr,
1579 Instruction *InsertBefore = nullptr) {
1580 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1581 InsertBefore);
1582 }
1583
1584 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1585 BasicBlock *InsertAtEnd) {
1586 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1587 InsertAtEnd);
1588 }
1589
1590 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1591 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1592 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1593 InsertAtEnd);
1594 }
1595
1596 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1597 ArrayRef<OperandBundleDef> Bundles,
1598 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1599 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1600 NameStr, InsertAtEnd);
1601 }
1602
1603 /// Create a clone of \p CI with a different set of operand bundles and
1604 /// insert it before \p InsertPt.
1605 ///
1606 /// The returned call instruction is identical \p CI in every way except that
1607 /// the operand bundles for the new instruction are set to the operand bundles
1608 /// in \p Bundles.
1609 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1610 Instruction *InsertPt = nullptr);
1611
1612 /// Generate the IR for a call to malloc:
1613 /// 1. Compute the malloc call's argument as the specified type's size,
1614 /// possibly multiplied by the array size if the array size is not
1615 /// constant 1.
1616 /// 2. Call malloc with that argument.
1617 /// 3. Bitcast the result of the malloc call to the specified type.
1618 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1619 Type *AllocTy, Value *AllocSize,
1620 Value *ArraySize = nullptr,
1621 Function *MallocF = nullptr,
1622 const Twine &Name = "");
1623 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1624 Type *AllocTy, Value *AllocSize,
1625 Value *ArraySize = nullptr,
1626 Function *MallocF = nullptr,
1627 const Twine &Name = "");
1628 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1629 Type *AllocTy, Value *AllocSize,
1630 Value *ArraySize = nullptr,
1631 ArrayRef<OperandBundleDef> Bundles = None,
1632 Function *MallocF = nullptr,
1633 const Twine &Name = "");
1634 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1635 Type *AllocTy, Value *AllocSize,
1636 Value *ArraySize = nullptr,
1637 ArrayRef<OperandBundleDef> Bundles = None,
1638 Function *MallocF = nullptr,
1639 const Twine &Name = "");
1640 /// Generate the IR for a call to the builtin free function.
1641 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1642 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1643 static Instruction *CreateFree(Value *Source,
1644 ArrayRef<OperandBundleDef> Bundles,
1645 Instruction *InsertBefore);
1646 static Instruction *CreateFree(Value *Source,
1647 ArrayRef<OperandBundleDef> Bundles,
1648 BasicBlock *InsertAtEnd);
1649
1650 // Note that 'musttail' implies 'tail'.
1651 enum TailCallKind : unsigned {
1652 TCK_None = 0,
1653 TCK_Tail = 1,
1654 TCK_MustTail = 2,
1655 TCK_NoTail = 3,
1656 TCK_LAST = TCK_NoTail
1657 };
1658
1659 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1660 static_assert(
1661 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1662 "Bitfields must be contiguous");
1663
1664 TailCallKind getTailCallKind() const {
1665 return getSubclassData<TailCallKindField>();
1666 }
1667
1668 bool isTailCall() const {
1669 TailCallKind Kind = getTailCallKind();
1670 return Kind == TCK_Tail || Kind == TCK_MustTail;
1671 }
1672
1673 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1674
1675 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1676
1677 void setTailCallKind(TailCallKind TCK) {
1678 setSubclassData<TailCallKindField>(TCK);
1679 }
1680
1681 void setTailCall(bool IsTc = true) {
1682 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1683 }
1684
1685 /// Return true if the call can return twice
1686 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1687 void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); }
1688
1689 // Methods for support type inquiry through isa, cast, and dyn_cast:
1690 static bool classof(const Instruction *I) {
1691 return I->getOpcode() == Instruction::Call;
1692 }
1693 static bool classof(const Value *V) {
1694 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1695 }
1696
1697 /// Updates profile metadata by scaling it by \p S / \p T.
1698 void updateProfWeight(uint64_t S, uint64_t T);
1699
1700private:
1701 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1702 // method so that subclasses cannot accidentally use it.
1703 template <typename Bitfield>
1704 void setSubclassData(typename Bitfield::Type Value) {
1705 Instruction::setSubclassData<Bitfield>(Value);
1706 }
1707};
1708
1709CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1710 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1711 BasicBlock *InsertAtEnd)
1712 : CallBase(Ty->getReturnType(), Instruction::Call,
1713 OperandTraits<CallBase>::op_end(this) -
1714 (Args.size() + CountBundleInputs(Bundles) + 1),
1715 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1716 InsertAtEnd) {
1717 init(Ty, Func, Args, Bundles, NameStr);
1718}
1719
1720CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1721 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1722 Instruction *InsertBefore)
1723 : CallBase(Ty->getReturnType(), Instruction::Call,
1724 OperandTraits<CallBase>::op_end(this) -
1725 (Args.size() + CountBundleInputs(Bundles) + 1),
1726 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1727 InsertBefore) {
1728 init(Ty, Func, Args, Bundles, NameStr);
1729}
1730
1731//===----------------------------------------------------------------------===//
1732// SelectInst Class
1733//===----------------------------------------------------------------------===//
1734
1735/// This class represents the LLVM 'select' instruction.
1736///
1737class SelectInst : public Instruction {
1738 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1739 Instruction *InsertBefore)
1740 : Instruction(S1->getType(), Instruction::Select,
1741 &Op<0>(), 3, InsertBefore) {
1742 init(C, S1, S2);
1743 setName(NameStr);
1744 }
1745
1746 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1747 BasicBlock *InsertAtEnd)
1748 : Instruction(S1->getType(), Instruction::Select,
1749 &Op<0>(), 3, InsertAtEnd) {
1750 init(C, S1, S2);
1751 setName(NameStr);
1752 }
1753
1754 void init(Value *C, Value *S1, Value *S2) {
1755 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")(static_cast <bool> (!areInvalidOperands(C, S1, S2) &&
"Invalid operands for select") ? void (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "llvm/include/llvm/IR/Instructions.h", 1755, __extension__ __PRETTY_FUNCTION__
))
;
1756 Op<0>() = C;
1757 Op<1>() = S1;
1758 Op<2>() = S2;
1759 }
1760
1761protected:
1762 // Note: Instruction needs to be a friend here to call cloneImpl.
1763 friend class Instruction;
1764
1765 SelectInst *cloneImpl() const;
1766
1767public:
1768 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1769 const Twine &NameStr = "",
1770 Instruction *InsertBefore = nullptr,
1771 Instruction *MDFrom = nullptr) {
1772 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1773 if (MDFrom)
1774 Sel->copyMetadata(*MDFrom);
1775 return Sel;
1776 }
1777
1778 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1779 const Twine &NameStr,
1780 BasicBlock *InsertAtEnd) {
1781 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1782 }
1783
1784 const Value *getCondition() const { return Op<0>(); }
1785 const Value *getTrueValue() const { return Op<1>(); }
1786 const Value *getFalseValue() const { return Op<2>(); }
1787 Value *getCondition() { return Op<0>(); }
1788 Value *getTrueValue() { return Op<1>(); }
1789 Value *getFalseValue() { return Op<2>(); }
1790
1791 void setCondition(Value *V) { Op<0>() = V; }
1792 void setTrueValue(Value *V) { Op<1>() = V; }
1793 void setFalseValue(Value *V) { Op<2>() = V; }
1794
1795 /// Swap the true and false values of the select instruction.
1796 /// This doesn't swap prof metadata.
1797 void swapValues() { Op<1>().swap(Op<2>()); }
1798
1799 /// Return a string if the specified operands are invalid
1800 /// for a select operation, otherwise return null.
1801 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1802
1803 /// Transparently provide more efficient getOperand methods.
1804 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1805
1806 OtherOps getOpcode() const {
1807 return static_cast<OtherOps>(Instruction::getOpcode());
1808 }
1809
1810 // Methods for support type inquiry through isa, cast, and dyn_cast:
1811 static bool classof(const Instruction *I) {
1812 return I->getOpcode() == Instruction::Select;
1813 }
1814 static bool classof(const Value *V) {
1815 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1816 }
1817};
1818
1819template <>
1820struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1821};
1822
1823DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SelectInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1823, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this))[i_nocapture
].get()); } void SelectInst::setOperand(unsigned i_nocapture,
Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<SelectInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1823, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<SelectInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SelectInst::getNumOperands() const
{ return OperandTraits<SelectInst>::operands(this); } template
<int Idx_nocapture> Use &SelectInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SelectInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
1824
1825//===----------------------------------------------------------------------===//
1826// VAArgInst Class
1827//===----------------------------------------------------------------------===//
1828
1829/// This class represents the va_arg llvm instruction, which returns
1830/// an argument of the specified type given a va_list and increments that list
1831///
1832class VAArgInst : public UnaryInstruction {
1833protected:
1834 // Note: Instruction needs to be a friend here to call cloneImpl.
1835 friend class Instruction;
1836
1837 VAArgInst *cloneImpl() const;
1838
1839public:
1840 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1841 Instruction *InsertBefore = nullptr)
1842 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1843 setName(NameStr);
1844 }
1845
1846 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1847 BasicBlock *InsertAtEnd)
1848 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1849 setName(NameStr);
1850 }
1851
1852 Value *getPointerOperand() { return getOperand(0); }
1853 const Value *getPointerOperand() const { return getOperand(0); }
1854 static unsigned getPointerOperandIndex() { return 0U; }
1855
1856 // Methods for support type inquiry through isa, cast, and dyn_cast:
1857 static bool classof(const Instruction *I) {
1858 return I->getOpcode() == VAArg;
1859 }
1860 static bool classof(const Value *V) {
1861 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1862 }
1863};
1864
1865//===----------------------------------------------------------------------===//
1866// ExtractElementInst Class
1867//===----------------------------------------------------------------------===//
1868
1869/// This instruction extracts a single (scalar)
1870/// element from a VectorType value
1871///
1872class ExtractElementInst : public Instruction {
1873 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1874 Instruction *InsertBefore = nullptr);
1875 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1876 BasicBlock *InsertAtEnd);
1877
1878protected:
1879 // Note: Instruction needs to be a friend here to call cloneImpl.
1880 friend class Instruction;
1881
1882 ExtractElementInst *cloneImpl() const;
1883
1884public:
1885 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1886 const Twine &NameStr = "",
1887 Instruction *InsertBefore = nullptr) {
1888 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1889 }
1890
1891 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1892 const Twine &NameStr,
1893 BasicBlock *InsertAtEnd) {
1894 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1895 }
1896
1897 /// Return true if an extractelement instruction can be
1898 /// formed with the specified operands.
1899 static bool isValidOperands(const Value *Vec, const Value *Idx);
1900
1901 Value *getVectorOperand() { return Op<0>(); }
1902 Value *getIndexOperand() { return Op<1>(); }
1903 const Value *getVectorOperand() const { return Op<0>(); }
1904 const Value *getIndexOperand() const { return Op<1>(); }
1905
1906 VectorType *getVectorOperandType() const {
1907 return cast<VectorType>(getVectorOperand()->getType());
1908 }
1909
1910 /// Transparently provide more efficient getOperand methods.
1911 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1912
1913 // Methods for support type inquiry through isa, cast, and dyn_cast:
1914 static bool classof(const Instruction *I) {
1915 return I->getOpcode() == Instruction::ExtractElement;
1916 }
1917 static bool classof(const Value *V) {
1918 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1919 }
1920};
1921
1922template <>
1923struct OperandTraits<ExtractElementInst> :
1924 public FixedNumOperandTraits<ExtractElementInst, 2> {
1925};
1926
1927DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
(static_cast <bool> (i_nocapture < OperandTraits<
ExtractElementInst>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1927, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this))[i_nocapture
].get()); } void ExtractElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ExtractElementInst>::operands(this)
&& "setOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1927, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<ExtractElementInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ExtractElementInst::getNumOperands
() const { return OperandTraits<ExtractElementInst>::operands
(this); } template <int Idx_nocapture> Use &ExtractElementInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &ExtractElementInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1928
1929//===----------------------------------------------------------------------===//
1930// InsertElementInst Class
1931//===----------------------------------------------------------------------===//
1932
1933/// This instruction inserts a single (scalar)
1934/// element into a VectorType value
1935///
1936class InsertElementInst : public Instruction {
1937 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1938 const Twine &NameStr = "",
1939 Instruction *InsertBefore = nullptr);
1940 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1941 BasicBlock *InsertAtEnd);
1942
1943protected:
1944 // Note: Instruction needs to be a friend here to call cloneImpl.
1945 friend class Instruction;
1946
1947 InsertElementInst *cloneImpl() const;
1948
1949public:
1950 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1951 const Twine &NameStr = "",
1952 Instruction *InsertBefore = nullptr) {
1953 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1954 }
1955
1956 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1957 const Twine &NameStr,
1958 BasicBlock *InsertAtEnd) {
1959 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1960 }
1961
1962 /// Return true if an insertelement instruction can be
1963 /// formed with the specified operands.
1964 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1965 const Value *Idx);
1966
1967 /// Overload to return most specific vector type.
1968 ///
1969 VectorType *getType() const {
1970 return cast<VectorType>(Instruction::getType());
1971 }
1972
1973 /// Transparently provide more efficient getOperand methods.
1974 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1975
1976 // Methods for support type inquiry through isa, cast, and dyn_cast:
1977 static bool classof(const Instruction *I) {
1978 return I->getOpcode() == Instruction::InsertElement;
1979 }
1980 static bool classof(const Value *V) {
1981 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1982 }
1983};
1984
1985template <>
1986struct OperandTraits<InsertElementInst> :
1987 public FixedNumOperandTraits<InsertElementInst, 3> {
1988};
1989
1990DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<InsertElementInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1990, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<InsertElementInst
>::op_begin(const_cast<InsertElementInst*>(this))[i_nocapture
].get()); } void InsertElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<InsertElementInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 1990, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<InsertElementInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned InsertElementInst::getNumOperands
() const { return OperandTraits<InsertElementInst>::operands
(this); } template <int Idx_nocapture> Use &InsertElementInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &InsertElementInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1991
1992//===----------------------------------------------------------------------===//
1993// ShuffleVectorInst Class
1994//===----------------------------------------------------------------------===//
1995
1996constexpr int UndefMaskElem = -1;
1997
1998/// This instruction constructs a fixed permutation of two
1999/// input vectors.
2000///
2001/// For each element of the result vector, the shuffle mask selects an element
2002/// from one of the input vectors to copy to the result. Non-negative elements
2003/// in the mask represent an index into the concatenated pair of input vectors.
2004/// UndefMaskElem (-1) specifies that the result element is undefined.
2005///
2006/// For scalable vectors, all the elements of the mask must be 0 or -1. This
2007/// requirement may be relaxed in the future.
2008class ShuffleVectorInst : public Instruction {
2009 SmallVector<int, 4> ShuffleMask;
2010 Constant *ShuffleMaskForBitcode;
2011
2012protected:
2013 // Note: Instruction needs to be a friend here to call cloneImpl.
2014 friend class Instruction;
2015
2016 ShuffleVectorInst *cloneImpl() const;
2017
2018public:
2019 ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr = "",
2020 Instruction *InsertBefore = nullptr);
2021 ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr,
2022 BasicBlock *InsertAtEnd);
2023 ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr = "",
2024 Instruction *InsertBefore = nullptr);
2025 ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr,
2026 BasicBlock *InsertAtEnd);
2027 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2028 const Twine &NameStr = "",
2029 Instruction *InsertBefor = nullptr);
2030 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2031 const Twine &NameStr, BasicBlock *InsertAtEnd);
2032 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2033 const Twine &NameStr = "",
2034 Instruction *InsertBefor = nullptr);
2035 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2036 const Twine &NameStr, BasicBlock *InsertAtEnd);
2037
2038 void *operator new(size_t S) { return User::operator new(S, 2); }
2039 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2040
2041 /// Swap the operands and adjust the mask to preserve the semantics
2042 /// of the instruction.
2043 void commute();
2044
2045 /// Return true if a shufflevector instruction can be
2046 /// formed with the specified operands.
2047 static bool isValidOperands(const Value *V1, const Value *V2,
2048 const Value *Mask);
2049 static bool isValidOperands(const Value *V1, const Value *V2,
2050 ArrayRef<int> Mask);
2051
2052 /// Overload to return most specific vector type.
2053 ///
2054 VectorType *getType() const {
2055 return cast<VectorType>(Instruction::getType());
2056 }
2057
2058 /// Transparently provide more efficient getOperand methods.
2059 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2060
2061 /// Return the shuffle mask value of this instruction for the given element
2062 /// index. Return UndefMaskElem if the element is undef.
2063 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2064
2065 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2066 /// elements of the mask are returned as UndefMaskElem.
2067 static void getShuffleMask(const Constant *Mask,
2068 SmallVectorImpl<int> &Result);
2069
2070 /// Return the mask for this instruction as a vector of integers. Undefined
2071 /// elements of the mask are returned as UndefMaskElem.
2072 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2073 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2074 }
2075
2076 /// Return the mask for this instruction, for use in bitcode.
2077 ///
2078 /// TODO: This is temporary until we decide a new bitcode encoding for
2079 /// shufflevector.
2080 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2081
2082 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2083 Type *ResultTy);
2084
2085 void setShuffleMask(ArrayRef<int> Mask);
2086
2087 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2088
2089 /// Return true if this shuffle returns a vector with a different number of
2090 /// elements than its source vectors.
2091 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2092 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2093 bool changesLength() const {
2094 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2095 ->getElementCount()
2096 .getKnownMinValue();
2097 unsigned NumMaskElts = ShuffleMask.size();
2098 return NumSourceElts != NumMaskElts;
2099 }
2100
2101 /// Return true if this shuffle returns a vector with a greater number of
2102 /// elements than its source vectors.
2103 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2104 bool increasesLength() const {
2105 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2106 ->getElementCount()
2107 .getKnownMinValue();
2108 unsigned NumMaskElts = ShuffleMask.size();
2109 return NumSourceElts < NumMaskElts;
2110 }
2111
2112 /// Return true if this shuffle mask chooses elements from exactly one source
2113 /// vector.
2114 /// Example: <7,5,undef,7>
2115 /// This assumes that vector operands are the same length as the mask.
2116 static bool isSingleSourceMask(ArrayRef<int> Mask);
2117 static bool isSingleSourceMask(const Constant *Mask) {
2118 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2118, __extension__ __PRETTY_FUNCTION__
))
;
2119 SmallVector<int, 16> MaskAsInts;
2120 getShuffleMask(Mask, MaskAsInts);
2121 return isSingleSourceMask(MaskAsInts);
2122 }
2123
2124 /// Return true if this shuffle chooses elements from exactly one source
2125 /// vector without changing the length of that vector.
