Bug Summary

File:build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/llvm/lib/Target/X86/X86InstrInfo.cpp
Warning:line 3892, column 19
Value stored to 'NewMI' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name X86InstrInfo.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/X86 -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/llvm/lib/Target/X86 -I include -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-09-04-125545-48738-1 -x c++ /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/llvm/lib/Target/X86/X86InstrInfo.cpp
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86InstrInfo.h"
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrFoldTables.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Sequence.h"
22#include "llvm/CodeGen/LiveIntervals.h"
23#include "llvm/CodeGen/LivePhysRegs.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineInstr.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineOperand.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/StackMaps.h"
34#include "llvm/IR/DebugInfoMetadata.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/InstrTypes.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCInst.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Target/TargetOptions.h"
46
47using namespace llvm;
48
49#define DEBUG_TYPE"x86-instr-info" "x86-instr-info"
50
51#define GET_INSTRINFO_CTOR_DTOR
52#include "X86GenInstrInfo.inc"
53
54static cl::opt<bool>
55 NoFusing("disable-spill-fusing",
56 cl::desc("Disable fusing of spill code into instructions"),
57 cl::Hidden);
58static cl::opt<bool>
59PrintFailedFusing("print-failed-fuse-candidates",
60 cl::desc("Print instructions that the allocator wants to"
61 " fuse, but the X86 backend currently can't"),
62 cl::Hidden);
63static cl::opt<bool>
64ReMatPICStubLoad("remat-pic-stub-load",
65 cl::desc("Re-materialize load from stub in PIC mode"),
66 cl::init(false), cl::Hidden);
67static cl::opt<unsigned>
68PartialRegUpdateClearance("partial-reg-update-clearance",
69 cl::desc("Clearance between two register writes "
70 "for inserting XOR to avoid partial "
71 "register update"),
72 cl::init(64), cl::Hidden);
73static cl::opt<unsigned>
74UndefRegClearance("undef-reg-clearance",
75 cl::desc("How many idle instructions we would like before "
76 "certain undef register reads"),
77 cl::init(128), cl::Hidden);
78
79
80// Pin the vtable to this file.
81void X86InstrInfo::anchor() {}
82
83X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
84 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
85 : X86::ADJCALLSTACKDOWN32),
86 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
87 : X86::ADJCALLSTACKUP32),
88 X86::CATCHRET,
89 (STI.is64Bit() ? X86::RET64 : X86::RET32)),
90 Subtarget(STI), RI(STI.getTargetTriple()) {
91}
92
93bool
94X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
95 Register &SrcReg, Register &DstReg,
96 unsigned &SubIdx) const {
97 switch (MI.getOpcode()) {
98 default: break;
99 case X86::MOVSX16rr8:
100 case X86::MOVZX16rr8:
101 case X86::MOVSX32rr8:
102 case X86::MOVZX32rr8:
103 case X86::MOVSX64rr8:
104 if (!Subtarget.is64Bit())
105 // It's not always legal to reference the low 8-bit of the larger
106 // register in 32-bit mode.
107 return false;
108 [[fallthrough]];
109 case X86::MOVSX32rr16:
110 case X86::MOVZX32rr16:
111 case X86::MOVSX64rr16:
112 case X86::MOVSX64rr32: {
113 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
114 // Be conservative.
115 return false;
116 SrcReg = MI.getOperand(1).getReg();
117 DstReg = MI.getOperand(0).getReg();
118 switch (MI.getOpcode()) {
119 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 119)
;
120 case X86::MOVSX16rr8:
121 case X86::MOVZX16rr8:
122 case X86::MOVSX32rr8:
123 case X86::MOVZX32rr8:
124 case X86::MOVSX64rr8:
125 SubIdx = X86::sub_8bit;
126 break;
127 case X86::MOVSX32rr16:
128 case X86::MOVZX32rr16:
129 case X86::MOVSX64rr16:
130 SubIdx = X86::sub_16bit;
131 break;
132 case X86::MOVSX64rr32:
133 SubIdx = X86::sub_32bit;
134 break;
135 }
136 return true;
137 }
138 }
139 return false;
140}
141
142bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
143 if (MI.mayLoad() || MI.mayStore())
144 return false;
145
146 // Some target-independent operations that trivially lower to data-invariant
147 // instructions.
148 if (MI.isCopyLike() || MI.isInsertSubreg())
149 return true;
150
151 unsigned Opcode = MI.getOpcode();
152 using namespace X86;
153 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
154 // However, they set flags and are perhaps the most surprisingly constant
155 // time operations so we call them out here separately.
156 if (isIMUL(Opcode))
157 return true;
158 // Bit scanning and counting instructions that are somewhat surprisingly
159 // constant time as they scan across bits and do other fairly complex
160 // operations like popcnt, but are believed to be constant time on x86.
161 // However, these set flags.
162 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
163 isTZCNT(Opcode))
164 return true;
165 // Bit manipulation instructions are effectively combinations of basic
166 // arithmetic ops, and should still execute in constant time. These also
167 // set flags.
168 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
169 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
170 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
171 isTZMSK(Opcode))
172 return true;
173 // Bit extracting and clearing instructions should execute in constant time,
174 // and set flags.
175 if (isBEXTR(Opcode) || isBZHI(Opcode))
176 return true;
177 // Shift and rotate.
178 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
179 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
180 return true;
181 // Basic arithmetic is constant time on the input but does set flags.
182 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
183 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
184 return true;
185 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
186 if (isADCX(Opcode) || isADOX(Opcode) || isANDN(Opcode))
187 return true;
188 // Unary arithmetic operations.
189 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
190 return true;
191 // Unlike other arithmetic, NOT doesn't set EFLAGS.
192 if (isNOT(Opcode))
193 return true;
194 // Various move instructions used to zero or sign extend things. Note that we
195 // intentionally don't support the _NOREX variants as we can't handle that
196 // register constraint anyways.
197 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
198 return true;
199 // Arithmetic instructions that are both constant time and don't set flags.
200 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
201 return true;
202 // LEA doesn't actually access memory, and its arithmetic is constant time.
203 if (isLEA(Opcode))
204 return true;
205 // By default, assume that the instruction is not data invariant.
206 return false;
207}
208
209bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
210 switch (MI.getOpcode()) {
211 default:
212 // By default, assume that the load will immediately leak.
213 return false;
214
215 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
216 // However, they set flags and are perhaps the most surprisingly constant
217 // time operations so we call them out here separately.
218 case X86::IMUL16rm:
219 case X86::IMUL16rmi8:
220 case X86::IMUL16rmi:
221 case X86::IMUL32rm:
222 case X86::IMUL32rmi8:
223 case X86::IMUL32rmi:
224 case X86::IMUL64rm:
225 case X86::IMUL64rmi32:
226 case X86::IMUL64rmi8:
227
228 // Bit scanning and counting instructions that are somewhat surprisingly
229 // constant time as they scan across bits and do other fairly complex
230 // operations like popcnt, but are believed to be constant time on x86.
231 // However, these set flags.
232 case X86::BSF16rm:
233 case X86::BSF32rm:
234 case X86::BSF64rm:
235 case X86::BSR16rm:
236 case X86::BSR32rm:
237 case X86::BSR64rm:
238 case X86::LZCNT16rm:
239 case X86::LZCNT32rm:
240 case X86::LZCNT64rm:
241 case X86::POPCNT16rm:
242 case X86::POPCNT32rm:
243 case X86::POPCNT64rm:
244 case X86::TZCNT16rm:
245 case X86::TZCNT32rm:
246 case X86::TZCNT64rm:
247
248 // Bit manipulation instructions are effectively combinations of basic
249 // arithmetic ops, and should still execute in constant time. These also
250 // set flags.
251 case X86::BLCFILL32rm:
252 case X86::BLCFILL64rm:
253 case X86::BLCI32rm:
254 case X86::BLCI64rm:
255 case X86::BLCIC32rm:
256 case X86::BLCIC64rm:
257 case X86::BLCMSK32rm:
258 case X86::BLCMSK64rm:
259 case X86::BLCS32rm:
260 case X86::BLCS64rm:
261 case X86::BLSFILL32rm:
262 case X86::BLSFILL64rm:
263 case X86::BLSI32rm:
264 case X86::BLSI64rm:
265 case X86::BLSIC32rm:
266 case X86::BLSIC64rm:
267 case X86::BLSMSK32rm:
268 case X86::BLSMSK64rm:
269 case X86::BLSR32rm:
270 case X86::BLSR64rm:
271 case X86::TZMSK32rm:
272 case X86::TZMSK64rm:
273
274 // Bit extracting and clearing instructions should execute in constant time,
275 // and set flags.
276 case X86::BEXTR32rm:
277 case X86::BEXTR64rm:
278 case X86::BEXTRI32mi:
279 case X86::BEXTRI64mi:
280 case X86::BZHI32rm:
281 case X86::BZHI64rm:
282
283 // Basic arithmetic is constant time on the input but does set flags.
284 case X86::ADC8rm:
285 case X86::ADC16rm:
286 case X86::ADC32rm:
287 case X86::ADC64rm:
288 case X86::ADCX32rm:
289 case X86::ADCX64rm:
290 case X86::ADD8rm:
291 case X86::ADD16rm:
292 case X86::ADD32rm:
293 case X86::ADD64rm:
294 case X86::ADOX32rm:
295 case X86::ADOX64rm:
296 case X86::AND8rm:
297 case X86::AND16rm:
298 case X86::AND32rm:
299 case X86::AND64rm:
300 case X86::ANDN32rm:
301 case X86::ANDN64rm:
302 case X86::OR8rm:
303 case X86::OR16rm:
304 case X86::OR32rm:
305 case X86::OR64rm:
306 case X86::SBB8rm:
307 case X86::SBB16rm:
308 case X86::SBB32rm:
309 case X86::SBB64rm:
310 case X86::SUB8rm:
311 case X86::SUB16rm:
312 case X86::SUB32rm:
313 case X86::SUB64rm:
314 case X86::XOR8rm:
315 case X86::XOR16rm:
316 case X86::XOR32rm:
317 case X86::XOR64rm:
318
319 // Integer multiply w/o affecting flags is still believed to be constant
320 // time on x86. Called out separately as this is among the most surprising
321 // instructions to exhibit that behavior.
322 case X86::MULX32rm:
323 case X86::MULX64rm:
324
325 // Arithmetic instructions that are both constant time and don't set flags.
326 case X86::RORX32mi:
327 case X86::RORX64mi:
328 case X86::SARX32rm:
329 case X86::SARX64rm:
330 case X86::SHLX32rm:
331 case X86::SHLX64rm:
332 case X86::SHRX32rm:
333 case X86::SHRX64rm:
334
335 // Conversions are believed to be constant time and don't set flags.
336 case X86::CVTTSD2SI64rm:
337 case X86::VCVTTSD2SI64rm:
338 case X86::VCVTTSD2SI64Zrm:
339 case X86::CVTTSD2SIrm:
340 case X86::VCVTTSD2SIrm:
341 case X86::VCVTTSD2SIZrm:
342 case X86::CVTTSS2SI64rm:
343 case X86::VCVTTSS2SI64rm:
344 case X86::VCVTTSS2SI64Zrm:
345 case X86::CVTTSS2SIrm:
346 case X86::VCVTTSS2SIrm:
347 case X86::VCVTTSS2SIZrm:
348 case X86::CVTSI2SDrm:
349 case X86::VCVTSI2SDrm:
350 case X86::VCVTSI2SDZrm:
351 case X86::CVTSI2SSrm:
352 case X86::VCVTSI2SSrm:
353 case X86::VCVTSI2SSZrm:
354 case X86::CVTSI642SDrm:
355 case X86::VCVTSI642SDrm:
356 case X86::VCVTSI642SDZrm:
357 case X86::CVTSI642SSrm:
358 case X86::VCVTSI642SSrm:
359 case X86::VCVTSI642SSZrm:
360 case X86::CVTSS2SDrm:
361 case X86::VCVTSS2SDrm:
362 case X86::VCVTSS2SDZrm:
363 case X86::CVTSD2SSrm:
364 case X86::VCVTSD2SSrm:
365 case X86::VCVTSD2SSZrm:
366 // AVX512 added unsigned integer conversions.
367 case X86::VCVTTSD2USI64Zrm:
368 case X86::VCVTTSD2USIZrm:
369 case X86::VCVTTSS2USI64Zrm:
370 case X86::VCVTTSS2USIZrm:
371 case X86::VCVTUSI2SDZrm:
372 case X86::VCVTUSI642SDZrm:
373 case X86::VCVTUSI2SSZrm:
374 case X86::VCVTUSI642SSZrm:
375
376 // Loads to register don't set flags.
377 case X86::MOV8rm:
378 case X86::MOV8rm_NOREX:
379 case X86::MOV16rm:
380 case X86::MOV32rm:
381 case X86::MOV64rm:
382 case X86::MOVSX16rm8:
383 case X86::MOVSX32rm16:
384 case X86::MOVSX32rm8:
385 case X86::MOVSX32rm8_NOREX:
386 case X86::MOVSX64rm16:
387 case X86::MOVSX64rm32:
388 case X86::MOVSX64rm8:
389 case X86::MOVZX16rm8:
390 case X86::MOVZX32rm16:
391 case X86::MOVZX32rm8:
392 case X86::MOVZX32rm8_NOREX:
393 case X86::MOVZX64rm16:
394 case X86::MOVZX64rm8:
395 return true;
396 }
397}
398
399int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
400 const MachineFunction *MF = MI.getParent()->getParent();
401 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
402
403 if (isFrameInstr(MI)) {
404 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
405 SPAdj -= getFrameAdjustment(MI);
406 if (!isFrameSetup(MI))
407 SPAdj = -SPAdj;
408 return SPAdj;
409 }
410
411 // To know whether a call adjusts the stack, we need information
412 // that is bound to the following ADJCALLSTACKUP pseudo.
413 // Look for the next ADJCALLSTACKUP that follows the call.
414 if (MI.isCall()) {
415 const MachineBasicBlock *MBB = MI.getParent();
416 auto I = ++MachineBasicBlock::const_iterator(MI);
417 for (auto E = MBB->end(); I != E; ++I) {
418 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
419 I->isCall())
420 break;
421 }
422
423 // If we could not find a frame destroy opcode, then it has already
424 // been simplified, so we don't care.
425 if (I->getOpcode() != getCallFrameDestroyOpcode())
426 return 0;
427
428 return -(I->getOperand(1).getImm());
429 }
430
431 // Currently handle only PUSHes we can reasonably expect to see
432 // in call sequences
433 switch (MI.getOpcode()) {
434 default:
435 return 0;
436 case X86::PUSH32i8:
437 case X86::PUSH32r:
438 case X86::PUSH32rmm:
439 case X86::PUSH32rmr:
440 case X86::PUSHi32:
441 return 4;
442 case X86::PUSH64i8:
443 case X86::PUSH64r:
444 case X86::PUSH64rmm:
445 case X86::PUSH64rmr:
446 case X86::PUSH64i32:
447 return 8;
448 }
449}
450
451/// Return true and the FrameIndex if the specified
452/// operand and follow operands form a reference to the stack frame.
453bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
454 int &FrameIndex) const {
455 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
456 MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
457 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
458 MI.getOperand(Op + X86::AddrDisp).isImm() &&
459 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
460 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
461 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
462 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
463 return true;
464 }
465 return false;
466}
467
468static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
469 switch (Opcode) {
470 default:
471 return false;
472 case X86::MOV8rm:
473 case X86::KMOVBkm:
474 MemBytes = 1;
475 return true;
476 case X86::MOV16rm:
477 case X86::KMOVWkm:
478 case X86::VMOVSHZrm:
479 case X86::VMOVSHZrm_alt:
480 MemBytes = 2;
481 return true;
482 case X86::MOV32rm:
483 case X86::MOVSSrm:
484 case X86::MOVSSrm_alt:
485 case X86::VMOVSSrm:
486 case X86::VMOVSSrm_alt:
487 case X86::VMOVSSZrm:
488 case X86::VMOVSSZrm_alt:
489 case X86::KMOVDkm:
490 MemBytes = 4;
491 return true;
492 case X86::MOV64rm:
493 case X86::LD_Fp64m:
494 case X86::MOVSDrm:
495 case X86::MOVSDrm_alt:
496 case X86::VMOVSDrm:
497 case X86::VMOVSDrm_alt:
498 case X86::VMOVSDZrm:
499 case X86::VMOVSDZrm_alt:
500 case X86::MMX_MOVD64rm:
501 case X86::MMX_MOVQ64rm:
502 case X86::KMOVQkm:
503 MemBytes = 8;
504 return true;
505 case X86::MOVAPSrm:
506 case X86::MOVUPSrm:
507 case X86::MOVAPDrm:
508 case X86::MOVUPDrm:
509 case X86::MOVDQArm:
510 case X86::MOVDQUrm:
511 case X86::VMOVAPSrm:
512 case X86::VMOVUPSrm:
513 case X86::VMOVAPDrm:
514 case X86::VMOVUPDrm:
515 case X86::VMOVDQArm:
516 case X86::VMOVDQUrm:
517 case X86::VMOVAPSZ128rm:
518 case X86::VMOVUPSZ128rm:
519 case X86::VMOVAPSZ128rm_NOVLX:
520 case X86::VMOVUPSZ128rm_NOVLX:
521 case X86::VMOVAPDZ128rm:
522 case X86::VMOVUPDZ128rm:
523 case X86::VMOVDQU8Z128rm:
524 case X86::VMOVDQU16Z128rm:
525 case X86::VMOVDQA32Z128rm:
526 case X86::VMOVDQU32Z128rm:
527 case X86::VMOVDQA64Z128rm:
528 case X86::VMOVDQU64Z128rm:
529 MemBytes = 16;
530 return true;
531 case X86::VMOVAPSYrm:
532 case X86::VMOVUPSYrm:
533 case X86::VMOVAPDYrm:
534 case X86::VMOVUPDYrm:
535 case X86::VMOVDQAYrm:
536 case X86::VMOVDQUYrm:
537 case X86::VMOVAPSZ256rm:
538 case X86::VMOVUPSZ256rm:
539 case X86::VMOVAPSZ256rm_NOVLX:
540 case X86::VMOVUPSZ256rm_NOVLX:
541 case X86::VMOVAPDZ256rm:
542 case X86::VMOVUPDZ256rm:
543 case X86::VMOVDQU8Z256rm:
544 case X86::VMOVDQU16Z256rm:
545 case X86::VMOVDQA32Z256rm:
546 case X86::VMOVDQU32Z256rm:
547 case X86::VMOVDQA64Z256rm:
548 case X86::VMOVDQU64Z256rm:
549 MemBytes = 32;
550 return true;
551 case X86::VMOVAPSZrm:
552 case X86::VMOVUPSZrm:
553 case X86::VMOVAPDZrm:
554 case X86::VMOVUPDZrm:
555 case X86::VMOVDQU8Zrm:
556 case X86::VMOVDQU16Zrm:
557 case X86::VMOVDQA32Zrm:
558 case X86::VMOVDQU32Zrm:
559 case X86::VMOVDQA64Zrm:
560 case X86::VMOVDQU64Zrm:
561 MemBytes = 64;
562 return true;
563 }
564}
565
566static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
567 switch (Opcode) {
568 default:
569 return false;
570 case X86::MOV8mr:
571 case X86::KMOVBmk:
572 MemBytes = 1;
573 return true;
574 case X86::MOV16mr:
575 case X86::KMOVWmk:
576 case X86::VMOVSHZmr:
577 MemBytes = 2;
578 return true;
579 case X86::MOV32mr:
580 case X86::MOVSSmr:
581 case X86::VMOVSSmr:
582 case X86::VMOVSSZmr:
583 case X86::KMOVDmk:
584 MemBytes = 4;
585 return true;
586 case X86::MOV64mr:
587 case X86::ST_FpP64m:
588 case X86::MOVSDmr:
589 case X86::VMOVSDmr:
590 case X86::VMOVSDZmr:
591 case X86::MMX_MOVD64mr:
592 case X86::MMX_MOVQ64mr:
593 case X86::MMX_MOVNTQmr:
594 case X86::KMOVQmk:
595 MemBytes = 8;
596 return true;
597 case X86::MOVAPSmr:
598 case X86::MOVUPSmr:
599 case X86::MOVAPDmr:
600 case X86::MOVUPDmr:
601 case X86::MOVDQAmr:
602 case X86::MOVDQUmr:
603 case X86::VMOVAPSmr:
604 case X86::VMOVUPSmr:
605 case X86::VMOVAPDmr:
606 case X86::VMOVUPDmr:
607 case X86::VMOVDQAmr:
608 case X86::VMOVDQUmr:
609 case X86::VMOVUPSZ128mr:
610 case X86::VMOVAPSZ128mr:
611 case X86::VMOVUPSZ128mr_NOVLX:
612 case X86::VMOVAPSZ128mr_NOVLX:
613 case X86::VMOVUPDZ128mr:
614 case X86::VMOVAPDZ128mr:
615 case X86::VMOVDQA32Z128mr:
616 case X86::VMOVDQU32Z128mr:
617 case X86::VMOVDQA64Z128mr:
618 case X86::VMOVDQU64Z128mr:
619 case X86::VMOVDQU8Z128mr:
620 case X86::VMOVDQU16Z128mr:
621 MemBytes = 16;
622 return true;
623 case X86::VMOVUPSYmr:
624 case X86::VMOVAPSYmr:
625 case X86::VMOVUPDYmr:
626 case X86::VMOVAPDYmr:
627 case X86::VMOVDQUYmr:
628 case X86::VMOVDQAYmr:
629 case X86::VMOVUPSZ256mr:
630 case X86::VMOVAPSZ256mr:
631 case X86::VMOVUPSZ256mr_NOVLX:
632 case X86::VMOVAPSZ256mr_NOVLX:
633 case X86::VMOVUPDZ256mr:
634 case X86::VMOVAPDZ256mr:
635 case X86::VMOVDQU8Z256mr:
636 case X86::VMOVDQU16Z256mr:
637 case X86::VMOVDQA32Z256mr:
638 case X86::VMOVDQU32Z256mr:
639 case X86::VMOVDQA64Z256mr:
640 case X86::VMOVDQU64Z256mr:
641 MemBytes = 32;
642 return true;
643 case X86::VMOVUPSZmr:
644 case X86::VMOVAPSZmr:
645 case X86::VMOVUPDZmr:
646 case X86::VMOVAPDZmr:
647 case X86::VMOVDQU8Zmr:
648 case X86::VMOVDQU16Zmr:
649 case X86::VMOVDQA32Zmr:
650 case X86::VMOVDQU32Zmr:
651 case X86::VMOVDQA64Zmr:
652 case X86::VMOVDQU64Zmr:
653 MemBytes = 64;
654 return true;
655 }
656 return false;
657}
658
659unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
660 int &FrameIndex) const {
661 unsigned Dummy;
662 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
663}
664
665unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
666 int &FrameIndex,
667 unsigned &MemBytes) const {
668 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
669 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
670 return MI.getOperand(0).getReg();
671 return 0;
672}
673
674unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
675 int &FrameIndex) const {
676 unsigned Dummy;
677 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
678 unsigned Reg;
679 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
680 return Reg;
681 // Check for post-frame index elimination operations
682 SmallVector<const MachineMemOperand *, 1> Accesses;
683 if (hasLoadFromStackSlot(MI, Accesses)) {
684 FrameIndex =
685 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
686 ->getFrameIndex();
687 return MI.getOperand(0).getReg();
688 }
689 }
690 return 0;
691}
692
693unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
694 int &FrameIndex) const {
695 unsigned Dummy;
696 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
697}
698
699unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
700 int &FrameIndex,
701 unsigned &MemBytes) const {
702 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
703 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
704 isFrameOperand(MI, 0, FrameIndex))
705 return MI.getOperand(X86::AddrNumOperands).getReg();
706 return 0;
707}
708
709unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
710 int &FrameIndex) const {
711 unsigned Dummy;
712 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
713 unsigned Reg;
714 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
715 return Reg;
716 // Check for post-frame index elimination operations
717 SmallVector<const MachineMemOperand *, 1> Accesses;
718 if (hasStoreToStackSlot(MI, Accesses)) {
719 FrameIndex =
720 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
721 ->getFrameIndex();
722 return MI.getOperand(X86::AddrNumOperands).getReg();
723 }
724 }
725 return 0;
726}
727
728/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
729static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
730 // Don't waste compile time scanning use-def chains of physregs.
731 if (!BaseReg.isVirtual())
732 return false;
733 bool isPICBase = false;
734 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
735 E = MRI.def_instr_end(); I != E; ++I) {
736 MachineInstr *DefMI = &*I;
737 if (DefMI->getOpcode() != X86::MOVPC32r)
738 return false;
739 assert(!isPICBase && "More than one PIC base?")(static_cast <bool> (!isPICBase && "More than one PIC base?"
) ? void (0) : __assert_fail ("!isPICBase && \"More than one PIC base?\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 739, __extension__ __PRETTY_FUNCTION__
))
;
740 isPICBase = true;
741 }
742 return isPICBase;
743}
744
745bool X86InstrInfo::isReallyTriviallyReMaterializable(
746 const MachineInstr &MI) const {
747 switch (MI.getOpcode()) {
748 default:
749 // This function should only be called for opcodes with the ReMaterializable
750 // flag set.
751 llvm_unreachable("Unknown rematerializable operation!")::llvm::llvm_unreachable_internal("Unknown rematerializable operation!"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 751)
;
752 break;
753
754 case X86::LOAD_STACK_GUARD:
755 case X86::AVX1_SETALLONES:
756 case X86::AVX2_SETALLONES:
757 case X86::AVX512_128_SET0:
758 case X86::AVX512_256_SET0:
759 case X86::AVX512_512_SET0:
760 case X86::AVX512_512_SETALLONES:
761 case X86::AVX512_FsFLD0SD:
762 case X86::AVX512_FsFLD0SH:
763 case X86::AVX512_FsFLD0SS:
764 case X86::AVX512_FsFLD0F128:
765 case X86::AVX_SET0:
766 case X86::FsFLD0SD:
767 case X86::FsFLD0SS:
768 case X86::FsFLD0SH:
769 case X86::FsFLD0F128:
770 case X86::KSET0D:
771 case X86::KSET0Q:
772 case X86::KSET0W:
773 case X86::KSET1D:
774 case X86::KSET1Q:
775 case X86::KSET1W:
776 case X86::MMX_SET0:
777 case X86::MOV32ImmSExti8:
778 case X86::MOV32r0:
779 case X86::MOV32r1:
780 case X86::MOV32r_1:
781 case X86::MOV32ri64:
782 case X86::MOV64ImmSExti8:
783 case X86::V_SET0:
784 case X86::V_SETALLONES:
785 case X86::MOV16ri:
786 case X86::MOV32ri:
787 case X86::MOV64ri:
788 case X86::MOV64ri32:
789 case X86::MOV8ri:
790 case X86::PTILEZEROV:
791 return true;
792
793 case X86::MOV8rm:
794 case X86::MOV8rm_NOREX:
795 case X86::MOV16rm:
796 case X86::MOV32rm:
797 case X86::MOV64rm:
798 case X86::MOVSSrm:
799 case X86::MOVSSrm_alt:
800 case X86::MOVSDrm:
801 case X86::MOVSDrm_alt:
802 case X86::MOVAPSrm:
803 case X86::MOVUPSrm:
804 case X86::MOVAPDrm:
805 case X86::MOVUPDrm:
806 case X86::MOVDQArm:
807 case X86::MOVDQUrm:
808 case X86::VMOVSSrm:
809 case X86::VMOVSSrm_alt:
810 case X86::VMOVSDrm:
811 case X86::VMOVSDrm_alt:
812 case X86::VMOVAPSrm:
813 case X86::VMOVUPSrm:
814 case X86::VMOVAPDrm:
815 case X86::VMOVUPDrm:
816 case X86::VMOVDQArm:
817 case X86::VMOVDQUrm:
818 case X86::VMOVAPSYrm:
819 case X86::VMOVUPSYrm:
820 case X86::VMOVAPDYrm:
821 case X86::VMOVUPDYrm:
822 case X86::VMOVDQAYrm:
823 case X86::VMOVDQUYrm:
824 case X86::MMX_MOVD64rm:
825 case X86::MMX_MOVQ64rm:
826 // AVX-512
827 case X86::VMOVSSZrm:
828 case X86::VMOVSSZrm_alt:
829 case X86::VMOVSDZrm:
830 case X86::VMOVSDZrm_alt:
831 case X86::VMOVSHZrm:
832 case X86::VMOVSHZrm_alt:
833 case X86::VMOVAPDZ128rm:
834 case X86::VMOVAPDZ256rm:
835 case X86::VMOVAPDZrm:
836 case X86::VMOVAPSZ128rm:
837 case X86::VMOVAPSZ256rm:
838 case X86::VMOVAPSZ128rm_NOVLX:
839 case X86::VMOVAPSZ256rm_NOVLX:
840 case X86::VMOVAPSZrm:
841 case X86::VMOVDQA32Z128rm:
842 case X86::VMOVDQA32Z256rm:
843 case X86::VMOVDQA32Zrm:
844 case X86::VMOVDQA64Z128rm:
845 case X86::VMOVDQA64Z256rm:
846 case X86::VMOVDQA64Zrm:
847 case X86::VMOVDQU16Z128rm:
848 case X86::VMOVDQU16Z256rm:
849 case X86::VMOVDQU16Zrm:
850 case X86::VMOVDQU32Z128rm:
851 case X86::VMOVDQU32Z256rm:
852 case X86::VMOVDQU32Zrm:
853 case X86::VMOVDQU64Z128rm:
854 case X86::VMOVDQU64Z256rm:
855 case X86::VMOVDQU64Zrm:
856 case X86::VMOVDQU8Z128rm:
857 case X86::VMOVDQU8Z256rm:
858 case X86::VMOVDQU8Zrm:
859 case X86::VMOVUPDZ128rm:
860 case X86::VMOVUPDZ256rm:
861 case X86::VMOVUPDZrm:
862 case X86::VMOVUPSZ128rm:
863 case X86::VMOVUPSZ256rm:
864 case X86::VMOVUPSZ128rm_NOVLX:
865 case X86::VMOVUPSZ256rm_NOVLX:
866 case X86::VMOVUPSZrm: {
867 // Loads from constant pools are trivially rematerializable.