2126 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2127 /// TODO: Optionally allow length-changing shuffles.
2128 bool isSingleSource() const {
2129 return !changesLength() && isSingleSourceMask(ShuffleMask);
2130 }
2131
2132 /// Return true if this shuffle mask chooses elements from exactly one source
2133 /// vector without lane crossings. A shuffle using this mask is not
2134 /// necessarily a no-op because it may change the number of elements from its
2135 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2136 /// Example: <undef,undef,2,3>
2137 static bool isIdentityMask(ArrayRef<int> Mask);
2138 static bool isIdentityMask(const Constant *Mask) {
2139 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2139, __extension__ __PRETTY_FUNCTION__
))
;
2140 SmallVector<int, 16> MaskAsInts;
2141 getShuffleMask(Mask, MaskAsInts);
2142 return isIdentityMask(MaskAsInts);
2143 }
2144
2145 /// Return true if this shuffle chooses elements from exactly one source
2146 /// vector without lane crossings and does not change the number of elements
2147 /// from its input vectors.
2148 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2149 bool isIdentity() const {
2150 return !changesLength() && isIdentityMask(ShuffleMask);
2151 }
2152
2153 /// Return true if this shuffle lengthens exactly one source vector with
2154 /// undefs in the high elements.
2155 bool isIdentityWithPadding() const;
2156
2157 /// Return true if this shuffle extracts the first N elements of exactly one
2158 /// source vector.
2159 bool isIdentityWithExtract() const;
2160
2161 /// Return true if this shuffle concatenates its 2 source vectors. This
2162 /// returns false if either input is undefined. In that case, the shuffle is
2163 /// is better classified as an identity with padding operation.
2164 bool isConcat() const;
2165
2166 /// Return true if this shuffle mask chooses elements from its source vectors
2167 /// without lane crossings. A shuffle using this mask would be
2168 /// equivalent to a vector select with a constant condition operand.
2169 /// Example: <4,1,6,undef>
2170 /// This returns false if the mask does not choose from both input vectors.
2171 /// In that case, the shuffle is better classified as an identity shuffle.
2172 /// This assumes that vector operands are the same length as the mask
2173 /// (a length-changing shuffle can never be equivalent to a vector select).
2174 static bool isSelectMask(ArrayRef<int> Mask);
2175 static bool isSelectMask(const Constant *Mask) {
2176 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2176, __extension__ __PRETTY_FUNCTION__
))
;
2177 SmallVector<int, 16> MaskAsInts;
2178 getShuffleMask(Mask, MaskAsInts);
2179 return isSelectMask(MaskAsInts);
2180 }
2181
2182 /// Return true if this shuffle chooses elements from its source vectors
2183 /// without lane crossings and all operands have the same number of elements.
2184 /// In other words, this shuffle is equivalent to a vector select with a
2185 /// constant condition operand.
2186 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2187 /// This returns false if the mask does not choose from both input vectors.
2188 /// In that case, the shuffle is better classified as an identity shuffle.
2189 /// TODO: Optionally allow length-changing shuffles.
2190 bool isSelect() const {
2191 return !changesLength() && isSelectMask(ShuffleMask);
2192 }
2193
2194 /// Return true if this shuffle mask swaps the order of elements from exactly
2195 /// one source vector.
2196 /// Example: <7,6,undef,4>
2197 /// This assumes that vector operands are the same length as the mask.
2198 static bool isReverseMask(ArrayRef<int> Mask);
2199 static bool isReverseMask(const Constant *Mask) {
2200 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2200, __extension__ __PRETTY_FUNCTION__
))
;
2201 SmallVector<int, 16> MaskAsInts;
2202 getShuffleMask(Mask, MaskAsInts);
2203 return isReverseMask(MaskAsInts);
2204 }
2205
2206 /// Return true if this shuffle swaps the order of elements from exactly
2207 /// one source vector.
2208 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2209 /// TODO: Optionally allow length-changing shuffles.
2210 bool isReverse() const {
2211 return !changesLength() && isReverseMask(ShuffleMask);
2212 }
2213
2214 /// Return true if this shuffle mask chooses all elements with the same value
2215 /// as the first element of exactly one source vector.
2216 /// Example: <4,undef,undef,4>
2217 /// This assumes that vector operands are the same length as the mask.
2218 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2219 static bool isZeroEltSplatMask(const Constant *Mask) {
2220 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2220, __extension__ __PRETTY_FUNCTION__
))
;
2221 SmallVector<int, 16> MaskAsInts;
2222 getShuffleMask(Mask, MaskAsInts);
2223 return isZeroEltSplatMask(MaskAsInts);
2224 }
2225
2226 /// Return true if all elements of this shuffle are the same value as the
2227 /// first element of exactly one source vector without changing the length
2228 /// of that vector.
2229 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2230 /// TODO: Optionally allow length-changing shuffles.
2231 /// TODO: Optionally allow splats from other elements.
2232 bool isZeroEltSplat() const {
2233 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2234 }
2235
2236 /// Return true if this shuffle mask is a transpose mask.
2237 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2238 /// even- or odd-numbered vector elements from two n-dimensional source
2239 /// vectors and write each result into consecutive elements of an
2240 /// n-dimensional destination vector. Two shuffles are necessary to complete
2241 /// the transpose, one for the even elements and another for the odd elements.
2242 /// This description closely follows how the TRN1 and TRN2 AArch64
2243 /// instructions operate.
2244 ///
2245 /// For example, a simple 2x2 matrix can be transposed with:
2246 ///
2247 /// ; Original matrix
2248 /// m0 = < a, b >
2249 /// m1 = < c, d >
2250 ///
2251 /// ; Transposed matrix
2252 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2253 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2254 ///
2255 /// For matrices having greater than n columns, the resulting nx2 transposed
2256 /// matrix is stored in two result vectors such that one vector contains
2257 /// interleaved elements from all the even-numbered rows and the other vector
2258 /// contains interleaved elements from all the odd-numbered rows. For example,
2259 /// a 2x4 matrix can be transposed with:
2260 ///
2261 /// ; Original matrix
2262 /// m0 = < a, b, c, d >
2263 /// m1 = < e, f, g, h >
2264 ///
2265 /// ; Transposed matrix
2266 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2267 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2268 static bool isTransposeMask(ArrayRef<int> Mask);
2269 static bool isTransposeMask(const Constant *Mask) {
2270 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2270, __extension__ __PRETTY_FUNCTION__
))
;
2271 SmallVector<int, 16> MaskAsInts;
2272 getShuffleMask(Mask, MaskAsInts);
2273 return isTransposeMask(MaskAsInts);
2274 }
2275
2276 /// Return true if this shuffle transposes the elements of its inputs without
2277 /// changing the length of the vectors. This operation may also be known as a
2278 /// merge or interleave. See the description for isTransposeMask() for the
2279 /// exact specification.
2280 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2281 bool isTranspose() const {
2282 return !changesLength() && isTransposeMask(ShuffleMask);
2283 }
2284
2285 /// Return true if this shuffle mask is an extract subvector mask.
2286 /// A valid extract subvector mask returns a smaller vector from a single
2287 /// source operand. The base extraction index is returned as well.
2288 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2289 int &Index);
2290 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2291 int &Index) {
2292 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2292, __extension__ __PRETTY_FUNCTION__
))
;
2293 // Not possible to express a shuffle mask for a scalable vector for this
2294 // case.
2295 if (isa<ScalableVectorType>(Mask->getType()))
2296 return false;
2297 SmallVector<int, 16> MaskAsInts;
2298 getShuffleMask(Mask, MaskAsInts);
2299 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2300 }
2301
2302 /// Return true if this shuffle mask is an extract subvector mask.
2303 bool isExtractSubvectorMask(int &Index) const {
2304 // Not possible to express a shuffle mask for a scalable vector for this
2305 // case.
2306 if (isa<ScalableVectorType>(getType()))
2307 return false;
2308
2309 int NumSrcElts =
2310 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2311 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2312 }
2313
2314 /// Return true if this shuffle mask is an insert subvector mask.
2315 /// A valid insert subvector mask inserts the lowest elements of a second
2316 /// source operand into an in-place first source operand operand.
2317 /// Both the sub vector width and the insertion index is returned.
2318 static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2319 int &NumSubElts, int &Index);
2320 static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts,
2321 int &NumSubElts, int &Index) {
2322 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2322, __extension__ __PRETTY_FUNCTION__
))
;
2323 // Not possible to express a shuffle mask for a scalable vector for this
2324 // case.
2325 if (isa<ScalableVectorType>(Mask->getType()))
2326 return false;
2327 SmallVector<int, 16> MaskAsInts;
2328 getShuffleMask(Mask, MaskAsInts);
2329 return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index);
2330 }
2331
2332 /// Return true if this shuffle mask is an insert subvector mask.
2333 bool isInsertSubvectorMask(int &NumSubElts, int &Index) const {
2334 // Not possible to express a shuffle mask for a scalable vector for this
2335 // case.
2336 if (isa<ScalableVectorType>(getType()))
2337 return false;
2338
2339 int NumSrcElts =
2340 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2341 return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index);
2342 }
2343
2344 /// Return true if this shuffle mask replicates each of the \p VF elements
2345 /// in a vector \p ReplicationFactor times.
2346 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
2347 /// <0,0,0,1,1,1,2,2,2,3,3,3>
2348 static bool isReplicationMask(ArrayRef<int> Mask, int &ReplicationFactor,
2349 int &VF);
2350 static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor,
2351 int &VF) {
2352 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "llvm/include/llvm/IR/Instructions.h", 2352, __extension__ __PRETTY_FUNCTION__
))
;
2353 // Not possible to express a shuffle mask for a scalable vector for this
2354 // case.
2355 if (isa<ScalableVectorType>(Mask->getType()))
2356 return false;
2357 SmallVector<int, 16> MaskAsInts;
2358 getShuffleMask(Mask, MaskAsInts);
2359 return isReplicationMask(MaskAsInts, ReplicationFactor, VF);
2360 }
2361
2362 /// Return true if this shuffle mask is a replication mask.
2363 bool isReplicationMask(int &ReplicationFactor, int &VF) const;
2364
2365 /// Change values in a shuffle permute mask assuming the two vector operands
2366 /// of length InVecNumElts have swapped position.
2367 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2368 unsigned InVecNumElts) {
2369 for (int &Idx : Mask) {
2370 if (Idx == -1)
2371 continue;
2372 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2373 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "llvm/include/llvm/IR/Instructions.h", 2374, __extension__ __PRETTY_FUNCTION__
))
2374 "shufflevector mask index out of range")(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "llvm/include/llvm/IR/Instructions.h", 2374, __extension__ __PRETTY_FUNCTION__
))
;
2375 }
2376 }
2377
2378 // Methods for support type inquiry through isa, cast, and dyn_cast:
2379 static bool classof(const Instruction *I) {
2380 return I->getOpcode() == Instruction::ShuffleVector;
2381 }
2382 static bool classof(const Value *V) {
2383 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2384 }
2385};
2386
2387template <>
2388struct OperandTraits<ShuffleVectorInst>
2389 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2390
2391DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<ShuffleVectorInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2391, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<ShuffleVectorInst
>::op_begin(const_cast<ShuffleVectorInst*>(this))[i_nocapture
].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ShuffleVectorInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2391, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<ShuffleVectorInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ShuffleVectorInst::getNumOperands
() const { return OperandTraits<ShuffleVectorInst>::operands
(this); } template <int Idx_nocapture> Use &ShuffleVectorInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &ShuffleVectorInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2392
2393//===----------------------------------------------------------------------===//
2394// ExtractValueInst Class
2395//===----------------------------------------------------------------------===//
2396
2397/// This instruction extracts a struct member or array
2398/// element value from an aggregate value.
2399///
2400class ExtractValueInst : public UnaryInstruction {
2401 SmallVector<unsigned, 4> Indices;
2402
2403 ExtractValueInst(const ExtractValueInst &EVI);
2404
2405 /// Constructors - Create a extractvalue instruction with a base aggregate
2406 /// value and a list of indices. The first ctor can optionally insert before
2407 /// an existing instruction, the second appends the new instruction to the
2408 /// specified BasicBlock.
2409 inline ExtractValueInst(Value *Agg,
2410 ArrayRef<unsigned> Idxs,
2411 const Twine &NameStr,
2412 Instruction *InsertBefore);
2413 inline ExtractValueInst(Value *Agg,
2414 ArrayRef<unsigned> Idxs,
2415 const Twine &NameStr, BasicBlock *InsertAtEnd);
2416
2417 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2418
2419protected:
2420 // Note: Instruction needs to be a friend here to call cloneImpl.
2421 friend class Instruction;
2422
2423 ExtractValueInst *cloneImpl() const;
2424
2425public:
2426 static ExtractValueInst *Create(Value *Agg,
2427 ArrayRef<unsigned> Idxs,
2428 const Twine &NameStr = "",
2429 Instruction *InsertBefore = nullptr) {
2430 return new
2431 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2432 }
2433
2434 static ExtractValueInst *Create(Value *Agg,
2435 ArrayRef<unsigned> Idxs,
2436 const Twine &NameStr,
2437 BasicBlock *InsertAtEnd) {
2438 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2439 }
2440
2441 /// Returns the type of the element that would be extracted
2442 /// with an extractvalue instruction with the specified parameters.
2443 ///
2444 /// Null is returned if the indices are invalid for the specified type.
2445 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2446
2447 using idx_iterator = const unsigned*;
2448
2449 inline idx_iterator idx_begin() const { return Indices.begin(); }
2450 inline idx_iterator idx_end() const { return Indices.end(); }
2451 inline iterator_range<idx_iterator> indices() const {
2452 return make_range(idx_begin(), idx_end());
2453 }
2454
2455 Value *getAggregateOperand() {
2456 return getOperand(0);
2457 }
2458 const Value *getAggregateOperand() const {
2459 return getOperand(0);
2460 }
2461 static unsigned getAggregateOperandIndex() {
2462 return 0U; // get index for modifying correct operand
2463 }
2464
2465 ArrayRef<unsigned> getIndices() const {
2466 return Indices;
2467 }
2468
2469 unsigned getNumIndices() const {
2470 return (unsigned)Indices.size();
2471 }
2472
2473 bool hasIndices() const {
2474 return true;
2475 }
2476
2477 // Methods for support type inquiry through isa, cast, and dyn_cast:
2478 static bool classof(const Instruction *I) {
2479 return I->getOpcode() == Instruction::ExtractValue;
2480 }
2481 static bool classof(const Value *V) {
2482 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2483 }
2484};
2485
2486ExtractValueInst::ExtractValueInst(Value *Agg,
2487 ArrayRef<unsigned> Idxs,
2488 const Twine &NameStr,
2489 Instruction *InsertBefore)
2490 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2491 ExtractValue, Agg, InsertBefore) {
2492 init(Idxs, NameStr);
2493}
2494
2495ExtractValueInst::ExtractValueInst(Value *Agg,
2496 ArrayRef<unsigned> Idxs,
2497 const Twine &NameStr,
2498 BasicBlock *InsertAtEnd)
2499 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2500 ExtractValue, Agg, InsertAtEnd) {
2501 init(Idxs, NameStr);
2502}
2503
2504//===----------------------------------------------------------------------===//
2505// InsertValueInst Class
2506//===----------------------------------------------------------------------===//
2507
2508/// This instruction inserts a struct field of array element
2509/// value into an aggregate value.
2510///
2511class InsertValueInst : public Instruction {
2512 SmallVector<unsigned, 4> Indices;
2513
2514 InsertValueInst(const InsertValueInst &IVI);
2515
2516 /// Constructors - Create a insertvalue instruction with a base aggregate
2517 /// value, a value to insert, and a list of indices. The first ctor can
2518 /// optionally insert before an existing instruction, the second appends
2519 /// the new instruction to the specified BasicBlock.
2520 inline InsertValueInst(Value *Agg, Value *Val,
2521 ArrayRef<unsigned> Idxs,
2522 const Twine &NameStr,
2523 Instruction *InsertBefore);
2524 inline InsertValueInst(Value *Agg, Value *Val,
2525 ArrayRef<unsigned> Idxs,
2526 const Twine &NameStr, BasicBlock *InsertAtEnd);
2527
2528 /// Constructors - These two constructors are convenience methods because one
2529 /// and two index insertvalue instructions are so common.
2530 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2531 const Twine &NameStr = "",
2532 Instruction *InsertBefore = nullptr);
2533 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2534 BasicBlock *InsertAtEnd);
2535
2536 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2537 const Twine &NameStr);
2538
2539protected:
2540 // Note: Instruction needs to be a friend here to call cloneImpl.
2541 friend class Instruction;
2542
2543 InsertValueInst *cloneImpl() const;
2544
2545public:
2546 // allocate space for exactly two operands
2547 void *operator new(size_t S) { return User::operator new(S, 2); }
2548 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2549
2550 static InsertValueInst *Create(Value *Agg, Value *Val,
2551 ArrayRef<unsigned> Idxs,
2552 const Twine &NameStr = "",
2553 Instruction *InsertBefore = nullptr) {
2554 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2555 }
2556
2557 static InsertValueInst *Create(Value *Agg, Value *Val,
2558 ArrayRef<unsigned> Idxs,
2559 const Twine &NameStr,
2560 BasicBlock *InsertAtEnd) {
2561 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2562 }
2563
2564 /// Transparently provide more efficient getOperand methods.