868 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
869 MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
870 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
871 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
872 MI.isDereferenceableInvariantLoad()) {
873 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
874 if (BaseReg == 0 || BaseReg == X86::RIP)
875 return true;
876 // Allow re-materialization of PIC load.
877 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
878 return false;
879 const MachineFunction &MF = *MI.getParent()->getParent();
880 const MachineRegisterInfo &MRI = MF.getRegInfo();
881 return regIsPICBase(BaseReg, MRI);
882 }
883 return false;
884 }
885
886 case X86::LEA32r:
887 case X86::LEA64r: {
888 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
889 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
890 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
891 !MI.getOperand(1 + X86::AddrDisp).isReg()) {
892 // lea fi#, lea GV, etc. are all rematerializable.
893 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
894 return true;
895 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
896 if (BaseReg == 0)
897 return true;
898 // Allow re-materialization of lea PICBase + x.
899 const MachineFunction &MF = *MI.getParent()->getParent();
900 const MachineRegisterInfo &MRI = MF.getRegInfo();
901 return regIsPICBase(BaseReg, MRI);
902 }
903 return false;
904 }
905 }
906}
907
908void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
909 MachineBasicBlock::iterator I,
910 Register DestReg, unsigned SubIdx,
911 const MachineInstr &Orig,
912 const TargetRegisterInfo &TRI) const {
913 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
914 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
915 MachineBasicBlock::LQR_Dead) {
916 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
917 // effects.
918 int Value;
919 switch (Orig.getOpcode()) {
920 case X86::MOV32r0: Value = 0; break;
921 case X86::MOV32r1: Value = 1; break;
922 case X86::MOV32r_1: Value = -1; break;
923 default:
924 llvm_unreachable("Unexpected instruction!")::llvm::llvm_unreachable_internal("Unexpected instruction!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 924)
;
925 }
926
927 const DebugLoc &DL = Orig.getDebugLoc();
928 BuildMI(MBB, I, DL, get(X86::MOV32ri))
929 .add(Orig.getOperand(0))
930 .addImm(Value);
931 } else {
932 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
933 MBB.insert(I, MI);
934 }
935
936 MachineInstr &NewMI = *std::prev(I);
937 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
938}
939
940/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
941bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
942 for (const MachineOperand &MO : MI.operands()) {
943 if (MO.isReg() && MO.isDef() &&
944 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
945 return true;
946 }
947 }
948 return false;
949}
950
951/// Check whether the shift count for a machine operand is non-zero.
952inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
953 unsigned ShiftAmtOperandIdx) {
954 // The shift count is six bits with the REX.W prefix and five bits without.
955 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
956 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
957 return Imm & ShiftCountMask;
958}
959
960/// Check whether the given shift count is appropriate
961/// can be represented by a LEA instruction.
962inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
963 // Left shift instructions can be transformed into load-effective-address
964 // instructions if we can encode them appropriately.
965 // A LEA instruction utilizes a SIB byte to encode its scale factor.
966 // The SIB.scale field is two bits wide which means that we can encode any
967 // shift amount less than 4.
968 return ShAmt < 4 && ShAmt > 0;
969}
970
971static bool findRedundantFlagInstr(MachineInstr &CmpInstr,
972 MachineInstr &CmpValDefInstr,
973 const MachineRegisterInfo *MRI,
974 MachineInstr **AndInstr,
975 const TargetRegisterInfo *TRI,
976 bool &NoSignFlag, bool &ClearsOverflowFlag) {
977 if (CmpValDefInstr.getOpcode() != X86::SUBREG_TO_REG)
978 return false;
979
980 if (CmpInstr.getOpcode() != X86::TEST64rr)
981 return false;
982
983 // CmpInstr is a TEST64rr instruction, and `X86InstrInfo::analyzeCompare`
984 // guarantees that it's analyzable only if two registers are identical.
985 assert((static_cast <bool> ((CmpInstr.getOperand(0).getReg() ==
CmpInstr.getOperand(1).getReg()) && "CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` "
"requires two reg operands are the same.") ? void (0) : __assert_fail
("(CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) && \"CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` \" \"requires two reg operands are the same.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 988, __extension__ __PRETTY_FUNCTION__
))
986 (CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&(static_cast <bool> ((CmpInstr.getOperand(0).getReg() ==
CmpInstr.getOperand(1).getReg()) && "CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` "
"requires two reg operands are the same.") ? void (0) : __assert_fail
("(CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) && \"CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` \" \"requires two reg operands are the same.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 988, __extension__ __PRETTY_FUNCTION__
))
987 "CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` "(static_cast <bool> ((CmpInstr.getOperand(0).getReg() ==
CmpInstr.getOperand(1).getReg()) && "CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` "
"requires two reg operands are the same.") ? void (0) : __assert_fail
("(CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) && \"CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` \" \"requires two reg operands are the same.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 988, __extension__ __PRETTY_FUNCTION__
))
988 "requires two reg operands are the same.")(static_cast <bool> ((CmpInstr.getOperand(0).getReg() ==
CmpInstr.getOperand(1).getReg()) && "CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` "
"requires two reg operands are the same.") ? void (0) : __assert_fail
("(CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) && \"CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` \" \"requires two reg operands are the same.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 988, __extension__ __PRETTY_FUNCTION__
))
;
989
990 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
991 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
992 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
993 // redundant.
994 assert((static_cast <bool> ((MRI->getVRegDef(CmpInstr.getOperand
(0).getReg()) == &CmpValDefInstr) && "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG."
) ? void (0) : __assert_fail ("(MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) && \"Caller guarantees that TEST64rr is a user of SUBREG_TO_REG.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 996, __extension__ __PRETTY_FUNCTION__
))
995 (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&(static_cast <bool> ((MRI->getVRegDef(CmpInstr.getOperand
(0).getReg()) == &CmpValDefInstr) && "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG."
) ? void (0) : __assert_fail ("(MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) && \"Caller guarantees that TEST64rr is a user of SUBREG_TO_REG.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 996, __extension__ __PRETTY_FUNCTION__
))
996 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG.")(static_cast <bool> ((MRI->getVRegDef(CmpInstr.getOperand
(0).getReg()) == &CmpValDefInstr) && "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG."
) ? void (0) : __assert_fail ("(MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) && \"Caller guarantees that TEST64rr is a user of SUBREG_TO_REG.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 996, __extension__ __PRETTY_FUNCTION__
))
;
997
998 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is typically
999 // 0.
1000 if (CmpValDefInstr.getOperand(1).getImm() != 0)
1001 return false;
1002
1003 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1004 // sub_32bit or sub_xmm.
1005 if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
1006 return false;
1007
1008 MachineInstr *VregDefInstr =
1009 MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg());
1010
1011 assert(VregDefInstr && "Must have a definition (SSA)")(static_cast <bool> (VregDefInstr && "Must have a definition (SSA)"
) ? void (0) : __assert_fail ("VregDefInstr && \"Must have a definition (SSA)\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1011, __extension__
__PRETTY_FUNCTION__))
;
1012
1013 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1014 // to simplify the subsequent analysis.
1015 //
1016 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1017 // `CmpValDefInstr.getParent()`, this could be handled.
1018 if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
1019 return false;
1020
1021 if (X86::isAND(VregDefInstr->getOpcode())) {
1022 // Get a sequence of instructions like
1023 // %reg = and* ... // Set EFLAGS
1024 // ... // EFLAGS not changed
1025 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1026 // test64rr %extended_reg, %extended_reg, implicit-def $eflags
1027 //
1028 // If subsequent readers use a subset of bits that don't change
1029 // after `and*` instructions, it's likely that the test64rr could
1030 // be optimized away.
1031 for (const MachineInstr &Instr :
1032 make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)),
1033 MachineBasicBlock::iterator(CmpValDefInstr))) {
1034 // There are instructions between 'VregDefInstr' and
1035 // 'CmpValDefInstr' that modifies EFLAGS.
1036 if (Instr.modifiesRegister(X86::EFLAGS, TRI))
1037 return false;
1038 }
1039
1040 *AndInstr = VregDefInstr;
1041
1042 // AND instruction will essentially update SF and clear OF, so
1043 // NoSignFlag should be false in the sense that SF is modified by `AND`.
1044 //
1045 // However, the implementation artifically sets `NoSignFlag` to true
1046 // to poison the SF bit; that is to say, if SF is looked at later, the
1047 // optimization (to erase TEST64rr) will be disabled.
1048 //
1049 // The reason to poison SF bit is that SF bit value could be different
1050 // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1051 // and is known to be 0 as a result of `TEST64rr`.
1052 //
1053 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1054 // the AND instruction and using the static information to guide peephole
1055 // optimization if possible. For example, it's possible to fold a
1056 // conditional move into a copy if the relevant EFLAG bits could be deduced
1057 // from an immediate operand of and operation.
1058 //
1059 NoSignFlag = true;
1060 // ClearsOverflowFlag is true for AND operation (no surprise).
1061 ClearsOverflowFlag = true;
1062 return true;
1063 }
1064 return false;
1065}
1066
1067bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1068 unsigned Opc, bool AllowSP, Register &NewSrc,
1069 bool &isKill, MachineOperand &ImplicitOp,
1070 LiveVariables *LV, LiveIntervals *LIS) const {
1071 MachineFunction &MF = *MI.getParent()->getParent();
1072 const TargetRegisterClass *RC;
1073 if (AllowSP) {
1074 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1075 } else {
1076 RC = Opc != X86::LEA32r ?
1077 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1078 }
1079 Register SrcReg = Src.getReg();
1080 isKill = MI.killsRegister(SrcReg);
1081
1082 // For both LEA64 and LEA32 the register already has essentially the right
1083 // type (32-bit or 64-bit) we may just need to forbid SP.
1084 if (Opc != X86::LEA64_32r) {
1085 NewSrc = SrcReg;
1086 assert(!Src.isUndef() && "Undef op doesn't need optimization")(static_cast <bool> (!Src.isUndef() && "Undef op doesn't need optimization"
) ? void (0) : __assert_fail ("!Src.isUndef() && \"Undef op doesn't need optimization\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1086, __extension__
__PRETTY_FUNCTION__))
;
1087
1088 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1089 return false;
1090
1091 return true;
1092 }
1093
1094 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1095 // another we need to add 64-bit registers to the final MI.
1096 if (SrcReg.isPhysical()) {
1097 ImplicitOp = Src;
1098 ImplicitOp.setImplicit();
1099
1100 NewSrc = getX86SubSuperRegister(SrcReg, 64);
1101 assert(!Src.isUndef() && "Undef op doesn't need optimization")(static_cast <bool> (!Src.isUndef() && "Undef op doesn't need optimization"
) ? void (0) : __assert_fail ("!Src.isUndef() && \"Undef op doesn't need optimization\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1101, __extension__
__PRETTY_FUNCTION__))
;
1102 } else {
1103 // Virtual register of the wrong class, we have to create a temporary 64-bit
1104 // vreg to feed into the LEA.
1105 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1106 MachineInstr *Copy =
1107 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1108 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1109 .addReg(SrcReg, getKillRegState(isKill));
1110
1111 // Which is obviously going to be dead after we're done with it.
1112 isKill = true;
1113
1114 if (LV)
1115 LV->replaceKillInstruction(SrcReg, MI, *Copy);
1116
1117 if (LIS) {
1118 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1119 SlotIndex Idx = LIS->getInstructionIndex(MI);
1120 LiveInterval &LI = LIS->getInterval(SrcReg);
1121 LiveRange::Segment *S = LI.getSegmentContaining(Idx);
1122 if (S->end.getBaseIndex() == Idx)
1123 S->end = CopyIdx.getRegSlot();
1124 }
1125 }
1126
1127 // We've set all the parameters without issue.
1128 return true;
1129}
1130
1131MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1132 MachineInstr &MI,
1133 LiveVariables *LV,
1134 LiveIntervals *LIS,
1135 bool Is8BitOp) const {
1136 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1137 MachineBasicBlock &MBB = *MI.getParent();
1138 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1139 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits((static_cast <bool> ((Is8BitOp || RegInfo.getTargetRegisterInfo
()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0
).getReg())) == 16) && "Unexpected type for LEA transform"
) ? void (0) : __assert_fail ("(Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && \"Unexpected type for LEA transform\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1141, __extension__
__PRETTY_FUNCTION__))
1140 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&(static_cast <bool> ((Is8BitOp || RegInfo.getTargetRegisterInfo
()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0
).getReg())) == 16) && "Unexpected type for LEA transform"
) ? void (0) : __assert_fail ("(Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && \"Unexpected type for LEA transform\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1141, __extension__
__PRETTY_FUNCTION__))
1141 "Unexpected type for LEA transform")(static_cast <bool> ((Is8BitOp || RegInfo.getTargetRegisterInfo
()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0
).getReg())) == 16) && "Unexpected type for LEA transform"
) ? void (0) : __assert_fail ("(Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && \"Unexpected type for LEA transform\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1141, __extension__
__PRETTY_FUNCTION__))
;
1142
1143 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1144 // something like this:
1145 // Opcode = X86::LEA32r;
1146 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1147 // OutRegLEA =
1148 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1149 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1150 if (!Subtarget.is64Bit())
1151 return nullptr;
1152
1153 unsigned Opcode = X86::LEA64_32r;
1154 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1155 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1156 Register InRegLEA2;
1157
1158 // Build and insert into an implicit UNDEF value. This is OK because
1159 // we will be shifting and then extracting the lower 8/16-bits.
1160 // This has the potential to cause partial register stall. e.g.
1161 // movw (%rbp,%rcx,2), %dx
1162 // leal -65(%rdx), %esi
1163 // But testing has shown this *does* help performance in 64-bit mode (at
1164 // least on modern x86 machines).
1165 MachineBasicBlock::iterator MBBI = MI.getIterator();
1166 Register Dest = MI.getOperand(0).getReg();
1167 Register Src = MI.getOperand(1).getReg();
1168 Register Src2;
1169 bool IsDead = MI.getOperand(0).isDead();
1170 bool IsKill = MI.getOperand(1).isKill();
1171 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1172 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization")(static_cast <bool> (!MI.getOperand(1).isUndef() &&
"Undef op doesn't need optimization") ? void (0) : __assert_fail
("!MI.getOperand(1).isUndef() && \"Undef op doesn't need optimization\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1172, __extension__
__PRETTY_FUNCTION__))
;
1173 MachineInstr *ImpDef =
1174 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1175 MachineInstr *InsMI =
1176 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1177 .addReg(InRegLEA, RegState::Define, SubReg)
1178 .addReg(Src, getKillRegState(IsKill));
1179 MachineInstr *ImpDef2 = nullptr;
1180 MachineInstr *InsMI2 = nullptr;
1181
1182 MachineInstrBuilder MIB =
1183 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1184 switch (MIOpc) {
1185 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1185)
;
1186 case X86::SHL8ri:
1187 case X86::SHL16ri: {
1188 unsigned ShAmt = MI.getOperand(2).getImm();
1189 MIB.addReg(0)
1190 .addImm(1LL << ShAmt)
1191 .addReg(InRegLEA, RegState::Kill)
1192 .addImm(0)
1193 .addReg(0);
1194 break;
1195 }
1196 case X86::INC8r:
1197 case X86::INC16r:
1198 addRegOffset(MIB, InRegLEA, true, 1);
1199 break;
1200 case X86::DEC8r:
1201 case X86::DEC16r:
1202 addRegOffset(MIB, InRegLEA, true, -1);
1203 break;
1204 case X86::ADD8ri:
1205 case X86::ADD8ri_DB:
1206 case X86::ADD16ri:
1207 case X86::ADD16ri8:
1208 case X86::ADD16ri_DB:
1209 case X86::ADD16ri8_DB:
1210 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1211 break;
1212 case X86::ADD8rr:
1213 case X86::ADD8rr_DB:
1214 case X86::ADD16rr:
1215 case X86::ADD16rr_DB: {
1216 Src2 = MI.getOperand(2).getReg();
1217 bool IsKill2 = MI.getOperand(2).isKill();
1218 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization")(static_cast <bool> (!MI.getOperand(2).isUndef() &&
"Undef op doesn't need optimization") ? void (0) : __assert_fail
("!MI.getOperand(2).isUndef() && \"Undef op doesn't need optimization\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1218, __extension__
__PRETTY_FUNCTION__))
;
1219 if (Src == Src2) {
1220 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1221 // just a single insert_subreg.
1222 addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1223 } else {
1224 if (Subtarget.is64Bit())
1225 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1226 else
1227 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1228 // Build and insert into an implicit UNDEF value. This is OK because
1229 // we will be shifting and then extracting the lower 8/16-bits.
1230 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1231 InRegLEA2);
1232 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1233 .addReg(InRegLEA2, RegState::Define, SubReg)
1234 .addReg(Src2, getKillRegState(IsKill2));
1235 addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1236 }
1237 if (LV && IsKill2 && InsMI2)
1238 LV->replaceKillInstruction(Src2, MI, *InsMI2);
1239 break;
1240 }
1241 }
1242
1243 MachineInstr *NewMI = MIB;
1244 MachineInstr *ExtMI =
1245 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1246 .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1247 .addReg(OutRegLEA, RegState::Kill, SubReg);
1248
1249 if (LV) {
1250 // Update live variables.
1251 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1252 if (InRegLEA2)
1253 LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI);
1254 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1255 if (IsKill)
1256 LV->replaceKillInstruction(Src, MI, *InsMI);
1257 if (IsDead)
1258 LV->replaceKillInstruction(Dest, MI, *ExtMI);
1259 }
1260
1261 if (LIS) {
1262 LIS->InsertMachineInstrInMaps(*ImpDef);
1263 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1264 if (ImpDef2)
1265 LIS->InsertMachineInstrInMaps(*ImpDef2);
1266 SlotIndex Ins2Idx;
1267 if (InsMI2)
1268 Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1269 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1270 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1271 LIS->getInterval(InRegLEA);
1272 LIS->getInterval(OutRegLEA);
1273 if (InRegLEA2)
1274 LIS->getInterval(InRegLEA2);
1275
1276 // Move the use of Src up to InsMI.
1277 LiveInterval &SrcLI = LIS->getInterval(Src);
1278 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1279 if (SrcSeg->end == NewIdx.getRegSlot())
1280 SrcSeg->end = InsIdx.getRegSlot();
1281
1282 if (InsMI2) {
1283 // Move the use of Src2 up to InsMI2.
1284 LiveInterval &Src2LI = LIS->getInterval(Src2);
1285 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1286 if (Src2Seg->end == NewIdx.getRegSlot())
1287 Src2Seg->end = Ins2Idx.getRegSlot();
1288 }
1289
1290 // Move the definition of Dest down to ExtMI.
1291 LiveInterval &DestLI = LIS->getInterval(Dest);
1292 LiveRange::Segment *DestSeg =
1293 DestLI.getSegmentContaining(NewIdx.getRegSlot());
1294 assert(DestSeg->start == NewIdx.getRegSlot() &&(static_cast <bool> (DestSeg->start == NewIdx.getRegSlot
() && DestSeg->valno->def == NewIdx.getRegSlot(
)) ? void (0) : __assert_fail ("DestSeg->start == NewIdx.getRegSlot() && DestSeg->valno->def == NewIdx.getRegSlot()"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1295, __extension__
__PRETTY_FUNCTION__))
1295 DestSeg->valno->def == NewIdx.getRegSlot())(static_cast <bool> (DestSeg->start == NewIdx.getRegSlot
() && DestSeg->valno->def == NewIdx.getRegSlot(
)) ? void (0) : __assert_fail ("DestSeg->start == NewIdx.getRegSlot() && DestSeg->valno->def == NewIdx.getRegSlot()"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1295, __extension__
__PRETTY_FUNCTION__))
;
1296 DestSeg->start = ExtIdx.getRegSlot();
1297 DestSeg->valno->def = ExtIdx.getRegSlot();
1298 }
1299
1300 return ExtMI;
1301}
1302
1303/// This method must be implemented by targets that
1304/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1305/// may be able to convert a two-address instruction into a true
1306/// three-address instruction on demand. This allows the X86 target (for
1307/// example) to convert ADD and SHL instructions into LEA instructions if they
1308/// would require register copies due to two-addressness.
1309///
1310/// This method returns a null pointer if the transformation cannot be
1311/// performed, otherwise it returns the new instruction.
1312///
1313MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
1314 LiveVariables *LV,
1315 LiveIntervals *LIS) const {
1316 // The following opcodes also sets the condition code register(s). Only
1317 // convert them to equivalent lea if the condition code register def's
1318 // are dead!
1319 if (hasLiveCondCodeDef(MI))
1320 return nullptr;
1321
1322 MachineFunction &MF = *MI.getParent()->getParent();
1323 // All instructions input are two-addr instructions. Get the known operands.
1324 const MachineOperand &Dest = MI.getOperand(0);
1325 const MachineOperand &Src = MI.getOperand(1);
1326
1327 // Ideally, operations with undef should be folded before we get here, but we
1328 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1329 // Without this, we have to forward undef state to new register operands to
1330 // avoid machine verifier errors.
1331 if (Src.isUndef())
1332 return nullptr;
1333 if (MI.getNumOperands() > 2)
1334 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1335 return nullptr;
1336
1337 MachineInstr *NewMI = nullptr;
1338 Register SrcReg, SrcReg2;
1339 bool Is64Bit = Subtarget.is64Bit();
1340
1341 bool Is8BitOp = false;
1342 unsigned NumRegOperands = 2;
1343 unsigned MIOpc = MI.getOpcode();
1344 switch (MIOpc) {
1345 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1345)
;
1346 case X86::SHL64ri: {
1347 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown shift instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown shift instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1347, __extension__
__PRETTY_FUNCTION__))
;
1348 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1349 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1350
1351 // LEA can't handle RSP.
1352 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1353 Src.getReg(), &X86::GR64_NOSPRegClass))
1354 return nullptr;
1355
1356 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1357 .add(Dest)
1358 .addReg(0)
1359 .addImm(1LL << ShAmt)
1360 .add(Src)
1361 .addImm(0)
1362 .addReg(0);
1363 break;
1364 }
1365 case X86::SHL32ri: {
1366 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown shift instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown shift instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1366, __extension__
__PRETTY_FUNCTION__))
;
1367 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1368 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1369
1370 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1371
1372 // LEA can't handle ESP.
1373 bool isKill;
1374 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1375 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1376 ImplicitOp, LV, LIS))
1377 return nullptr;
1378
1379 MachineInstrBuilder MIB =
1380 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1381 .add(Dest)
1382 .addReg(0)
1383 .addImm(1LL << ShAmt)
1384 .addReg(SrcReg, getKillRegState(isKill))
1385 .addImm(0)
1386 .addReg(0);
1387 if (ImplicitOp.getReg() != 0)
1388 MIB.add(ImplicitOp);
1389 NewMI = MIB;
1390
1391 // Add kills if classifyLEAReg created a new register.
1392 if (LV && SrcReg != Src.getReg())
1393 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1394 break;
1395 }
1396 case X86::SHL8ri:
1397 Is8BitOp = true;
1398 [[fallthrough]];
1399 case X86::SHL16ri: {
1400 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown shift instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown shift instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1400, __extension__
__PRETTY_FUNCTION__))
;
1401 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1402 if (!isTruncatedShiftCountForLEA(ShAmt))
1403 return nullptr;
1404 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1405 }
1406 case X86::INC64r:
1407 case X86::INC32r: {
1408 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!")(static_cast <bool> (MI.getNumOperands() >= 2 &&
"Unknown inc instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 2 && \"Unknown inc instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1408, __extension__
__PRETTY_FUNCTION__))
;
1409 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
1410 (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1411 bool isKill;
1412 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1413 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1414 ImplicitOp, LV, LIS))
1415 return nullptr;
1416
1417 MachineInstrBuilder MIB =
1418 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1419 .add(Dest)
1420 .addReg(SrcReg, getKillRegState(isKill));
1421 if (ImplicitOp.getReg() != 0)
1422 MIB.add(ImplicitOp);
1423
1424 NewMI = addOffset(MIB, 1);
1425
1426 // Add kills if classifyLEAReg created a new register.
1427 if (LV && SrcReg != Src.getReg())
1428 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1429 break;
1430 }
1431 case X86::DEC64r:
1432 case X86::DEC32r: {
1433 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!")(static_cast <bool> (MI.getNumOperands() >= 2 &&
"Unknown dec instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 2 && \"Unknown dec instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1433, __extension__
__PRETTY_FUNCTION__))
;
1434 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1435 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1436
1437 bool isKill;
1438 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1439 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1440 ImplicitOp, LV, LIS))
1441 return nullptr;
1442
1443 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1444 .add(Dest)
1445 .addReg(SrcReg, getKillRegState(isKill));
1446 if (ImplicitOp.getReg() != 0)
1447 MIB.add(ImplicitOp);
1448
1449 NewMI = addOffset(MIB, -1);
1450
1451 // Add kills if classifyLEAReg created a new register.
1452 if (LV && SrcReg != Src.getReg())
1453 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1454 break;
1455 }
1456 case X86::DEC8r:
1457 case X86::INC8r:
1458 Is8BitOp = true;
1459 [[fallthrough]];
1460 case X86::DEC16r:
1461 case X86::INC16r:
1462 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1463 case X86::ADD64rr:
1464 case X86::ADD64rr_DB:
1465 case X86::ADD32rr:
1466 case X86::ADD32rr_DB: {
1467 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown add instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1467, __extension__
__PRETTY_FUNCTION__))
;
1468 unsigned Opc;
1469 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1470 Opc = X86::LEA64r;
1471 else
1472 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1473
1474 const MachineOperand &Src2 = MI.getOperand(2);
1475 bool isKill2;
1476 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1477 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
1478 ImplicitOp2, LV, LIS))
1479 return nullptr;
1480
1481 bool isKill;
1482 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1483 if (Src.getReg() == Src2.getReg()) {
1484 // Don't call classify LEAReg a second time on the same register, in case
1485 // the first call inserted a COPY from Src2 and marked it as killed.
1486 isKill = isKill2;
1487 SrcReg = SrcReg2;
1488 } else {
1489 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1490 ImplicitOp, LV, LIS))
1491 return nullptr;
1492 }
1493
1494 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1495 if (ImplicitOp.getReg() != 0)
1496 MIB.add(ImplicitOp);
1497 if (ImplicitOp2.getReg() != 0)
1498 MIB.add(ImplicitOp2);
1499
1500 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1501
1502 // Add kills if classifyLEAReg created a new register.
1503 if (LV) {
1504 if (SrcReg2 != Src2.getReg())
1505 LV->getVarInfo(SrcReg2).Kills.push_back(NewMI);
1506 if (SrcReg != SrcReg2 && SrcReg != Src.getReg())
1507 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1508 }
1509 NumRegOperands = 3;
1510 break;
1511 }
1512 case X86::ADD8rr:
1513 case X86::ADD8rr_DB:
1514 Is8BitOp = true;
1515 [[fallthrough]];
1516 case X86::ADD16rr:
1517 case X86::ADD16rr_DB:
1518 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1519 case X86::ADD64ri32:
1520 case X86::ADD64ri8:
1521 case X86::ADD64ri32_DB:
1522 case X86::ADD64ri8_DB:
1523 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown add instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1523, __extension__
__PRETTY_FUNCTION__))
;
1524 NewMI = addOffset(
1525 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1526 MI.getOperand(2));
1527 break;
1528 case X86::ADD32ri:
1529 case X86::ADD32ri8:
1530 case X86::ADD32ri_DB:
1531 case X86::ADD32ri8_DB: {
1532 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown add instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1532, __extension__
__PRETTY_FUNCTION__))
;
1533 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1534
1535 bool isKill;
1536 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1537 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1538 ImplicitOp, LV, LIS))
1539 return nullptr;
1540
1541 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1542 .add(Dest)
1543 .addReg(SrcReg, getKillRegState(isKill));
1544 if (ImplicitOp.getReg() != 0)
1545 MIB.add(ImplicitOp);
1546
1547 NewMI = addOffset(MIB, MI.getOperand(2));
1548
1549 // Add kills if classifyLEAReg created a new register.
1550 if (LV && SrcReg != Src.getReg())
1551 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1552 break;
1553 }
1554 case X86::ADD8ri:
1555 case X86::ADD8ri_DB:
1556 Is8BitOp = true;
1557 [[fallthrough]];
1558 case X86::ADD16ri:
1559 case X86::ADD16ri8:
1560 case X86::ADD16ri_DB:
1561 case X86::ADD16ri8_DB:
1562 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1563 case X86::SUB8ri:
1564 case X86::SUB16ri8:
1565 case X86::SUB16ri:
1566 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1567 return nullptr;
1568 case X86::SUB32ri8:
1569 case X86::SUB32ri: {
1570 if (!MI.getOperand(2).isImm())
1571 return nullptr;
1572 int64_t Imm = MI.getOperand(2).getImm();
1573 if (!isInt<32>(-Imm))
1574 return nullptr;
1575
1576 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown add instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1576, __extension__
__PRETTY_FUNCTION__))
;
1577 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1578
1579 bool isKill;
1580 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1581 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1582 ImplicitOp, LV, LIS))
1583 return nullptr;
1584
1585 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1586 .add(Dest)
1587 .addReg(SrcReg, getKillRegState(isKill));
1588 if (ImplicitOp.getReg() != 0)
1589 MIB.add(ImplicitOp);
1590
1591 NewMI = addOffset(MIB, -Imm);
1592 break;
1593 }
1594
1595 case X86::SUB64ri8:
1596 case X86::SUB64ri32: {
1597 if (!MI.getOperand(2).isImm())
1598 return nullptr;
1599 int64_t Imm = MI.getOperand(2).getImm();
1600 if (!isInt<32>(-Imm))
1601 return nullptr;
1602
1603 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown sub instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown sub instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1603, __extension__
__PRETTY_FUNCTION__))
;
1604
1605 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1606 get(X86::LEA64r)).add(Dest).add(Src);
1607 NewMI = addOffset(MIB, -Imm);
1608 break;
1609 }
1610
1611 case X86::VMOVDQU8Z128rmk:
1612 case X86::VMOVDQU8Z256rmk:
1613 case X86::VMOVDQU8Zrmk:
1614 case X86::VMOVDQU16Z128rmk:
1615 case X86::VMOVDQU16Z256rmk:
1616 case X86::VMOVDQU16Zrmk:
1617 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1618 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1619 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
1620 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1621 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1622 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
1623 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
1624 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
1625 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
1626 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
1627 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
1628 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
1629 case X86::VBROADCASTSDZ256rmk:
1630 case X86::VBROADCASTSDZrmk:
1631 case X86::VBROADCASTSSZ128rmk:
1632 case X86::VBROADCASTSSZ256rmk:
1633 case X86::VBROADCASTSSZrmk:
1634 case X86::VPBROADCASTDZ128rmk:
1635 case X86::VPBROADCASTDZ256rmk:
1636 case X86::VPBROADCASTDZrmk:
1637 case X86::VPBROADCASTQZ128rmk:
1638 case X86::VPBROADCASTQZ256rmk:
1639 case X86::VPBROADCASTQZrmk: {
1640 unsigned Opc;
1641 switch (MIOpc) {
1642 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1642)
;
1643 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
1644 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
1645 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
1646 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1647 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1648 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
1649 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1650 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1651 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1652 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1653 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1654 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1655 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1656 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1657 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1658 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1659 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1660 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1661 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1662 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1663 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1664 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1665 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1666 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1667 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1668 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1669 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1670 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1671 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1672 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1673 case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
1674 case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
1675 case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
1676 case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
1677 case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
1678 case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
1679 case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
1680 case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
1681 case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
1682 case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
1683 case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
1684 }
1685
1686 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1687 .add(Dest)
1688 .add(MI.getOperand(2))
1689 .add(Src)
1690 .add(MI.getOperand(3))
1691 .add(MI.getOperand(4))
1692 .add(MI.getOperand(5))
1693 .add(MI.getOperand(6))
1694 .add(MI.getOperand(7));
1695 break;
1696 }
1697
1698 case X86::VMOVDQU8Z128rrk:
1699 case X86::VMOVDQU8Z256rrk:
1700 case X86::VMOVDQU8Zrrk:
1701 case X86::VMOVDQU16Z128rrk:
1702 case X86::VMOVDQU16Z256rrk:
1703 case X86::VMOVDQU16Zrrk:
1704 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1705 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1706 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
1707 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1708 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1709 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
1710 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
1711 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
1712 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
1713 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
1714 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
1715 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
1716 unsigned Opc;
1717 switch (MIOpc) {
1718 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1718)
;
1719 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
1720 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
1721 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
1722 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1723 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1724 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
1725 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1726 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1727 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1728 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1729 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1730 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1731 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1732 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1733 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1734 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1735 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1736 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1737 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1738 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1739 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1740 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1741 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1742 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1743 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1744 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1745 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1746 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1747 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1748 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1749 }
1750
1751 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1752 .add(Dest)
1753 .add(MI.getOperand(2))
1754 .add(Src)
1755 .add(MI.getOperand(3));
1756 NumRegOperands = 4;
1757 break;
1758 }
1759 }
1760
1761 if (!NewMI) return nullptr;
1762
1763 if (LV) { // Update live variables
1764 for (unsigned I = 0; I < NumRegOperands; ++I) {
1765 MachineOperand &Op = MI.getOperand(I);
1766 if (Op.isDead() || Op.isKill())
1767 LV->replaceKillInstruction(Op.getReg(), MI, *NewMI);
1768 }
1769 }
1770
1771 MachineBasicBlock &MBB = *MI.getParent();
1772 MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
1773
1774 if (LIS) {
1775 LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1776 if (SrcReg)
1777 LIS->getInterval(SrcReg);
1778 if (SrcReg2)
1779 LIS->getInterval(SrcReg2);
1780 }
1781
1782 return NewMI;
1783}
1784
1785/// This determines which of three possible cases of a three source commute
1786/// the source indexes correspond to taking into account any mask operands.
1787/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1788/// possible.
1789/// Case 0 - Possible to commute the first and second operands.
1790/// Case 1 - Possible to commute the first and third operands.
1791/// Case 2 - Possible to commute the second and third operands.
1792static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1793 unsigned SrcOpIdx2) {
1794 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1795 if (SrcOpIdx1 > SrcOpIdx2)
1796 std::swap(SrcOpIdx1, SrcOpIdx2);
1797
1798 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1799 if (X86II::isKMasked(TSFlags)) {
1800 Op2++;
1801 Op3++;
1802 }
1803
1804 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1805 return 0;
1806 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1807 return 1;
1808 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1809 return 2;
1810 llvm_unreachable("Unknown three src commute case.")::llvm::llvm_unreachable_internal("Unknown three src commute case."
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1810)
;
1811}
1812
1813unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1814 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1815 const X86InstrFMA3Group &FMA3Group) const {
1816
1817 unsigned Opc = MI.getOpcode();
1818
1819 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1820 // analysis. The commute optimization is legal only if all users of FMA*_Int
1821 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1822 // not implemented yet. So, just return 0 in that case.
1823 // When such analysis are available this place will be the right place for
1824 // calling it.
1825 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&(static_cast <bool> (!(FMA3Group.isIntrinsic() &&
(SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && "Intrinsic instructions can't commute operand 1"
) ? void (0) : __assert_fail ("!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && \"Intrinsic instructions can't commute operand 1\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1826, __extension__
__PRETTY_FUNCTION__))
1826 "Intrinsic instructions can't commute operand 1")(static_cast <bool> (!(FMA3Group.isIntrinsic() &&
(SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && "Intrinsic instructions can't commute operand 1"
) ? void (0) : __assert_fail ("!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && \"Intrinsic instructions can't commute operand 1\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1826, __extension__
__PRETTY_FUNCTION__))
;
1827
1828 // Determine which case this commute is or if it can't be done.
1829 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1830 SrcOpIdx2);
1831 assert(Case < 3 && "Unexpected case number!")(static_cast <bool> (Case < 3 && "Unexpected case number!"
) ? void (0) : __assert_fail ("Case < 3 && \"Unexpected case number!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1831, __extension__
__PRETTY_FUNCTION__))
;
1832
1833 // Define the FMA forms mapping array that helps to map input FMA form
1834 // to output FMA form to preserve the operation semantics after
1835 // commuting the operands.
1836 const unsigned Form132Index = 0;
1837 const unsigned Form213Index = 1;
1838 const unsigned Form231Index = 2;
1839 static const unsigned FormMapping[][3] = {
1840 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1841 // FMA132 A, C, b; ==> FMA231 C, A, b;
1842 // FMA213 B, A, c; ==> FMA213 A, B, c;
1843 // FMA231 C, A, b; ==> FMA132 A, C, b;
1844 { Form231Index, Form213Index, Form132Index },
1845 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1846 // FMA132 A, c, B; ==> FMA132 B, c, A;
1847 // FMA213 B, a, C; ==> FMA231 C, a, B;
1848 // FMA231 C, a, B; ==> FMA213 B, a, C;
1849 { Form132Index, Form231Index, Form213Index },
1850 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1851 // FMA132 a, C, B; ==> FMA213 a, B, C;
1852 // FMA213 b, A, C; ==> FMA132 b, C, A;
1853 // FMA231 c, A, B; ==> FMA231 c, B, A;
1854 { Form213Index, Form132Index, Form231Index }
1855 };
1856
1857 unsigned FMAForms[3];
1858 FMAForms[0] = FMA3Group.get132Opcode();
1859 FMAForms[1] = FMA3Group.get213Opcode();
1860 FMAForms[2] = FMA3Group.get231Opcode();
1861
1862 // Everything is ready, just adjust the FMA opcode and return it.
1863 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
1864 if (Opc == FMAForms[FormIndex])
1865 return FMAForms[FormMapping[Case][FormIndex]];
1866
1867 llvm_unreachable("Illegal FMA3 format")::llvm::llvm_unreachable_internal("Illegal FMA3 format", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1867)
;
1868}
1869
1870static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1871 unsigned SrcOpIdx2) {
1872 // Determine which case this commute is or if it can't be done.
1873 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1874 SrcOpIdx2);
1875 assert(Case < 3 && "Unexpected case value!")(static_cast <bool> (Case < 3 && "Unexpected case value!"
) ? void (0) : __assert_fail ("Case < 3 && \"Unexpected case value!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1875, __extension__
__PRETTY_FUNCTION__))
;
1876
1877 // For each case we need to swap two pairs of bits in the final immediate.
1878 static const uint8_t SwapMasks[3][4] = {
1879 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1880 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1881 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1882 };
1883
1884 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1885 // Clear out the bits we are swapping.
1886 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1887 SwapMasks[Case][2] | SwapMasks[Case][3]);
1888 // If the immediate had a bit of the pair set, then set the opposite bit.
1889 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1890 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1891 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1892 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1893 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1894}
1895
1896// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1897// commuted.
1898static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1899#define VPERM_CASES(Suffix) \
1900 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1901 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1902 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1903 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1904 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1905 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1906 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1907 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1908 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1909 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1910 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1911 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1912
1913#define VPERM_CASES_BROADCAST(Suffix) \
1914 VPERM_CASES(Suffix) \
1915 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1916 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1917 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1918 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1919 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1920 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1921
1922 switch (Opcode) {
1923 default: return false;
1924 VPERM_CASES(B)
1925 VPERM_CASES_BROADCAST(D)
1926 VPERM_CASES_BROADCAST(PD)
1927 VPERM_CASES_BROADCAST(PS)
1928 VPERM_CASES_BROADCAST(Q)
1929 VPERM_CASES(W)
1930 return true;
1931 }
1932#undef VPERM_CASES_BROADCAST
1933#undef VPERM_CASES
1934}
1935
1936// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1937// from the I opcode to the T opcode and vice versa.
1938static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1939#define VPERM_CASES(Orig, New) \
1940 case X86::Orig##128rr: return X86::New##128rr; \
1941 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1942 case X86::Orig##128rm: return X86::New##128rm; \
1943 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1944 case X86::Orig##256rr: return X86::New##256rr; \
1945 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1946 case X86::Orig##256rm: return X86::New##256rm; \
1947 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1948 case X86::Orig##rr: return X86::New##rr; \
1949 case X86::Orig##rrkz: return X86::New##rrkz; \
1950 case X86::Orig##rm: return X86::New##rm; \
1951 case X86::Orig##rmkz: return X86::New##rmkz;
1952
1953#define VPERM_CASES_BROADCAST(Orig, New) \
1954 VPERM_CASES(Orig, New) \
1955 case X86::Orig##128rmb: return X86::New##128rmb; \
1956 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1957 case X86::Orig##256rmb: return X86::New##256rmb; \
1958 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1959 case X86::Orig##rmb: return X86::New##rmb; \
1960 case X86::Orig##rmbkz: return X86::New##rmbkz;
1961
1962 switch (Opcode) {
1963 VPERM_CASES(VPERMI2B, VPERMT2B)
1964 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
1965 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1966 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1967 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
1968 VPERM_CASES(VPERMI2W, VPERMT2W)
1969 VPERM_CASES(VPERMT2B, VPERMI2B)
1970 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
1971 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1972 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1973 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
1974 VPERM_CASES(VPERMT2W, VPERMI2W)
1975 }
1976
1977 llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1977)
;
1978#undef VPERM_CASES_BROADCAST
1979#undef VPERM_CASES
1980}
1981
1982MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1983 unsigned OpIdx1,
1984 unsigned OpIdx2) const {
1985 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1986 if (NewMI)
1987 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1988 return MI;
1989 };
1990
1991 switch (MI.getOpcode()) {
1992 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1993 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1994 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1995 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1996 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1997 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1998 unsigned Opc;
1999 unsigned Size;
2000 switch (MI.getOpcode()) {
2001 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2001)
;
2002 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2003 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2004 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2005 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2006 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2007 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2008 }
2009 unsigned Amt = MI.getOperand(3).getImm();
2010 auto &WorkingMI = cloneIfNew(MI);
2011 WorkingMI.setDesc(get(Opc));
2012 WorkingMI.getOperand(3).setImm(Size - Amt);
2013 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2014 OpIdx1, OpIdx2);
2015 }
2016 case X86::PFSUBrr:
2017 case X86::PFSUBRrr: {
2018 // PFSUB x, y: x = x - y
2019 // PFSUBR x, y: x = y - x
2020 unsigned Opc =
2021 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
2022 auto &WorkingMI = cloneIfNew(MI);
2023 WorkingMI.setDesc(get(Opc));
2024 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2025 OpIdx1, OpIdx2);
2026 }
2027 case X86::BLENDPDrri:
2028 case X86::BLENDPSrri:
2029 case X86::VBLENDPDrri:
2030 case X86::VBLENDPSrri:
2031 // If we're optimizing for size, try to use MOVSD/MOVSS.
2032 if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2033 unsigned Mask, Opc;
2034 switch (MI.getOpcode()) {
2035 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2035)
;
2036 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
2037 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
2038 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
2039 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
2040 }
2041 if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2042 auto &WorkingMI = cloneIfNew(MI);
2043 WorkingMI.setDesc(get(Opc));
2044 WorkingMI.removeOperand(3);
2045 return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
2046 /*NewMI=*/false,
2047 OpIdx1, OpIdx2);
2048 }
2049 }
2050 [[fallthrough]];
2051 case X86::PBLENDWrri:
2052 case X86::VBLENDPDYrri:
2053 case X86::VBLENDPSYrri:
2054 case X86::VPBLENDDrri:
2055 case X86::VPBLENDWrri:
2056 case X86::VPBLENDDYrri:
2057 case X86::VPBLENDWYrri:{
2058 int8_t Mask;
2059 switch (MI.getOpcode()) {
2060 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2060)
;
2061 case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
2062 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
2063 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
2064 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
2065 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
2066 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
2067 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
2068 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
2069 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
2070 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
2071 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
2072 }
2073 // Only the least significant bits of Imm are used.
2074 // Using int8_t to ensure it will be sign extended to the int64_t that
2075 // setImm takes in order to match isel behavior.
2076 int8_t Imm = MI.getOperand(3).getImm() & Mask;
2077 auto &WorkingMI = cloneIfNew(MI);
2078 WorkingMI.getOperand(3).setImm(Mask ^ Imm);
2079 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2080 OpIdx1, OpIdx2);
2081 }
2082 case X86::INSERTPSrr:
2083 case X86::VINSERTPSrr:
2084 case X86::VINSERTPSZrr: {
2085 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2086 unsigned ZMask = Imm & 15;
2087 unsigned DstIdx = (Imm >> 4) & 3;
2088 unsigned SrcIdx = (Imm >> 6) & 3;
2089
2090 // We can commute insertps if we zero 2 of the elements, the insertion is
2091 // "inline" and we don't override the insertion with a zero.
2092 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2093 countPopulation(ZMask) == 2) {
2094 unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
2095 assert(AltIdx < 4 && "Illegal insertion index")(static_cast <bool> (AltIdx < 4 && "Illegal insertion index"
) ? void (0) : __assert_fail ("AltIdx < 4 && \"Illegal insertion index\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2095, __extension__
__PRETTY_FUNCTION__))
;
2096 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2097 auto &WorkingMI = cloneIfNew(MI);
2098 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2099 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2100 OpIdx1, OpIdx2);
2101 }
2102 return nullptr;
2103 }
2104 case X86::MOVSDrr:
2105 case X86::MOVSSrr:
2106 case X86::VMOVSDrr:
2107 case X86::VMOVSSrr:{
2108 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2109 if (Subtarget.hasSSE41()) {
2110 unsigned Mask, Opc;
2111 switch (MI.getOpcode()) {
2112 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2112)
;
2113 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
2114 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
2115 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
2116 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
2117 }
2118
2119 auto &WorkingMI = cloneIfNew(MI);
2120 WorkingMI.setDesc(get(Opc));
2121 WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
2122 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2123 OpIdx1, OpIdx2);
2124 }
2125
2126 // Convert to SHUFPD.
2127 assert(MI.getOpcode() == X86::MOVSDrr &&(static_cast <bool> (MI.getOpcode() == X86::MOVSDrr &&
"Can only commute MOVSDrr without SSE4.1") ? void (0) : __assert_fail
("MI.getOpcode() == X86::MOVSDrr && \"Can only commute MOVSDrr without SSE4.1\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2128, __extension__
__PRETTY_FUNCTION__))
2128 "Can only commute MOVSDrr without SSE4.1")(static_cast <bool> (MI.getOpcode() == X86::MOVSDrr &&
"Can only commute MOVSDrr without SSE4.1") ? void (0) : __assert_fail
("MI.getOpcode() == X86::MOVSDrr && \"Can only commute MOVSDrr without SSE4.1\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2128, __extension__
__PRETTY_FUNCTION__))
;
2129
2130 auto &WorkingMI = cloneIfNew(MI);
2131 WorkingMI.setDesc(get(X86::SHUFPDrri));
2132 WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
2133 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2134 OpIdx1, OpIdx2);
2135 }
2136 case X86::SHUFPDrri: {
2137 // Commute to MOVSD.
2138 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!")(static_cast <bool> (MI.getOperand(3).getImm() == 0x02 &&
"Unexpected immediate!") ? void (0) : __assert_fail ("MI.getOperand(3).getImm() == 0x02 && \"Unexpected immediate!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2138, __extension__
__PRETTY_FUNCTION__))
;
2139 auto &WorkingMI = cloneIfNew(MI);
2140 WorkingMI.setDesc(get(X86::MOVSDrr));
2141 WorkingMI.removeOperand(3);
2142 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2143 OpIdx1, OpIdx2);
2144 }
2145 case X86::PCLMULQDQrr:
2146 case X86::VPCLMULQDQrr:
2147 case X86::VPCLMULQDQYrr:
2148 case X86::VPCLMULQDQZrr:
2149 case X86::VPCLMULQDQZ128rr:
2150 case X86::VPCLMULQDQZ256rr: {
2151 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2152 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2153 unsigned Imm = MI.getOperand(3).getImm();
2154 unsigned Src1Hi = Imm & 0x01;
2155 unsigned Src2Hi = Imm & 0x10;
2156 auto &WorkingMI = cloneIfNew(MI);
2157 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2158 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2159 OpIdx1, OpIdx2);
2160 }
2161 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
2162 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
2163 case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
2164 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
2165 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
2166 case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
2167 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
2168 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
2169 case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
2170 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
2171 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
2172 case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
2173 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
2174 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
2175 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
2176 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
2177 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
2178 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
2179 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
2180 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
2181 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
2182 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
2183 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
2184 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
2185 // Flip comparison mode immediate (if necessary).
2186 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
2187 Imm = X86::getSwappedVPCMPImm(Imm);
2188 auto &WorkingMI = cloneIfNew(MI);
2189 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
2190 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2191 OpIdx1, OpIdx2);
2192 }
2193 case X86::VPCOMBri: case X86::VPCOMUBri:
2194 case X86::VPCOMDri: case X86::VPCOMUDri:
2195 case X86::VPCOMQri: case X86::VPCOMUQri:
2196 case X86::VPCOMWri: case X86::VPCOMUWri: {
2197 // Flip comparison mode immediate (if necessary).
2198 unsigned Imm = MI.getOperand(3).getImm() & 0x7;
2199 Imm = X86::getSwappedVPCOMImm(Imm);
2200 auto &WorkingMI = cloneIfNew(MI);
2201 WorkingMI.getOperand(3).setImm(Imm);
2202 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2203 OpIdx1, OpIdx2);
2204 }
2205 case X86::VCMPSDZrr:
2206 case X86::VCMPSSZrr:
2207 case X86::VCMPPDZrri:
2208 case X86::VCMPPSZrri:
2209 case X86::VCMPSHZrr:
2210 case X86::VCMPPHZrri:
2211 case X86::VCMPPHZ128rri:
2212 case X86::VCMPPHZ256rri:
2213 case X86::VCMPPDZ128rri:
2214 case X86::VCMPPSZ128rri:
2215 case X86::VCMPPDZ256rri:
2216 case X86::VCMPPSZ256rri:
2217 case X86::VCMPPDZrrik:
2218 case X86::VCMPPSZrrik:
2219 case X86::VCMPPDZ128rrik:
2220 case X86::VCMPPSZ128rrik:
2221 case X86::VCMPPDZ256rrik:
2222 case X86::VCMPPSZ256rrik: {
2223 unsigned Imm =
2224 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
2225 Imm = X86::getSwappedVCMPImm(Imm);
2226 auto &WorkingMI = cloneIfNew(MI);
2227 WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
2228 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2229 OpIdx1, OpIdx2);
2230 }
2231 case X86::VPERM2F128rr:
2232 case X86::VPERM2I128rr: {
2233 // Flip permute source immediate.
2234 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2235 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2236 int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
2237 auto &WorkingMI = cloneIfNew(MI);
2238 WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
2239 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2240 OpIdx1, OpIdx2);
2241 }
2242 case X86::MOVHLPSrr:
2243 case X86::UNPCKHPDrr:
2244 case X86::VMOVHLPSrr:
2245 case X86::VUNPCKHPDrr:
2246 case X86::VMOVHLPSZrr:
2247 case X86::VUNPCKHPDZ128rr: {
2248 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!")(static_cast <bool> (Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"
) ? void (0) : __assert_fail ("Subtarget.hasSSE2() && \"Commuting MOVHLP/UNPCKHPD requires SSE2!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2248, __extension__
__PRETTY_FUNCTION__))
;
2249
2250 unsigned Opc = MI.getOpcode();
2251 switch (Opc) {
2252 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2252)
;
2253 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
2254 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
2255 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
2256 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
2257 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
2258 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
2259 }
2260 auto &WorkingMI = cloneIfNew(MI);
2261 WorkingMI.setDesc(get(Opc));
2262 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2263 OpIdx1, OpIdx2);
2264 }
2265 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
2266 auto &WorkingMI = cloneIfNew(MI);
2267 unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2268 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2269 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2270 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2271 OpIdx1, OpIdx2);
2272 }
2273 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2274 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2275 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2276 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2277 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2278 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2279 case X86::VPTERNLOGDZrrik:
2280 case X86::VPTERNLOGDZ128rrik:
2281 case X86::VPTERNLOGDZ256rrik:
2282 case X86::VPTERNLOGQZrrik:
2283 case X86::VPTERNLOGQZ128rrik:
2284 case X86::VPTERNLOGQZ256rrik:
2285 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2286 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2287 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2288 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2289 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2290 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2291 case X86::VPTERNLOGDZ128rmbi:
2292 case X86::VPTERNLOGDZ256rmbi:
2293 case X86::VPTERNLOGDZrmbi:
2294 case X86::VPTERNLOGQZ128rmbi:
2295 case X86::VPTERNLOGQZ256rmbi:
2296 case X86::VPTERNLOGQZrmbi:
2297 case X86::VPTERNLOGDZ128rmbikz:
2298 case X86::VPTERNLOGDZ256rmbikz:
2299 case X86::VPTERNLOGDZrmbikz:
2300 case X86::VPTERNLOGQZ128rmbikz:
2301 case X86::VPTERNLOGQZ256rmbikz:
2302 case X86::VPTERNLOGQZrmbikz: {
2303 auto &WorkingMI = cloneIfNew(MI);
2304 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
2305 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2306 OpIdx1, OpIdx2);
2307 }
2308 default: {
2309 if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
2310 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
2311 auto &WorkingMI = cloneIfNew(MI);
2312 WorkingMI.setDesc(get(Opc));
2313 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2314 OpIdx1, OpIdx2);
2315 }
2316
2317 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2318 MI.getDesc().TSFlags);
2319 if (FMA3Group) {
2320 unsigned Opc =
2321 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
2322 auto &WorkingMI = cloneIfNew(MI);
2323 WorkingMI.setDesc(get(Opc));
2324 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2325 OpIdx1, OpIdx2);
2326 }
2327
2328 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2329 }
2330 }
2331}
2332
2333bool
2334X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2335 unsigned &SrcOpIdx1,
2336 unsigned &SrcOpIdx2,
2337 bool IsIntrinsic) const {
2338 uint64_t TSFlags = MI.getDesc().TSFlags;
2339
2340 unsigned FirstCommutableVecOp = 1;
2341 unsigned LastCommutableVecOp = 3;
2342 unsigned KMaskOp = -1U;
2343 if (X86II::isKMasked(TSFlags)) {
2344 // For k-zero-masked operations it is Ok to commute the first vector
2345 // operand. Unless this is an intrinsic instruction.
2346 // For regular k-masked operations a conservative choice is done as the
2347 // elements of the first vector operand, for which the corresponding bit
2348 // in the k-mask operand is set to 0, are copied to the result of the
2349 // instruction.
2350 // TODO/FIXME: The commute still may be legal if it is known that the
2351 // k-mask operand is set to either all ones or all zeroes.
2352 // It is also Ok to commute the 1st operand if all users of MI use only
2353 // the elements enabled by the k-mask operand. For example,
2354 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2355 // : v1[i];
2356 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2357 // // Ok, to commute v1 in FMADD213PSZrk.
2358
2359 // The k-mask operand has index = 2 for masked and zero-masked operations.
2360 KMaskOp = 2;
2361
2362 // The operand with index = 1 is used as a source for those elements for
2363 // which the corresponding bit in the k-mask is set to 0.
2364 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2365 FirstCommutableVecOp = 3;
2366
2367 LastCommutableVecOp++;
2368 } else if (IsIntrinsic) {
2369 // Commuting the first operand of an intrinsic instruction isn't possible
2370 // unless we can prove that only the lowest element of the result is used.
2371 FirstCommutableVecOp = 2;
2372 }
2373
2374 if (isMem(MI, LastCommutableVecOp))
2375 LastCommutableVecOp--;
2376
2377 // Only the first RegOpsNum operands are commutable.
2378 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2379 // that the operand is not specified/fixed.
2380 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2381 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2382 SrcOpIdx1 == KMaskOp))
2383 return false;
2384 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2385 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2386 SrcOpIdx2 == KMaskOp))
2387 return false;
2388
2389 // Look for two different register operands assumed to be commutable
2390 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2391 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2392 SrcOpIdx2 == CommuteAnyOperandIndex) {
2393 unsigned CommutableOpIdx2 = SrcOpIdx2;
2394
2395 // At least one of operands to be commuted is not specified and
2396 // this method is free to choose appropriate commutable operands.
2397 if (SrcOpIdx1 == SrcOpIdx2)
2398 // Both of operands are not fixed. By default set one of commutable
2399 // operands to the last register operand of the instruction.
2400 CommutableOpIdx2 = LastCommutableVecOp;
2401 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2402 // Only one of operands is not fixed.
2403 CommutableOpIdx2 = SrcOpIdx1;
2404
2405 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2406 // operand and assign its index to CommutableOpIdx1.
2407 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2408
2409 unsigned CommutableOpIdx1;
2410 for (CommutableOpIdx1 = LastCommutableVecOp;
2411 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2412 // Just ignore and skip the k-mask operand.
2413 if (CommutableOpIdx1 == KMaskOp)
2414 continue;
2415
2416 // The commuted operands must have different registers.
2417 // Otherwise, the commute transformation does not change anything and
2418 // is useless then.
2419 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2420 break;
2421 }
2422
2423 // No appropriate commutable operands were found.
2424 if (CommutableOpIdx1 < FirstCommutableVecOp)
2425 return false;
2426
2427 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2428 // to return those values.
2429 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2430 CommutableOpIdx1, CommutableOpIdx2))
2431 return false;
2432 }
2433
2434 return true;
2435}
2436
2437bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2438 unsigned &SrcOpIdx1,
2439 unsigned &SrcOpIdx2) const {
2440 const MCInstrDesc &Desc = MI.getDesc();
2441 if (!Desc.isCommutable())
2442 return false;
2443
2444 switch (MI.getOpcode()) {
2445 case X86::CMPSDrr:
2446 case X86::CMPSSrr:
2447 case X86::CMPPDrri:
2448 case X86::CMPPSrri:
2449 case X86::VCMPSDrr:
2450 case X86::VCMPSSrr:
2451 case X86::VCMPPDrri:
2452 case X86::VCMPPSrri:
2453 case X86::VCMPPDYrri:
2454 case X86::VCMPPSYrri:
2455 case X86::VCMPSDZrr:
2456 case X86::VCMPSSZrr:
2457 case X86::VCMPPDZrri:
2458 case X86::VCMPPSZrri:
2459 case X86::VCMPSHZrr:
2460 case X86::VCMPPHZrri:
2461 case X86::VCMPPHZ128rri:
2462 case X86::VCMPPHZ256rri:
2463 case X86::VCMPPDZ128rri:
2464 case X86::VCMPPSZ128rri:
2465 case X86::VCMPPDZ256rri:
2466 case X86::VCMPPSZ256rri:
2467 case X86::VCMPPDZrrik:
2468 case X86::VCMPPSZrrik:
2469 case X86::VCMPPDZ128rrik:
2470 case X86::VCMPPSZ128rrik:
2471 case X86::VCMPPDZ256rrik:
2472 case X86::VCMPPSZ256rrik: {
2473 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2474
2475 // Float comparison can be safely commuted for
2476 // Ordered/Unordered/Equal/NotEqual tests
2477 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2478 switch (Imm) {
2479 default:
2480 // EVEX versions can be commuted.