2565 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2566
2567 using idx_iterator = const unsigned*;
2568
2569 inline idx_iterator idx_begin() const { return Indices.begin(); }
2570 inline idx_iterator idx_end() const { return Indices.end(); }
2571 inline iterator_range<idx_iterator> indices() const {
2572 return make_range(idx_begin(), idx_end());
2573 }
2574
2575 Value *getAggregateOperand() {
2576 return getOperand(0);
2577 }
2578 const Value *getAggregateOperand() const {
2579 return getOperand(0);
2580 }
2581 static unsigned getAggregateOperandIndex() {
2582 return 0U; // get index for modifying correct operand
2583 }
2584
2585 Value *getInsertedValueOperand() {
2586 return getOperand(1);
2587 }
2588 const Value *getInsertedValueOperand() const {
2589 return getOperand(1);
2590 }
2591 static unsigned getInsertedValueOperandIndex() {
2592 return 1U; // get index for modifying correct operand
2593 }
2594
2595 ArrayRef<unsigned> getIndices() const {
2596 return Indices;
2597 }
2598
2599 unsigned getNumIndices() const {
2600 return (unsigned)Indices.size();
2601 }
2602
2603 bool hasIndices() const {
2604 return true;
2605 }
2606
2607 // Methods for support type inquiry through isa, cast, and dyn_cast:
2608 static bool classof(const Instruction *I) {
2609 return I->getOpcode() == Instruction::InsertValue;
2610 }
2611 static bool classof(const Value *V) {
2612 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2613 }
2614};
2615
2616template <>
2617struct OperandTraits<InsertValueInst> :
2618 public FixedNumOperandTraits<InsertValueInst, 2> {
2619};
2620
2621InsertValueInst::InsertValueInst(Value *Agg,
2622 Value *Val,
2623 ArrayRef<unsigned> Idxs,
2624 const Twine &NameStr,
2625 Instruction *InsertBefore)
2626 : Instruction(Agg->getType(), InsertValue,
2627 OperandTraits<InsertValueInst>::op_begin(this),
2628 2, InsertBefore) {
2629 init(Agg, Val, Idxs, NameStr);
2630}
2631
2632InsertValueInst::InsertValueInst(Value *Agg,
2633 Value *Val,
2634 ArrayRef<unsigned> Idxs,
2635 const Twine &NameStr,
2636 BasicBlock *InsertAtEnd)
2637 : Instruction(Agg->getType(), InsertValue,
2638 OperandTraits<InsertValueInst>::op_begin(this),
2639 2, InsertAtEnd) {
2640 init(Agg, Val, Idxs, NameStr);
2641}
2642
2643DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<InsertValueInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2643, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<InsertValueInst
>::op_begin(const_cast<InsertValueInst*>(this))[i_nocapture
].get()); } void InsertValueInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<InsertValueInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2643, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<InsertValueInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned InsertValueInst::getNumOperands
() const { return OperandTraits<InsertValueInst>::operands
(this); } template <int Idx_nocapture> Use &InsertValueInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &InsertValueInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2644
2645//===----------------------------------------------------------------------===//
2646// PHINode Class
2647//===----------------------------------------------------------------------===//
2648
2649// PHINode - The PHINode class is used to represent the magical mystical PHI
2650// node, that can not exist in nature, but can be synthesized in a computer
2651// scientist's overactive imagination.
2652//
2653class PHINode : public Instruction {
2654 /// The number of operands actually allocated. NumOperands is
2655 /// the number actually in use.
2656 unsigned ReservedSpace;
2657
2658 PHINode(const PHINode &PN);
2659
2660 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2661 const Twine &NameStr = "",
2662 Instruction *InsertBefore = nullptr)
2663 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2664 ReservedSpace(NumReservedValues) {
2665 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "llvm/include/llvm/IR/Instructions.h", 2665, __extension__ __PRETTY_FUNCTION__
))
;
2666 setName(NameStr);
2667 allocHungoffUses(ReservedSpace);
2668 }
2669
2670 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2671 BasicBlock *InsertAtEnd)
2672 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2673 ReservedSpace(NumReservedValues) {
2674 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "llvm/include/llvm/IR/Instructions.h", 2674, __extension__ __PRETTY_FUNCTION__
))
;
2675 setName(NameStr);
2676 allocHungoffUses(ReservedSpace);
2677 }
2678
2679protected:
2680 // Note: Instruction needs to be a friend here to call cloneImpl.
2681 friend class Instruction;
2682
2683 PHINode *cloneImpl() const;
2684
2685 // allocHungoffUses - this is more complicated than the generic
2686 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2687 // values and pointers to the incoming blocks, all in one allocation.
2688 void allocHungoffUses(unsigned N) {
2689 User::allocHungoffUses(N, /* IsPhi */ true);
2690 }
2691
2692public:
2693 /// Constructors - NumReservedValues is a hint for the number of incoming
2694 /// edges that this phi node will have (use 0 if you really have no idea).
2695 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2696 const Twine &NameStr = "",
2697 Instruction *InsertBefore = nullptr) {
2698 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2699 }
2700
2701 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2702 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2703 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2704 }
2705
2706 /// Provide fast operand accessors
2707 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2708
2709 // Block iterator interface. This provides access to the list of incoming
2710 // basic blocks, which parallels the list of incoming values.
2711
2712 using block_iterator = BasicBlock **;
2713 using const_block_iterator = BasicBlock * const *;
2714
2715 block_iterator block_begin() {
2716 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2717 }
2718
2719 const_block_iterator block_begin() const {
2720 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2721 }
2722
2723 block_iterator block_end() {
2724 return block_begin() + getNumOperands();
2725 }
2726
2727 const_block_iterator block_end() const {
2728 return block_begin() + getNumOperands();
2729 }
2730
2731 iterator_range<block_iterator> blocks() {
2732 return make_range(block_begin(), block_end());
2733 }
2734
2735 iterator_range<const_block_iterator> blocks() const {
2736 return make_range(block_begin(), block_end());
2737 }
2738
2739 op_range incoming_values() { return operands(); }
2740
2741 const_op_range incoming_values() const { return operands(); }
2742
2743 /// Return the number of incoming edges
2744 ///
2745 unsigned getNumIncomingValues() const { return getNumOperands(); }
2746
2747 /// Return incoming value number x
2748 ///
2749 Value *getIncomingValue(unsigned i) const {
2750 return getOperand(i);
2751 }
2752 void setIncomingValue(unsigned i, Value *V) {
2753 assert(V && "PHI node got a null value!")(static_cast <bool> (V && "PHI node got a null value!"
) ? void (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "llvm/include/llvm/IR/Instructions.h", 2753, __extension__ __PRETTY_FUNCTION__
))
;
2754 assert(getType() == V->getType() &&(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "llvm/include/llvm/IR/Instructions.h", 2755, __extension__ __PRETTY_FUNCTION__
))
2755 "All operands to PHI node must be the same type as the PHI node!")(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "llvm/include/llvm/IR/Instructions.h", 2755, __extension__ __PRETTY_FUNCTION__
))
;
2756 setOperand(i, V);
2757 }
2758
2759 static unsigned getOperandNumForIncomingValue(unsigned i) {
2760 return i;
2761 }
2762
2763 static unsigned getIncomingValueNumForOperand(unsigned i) {
2764 return i;
2765 }
2766
2767 /// Return incoming basic block number @p i.
2768 ///
2769 BasicBlock *getIncomingBlock(unsigned i) const {
2770 return block_begin()[i];
2771 }
2772
2773 /// Return incoming basic block corresponding
2774 /// to an operand of the PHI.
2775 ///
2776 BasicBlock *getIncomingBlock(const Use &U) const {
2777 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")(static_cast <bool> (this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? void (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "llvm/include/llvm/IR/Instructions.h", 2777, __extension__ __PRETTY_FUNCTION__
))
;
2778 return getIncomingBlock(unsigned(&U - op_begin()));
2779 }
2780
2781 /// Return incoming basic block corresponding
2782 /// to value use iterator.
2783 ///
2784 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2785 return getIncomingBlock(I.getUse());
2786 }
2787
2788 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2789 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "llvm/include/llvm/IR/Instructions.h", 2789, __extension__ __PRETTY_FUNCTION__
))
;
2790 block_begin()[i] = BB;
2791 }
2792
2793 /// Replace every incoming basic block \p Old to basic block \p New.
2794 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2795 assert(New && Old && "PHI node got a null basic block!")(static_cast <bool> (New && Old && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "llvm/include/llvm/IR/Instructions.h", 2795, __extension__ __PRETTY_FUNCTION__
))
;
2796 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2797 if (getIncomingBlock(Op) == Old)
2798 setIncomingBlock(Op, New);
2799 }
2800
2801 /// Add an incoming value to the end of the PHI list
2802 ///
2803 void addIncoming(Value *V, BasicBlock *BB) {
2804 if (getNumOperands() == ReservedSpace)
2805 growOperands(); // Get more space!
2806 // Initialize some new operands.
2807 setNumHungOffUseOperands(getNumOperands() + 1);
2808 setIncomingValue(getNumOperands() - 1, V);
2809 setIncomingBlock(getNumOperands() - 1, BB);
2810 }
2811
2812 /// Remove an incoming value. This is useful if a
2813 /// predecessor basic block is deleted. The value removed is returned.
2814 ///
2815 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2816 /// is true), the PHI node is destroyed and any uses of it are replaced with
2817 /// dummy values. The only time there should be zero incoming values to a PHI
2818 /// node is when the block is dead, so this strategy is sound.
2819 ///
2820 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2821
2822 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2823 int Idx = getBasicBlockIndex(BB);
2824 assert(Idx >= 0 && "Invalid basic block argument to remove!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument to remove!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "llvm/include/llvm/IR/Instructions.h", 2824, __extension__ __PRETTY_FUNCTION__
))
;
2825 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2826 }
2827
2828 /// Return the first index of the specified basic
2829 /// block in the value list for this PHI. Returns -1 if no instance.
2830 ///
2831 int getBasicBlockIndex(const BasicBlock *BB) const {
2832 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2833 if (block_begin()[i] == BB)
2834 return i;
2835 return -1;
2836 }
2837
2838 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2839 int Idx = getBasicBlockIndex(BB);
2840 assert(Idx >= 0 && "Invalid basic block argument!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "llvm/include/llvm/IR/Instructions.h", 2840, __extension__ __PRETTY_FUNCTION__
))
;
2841 return getIncomingValue(Idx);
2842 }
2843
2844 /// Set every incoming value(s) for block \p BB to \p V.
2845 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2846 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "llvm/include/llvm/IR/Instructions.h", 2846, __extension__ __PRETTY_FUNCTION__
))
;
2847 bool Found = false;
2848 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2849 if (getIncomingBlock(Op) == BB) {
2850 Found = true;
2851 setIncomingValue(Op, V);
2852 }
2853 (void)Found;
2854 assert(Found && "Invalid basic block argument to set!")(static_cast <bool> (Found && "Invalid basic block argument to set!"
) ? void (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "llvm/include/llvm/IR/Instructions.h", 2854, __extension__ __PRETTY_FUNCTION__
))
;
2855 }
2856
2857 /// If the specified PHI node always merges together the
2858 /// same value, return the value, otherwise return null.
2859 Value *hasConstantValue() const;
2860
2861 /// Whether the specified PHI node always merges
2862 /// together the same value, assuming undefs are equal to a unique
2863 /// non-undef value.
2864 bool hasConstantOrUndefValue() const;
2865
2866 /// If the PHI node is complete which means all of its parent's predecessors
2867 /// have incoming value in this PHI, return true, otherwise return false.
2868 bool isComplete() const {
2869 return llvm::all_of(predecessors(getParent()),
2870 [this](const BasicBlock *Pred) {
2871 return getBasicBlockIndex(Pred) >= 0;
2872 });
2873 }
2874
2875 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2876 static bool classof(const Instruction *I) {
2877 return I->getOpcode() == Instruction::PHI;
2878 }
2879 static bool classof(const Value *V) {
2880 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2881 }
2882
2883private:
2884 void growOperands();
2885};
2886
2887template <>
2888struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2889};
2890
2891DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { (static_cast <bool> (i_nocapture < OperandTraits
<PHINode>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2891, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<PHINode
>::op_begin(const_cast<PHINode*>(this))[i_nocapture]
.get()); } void PHINode::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2891, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<PHINode>::op_begin(this)[i_nocapture]
= Val_nocapture; } unsigned PHINode::getNumOperands() const {
return OperandTraits<PHINode>::operands(this); } template
<int Idx_nocapture> Use &PHINode::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &PHINode::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
2892
2893//===----------------------------------------------------------------------===//
2894// LandingPadInst Class
2895//===----------------------------------------------------------------------===//
2896
2897//===---------------------------------------------------------------------------
2898/// The landingpad instruction holds all of the information
2899/// necessary to generate correct exception handling. The landingpad instruction
2900/// cannot be moved from the top of a landing pad block, which itself is
2901/// accessible only from the 'unwind' edge of an invoke. This uses the
2902/// SubclassData field in Value to store whether or not the landingpad is a
2903/// cleanup.
2904///
2905class LandingPadInst : public Instruction {
2906 using CleanupField = BoolBitfieldElementT<0>;
2907
2908 /// The number of operands actually allocated. NumOperands is
2909 /// the number actually in use.
2910 unsigned ReservedSpace;
2911
2912 LandingPadInst(const LandingPadInst &LP);
2913
2914public:
2915 enum ClauseType { Catch, Filter };
2916
2917private:
2918 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2919 const Twine &NameStr, Instruction *InsertBefore);
2920 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2921 const Twine &NameStr, BasicBlock *InsertAtEnd);
2922
2923 // Allocate space for exactly zero operands.
2924 void *operator new(size_t S) { return User::operator new(S); }
2925
2926 void growOperands(unsigned Size);
2927 void init(unsigned NumReservedValues, const Twine &NameStr);
2928
2929protected:
2930 // Note: Instruction needs to be a friend here to call cloneImpl.
2931 friend class Instruction;
2932
2933 LandingPadInst *cloneImpl() const;
2934
2935public:
2936 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2937
2938 /// Constructors - NumReservedClauses is a hint for the number of incoming
2939 /// clauses that this landingpad will have (use 0 if you really have no idea).
2940 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2941 const Twine &NameStr = "",
2942 Instruction *InsertBefore = nullptr);
2943 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2944 const Twine &NameStr, BasicBlock *InsertAtEnd);
2945
2946 /// Provide fast operand accessors
2947 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2948
2949 /// Return 'true' if this landingpad instruction is a
2950 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2951 /// doesn't catch the exception.
2952 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2953
2954 /// Indicate that this landingpad instruction is a cleanup.
2955 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2956
2957 /// Add a catch or filter clause to the landing pad.
2958 void addClause(Constant *ClauseVal);
2959
2960 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2961 /// determine what type of clause this is.
2962 Constant *getClause(unsigned Idx) const {
2963 return cast<Constant>(getOperandList()[Idx]);
2964 }
2965
2966 /// Return 'true' if the clause and index Idx is a catch clause.
2967 bool isCatch(unsigned Idx) const {
2968 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2969 }
2970
2971 /// Return 'true' if the clause and index Idx is a filter clause.
2972 bool isFilter(unsigned Idx) const {
2973 return isa<ArrayType>(getOperandList()[Idx]->getType());
2974 }
2975
2976 /// Get the number of clauses for this landing pad.
2977 unsigned getNumClauses() const { return getNumOperands(); }
2978
2979 /// Grow the size of the operand list to accommodate the new
2980 /// number of clauses.
2981 void reserveClauses(unsigned Size) { growOperands(Size); }
2982
2983 // Methods for support type inquiry through isa, cast, and dyn_cast:
2984 static bool classof(const Instruction *I) {
2985 return I->getOpcode() == Instruction::LandingPad;
2986 }
2987 static bool classof(const Value *V) {
2988 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2989 }
2990};
2991
2992template <>
2993struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2994};
2995
2996DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2996, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<LandingPadInst
>::op_begin(const_cast<LandingPadInst*>(this))[i_nocapture
].get()); } void LandingPadInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<LandingPadInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 2996, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<LandingPadInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned LandingPadInst::getNumOperands(
) const { return OperandTraits<LandingPadInst>::operands
(this); } template <int Idx_nocapture> Use &LandingPadInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &LandingPadInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2997
2998//===----------------------------------------------------------------------===//
2999// ReturnInst Class
3000//===----------------------------------------------------------------------===//
3001
3002//===---------------------------------------------------------------------------
3003/// Return a value (possibly void), from a function. Execution
3004/// does not continue in this function any longer.
3005///
3006class ReturnInst : public Instruction {
3007 ReturnInst(const ReturnInst &RI);
3008
3009private:
3010 // ReturnInst constructors:
3011 // ReturnInst() - 'ret void' instruction
3012 // ReturnInst( null) - 'ret void' instruction
3013 // ReturnInst(Value* X) - 'ret X' instruction
3014 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
3015 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
3016 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
3017 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
3018 //
3019 // NOTE: If the Value* passed is of type void then the constructor behaves as
3020 // if it was passed NULL.
3021 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
3022 Instruction *InsertBefore = nullptr);
3023 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
3024 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
3025
3026protected:
3027 // Note: Instruction needs to be a friend here to call cloneImpl.
3028 friend class Instruction;
3029
3030 ReturnInst *cloneImpl() const;
3031
3032public:
3033 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
3034 Instruction *InsertBefore = nullptr) {
3035 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
3036 }
3037
3038 static ReturnInst* Create(LLVMContext &C, Value *retVal,
3039 BasicBlock *InsertAtEnd) {
3040 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
3041 }
3042
3043 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
3044 return new(0) ReturnInst(C, InsertAtEnd);
3045 }
3046
3047 /// Provide fast operand accessors
3048 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3049
3050 /// Convenience accessor. Returns null if there is no return value.
3051 Value *getReturnValue() const {
3052 return getNumOperands() != 0 ? getOperand(0) : nullptr;
3053 }
3054
3055 unsigned getNumSuccessors() const { return 0; }
3056
3057 // Methods for support type inquiry through isa, cast, and dyn_cast:
3058 static bool classof(const Instruction *I) {
3059 return (I->getOpcode() == Instruction::Ret);
3060 }
3061 static bool classof(const Value *V) {
3062 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3063 }
3064
3065private:
3066 BasicBlock *getSuccessor(unsigned idx) const {
3067 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 3067)
;
3068 }
3069
3070 void setSuccessor(unsigned idx, BasicBlock *B) {
3071 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 3071)
;
3072 }
3073};
3074
3075template <>
3076struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3077};
3078
3079DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<ReturnInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3079, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this))[i_nocapture
].get()); } void ReturnInst::setOperand(unsigned i_nocapture,
Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3079, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const
{ return OperandTraits<ReturnInst>::operands(this); } template
<int Idx_nocapture> Use &ReturnInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ReturnInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3080
3081//===----------------------------------------------------------------------===//
3082// BranchInst Class
3083//===----------------------------------------------------------------------===//
3084
3085//===---------------------------------------------------------------------------
3086/// Conditional or Unconditional Branch instruction.
3087///
3088class BranchInst : public Instruction {
3089 /// Ops list - Branches are strange. The operands are ordered:
3090 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3091 /// they don't have to check for cond/uncond branchness. These are mostly
3092 /// accessed relative from op_end().
3093 BranchInst(const BranchInst &BI);
3094 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3095 // BranchInst(BB *B) - 'br B'
3096 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3097 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3098 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3099 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3100 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3101 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3102 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3103 Instruction *InsertBefore = nullptr);
3104 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3105 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3106 BasicBlock *InsertAtEnd);
3107
3108 void AssertOK();
3109
3110protected:
3111 // Note: Instruction needs to be a friend here to call cloneImpl.