2481 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2482 break;
2483 return false;
2484 case 0x00: // EQUAL
2485 case 0x03: // UNORDERED
2486 case 0x04: // NOT EQUAL
2487 case 0x07: // ORDERED
2488 break;
2489 }
2490
2491 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2492 // when masked).
2493 // Assign them to the returned operand indices here.
2494 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2495 2 + OpOffset);
2496 }
2497 case X86::MOVSSrr:
2498 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2499 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2500 // AVX implies sse4.1.
2501 if (Subtarget.hasSSE41())
2502 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2503 return false;
2504 case X86::SHUFPDrri:
2505 // We can commute this to MOVSD.
2506 if (MI.getOperand(3).getImm() == 0x02)
2507 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2508 return false;
2509 case X86::MOVHLPSrr:
2510 case X86::UNPCKHPDrr:
2511 case X86::VMOVHLPSrr:
2512 case X86::VUNPCKHPDrr:
2513 case X86::VMOVHLPSZrr:
2514 case X86::VUNPCKHPDZ128rr:
2515 if (Subtarget.hasSSE2())
2516 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2517 return false;
2518 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2519 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2520 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2521 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2522 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2523 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2524 case X86::VPTERNLOGDZrrik:
2525 case X86::VPTERNLOGDZ128rrik:
2526 case X86::VPTERNLOGDZ256rrik:
2527 case X86::VPTERNLOGQZrrik:
2528 case X86::VPTERNLOGQZ128rrik:
2529 case X86::VPTERNLOGQZ256rrik:
2530 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2531 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2532 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2533 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2534 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2535 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2536 case X86::VPTERNLOGDZ128rmbi:
2537 case X86::VPTERNLOGDZ256rmbi:
2538 case X86::VPTERNLOGDZrmbi:
2539 case X86::VPTERNLOGQZ128rmbi:
2540 case X86::VPTERNLOGQZ256rmbi:
2541 case X86::VPTERNLOGQZrmbi:
2542 case X86::VPTERNLOGDZ128rmbikz:
2543 case X86::VPTERNLOGDZ256rmbikz:
2544 case X86::VPTERNLOGDZrmbikz:
2545 case X86::VPTERNLOGQZ128rmbikz:
2546 case X86::VPTERNLOGQZ256rmbikz:
2547 case X86::VPTERNLOGQZrmbikz:
2548 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2549 case X86::VPDPWSSDYrr:
2550 case X86::VPDPWSSDrr:
2551 case X86::VPDPWSSDSYrr:
2552 case X86::VPDPWSSDSrr:
2553 case X86::VPDPWSSDZ128r:
2554 case X86::VPDPWSSDZ128rk:
2555 case X86::VPDPWSSDZ128rkz:
2556 case X86::VPDPWSSDZ256r:
2557 case X86::VPDPWSSDZ256rk:
2558 case X86::VPDPWSSDZ256rkz:
2559 case X86::VPDPWSSDZr:
2560 case X86::VPDPWSSDZrk:
2561 case X86::VPDPWSSDZrkz:
2562 case X86::VPDPWSSDSZ128r:
2563 case X86::VPDPWSSDSZ128rk:
2564 case X86::VPDPWSSDSZ128rkz:
2565 case X86::VPDPWSSDSZ256r:
2566 case X86::VPDPWSSDSZ256rk:
2567 case X86::VPDPWSSDSZ256rkz:
2568 case X86::VPDPWSSDSZr:
2569 case X86::VPDPWSSDSZrk:
2570 case X86::VPDPWSSDSZrkz:
2571 case X86::VPMADD52HUQZ128r:
2572 case X86::VPMADD52HUQZ128rk:
2573 case X86::VPMADD52HUQZ128rkz:
2574 case X86::VPMADD52HUQZ256r:
2575 case X86::VPMADD52HUQZ256rk:
2576 case X86::VPMADD52HUQZ256rkz:
2577 case X86::VPMADD52HUQZr:
2578 case X86::VPMADD52HUQZrk:
2579 case X86::VPMADD52HUQZrkz:
2580 case X86::VPMADD52LUQZ128r:
2581 case X86::VPMADD52LUQZ128rk:
2582 case X86::VPMADD52LUQZ128rkz:
2583 case X86::VPMADD52LUQZ256r:
2584 case X86::VPMADD52LUQZ256rk:
2585 case X86::VPMADD52LUQZ256rkz:
2586 case X86::VPMADD52LUQZr:
2587 case X86::VPMADD52LUQZrk:
2588 case X86::VPMADD52LUQZrkz:
2589 case X86::VFMADDCPHZr:
2590 case X86::VFMADDCPHZrk:
2591 case X86::VFMADDCPHZrkz:
2592 case X86::VFMADDCPHZ128r:
2593 case X86::VFMADDCPHZ128rk:
2594 case X86::VFMADDCPHZ128rkz:
2595 case X86::VFMADDCPHZ256r:
2596 case X86::VFMADDCPHZ256rk:
2597 case X86::VFMADDCPHZ256rkz:
2598 case X86::VFMADDCSHZr:
2599 case X86::VFMADDCSHZrk:
2600 case X86::VFMADDCSHZrkz: {
2601 unsigned CommutableOpIdx1 = 2;
2602 unsigned CommutableOpIdx2 = 3;
2603 if (X86II::isKMasked(Desc.TSFlags)) {
2604 // Skip the mask register.
2605 ++CommutableOpIdx1;
2606 ++CommutableOpIdx2;
2607 }
2608 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2609 CommutableOpIdx1, CommutableOpIdx2))
2610 return false;
2611 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2612 !MI.getOperand(SrcOpIdx2).isReg())
2613 // No idea.
2614 return false;
2615 return true;
2616 }
2617
2618 default:
2619 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2620 MI.getDesc().TSFlags);
2621 if (FMA3Group)
2622 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2623 FMA3Group->isIntrinsic());
2624
2625 // Handled masked instructions since we need to skip over the mask input
2626 // and the preserved input.
2627 if (X86II::isKMasked(Desc.TSFlags)) {
2628 // First assume that the first input is the mask operand and skip past it.
2629 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2630 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2631 // Check if the first input is tied. If there isn't one then we only
2632 // need to skip the mask operand which we did above.
2633 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2634 MCOI::TIED_TO) != -1)) {
2635 // If this is zero masking instruction with a tied operand, we need to
2636 // move the first index back to the first input since this must
2637 // be a 3 input instruction and we want the first two non-mask inputs.
2638 // Otherwise this is a 2 input instruction with a preserved input and
2639 // mask, so we need to move the indices to skip one more input.
2640 if (X86II::isKMergeMasked(Desc.TSFlags)) {
2641 ++CommutableOpIdx1;
2642 ++CommutableOpIdx2;
2643 } else {
2644 --CommutableOpIdx1;
2645 }
2646 }
2647
2648 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2649 CommutableOpIdx1, CommutableOpIdx2))
2650 return false;
2651
2652 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2653 !MI.getOperand(SrcOpIdx2).isReg())
2654 // No idea.
2655 return false;
2656 return true;
2657 }
2658
2659 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2660 }
2661 return false;
2662}
2663
2664static bool isConvertibleLEA(MachineInstr *MI) {
2665 unsigned Opcode = MI->getOpcode();
2666 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
2667 Opcode != X86::LEA64_32r)
2668 return false;
2669
2670 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
2671 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
2672 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
2673
2674 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
2675 Scale.getImm() > 1)
2676 return false;
2677
2678 return true;
2679}
2680
2681bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
2682 // Currently we're interested in following sequence only.
2683 // r3 = lea r1, r2
2684 // r5 = add r3, r4
2685 // Both r3 and r4 are killed in add, we hope the add instruction has the
2686 // operand order
2687 // r5 = add r4, r3
2688 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
2689 unsigned Opcode = MI.getOpcode();
2690 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
2691 return false;
2692
2693 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2694 Register Reg1 = MI.getOperand(1).getReg();
2695 Register Reg2 = MI.getOperand(2).getReg();
2696
2697 // Check if Reg1 comes from LEA in the same MBB.
2698 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
2699 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2700 Commute = true;
2701 return true;
2702 }
2703 }
2704
2705 // Check if Reg2 comes from LEA in the same MBB.
2706 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
2707 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2708 Commute = false;
2709 return true;
2710 }
2711 }
2712
2713 return false;
2714}
2715
2716int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) {
2717 unsigned Opcode = MCID.getOpcode();
2718 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode)))
2719 return -1;
2720 // Assume that condition code is always the last use operand.
2721 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
2722 return NumUses - 1;
2723}
2724
2725X86::CondCode X86::getCondFromMI(const MachineInstr &MI) {
2726 const MCInstrDesc &MCID = MI.getDesc();
2727 int CondNo = getCondSrcNoFromDesc(MCID);
2728 if (CondNo < 0)
2729 return X86::COND_INVALID;
2730 CondNo += MCID.getNumDefs();
2731 return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
2732}
2733
2734X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2735 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2736 : X86::COND_INVALID;
2737}
2738
2739X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2740 return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2741 : X86::COND_INVALID;
2742}
2743
2744X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2745 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2746 : X86::COND_INVALID;
2747}
2748
2749/// Return the inverse of the specified condition,
2750/// e.g. turning COND_E to COND_NE.
2751X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2752 switch (CC) {
2753 default: llvm_unreachable("Illegal condition code!")::llvm::llvm_unreachable_internal("Illegal condition code!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2753)
;
2754 case X86::COND_E: return X86::COND_NE;
2755 case X86::COND_NE: return X86::COND_E;
2756 case X86::COND_L: return X86::COND_GE;
2757 case X86::COND_LE: return X86::COND_G;
2758 case X86::COND_G: return X86::COND_LE;
2759 case X86::COND_GE: return X86::COND_L;
2760 case X86::COND_B: return X86::COND_AE;
2761 case X86::COND_BE: return X86::COND_A;
2762 case X86::COND_A: return X86::COND_BE;
2763 case X86::COND_AE: return X86::COND_B;
2764 case X86::COND_S: return X86::COND_NS;
2765 case X86::COND_NS: return X86::COND_S;
2766 case X86::COND_P: return X86::COND_NP;
2767 case X86::COND_NP: return X86::COND_P;
2768 case X86::COND_O: return X86::COND_NO;
2769 case X86::COND_NO: return X86::COND_O;
2770 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
2771 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2772 }
2773}
2774
2775/// Assuming the flags are set by MI(a,b), return the condition code if we
2776/// modify the instructions such that flags are set by MI(b,a).
2777static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2778 switch (CC) {
2779 default: return X86::COND_INVALID;
2780 case X86::COND_E: return X86::COND_E;
2781 case X86::COND_NE: return X86::COND_NE;
2782 case X86::COND_L: return X86::COND_G;
2783 case X86::COND_LE: return X86::COND_GE;
2784 case X86::COND_G: return X86::COND_L;
2785 case X86::COND_GE: return X86::COND_LE;
2786 case X86::COND_B: return X86::COND_A;
2787 case X86::COND_BE: return X86::COND_AE;
2788 case X86::COND_A: return X86::COND_B;
2789 case X86::COND_AE: return X86::COND_BE;
2790 }
2791}
2792
2793std::pair<X86::CondCode, bool>
2794X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2795 X86::CondCode CC = X86::COND_INVALID;
2796 bool NeedSwap = false;
2797 switch (Predicate) {
2798 default: break;
2799 // Floating-point Predicates
2800 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
2801 case CmpInst::FCMP_OLT: NeedSwap = true; [[fallthrough]];
2802 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
2803 case CmpInst::FCMP_OLE: NeedSwap = true; [[fallthrough]];
2804 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
2805 case CmpInst::FCMP_UGT: NeedSwap = true; [[fallthrough]];
2806 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
2807 case CmpInst::FCMP_UGE: NeedSwap = true; [[fallthrough]];
2808 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
2809 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
2810 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
2811 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
2812 case CmpInst::FCMP_OEQ: [[fallthrough]];
2813 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2814
2815 // Integer Predicates
2816 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
2817 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
2818 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
2819 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
2820 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
2821 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
2822 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
2823 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
2824 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
2825 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
2826 }
2827
2828 return std::make_pair(CC, NeedSwap);
2829}
2830
2831/// Return a cmov opcode for the given register size in bytes, and operand type.
2832unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2833 switch(RegBytes) {
2834 default: llvm_unreachable("Illegal register size!")::llvm::llvm_unreachable_internal("Illegal register size!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2834)
;
2835 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2836 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2837 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2838 }
2839}
2840
2841/// Get the VPCMP immediate for the given condition.
2842unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2843 switch (CC) {
2844 default: llvm_unreachable("Unexpected SETCC condition")::llvm::llvm_unreachable_internal("Unexpected SETCC condition"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2844)
;
2845 case ISD::SETNE: return 4;
2846 case ISD::SETEQ: return 0;
2847 case ISD::SETULT:
2848 case ISD::SETLT: return 1;
2849 case ISD::SETUGT:
2850 case ISD::SETGT: return 6;
2851 case ISD::SETUGE:
2852 case ISD::SETGE: return 5;
2853 case ISD::SETULE:
2854 case ISD::SETLE: return 2;
2855 }
2856}
2857
2858/// Get the VPCMP immediate if the operands are swapped.
2859unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2860 switch (Imm) {
2861 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2861)
;
2862 case 0x01: Imm = 0x06; break; // LT -> NLE
2863 case 0x02: Imm = 0x05; break; // LE -> NLT
2864 case 0x05: Imm = 0x02; break; // NLT -> LE
2865 case 0x06: Imm = 0x01; break; // NLE -> LT
2866 case 0x00: // EQ
2867 case 0x03: // FALSE
2868 case 0x04: // NE
2869 case 0x07: // TRUE
2870 break;
2871 }
2872
2873 return Imm;
2874}
2875
2876/// Get the VPCOM immediate if the operands are swapped.
2877unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2878 switch (Imm) {
2879 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2879)
;
2880 case 0x00: Imm = 0x02; break; // LT -> GT
2881 case 0x01: Imm = 0x03; break; // LE -> GE
2882 case 0x02: Imm = 0x00; break; // GT -> LT
2883 case 0x03: Imm = 0x01; break; // GE -> LE
2884 case 0x04: // EQ
2885 case 0x05: // NE
2886 case 0x06: // FALSE
2887 case 0x07: // TRUE
2888 break;
2889 }
2890
2891 return Imm;
2892}
2893
2894/// Get the VCMP immediate if the operands are swapped.
2895unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2896 // Only need the lower 2 bits to distinquish.
2897 switch (Imm & 0x3) {
2898 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2898)
;
2899 case 0x00: case 0x03:
2900 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2901 break;
2902 case 0x01: case 0x02:
2903 // Need to toggle bits 3:0. Bit 4 stays the same.
2904 Imm ^= 0xf;
2905 break;
2906 }
2907
2908 return Imm;
2909}
2910
2911/// Return true if the Reg is X87 register.
2912static bool isX87Reg(unsigned Reg) {
2913 return (Reg == X86::FPCW || Reg == X86::FPSW ||
2914 (Reg >= X86::ST0 && Reg <= X86::ST7));
2915}
2916
2917/// check if the instruction is X87 instruction
2918bool X86::isX87Instruction(MachineInstr &MI) {
2919 for (const MachineOperand &MO : MI.operands()) {
2920 if (!MO.isReg())
2921 continue;
2922 if (isX87Reg(MO.getReg()))
2923 return true;
2924 }
2925 return false;
2926}
2927
2928bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2929 switch (MI.getOpcode()) {
2930 case X86::TCRETURNdi:
2931 case X86::TCRETURNri:
2932 case X86::TCRETURNmi:
2933 case X86::TCRETURNdi64:
2934 case X86::TCRETURNri64:
2935 case X86::TCRETURNmi64:
2936 return true;
2937 default:
2938 return false;
2939 }
2940}
2941
2942bool X86InstrInfo::canMakeTailCallConditional(
2943 SmallVectorImpl<MachineOperand> &BranchCond,
2944 const MachineInstr &TailCall) const {
2945 if (TailCall.getOpcode() != X86::TCRETURNdi &&
2946 TailCall.getOpcode() != X86::TCRETURNdi64) {
2947 // Only direct calls can be done with a conditional branch.
2948 return false;
2949 }
2950
2951 const MachineFunction *MF = TailCall.getParent()->getParent();
2952 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2953 // Conditional tail calls confuse the Win64 unwinder.
2954 return false;
2955 }
2956
2957 assert(BranchCond.size() == 1)(static_cast <bool> (BranchCond.size() == 1) ? void (0)
: __assert_fail ("BranchCond.size() == 1", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2957, __extension__ __PRETTY_FUNCTION__))
;
2958 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2959 // Can't make a conditional tail call with this condition.
2960 return false;
2961 }
2962
2963 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2964 if (X86FI->getTCReturnAddrDelta() != 0 ||
2965 TailCall.getOperand(1).getImm() != 0) {
2966 // A conditional tail call cannot do any stack adjustment.
2967 return false;
2968 }
2969
2970 return true;
2971}
2972
2973void X86InstrInfo::replaceBranchWithTailCall(
2974 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2975 const MachineInstr &TailCall) const {
2976 assert(canMakeTailCallConditional(BranchCond, TailCall))(static_cast <bool> (canMakeTailCallConditional(BranchCond
, TailCall)) ? void (0) : __assert_fail ("canMakeTailCallConditional(BranchCond, TailCall)"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2976, __extension__
__PRETTY_FUNCTION__))
;
2977
2978 MachineBasicBlock::iterator I = MBB.end();
2979 while (I != MBB.begin()) {
2980 --I;
2981 if (I->isDebugInstr())
2982 continue;
2983 if (!I->isBranch())
2984 assert(0 && "Can't find the branch to replace!")(static_cast <bool> (0 && "Can't find the branch to replace!"
) ? void (0) : __assert_fail ("0 && \"Can't find the branch to replace!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2984, __extension__
__PRETTY_FUNCTION__))
;
2985
2986 X86::CondCode CC = X86::getCondFromBranch(*I);
2987 assert(BranchCond.size() == 1)(static_cast <bool> (BranchCond.size() == 1) ? void (0)
: __assert_fail ("BranchCond.size() == 1", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2987, __extension__ __PRETTY_FUNCTION__))
;
2988 if (CC != BranchCond[0].getImm())
2989 continue;
2990
2991 break;
2992 }
2993
2994 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2995 : X86::TCRETURNdi64cc;
2996
2997 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2998 MIB->addOperand(TailCall.getOperand(0)); // Destination.
2999 MIB.addImm(0); // Stack offset (not used).
3000 MIB->addOperand(BranchCond[0]); // Condition.
3001 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
3002
3003 // Add implicit uses and defs of all live regs potentially clobbered by the
3004 // call. This way they still appear live across the call.
3005 LivePhysRegs LiveRegs(getRegisterInfo());
3006 LiveRegs.addLiveOuts(MBB);
3007 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
3008 LiveRegs.stepForward(*MIB, Clobbers);
3009 for (const auto &C : Clobbers) {
3010 MIB.addReg(C.first, RegState::Implicit);
3011 MIB.addReg(C.first, RegState::Implicit | RegState::Define);
3012 }
3013
3014 I->eraseFromParent();
3015}
3016
3017// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3018// not be a fallthrough MBB now due to layout changes). Return nullptr if the
3019// fallthrough MBB cannot be identified.
3020static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
3021 MachineBasicBlock *TBB) {
3022 // Look for non-EHPad successors other than TBB. If we find exactly one, it
3023 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3024 // and fallthrough MBB. If we find more than one, we cannot identify the
3025 // fallthrough MBB and should return nullptr.
3026 MachineBasicBlock *FallthroughBB = nullptr;
3027 for (MachineBasicBlock *Succ : MBB->successors()) {
3028 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3029 continue;
3030 // Return a nullptr if we found more than one fallthrough successor.
3031 if (FallthroughBB && FallthroughBB != TBB)
3032 return nullptr;
3033 FallthroughBB = Succ;
3034 }
3035 return FallthroughBB;
3036}
3037
3038bool X86InstrInfo::AnalyzeBranchImpl(
3039 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3040 SmallVectorImpl<MachineOperand> &Cond,
3041 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3042
3043 // Start from the bottom of the block and work up, examining the
3044 // terminator instructions.
3045 MachineBasicBlock::iterator I = MBB.end();
3046 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3047 while (I != MBB.begin()) {
3048 --I;
3049 if (I->isDebugInstr())
3050 continue;
3051
3052 // Working from the bottom, when we see a non-terminator instruction, we're
3053 // done.
3054 if (!isUnpredicatedTerminator(*I))
3055 break;
3056
3057 // A terminator that isn't a branch can't easily be handled by this
3058 // analysis.
3059 if (!I->isBranch())
3060 return true;
3061
3062 // Handle unconditional branches.
3063 if (I->getOpcode() == X86::JMP_1) {
3064 UnCondBrIter = I;
3065
3066 if (!AllowModify) {
3067 TBB = I->getOperand(0).getMBB();
3068 continue;
3069 }
3070
3071 // If the block has any instructions after a JMP, delete them.
3072 MBB.erase(std::next(I), MBB.end());
3073
3074 Cond.clear();
3075 FBB = nullptr;
3076
3077 // Delete the JMP if it's equivalent to a fall-through.
3078 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3079 TBB = nullptr;
3080 I->eraseFromParent();
3081 I = MBB.end();
3082 UnCondBrIter = MBB.end();
3083 continue;
3084 }
3085
3086 // TBB is used to indicate the unconditional destination.
3087 TBB = I->getOperand(0).getMBB();
3088 continue;
3089 }
3090
3091 // Handle conditional branches.
3092 X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3093 if (BranchCode == X86::COND_INVALID)
3094 return true; // Can't handle indirect branch.
3095
3096 // In practice we should never have an undef eflags operand, if we do
3097 // abort here as we are not prepared to preserve the flag.
3098 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
3099 return true;
3100
3101 // Working from the bottom, handle the first conditional branch.
3102 if (Cond.empty()) {
3103 FBB = TBB;
3104 TBB = I->getOperand(0).getMBB();
3105 Cond.push_back(MachineOperand::CreateImm(BranchCode));
3106 CondBranches.push_back(&*I);
3107 continue;
3108 }
3109
3110 // Handle subsequent conditional branches. Only handle the case where all
3111 // conditional branches branch to the same destination and their condition
3112 // opcodes fit one of the special multi-branch idioms.
3113 assert(Cond.size() == 1)(static_cast <bool> (Cond.size() == 1) ? void (0) : __assert_fail
("Cond.size() == 1", "llvm/lib/Target/X86/X86InstrInfo.cpp",
3113, __extension__ __PRETTY_FUNCTION__))
;
3114 assert(TBB)(static_cast <bool> (TBB) ? void (0) : __assert_fail ("TBB"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3114, __extension__
__PRETTY_FUNCTION__))
;
3115
3116 // If the conditions are the same, we can leave them alone.
3117 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3118 auto NewTBB = I->getOperand(0).getMBB();
3119 if (OldBranchCode == BranchCode && TBB == NewTBB)
3120 continue;
3121
3122 // If they differ, see if they fit one of the known patterns. Theoretically,
3123 // we could handle more patterns here, but we shouldn't expect to see them
3124 // if instruction selection has done a reasonable job.
3125 if (TBB == NewTBB &&
3126 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3127 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3128 BranchCode = X86::COND_NE_OR_P;
3129 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3130 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3131 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3132 return true;
3133
3134 // X86::COND_E_AND_NP usually has two different branch destinations.
3135 //
3136 // JP B1
3137 // JE B2
3138 // JMP B1
3139 // B1:
3140 // B2:
3141 //
3142 // Here this condition branches to B2 only if NP && E. It has another
3143 // equivalent form:
3144 //
3145 // JNE B1
3146 // JNP B2
3147 // JMP B1
3148 // B1:
3149 // B2:
3150 //
3151 // Similarly it branches to B2 only if E && NP. That is why this condition
3152 // is named with COND_E_AND_NP.
3153 BranchCode = X86::COND_E_AND_NP;
3154 } else
3155 return true;
3156
3157 // Update the MachineOperand.
3158 Cond[0].setImm(BranchCode);
3159 CondBranches.push_back(&*I);
3160 }
3161
3162 return false;
3163}
3164
3165bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3166 MachineBasicBlock *&TBB,
3167 MachineBasicBlock *&FBB,
3168 SmallVectorImpl<MachineOperand> &Cond,
3169 bool AllowModify) const {
3170 SmallVector<MachineInstr *, 4> CondBranches;
3171 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3172}
3173
3174bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3175 MachineBranchPredicate &MBP,
3176 bool AllowModify) const {
3177 using namespace std::placeholders;
3178
3179 SmallVector<MachineOperand, 4> Cond;
3180 SmallVector<MachineInstr *, 4> CondBranches;
3181 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3182 AllowModify))
3183 return true;
3184
3185 if (Cond.size() != 1)
3186 return true;
3187
3188 assert(MBP.TrueDest && "expected!")(static_cast <bool> (MBP.TrueDest && "expected!"
) ? void (0) : __assert_fail ("MBP.TrueDest && \"expected!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3188, __extension__
__PRETTY_FUNCTION__))
;
3189
3190 if (!MBP.FalseDest)
3191 MBP.FalseDest = MBB.getNextNode();
3192
3193 const TargetRegisterInfo *TRI = &getRegisterInfo();
3194
3195 MachineInstr *ConditionDef = nullptr;
3196 bool SingleUseCondition = true;
3197
3198 for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
3199 if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3200 ConditionDef = &MI;
3201 break;
3202 }
3203
3204 if (MI.readsRegister(X86::EFLAGS, TRI))
3205 SingleUseCondition = false;
3206 }
3207
3208 if (!ConditionDef)
3209 return true;
3210
3211 if (SingleUseCondition) {
3212 for (auto *Succ : MBB.successors())
3213 if (Succ->isLiveIn(X86::EFLAGS))
3214 SingleUseCondition = false;
3215 }
3216
3217 MBP.ConditionDef = ConditionDef;
3218 MBP.SingleUseCondition = SingleUseCondition;
3219
3220 // Currently we only recognize the simple pattern:
3221 //
3222 // test %reg, %reg
3223 // je %label
3224 //
3225 const unsigned TestOpcode =
3226 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3227
3228 if (ConditionDef->getOpcode() == TestOpcode &&
3229 ConditionDef->getNumOperands() == 3 &&
3230 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3231 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3232 MBP.LHS = ConditionDef->getOperand(0);
3233 MBP.RHS = MachineOperand::CreateImm(0);
3234 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3235 ? MachineBranchPredicate::PRED_NE
3236 : MachineBranchPredicate::PRED_EQ;
3237 return false;
3238 }
3239
3240 return true;
3241}
3242
3243unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3244 int *BytesRemoved) const {
3245 assert(!BytesRemoved && "code size not handled")(static_cast <bool> (!BytesRemoved && "code size not handled"
) ? void (0) : __assert_fail ("!BytesRemoved && \"code size not handled\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3245, __extension__
__PRETTY_FUNCTION__))
;
3246
3247 MachineBasicBlock::iterator I = MBB.end();
3248 unsigned Count = 0;
3249
3250 while (I != MBB.begin()) {
3251 --I;
3252 if (I->isDebugInstr())
3253 continue;
3254 if (I->getOpcode() != X86::JMP_1 &&
3255 X86::getCondFromBranch(*I) == X86::COND_INVALID)
3256 break;
3257 // Remove the branch.
3258 I->eraseFromParent();
3259 I = MBB.end();
3260 ++Count;
3261 }
3262
3263 return Count;
3264}
3265
3266unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3267 MachineBasicBlock *TBB,
3268 MachineBasicBlock *FBB,
3269 ArrayRef<MachineOperand> Cond,
3270 const DebugLoc &DL,
3271 int *BytesAdded) const {
3272 // Shouldn't be a fall through.
3273 assert(TBB && "insertBranch must not be told to insert a fallthrough")(static_cast <bool> (TBB && "insertBranch must not be told to insert a fallthrough"
) ? void (0) : __assert_fail ("TBB && \"insertBranch must not be told to insert a fallthrough\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3273, __extension__
__PRETTY_FUNCTION__))
;
3274 assert((Cond.size() == 1 || Cond.size() == 0) &&(static_cast <bool> ((Cond.size() == 1 || Cond.size() ==
0) && "X86 branch conditions have one component!") ?
void (0) : __assert_fail ("(Cond.size() == 1 || Cond.size() == 0) && \"X86 branch conditions have one component!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3275, __extension__
__PRETTY_FUNCTION__))
3275 "X86 branch conditions have one component!")(static_cast <bool> ((Cond.size() == 1 || Cond.size() ==
0) && "X86 branch conditions have one component!") ?
void (0) : __assert_fail ("(Cond.size() == 1 || Cond.size() == 0) && \"X86 branch conditions have one component!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3275, __extension__
__PRETTY_FUNCTION__))
;
3276 assert(!BytesAdded && "code size not handled")(static_cast <bool> (!BytesAdded && "code size not handled"
) ? void (0) : __assert_fail ("!BytesAdded && \"code size not handled\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3276, __extension__
__PRETTY_FUNCTION__))
;
3277
3278 if (Cond.empty()) {
3279 // Unconditional branch?
3280 assert(!FBB && "Unconditional branch with multiple successors!")(static_cast <bool> (!FBB && "Unconditional branch with multiple successors!"
) ? void (0) : __assert_fail ("!FBB && \"Unconditional branch with multiple successors!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3280, __extension__
__PRETTY_FUNCTION__))
;
3281 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3282 return 1;
3283 }
3284
3285 // If FBB is null, it is implied to be a fall-through block.
3286 bool FallThru = FBB == nullptr;
3287
3288 // Conditional branch.
3289 unsigned Count = 0;
3290 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3291 switch (CC) {
3292 case X86::COND_NE_OR_P:
3293 // Synthesize NE_OR_P with two branches.
3294 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3295 ++Count;
3296 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3297 ++Count;
3298 break;
3299 case X86::COND_E_AND_NP:
3300 // Use the next block of MBB as FBB if it is null.
3301 if (FBB == nullptr) {
3302 FBB = getFallThroughMBB(&MBB, TBB);
3303 assert(FBB && "MBB cannot be the last block in function when the false "(static_cast <bool> (FBB && "MBB cannot be the last block in function when the false "
"body is a fall-through.") ? void (0) : __assert_fail ("FBB && \"MBB cannot be the last block in function when the false \" \"body is a fall-through.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3304, __extension__
__PRETTY_FUNCTION__))
3304 "body is a fall-through.")(static_cast <bool> (FBB && "MBB cannot be the last block in function when the false "
"body is a fall-through.") ? void (0) : __assert_fail ("FBB && \"MBB cannot be the last block in function when the false \" \"body is a fall-through.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3304, __extension__
__PRETTY_FUNCTION__))
;
3305 }
3306 // Synthesize COND_E_AND_NP with two branches.
3307 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3308 ++Count;
3309 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3310 ++Count;
3311 break;
3312 default: {
3313 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3314 ++Count;
3315 }
3316 }
3317 if (!FallThru) {
3318 // Two-way Conditional branch. Insert the second branch.
3319 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3320 ++Count;
3321 }
3322 return Count;
3323}
3324
3325bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3326 ArrayRef<MachineOperand> Cond,
3327 Register DstReg, Register TrueReg,
3328 Register FalseReg, int &CondCycles,
3329 int &TrueCycles, int &FalseCycles) const {
3330 // Not all subtargets have cmov instructions.
3331 if (!Subtarget.canUseCMOV())
3332 return false;
3333 if (Cond.size() != 1)
3334 return false;
3335 // We cannot do the composite conditions, at least not in SSA form.
3336 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
3337 return false;
3338
3339 // Check register classes.
3340 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3341 const TargetRegisterClass *RC =
3342 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3343 if (!RC)
3344 return false;
3345
3346 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3347 if (X86::GR16RegClass.hasSubClassEq(RC) ||
3348 X86::GR32RegClass.hasSubClassEq(RC) ||
3349 X86::GR64RegClass.hasSubClassEq(RC)) {
3350 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3351 // Bridge. Probably Ivy Bridge as well.
3352 CondCycles = 2;
3353 TrueCycles = 2;
3354 FalseCycles = 2;
3355 return true;
3356 }
3357
3358 // Can't do vectors.
3359 return false;
3360}
3361
3362void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3363 MachineBasicBlock::iterator I,
3364 const DebugLoc &DL, Register DstReg,
3365 ArrayRef<MachineOperand> Cond, Register TrueReg,
3366 Register FalseReg) const {
3367 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3368 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3369 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
3370 assert(Cond.size() == 1 && "Invalid Cond array")(static_cast <bool> (Cond.size() == 1 && "Invalid Cond array"
) ? void (0) : __assert_fail ("Cond.size() == 1 && \"Invalid Cond array\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3370, __extension__
__PRETTY_FUNCTION__))
;
3371 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
3372 false /*HasMemoryOperand*/);
3373 BuildMI(MBB, I, DL, get(Opc), DstReg)
3374 .addReg(FalseReg)
3375 .addReg(TrueReg)
3376 .addImm(Cond[0].getImm());
3377}
3378
3379/// Test if the given register is a physical h register.
3380static bool isHReg(unsigned Reg) {
3381 return X86::GR8_ABCD_HRegClass.contains(Reg);
3382}
3383
3384// Try and copy between VR128/VR64 and GR64 registers.
3385static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3386 const X86Subtarget &Subtarget) {
3387 bool HasAVX = Subtarget.hasAVX();
3388 bool HasAVX512 = Subtarget.hasAVX512();
3389
3390 // SrcReg(MaskReg) -> DestReg(GR64)
3391 // SrcReg(MaskReg) -> DestReg(GR32)
3392
3393 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3394 if (X86::VK16RegClass.contains(SrcReg)) {
3395 if (X86::GR64RegClass.contains(DestReg)) {
3396 assert(Subtarget.hasBWI())(static_cast <bool> (Subtarget.hasBWI()) ? void (0) : __assert_fail
("Subtarget.hasBWI()", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 3396, __extension__ __PRETTY_FUNCTION__))
;
3397 return X86::KMOVQrk;
3398 }
3399 if (X86::GR32RegClass.contains(DestReg))
3400 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
3401 }
3402
3403 // SrcReg(GR64) -> DestReg(MaskReg)
3404 // SrcReg(GR32) -> DestReg(MaskReg)
3405
3406 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3407 if (X86::VK16RegClass.contains(DestReg)) {
3408 if (X86::GR64RegClass.contains(SrcReg)) {
3409 assert(Subtarget.hasBWI())(static_cast <bool> (Subtarget.hasBWI()) ? void (0) : __assert_fail
("Subtarget.hasBWI()", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 3409, __extension__ __PRETTY_FUNCTION__))
;
3410 return X86::KMOVQkr;
3411 }
3412 if (X86::GR32RegClass.contains(SrcReg))
3413 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
3414 }
3415
3416
3417 // SrcReg(VR128) -> DestReg(GR64)
3418 // SrcReg(VR64) -> DestReg(GR64)
3419 // SrcReg(GR64) -> DestReg(VR128)
3420 // SrcReg(GR64) -> DestReg(VR64)
3421
3422 if (X86::GR64RegClass.contains(DestReg)) {
3423 if (X86::VR128XRegClass.contains(SrcReg))
3424 // Copy from a VR128 register to a GR64 register.
3425 return HasAVX512 ? X86::VMOVPQIto64Zrr :
3426 HasAVX ? X86::VMOVPQIto64rr :
3427 X86::MOVPQIto64rr;
3428 if (X86::VR64RegClass.contains(SrcReg))
3429 // Copy from a VR64 register to a GR64 register.
3430 return X86::MMX_MOVD64from64rr;
3431 } else if (X86::GR64RegClass.contains(SrcReg)) {
3432 // Copy from a GR64 register to a VR128 register.
3433 if (X86::VR128XRegClass.contains(DestReg))
3434 return HasAVX512 ? X86::VMOV64toPQIZrr :
3435 HasAVX ? X86::VMOV64toPQIrr :
3436 X86::MOV64toPQIrr;
3437 // Copy from a GR64 register to a VR64 register.
3438 if (X86::VR64RegClass.contains(DestReg))
3439 return X86::MMX_MOVD64to64rr;
3440 }
3441
3442 // SrcReg(VR128) -> DestReg(GR32)
3443 // SrcReg(GR32) -> DestReg(VR128)
3444
3445 if (X86::GR32RegClass.contains(DestReg) &&
3446 X86::VR128XRegClass.contains(SrcReg))
3447 // Copy from a VR128 register to a GR32 register.
3448 return HasAVX512 ? X86::VMOVPDI2DIZrr :
3449 HasAVX ? X86::VMOVPDI2DIrr :
3450 X86::MOVPDI2DIrr;
3451
3452 if (X86::VR128XRegClass.contains(DestReg) &&
3453 X86::GR32RegClass.contains(SrcReg))
3454 // Copy from a VR128 register to a VR128 register.
3455 return HasAVX512 ? X86::VMOVDI2PDIZrr :
3456 HasAVX ? X86::VMOVDI2PDIrr :
3457 X86::MOVDI2PDIrr;
3458 return 0;
3459}
3460
3461void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3462 MachineBasicBlock::iterator MI,
3463 const DebugLoc &DL, MCRegister DestReg,
3464 MCRegister SrcReg, bool KillSrc) const {
3465 // First deal with the normal symmetric copies.
3466 bool HasAVX = Subtarget.hasAVX();
3467 bool HasVLX = Subtarget.hasVLX();
3468 unsigned Opc = 0;
3469 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3470 Opc = X86::MOV64rr;
3471 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3472 Opc = X86::MOV32rr;
3473 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3474 Opc = X86::MOV16rr;
3475 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3476 // Copying to or from a physical H register on x86-64 requires a NOREX
3477 // move. Otherwise use a normal move.
3478 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3479 Subtarget.is64Bit()) {
3480 Opc = X86::MOV8rr_NOREX;
3481 // Both operands must be encodable without an REX prefix.
3482 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&(static_cast <bool> (X86::GR8_NOREXRegClass.contains(SrcReg
, DestReg) && "8-bit H register can not be copied outside GR8_NOREX"
) ? void (0) : __assert_fail ("X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && \"8-bit H register can not be copied outside GR8_NOREX\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3483, __extension__
__PRETTY_FUNCTION__))
3483 "8-bit H register can not be copied outside GR8_NOREX")(static_cast <bool> (X86::GR8_NOREXRegClass.contains(SrcReg
, DestReg) && "8-bit H register can not be copied outside GR8_NOREX"
) ? void (0) : __assert_fail ("X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && \"8-bit H register can not be copied outside GR8_NOREX\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3483, __extension__
__PRETTY_FUNCTION__))
;
3484 } else
3485 Opc = X86::MOV8rr;
3486 }
3487 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3488 Opc = X86::MMX_MOVQ64rr;
3489 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3490 if (HasVLX)
3491 Opc = X86::VMOVAPSZ128rr;
3492 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3493 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3494 else {
3495 // If this an extended register and we don't have VLX we need to use a
3496 // 512-bit move.
3497 Opc = X86::VMOVAPSZrr;
3498 const TargetRegisterInfo *TRI = &getRegisterInfo();
3499 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3500 &X86::VR512RegClass);
3501 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3502 &X86::VR512RegClass);
3503 }
3504 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3505 if (HasVLX)
3506 Opc = X86::VMOVAPSZ256rr;
3507 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3508 Opc = X86::VMOVAPSYrr;
3509 else {
3510 // If this an extended register and we don't have VLX we need to use a
3511 // 512-bit move.
3512 Opc = X86::VMOVAPSZrr;
3513 const TargetRegisterInfo *TRI = &getRegisterInfo();
3514 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3515 &X86::VR512RegClass);
3516 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3517 &X86::VR512RegClass);
3518 }
3519 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3520 Opc = X86::VMOVAPSZrr;
3521 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3522 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3523 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3524 if (!Opc)
3525 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3526
3527 if (Opc) {
3528 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3529 .addReg(SrcReg, getKillRegState(KillSrc));
3530 return;
3531 }
3532
3533 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3534 // FIXME: We use a fatal error here because historically LLVM has tried
3535 // lower some of these physreg copies and we want to ensure we get
3536 // reasonable bug reports if someone encounters a case no other testing
3537 // found. This path should be removed after the LLVM 7 release.
3538 report_fatal_error("Unable to copy EFLAGS physical register!");
3539 }
3540
3541 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "Cannot copy " <<
RI.getName(SrcReg) << " to " << RI.getName(DestReg
) << '\n'; } } while (false)
3542 << RI.getName(DestReg) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "Cannot copy " <<
RI.getName(SrcReg) << " to " << RI.getName(DestReg
) << '\n'; } } while (false)
;
3543 report_fatal_error("Cannot emit physreg copy instruction");
3544}
3545
3546Optional<DestSourcePair>
3547X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3548 if (MI.isMoveReg())
3549 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3550 return None;
3551}
3552
3553static unsigned getLoadStoreRegOpcode(Register Reg,
3554 const TargetRegisterClass *RC,
3555 bool IsStackAligned,
3556 const X86Subtarget &STI, bool load) {
3557 bool HasAVX = STI.hasAVX();
3558 bool HasAVX512 = STI.hasAVX512();
3559 bool HasVLX = STI.hasVLX();
3560
3561 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3562 default:
3563 llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 3563)
;
3564 case 1:
3565 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass")(static_cast <bool> (X86::GR8RegClass.hasSubClassEq(RC)
&& "Unknown 1-byte regclass") ? void (0) : __assert_fail
("X86::GR8RegClass.hasSubClassEq(RC) && \"Unknown 1-byte regclass\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3565, __extension__
__PRETTY_FUNCTION__))
;
3566 if (STI.is64Bit())
3567 // Copying to or from a physical H register on x86-64 requires a NOREX
3568 // move. Otherwise use a normal move.
3569 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3570 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3571 return load ? X86::MOV8rm : X86::MOV8mr;
3572 case 2:
3573 if (X86::VK16RegClass.hasSubClassEq(RC))
3574 return load ? X86::KMOVWkm : X86::KMOVWmk;
3575 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass")(static_cast <bool> (X86::GR16RegClass.hasSubClassEq(RC
) && "Unknown 2-byte regclass") ? void (0) : __assert_fail
("X86::GR16RegClass.hasSubClassEq(RC) && \"Unknown 2-byte regclass\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3575, __extension__
__PRETTY_FUNCTION__))
;
3576 return load ? X86::MOV16rm : X86::MOV16mr;
3577 case 4:
3578 if (X86::GR32RegClass.hasSubClassEq(RC))
3579 return load ? X86::MOV32rm : X86::MOV32mr;
3580 if (X86::FR32XRegClass.hasSubClassEq(RC))
3581 return load ?
3582 (HasAVX512 ? X86::VMOVSSZrm_alt :
3583 HasAVX ? X86::VMOVSSrm_alt :
3584 X86::MOVSSrm_alt) :
3585 (HasAVX512 ? X86::VMOVSSZmr :
3586 HasAVX ? X86::VMOVSSmr :
3587 X86::MOVSSmr);
3588 if (X86::RFP32RegClass.hasSubClassEq(RC))
3589 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3590 if (X86::VK32RegClass.hasSubClassEq(RC)) {
3591 assert(STI.hasBWI() && "KMOVD requires BWI")(static_cast <bool> (STI.hasBWI() && "KMOVD requires BWI"
) ? void (0) : __assert_fail ("STI.hasBWI() && \"KMOVD requires BWI\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3591, __extension__
__PRETTY_FUNCTION__))
;
3592 return load ? X86::KMOVDkm : X86::KMOVDmk;
3593 }
3594 // All of these mask pair classes have the same spill size, the same kind
3595 // of kmov instructions can be used with all of them.
3596 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3597 X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3598 X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3599 X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3600 X86::VK16PAIRRegClass.hasSubClassEq(RC))
3601 return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3602 if ((X86::FR16RegClass.hasSubClassEq(RC) ||
3603 X86::FR16XRegClass.hasSubClassEq(RC)) &&
3604 STI.hasFP16())
3605 return load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
3606 llvm_unreachable("Unknown 4-byte regclass")::llvm::llvm_unreachable_internal("Unknown 4-byte regclass", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 3606)
;
3607 case 8:
3608 if (X86::GR64RegClass.hasSubClassEq(RC))
3609 return load ? X86::MOV64rm : X86::MOV64mr;
3610 if (X86::FR64XRegClass.hasSubClassEq(RC))
3611 return load ?
3612 (HasAVX512 ? X86::VMOVSDZrm_alt :
3613 HasAVX ? X86::VMOVSDrm_alt :
3614 X86::MOVSDrm_alt) :
3615 (HasAVX512 ? X86::VMOVSDZmr :
3616 HasAVX ? X86::VMOVSDmr :
3617 X86::MOVSDmr);
3618 if (X86::VR64RegClass.hasSubClassEq(RC))
3619 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3620 if (X86::RFP64RegClass.hasSubClassEq(RC))
3621 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3622 if (X86::VK64RegClass.hasSubClassEq(RC)) {
3623 assert(STI.hasBWI() && "KMOVQ requires BWI")(static_cast <bool> (STI.hasBWI() && "KMOVQ requires BWI"
) ? void (0) : __assert_fail ("STI.hasBWI() && \"KMOVQ requires BWI\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3623, __extension__
__PRETTY_FUNCTION__))
;
3624 return load ? X86::KMOVQkm : X86::KMOVQmk;
3625 }
3626 llvm_unreachable("Unknown 8-byte regclass")::llvm::llvm_unreachable_internal("Unknown 8-byte regclass", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 3626)
;
3627 case 10:
3628 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass")(static_cast <bool> (X86::RFP80RegClass.hasSubClassEq(RC
) && "Unknown 10-byte regclass") ? void (0) : __assert_fail
("X86::RFP80RegClass.hasSubClassEq(RC) && \"Unknown 10-byte regclass\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3628, __extension__
__PRETTY_FUNCTION__))
;
3629 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3630 case 16: {
3631 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3632 // If stack is realigned we can use aligned stores.
3633 if (IsStackAligned)
3634 return load ?
3635 (HasVLX ? X86::VMOVAPSZ128rm :
3636 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3637 HasAVX ? X86::VMOVAPSrm :
3638 X86::MOVAPSrm):
3639 (HasVLX ? X86::VMOVAPSZ128mr :
3640 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3641 HasAVX ? X86::VMOVAPSmr :
3642 X86::MOVAPSmr);
3643 else
3644 return load ?
3645 (HasVLX ? X86::VMOVUPSZ128rm :
3646 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3647 HasAVX ? X86::VMOVUPSrm :
3648 X86::MOVUPSrm):
3649 (HasVLX ? X86::VMOVUPSZ128mr :
3650 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3651 HasAVX ? X86::VMOVUPSmr :
3652 X86::MOVUPSmr);
3653 }
3654 llvm_unreachable("Unknown 16-byte regclass")::llvm::llvm_unreachable_internal("Unknown 16-byte regclass",
"llvm/lib/Target/X86/X86InstrInfo.cpp", 3654)
;
3655 }
3656 case 32:
3657 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass")(static_cast <bool> (X86::VR256XRegClass.hasSubClassEq(
RC) && "Unknown 32-byte regclass") ? void (0) : __assert_fail
("X86::VR256XRegClass.hasSubClassEq(RC) && \"Unknown 32-byte regclass\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3657, __extension__
__PRETTY_FUNCTION__))
;
3658 // If stack is realigned we can use aligned stores.
3659 if (IsStackAligned)
3660 return load ?
3661 (HasVLX ? X86::VMOVAPSZ256rm :
3662 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3663 X86::VMOVAPSYrm) :
3664 (HasVLX ? X86::VMOVAPSZ256mr :
3665 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3666 X86::VMOVAPSYmr);
3667 else
3668 return load ?
3669 (HasVLX ? X86::VMOVUPSZ256rm :
3670 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3671 X86::VMOVUPSYrm) :
3672 (HasVLX ? X86::VMOVUPSZ256mr :
3673 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3674 X86::VMOVUPSYmr);
3675 case 64:
3676 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass")(static_cast <bool> (X86::VR512RegClass.hasSubClassEq(RC
) && "Unknown 64-byte regclass") ? void (0) : __assert_fail
("X86::VR512RegClass.hasSubClassEq(RC) && \"Unknown 64-byte regclass\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3676, __extension__
__PRETTY_FUNCTION__))
;
3677 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512")(static_cast <bool> (STI.hasAVX512() && "Using 512-bit register requires AVX512"
) ? void (0) : __assert_fail ("STI.hasAVX512() && \"Using 512-bit register requires AVX512\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3677, __extension__
__PRETTY_FUNCTION__))
;
3678 if (IsStackAligned)
3679 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3680 else
3681 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3682 }
3683}
3684
3685Optional<ExtAddrMode>
3686X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
3687 const TargetRegisterInfo *TRI) const {
3688 const MCInstrDesc &Desc = MemI.getDesc();
3689 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3690 if (MemRefBegin < 0)
3691 return None;
3692
3693 MemRefBegin += X86II::getOperandBias(Desc);
3694
3695 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
3696 if (!BaseOp.isReg()) // Can be an MO_FrameIndex
3697 return None;
3698
3699 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
3700 // Displacement can be symbolic
3701 if (!DispMO.isImm())
3702 return None;
3703
3704 ExtAddrMode AM;
3705 AM.BaseReg = BaseOp.getReg();
3706 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
3707 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
3708 AM.Displacement = DispMO.getImm();
3709 return AM;
3710}
3711
3712bool X86InstrInfo::verifyInstruction(const MachineInstr &MI,
3713 StringRef &ErrInfo) const {
3714 Optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr);
3715 if (!AMOrNone)
3716 return true;
3717
3718 ExtAddrMode AM = *AMOrNone;
3719
3720 if (AM.ScaledReg != X86::NoRegister) {
3721 switch (AM.Scale) {
3722 case 1:
3723 case 2:
3724 case 4:
3725 case 8:
3726 break;
3727 default:
3728 ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
3729 return false;
3730 }
3731 }
3732 if (!isInt<32>(AM.Displacement)) {
3733 ErrInfo = "Displacement in address must fit into 32-bit signed "
3734 "integer";
3735 return false;
3736 }
3737
3738 return true;
3739}
3740
3741bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
3742 const Register Reg,
3743 int64_t &ImmVal) const {
3744 if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
3745 return false;
3746 // Mov Src can be a global address.
3747 if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
3748 return false;
3749 ImmVal = MI.getOperand(1).getImm();
3750 return true;
3751}
3752
3753bool X86InstrInfo::preservesZeroValueInReg(
3754 const MachineInstr *MI, const Register NullValueReg,
3755 const TargetRegisterInfo *TRI) const {
3756 if (!MI->modifiesRegister(NullValueReg, TRI))
3757 return true;
3758 switch (MI->getOpcode()) {
3759 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3760 // X.
3761 case X86::SHR64ri:
3762 case X86::SHR32ri:
3763 case X86::SHL64ri:
3764 case X86::SHL32ri:
3765 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&(static_cast <bool> (MI->getOperand(0).isDef() &&
MI->getOperand(1).isUse() && "expected for shift opcode!"
) ? void (0) : __assert_fail ("MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && \"expected for shift opcode!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3766, __extension__
__PRETTY_FUNCTION__))
3766 "expected for shift opcode!")(static_cast <bool> (MI->getOperand(0).isDef() &&
MI->getOperand(1).isUse() && "expected for shift opcode!"
) ? void (0) : __assert_fail ("MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && \"expected for shift opcode!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3766, __extension__
__PRETTY_FUNCTION__))
;
3767 return MI->getOperand(0).getReg() == NullValueReg &&
3768 MI->getOperand(1).getReg() == NullValueReg;
3769 // Zero extend of a sub-reg of NullValueReg into itself does not change the
3770 // null value.
3771 case X86::MOV32rr:
3772 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
3773 return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
3774 });
3775 default:
3776 return false;
3777 }
3778 llvm_unreachable("Should be handled above!")::llvm::llvm_unreachable_internal("Should be handled above!",
"llvm/lib/Target/X86/X86InstrInfo.cpp", 3778)
;
3779}
3780
3781bool X86InstrInfo::getMemOperandsWithOffsetWidth(
3782 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
3783 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3784 const TargetRegisterInfo *TRI) const {
3785 const MCInstrDesc &Desc = MemOp.getDesc();
3786 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3787 if (MemRefBegin < 0)
3788 return false;
3789
3790 MemRefBegin += X86II::getOperandBias(Desc);
3791
3792 const MachineOperand *BaseOp =
3793 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3794 if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3795 return false;
3796
3797 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3798 return false;
3799
3800 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3801 X86::NoRegister)
3802 return false;
3803
3804 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3805
3806 // Displacement can be symbolic
3807 if (!DispMO.isImm())
3808 return false;
3809
3810 Offset = DispMO.getImm();
3811
3812 if (!BaseOp->isReg())
3813 return false;
3814
3815 OffsetIsScalable = false;
3816 // FIXME: Relying on memoperands() may not be right thing to do here. Check
3817 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3818 // there is no use of `Width` for X86 back-end at the moment.
3819 Width =
3820 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
3821 BaseOps.push_back(BaseOp);
3822 return true;
3823}
3824
3825static unsigned getStoreRegOpcode(Register SrcReg,
3826 const TargetRegisterClass *RC,
3827 bool IsStackAligned,
3828 const X86Subtarget &STI) {
3829 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
3830}
3831
3832static unsigned getLoadRegOpcode(Register DestReg,
3833 const TargetRegisterClass *RC,
3834 bool IsStackAligned, const X86Subtarget &STI) {
3835 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
3836}
3837
3838void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3839 MachineBasicBlock::iterator MI,
3840 Register SrcReg, bool isKill, int FrameIdx,
3841 const TargetRegisterClass *RC,
3842 const TargetRegisterInfo *TRI) const {
3843 const MachineFunction &MF = *MBB.getParent();
3844 const MachineFrameInfo &MFI = MF.getFrameInfo();
3845 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3846 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&(static_cast <bool> (MFI.getObjectSize(FrameIdx) >= TRI
->getSpillSize(*RC) && "Stack slot too small for store"
) ? void (0) : __assert_fail ("MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && \"Stack slot too small for store\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3847, __extension__
__PRETTY_FUNCTION__))
3847 "Stack slot too small for store")(static_cast <bool> (MFI.getObjectSize(FrameIdx) >= TRI
->getSpillSize(*RC) && "Stack slot too small for store"
) ? void (0) : __assert_fail ("MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && \"Stack slot too small for store\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3847, __extension__
__PRETTY_FUNCTION__))
;
3848 if (RC->getID() == X86::TILERegClassID) {
3849 unsigned Opc = X86::TILESTORED;
3850 // tilestored %tmm, (%sp, %idx)
3851 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3852 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3853 MachineInstr *NewMI =
3854 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3855 .addReg(SrcReg, getKillRegState(isKill));
3856 MachineOperand &MO = NewMI->getOperand(2);
3857 MO.setReg(VirtReg);
3858 MO.setIsKill(true);
3859 } else if ((RC->getID() == X86::FR16RegClassID ||
3860 RC->getID() == X86::FR16XRegClassID) &&
3861 !Subtarget.hasFP16()) {
3862 unsigned Opc = Subtarget.hasAVX512() ? X86::VMOVSSZmr
3863 : Subtarget.hasAVX() ? X86::VMOVSSmr
3864 : X86::MOVSSmr;
3865 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3866 .addReg(SrcReg, getKillRegState(isKill));
3867 } else {
3868 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3869 bool isAligned =
3870 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3871 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3872 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3873 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3874 .addReg(SrcReg, getKillRegState(isKill));
3875 }
3876}
3877
3878void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3879 MachineBasicBlock::iterator MI,
3880 Register DestReg, int FrameIdx,
3881 const TargetRegisterClass *RC,
3882 const TargetRegisterInfo *TRI) const {
3883 const MachineFunction &MF = *MBB.getParent();
3884 const MachineFrameInfo &MFI = MF.getFrameInfo();
3885 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&(static_cast <bool> (MFI.getObjectSize(FrameIdx) >= TRI
->getSpillSize(*RC) && "Load size exceeds stack slot"
) ? void (0) : __assert_fail ("MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && \"Load size exceeds stack slot\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3886, __extension__
__PRETTY_FUNCTION__))
3886 "Load size exceeds stack slot")(static_cast <bool> (MFI.getObjectSize(FrameIdx) >= TRI
->getSpillSize(*RC) && "Load size exceeds stack slot"
) ? void (0) : __assert_fail ("MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && \"Load size exceeds stack slot\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3886, __extension__
__PRETTY_FUNCTION__))
;
3887 if (RC->getID() == X86::TILERegClassID) {
3888 unsigned Opc = X86::TILELOADD;
3889 // tileloadd (%sp, %idx), %tmm
3890 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3891 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3892 MachineInstr *NewMI =
Value stored to 'NewMI' during its initialization is never read
3893 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3894 NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3895 FrameIdx);
3896 MachineOperand &MO = NewMI->getOperand(3);
3897 MO.setReg(VirtReg);
3898 MO.setIsKill(true);
3899 } else if ((RC->getID() == X86::FR16RegClassID ||
3900 RC->getID() == X86::FR16XRegClassID) &&
3901 !Subtarget.hasFP16()) {
3902 unsigned Opc = Subtarget.hasAVX512() ? X86::VMOVSSZrm
3903 : Subtarget.hasAVX() ? X86::VMOVSSrm
3904 : X86::MOVSSrm;
3905 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3906 FrameIdx);
3907 } else {
3908 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3909 bool isAligned =
3910 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3911 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3912 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3913 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3914 FrameIdx);
3915 }
3916}
3917
3918bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
3919 Register &SrcReg2, int64_t &CmpMask,
3920 int64_t &CmpValue) const {
3921 switch (MI.getOpcode()) {
3922 default: break;
3923 case X86::CMP64ri32:
3924 case X86::CMP64ri8:
3925 case X86::CMP32ri:
3926 case X86::CMP32ri8:
3927 case X86::CMP16ri:
3928 case X86::CMP16ri8:
3929 case X86::CMP8ri:
3930 SrcReg = MI.getOperand(0).getReg();
3931 SrcReg2 = 0;
3932 if (MI.getOperand(1).isImm()) {
3933 CmpMask = ~0;
3934 CmpValue = MI.getOperand(1).getImm();
3935 } else {
3936 CmpMask = CmpValue = 0;
3937 }
3938 return true;
3939 // A SUB can be used to perform comparison.