3112 friend class Instruction;
3113
3114 BranchInst *cloneImpl() const;
3115
3116public:
3117 /// Iterator type that casts an operand to a basic block.
3118 ///
3119 /// This only makes sense because the successors are stored as adjacent
3120 /// operands for branch instructions.
3121 struct succ_op_iterator
3122 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3123 std::random_access_iterator_tag, BasicBlock *,
3124 ptrdiff_t, BasicBlock *, BasicBlock *> {
3125 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3126
3127 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3128 BasicBlock *operator->() const { return operator*(); }
3129 };
3130
3131 /// The const version of `succ_op_iterator`.
3132 struct const_succ_op_iterator
3133 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3134 std::random_access_iterator_tag,
3135 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3136 const BasicBlock *> {
3137 explicit const_succ_op_iterator(const_value_op_iterator I)
3138 : iterator_adaptor_base(I) {}
3139
3140 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3141 const BasicBlock *operator->() const { return operator*(); }
3142 };
3143
3144 static BranchInst *Create(BasicBlock *IfTrue,
3145 Instruction *InsertBefore = nullptr) {
3146 return new(1) BranchInst(IfTrue, InsertBefore);
3147 }
3148
3149 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3150 Value *Cond, Instruction *InsertBefore = nullptr) {
3151 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3152 }
3153
3154 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3155 return new(1) BranchInst(IfTrue, InsertAtEnd);
3156 }
3157
3158 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3159 Value *Cond, BasicBlock *InsertAtEnd) {
3160 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3161 }
3162
3163 /// Transparently provide more efficient getOperand methods.
3164 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3165
3166 bool isUnconditional() const { return getNumOperands() == 1; }
3167 bool isConditional() const { return getNumOperands() == 3; }
3168
3169 Value *getCondition() const {
3170 assert(isConditional() && "Cannot get condition of an uncond branch!")(static_cast <bool> (isConditional() && "Cannot get condition of an uncond branch!"
) ? void (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "llvm/include/llvm/IR/Instructions.h", 3170, __extension__ __PRETTY_FUNCTION__
))
;
3171 return Op<-3>();
3172 }
3173
3174 void setCondition(Value *V) {
3175 assert(isConditional() && "Cannot set condition of unconditional branch!")(static_cast <bool> (isConditional() && "Cannot set condition of unconditional branch!"
) ? void (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "llvm/include/llvm/IR/Instructions.h", 3175, __extension__ __PRETTY_FUNCTION__
))
;
3176 Op<-3>() = V;
3177 }
3178
3179 unsigned getNumSuccessors() const { return 1+isConditional(); }
3180
3181 BasicBlock *getSuccessor(unsigned i) const {
3182 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (i < getNumSuccessors() &&
"Successor # out of range for Branch!") ? void (0) : __assert_fail
("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "llvm/include/llvm/IR/Instructions.h", 3182, __extension__ __PRETTY_FUNCTION__
))
;
3183 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3184 }
3185
3186 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3187 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor # out of range for Branch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "llvm/include/llvm/IR/Instructions.h", 3187, __extension__ __PRETTY_FUNCTION__
))
;
3188 *(&Op<-1>() - idx) = NewSucc;
3189 }
3190
3191 /// Swap the successors of this branch instruction.
3192 ///
3193 /// Swaps the successors of the branch instruction. This also swaps any
3194 /// branch weight metadata associated with the instruction so that it
3195 /// continues to map correctly to each operand.
3196 void swapSuccessors();
3197
3198 iterator_range<succ_op_iterator> successors() {
3199 return make_range(
3200 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3201 succ_op_iterator(value_op_end()));
3202 }
3203
3204 iterator_range<const_succ_op_iterator> successors() const {
3205 return make_range(const_succ_op_iterator(
3206 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3207 const_succ_op_iterator(value_op_end()));
3208 }
3209
3210 // Methods for support type inquiry through isa, cast, and dyn_cast:
3211 static bool classof(const Instruction *I) {
3212 return (I->getOpcode() == Instruction::Br);
3213 }
3214 static bool classof(const Value *V) {
3215 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3216 }
3217};
3218
3219template <>
3220struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3221};
3222
3223DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<BranchInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3223, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this))[i_nocapture
].get()); } void BranchInst::setOperand(unsigned i_nocapture,
Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<BranchInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3223, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<BranchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned BranchInst::getNumOperands() const
{ return OperandTraits<BranchInst>::operands(this); } template
<int Idx_nocapture> Use &BranchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &BranchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3224
3225//===----------------------------------------------------------------------===//
3226// SwitchInst Class
3227//===----------------------------------------------------------------------===//
3228
3229//===---------------------------------------------------------------------------
3230/// Multiway switch
3231///
3232class SwitchInst : public Instruction {
3233 unsigned ReservedSpace;
3234
3235 // Operand[0] = Value to switch on
3236 // Operand[1] = Default basic block destination
3237 // Operand[2n ] = Value to match
3238 // Operand[2n+1] = BasicBlock to go to on match
3239 SwitchInst(const SwitchInst &SI);
3240
3241 /// Create a new switch instruction, specifying a value to switch on and a
3242 /// default destination. The number of additional cases can be specified here
3243 /// to make memory allocation more efficient. This constructor can also
3244 /// auto-insert before another instruction.
3245 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3246 Instruction *InsertBefore);
3247
3248 /// Create a new switch instruction, specifying a value to switch on and a
3249 /// default destination. The number of additional cases can be specified here
3250 /// to make memory allocation more efficient. This constructor also
3251 /// auto-inserts at the end of the specified BasicBlock.
3252 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3253 BasicBlock *InsertAtEnd);
3254
3255 // allocate space for exactly zero operands
3256 void *operator new(size_t S) { return User::operator new(S); }
3257
3258 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3259 void growOperands();
3260
3261protected:
3262 // Note: Instruction needs to be a friend here to call cloneImpl.
3263 friend class Instruction;
3264
3265 SwitchInst *cloneImpl() const;
3266
3267public:
3268 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3269
3270 // -2
3271 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3272
3273 template <typename CaseHandleT> class CaseIteratorImpl;
3274
3275 /// A handle to a particular switch case. It exposes a convenient interface
3276 /// to both the case value and the successor block.
3277 ///
3278 /// We define this as a template and instantiate it to form both a const and
3279 /// non-const handle.
3280 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3281 class CaseHandleImpl {
3282 // Directly befriend both const and non-const iterators.
3283 friend class SwitchInst::CaseIteratorImpl<
3284 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3285
3286 protected:
3287 // Expose the switch type we're parameterized with to the iterator.
3288 using SwitchInstType = SwitchInstT;
3289
3290 SwitchInstT *SI;
3291 ptrdiff_t Index;
3292
3293 CaseHandleImpl() = default;
3294 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3295
3296 public:
3297 /// Resolves case value for current case.
3298 ConstantIntT *getCaseValue() const {
3299 assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3300, __extension__ __PRETTY_FUNCTION__
))
3300 "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3300, __extension__ __PRETTY_FUNCTION__
))
;
3301 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3302 }
3303
3304 /// Resolves successor for current case.
3305 BasicBlockT *getCaseSuccessor() const {
3306 assert(((unsigned)Index < SI->getNumCases() ||(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3308, __extension__ __PRETTY_FUNCTION__
))
3307 (unsigned)Index == DefaultPseudoIndex) &&(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3308, __extension__ __PRETTY_FUNCTION__
))
3308 "Index out the number of cases.")(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3308, __extension__ __PRETTY_FUNCTION__
))
;
3309 return SI->getSuccessor(getSuccessorIndex());
3310 }
3311
3312 /// Returns number of current case.
3313 unsigned getCaseIndex() const { return Index; }
3314
3315 /// Returns successor index for current case successor.
3316 unsigned getSuccessorIndex() const {
3317 assert(((unsigned)Index == DefaultPseudoIndex ||(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3319, __extension__ __PRETTY_FUNCTION__
))
3318 (unsigned)Index < SI->getNumCases()) &&(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3319, __extension__ __PRETTY_FUNCTION__
))
3319 "Index out the number of cases.")(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3319, __extension__ __PRETTY_FUNCTION__
))
;
3320 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3321 }
3322
3323 bool operator==(const CaseHandleImpl &RHS) const {
3324 assert(SI == RHS.SI && "Incompatible operators.")(static_cast <bool> (SI == RHS.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "llvm/include/llvm/IR/Instructions.h", 3324, __extension__ __PRETTY_FUNCTION__
))
;
3325 return Index == RHS.Index;
3326 }
3327 };
3328
3329 using ConstCaseHandle =
3330 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3331
3332 class CaseHandle
3333 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3334 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3335
3336 public:
3337 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3338
3339 /// Sets the new value for current case.
3340 void setValue(ConstantInt *V) const {
3341 assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3342, __extension__ __PRETTY_FUNCTION__
))
3342 "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3342, __extension__ __PRETTY_FUNCTION__
))
;
3343 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3344 }
3345
3346 /// Sets the new successor for current case.
3347 void setSuccessor(BasicBlock *S) const {
3348 SI->setSuccessor(getSuccessorIndex(), S);
3349 }
3350 };
3351
3352 template <typename CaseHandleT>
3353 class CaseIteratorImpl
3354 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3355 std::random_access_iterator_tag,
3356 const CaseHandleT> {
3357 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3358
3359 CaseHandleT Case;
3360
3361 public:
3362 /// Default constructed iterator is in an invalid state until assigned to
3363 /// a case for a particular switch.
3364 CaseIteratorImpl() = default;
3365
3366 /// Initializes case iterator for given SwitchInst and for given
3367 /// case number.
3368 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3369
3370 /// Initializes case iterator for given SwitchInst and for given
3371 /// successor index.
3372 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3373 unsigned SuccessorIndex) {
3374 assert(SuccessorIndex < SI->getNumSuccessors() &&(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors
() && "Successor index # out of range!") ? void (0) :
__assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3375, __extension__ __PRETTY_FUNCTION__
))
3375 "Successor index # out of range!")(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors
() && "Successor index # out of range!") ? void (0) :
__assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3375, __extension__ __PRETTY_FUNCTION__
))
;
3376 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3377 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3378 }
3379
3380 /// Support converting to the const variant. This will be a no-op for const
3381 /// variant.
3382 operator CaseIteratorImpl<ConstCaseHandle>() const {
3383 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3384 }
3385
3386 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3387 // Check index correctness after addition.
3388 // Note: Index == getNumCases() means end().
3389 assert(Case.Index + N >= 0 &&(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3391, __extension__ __PRETTY_FUNCTION__
))
3390 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3391, __extension__ __PRETTY_FUNCTION__
))
3391 "Case.Index out the number of cases.")(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3391, __extension__ __PRETTY_FUNCTION__
))
;
3392 Case.Index += N;
3393 return *this;
3394 }
3395 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3396 // Check index correctness after subtraction.
3397 // Note: Case.Index == getNumCases() means end().
3398 assert(Case.Index - N >= 0 &&(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3400, __extension__ __PRETTY_FUNCTION__
))
3399 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3400, __extension__ __PRETTY_FUNCTION__
))
3400 "Case.Index out the number of cases.")(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "llvm/include/llvm/IR/Instructions.h", 3400, __extension__ __PRETTY_FUNCTION__
))
;
3401 Case.Index -= N;
3402 return *this;
3403 }
3404 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3405 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "llvm/include/llvm/IR/Instructions.h", 3405, __extension__ __PRETTY_FUNCTION__
))
;
3406 return Case.Index - RHS.Case.Index;
3407 }
3408 bool operator==(const CaseIteratorImpl &RHS) const {
3409 return Case == RHS.Case;
3410 }
3411 bool operator<(const CaseIteratorImpl &RHS) const {
3412 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "llvm/include/llvm/IR/Instructions.h", 3412, __extension__ __PRETTY_FUNCTION__
))
;
3413 return Case.Index < RHS.Case.Index;
3414 }
3415 const CaseHandleT &operator*() const { return Case; }
3416 };
3417
3418 using CaseIt = CaseIteratorImpl<CaseHandle>;
3419 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3420
3421 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3422 unsigned NumCases,
3423 Instruction *InsertBefore = nullptr) {
3424 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3425 }
3426
3427 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3428 unsigned NumCases, BasicBlock *InsertAtEnd) {
3429 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3430 }
3431
3432 /// Provide fast operand accessors
3433 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3434
3435 // Accessor Methods for Switch stmt
3436 Value *getCondition() const { return getOperand(0); }
3437 void setCondition(Value *V) { setOperand(0, V); }
3438
3439 BasicBlock *getDefaultDest() const {
3440 return cast<BasicBlock>(getOperand(1));
3441 }
3442
3443 void setDefaultDest(BasicBlock *DefaultCase) {
3444 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3445 }
3446
3447 /// Return the number of 'cases' in this switch instruction, excluding the
3448 /// default case.
3449 unsigned getNumCases() const {
3450 return getNumOperands()/2 - 1;
3451 }
3452
3453 /// Returns a read/write iterator that points to the first case in the
3454 /// SwitchInst.
3455 CaseIt case_begin() {
3456 return CaseIt(this, 0);
3457 }
3458
3459 /// Returns a read-only iterator that points to the first case in the
3460 /// SwitchInst.
3461 ConstCaseIt case_begin() const {
3462 return ConstCaseIt(this, 0);
3463 }
3464
3465 /// Returns a read/write iterator that points one past the last in the
3466 /// SwitchInst.
3467 CaseIt case_end() {
3468 return CaseIt(this, getNumCases());
3469 }
3470
3471 /// Returns a read-only iterator that points one past the last in the
3472 /// SwitchInst.
3473 ConstCaseIt case_end() const {
3474 return ConstCaseIt(this, getNumCases());
3475 }
3476
3477 /// Iteration adapter for range-for loops.
3478 iterator_range<CaseIt> cases() {
3479 return make_range(case_begin(), case_end());
3480 }
3481
3482 /// Constant iteration adapter for range-for loops.
3483 iterator_range<ConstCaseIt> cases() const {
3484 return make_range(case_begin(), case_end());
3485 }
3486
3487 /// Returns an iterator that points to the default case.
3488 /// Note: this iterator allows to resolve successor only. Attempt
3489 /// to resolve case value causes an assertion.
3490 /// Also note, that increment and decrement also causes an assertion and
3491 /// makes iterator invalid.
3492 CaseIt case_default() {
3493 return CaseIt(this, DefaultPseudoIndex);
3494 }
3495 ConstCaseIt case_default() const {
3496 return ConstCaseIt(this, DefaultPseudoIndex);
3497 }
3498
3499 /// Search all of the case values for the specified constant. If it is
3500 /// explicitly handled, return the case iterator of it, otherwise return
3501 /// default case iterator to indicate that it is handled by the default
3502 /// handler.
3503 CaseIt findCaseValue(const ConstantInt *C) {
3504 return CaseIt(
3505 this,
3506 const_cast<const SwitchInst *>(this)->findCaseValue(C)->getCaseIndex());
3507 }
3508 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3509 ConstCaseIt I = llvm::find_if(cases(), [C](const ConstCaseHandle &Case) {
3510 return Case.getCaseValue() == C;
3511 });
3512 if (I != case_end())
3513 return I;
3514
3515 return case_default();
3516 }
3517
3518 /// Finds the unique case value for a given successor. Returns null if the
3519 /// successor is not found, not unique, or is the default case.
3520 ConstantInt *findCaseDest(BasicBlock *BB) {
3521 if (BB == getDefaultDest())
3522 return nullptr;
3523
3524 ConstantInt *CI = nullptr;
3525 for (auto Case : cases()) {
3526 if (Case.getCaseSuccessor() != BB)
3527 continue;
3528
3529 if (CI)
3530 return nullptr; // Multiple cases lead to BB.
3531
3532 CI = Case.getCaseValue();
3533 }
3534
3535 return CI;
3536 }
3537
3538 /// Add an entry to the switch instruction.
3539 /// Note:
3540 /// This action invalidates case_end(). Old case_end() iterator will
3541 /// point to the added case.
3542 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3543
3544 /// This method removes the specified case and its successor from the switch
3545 /// instruction. Note that this operation may reorder the remaining cases at
3546 /// index idx and above.
3547 /// Note:
3548 /// This action invalidates iterators for all cases following the one removed,
3549 /// including the case_end() iterator. It returns an iterator for the next
3550 /// case.
3551 CaseIt removeCase(CaseIt I);
3552
3553 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3554 BasicBlock *getSuccessor(unsigned idx) const {
3555 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor idx out of range for switch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "llvm/include/llvm/IR/Instructions.h", 3555, __extension__ __PRETTY_FUNCTION__
))
;
3556 return cast<BasicBlock>(getOperand(idx*2+1));
3557 }
3558 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3559 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor # out of range for switch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "llvm/include/llvm/IR/Instructions.h", 3559, __extension__ __PRETTY_FUNCTION__
))
;
3560 setOperand(idx * 2 + 1, NewSucc);
3561 }
3562
3563 // Methods for support type inquiry through isa, cast, and dyn_cast:
3564 static bool classof(const Instruction *I) {
3565 return I->getOpcode() == Instruction::Switch;
3566 }
3567 static bool classof(const Value *V) {
3568 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3569 }
3570};
3571
3572/// A wrapper class to simplify modification of SwitchInst cases along with
3573/// their prof branch_weights metadata.
3574class SwitchInstProfUpdateWrapper {
3575 SwitchInst &SI;
3576 Optional<SmallVector<uint32_t, 8> > Weights = None;
3577 bool Changed = false;
3578
3579protected:
3580 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3581
3582 MDNode *buildProfBranchWeightsMD();
3583
3584 void init();
3585
3586public:
3587 using CaseWeightOpt = Optional<uint32_t>;
3588 SwitchInst *operator->() { return &SI; }
3589 SwitchInst &operator*() { return SI; }
3590 operator SwitchInst *() { return &SI; }
3591
3592 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3593
3594 ~SwitchInstProfUpdateWrapper() {
3595 if (Changed)
3596 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3597 }
3598
3599 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3600 /// correspondent branch weight.
3601 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3602
3603 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3604 /// specified branch weight for the added case.
3605 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3606
3607 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3608 /// this object to not touch the underlying SwitchInst in destructor.