3940 case X86::SUB64rm:
3941 case X86::SUB32rm:
3942 case X86::SUB16rm:
3943 case X86::SUB8rm:
3944 SrcReg = MI.getOperand(1).getReg();
3945 SrcReg2 = 0;
3946 CmpMask = 0;
3947 CmpValue = 0;
3948 return true;
3949 case X86::SUB64rr:
3950 case X86::SUB32rr:
3951 case X86::SUB16rr:
3952 case X86::SUB8rr:
3953 SrcReg = MI.getOperand(1).getReg();
3954 SrcReg2 = MI.getOperand(2).getReg();
3955 CmpMask = 0;
3956 CmpValue = 0;
3957 return true;
3958 case X86::SUB64ri32:
3959 case X86::SUB64ri8:
3960 case X86::SUB32ri:
3961 case X86::SUB32ri8:
3962 case X86::SUB16ri:
3963 case X86::SUB16ri8:
3964 case X86::SUB8ri:
3965 SrcReg = MI.getOperand(1).getReg();
3966 SrcReg2 = 0;
3967 if (MI.getOperand(2).isImm()) {
3968 CmpMask = ~0;
3969 CmpValue = MI.getOperand(2).getImm();
3970 } else {
3971 CmpMask = CmpValue = 0;
3972 }
3973 return true;
3974 case X86::CMP64rr:
3975 case X86::CMP32rr:
3976 case X86::CMP16rr:
3977 case X86::CMP8rr:
3978 SrcReg = MI.getOperand(0).getReg();
3979 SrcReg2 = MI.getOperand(1).getReg();
3980 CmpMask = 0;
3981 CmpValue = 0;
3982 return true;
3983 case X86::TEST8rr:
3984 case X86::TEST16rr:
3985 case X86::TEST32rr:
3986 case X86::TEST64rr:
3987 SrcReg = MI.getOperand(0).getReg();
3988 if (MI.getOperand(1).getReg() != SrcReg)
3989 return false;
3990 // Compare against zero.
3991 SrcReg2 = 0;
3992 CmpMask = ~0;
3993 CmpValue = 0;
3994 return true;
3995 }
3996 return false;
3997}
3998
3999bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4000 Register SrcReg, Register SrcReg2,
4001 int64_t ImmMask, int64_t ImmValue,
4002 const MachineInstr &OI, bool *IsSwapped,
4003 int64_t *ImmDelta) const {
4004 switch (OI.getOpcode()) {
4005 case X86::CMP64rr:
4006 case X86::CMP32rr:
4007 case X86::CMP16rr:
4008 case X86::CMP8rr:
4009 case X86::SUB64rr:
4010 case X86::SUB32rr:
4011 case X86::SUB16rr:
4012 case X86::SUB8rr: {
4013 Register OISrcReg;
4014 Register OISrcReg2;
4015 int64_t OIMask;
4016 int64_t OIValue;
4017 if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
4018 OIMask != ImmMask || OIValue != ImmValue)
4019 return false;
4020 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4021 *IsSwapped = false;
4022 return true;
4023 }
4024 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4025 *IsSwapped = true;
4026 return true;
4027 }
4028 return false;
4029 }
4030 case X86::CMP64ri32:
4031 case X86::CMP64ri8:
4032 case X86::CMP32ri:
4033 case X86::CMP32ri8:
4034 case X86::CMP16ri:
4035 case X86::CMP16ri8:
4036 case X86::CMP8ri:
4037 case X86::SUB64ri32:
4038 case X86::SUB64ri8:
4039 case X86::SUB32ri:
4040 case X86::SUB32ri8:
4041 case X86::SUB16ri:
4042 case X86::SUB16ri8:
4043 case X86::SUB8ri:
4044 case X86::TEST64rr:
4045 case X86::TEST32rr:
4046 case X86::TEST16rr:
4047 case X86::TEST8rr: {
4048 if (ImmMask != 0) {
4049 Register OISrcReg;
4050 Register OISrcReg2;
4051 int64_t OIMask;
4052 int64_t OIValue;
4053 if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
4054 SrcReg == OISrcReg && ImmMask == OIMask) {
4055 if (OIValue == ImmValue) {
4056 *ImmDelta = 0;
4057 return true;
4058 } else if (static_cast<uint64_t>(ImmValue) ==
4059 static_cast<uint64_t>(OIValue) - 1) {
4060 *ImmDelta = -1;
4061 return true;
4062 } else if (static_cast<uint64_t>(ImmValue) ==
4063 static_cast<uint64_t>(OIValue) + 1) {
4064 *ImmDelta = 1;
4065 return true;
4066 } else {
4067 return false;
4068 }
4069 }
4070 }
4071 return FlagI.isIdenticalTo(OI);
4072 }
4073 default:
4074 return false;
4075 }
4076}
4077
4078/// Check whether the definition can be converted
4079/// to remove a comparison against zero.
4080inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4081 bool &ClearsOverflowFlag) {
4082 NoSignFlag = false;
4083 ClearsOverflowFlag = false;
4084
4085 // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and
4086 // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during
4087 // Initial Exec to Local Exec relaxation. In these cases, we must not depend
4088 // on the EFLAGS modification of ADD actually happening in the final binary.
4089 if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) {
4090 unsigned Flags = MI.getOperand(5).getTargetFlags();
4091 if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF ||
4092 Flags == X86II::MO_GOTNTPOFF)
4093 return false;
4094 }
4095
4096 switch (MI.getOpcode()) {
4097 default: return false;
4098
4099 // The shift instructions only modify ZF if their shift count is non-zero.
4100 // N.B.: The processor truncates the shift count depending on the encoding.
4101 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
4102 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
4103 return getTruncatedShiftCount(MI, 2) != 0;
4104
4105 // Some left shift instructions can be turned into LEA instructions but only
4106 // if their flags aren't used. Avoid transforming such instructions.
4107 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
4108 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4109 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4110 return ShAmt != 0;
4111 }
4112
4113 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4114 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4115 return getTruncatedShiftCount(MI, 3) != 0;
4116
4117 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4118 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
4119 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
4120 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
4121 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
4122 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
4123 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4124 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
4125 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
4126 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
4127 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
4128 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
4129 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
4130 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
4131 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
4132 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
4133 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
4134 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
4135 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
4136 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
4137 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
4138 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
4139 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
4140 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
4141 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
4142 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
4143 case X86::LZCNT16rr: case X86::LZCNT16rm:
4144 case X86::LZCNT32rr: case X86::LZCNT32rm:
4145 case X86::LZCNT64rr: case X86::LZCNT64rm:
4146 case X86::POPCNT16rr:case X86::POPCNT16rm:
4147 case X86::POPCNT32rr:case X86::POPCNT32rm:
4148 case X86::POPCNT64rr:case X86::POPCNT64rm:
4149 case X86::TZCNT16rr: case X86::TZCNT16rm:
4150 case X86::TZCNT32rr: case X86::TZCNT32rm:
4151 case X86::TZCNT64rr: case X86::TZCNT64rm:
4152 return true;
4153 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4154 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
4155 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
4156 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
4157 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
4158 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4159 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
4160 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
4161 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
4162 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
4163 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
4164 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
4165 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
4166 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
4167 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
4168 case X86::ANDN32rr: case X86::ANDN32rm:
4169 case X86::ANDN64rr: case X86::ANDN64rm:
4170 case X86::BLSI32rr: case X86::BLSI32rm:
4171 case X86::BLSI64rr: case X86::BLSI64rm:
4172 case X86::BLSMSK32rr: case X86::BLSMSK32rm:
4173 case X86::BLSMSK64rr: case X86::BLSMSK64rm:
4174 case X86::BLSR32rr: case X86::BLSR32rm:
4175 case X86::BLSR64rr: case X86::BLSR64rm:
4176 case X86::BLCFILL32rr: case X86::BLCFILL32rm:
4177 case X86::BLCFILL64rr: case X86::BLCFILL64rm:
4178 case X86::BLCI32rr: case X86::BLCI32rm:
4179 case X86::BLCI64rr: case X86::BLCI64rm:
4180 case X86::BLCIC32rr: case X86::BLCIC32rm:
4181 case X86::BLCIC64rr: case X86::BLCIC64rm:
4182 case X86::BLCMSK32rr: case X86::BLCMSK32rm:
4183 case X86::BLCMSK64rr: case X86::BLCMSK64rm:
4184 case X86::BLCS32rr: case X86::BLCS32rm:
4185 case X86::BLCS64rr: case X86::BLCS64rm:
4186 case X86::BLSFILL32rr: case X86::BLSFILL32rm:
4187 case X86::BLSFILL64rr: case X86::BLSFILL64rm:
4188 case X86::BLSIC32rr: case X86::BLSIC32rm:
4189 case X86::BLSIC64rr: case X86::BLSIC64rm:
4190 case X86::BZHI32rr: case X86::BZHI32rm:
4191 case X86::BZHI64rr: case X86::BZHI64rm:
4192 case X86::T1MSKC32rr: case X86::T1MSKC32rm:
4193 case X86::T1MSKC64rr: case X86::T1MSKC64rm:
4194 case X86::TZMSK32rr: case X86::TZMSK32rm:
4195 case X86::TZMSK64rr: case X86::TZMSK64rm:
4196 // These instructions clear the overflow flag just like TEST.
4197 // FIXME: These are not the only instructions in this switch that clear the
4198 // overflow flag.
4199 ClearsOverflowFlag = true;
4200 return true;
4201 case X86::BEXTR32rr: case X86::BEXTR64rr:
4202 case X86::BEXTR32rm: case X86::BEXTR64rm:
4203 case X86::BEXTRI32ri: case X86::BEXTRI32mi:
4204 case X86::BEXTRI64ri: case X86::BEXTRI64mi:
4205 // BEXTR doesn't update the sign flag so we can't use it. It does clear
4206 // the overflow flag, but that's not useful without the sign flag.
4207 NoSignFlag = true;
4208 return true;
4209 }
4210}
4211
4212/// Check whether the use can be converted to remove a comparison against zero.
4213static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
4214 switch (MI.getOpcode()) {
4215 default: return X86::COND_INVALID;
4216 case X86::NEG8r:
4217 case X86::NEG16r:
4218 case X86::NEG32r:
4219 case X86::NEG64r:
4220 return X86::COND_AE;
4221 case X86::LZCNT16rr:
4222 case X86::LZCNT32rr:
4223 case X86::LZCNT64rr:
4224 return X86::COND_B;
4225 case X86::POPCNT16rr:
4226 case X86::POPCNT32rr:
4227 case X86::POPCNT64rr:
4228 return X86::COND_E;
4229 case X86::TZCNT16rr:
4230 case X86::TZCNT32rr:
4231 case X86::TZCNT64rr:
4232 return X86::COND_B;
4233 case X86::BSF16rr:
4234 case X86::BSF32rr:
4235 case X86::BSF64rr:
4236 case X86::BSR16rr:
4237 case X86::BSR32rr:
4238 case X86::BSR64rr:
4239 return X86::COND_E;
4240 case X86::BLSI32rr:
4241 case X86::BLSI64rr:
4242 return X86::COND_AE;
4243 case X86::BLSR32rr:
4244 case X86::BLSR64rr:
4245 case X86::BLSMSK32rr:
4246 case X86::BLSMSK64rr:
4247 return X86::COND_B;
4248 // TODO: TBM instructions.
4249 }
4250}
4251
4252/// Check if there exists an earlier instruction that
4253/// operates on the same source operands and sets flags in the same way as
4254/// Compare; remove Compare if possible.
4255bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
4256 Register SrcReg2, int64_t CmpMask,
4257 int64_t CmpValue,
4258 const MachineRegisterInfo *MRI) const {
4259 // Check whether we can replace SUB with CMP.
4260 switch (CmpInstr.getOpcode()) {
4261 default: break;
4262 case X86::SUB64ri32:
4263 case X86::SUB64ri8:
4264 case X86::SUB32ri:
4265 case X86::SUB32ri8:
4266 case X86::SUB16ri:
4267 case X86::SUB16ri8:
4268 case X86::SUB8ri:
4269 case X86::SUB64rm:
4270 case X86::SUB32rm:
4271 case X86::SUB16rm:
4272 case X86::SUB8rm:
4273 case X86::SUB64rr:
4274 case X86::SUB32rr:
4275 case X86::SUB16rr:
4276 case X86::SUB8rr: {
4277 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
4278 return false;
4279 // There is no use of the destination register, we can replace SUB with CMP.
4280 unsigned NewOpcode = 0;
4281 switch (CmpInstr.getOpcode()) {
4282 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 4282)
;
4283 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
4284 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
4285 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
4286 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
4287 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
4288 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
4289 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
4290 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
4291 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4292 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
4293 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
4294 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
4295 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
4296 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
4297 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
4298 }
4299 CmpInstr.setDesc(get(NewOpcode));
4300 CmpInstr.removeOperand(0);
4301 // Mutating this instruction invalidates any debug data associated with it.
4302 CmpInstr.dropDebugNumber();
4303 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4304 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4305 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4306 return false;
4307 }
4308 }
4309
4310 // The following code tries to remove the comparison by re-using EFLAGS
4311 // from earlier instructions.
4312
4313 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
4314
4315 // Transformation currently requires SSA values.
4316 if (SrcReg2.isPhysical())
4317 return false;
4318 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
4319 assert(SrcRegDef && "Must have a definition (SSA)")(static_cast <bool> (SrcRegDef && "Must have a definition (SSA)"
) ? void (0) : __assert_fail ("SrcRegDef && \"Must have a definition (SSA)\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4319, __extension__
__PRETTY_FUNCTION__))
;
4320
4321 MachineInstr *MI = nullptr;
4322 MachineInstr *Sub = nullptr;
4323 MachineInstr *Movr0Inst = nullptr;
4324 bool NoSignFlag = false;
4325 bool ClearsOverflowFlag = false;
4326 bool ShouldUpdateCC = false;
4327 bool IsSwapped = false;
4328 X86::CondCode NewCC = X86::COND_INVALID;
4329 int64_t ImmDelta = 0;
4330
4331 // Search backward from CmpInstr for the next instruction defining EFLAGS.
4332 const TargetRegisterInfo *TRI = &getRegisterInfo();
4333 MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
4334 MachineBasicBlock::reverse_iterator From =
4335 std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
4336 for (MachineBasicBlock *MBB = &CmpMBB;;) {
4337 for (MachineInstr &Inst : make_range(From, MBB->rend())) {
4338 // Try to use EFLAGS from the instruction defining %SrcReg. Example:
4339 // %eax = addl ...
4340 // ... // EFLAGS not changed
4341 // testl %eax, %eax // <-- can be removed
4342 if (&Inst == SrcRegDef) {
4343 if (IsCmpZero &&
4344 isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
4345 MI = &Inst;
4346 break;
4347 }
4348
4349 // Look back for the following pattern, in which case the test64rr
4350 // instruction could be erased.
4351 //
4352 // Example:
4353 // %reg = and32ri %in_reg, 5
4354 // ... // EFLAGS not changed.
4355 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
4356 // test64rr %src_reg, %src_reg, implicit-def $eflags
4357 MachineInstr *AndInstr = nullptr;
4358 if (IsCmpZero &&
4359 findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI,
4360 NoSignFlag, ClearsOverflowFlag)) {
4361 assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()))(static_cast <bool> (AndInstr != nullptr && X86
::isAND(AndInstr->getOpcode())) ? void (0) : __assert_fail
("AndInstr != nullptr && X86::isAND(AndInstr->getOpcode())"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4361, __extension__
__PRETTY_FUNCTION__))
;
4362 MI = AndInstr;
4363 break;
4364 }
4365 // Cannot find other candidates before definition of SrcReg.
4366 return false;
4367 }
4368
4369 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
4370 // Try to use EFLAGS produced by an instruction reading %SrcReg.
4371 // Example:
4372 // %eax = ...
4373 // ...
4374 // popcntl %eax
4375 // ... // EFLAGS not changed
4376 // testl %eax, %eax // <-- can be removed
4377 if (IsCmpZero) {
4378 NewCC = isUseDefConvertible(Inst);
4379 if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
4380 Inst.getOperand(1).getReg() == SrcReg) {
4381 ShouldUpdateCC = true;
4382 MI = &Inst;
4383 break;
4384 }
4385 }
4386
4387 // Try to use EFLAGS from an instruction with similar flag results.
4388 // Example:
4389 // sub x, y or cmp x, y
4390 // ... // EFLAGS not changed
4391 // cmp x, y // <-- can be removed
4392 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
4393 Inst, &IsSwapped, &ImmDelta)) {
4394 Sub = &Inst;
4395 break;
4396 }
4397
4398 // MOV32r0 is implemented with xor which clobbers condition code. It is
4399 // safe to move up, if the definition to EFLAGS is dead and earlier
4400 // instructions do not read or write EFLAGS.
4401 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
4402 Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
4403 Movr0Inst = &Inst;
4404 continue;
4405 }
4406
4407 // Cannot do anything for any other EFLAG changes.
4408 return false;
4409 }
4410 }
4411
4412 if (MI || Sub)
4413 break;
4414
4415 // Reached begin of basic block. Continue in predecessor if there is
4416 // exactly one.
4417 if (MBB->pred_size() != 1)
4418 return false;
4419 MBB = *MBB->pred_begin();
4420 From = MBB->rbegin();
4421 }
4422
4423 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4424 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4425 // If we are done with the basic block, we need to check whether EFLAGS is
4426 // live-out.
4427 bool FlagsMayLiveOut = true;
4428 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
4429 MachineBasicBlock::iterator AfterCmpInstr =
4430 std::next(MachineBasicBlock::iterator(CmpInstr));
4431 for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
4432 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4433 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4434 // We should check the usage if this instruction uses and updates EFLAGS.
4435 if (!UseEFLAGS && ModifyEFLAGS) {
4436 // It is safe to remove CmpInstr if EFLAGS is updated again.
4437 FlagsMayLiveOut = false;
4438 break;
4439 }
4440 if (!UseEFLAGS && !ModifyEFLAGS)
4441 continue;
4442
4443 // EFLAGS is used by this instruction.
4444 X86::CondCode OldCC = X86::COND_INVALID;
4445 if (MI || IsSwapped || ImmDelta != 0) {
4446 // We decode the condition code from opcode.
4447 if (Instr.isBranch())
4448 OldCC = X86::getCondFromBranch(Instr);
4449 else {
4450 OldCC = X86::getCondFromSETCC(Instr);
4451 if (OldCC == X86::COND_INVALID)
4452 OldCC = X86::getCondFromCMov(Instr);
4453 }
4454 if (OldCC == X86::COND_INVALID) return false;
4455 }
4456 X86::CondCode ReplacementCC = X86::COND_INVALID;
4457 if (MI) {
4458 switch (OldCC) {
4459 default: break;
4460 case X86::COND_A: case X86::COND_AE:
4461 case X86::COND_B: case X86::COND_BE:
4462 // CF is used, we can't perform this optimization.
4463 return false;
4464 case X86::COND_G: case X86::COND_GE:
4465 case X86::COND_L: case X86::COND_LE:
4466 // If SF is used, but the instruction doesn't update the SF, then we
4467 // can't do the optimization.
4468 if (NoSignFlag)
4469 return false;
4470 [[fallthrough]];
4471 case X86::COND_O: case X86::COND_NO:
4472 // If OF is used, the instruction needs to clear it like CmpZero does.
4473 if (!ClearsOverflowFlag)
4474 return false;
4475 break;
4476 case X86::COND_S: case X86::COND_NS:
4477 // If SF is used, but the instruction doesn't update the SF, then we
4478 // can't do the optimization.
4479 if (NoSignFlag)
4480 return false;
4481 break;
4482 }
4483
4484 // If we're updating the condition code check if we have to reverse the
4485 // condition.
4486 if (ShouldUpdateCC)
4487 switch (OldCC) {
4488 default:
4489 return false;
4490 case X86::COND_E:
4491 ReplacementCC = NewCC;
4492 break;
4493 case X86::COND_NE:
4494 ReplacementCC = GetOppositeBranchCondition(NewCC);
4495 break;
4496 }
4497 } else if (IsSwapped) {
4498 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4499 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4500 // We swap the condition code and synthesize the new opcode.
4501 ReplacementCC = getSwappedCondition(OldCC);
4502 if (ReplacementCC == X86::COND_INVALID)
4503 return false;
4504 ShouldUpdateCC = true;
4505 } else if (ImmDelta != 0) {
4506 unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
4507 // Shift amount for min/max constants to adjust for 8/16/32 instruction
4508 // sizes.
4509 switch (OldCC) {
4510 case X86::COND_L: // x <s (C + 1) --> x <=s C
4511 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4512 return false;
4513 ReplacementCC = X86::COND_LE;
4514 break;
4515 case X86::COND_B: // x <u (C + 1) --> x <=u C
4516 if (ImmDelta != 1 || CmpValue == 0)
4517 return false;
4518 ReplacementCC = X86::COND_BE;
4519 break;
4520 case X86::COND_GE: // x >=s (C + 1) --> x >s C
4521 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4522 return false;
4523 ReplacementCC = X86::COND_G;
4524 break;
4525 case X86::COND_AE: // x >=u (C + 1) --> x >u C
4526 if (ImmDelta != 1 || CmpValue == 0)
4527 return false;
4528 ReplacementCC = X86::COND_A;
4529 break;
4530 case X86::COND_G: // x >s (C - 1) --> x >=s C
4531 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4532 return false;
4533 ReplacementCC = X86::COND_GE;
4534 break;
4535 case X86::COND_A: // x >u (C - 1) --> x >=u C
4536 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4537 return false;
4538 ReplacementCC = X86::COND_AE;
4539 break;
4540 case X86::COND_LE: // x <=s (C - 1) --> x <s C
4541 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4542 return false;
4543 ReplacementCC = X86::COND_L;
4544 break;
4545 case X86::COND_BE: // x <=u (C - 1) --> x <u C
4546 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4547 return false;
4548 ReplacementCC = X86::COND_B;
4549 break;
4550 default:
4551 return false;
4552 }
4553 ShouldUpdateCC = true;
4554 }
4555
4556 if (ShouldUpdateCC && ReplacementCC != OldCC) {
4557 // Push the MachineInstr to OpsToUpdate.
4558 // If it is safe to remove CmpInstr, the condition code of these
4559 // instructions will be modified.
4560 OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
4561 }
4562 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4563 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4564 FlagsMayLiveOut = false;
4565 break;
4566 }
4567 }
4568
4569 // If we have to update users but EFLAGS is live-out abort, since we cannot
4570 // easily find all of the users.
4571 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
4572 for (MachineBasicBlock *Successor : CmpMBB.successors())
4573 if (Successor->isLiveIn(X86::EFLAGS))
4574 return false;
4575 }
4576
4577 // The instruction to be updated is either Sub or MI.
4578 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set")(static_cast <bool> ((MI == nullptr || Sub == nullptr) &&
"Should not have Sub and MI set") ? void (0) : __assert_fail
("(MI == nullptr || Sub == nullptr) && \"Should not have Sub and MI set\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4578, __extension__
__PRETTY_FUNCTION__))
;
4579 Sub = MI != nullptr ? MI : Sub;
4580 MachineBasicBlock *SubBB = Sub->getParent();
4581 // Move Movr0Inst to the appropriate place before Sub.
4582 if (Movr0Inst) {
4583 // Only move within the same block so we don't accidentally move to a
4584 // block with higher execution frequency.
4585 if (&CmpMBB != SubBB)
4586 return false;
4587 // Look backwards until we find a def that doesn't use the current EFLAGS.
4588 MachineBasicBlock::reverse_iterator InsertI = Sub,
4589 InsertE = Sub->getParent()->rend();
4590 for (; InsertI != InsertE; ++InsertI) {
4591 MachineInstr *Instr = &*InsertI;
4592 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4593 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4594 Movr0Inst->getParent()->remove(Movr0Inst);
4595 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4596 Movr0Inst);
4597 break;
4598 }
4599 }
4600 if (InsertI == InsertE)
4601 return false;
4602 }
4603
4604 // Make sure Sub instruction defines EFLAGS and mark the def live.
4605 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
4606 assert(FlagDef && "Unable to locate a def EFLAGS operand")(static_cast <bool> (FlagDef && "Unable to locate a def EFLAGS operand"
) ? void (0) : __assert_fail ("FlagDef && \"Unable to locate a def EFLAGS operand\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4606, __extension__
__PRETTY_FUNCTION__))
;
4607 FlagDef->setIsDead(false);
4608
4609 CmpInstr.eraseFromParent();
4610
4611 // Modify the condition code of instructions in OpsToUpdate.
4612 for (auto &Op : OpsToUpdate) {
4613 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
4614 .setImm(Op.second);
4615 }
4616 // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
4617 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
4618 MBB = *MBB->pred_begin()) {
4619 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor")(static_cast <bool> (MBB->pred_size() == 1 &&
"Expected exactly one predecessor") ? void (0) : __assert_fail
("MBB->pred_size() == 1 && \"Expected exactly one predecessor\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4619, __extension__
__PRETTY_FUNCTION__))
;
4620 if (!MBB->isLiveIn(X86::EFLAGS))
4621 MBB->addLiveIn(X86::EFLAGS);
4622 }
4623 return true;
4624}
4625
4626/// Try to remove the load by folding it to a register
4627/// operand at the use. We fold the load instructions if load defines a virtual
4628/// register, the virtual register is used once in the same BB, and the
4629/// instructions in-between do not load or store, and have no side effects.
4630MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
4631 const MachineRegisterInfo *MRI,
4632 Register &FoldAsLoadDefReg,
4633 MachineInstr *&DefMI) const {
4634 // Check whether we can move DefMI here.
4635 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4636 assert(DefMI)(static_cast <bool> (DefMI) ? void (0) : __assert_fail (
"DefMI", "llvm/lib/Target/X86/X86InstrInfo.cpp", 4636, __extension__
__PRETTY_FUNCTION__))
;
4637 bool SawStore = false;
4638 if (!DefMI->isSafeToMove(nullptr, SawStore))
4639 return nullptr;
4640
4641 // Collect information about virtual register operands of MI.
4642 SmallVector<unsigned, 1> SrcOperandIds;
4643 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4644 MachineOperand &MO = MI.getOperand(i);
4645 if (!MO.isReg())
4646 continue;
4647 Register Reg = MO.getReg();
4648 if (Reg != FoldAsLoadDefReg)
4649 continue;
4650 // Do not fold if we have a subreg use or a def.
4651 if (MO.getSubReg() || MO.isDef())
4652 return nullptr;
4653 SrcOperandIds.push_back(i);
4654 }
4655 if (SrcOperandIds.empty())
4656 return nullptr;
4657
4658 // Check whether we can fold the def into SrcOperandId.
4659 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
4660 FoldAsLoadDefReg = 0;
4661 return FoldMI;
4662 }
4663
4664 return nullptr;
4665}
4666
4667/// Expand a single-def pseudo instruction to a two-addr
4668/// instruction with two undef reads of the register being defined.
4669/// This is used for mapping:
4670/// %xmm4 = V_SET0
4671/// to:
4672/// %xmm4 = PXORrr undef %xmm4, undef %xmm4
4673///
4674static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4675 const MCInstrDesc &Desc) {
4676 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.")(static_cast <bool> (Desc.getNumOperands() == 3 &&
"Expected two-addr instruction.") ? void (0) : __assert_fail
("Desc.getNumOperands() == 3 && \"Expected two-addr instruction.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4676, __extension__
__PRETTY_FUNCTION__))
;
4677 Register Reg = MIB.getReg(0);
4678 MIB->setDesc(Desc);
4679
4680 // MachineInstr::addOperand() will insert explicit operands before any
4681 // implicit operands.
4682 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4683 // But we don't trust that.
4684 assert(MIB.getReg(1) == Reg &&(static_cast <bool> (MIB.getReg(1) == Reg && MIB
.getReg(2) == Reg && "Misplaced operand") ? void (0) :
__assert_fail ("MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && \"Misplaced operand\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4685, __extension__
__PRETTY_FUNCTION__))
4685 MIB.getReg(2) == Reg && "Misplaced operand")(static_cast <bool> (MIB.getReg(1) == Reg && MIB
.getReg(2) == Reg && "Misplaced operand") ? void (0) :
__assert_fail ("MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && \"Misplaced operand\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4685, __extension__
__PRETTY_FUNCTION__))
;
4686 return true;
4687}
4688
4689/// Expand a single-def pseudo instruction to a two-addr
4690/// instruction with two %k0 reads.
4691/// This is used for mapping:
4692/// %k4 = K_SET1
4693/// to:
4694/// %k4 = KXNORrr %k0, %k0
4695static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
4696 Register Reg) {
4697 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.")(static_cast <bool> (Desc.getNumOperands() == 3 &&
"Expected two-addr instruction.") ? void (0) : __assert_fail
("Desc.getNumOperands() == 3 && \"Expected two-addr instruction.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4697, __extension__
__PRETTY_FUNCTION__))
;
4698 MIB->setDesc(Desc);
4699 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4700 return true;
4701}
4702
4703static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
4704 bool MinusOne) {
4705 MachineBasicBlock &MBB = *MIB->getParent();
4706 const DebugLoc &DL = MIB->getDebugLoc();
4707 Register Reg = MIB.getReg(0);
4708
4709 // Insert the XOR.
4710 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
4711 .addReg(Reg, RegState::Undef)
4712 .addReg(Reg, RegState::Undef);
4713
4714 // Turn the pseudo into an INC or DEC.
4715 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4716 MIB.addReg(Reg);
4717
4718 return true;
4719}
4720
4721static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4722 const TargetInstrInfo &TII,
4723 const X86Subtarget &Subtarget) {
4724 MachineBasicBlock &MBB = *MIB->getParent();
4725 const DebugLoc &DL = MIB->getDebugLoc();
4726 int64_t Imm = MIB->getOperand(1).getImm();
4727 assert(Imm != 0 && "Using push/pop for 0 is not efficient.")(static_cast <bool> (Imm != 0 && "Using push/pop for 0 is not efficient."
) ? void (0) : __assert_fail ("Imm != 0 && \"Using push/pop for 0 is not efficient.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4727, __extension__
__PRETTY_FUNCTION__))
;
4728 MachineBasicBlock::iterator I = MIB.getInstr();
4729
4730 int StackAdjustment;
4731
4732 if (Subtarget.is64Bit()) {
4733 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||(static_cast <bool> (MIB->getOpcode() == X86::MOV64ImmSExti8
|| MIB->getOpcode() == X86::MOV32ImmSExti8) ? void (0) : __assert_fail
("MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode() == X86::MOV32ImmSExti8"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4734, __extension__
__PRETTY_FUNCTION__))
4734 MIB->getOpcode() == X86::MOV32ImmSExti8)(static_cast <bool> (MIB->getOpcode() == X86::MOV64ImmSExti8
|| MIB->getOpcode() == X86::MOV32ImmSExti8) ? void (0) : __assert_fail
("MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode() == X86::MOV32ImmSExti8"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4734, __extension__
__PRETTY_FUNCTION__))
;
4735
4736 // Can't use push/pop lowering if the function might write to the red zone.
4737 X86MachineFunctionInfo *X86FI =
4738 MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4739 if (X86FI->getUsesRedZone()) {
4740 MIB->setDesc(TII.get(MIB->getOpcode() ==
4741 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4742 return true;
4743 }
4744
4745 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4746 // widen the register if necessary.
4747 StackAdjustment = 8;
4748 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4749 MIB->setDesc(TII.get(X86::POP64r));
4750 MIB->getOperand(0)
4751 .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
4752 } else {
4753 assert(MIB->getOpcode() == X86::MOV32ImmSExti8)(static_cast <bool> (MIB->getOpcode() == X86::MOV32ImmSExti8
) ? void (0) : __assert_fail ("MIB->getOpcode() == X86::MOV32ImmSExti8"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4753, __extension__
__PRETTY_FUNCTION__))
;
4754 StackAdjustment = 4;
4755 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4756 MIB->setDesc(TII.get(X86::POP32r));
4757 }
4758 MIB->removeOperand(1);
4759 MIB->addImplicitDefUseOperands(*MBB.getParent());
4760
4761 // Build CFI if necessary.
4762 MachineFunction &MF = *MBB.getParent();
4763 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4764 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4765 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
4766 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4767 if (EmitCFI) {
4768 TFL->BuildCFI(MBB, I, DL,
4769 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4770 TFL->BuildCFI(MBB, std::next(I), DL,
4771 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4772 }
4773
4774 return true;
4775}
4776
4777// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4778// code sequence is needed for other targets.
4779static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4780 const TargetInstrInfo &TII) {
4781 MachineBasicBlock &MBB = *MIB->getParent();
4782 const DebugLoc &DL = MIB->getDebugLoc();
4783 Register Reg = MIB.getReg(0);
4784 const GlobalValue *GV =
4785 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4786 auto Flags = MachineMemOperand::MOLoad |
4787 MachineMemOperand::MODereferenceable |
4788 MachineMemOperand::MOInvariant;
4789 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4790 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
4791 MachineBasicBlock::iterator I = MIB.getInstr();
4792
4793 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4794 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4795 .addMemOperand(MMO);
4796 MIB->setDebugLoc(DL);
4797 MIB->setDesc(TII.get(X86::MOV64rm));
4798 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4799}
4800
4801static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4802 MachineBasicBlock &MBB = *MIB->getParent();
4803 MachineFunction &MF = *MBB.getParent();
4804 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4805 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4806 unsigned XorOp =
4807 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4808 MIB->setDesc(TII.get(XorOp));
4809 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4810 return true;
4811}
4812
4813// This is used to handle spills for 128/256-bit registers when we have AVX512,
4814// but not VLX. If it uses an extended register we need to use an instruction
4815// that loads the lower 128/256-bit, but is available with only AVX512F.
4816static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4817 const TargetRegisterInfo *TRI,
4818 const MCInstrDesc &LoadDesc,
4819 const MCInstrDesc &BroadcastDesc,
4820 unsigned SubIdx) {
4821 Register DestReg = MIB.getReg(0);
4822 // Check if DestReg is XMM16-31 or YMM16-31.
4823 if (TRI->getEncodingValue(DestReg) < 16) {
4824 // We can use a normal VEX encoded load.
4825 MIB->setDesc(LoadDesc);
4826 } else {
4827 // Use a 128/256-bit VBROADCAST instruction.
4828 MIB->setDesc(BroadcastDesc);
4829 // Change the destination to a 512-bit register.
4830 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4831 MIB->getOperand(0).setReg(DestReg);
4832 }
4833 return true;
4834}
4835
4836// This is used to handle spills for 128/256-bit registers when we have AVX512,
4837// but not VLX. If it uses an extended register we need to use an instruction
4838// that stores the lower 128/256-bit, but is available with only AVX512F.
4839static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4840 const TargetRegisterInfo *TRI,
4841 const MCInstrDesc &StoreDesc,
4842 const MCInstrDesc &ExtractDesc,
4843 unsigned SubIdx) {
4844 Register SrcReg = MIB.getReg(X86::AddrNumOperands);
4845 // Check if DestReg is XMM16-31 or YMM16-31.
4846 if (TRI->getEncodingValue(SrcReg) < 16) {
4847 // We can use a normal VEX encoded store.
4848 MIB->setDesc(StoreDesc);
4849 } else {
4850 // Use a VEXTRACTF instruction.
4851 MIB->setDesc(ExtractDesc);
4852 // Change the destination to a 512-bit register.
4853 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4854 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4855 MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4856 }
4857
4858 return true;
4859}
4860
4861static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4862 MIB->setDesc(Desc);
4863 int64_t ShiftAmt = MIB->getOperand(2).getImm();
4864 // Temporarily remove the immediate so we can add another source register.
4865 MIB->removeOperand(2);
4866 // Add the register. Don't copy the kill flag if there is one.
4867 MIB.addReg(MIB.getReg(1),
4868 getUndefRegState(MIB->getOperand(1).isUndef()));
4869 // Add back the immediate.
4870 MIB.addImm(ShiftAmt);
4871 return true;
4872}
4873
4874bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4875 bool HasAVX = Subtarget.hasAVX();
4876 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4877 switch (MI.getOpcode()) {
4878 case X86::MOV32r0:
4879 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4880 case X86::MOV32r1:
4881 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4882 case X86::MOV32r_1:
4883 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4884 case X86::MOV32ImmSExti8:
4885 case X86::MOV64ImmSExti8:
4886 return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4887 case X86::SETB_C32r:
4888 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4889 case X86::SETB_C64r:
4890 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4891 case X86::MMX_SET0:
4892 return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
4893 case X86::V_SET0:
4894 case X86::FsFLD0SS:
4895 case X86::FsFLD0SD:
4896 case X86::FsFLD0SH:
4897 case X86::FsFLD0F128:
4898 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4899 case X86::AVX_SET0: {
4900 assert(HasAVX && "AVX not supported")(static_cast <bool> (HasAVX && "AVX not supported"
) ? void (0) : __assert_fail ("HasAVX && \"AVX not supported\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4900, __extension__
__PRETTY_FUNCTION__))
;
4901 const TargetRegisterInfo *TRI = &getRegisterInfo();
4902 Register SrcReg = MIB.getReg(0);
4903 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4904 MIB->getOperand(0).setReg(XReg);
4905 Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4906 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4907 return true;
4908 }
4909 case X86::AVX512_128_SET0:
4910 case X86::AVX512_FsFLD0SH:
4911 case X86::AVX512_FsFLD0SS:
4912 case X86::AVX512_FsFLD0SD:
4913 case X86::AVX512_FsFLD0F128: {
4914 bool HasVLX = Subtarget.hasVLX();
4915 Register SrcReg = MIB.getReg(0);
4916 const TargetRegisterInfo *TRI = &getRegisterInfo();
4917 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4918 return Expand2AddrUndef(MIB,
4919 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4920 // Extended register without VLX. Use a larger XOR.
4921 SrcReg =
4922 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4923 MIB->getOperand(0).setReg(SrcReg);
4924 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4925 }
4926 case X86::AVX512_256_SET0:
4927 case X86::AVX512_512_SET0: {
4928 bool HasVLX = Subtarget.hasVLX();
4929 Register SrcReg = MIB.getReg(0);
4930 const TargetRegisterInfo *TRI = &getRegisterInfo();
4931 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4932 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4933 MIB->getOperand(0).setReg(XReg);
4934 Expand2AddrUndef(MIB,
4935 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4936 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4937 return true;
4938 }
4939 if (MI.getOpcode() == X86::AVX512_256_SET0) {
4940 // No VLX so we must reference a zmm.
4941 unsigned ZReg =
4942 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4943 MIB->getOperand(0).setReg(ZReg);
4944 }
4945 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4946 }
4947 case X86::V_SETALLONES:
4948 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4949 case X86::AVX2_SETALLONES:
4950 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4951 case X86::AVX1_SETALLONES: {
4952 Register Reg = MIB.getReg(0);
4953 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4954 MIB->setDesc(get(X86::VCMPPSYrri));
4955 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4956 return true;
4957 }
4958 case X86::AVX512_512_SETALLONES: {
4959 Register Reg = MIB.getReg(0);
4960 MIB->setDesc(get(X86::VPTERNLOGDZrri));
4961 // VPTERNLOGD needs 3 register inputs and an immediate.
4962 // 0xff will return 1s for any input.
4963 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4964 .addReg(Reg, RegState::Undef).addImm(0xff);
4965 return true;
4966 }
4967 case X86::AVX512_512_SEXT_MASK_32:
4968 case X86::AVX512_512_SEXT_MASK_64: {
4969 Register Reg = MIB.getReg(0);
4970 Register MaskReg = MIB.getReg(1);
4971 unsigned MaskState = getRegState(MIB->getOperand(1));
4972 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4973 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4974 MI.removeOperand(1);
4975 MIB->setDesc(get(Opc));
4976 // VPTERNLOG needs 3 register inputs and an immediate.
4977 // 0xff will return 1s for any input.
4978 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4979 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4980 return true;
4981 }
4982 case X86::VMOVAPSZ128rm_NOVLX:
4983 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4984 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4985 case X86::VMOVUPSZ128rm_NOVLX:
4986 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4987 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4988 case X86::VMOVAPSZ256rm_NOVLX:
4989 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4990 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4991 case X86::VMOVUPSZ256rm_NOVLX:
4992 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4993 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4994 case X86::VMOVAPSZ128mr_NOVLX:
4995 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4996 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4997 case X86::VMOVUPSZ128mr_NOVLX:
4998 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4999 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
5000 case X86::VMOVAPSZ256mr_NOVLX:
5001 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
5002 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
5003 case X86::VMOVUPSZ256mr_NOVLX:
5004 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
5005 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
5006 case X86::MOV32ri64: {
5007 Register Reg = MIB.getReg(0);
5008 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
5009 MI.setDesc(get(X86::MOV32ri));
5010 MIB->getOperand(0).setReg(Reg32);
5011 MIB.addReg(Reg, RegState::ImplicitDefine);
5012 return true;
5013 }
5014
5015 // KNL does not recognize dependency-breaking idioms for mask registers,
5016 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
5017 // Using %k0 as the undef input register is a performance heuristic based
5018 // on the assumption that %k0 is used less frequently than the other mask
5019 // registers, since it is not usable as a write mask.
5020 // FIXME: A more advanced approach would be to choose the best input mask
5021 // register based on context.
5022 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
5023 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
5024 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
5025 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
5026 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
5027 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
5028 case TargetOpcode::LOAD_STACK_GUARD:
5029 expandLoadStackGuard(MIB, *this);
5030 return true;
5031 case X86::XOR64_FP:
5032 case X86::XOR32_FP:
5033 return expandXorFP(MIB, *this);
5034 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
5035 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
5036 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
5037 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
5038 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
5039 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
5040 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
5041 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
5042 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
5043 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
5044 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
5045 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
5046 case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
5047 case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
5048 case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
5049 }
5050 return false;
5051}
5052
5053/// Return true for all instructions that only update
5054/// the first 32 or 64-bits of the destination register and leave the rest
5055/// unmodified. This can be used to avoid folding loads if the instructions
5056/// only update part of the destination register, and the non-updated part is
5057/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
5058/// instructions breaks the partial register dependency and it can improve
5059/// performance. e.g.:
5060///
5061/// movss (%rdi), %xmm0
5062/// cvtss2sd %xmm0, %xmm0
5063///
5064/// Instead of
5065/// cvtss2sd (%rdi), %xmm0
5066///
5067/// FIXME: This should be turned into a TSFlags.
5068///
5069static bool hasPartialRegUpdate(unsigned Opcode,
5070 const X86Subtarget &Subtarget,
5071 bool ForLoadFold = false) {
5072 switch (Opcode) {
5073 case X86::CVTSI2SSrr:
5074 case X86::CVTSI2SSrm:
5075 case X86::CVTSI642SSrr:
5076 case X86::CVTSI642SSrm:
5077 case X86::CVTSI2SDrr:
5078 case X86::CVTSI2SDrm:
5079 case X86::CVTSI642SDrr:
5080 case X86::CVTSI642SDrm:
5081 // Load folding won't effect the undef register update since the input is
5082 // a GPR.
5083 return !ForLoadFold;
5084 case X86::CVTSD2SSrr:
5085 case X86::CVTSD2SSrm:
5086 case X86::CVTSS2SDrr:
5087 case X86::CVTSS2SDrm:
5088 case X86::MOVHPDrm:
5089 case X86::MOVHPSrm:
5090 case X86::MOVLPDrm:
5091 case X86::MOVLPSrm:
5092 case X86::RCPSSr:
5093 case X86::RCPSSm:
5094 case X86::RCPSSr_Int:
5095 case X86::RCPSSm_Int:
5096 case X86::ROUNDSDr:
5097 case X86::ROUNDSDm:
5098 case X86::ROUNDSSr:
5099 case X86::ROUNDSSm:
5100 case X86::RSQRTSSr:
5101 case X86::RSQRTSSm:
5102 case X86::RSQRTSSr_Int:
5103 case X86::RSQRTSSm_Int:
5104 case X86::SQRTSSr:
5105 case X86::SQRTSSm:
5106 case X86::SQRTSSr_Int:
5107 case X86::SQRTSSm_Int:
5108 case X86::SQRTSDr:
5109 case X86::SQRTSDm:
5110 case X86::SQRTSDr_Int:
5111 case X86::SQRTSDm_Int:
5112 return true;
5113 case X86::VFCMULCPHZ128rm:
5114 case X86::VFCMULCPHZ128rmb:
5115 case X86::VFCMULCPHZ128rmbkz:
5116 case X86::VFCMULCPHZ128rmkz:
5117 case X86::VFCMULCPHZ128rr:
5118 case X86::VFCMULCPHZ128rrkz:
5119 case X86::VFCMULCPHZ256rm:
5120 case X86::VFCMULCPHZ256rmb:
5121 case X86::VFCMULCPHZ256rmbkz:
5122 case X86::VFCMULCPHZ256rmkz:
5123 case X86::VFCMULCPHZ256rr:
5124 case X86::VFCMULCPHZ256rrkz:
5125 case X86::VFCMULCPHZrm:
5126 case X86::VFCMULCPHZrmb:
5127 case X86::VFCMULCPHZrmbkz:
5128 case X86::VFCMULCPHZrmkz:
5129 case X86::VFCMULCPHZrr:
5130 case X86::VFCMULCPHZrrb:
5131 case X86::VFCMULCPHZrrbkz:
5132 case X86::VFCMULCPHZrrkz:
5133 case X86::VFMULCPHZ128rm:
5134 case X86::VFMULCPHZ128rmb:
5135 case X86::VFMULCPHZ128rmbkz:
5136 case X86::VFMULCPHZ128rmkz:
5137 case X86::VFMULCPHZ128rr:
5138 case X86::VFMULCPHZ128rrkz:
5139 case X86::VFMULCPHZ256rm:
5140 case X86::VFMULCPHZ256rmb:
5141 case X86::VFMULCPHZ256rmbkz:
5142 case X86::VFMULCPHZ256rmkz:
5143 case X86::VFMULCPHZ256rr:
5144 case X86::VFMULCPHZ256rrkz:
5145 case X86::VFMULCPHZrm:
5146 case X86::VFMULCPHZrmb:
5147 case X86::VFMULCPHZrmbkz:
5148 case X86::VFMULCPHZrmkz:
5149 case X86::VFMULCPHZrr:
5150 case X86::VFMULCPHZrrb:
5151 case X86::VFMULCPHZrrbkz:
5152 case X86::VFMULCPHZrrkz:
5153 case X86::VFCMULCSHZrm:
5154 case X86::VFCMULCSHZrmkz:
5155 case X86::VFCMULCSHZrr:
5156 case X86::VFCMULCSHZrrb:
5157 case X86::VFCMULCSHZrrbkz:
5158 case X86::VFCMULCSHZrrkz:
5159 case X86::VFMULCSHZrm:
5160 case X86::VFMULCSHZrmkz:
5161 case X86::VFMULCSHZrr:
5162 case X86::VFMULCSHZrrb:
5163 case X86::VFMULCSHZrrbkz:
5164 case X86::VFMULCSHZrrkz:
5165 return Subtarget.hasMULCFalseDeps();
5166 case X86::VPERMDYrm:
5167 case X86::VPERMDYrr:
5168 case X86::VPERMQYmi:
5169 case X86::VPERMQYri:
5170 case X86::VPERMPSYrm:
5171 case X86::VPERMPSYrr:
5172 case X86::VPERMPDYmi:
5173 case X86::VPERMPDYri:
5174 case X86::VPERMDZ256rm:
5175 case X86::VPERMDZ256rmb:
5176 case X86::VPERMDZ256rmbkz:
5177 case X86::VPERMDZ256rmkz:
5178 case X86::VPERMDZ256rr:
5179 case X86::VPERMDZ256rrkz:
5180 case X86::VPERMDZrm:
5181 case X86::VPERMDZrmb:
5182 case X86::VPERMDZrmbkz:
5183 case X86::VPERMDZrmkz:
5184 case X86::VPERMDZrr:
5185 case X86::VPERMDZrrkz:
5186 case X86::VPERMQZ256mbi:
5187 case X86::VPERMQZ256mbikz:
5188 case X86::VPERMQZ256mi:
5189 case X86::VPERMQZ256mikz:
5190 case X86::VPERMQZ256ri:
5191 case X86::VPERMQZ256rikz:
5192 case X86::VPERMQZ256rm:
5193 case X86::VPERMQZ256rmb:
5194 case X86::VPERMQZ256rmbkz:
5195 case X86::VPERMQZ256rmkz:
5196 case X86::VPERMQZ256rr:
5197 case X86::VPERMQZ256rrkz:
5198 case X86::VPERMQZmbi:
5199 case X86::VPERMQZmbikz:
5200 case X86::VPERMQZmi:
5201 case X86::VPERMQZmikz:
5202 case X86::VPERMQZri:
5203 case X86::VPERMQZrikz:
5204 case X86::VPERMQZrm:
5205 case X86::VPERMQZrmb:
5206 case X86::VPERMQZrmbkz:
5207 case X86::VPERMQZrmkz:
5208 case X86::VPERMQZrr:
5209 case X86::VPERMQZrrkz:
5210 case X86::VPERMPSZ256rm:
5211 case X86::VPERMPSZ256rmb:
5212 case X86::VPERMPSZ256rmbkz:
5213 case X86::VPERMPSZ256rmkz:
5214 case X86::VPERMPSZ256rr:
5215 case X86::VPERMPSZ256rrkz:
5216 case X86::VPERMPSZrm:
5217 case X86::VPERMPSZrmb:
5218 case X86::VPERMPSZrmbkz:
5219 case X86::VPERMPSZrmkz:
5220 case X86::VPERMPSZrr:
5221 case X86::VPERMPSZrrkz:
5222 case X86::VPERMPDZ256mbi:
5223 case X86::VPERMPDZ256mbikz:
5224 case X86::VPERMPDZ256mi:
5225 case X86::VPERMPDZ256mikz:
5226 case X86::VPERMPDZ256ri:
5227 case X86::VPERMPDZ256rikz:
5228 case X86::VPERMPDZ256rm:
5229 case X86::VPERMPDZ256rmb:
5230 case X86::VPERMPDZ256rmbkz:
5231 case X86::VPERMPDZ256rmkz:
5232 case X86::VPERMPDZ256rr:
5233 case X86::VPERMPDZ256rrkz:
5234 case X86::VPERMPDZmbi:
5235 case X86::VPERMPDZmbikz:
5236 case X86::VPERMPDZmi:
5237 case X86::VPERMPDZmikz:
5238 case X86::VPERMPDZri:
5239 case X86::VPERMPDZrikz:
5240 case X86::VPERMPDZrm:
5241 case X86::VPERMPDZrmb:
5242 case X86::VPERMPDZrmbkz:
5243 case X86::VPERMPDZrmkz:
5244 case X86::VPERMPDZrr:
5245 case X86::VPERMPDZrrkz:
5246 return Subtarget.hasPERMFalseDeps();
5247 case X86::VRANGEPDZ128rmbi:
5248 case X86::VRANGEPDZ128rmbikz:
5249 case X86::VRANGEPDZ128rmi:
5250 case X86::VRANGEPDZ128rmikz:
5251 case X86::VRANGEPDZ128rri:
5252 case X86::VRANGEPDZ128rrikz:
5253 case X86::VRANGEPDZ256rmbi:
5254 case X86::VRANGEPDZ256rmbikz:
5255 case X86::VRANGEPDZ256rmi:
5256 case X86::VRANGEPDZ256rmikz:
5257 case X86::VRANGEPDZ256rri:
5258 case X86::VRANGEPDZ256rrikz:
5259 case X86::VRANGEPDZrmbi:
5260 case X86::VRANGEPDZrmbikz:
5261 case X86::VRANGEPDZrmi:
5262 case X86::VRANGEPDZrmikz:
5263 case X86::VRANGEPDZrri:
5264 case X86::VRANGEPDZrrib:
5265 case X86::VRANGEPDZrribkz:
5266 case X86::VRANGEPDZrrikz:
5267 case X86::VRANGEPSZ128rmbi:
5268 case X86::VRANGEPSZ128rmbikz:
5269 case X86::VRANGEPSZ128rmi:
5270 case X86::VRANGEPSZ128rmikz:
5271 case X86::VRANGEPSZ128rri:
5272 case X86::VRANGEPSZ128rrikz:
5273 case X86::VRANGEPSZ256rmbi:
5274 case X86::VRANGEPSZ256rmbikz:
5275 case X86::VRANGEPSZ256rmi:
5276 case X86::VRANGEPSZ256rmikz:
5277 case X86::VRANGEPSZ256rri:
5278 case X86::VRANGEPSZ256rrikz:
5279 case X86::VRANGEPSZrmbi:
5280 case X86::VRANGEPSZrmbikz:
5281 case X86::VRANGEPSZrmi:
5282 case X86::VRANGEPSZrmikz:
5283 case X86::VRANGEPSZrri:
5284 case X86::VRANGEPSZrrib:
5285 case X86::VRANGEPSZrribkz:
5286 case X86::VRANGEPSZrrikz:
5287 case X86::VRANGESDZrmi:
5288 case X86::VRANGESDZrmikz:
5289 case X86::VRANGESDZrri:
5290 case X86::VRANGESDZrrib:
5291 case X86::VRANGESDZrribkz:
5292 case X86::VRANGESDZrrikz:
5293 case X86::VRANGESSZrmi:
5294 case X86::VRANGESSZrmikz:
5295 case X86::VRANGESSZrri:
5296 case X86::VRANGESSZrrib:
5297 case X86::VRANGESSZrribkz:
5298 case X86::VRANGESSZrrikz:
5299 return Subtarget.hasRANGEFalseDeps();
5300 case X86::VGETMANTSSZrmi:
5301 case X86::VGETMANTSSZrmikz:
5302 case X86::VGETMANTSSZrri:
5303 case X86::VGETMANTSSZrrib:
5304 case X86::VGETMANTSSZrribkz:
5305 case X86::VGETMANTSSZrrikz:
5306 case X86::VGETMANTSDZrmi:
5307 case X86::VGETMANTSDZrmikz:
5308 case X86::VGETMANTSDZrri:
5309 case X86::VGETMANTSDZrrib:
5310 case X86::VGETMANTSDZrribkz:
5311 case X86::VGETMANTSDZrrikz:
5312 case X86::VGETMANTSHZrmi:
5313 case X86::VGETMANTSHZrmikz:
5314 case X86::VGETMANTSHZrri:
5315 case X86::VGETMANTSHZrrib:
5316 case X86::VGETMANTSHZrribkz:
5317 case X86::VGETMANTSHZrrikz:
5318 case X86::VGETMANTPSZ128rmbi:
5319 case X86::VGETMANTPSZ128rmbikz:
5320 case X86::VGETMANTPSZ128rmi:
5321 case X86::VGETMANTPSZ128rmikz:
5322 case X86::VGETMANTPSZ256rmbi:
5323 case X86::VGETMANTPSZ256rmbikz:
5324 case X86::VGETMANTPSZ256rmi:
5325 case X86::VGETMANTPSZ256rmikz:
5326 case X86::VGETMANTPSZrmbi:
5327 case X86::VGETMANTPSZrmbikz:
5328 case X86::VGETMANTPSZrmi:
5329 case X86::VGETMANTPSZrmikz:
5330 case X86::VGETMANTPDZ128rmbi:
5331 case X86::VGETMANTPDZ128rmbikz:
5332 case X86::VGETMANTPDZ128rmi:
5333 case X86::VGETMANTPDZ128rmikz:
5334 case X86::VGETMANTPDZ256rmbi:
5335 case X86::VGETMANTPDZ256rmbikz:
5336 case X86::VGETMANTPDZ256rmi:
5337 case X86::VGETMANTPDZ256rmikz:
5338 case X86::VGETMANTPDZrmbi:
5339 case X86::VGETMANTPDZrmbikz:
5340 case X86::VGETMANTPDZrmi:
5341 case X86::VGETMANTPDZrmikz:
5342 return Subtarget.hasGETMANTFalseDeps();
5343 case X86::VPMULLQZ128rm:
5344 case X86::VPMULLQZ128rmb:
5345 case X86::VPMULLQZ128rmbkz:
5346 case X86::VPMULLQZ128rmkz:
5347 case X86::VPMULLQZ128rr:
5348 case X86::VPMULLQZ128rrkz:
5349 case X86::VPMULLQZ256rm:
5350 case X86::VPMULLQZ256rmb:
5351 case X86::VPMULLQZ256rmbkz:
5352 case X86::VPMULLQZ256rmkz:
5353 case X86::VPMULLQZ256rr:
5354 case X86::VPMULLQZ256rrkz:
5355 case X86::VPMULLQZrm:
5356 case X86::VPMULLQZrmb:
5357 case X86::VPMULLQZrmbkz:
5358 case X86::VPMULLQZrmkz:
5359 case X86::VPMULLQZrr:
5360 case X86::VPMULLQZrrkz:
5361 return Subtarget.hasMULLQFalseDeps();
5362 // GPR
5363 case X86::POPCNT32rm:
5364 case X86::POPCNT32rr:
5365 case X86::POPCNT64rm:
5366 case X86::POPCNT64rr:
5367 return Subtarget.hasPOPCNTFalseDeps();
5368 case X86::LZCNT32rm:
5369 case X86::LZCNT32rr:
5370 case X86::LZCNT64rm:
5371 case X86::LZCNT64rr:
5372 case X86::TZCNT32rm:
5373 case X86::TZCNT32rr:
5374 case X86::TZCNT64rm:
5375 case X86::TZCNT64rr:
5376 return Subtarget.hasLZCNTFalseDeps();
5377 }
5378
5379 return false;
5380}
5381
5382/// Inform the BreakFalseDeps pass how many idle
5383/// instructions we would like before a partial register update.
5384unsigned X86InstrInfo::getPartialRegUpdateClearance(
5385 const MachineInstr &MI, unsigned OpNum,
5386 const TargetRegisterInfo *TRI) const {
5387 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
5388 return 0;
5389
5390 // If MI is marked as reading Reg, the partial register update is wanted.
5391 const MachineOperand &MO = MI.getOperand(0);
5392 Register Reg = MO.getReg();
5393 if (Reg.isVirtual()) {
5394 if (MO.readsReg() || MI.readsVirtualRegister(Reg))
5395 return 0;
5396 } else {
5397 if (MI.readsRegister(Reg, TRI))
5398 return 0;
5399 }
5400
5401 // If any instructions in the clearance range are reading Reg, insert a
5402 // dependency breaking instruction, which is inexpensive and is likely to
5403 // be hidden in other instruction's cycles.
5404 return PartialRegUpdateClearance;
5405}
5406
5407// Return true for any instruction the copies the high bits of the first source
5408// operand into the unused high bits of the destination operand.
5409// Also returns true for instructions that have two inputs where one may
5410// be undef and we want it to use the same register as the other input.
5411static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
5412 bool ForLoadFold = false) {
5413 // Set the OpNum parameter to the first source operand.