3609 SymbolTableList<Instruction>::iterator eraseFromParent();
3610
3611 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3612 CaseWeightOpt getSuccessorWeight(unsigned idx);
3613
3614 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3615};
3616
3617template <>
3618struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3619};
3620
3621DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SwitchInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3621, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this))[i_nocapture
].get()); } void SwitchInst::setOperand(unsigned i_nocapture,
Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<SwitchInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3621, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const
{ return OperandTraits<SwitchInst>::operands(this); } template
<int Idx_nocapture> Use &SwitchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SwitchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3622
3623//===----------------------------------------------------------------------===//
3624// IndirectBrInst Class
3625//===----------------------------------------------------------------------===//
3626
3627//===---------------------------------------------------------------------------
3628/// Indirect Branch Instruction.
3629///
3630class IndirectBrInst : public Instruction {
3631 unsigned ReservedSpace;
3632
3633 // Operand[0] = Address to jump to
3634 // Operand[n+1] = n-th destination
3635 IndirectBrInst(const IndirectBrInst &IBI);
3636
3637 /// Create a new indirectbr instruction, specifying an
3638 /// Address to jump to. The number of expected destinations can be specified
3639 /// here to make memory allocation more efficient. This constructor can also
3640 /// autoinsert before another instruction.
3641 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3642
3643 /// Create a new indirectbr instruction, specifying an
3644 /// Address to jump to. The number of expected destinations can be specified
3645 /// here to make memory allocation more efficient. This constructor also
3646 /// autoinserts at the end of the specified BasicBlock.
3647 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3648
3649 // allocate space for exactly zero operands
3650 void *operator new(size_t S) { return User::operator new(S); }
3651
3652 void init(Value *Address, unsigned NumDests);
3653 void growOperands();
3654
3655protected:
3656 // Note: Instruction needs to be a friend here to call cloneImpl.
3657 friend class Instruction;
3658
3659 IndirectBrInst *cloneImpl() const;
3660
3661public:
3662 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3663
3664 /// Iterator type that casts an operand to a basic block.
3665 ///
3666 /// This only makes sense because the successors are stored as adjacent
3667 /// operands for indirectbr instructions.
3668 struct succ_op_iterator
3669 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3670 std::random_access_iterator_tag, BasicBlock *,
3671 ptrdiff_t, BasicBlock *, BasicBlock *> {
3672 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3673
3674 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3675 BasicBlock *operator->() const { return operator*(); }
3676 };
3677
3678 /// The const version of `succ_op_iterator`.
3679 struct const_succ_op_iterator
3680 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3681 std::random_access_iterator_tag,
3682 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3683 const BasicBlock *> {
3684 explicit const_succ_op_iterator(const_value_op_iterator I)
3685 : iterator_adaptor_base(I) {}
3686
3687 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3688 const BasicBlock *operator->() const { return operator*(); }
3689 };
3690
3691 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3692 Instruction *InsertBefore = nullptr) {
3693 return new IndirectBrInst(Address, NumDests, InsertBefore);
3694 }
3695
3696 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3697 BasicBlock *InsertAtEnd) {
3698 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3699 }
3700
3701 /// Provide fast operand accessors.
3702 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3703
3704 // Accessor Methods for IndirectBrInst instruction.
3705 Value *getAddress() { return getOperand(0); }
3706 const Value *getAddress() const { return getOperand(0); }
3707 void setAddress(Value *V) { setOperand(0, V); }
3708
3709 /// return the number of possible destinations in this
3710 /// indirectbr instruction.
3711 unsigned getNumDestinations() const { return getNumOperands()-1; }
3712
3713 /// Return the specified destination.
3714 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3715 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3716
3717 /// Add a destination.
3718 ///
3719 void addDestination(BasicBlock *Dest);
3720
3721 /// This method removes the specified successor from the
3722 /// indirectbr instruction.
3723 void removeDestination(unsigned i);
3724
3725 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3726 BasicBlock *getSuccessor(unsigned i) const {
3727 return cast<BasicBlock>(getOperand(i+1));
3728 }
3729 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3730 setOperand(i + 1, NewSucc);
3731 }
3732
3733 iterator_range<succ_op_iterator> successors() {
3734 return make_range(succ_op_iterator(std::next(value_op_begin())),
3735 succ_op_iterator(value_op_end()));
3736 }
3737
3738 iterator_range<const_succ_op_iterator> successors() const {
3739 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3740 const_succ_op_iterator(value_op_end()));
3741 }
3742
3743 // Methods for support type inquiry through isa, cast, and dyn_cast:
3744 static bool classof(const Instruction *I) {
3745 return I->getOpcode() == Instruction::IndirectBr;
3746 }
3747 static bool classof(const Value *V) {
3748 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3749 }
3750};
3751
3752template <>
3753struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3754};
3755
3756DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3756, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<IndirectBrInst
>::op_begin(const_cast<IndirectBrInst*>(this))[i_nocapture
].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<IndirectBrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 3756, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<IndirectBrInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands(
) const { return OperandTraits<IndirectBrInst>::operands
(this); } template <int Idx_nocapture> Use &IndirectBrInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &IndirectBrInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
3757
3758//===----------------------------------------------------------------------===//
3759// InvokeInst Class
3760//===----------------------------------------------------------------------===//
3761
3762/// Invoke instruction. The SubclassData field is used to hold the
3763/// calling convention of the call.
3764///
3765class InvokeInst : public CallBase {
3766 /// The number of operands for this call beyond the called function,
3767 /// arguments, and operand bundles.
3768 static constexpr int NumExtraOperands = 2;
3769
3770 /// The index from the end of the operand array to the normal destination.
3771 static constexpr int NormalDestOpEndIdx = -3;
3772
3773 /// The index from the end of the operand array to the unwind destination.
3774 static constexpr int UnwindDestOpEndIdx = -2;
3775
3776 InvokeInst(const InvokeInst &BI);
3777
3778 /// Construct an InvokeInst given a range of arguments.
3779 ///
3780 /// Construct an InvokeInst from a range of arguments
3781 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3782 BasicBlock *IfException, ArrayRef<Value *> Args,
3783 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3784 const Twine &NameStr, Instruction *InsertBefore);
3785
3786 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3787 BasicBlock *IfException, ArrayRef<Value *> Args,
3788 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3789 const Twine &NameStr, BasicBlock *InsertAtEnd);
3790
3791 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3792 BasicBlock *IfException, ArrayRef<Value *> Args,
3793 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3794
3795 /// Compute the number of operands to allocate.
3796 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3797 // We need one operand for the called function, plus our extra operands and
3798 // the input operand counts provided.
3799 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3800 }
3801
3802protected:
3803 // Note: Instruction needs to be a friend here to call cloneImpl.
3804 friend class Instruction;
3805
3806 InvokeInst *cloneImpl() const;
3807
3808public:
3809 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3810 BasicBlock *IfException, ArrayRef<Value *> Args,
3811 const Twine &NameStr,
3812 Instruction *InsertBefore = nullptr) {
3813 int NumOperands = ComputeNumOperands(Args.size());
3814 return new (NumOperands)
3815 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3816 NameStr, InsertBefore);
3817 }
3818
3819 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3820 BasicBlock *IfException, ArrayRef<Value *> Args,
3821 ArrayRef<OperandBundleDef> Bundles = None,
3822 const Twine &NameStr = "",
3823 Instruction *InsertBefore = nullptr) {
3824 int NumOperands =
3825 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3826 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3827
3828 return new (NumOperands, DescriptorBytes)
3829 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3830 NameStr, InsertBefore);
3831 }
3832
3833 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3834 BasicBlock *IfException, ArrayRef<Value *> Args,
3835 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3836 int NumOperands = ComputeNumOperands(Args.size());
3837 return new (NumOperands)
3838 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3839 NameStr, InsertAtEnd);
3840 }
3841
3842 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3843 BasicBlock *IfException, ArrayRef<Value *> Args,
3844 ArrayRef<OperandBundleDef> Bundles,
3845 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3846 int NumOperands =
3847 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3848 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3849
3850 return new (NumOperands, DescriptorBytes)
3851 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3852 NameStr, InsertAtEnd);
3853 }
3854
3855 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3856 BasicBlock *IfException, ArrayRef<Value *> Args,
3857 const Twine &NameStr,
3858 Instruction *InsertBefore = nullptr) {
3859 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3860 IfException, Args, None, NameStr, InsertBefore);
3861 }
3862
3863 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3864 BasicBlock *IfException, ArrayRef<Value *> Args,
3865 ArrayRef<OperandBundleDef> Bundles = None,
3866 const Twine &NameStr = "",
3867 Instruction *InsertBefore = nullptr) {
3868 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3869 IfException, Args, Bundles, NameStr, InsertBefore);
3870 }
3871
3872 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3873 BasicBlock *IfException, ArrayRef<Value *> Args,
3874 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3875 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3876 IfException, Args, NameStr, InsertAtEnd);
3877 }
3878
3879 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3880 BasicBlock *IfException, ArrayRef<Value *> Args,
3881 ArrayRef<OperandBundleDef> Bundles,
3882 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3883 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3884 IfException, Args, Bundles, NameStr, InsertAtEnd);
3885 }
3886
3887 /// Create a clone of \p II with a different set of operand bundles and
3888 /// insert it before \p InsertPt.
3889 ///
3890 /// The returned invoke instruction is identical to \p II in every way except
3891 /// that the operand bundles for the new instruction are set to the operand
3892 /// bundles in \p Bundles.
3893 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3894 Instruction *InsertPt = nullptr);
3895
3896 // get*Dest - Return the destination basic blocks...
3897 BasicBlock *getNormalDest() const {
3898 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3899 }
3900 BasicBlock *getUnwindDest() const {
3901 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
14
Calling 'cast<llvm::BasicBlock, llvm::Use>'
27
Returning from 'cast<llvm::BasicBlock, llvm::Use>'
28
Returning pointer
3902 }
3903 void setNormalDest(BasicBlock *B) {
3904 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3905 }
3906 void setUnwindDest(BasicBlock *B) {
3907 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3908 }
3909
3910 /// Get the landingpad instruction from the landing pad
3911 /// block (the unwind destination).
3912 LandingPadInst *getLandingPadInst() const;
3913
3914 BasicBlock *getSuccessor(unsigned i) const {
3915 assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!"
) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "llvm/include/llvm/IR/Instructions.h", 3915, __extension__ __PRETTY_FUNCTION__
))
;
3916 return i == 0 ? getNormalDest() : getUnwindDest();
3917 }
3918
3919 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3920 assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!"
) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "llvm/include/llvm/IR/Instructions.h", 3920, __extension__ __PRETTY_FUNCTION__
))
;
3921 if (i == 0)
3922 setNormalDest(NewSucc);
3923 else
3924 setUnwindDest(NewSucc);
3925 }
3926
3927 unsigned getNumSuccessors() const { return 2; }
3928
3929 // Methods for support type inquiry through isa, cast, and dyn_cast:
3930 static bool classof(const Instruction *I) {
3931 return (I->getOpcode() == Instruction::Invoke);
3932 }
3933 static bool classof(const Value *V) {
3934 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3935 }
3936
3937private:
3938 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3939 // method so that subclasses cannot accidentally use it.
3940 template <typename Bitfield>
3941 void setSubclassData(typename Bitfield::Type Value) {
3942 Instruction::setSubclassData<Bitfield>(Value);
3943 }
3944};
3945
3946InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3947 BasicBlock *IfException, ArrayRef<Value *> Args,
3948 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3949 const Twine &NameStr, Instruction *InsertBefore)
3950 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3951 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3952 InsertBefore) {
3953 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3954}
3955
3956InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3957 BasicBlock *IfException, ArrayRef<Value *> Args,
3958 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3959 const Twine &NameStr, BasicBlock *InsertAtEnd)
3960 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3961 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3962 InsertAtEnd) {
3963 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3964}
3965
3966//===----------------------------------------------------------------------===//
3967// CallBrInst Class
3968//===----------------------------------------------------------------------===//
3969
3970/// CallBr instruction, tracking function calls that may not return control but
3971/// instead transfer it to a third location. The SubclassData field is used to
3972/// hold the calling convention of the call.
3973///
3974class CallBrInst : public CallBase {
3975
3976 unsigned NumIndirectDests;
3977
3978 CallBrInst(const CallBrInst &BI);
3979
3980 /// Construct a CallBrInst given a range of arguments.
3981 ///
3982 /// Construct a CallBrInst from a range of arguments
3983 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3984 ArrayRef<BasicBlock *> IndirectDests,
3985 ArrayRef<Value *> Args,
3986 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3987 const Twine &NameStr, Instruction *InsertBefore);
3988
3989 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3990 ArrayRef<BasicBlock *> IndirectDests,
3991 ArrayRef<Value *> Args,
3992 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3993 const Twine &NameStr, BasicBlock *InsertAtEnd);
3994
3995 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3996 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3997 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3998
3999 /// Should the Indirect Destinations change, scan + update the Arg list.
4000 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
4001
4002 /// Compute the number of operands to allocate.
4003 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
4004 int NumBundleInputs = 0) {
4005 // We need one operand for the called function, plus our extra operands and
4006 // the input operand counts provided.
4007 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
4008 }
4009
4010protected:
4011 // Note: Instruction needs to be a friend here to call cloneImpl.
4012 friend class Instruction;
4013
4014 CallBrInst *cloneImpl() const;
4015
4016public:
4017 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4018 BasicBlock *DefaultDest,
4019 ArrayRef<BasicBlock *> IndirectDests,
4020 ArrayRef<Value *> Args, const Twine &NameStr,
4021 Instruction *InsertBefore = nullptr) {
4022 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4023 return new (NumOperands)
4024 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4025 NumOperands, NameStr, InsertBefore);
4026 }
4027
4028 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4029 BasicBlock *DefaultDest,
4030 ArrayRef<BasicBlock *> IndirectDests,
4031 ArrayRef<Value *> Args,
4032 ArrayRef<OperandBundleDef> Bundles = None,
4033 const Twine &NameStr = "",
4034 Instruction *InsertBefore = nullptr) {
4035 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4036 CountBundleInputs(Bundles));
4037 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4038
4039 return new (NumOperands, DescriptorBytes)
4040 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4041 NumOperands, NameStr, InsertBefore);
4042 }
4043
4044 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4045 BasicBlock *DefaultDest,
4046 ArrayRef<BasicBlock *> IndirectDests,
4047 ArrayRef<Value *> Args, const Twine &NameStr,
4048 BasicBlock *InsertAtEnd) {
4049 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4050 return new (NumOperands)
4051 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4052 NumOperands, NameStr, InsertAtEnd);
4053 }
4054
4055 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4056 BasicBlock *DefaultDest,
4057 ArrayRef<BasicBlock *> IndirectDests,
4058 ArrayRef<Value *> Args,
4059 ArrayRef<OperandBundleDef> Bundles,
4060 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4061 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4062 CountBundleInputs(Bundles));
4063 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4064
4065 return new (NumOperands, DescriptorBytes)
4066 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4067 NumOperands, NameStr, InsertAtEnd);
4068 }
4069
4070 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4071 ArrayRef<BasicBlock *> IndirectDests,
4072 ArrayRef<Value *> Args, const Twine &NameStr,
4073 Instruction *InsertBefore = nullptr) {
4074 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4075 IndirectDests, Args, NameStr, InsertBefore);
4076 }
4077
4078 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4079 ArrayRef<BasicBlock *> IndirectDests,
4080 ArrayRef<Value *> Args,
4081 ArrayRef<OperandBundleDef> Bundles = None,
4082 const Twine &NameStr = "",
4083 Instruction *InsertBefore = nullptr) {
4084 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4085 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4086 }
4087
4088 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4089 ArrayRef<BasicBlock *> IndirectDests,
4090 ArrayRef<Value *> Args, const Twine &NameStr,
4091 BasicBlock *InsertAtEnd) {
4092 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4093 IndirectDests, Args, NameStr, InsertAtEnd);
4094 }
4095
4096 static CallBrInst *Create(FunctionCallee Func,
4097 BasicBlock *DefaultDest,
4098 ArrayRef<BasicBlock *> IndirectDests,
4099 ArrayRef<Value *> Args,
4100 ArrayRef<OperandBundleDef> Bundles,
4101 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4102 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4103 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4104 }
4105
4106 /// Create a clone of \p CBI with a different set of operand bundles and
4107 /// insert it before \p InsertPt.
4108 ///
4109 /// The returned callbr instruction is identical to \p CBI in every way
4110 /// except that the operand bundles for the new instruction are set to the
4111 /// operand bundles in \p Bundles.
4112 static CallBrInst *Create(CallBrInst *CBI,
4113 ArrayRef<OperandBundleDef> Bundles,
4114 Instruction *InsertPt = nullptr);
4115
4116 /// Return the number of callbr indirect dest labels.
4117 ///
4118 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4119
4120 /// getIndirectDestLabel - Return the i-th indirect dest label.
4121 ///
4122 Value *getIndirectDestLabel(unsigned i) const {
4123 assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() &&
"Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "llvm/include/llvm/IR/Instructions.h", 4123, __extension__ __PRETTY_FUNCTION__
))
;
4124 return getOperand(i + arg_size() + getNumTotalBundleOperands() + 1);
4125 }
4126
4127 Value *getIndirectDestLabelUse(unsigned i) const {
4128 assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() &&
"Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "llvm/include/llvm/IR/Instructions.h", 4128, __extension__ __PRETTY_FUNCTION__
))
;
4129 return getOperandUse(i + arg_size() + getNumTotalBundleOperands() + 1);
4130 }
4131
4132 // Return the destination basic blocks...
4133 BasicBlock *getDefaultDest() const {
4134 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4135 }
4136 BasicBlock *getIndirectDest(unsigned i) const {
4137 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4138 }
4139 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4140 SmallVector<BasicBlock *, 16> IndirectDests;
4141 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4142 IndirectDests.push_back(getIndirectDest(i));
4143 return IndirectDests;
4144 }
4145 void setDefaultDest(BasicBlock *B) {
4146 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4147 }
4148 void setIndirectDest(unsigned i, BasicBlock *B) {
4149 updateArgBlockAddresses(i, B);
4150 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4151 }
4152
4153 BasicBlock *getSuccessor(unsigned i) const {
4154 assert(i < getNumSuccessors() + 1 &&(static_cast <bool> (i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "llvm/include/llvm/IR/Instructions.h", 4155, __extension__ __PRETTY_FUNCTION__
))
4155 "Successor # out of range for callbr!")(static_cast <bool> (i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "llvm/include/llvm/IR/Instructions.h", 4155, __extension__ __PRETTY_FUNCTION__
))
;
4156 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4157 }
4158
4159 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4160 assert(i < getNumIndirectDests() + 1 &&(static_cast <bool> (i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "llvm/include/llvm/IR/Instructions.h", 4161, __extension__ __PRETTY_FUNCTION__
))
4161 "Successor # out of range for callbr!")(static_cast <bool> (i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "llvm/include/llvm/IR/Instructions.h", 4161, __extension__ __PRETTY_FUNCTION__
))
;
4162 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4163 }
4164
4165 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4166
4167 // Methods for support type inquiry through isa, cast, and dyn_cast:
4168 static bool classof(const Instruction *I) {
4169 return (I->getOpcode() == Instruction::CallBr);
4170 }
4171 static bool classof(const Value *V) {
4172 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4173 }
4174
4175private:
4176 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4177 // method so that subclasses cannot accidentally use it.
4178 template <typename Bitfield>
4179 void setSubclassData(typename Bitfield::Type Value) {
4180 Instruction::setSubclassData<Bitfield>(Value);
4181 }
4182};
4183
4184CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4185 ArrayRef<BasicBlock *> IndirectDests,
4186 ArrayRef<Value *> Args,
4187 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4188 const Twine &NameStr, Instruction *InsertBefore)
4189 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4190 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4191 InsertBefore) {
4192 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4193}
4194
4195CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4196 ArrayRef<BasicBlock *> IndirectDests,
4197 ArrayRef<Value *> Args,
4198 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4199 const Twine &NameStr, BasicBlock *InsertAtEnd)
4200 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4201 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4202 InsertAtEnd) {
4203 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4204}
4205
4206//===----------------------------------------------------------------------===//
4207// ResumeInst Class
4208//===----------------------------------------------------------------------===//
4209
4210//===---------------------------------------------------------------------------
4211/// Resume the propagation of an exception.
4212///
4213class ResumeInst : public Instruction {
4214 ResumeInst(const ResumeInst &RI);
4215
4216 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4217 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4218
4219protected:
4220 // Note: Instruction needs to be a friend here to call cloneImpl.
4221 friend class Instruction;
4222
4223 ResumeInst *cloneImpl() const;
4224
4225public:
4226 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4227 return new(1) ResumeInst(Exn, InsertBefore);
4228 }
4229
4230 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4231 return new(1) ResumeInst(Exn, InsertAtEnd);
4232 }
4233
4234 /// Provide fast operand accessors
4235 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4236
4237 /// Convenience accessor.
4238 Value *getValue() const { return Op<0>(); }
4239
4240 unsigned getNumSuccessors() const { return 0; }
4241
4242 // Methods for support type inquiry through isa, cast, and dyn_cast:
4243 static bool classof(const Instruction *I) {
4244 return I->getOpcode() == Instruction::Resume;
4245 }
4246 static bool classof(const Value *V) {
4247 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4248 }
4249
4250private:
4251 BasicBlock *getSuccessor(unsigned idx) const {
4252 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 4252)
;
4253 }
4254
4255 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4256 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 4256)
;
4257 }
4258};
4259
4260template <>
4261struct OperandTraits<ResumeInst> :
4262 public FixedNumOperandTraits<ResumeInst, 1> {
4263};
4264
4265DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<ResumeInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4265, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this))[i_nocapture
].get()); } void ResumeInst::setOperand(unsigned i_nocapture,
Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ResumeInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4265, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const
{ return OperandTraits<ResumeInst>::operands(this); } template
<int Idx_nocapture> Use &ResumeInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ResumeInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
4266
4267//===----------------------------------------------------------------------===//
4268// CatchSwitchInst Class
4269//===----------------------------------------------------------------------===//
4270class CatchSwitchInst : public Instruction {
4271 using UnwindDestField = BoolBitfieldElementT<0>;
4272
4273 /// The number of operands actually allocated. NumOperands is
4274 /// the number actually in use.
4275 unsigned ReservedSpace;
4276
4277 // Operand[0] = Outer scope
4278 // Operand[1] = Unwind block destination
4279 // Operand[n] = BasicBlock to go to on match
4280 CatchSwitchInst(const CatchSwitchInst &CSI);
4281
4282 /// Create a new switch instruction, specifying a
4283 /// default destination. The number of additional handlers can be specified
4284 /// here to make memory allocation more efficient.
4285 /// This constructor can also autoinsert before another instruction.
4286 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4287 unsigned NumHandlers, const Twine &NameStr,
4288 Instruction *InsertBefore);
4289
4290 /// Create a new switch instruction, specifying a
4291 /// default destination. The number of additional handlers can be specified
4292 /// here to make memory allocation more efficient.
4293 /// This constructor also autoinserts at the end of the specified BasicBlock.
4294 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4295 unsigned NumHandlers, const Twine &NameStr,
4296 BasicBlock *InsertAtEnd);
4297
4298 // allocate space for exactly zero operands
4299 void *operator new(size_t S) { return User::operator new(S); }
4300
4301 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4302 void growOperands(unsigned Size);
4303
4304protected:
4305 // Note: Instruction needs to be a friend here to call cloneImpl.
4306 friend class Instruction;
4307
4308 CatchSwitchInst *cloneImpl() const;
4309
4310public:
4311 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4312
4313 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4314 unsigned NumHandlers,
4315 const Twine &NameStr = "",
4316 Instruction *InsertBefore = nullptr) {
4317 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4318 InsertBefore);
4319 }
4320
4321 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4322 unsigned NumHandlers, const Twine &NameStr,
4323 BasicBlock *InsertAtEnd) {
4324 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4325 InsertAtEnd);
4326 }
4327
4328 /// Provide fast operand accessors
4329 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4330
4331 // Accessor Methods for CatchSwitch stmt
4332 Value *getParentPad() const { return getOperand(0); }
4333 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4334
4335 // Accessor Methods for CatchSwitch stmt
4336 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4337 bool unwindsToCaller() const { return !hasUnwindDest(); }
4338 BasicBlock *getUnwindDest() const {
4339 if (hasUnwindDest())
4340 return cast<BasicBlock>(getOperand(1));
4341 return nullptr;
4342 }
4343 void setUnwindDest(BasicBlock *UnwindDest) {
4344 assert(UnwindDest)(static_cast <bool> (UnwindDest) ? void (0) : __assert_fail
("UnwindDest", "llvm/include/llvm/IR/Instructions.h", 4344, __extension__
__PRETTY_FUNCTION__))
;
4345 assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail
("hasUnwindDest()", "llvm/include/llvm/IR/Instructions.h", 4345
, __extension__ __PRETTY_FUNCTION__))
;
4346 setOperand(1, UnwindDest);
4347 }
4348
4349 /// return the number of 'handlers' in this catchswitch
4350 /// instruction, except the default handler
4351 unsigned getNumHandlers() const {
4352 if (hasUnwindDest())
4353 return getNumOperands() - 2;
4354 return getNumOperands() - 1;
4355 }
4356
4357private:
4358 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4359 static const BasicBlock *handler_helper(const Value *V) {
4360 return cast<BasicBlock>(V);
4361 }
4362
4363public:
4364 using DerefFnTy = BasicBlock *(*)(Value *);
4365 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4366 using handler_range = iterator_range<handler_iterator>;
4367 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4368 using const_handler_iterator =
4369 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4370 using const_handler_range = iterator_range<const_handler_iterator>;
4371
4372 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4373 handler_iterator handler_begin() {
4374 op_iterator It = op_begin() + 1;
4375 if (hasUnwindDest())
4376 ++It;
4377 return handler_iterator(It, DerefFnTy(handler_helper));
4378 }
4379
4380 /// Returns an iterator that points to the first handler in the
4381 /// CatchSwitchInst.
4382 const_handler_iterator handler_begin() const {
4383 const_op_iterator It = op_begin() + 1;
4384 if (hasUnwindDest())
4385 ++It;
4386 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4387 }
4388
4389 /// Returns a read-only iterator that points one past the last
4390 /// handler in the CatchSwitchInst.
4391 handler_iterator handler_end() {
4392 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4393 }
4394
4395 /// Returns an iterator that points one past the last handler in the
4396 /// CatchSwitchInst.
4397 const_handler_iterator handler_end() const {
4398 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4399 }
4400
4401 /// iteration adapter for range-for loops.
4402 handler_range handlers() {
4403 return make_range(handler_begin(), handler_end());
4404 }
4405
4406 /// iteration adapter for range-for loops.
4407 const_handler_range handlers() const {
4408 return make_range(handler_begin(), handler_end());
4409 }
4410
4411 /// Add an entry to the switch instruction...
4412 /// Note:
4413 /// This action invalidates handler_end(). Old handler_end() iterator will
4414 /// point to the added handler.
4415 void addHandler(BasicBlock *Dest);
4416
4417 void removeHandler(handler_iterator HI);
4418
4419 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4420 BasicBlock *getSuccessor(unsigned Idx) const {
4421 assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "llvm/include/llvm/IR/Instructions.h", 4422, __extension__ __PRETTY_FUNCTION__
))
4422 "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "llvm/include/llvm/IR/Instructions.h", 4422, __extension__ __PRETTY_FUNCTION__
))
;
4423 return cast<BasicBlock>(getOperand(Idx + 1));
4424 }
4425 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4426 assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "llvm/include/llvm/IR/Instructions.h", 4427, __extension__ __PRETTY_FUNCTION__
))
4427 "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "llvm/include/llvm/IR/Instructions.h", 4427, __extension__ __PRETTY_FUNCTION__
))
;
4428 setOperand(Idx + 1, NewSucc);
4429 }
4430
4431 // Methods for support type inquiry through isa, cast, and dyn_cast:
4432 static bool classof(const Instruction *I) {
4433 return I->getOpcode() == Instruction::CatchSwitch;
4434 }
4435 static bool classof(const Value *V) {
4436 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4437 }
4438};
4439
4440template <>
4441struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4442
4443DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<CatchSwitchInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4443, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<CatchSwitchInst
>::op_begin(const_cast<CatchSwitchInst*>(this))[i_nocapture
].get()); } void CatchSwitchInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<CatchSwitchInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4443, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<CatchSwitchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands
() const { return OperandTraits<CatchSwitchInst>::operands
(this); } template <int Idx_nocapture> Use &CatchSwitchInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &CatchSwitchInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
4444
4445//===----------------------------------------------------------------------===//
4446// CleanupPadInst Class
4447//===----------------------------------------------------------------------===//
4448class CleanupPadInst : public FuncletPadInst {
4449private:
4450 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4451 unsigned Values, const Twine &NameStr,
4452 Instruction *InsertBefore)
4453 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4454 NameStr, InsertBefore) {}
4455 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4456 unsigned Values, const Twine &NameStr,
4457 BasicBlock *InsertAtEnd)
4458 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4459 NameStr, InsertAtEnd) {}
4460
4461public:
4462 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4463 const Twine &NameStr = "",
4464 Instruction *InsertBefore = nullptr) {
4465 unsigned Values = 1 + Args.size();
4466 return new (Values)
4467 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4468 }
4469
4470 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4471 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4472 unsigned Values = 1 + Args.size();
4473 return new (Values)
4474 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4475 }
4476
4477 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4478 static bool classof(const Instruction *I) {
4479 return I->getOpcode() == Instruction::CleanupPad;
4480 }
4481 static bool classof(const Value *V) {
4482 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4483 }
4484};
4485
4486//===----------------------------------------------------------------------===//
4487// CatchPadInst Class
4488//===----------------------------------------------------------------------===//
4489class CatchPadInst : public FuncletPadInst {
4490private:
4491 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4492 unsigned Values, const Twine &NameStr,
4493 Instruction *InsertBefore)
4494 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4495 NameStr, InsertBefore) {}
4496 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4497 unsigned Values, const Twine &NameStr,
4498 BasicBlock *InsertAtEnd)
4499 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4500 NameStr, InsertAtEnd) {}
4501
4502public:
4503 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4504 const Twine &NameStr = "",
4505 Instruction *InsertBefore = nullptr) {
4506 unsigned Values = 1 + Args.size();
4507 return new (Values)
4508 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4509 }
4510
4511 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4512 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4513 unsigned Values = 1 + Args.size();
4514 return new (Values)
4515 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4516 }
4517
4518 /// Convenience accessors
4519 CatchSwitchInst *getCatchSwitch() const {
4520 return cast<CatchSwitchInst>(Op<-1>());
4521 }
4522 void setCatchSwitch(Value *CatchSwitch) {
4523 assert(CatchSwitch)(static_cast <bool> (CatchSwitch) ? void (0) : __assert_fail
("CatchSwitch", "llvm/include/llvm/IR/Instructions.h", 4523,
__extension__ __PRETTY_FUNCTION__))
;
4524 Op<-1>() = CatchSwitch;
4525 }
4526
4527 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4528 static bool classof(const Instruction *I) {
4529 return I->getOpcode() == Instruction::CatchPad;
4530 }
4531 static bool classof(const Value *V) {
4532 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4533 }
4534};
4535
4536//===----------------------------------------------------------------------===//
4537// CatchReturnInst Class
4538//===----------------------------------------------------------------------===//
4539
4540class CatchReturnInst : public Instruction {
4541 CatchReturnInst(const CatchReturnInst &RI);
4542 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4543 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4544
4545 void init(Value *CatchPad, BasicBlock *BB);
4546
4547protected:
4548 // Note: Instruction needs to be a friend here to call cloneImpl.
4549 friend class Instruction;
4550
4551 CatchReturnInst *cloneImpl() const;
4552
4553public:
4554 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4555 Instruction *InsertBefore = nullptr) {
4556 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "llvm/include/llvm/IR/Instructions.h", 4556, __extension__
__PRETTY_FUNCTION__))
;
4557 assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB"
, "llvm/include/llvm/IR/Instructions.h", 4557, __extension__ __PRETTY_FUNCTION__
))
;
4558 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4559 }
4560
4561 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4562 BasicBlock *InsertAtEnd) {
4563 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "llvm/include/llvm/IR/Instructions.h", 4563, __extension__
__PRETTY_FUNCTION__))
;
4564 assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB"
, "llvm/include/llvm/IR/Instructions.h", 4564, __extension__ __PRETTY_FUNCTION__
))
;
4565 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4566 }
4567
4568 /// Provide fast operand accessors
4569 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4570
4571 /// Convenience accessors.
4572 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4573 void setCatchPad(CatchPadInst *CatchPad) {
4574 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "llvm/include/llvm/IR/Instructions.h", 4574, __extension__
__PRETTY_FUNCTION__))
;
4575 Op<0>() = CatchPad;
4576 }
4577
4578 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4579 void setSuccessor(BasicBlock *NewSucc) {
4580 assert(NewSucc)(static_cast <bool> (NewSucc) ? void (0) : __assert_fail
("NewSucc", "llvm/include/llvm/IR/Instructions.h", 4580, __extension__
__PRETTY_FUNCTION__))
;
4581 Op<1>() = NewSucc;
4582 }
4583 unsigned getNumSuccessors() const { return 1; }
4584
4585 /// Get the parentPad of this catchret's catchpad's catchswitch.
4586 /// The successor block is implicitly a member of this funclet.
4587 Value *getCatchSwitchParentPad() const {
4588 return getCatchPad()->getCatchSwitch()->getParentPad();
4589 }
4590
4591 // Methods for support type inquiry through isa, cast, and dyn_cast:
4592 static bool classof(const Instruction *I) {
4593 return (I->getOpcode() == Instruction::CatchRet);
4594 }
4595 static bool classof(const Value *V) {
4596 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4597 }
4598
4599private:
4600 BasicBlock *getSuccessor(unsigned Idx) const {
4601 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchret!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "llvm/include/llvm/IR/Instructions.h", 4601, __extension__ __PRETTY_FUNCTION__
))
;
4602 return getSuccessor();
4603 }
4604
4605 void setSuccessor(unsigned Idx, BasicBlock *B) {
4606 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchret!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "llvm/include/llvm/IR/Instructions.h", 4606, __extension__ __PRETTY_FUNCTION__
))
;
4607 setSuccessor(B);
4608 }
4609};
4610
4611template <>
4612struct OperandTraits<CatchReturnInst>
4613 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4614
4615DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<CatchReturnInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4615, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<CatchReturnInst
>::op_begin(const_cast<CatchReturnInst*>(this))[i_nocapture
].get()); } void CatchReturnInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<CatchReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4615, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<CatchReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands
() const { return OperandTraits<CatchReturnInst>::operands
(this); } template <int Idx_nocapture> Use &CatchReturnInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &CatchReturnInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
4616
4617//===----------------------------------------------------------------------===//
4618// CleanupReturnInst Class
4619//===----------------------------------------------------------------------===//
4620
4621class CleanupReturnInst : public Instruction {
4622 using UnwindDestField = BoolBitfieldElementT<0>;
4623
4624private:
4625 CleanupReturnInst(const CleanupReturnInst &RI);
4626 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4627 Instruction *InsertBefore = nullptr);
4628 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4629 BasicBlock *InsertAtEnd);
4630
4631 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4632
4633protected:
4634 // Note: Instruction needs to be a friend here to call cloneImpl.
4635 friend class Instruction;
4636
4637 CleanupReturnInst *cloneImpl() const;
4638
4639public:
4640 static CleanupReturnInst *Create(Value *CleanupPad,
4641 BasicBlock *UnwindBB = nullptr,
4642 Instruction *InsertBefore = nullptr) {
4643 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "llvm/include/llvm/IR/Instructions.h", 4643, __extension__
__PRETTY_FUNCTION__))
;
4644 unsigned Values = 1;
4645 if (UnwindBB)
4646 ++Values;
4647 return new (Values)
4648 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4649 }
4650
4651 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4652 BasicBlock *InsertAtEnd) {
4653 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "llvm/include/llvm/IR/Instructions.h", 4653, __extension__
__PRETTY_FUNCTION__))
;
4654 unsigned Values = 1;
4655 if (UnwindBB)
4656 ++Values;
4657 return new (Values)
4658 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4659 }
4660
4661 /// Provide fast operand accessors
4662 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4663
4664 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4665 bool unwindsToCaller() const { return !hasUnwindDest(); }
4666
4667 /// Convenience accessor.
4668 CleanupPadInst *getCleanupPad() const {
4669 return cast<CleanupPadInst>(Op<0>());
4670 }
4671 void setCleanupPad(CleanupPadInst *CleanupPad) {
4672 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "llvm/include/llvm/IR/Instructions.h", 4672, __extension__
__PRETTY_FUNCTION__))
;
4673 Op<0>() = CleanupPad;
4674 }
4675
4676 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4677
4678 BasicBlock *getUnwindDest() const {
4679 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4680 }
4681 void setUnwindDest(BasicBlock *NewDest) {
4682 assert(NewDest)(static_cast <bool> (NewDest) ? void (0) : __assert_fail
("NewDest", "llvm/include/llvm/IR/Instructions.h", 4682, __extension__
__PRETTY_FUNCTION__))
;
4683 assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail
("hasUnwindDest()", "llvm/include/llvm/IR/Instructions.h", 4683
, __extension__ __PRETTY_FUNCTION__))
;
4684 Op<1>() = NewDest;
4685 }
4686
4687 // Methods for support type inquiry through isa, cast, and dyn_cast:
4688 static bool classof(const Instruction *I) {
4689 return (I->getOpcode() == Instruction::CleanupRet);
4690 }
4691 static bool classof(const Value *V) {
4692 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4693 }
4694
4695private:
4696 BasicBlock *getSuccessor(unsigned Idx) const {
4697 assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail
("Idx == 0", "llvm/include/llvm/IR/Instructions.h", 4697, __extension__
__PRETTY_FUNCTION__))
;
4698 return getUnwindDest();
4699 }
4700
4701 void setSuccessor(unsigned Idx, BasicBlock *B) {
4702 assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail
("Idx == 0", "llvm/include/llvm/IR/Instructions.h", 4702, __extension__
__PRETTY_FUNCTION__))
;
4703 setUnwindDest(B);
4704 }
4705
4706 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4707 // method so that subclasses cannot accidentally use it.
4708 template <typename Bitfield>
4709 void setSubclassData(typename Bitfield::Type Value) {
4710 Instruction::setSubclassData<Bitfield>(Value);
4711 }
4712};
4713
4714template <>
4715struct OperandTraits<CleanupReturnInst>
4716 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4717
4718DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<CleanupReturnInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4718, __extension__ __PRETTY_FUNCTION__
)); return cast_or_null<Value>( OperandTraits<CleanupReturnInst
>::op_begin(const_cast<CleanupReturnInst*>(this))[i_nocapture
].get()); } void CleanupReturnInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<CleanupReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "llvm/include/llvm/IR/Instructions.h", 4718, __extension__ __PRETTY_FUNCTION__
)); OperandTraits<CleanupReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned CleanupReturnInst::getNumOperands
() const { return OperandTraits<CleanupReturnInst>::operands
(this); } template <int Idx_nocapture> Use &CleanupReturnInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &CleanupReturnInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
4719
4720//===----------------------------------------------------------------------===//
4721// UnreachableInst Class
4722//===----------------------------------------------------------------------===//
4723
4724//===---------------------------------------------------------------------------
4725/// This function has undefined behavior. In particular, the
4726/// presence of this instruction indicates some higher level knowledge that the
4727/// end of the block cannot be reached.
4728///
4729class UnreachableInst : public Instruction {
4730protected:
4731 // Note: Instruction needs to be a friend here to call cloneImpl.
4732 friend class Instruction;
4733
4734 UnreachableInst *cloneImpl() const;
4735
4736public:
4737 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4738 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4739
4740 // allocate space for exactly zero operands
4741 void *operator new(size_t S) { return User::operator new(S, 0); }
4742 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4743
4744 unsigned getNumSuccessors() const { return 0; }
4745
4746 // Methods for support type inquiry through isa, cast, and dyn_cast:
4747 static bool classof(const Instruction *I) {
4748 return I->getOpcode() == Instruction::Unreachable;
4749 }
4750 static bool classof(const Value *V) {
4751 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4752 }
4753
4754private:
4755 BasicBlock *getSuccessor(unsigned idx) const {
4756 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 4756)
;
4757 }
4758
4759 void setSuccessor(unsigned idx, BasicBlock *B) {
4760 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "llvm/include/llvm/IR/Instructions.h", 4760)
;
4761 }
4762};
4763
4764//===----------------------------------------------------------------------===//
4765// TruncInst Class
4766//===----------------------------------------------------------------------===//
4767
4768/// This class represents a truncation of integer types.
4769class TruncInst : public CastInst {
4770protected:
4771 // Note: Instruction needs to be a friend here to call cloneImpl.
4772 friend class Instruction;
4773
4774 /// Clone an identical TruncInst
4775 TruncInst *cloneImpl() const;
4776
4777public:
4778 /// Constructor with insert-before-instruction semantics
4779 TruncInst(
4780 Value *S, ///< The value to be truncated
4781 Type *Ty, ///< The (smaller) type to truncate to
4782 const Twine &NameStr = "", ///< A name for the new instruction
4783 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4784 );
4785
4786 /// Constructor with insert-at-end-of-block semantics
4787 TruncInst(
4788 Value *S, ///< The value to be truncated
4789 Type *Ty, ///< The (smaller) type to truncate to
4790 const Twine &NameStr, ///< A name for the new instruction
4791 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4792 );
4793
4794 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4795 static bool classof(const Instruction *I) {
4796 return I->getOpcode() == Trunc;
4797 }
4798 static bool classof(const Value *V) {
4799 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4800 }
4801};
4802
4803//===----------------------------------------------------------------------===//
4804// ZExtInst Class
4805//===----------------------------------------------------------------------===//
4806
4807/// This class represents zero extension of integer types.
4808class ZExtInst : public CastInst {
4809protected:
4810 // Note: Instruction needs to be a friend here to call cloneImpl.
4811 friend class Instruction;
4812
4813 /// Clone an identical ZExtInst
4814 ZExtInst *cloneImpl() const;
4815
4816public:
4817 /// Constructor with insert-before-instruction semantics
4818 ZExtInst(
4819 Value *S, ///< The value to be zero extended
4820 Type *Ty, ///< The type to zero extend to
4821 const Twine &NameStr = "", ///< A name for the new instruction
4822 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4823 );
4824
4825 /// Constructor with insert-at-end semantics.
4826 ZExtInst(
4827 Value *S, ///< The value to be zero extended
4828 Type *Ty, ///< The type to zero extend to
4829 const Twine &NameStr, ///< A name for the new instruction
4830 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4831 );
4832
4833 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4834 static bool classof(const Instruction *I) {
4835 return I->getOpcode() == ZExt;
4836 }
4837 static bool classof(const Value *V) {
4838 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4839 }
4840};
4841
4842//===----------------------------------------------------------------------===//
4843// SExtInst Class
4844//===----------------------------------------------------------------------===//
4845
4846/// This class represents a sign extension of integer types.
4847class SExtInst : public CastInst {
4848protected:
4849 // Note: Instruction needs to be a friend here to call cloneImpl.
4850 friend class Instruction;
4851
4852 /// Clone an identical SExtInst
4853 SExtInst *cloneImpl() const;
4854
4855public:
4856 /// Constructor with insert-before-instruction semantics
4857 SExtInst(
4858 Value *S, ///< The value to be sign extended
4859 Type *Ty, ///< The type to sign extend to
4860 const Twine &NameStr = "", ///< A name for the new instruction
4861 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4862 );
4863
4864 /// Constructor with insert-at-end-of-block semantics
4865 SExtInst(
4866 Value *S, ///< The value to be sign extended
4867 Type *Ty, ///< The type to sign extend to
4868 const Twine &NameStr, ///< A name for the new instruction
4869 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4870 );
4871
4872 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4873 static bool classof(const Instruction *I) {
4874 return I->getOpcode() == SExt;
4875 }
4876 static bool classof(const Value *V) {
4877 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4878 }
4879};
4880
4881//===----------------------------------------------------------------------===//
4882// FPTruncInst Class
4883//===----------------------------------------------------------------------===//
4884
4885/// This class represents a truncation of floating point types.
4886class FPTruncInst : public CastInst {
4887protected:
4888 // Note: Instruction needs to be a friend here to call cloneImpl.
4889 friend class Instruction;
4890
4891 /// Clone an identical FPTruncInst
4892 FPTruncInst *cloneImpl() const;
4893
4894public:
4895 /// Constructor with insert-before-instruction semantics
4896 FPTruncInst(
4897 Value *S, ///< The value to be truncated
4898 Type *Ty, ///< The type to truncate to
4899 const Twine &NameStr = "", ///< A name for the new instruction
4900 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4901 );
4902
4903 /// Constructor with insert-before-instruction semantics
4904 FPTruncInst(
4905 Value *S, ///< The value to be truncated
4906 Type *Ty, ///< The type to truncate to
4907 const Twine &NameStr, ///< A name for the new instruction
4908 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4909 );
4910
4911 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4912 static bool classof(const Instruction *I) {
4913 return I->getOpcode() == FPTrunc;
4914 }
4915 static bool classof(const Value *V) {
4916 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4917 }
4918};
4919
4920//===----------------------------------------------------------------------===//
4921// FPExtInst Class
4922//===----------------------------------------------------------------------===//
4923
4924/// This class represents an extension of floating point types.
4925class FPExtInst : public CastInst {
4926protected:
4927 // Note: Instruction needs to be a friend here to call cloneImpl.
4928 friend class Instruction;
4929
4930 /// Clone an identical FPExtInst
4931 FPExtInst *cloneImpl() const;
4932
4933public:
4934 /// Constructor with insert-before-instruction semantics
4935 FPExtInst(
4936 Value *S, ///< The value to be extended
4937 Type *Ty, ///< The type to extend to
4938 const Twine &NameStr = "", ///< A name for the new instruction
4939 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4940 );
4941
4942 /// Constructor with insert-at-end-of-block semantics
4943 FPExtInst(
4944 Value *S, ///< The value to be extended
4945 Type *Ty, ///< The type to extend to
4946 const Twine &NameStr, ///< A name for the new instruction
4947 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4948 );
4949
4950 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4951 static bool classof(const Instruction *I) {
4952 return I->getOpcode() == FPExt;
4953 }
4954 static bool classof(const Value *V) {
4955 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4956 }
4957};
4958
4959//===----------------------------------------------------------------------===//
4960// UIToFPInst Class
4961//===----------------------------------------------------------------------===//
4962
4963/// This class represents a cast unsigned integer to floating point.
4964class UIToFPInst : public CastInst {
4965protected:
4966 // Note: Instruction needs to be a friend here to call cloneImpl.
4967 friend class Instruction;
4968
4969 /// Clone an identical UIToFPInst
4970 UIToFPInst *cloneImpl() const;
4971
4972public:
4973 /// Constructor with insert-before-instruction semantics
4974 UIToFPInst(
4975 Value *S, ///< The value to be converted
4976 Type *Ty, ///< The type to convert to
4977 const Twine &NameStr = "", ///< A name for the new instruction
4978 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4979 );
4980
4981 /// Constructor with insert-at-end-of-block semantics
4982 UIToFPInst(
4983 Value *S, ///< The value to be converted
4984 Type *Ty, ///< The type to convert to
4985 const Twine &NameStr, ///< A name for the new instruction
4986 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4987 );
4988
4989 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4990 static bool classof(const Instruction *I) {
4991 return I->getOpcode() == UIToFP;
4992 }
4993 static bool classof(const Value *V) {
4994 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4995 }
4996};
4997
4998//===----------------------------------------------------------------------===//
4999// SIToFPInst Class
5000//===----------------------------------------------------------------------===//
5001
5002/// This class represents a cast from signed integer to floating point.
5003class SIToFPInst : public CastInst {
5004protected:
5005 // Note: Instruction needs to be a friend here to call cloneImpl.
5006 friend class Instruction;
5007
5008 /// Clone an identical SIToFPInst
5009 SIToFPInst *cloneImpl() const;
5010
5011public:
5012 /// Constructor with insert-before-instruction semantics
5013 SIToFPInst(
5014 Value *S, ///< The value to be converted
5015 Type *Ty, ///< The type to convert to
5016 const Twine &NameStr = "", ///< A name for the new instruction
5017 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5018 );
5019
5020 /// Constructor with insert-at-end-of-block semantics
5021 SIToFPInst(
5022 Value *S, ///< The value to be converted
5023 Type *Ty, ///< The type to convert to
5024 const Twine &NameStr, ///< A name for the new instruction
5025 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5026 );
5027
5028 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5029 static bool classof(const Instruction *I) {
5030 return I->getOpcode() == SIToFP;
5031 }
5032 static bool classof(const Value *V) {
5033 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5034 }
5035};
5036
5037//===----------------------------------------------------------------------===//
5038// FPToUIInst Class
5039//===----------------------------------------------------------------------===//
5040
5041/// This class represents a cast from floating point to unsigned integer
5042class FPToUIInst : public CastInst {
5043protected:
5044 // Note: Instruction needs to be a friend here to call cloneImpl.
5045 friend class Instruction;
5046
5047 /// Clone an identical FPToUIInst
5048 FPToUIInst *cloneImpl() const;
5049
5050public:
5051 /// Constructor with insert-before-instruction semantics
5052 FPToUIInst(
5053 Value *S, ///< The value to be converted
5054 Type *Ty, ///< The type to convert to
5055 const Twine &NameStr = "", ///< A name for the new instruction
5056 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5057 );
5058
5059 /// Constructor with insert-at-end-of-block semantics
5060 FPToUIInst(
5061 Value *S, ///< The value to be converted
5062 Type *Ty, ///< The type to convert to
5063 const Twine &NameStr, ///< A name for the new instruction
5064 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5065 );
5066
5067 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5068 static bool classof(const Instruction *I) {
5069 return I->getOpcode() == FPToUI;
5070 }
5071 static bool classof(const Value *V) {
5072 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5073 }
5074};
5075
5076//===----------------------------------------------------------------------===//
5077// FPToSIInst Class
5078//===----------------------------------------------------------------------===//
5079
5080/// This class represents a cast from floating point to signed integer.
5081class FPToSIInst : public CastInst {
5082protected:
5083 // Note: Instruction needs to be a friend here to call cloneImpl.
5084 friend class Instruction;
5085
5086 /// Clone an identical FPToSIInst
5087 FPToSIInst *cloneImpl() const;
5088
5089public:
5090 /// Constructor with insert-before-instruction semantics
5091 FPToSIInst(
5092 Value *S, ///< The value to be converted
5093 Type *Ty, ///< The type to convert to
5094 const Twine &NameStr = "", ///< A name for the new instruction
5095 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5096 );
5097
5098 /// Constructor with insert-at-end-of-block semantics
5099 FPToSIInst(
5100 Value *S, ///< The value to be converted
5101 Type *Ty, ///< The type to convert to
5102 const Twine &NameStr, ///< A name for the new instruction
5103 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5104 );
5105
5106 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5107 static bool classof(const Instruction *I) {
5108 return I->getOpcode() == FPToSI;
5109 }
5110 static bool classof(const Value *V) {
5111 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5112 }
5113};
5114
5115//===----------------------------------------------------------------------===//
5116// IntToPtrInst Class
5117//===----------------------------------------------------------------------===//
5118
5119/// This class represents a cast from an integer to a pointer.
5120class IntToPtrInst : public CastInst {
5121public:
5122 // Note: Instruction needs to be a friend here to call cloneImpl.
5123 friend class Instruction;
5124
5125 /// Constructor with insert-before-instruction semantics
5126 IntToPtrInst(
5127 Value *S, ///< The value to be converted
5128 Type *Ty, ///< The type to convert to
5129 const Twine &NameStr = "", ///< A name for the new instruction
5130 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5131 );
5132
5133 /// Constructor with insert-at-end-of-block semantics
5134 IntToPtrInst(
5135 Value *S, ///< The value to be converted
5136 Type *Ty, ///< The type to convert to
5137 const Twine &NameStr, ///< A name for the new instruction
5138 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5139 );
5140
5141 /// Clone an identical IntToPtrInst.
5142 IntToPtrInst *cloneImpl() const;
5143
5144 /// Returns the address space of this instruction's pointer type.
5145 unsigned getAddressSpace() const {
5146 return getType()->getPointerAddressSpace();
5147 }
5148
5149 // Methods for support type inquiry through isa, cast, and dyn_cast:
5150 static bool classof(const Instruction *I) {
5151 return I->getOpcode() == IntToPtr;
5152 }
5153 static bool classof(const Value *V) {
5154 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5155 }
5156};
5157
5158//===----------------------------------------------------------------------===//
5159// PtrToIntInst Class
5160//===----------------------------------------------------------------------===//
5161
5162/// This class represents a cast from a pointer to an integer.
5163class PtrToIntInst : public CastInst {
5164protected:
5165 // Note: Instruction needs to be a friend here to call cloneImpl.
5166 friend class Instruction;
5167
5168 /// Clone an identical PtrToIntInst.
5169 PtrToIntInst *cloneImpl() const;
5170
5171public:
5172 /// Constructor with insert-before-instruction semantics
5173 PtrToIntInst(
5174 Value *S, ///< The value to be converted
5175 Type *Ty, ///< The type to convert to
5176 const Twine &NameStr = "", ///< A name for the new instruction
5177 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5178 );
5179
5180 /// Constructor with insert-at-end-of-block semantics
5181 PtrToIntInst(
5182 Value *S, ///< The value to be converted
5183 Type *Ty, ///< The type to convert to
5184 const Twine &NameStr, ///< A name for the new instruction
5185 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5186 );
5187
5188 /// Gets the pointer operand.
5189 Value *getPointerOperand() { return getOperand(0); }
5190 /// Gets the pointer operand.
5191 const Value *getPointerOperand() const { return getOperand(0); }
5192 /// Gets the operand index of the pointer operand.
5193 static unsigned getPointerOperandIndex() { return 0U; }
5194
5195 /// Returns the address space of the pointer operand.
5196 unsigned getPointerAddressSpace() const {
5197 return getPointerOperand()->getType()->getPointerAddressSpace();
5198 }
5199
5200 // Methods for support type inquiry through isa, cast, and dyn_cast:
5201 static bool classof(const Instruction *I) {
5202 return I->getOpcode() == PtrToInt;
5203 }
5204 static bool classof(const Value *V) {
5205 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5206 }
5207};
5208
5209//===----------------------------------------------------------------------===//
5210// BitCastInst Class
5211//===----------------------------------------------------------------------===//
5212
5213/// This class represents a no-op cast from one type to another.
5214class BitCastInst : public CastInst {
5215protected:
5216 // Note: Instruction needs to be a friend here to call cloneImpl.
5217 friend class Instruction;
5218
5219 /// Clone an identical BitCastInst.
5220 BitCastInst *cloneImpl() const;
5221
5222public:
5223 /// Constructor with insert-before-instruction semantics
5224 BitCastInst(
5225 Value *S, ///< The value to be casted
5226 Type *Ty, ///< The type to casted to
5227 const Twine &NameStr = "", ///< A name for the new instruction
5228 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5229 );
5230
5231 /// Constructor with insert-at-end-of-block semantics
5232 BitCastInst(
5233 Value *S, ///< The value to be casted
5234 Type *Ty, ///< The type to casted to
5235 const Twine &NameStr, ///< A name for the new instruction
5236 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5237 );
5238
5239 // Methods for support type inquiry through isa, cast, and dyn_cast:
5240 static bool classof(const Instruction *I) {
5241 return I->getOpcode() == BitCast;
5242 }
5243 static bool classof(const Value *V) {
5244 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5245 }
5246};
5247
5248//===----------------------------------------------------------------------===//
5249// AddrSpaceCastInst Class
5250//===----------------------------------------------------------------------===//
5251
5252/// This class represents a conversion between pointers from one address space
5253/// to another.
5254class AddrSpaceCastInst : public CastInst {
5255protected:
5256 // Note: Instruction needs to be a friend here to call cloneImpl.
5257 friend class Instruction;
5258
5259 /// Clone an identical AddrSpaceCastInst.
5260 AddrSpaceCastInst *cloneImpl() const;
5261
5262public:
5263 /// Constructor with insert-before-instruction semantics
5264 AddrSpaceCastInst(
5265 Value *S, ///< The value to be casted
5266 Type *Ty, ///< The type to casted to
5267 const Twine &NameStr = "", ///< A name for the new instruction
5268 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5269 );
5270
5271 /// Constructor with insert-at-end-of-block semantics
5272 AddrSpaceCastInst(
5273 Value *S, ///< The value to be casted
5274 Type *Ty, ///< The type to casted to
5275 const Twine &NameStr, ///< A name for the new instruction
5276 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5277 );
5278
5279 // Methods for support type inquiry through isa, cast, and dyn_cast:
5280 static bool classof(const Instruction *I) {
5281 return I->getOpcode() == AddrSpaceCast;
5282 }
5283 static bool classof(const Value *V) {
5284 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5285 }
5286
5287 /// Gets the pointer operand.
5288 Value *getPointerOperand() {
5289 return getOperand(0);
5290 }
5291
5292 /// Gets the pointer operand.
5293 const Value *getPointerOperand() const {
5294 return getOperand(0);
5295 }
5296
5297 /// Gets the operand index of the pointer operand.
5298 static unsigned getPointerOperandIndex() {
5299 return 0U;
5300 }
5301
5302 /// Returns the address space of the pointer operand.
5303 unsigned getSrcAddressSpace() const {
5304 return getPointerOperand()->getType()->getPointerAddressSpace();
5305 }
5306
5307 /// Returns the address space of the result.
5308 unsigned getDestAddressSpace() const {
5309 return getType()->getPointerAddressSpace();
5310 }
5311};
5312
5313//===----------------------------------------------------------------------===//
5314// Helper functions
5315//===----------------------------------------------------------------------===//
5316
5317/// A helper function that returns the pointer operand of a load or store
5318/// instruction. Returns nullptr if not load or store.
5319inline const Value *getLoadStorePointerOperand(const Value *V) {
5320 if (auto *Load = dyn_cast<LoadInst>(V))
5321 return Load->getPointerOperand();
5322 if (auto *Store = dyn_cast<StoreInst>(V))
5323 return Store->getPointerOperand();
5324 return nullptr;
5325}
5326inline Value *getLoadStorePointerOperand(Value *V) {
5327 return const_cast<Value *>(
5328 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5329}
5330
5331/// A helper function that returns the pointer operand of a load, store
5332/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5333inline const Value *getPointerOperand(const Value *V) {
5334 if (auto *Ptr = getLoadStorePointerOperand(V))
5335 return Ptr;
5336 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5337 return Gep->getPointerOperand();
5338 return nullptr;
5339}
5340inline Value *getPointerOperand(Value *V) {
5341 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5342}
5343
5344/// A helper function that returns the alignment of load or store instruction.
5345inline Align getLoadStoreAlignment(Value *I) {
5346 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5347, __extension__ __PRETTY_FUNCTION__
))
5347 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5347, __extension__ __PRETTY_FUNCTION__
))
;
5348 if (auto *LI = dyn_cast<LoadInst>(I))
5349 return LI->getAlign();
5350 return cast<StoreInst>(I)->getAlign();
5351}
5352
5353/// A helper function that returns the address space of the pointer operand of
5354/// load or store instruction.
5355inline unsigned getLoadStoreAddressSpace(Value *I) {
5356 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5357, __extension__ __PRETTY_FUNCTION__
))
5357 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5357, __extension__ __PRETTY_FUNCTION__
))
;
5358 if (auto *LI = dyn_cast<LoadInst>(I))
5359 return LI->getPointerAddressSpace();
5360 return cast<StoreInst>(I)->getPointerAddressSpace();
5361}
5362
5363/// A helper function that returns the type of a load or store instruction.
5364inline Type *getLoadStoreType(Value *I) {
5365 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5366, __extension__ __PRETTY_FUNCTION__
))
5366 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "llvm/include/llvm/IR/Instructions.h", 5366, __extension__ __PRETTY_FUNCTION__
))
;
5367 if (auto *LI = dyn_cast<LoadInst>(I))
5368 return LI->getType();
5369 return cast<StoreInst>(I)->getValueOperand()->getType();
5370}
5371
5372/// A helper function that returns an atomic operation's sync scope; returns
5373/// None if it is not an atomic operation.
5374inline Optional<SyncScope::ID> getAtomicSyncScopeID(const Instruction *I) {
5375 if (!I->isAtomic())
5376 return None;
5377 if (auto *AI = dyn_cast<LoadInst>(I))
5378 return AI->getSyncScopeID();
5379 if (auto *AI = dyn_cast<StoreInst>(I))
5380 return AI->getSyncScopeID();
5381 if (auto *AI = dyn_cast<FenceInst>(I))
5382 return AI->getSyncScopeID();
5383 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I))
5384 return AI->getSyncScopeID();
5385 if (auto *AI = dyn_cast<AtomicRMWInst>(I))
5386 return AI->getSyncScopeID();
5387 llvm_unreachable("unhandled atomic operation")::llvm::llvm_unreachable_internal("unhandled atomic operation"
, "llvm/include/llvm/IR/Instructions.h", 5387)
;
5388}
5389
5390//===----------------------------------------------------------------------===//
5391// FreezeInst Class
5392//===----------------------------------------------------------------------===//
5393
5394/// This class represents a freeze function that returns random concrete
5395/// value if an operand is either a poison value or an undef value
5396class FreezeInst : public UnaryInstruction {
5397protected:
5398 // Note: Instruction needs to be a friend here to call cloneImpl.
5399 friend class Instruction;
5400
5401 /// Clone an identical FreezeInst
5402 FreezeInst *cloneImpl() const;
5403
5404public:
5405 explicit FreezeInst(Value *S,
5406 const Twine &NameStr = "",
5407 Instruction *InsertBefore = nullptr);
5408 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5409
5410 // Methods for support type inquiry through isa, cast, and dyn_cast:
5411 static inline bool classof(const Instruction *I) {
5412 return I->getOpcode() == Freeze;
5413 }
5414 static inline bool classof(const Value *V) {
5415 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5416 }
5417};
5418
5419} // end namespace llvm
5420
5421#endif // LLVM_IR_INSTRUCTIONS_H

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
10// and dyn_cast_or_null<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <type_traits>
22
23namespace llvm {
24
25//===----------------------------------------------------------------------===//
26// isa<x> Support Templates
27//===----------------------------------------------------------------------===//
28
29// Define a template that can be specialized by smart pointers to reflect the
30// fact that they are automatically dereferenced, and are not involved with the
31// template selection process... the default implementation is a noop.
32//
33template<typename From> struct simplify_type {
34 using SimpleType = From; // The real type this represents...
35
36 // An accessor to get the real value...
37 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
38};
39
40template<typename From> struct simplify_type<const From> {
41 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
42 using SimpleType =
43 typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From& Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
49 }
50};
51
52// The core of the implementation of isa<X> is here; To and From should be
53// the names of classes. This template can be specialized to customize the
54// implementation of isa<> without rewriting it from scratch.
55template <typename To, typename From, typename Enabler = void>
56struct isa_impl {
57 static inline bool doit(const From &Val) {
58 return To::classof(&Val);
59 }
60};
61
62/// Always allow upcasts, and perform no dynamic check for them.
63template <typename To, typename From>
64struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
65 static inline bool doit(const From &) { return true; }
66};
67
68template <typename To, typename From> struct isa_impl_cl {
69 static inline bool doit(const From &Val) {
70 return isa_impl<To, From>::doit(Val);
71 }
72};
73
74template <typename To, typename From> struct isa_impl_cl<To, const From> {
75 static inline bool doit(const From &Val) {
76 return isa_impl<To, From>::doit(Val);
77 }
78};
79
80template <typename To, typename From>
81struct isa_impl_cl<To, const std::unique_ptr<From>> {
82 static inline bool doit(const std::unique_ptr<From> &Val) {
83 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 83, __extension__ __PRETTY_FUNCTION__
))
;
84 return isa_impl_cl<To, From>::doit(*Val);
85 }
86};
87
88template <typename To, typename From> struct isa_impl_cl<To, From*> {
89 static inline bool doit(const From *Val) {
90 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 90, __extension__ __PRETTY_FUNCTION__
))
;
91 return isa_impl<To, From>::doit(*Val);
92 }
93};
94
95template <typename To, typename From> struct isa_impl_cl<To, From*const> {
96 static inline bool doit(const From *Val) {
97 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 97, __extension__ __PRETTY_FUNCTION__
))
;
98 return isa_impl<To, From>::doit(*Val);
99 }
100};
101
102template <typename To, typename From> struct isa_impl_cl<To, const From*> {
103 static inline bool doit(const From *Val) {
104 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 104, __extension__ __PRETTY_FUNCTION__
))
;
105 return isa_impl<To, From>::doit(*Val);
106 }
107};
108
109template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
110 static inline bool doit(const From *Val) {
111 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 111, __extension__ __PRETTY_FUNCTION__
))
;
112 return isa_impl<To, From>::doit(*Val);
113 }
114};
115
116template<typename To, typename From, typename SimpleFrom>
117struct isa_impl_wrap {
118 // When From != SimplifiedType, we can simplify the type some more by using
119 // the simplify_type template.
120 static bool doit(const From &Val) {
121 return isa_impl_wrap<To, SimpleFrom,
122 typename simplify_type<SimpleFrom>::SimpleType>::doit(
123 simplify_type<const From>::getSimplifiedValue(Val));
124 }
125};
126
127template<typename To, typename FromTy>
128struct isa_impl_wrap<To, FromTy, FromTy> {
129 // When From == SimpleType, we are as simple as we are going to get.
130 static bool doit(const FromTy &Val) {
131 return isa_impl_cl<To,FromTy>::doit(Val);
132 }
133};
134
135// isa<X> - Return true if the parameter to the template is an instance of one
136// of the template type arguments. Used like this:
137//
138// if (isa<Type>(myVal)) { ... }
139// if (isa<Type0, Type1, Type2>(myVal)) { ... }
140//
141template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
142 return isa_impl_wrap<X, const Y,
143 typename simplify_type<const Y>::SimpleType>::doit(Val);
144}
145
146template <typename First, typename Second, typename... Rest, typename Y>
147LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
148 return isa<First>(Val) || isa<Second, Rest...>(Val);
149}
150
151// isa_and_nonnull<X> - Functionally identical to isa, except that a null value
152// is accepted.
153//
154template <typename... X, class Y>
155LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa_and_nonnull(const Y &Val) {
156 if (!Val)
157 return false;
158 return isa<X...>(Val);
159}
160
161//===----------------------------------------------------------------------===//
162// cast<x> Support Templates
163//===----------------------------------------------------------------------===//
164
165template<class To, class From> struct cast_retty;
166
167// Calculate what type the 'cast' function should return, based on a requested
168// type of To and a source type of From.
169template<class To, class From> struct cast_retty_impl {
170 using ret_type = To &; // Normal case, return Ty&
171};
172template<class To, class From> struct cast_retty_impl<To, const From> {
173 using ret_type = const To &; // Normal case, return Ty&
174};
175
176template<class To, class From> struct cast_retty_impl<To, From*> {
177 using ret_type = To *; // Pointer arg case, return Ty*
178};
179
180template<class To, class From> struct cast_retty_impl<To, const From*> {
181 using ret_type = const To *; // Constant pointer arg case, return const Ty*
182};
183
184template<class To, class From> struct cast_retty_impl<To, const From*const> {
185 using ret_type = const To *; // Constant pointer arg case, return const Ty*
186};
187
188template <class To, class From>
189struct cast_retty_impl<To, std::unique_ptr<From>> {
190private:
191 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
192 using ResultType = std::remove_pointer_t<PointerType>;
193
194public:
195 using ret_type = std::unique_ptr<ResultType>;
196};
197
198template<class To, class From, class SimpleFrom>
199struct cast_retty_wrap {
200 // When the simplified type and the from type are not the same, use the type
201 // simplifier to reduce the type, then reuse cast_retty_impl to get the
202 // resultant type.
203 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
204};
205
206template<class To, class FromTy>
207struct cast_retty_wrap<To, FromTy, FromTy> {
208 // When the simplified type is equal to the from type, use it directly.
209 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
210};
211
212template<class To, class From>
213struct cast_retty {
214 using ret_type = typename cast_retty_wrap<
215 To, From, typename simplify_type<From>::SimpleType>::ret_type;
216};
217
218// Ensure the non-simple values are converted using the simplify_type template
219// that may be specialized by smart pointers...
220//
221template<class To, class From, class SimpleFrom> struct cast_convert_val {
222 // This is not a simple type, use the template to simplify it...
223 static typename cast_retty<To, From>::ret_type doit(From &Val) {
224 return cast_convert_val<To, SimpleFrom,
20
Calling 'cast_convert_val::doit'
23
Returning from 'cast_convert_val::doit'
24
Returning pointer
225 typename simplify_type<SimpleFrom>::SimpleType>::doit(
226 simplify_type<From>::getSimplifiedValue(Val));
18
Assigning value
19
Passing value via 1st parameter 'Val'
227 }
228};
229
230template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
231 // This _is_ a simple type, just cast it.
232 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
233 typename cast_retty<To, FromTy>::ret_type Res2
21
'Res2' initialized here
234 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
235 return Res2;
22
Returning pointer (loaded from 'Res2')
236 }
237};
238
239template <class X> struct is_simple_type {
240 static const bool value =
241 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
242};
243
244// cast<X> - Return the argument parameter cast to the specified type. This
245// casting operator asserts that the type is correct, so it does not return null
246// on failure. It does not allow a null argument (use cast_or_null for that).
247// It is typically used like this:
248//
249// cast<Instruction>(myVal)->getParent()
250//
251template <class X, class Y>
252inline std::enable_if_t<!is_simple_type<Y>::value,
253 typename cast_retty<X, const Y>::ret_type>
254cast(const Y &Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 255, __extension__ __PRETTY_FUNCTION__
))
;
15
Assuming 'Val' is a 'BasicBlock'
16
'?' condition is true
256 return cast_convert_val<
17
Calling 'cast_convert_val::doit'
25
Returning from 'cast_convert_val::doit'
26
Returning pointer
257 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
262 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 262, __extension__ __PRETTY_FUNCTION__
))
;
263 return cast_convert_val<X, Y,
264 typename simplify_type<Y>::SimpleType>::doit(Val);
265}
266
267template <class X, class Y>
268inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
269 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 269, __extension__ __PRETTY_FUNCTION__
))
;
270 return cast_convert_val<X, Y*,
271 typename simplify_type<Y*>::SimpleType>::doit(Val);
272}
273
274template <class X, class Y>
275inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
276cast(std::unique_ptr<Y> &&Val) {
277 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 277, __extension__ __PRETTY_FUNCTION__
))
;
278 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
279 return ret_type(
280 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
281 Val.release()));
282}
283
284// cast_or_null<X> - Functionally identical to cast, except that a null value is
285// accepted.
286//
287template <class X, class Y>
288LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
289 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
290cast_or_null(const Y &Val) {
291 if (!Val)
292 return nullptr;
293 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 293, __extension__ __PRETTY_FUNCTION__
))
;
294 return cast<X>(Val);
295}
296
297template <class X, class Y>
298LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
299 typename cast_retty<X, Y>::ret_type>
300cast_or_null(Y &Val) {
301 if (!Val)
302 return nullptr;
303 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 303, __extension__ __PRETTY_FUNCTION__
))
;
304 return cast<X>(Val);
305}
306
307template <class X, class Y>
308LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
309cast_or_null(Y *Val) {
310 if (!Val) return nullptr;
311 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 311, __extension__ __PRETTY_FUNCTION__
))
;
312 return cast<X>(Val);
313}
314
315template <class X, class Y>
316inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
317cast_or_null(std::unique_ptr<Y> &&Val) {
318 if (!Val)
319 return nullptr;
320 return cast<X>(std::move(Val));
321}
322
323// dyn_cast<X> - Return the argument parameter cast to the specified type. This
324// casting operator returns null if the argument is of the wrong type, so it can
325// be used to test for a type as well as cast if successful. This should be
326// used in the context of an if statement like this:
327//
328// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
329//
330
331template <class X, class Y>
332LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
333 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
334dyn_cast(const Y &Val) {
335 return isa<X>(Val) ? cast<X>(Val) : nullptr;
336}
337
338template <class X, class Y>
339LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
340 return isa<X>(Val) ? cast<X>(Val) : nullptr;
341}
342
343template <class X, class Y>
344LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
345 return isa<X>(Val) ? cast<X>(Val) : nullptr;
346}
347
348// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
349// value is accepted.
350//
351template <class X, class Y>
352LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
353 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
354dyn_cast_or_null(const Y &Val) {
355 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
356}
357
358template <class X, class Y>
359LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
360 typename cast_retty<X, Y>::ret_type>
361dyn_cast_or_null(Y &Val) {
362 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
363}
364
365template <class X, class Y>
366LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
367dyn_cast_or_null(Y *Val) {
368 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
369}
370
371// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
372// taking ownership of the input pointer iff isa<X>(Val) is true. If the
373// cast is successful, From refers to nullptr on exit and the casted value
374// is returned. If the cast is unsuccessful, the function returns nullptr
375// and From is unchanged.
376template <class X, class Y>
377LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
378 -> decltype(cast<X>(Val)) {
379 if (!isa<X>(Val))
380 return nullptr;
381 return cast<X>(std::move(Val));
382}
383
384template <class X, class Y>
385LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
386 return unique_dyn_cast<X, Y>(Val);
387}
388
389// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
390// a null value is accepted.
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
393 -> decltype(cast<X>(Val)) {
394 if (!Val)
395 return nullptr;
396 return unique_dyn_cast<X, Y>(Val);
397}
398
399template <class X, class Y>
400LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
401 return unique_dyn_cast_or_null<X, Y>(Val);
402}
403
404} // end namespace llvm
405
406#endif // LLVM_SUPPORT_CASTING_H