5414 switch (Opcode) {
5415 case X86::MMX_PUNPCKHBWrr:
5416 case X86::MMX_PUNPCKHWDrr:
5417 case X86::MMX_PUNPCKHDQrr:
5418 case X86::MMX_PUNPCKLBWrr:
5419 case X86::MMX_PUNPCKLWDrr:
5420 case X86::MMX_PUNPCKLDQrr:
5421 case X86::MOVHLPSrr:
5422 case X86::PACKSSWBrr:
5423 case X86::PACKUSWBrr:
5424 case X86::PACKSSDWrr:
5425 case X86::PACKUSDWrr:
5426 case X86::PUNPCKHBWrr:
5427 case X86::PUNPCKLBWrr:
5428 case X86::PUNPCKHWDrr:
5429 case X86::PUNPCKLWDrr:
5430 case X86::PUNPCKHDQrr:
5431 case X86::PUNPCKLDQrr:
5432 case X86::PUNPCKHQDQrr:
5433 case X86::PUNPCKLQDQrr:
5434 case X86::SHUFPDrri:
5435 case X86::SHUFPSrri:
5436 // These instructions are sometimes used with an undef first or second
5437 // source. Return true here so BreakFalseDeps will assign this source to the
5438 // same register as the first source to avoid a false dependency.
5439 // Operand 1 of these instructions is tied so they're separate from their
5440 // VEX counterparts.
5441 return OpNum == 2 && !ForLoadFold;
5442
5443 case X86::VMOVLHPSrr:
5444 case X86::VMOVLHPSZrr:
5445 case X86::VPACKSSWBrr:
5446 case X86::VPACKUSWBrr:
5447 case X86::VPACKSSDWrr:
5448 case X86::VPACKUSDWrr:
5449 case X86::VPACKSSWBZ128rr:
5450 case X86::VPACKUSWBZ128rr:
5451 case X86::VPACKSSDWZ128rr:
5452 case X86::VPACKUSDWZ128rr:
5453 case X86::VPERM2F128rr:
5454 case X86::VPERM2I128rr:
5455 case X86::VSHUFF32X4Z256rri:
5456 case X86::VSHUFF32X4Zrri:
5457 case X86::VSHUFF64X2Z256rri:
5458 case X86::VSHUFF64X2Zrri:
5459 case X86::VSHUFI32X4Z256rri:
5460 case X86::VSHUFI32X4Zrri:
5461 case X86::VSHUFI64X2Z256rri:
5462 case X86::VSHUFI64X2Zrri:
5463 case X86::VPUNPCKHBWrr:
5464 case X86::VPUNPCKLBWrr:
5465 case X86::VPUNPCKHBWYrr:
5466 case X86::VPUNPCKLBWYrr:
5467 case X86::VPUNPCKHBWZ128rr:
5468 case X86::VPUNPCKLBWZ128rr:
5469 case X86::VPUNPCKHBWZ256rr:
5470 case X86::VPUNPCKLBWZ256rr:
5471 case X86::VPUNPCKHBWZrr:
5472 case X86::VPUNPCKLBWZrr:
5473 case X86::VPUNPCKHWDrr:
5474 case X86::VPUNPCKLWDrr:
5475 case X86::VPUNPCKHWDYrr:
5476 case X86::VPUNPCKLWDYrr:
5477 case X86::VPUNPCKHWDZ128rr:
5478 case X86::VPUNPCKLWDZ128rr:
5479 case X86::VPUNPCKHWDZ256rr:
5480 case X86::VPUNPCKLWDZ256rr:
5481 case X86::VPUNPCKHWDZrr:
5482 case X86::VPUNPCKLWDZrr:
5483 case X86::VPUNPCKHDQrr:
5484 case X86::VPUNPCKLDQrr:
5485 case X86::VPUNPCKHDQYrr:
5486 case X86::VPUNPCKLDQYrr:
5487 case X86::VPUNPCKHDQZ128rr:
5488 case X86::VPUNPCKLDQZ128rr:
5489 case X86::VPUNPCKHDQZ256rr:
5490 case X86::VPUNPCKLDQZ256rr:
5491 case X86::VPUNPCKHDQZrr:
5492 case X86::VPUNPCKLDQZrr:
5493 case X86::VPUNPCKHQDQrr:
5494 case X86::VPUNPCKLQDQrr:
5495 case X86::VPUNPCKHQDQYrr:
5496 case X86::VPUNPCKLQDQYrr:
5497 case X86::VPUNPCKHQDQZ128rr:
5498 case X86::VPUNPCKLQDQZ128rr:
5499 case X86::VPUNPCKHQDQZ256rr:
5500 case X86::VPUNPCKLQDQZ256rr:
5501 case X86::VPUNPCKHQDQZrr:
5502 case X86::VPUNPCKLQDQZrr:
5503 // These instructions are sometimes used with an undef first or second
5504 // source. Return true here so BreakFalseDeps will assign this source to the
5505 // same register as the first source to avoid a false dependency.
5506 return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
5507
5508 case X86::VCVTSI2SSrr:
5509 case X86::VCVTSI2SSrm:
5510 case X86::VCVTSI2SSrr_Int:
5511 case X86::VCVTSI2SSrm_Int:
5512 case X86::VCVTSI642SSrr:
5513 case X86::VCVTSI642SSrm:
5514 case X86::VCVTSI642SSrr_Int:
5515 case X86::VCVTSI642SSrm_Int:
5516 case X86::VCVTSI2SDrr:
5517 case X86::VCVTSI2SDrm:
5518 case X86::VCVTSI2SDrr_Int:
5519 case X86::VCVTSI2SDrm_Int:
5520 case X86::VCVTSI642SDrr:
5521 case X86::VCVTSI642SDrm:
5522 case X86::VCVTSI642SDrr_Int:
5523 case X86::VCVTSI642SDrm_Int:
5524 // AVX-512
5525 case X86::VCVTSI2SSZrr:
5526 case X86::VCVTSI2SSZrm:
5527 case X86::VCVTSI2SSZrr_Int:
5528 case X86::VCVTSI2SSZrrb_Int:
5529 case X86::VCVTSI2SSZrm_Int:
5530 case X86::VCVTSI642SSZrr:
5531 case X86::VCVTSI642SSZrm:
5532 case X86::VCVTSI642SSZrr_Int:
5533 case X86::VCVTSI642SSZrrb_Int:
5534 case X86::VCVTSI642SSZrm_Int:
5535 case X86::VCVTSI2SDZrr:
5536 case X86::VCVTSI2SDZrm:
5537 case X86::VCVTSI2SDZrr_Int:
5538 case X86::VCVTSI2SDZrm_Int:
5539 case X86::VCVTSI642SDZrr:
5540 case X86::VCVTSI642SDZrm:
5541 case X86::VCVTSI642SDZrr_Int:
5542 case X86::VCVTSI642SDZrrb_Int:
5543 case X86::VCVTSI642SDZrm_Int:
5544 case X86::VCVTUSI2SSZrr:
5545 case X86::VCVTUSI2SSZrm:
5546 case X86::VCVTUSI2SSZrr_Int:
5547 case X86::VCVTUSI2SSZrrb_Int:
5548 case X86::VCVTUSI2SSZrm_Int:
5549 case X86::VCVTUSI642SSZrr:
5550 case X86::VCVTUSI642SSZrm:
5551 case X86::VCVTUSI642SSZrr_Int:
5552 case X86::VCVTUSI642SSZrrb_Int:
5553 case X86::VCVTUSI642SSZrm_Int:
5554 case X86::VCVTUSI2SDZrr:
5555 case X86::VCVTUSI2SDZrm:
5556 case X86::VCVTUSI2SDZrr_Int:
5557 case X86::VCVTUSI2SDZrm_Int:
5558 case X86::VCVTUSI642SDZrr:
5559 case X86::VCVTUSI642SDZrm:
5560 case X86::VCVTUSI642SDZrr_Int:
5561 case X86::VCVTUSI642SDZrrb_Int:
5562 case X86::VCVTUSI642SDZrm_Int:
5563 case X86::VCVTSI2SHZrr:
5564 case X86::VCVTSI2SHZrm:
5565 case X86::VCVTSI2SHZrr_Int:
5566 case X86::VCVTSI2SHZrrb_Int:
5567 case X86::VCVTSI2SHZrm_Int:
5568 case X86::VCVTSI642SHZrr:
5569 case X86::VCVTSI642SHZrm:
5570 case X86::VCVTSI642SHZrr_Int:
5571 case X86::VCVTSI642SHZrrb_Int:
5572 case X86::VCVTSI642SHZrm_Int:
5573 case X86::VCVTUSI2SHZrr:
5574 case X86::VCVTUSI2SHZrm:
5575 case X86::VCVTUSI2SHZrr_Int:
5576 case X86::VCVTUSI2SHZrrb_Int:
5577 case X86::VCVTUSI2SHZrm_Int:
5578 case X86::VCVTUSI642SHZrr:
5579 case X86::VCVTUSI642SHZrm:
5580 case X86::VCVTUSI642SHZrr_Int:
5581 case X86::VCVTUSI642SHZrrb_Int:
5582 case X86::VCVTUSI642SHZrm_Int:
5583 // Load folding won't effect the undef register update since the input is
5584 // a GPR.
5585 return OpNum == 1 && !ForLoadFold;
5586 case X86::VCVTSD2SSrr:
5587 case X86::VCVTSD2SSrm:
5588 case X86::VCVTSD2SSrr_Int:
5589 case X86::VCVTSD2SSrm_Int:
5590 case X86::VCVTSS2SDrr:
5591 case X86::VCVTSS2SDrm:
5592 case X86::VCVTSS2SDrr_Int:
5593 case X86::VCVTSS2SDrm_Int:
5594 case X86::VRCPSSr:
5595 case X86::VRCPSSr_Int:
5596 case X86::VRCPSSm:
5597 case X86::VRCPSSm_Int:
5598 case X86::VROUNDSDr:
5599 case X86::VROUNDSDm:
5600 case X86::VROUNDSDr_Int:
5601 case X86::VROUNDSDm_Int:
5602 case X86::VROUNDSSr:
5603 case X86::VROUNDSSm:
5604 case X86::VROUNDSSr_Int:
5605 case X86::VROUNDSSm_Int:
5606 case X86::VRSQRTSSr:
5607 case X86::VRSQRTSSr_Int:
5608 case X86::VRSQRTSSm:
5609 case X86::VRSQRTSSm_Int:
5610 case X86::VSQRTSSr:
5611 case X86::VSQRTSSr_Int:
5612 case X86::VSQRTSSm:
5613 case X86::VSQRTSSm_Int:
5614 case X86::VSQRTSDr:
5615 case X86::VSQRTSDr_Int:
5616 case X86::VSQRTSDm:
5617 case X86::VSQRTSDm_Int:
5618 // AVX-512
5619 case X86::VCVTSD2SSZrr:
5620 case X86::VCVTSD2SSZrr_Int:
5621 case X86::VCVTSD2SSZrrb_Int:
5622 case X86::VCVTSD2SSZrm:
5623 case X86::VCVTSD2SSZrm_Int:
5624 case X86::VCVTSS2SDZrr:
5625 case X86::VCVTSS2SDZrr_Int:
5626 case X86::VCVTSS2SDZrrb_Int:
5627 case X86::VCVTSS2SDZrm:
5628 case X86::VCVTSS2SDZrm_Int:
5629 case X86::VGETEXPSDZr:
5630 case X86::VGETEXPSDZrb:
5631 case X86::VGETEXPSDZm:
5632 case X86::VGETEXPSSZr:
5633 case X86::VGETEXPSSZrb:
5634 case X86::VGETEXPSSZm:
5635 case X86::VGETMANTSDZrri:
5636 case X86::VGETMANTSDZrrib:
5637 case X86::VGETMANTSDZrmi:
5638 case X86::VGETMANTSSZrri:
5639 case X86::VGETMANTSSZrrib:
5640 case X86::VGETMANTSSZrmi:
5641 case X86::VRNDSCALESDZr:
5642 case X86::VRNDSCALESDZr_Int:
5643 case X86::VRNDSCALESDZrb_Int:
5644 case X86::VRNDSCALESDZm:
5645 case X86::VRNDSCALESDZm_Int:
5646 case X86::VRNDSCALESSZr:
5647 case X86::VRNDSCALESSZr_Int:
5648 case X86::VRNDSCALESSZrb_Int:
5649 case X86::VRNDSCALESSZm:
5650 case X86::VRNDSCALESSZm_Int:
5651 case X86::VRCP14SDZrr:
5652 case X86::VRCP14SDZrm:
5653 case X86::VRCP14SSZrr:
5654 case X86::VRCP14SSZrm:
5655 case X86::VRCPSHZrr:
5656 case X86::VRCPSHZrm:
5657 case X86::VRSQRTSHZrr:
5658 case X86::VRSQRTSHZrm:
5659 case X86::VREDUCESHZrmi:
5660 case X86::VREDUCESHZrri:
5661 case X86::VREDUCESHZrrib:
5662 case X86::VGETEXPSHZr:
5663 case X86::VGETEXPSHZrb:
5664 case X86::VGETEXPSHZm:
5665 case X86::VGETMANTSHZrri:
5666 case X86::VGETMANTSHZrrib:
5667 case X86::VGETMANTSHZrmi:
5668 case X86::VRNDSCALESHZr:
5669 case X86::VRNDSCALESHZr_Int:
5670 case X86::VRNDSCALESHZrb_Int:
5671 case X86::VRNDSCALESHZm:
5672 case X86::VRNDSCALESHZm_Int:
5673 case X86::VSQRTSHZr:
5674 case X86::VSQRTSHZr_Int:
5675 case X86::VSQRTSHZrb_Int:
5676 case X86::VSQRTSHZm:
5677 case X86::VSQRTSHZm_Int:
5678 case X86::VRCP28SDZr:
5679 case X86::VRCP28SDZrb:
5680 case X86::VRCP28SDZm:
5681 case X86::VRCP28SSZr:
5682 case X86::VRCP28SSZrb:
5683 case X86::VRCP28SSZm:
5684 case X86::VREDUCESSZrmi:
5685 case X86::VREDUCESSZrri:
5686 case X86::VREDUCESSZrrib:
5687 case X86::VRSQRT14SDZrr:
5688 case X86::VRSQRT14SDZrm:
5689 case X86::VRSQRT14SSZrr:
5690 case X86::VRSQRT14SSZrm:
5691 case X86::VRSQRT28SDZr:
5692 case X86::VRSQRT28SDZrb:
5693 case X86::VRSQRT28SDZm:
5694 case X86::VRSQRT28SSZr:
5695 case X86::VRSQRT28SSZrb:
5696 case X86::VRSQRT28SSZm:
5697 case X86::VSQRTSSZr:
5698 case X86::VSQRTSSZr_Int:
5699 case X86::VSQRTSSZrb_Int:
5700 case X86::VSQRTSSZm:
5701 case X86::VSQRTSSZm_Int:
5702 case X86::VSQRTSDZr:
5703 case X86::VSQRTSDZr_Int:
5704 case X86::VSQRTSDZrb_Int:
5705 case X86::VSQRTSDZm:
5706 case X86::VSQRTSDZm_Int:
5707 case X86::VCVTSD2SHZrr:
5708 case X86::VCVTSD2SHZrr_Int:
5709 case X86::VCVTSD2SHZrrb_Int:
5710 case X86::VCVTSD2SHZrm:
5711 case X86::VCVTSD2SHZrm_Int:
5712 case X86::VCVTSS2SHZrr:
5713 case X86::VCVTSS2SHZrr_Int:
5714 case X86::VCVTSS2SHZrrb_Int:
5715 case X86::VCVTSS2SHZrm:
5716 case X86::VCVTSS2SHZrm_Int:
5717 case X86::VCVTSH2SDZrr:
5718 case X86::VCVTSH2SDZrr_Int:
5719 case X86::VCVTSH2SDZrrb_Int:
5720 case X86::VCVTSH2SDZrm:
5721 case X86::VCVTSH2SDZrm_Int:
5722 case X86::VCVTSH2SSZrr:
5723 case X86::VCVTSH2SSZrr_Int:
5724 case X86::VCVTSH2SSZrrb_Int:
5725 case X86::VCVTSH2SSZrm:
5726 case X86::VCVTSH2SSZrm_Int:
5727 return OpNum == 1;
5728 case X86::VMOVSSZrrk:
5729 case X86::VMOVSDZrrk:
5730 return OpNum == 3 && !ForLoadFold;
5731 case X86::VMOVSSZrrkz:
5732 case X86::VMOVSDZrrkz:
5733 return OpNum == 2 && !ForLoadFold;
5734 }
5735
5736 return false;
5737}
5738
5739/// Inform the BreakFalseDeps pass how many idle instructions we would like
5740/// before certain undef register reads.
5741///
5742/// This catches the VCVTSI2SD family of instructions:
5743///
5744/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
5745///
5746/// We should to be careful *not* to catch VXOR idioms which are presumably
5747/// handled specially in the pipeline:
5748///
5749/// vxorps undef %xmm1, undef %xmm1, %xmm1
5750///
5751/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5752/// high bits that are passed-through are not live.
5753unsigned
5754X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
5755 const TargetRegisterInfo *TRI) const {
5756 const MachineOperand &MO = MI.getOperand(OpNum);
5757 if (Register::isPhysicalRegister(MO.getReg()) &&
5758 hasUndefRegUpdate(MI.getOpcode(), OpNum))
5759 return UndefRegClearance;
5760
5761 return 0;
5762}
5763
5764void X86InstrInfo::breakPartialRegDependency(
5765 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5766 Register Reg = MI.getOperand(OpNum).getReg();
5767 // If MI kills this register, the false dependence is already broken.
5768 if (MI.killsRegister(Reg, TRI))
5769 return;
5770
5771 if (X86::VR128RegClass.contains(Reg)) {
5772 // These instructions are all floating point domain, so xorps is the best
5773 // choice.
5774 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
5775 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
5776 .addReg(Reg, RegState::Undef)
5777 .addReg(Reg, RegState::Undef);
5778 MI.addRegisterKilled(Reg, TRI, true);
5779 } else if (X86::VR256RegClass.contains(Reg)) {
5780 // Use vxorps to clear the full ymm register.
5781 // It wants to read and write the xmm sub-register.
5782 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5783 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
5784 .addReg(XReg, RegState::Undef)
5785 .addReg(XReg, RegState::Undef)
5786 .addReg(Reg, RegState::ImplicitDefine);
5787 MI.addRegisterKilled(Reg, TRI, true);
5788 } else if (X86::VR128XRegClass.contains(Reg)) {
5789 // Only handle VLX targets.
5790 if (!Subtarget.hasVLX())
5791 return;
5792 // Since vxorps requires AVX512DQ, vpxord should be the best choice.
5793 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg)
5794 .addReg(Reg, RegState::Undef)
5795 .addReg(Reg, RegState::Undef);
5796 MI.addRegisterKilled(Reg, TRI, true);
5797 } else if (X86::VR256XRegClass.contains(Reg) ||
5798 X86::VR512RegClass.contains(Reg)) {
5799 // Only handle VLX targets.
5800 if (!Subtarget.hasVLX())
5801 return;
5802 // Use vpxord to clear the full ymm/zmm register.
5803 // It wants to read and write the xmm sub-register.
5804 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5805 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg)
5806 .addReg(XReg, RegState::Undef)
5807 .addReg(XReg, RegState::Undef)
5808 .addReg(Reg, RegState::ImplicitDefine);
5809 MI.addRegisterKilled(Reg, TRI, true);
5810 } else if (X86::GR64RegClass.contains(Reg)) {
5811 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
5812 // as well.
5813 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
5814 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
5815 .addReg(XReg, RegState::Undef)
5816 .addReg(XReg, RegState::Undef)
5817 .addReg(Reg, RegState::ImplicitDefine);
5818 MI.addRegisterKilled(Reg, TRI, true);
5819 } else if (X86::GR32RegClass.contains(Reg)) {
5820 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
5821 .addReg(Reg, RegState::Undef)
5822 .addReg(Reg, RegState::Undef);
5823 MI.addRegisterKilled(Reg, TRI, true);
5824 }
5825}
5826
5827static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
5828 int PtrOffset = 0) {
5829 unsigned NumAddrOps = MOs.size();
5830
5831 if (NumAddrOps < 4) {
5832 // FrameIndex only - add an immediate offset (whether its zero or not).
5833 for (unsigned i = 0; i != NumAddrOps; ++i)
5834 MIB.add(MOs[i]);
5835 addOffset(MIB, PtrOffset);
5836 } else {
5837 // General Memory Addressing - we need to add any offset to an existing
5838 // offset.
5839 assert(MOs.size() == 5 && "Unexpected memory operand list length")(static_cast <bool> (MOs.size() == 5 && "Unexpected memory operand list length"
) ? void (0) : __assert_fail ("MOs.size() == 5 && \"Unexpected memory operand list length\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 5839, __extension__
__PRETTY_FUNCTION__))
;
5840 for (unsigned i = 0; i != NumAddrOps; ++i) {
5841 const MachineOperand &MO = MOs[i];
5842 if (i == 3 && PtrOffset != 0) {
5843 MIB.addDisp(MO, PtrOffset);
5844 } else {
5845 MIB.add(MO);
5846 }
5847 }
5848 }
5849}
5850
5851static void updateOperandRegConstraints(MachineFunction &MF,
5852 MachineInstr &NewMI,
5853 const TargetInstrInfo &TII) {
5854 MachineRegisterInfo &MRI = MF.getRegInfo();
5855 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
5856
5857 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
5858 MachineOperand &MO = NewMI.getOperand(Idx);
5859 // We only need to update constraints on virtual register operands.
5860 if (!MO.isReg())
5861 continue;
5862 Register Reg = MO.getReg();
5863 if (!Reg.isVirtual())
5864 continue;
5865
5866 auto *NewRC = MRI.constrainRegClass(
5867 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
5868 if (!NewRC) {
5869 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
5870 dbgs() << "WARNING: Unable to update register constraint for operand "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
5871 << Idx << " of instruction:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
5872 NewMI.dump(); dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
;
5873 }
5874 }
5875}
5876
5877static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
5878 ArrayRef<MachineOperand> MOs,
5879 MachineBasicBlock::iterator InsertPt,
5880 MachineInstr &MI,
5881 const TargetInstrInfo &TII) {
5882 // Create the base instruction with the memory operand as the first part.
5883 // Omit the implicit operands, something BuildMI can't do.
5884 MachineInstr *NewMI =
5885 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5886 MachineInstrBuilder MIB(MF, NewMI);
5887 addOperands(MIB, MOs);
5888
5889 // Loop over the rest of the ri operands, converting them over.
5890 unsigned NumOps = MI.getDesc().getNumOperands() - 2;
5891 for (unsigned i = 0; i != NumOps; ++i) {
5892 MachineOperand &MO = MI.getOperand(i + 2);
5893 MIB.add(MO);
5894 }
5895 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
5896 MIB.add(MO);
5897
5898 updateOperandRegConstraints(MF, *NewMI, TII);
5899
5900 MachineBasicBlock *MBB = InsertPt->getParent();
5901 MBB->insert(InsertPt, NewMI);
5902
5903 return MIB;
5904}
5905
5906static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
5907 unsigned OpNo, ArrayRef<MachineOperand> MOs,
5908 MachineBasicBlock::iterator InsertPt,
5909 MachineInstr &MI, const TargetInstrInfo &TII,
5910 int PtrOffset = 0) {
5911 // Omit the implicit operands, something BuildMI can't do.
5912 MachineInstr *NewMI =
5913 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5914 MachineInstrBuilder MIB(MF, NewMI);
5915
5916 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5917 MachineOperand &MO = MI.getOperand(i);
5918 if (i == OpNo) {
5919 assert(MO.isReg() && "Expected to fold into reg operand!")(static_cast <bool> (MO.isReg() && "Expected to fold into reg operand!"
) ? void (0) : __assert_fail ("MO.isReg() && \"Expected to fold into reg operand!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 5919, __extension__
__PRETTY_FUNCTION__))
;
5920 addOperands(MIB, MOs, PtrOffset);
5921 } else {
5922 MIB.add(MO);
5923 }
5924 }
5925
5926 updateOperandRegConstraints(MF, *NewMI, TII);
5927
5928 // Copy the NoFPExcept flag from the instruction we're fusing.
5929 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
5930 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
5931
5932 MachineBasicBlock *MBB = InsertPt->getParent();
5933 MBB->insert(InsertPt, NewMI);
5934
5935 return MIB;
5936}
5937
5938static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
5939 ArrayRef<MachineOperand> MOs,
5940 MachineBasicBlock::iterator InsertPt,
5941 MachineInstr &MI) {
5942 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
5943 MI.getDebugLoc(), TII.get(Opcode));
5944 addOperands(MIB, MOs);
5945 return MIB.addImm(0);
5946}
5947
5948MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
5949 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5950 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5951 unsigned Size, Align Alignment) const {
5952 switch (MI.getOpcode()) {
5953 case X86::INSERTPSrr:
5954 case X86::VINSERTPSrr:
5955 case X86::VINSERTPSZrr:
5956 // Attempt to convert the load of inserted vector into a fold load
5957 // of a single float.
5958 if (OpNum == 2) {
5959 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
5960 unsigned ZMask = Imm & 15;
5961 unsigned DstIdx = (Imm >> 4) & 3;
5962 unsigned SrcIdx = (Imm >> 6) & 3;
5963
5964 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5965 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5966 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5967 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
5968 int PtrOffset = SrcIdx * 4;
5969 unsigned NewImm = (DstIdx << 4) | ZMask;
5970 unsigned NewOpCode =
5971 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
5972 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
5973 X86::INSERTPSrm;
5974 MachineInstr *NewMI =
5975 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
5976 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
5977 return NewMI;
5978 }
5979 }
5980 break;
5981 case X86::MOVHLPSrr:
5982 case X86::VMOVHLPSrr:
5983 case X86::VMOVHLPSZrr:
5984 // Move the upper 64-bits of the second operand to the lower 64-bits.
5985 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
5986 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
5987 if (OpNum == 2) {
5988 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5989 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5990 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5991 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
5992 unsigned NewOpCode =
5993 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
5994 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
5995 X86::MOVLPSrm;
5996 MachineInstr *NewMI =
5997 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
5998 return NewMI;
5999 }
6000 }
6001 break;
6002 case X86::UNPCKLPDrr:
6003 // If we won't be able to fold this to the memory form of UNPCKL, use
6004 // MOVHPD instead. Done as custom because we can't have this in the load
6005 // table twice.
6006 if (OpNum == 2) {
6007 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6008 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
6009 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
6010 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
6011 MachineInstr *NewMI =
6012 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
6013 return NewMI;
6014 }
6015 }
6016 break;
6017 }
6018
6019 return nullptr;
6020}
6021
6022static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
6023 MachineInstr &MI) {
6024 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
6025 !MI.getOperand(1).isReg())
6026 return false;
6027
6028 // The are two cases we need to handle depending on where in the pipeline
6029 // the folding attempt is being made.
6030 // -Register has the undef flag set.
6031 // -Register is produced by the IMPLICIT_DEF instruction.
6032
6033 if (MI.getOperand(1).isUndef())
6034 return true;
6035
6036 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6037 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
6038 return VRegDef && VRegDef->isImplicitDef();
6039}
6040
6041MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6042 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
6043 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
6044 unsigned Size, Align Alignment, bool AllowCommute) const {
6045 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
6046 bool isTwoAddrFold = false;
6047
6048 // For CPUs that favor the register form of a call or push,
6049 // do not fold loads into calls or pushes, unless optimizing for size
6050 // aggressively.
6051 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
6052 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
6053 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
6054 MI.getOpcode() == X86::PUSH64r))
6055 return nullptr;
6056
6057 // Avoid partial and undef register update stalls unless optimizing for size.
6058 if (!MF.getFunction().hasOptSize() &&
6059 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6060 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6061 return nullptr;
6062
6063 unsigned NumOps = MI.getDesc().getNumOperands();
6064 bool isTwoAddr =
6065 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
6066
6067 // FIXME: AsmPrinter doesn't know how to handle
6068 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
6069 if (MI.getOpcode() == X86::ADD32ri &&
6070 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
6071 return nullptr;
6072
6073 // GOTTPOFF relocation loads can only be folded into add instructions.
6074 // FIXME: Need to exclude other relocations that only support specific
6075 // instructions.
6076 if (MOs.size() == X86::AddrNumOperands &&
6077 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
6078 MI.getOpcode() != X86::ADD64rr)
6079 return nullptr;
6080
6081 MachineInstr *NewMI = nullptr;
6082
6083 // Attempt to fold any custom cases we have.
6084 if (MachineInstr *CustomMI = foldMemoryOperandCustom(
6085 MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
6086 return CustomMI;
6087
6088 const X86MemoryFoldTableEntry *I = nullptr;
6089
6090 // Folding a memory location into the two-address part of a two-address
6091 // instruction is different than folding it other places. It requires
6092 // replacing the *two* registers with the memory location.
6093 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
6094 MI.getOperand(1).isReg() &&
6095 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
6096 I = lookupTwoAddrFoldTable(MI.getOpcode());
6097 isTwoAddrFold = true;
6098 } else {
6099 if (OpNum == 0) {
6100 if (MI.getOpcode() == X86::MOV32r0) {
6101 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
6102 if (NewMI)
6103 return NewMI;
6104 }
6105 }
6106
6107 I = lookupFoldTable(MI.getOpcode(), OpNum);
6108 }
6109
6110 if (I != nullptr) {
6111 unsigned Opcode = I->DstOp;
6112 bool FoldedLoad =
6113 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
6114 bool FoldedStore =
6115 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
6116 MaybeAlign MinAlign =
6117 decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
6118 if (MinAlign && Alignment < *MinAlign)
6119 return nullptr;
6120 bool NarrowToMOV32rm = false;
6121 if (Size) {
6122 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6123 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
6124 &RI, MF);
6125 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
6126 // Check if it's safe to fold the load. If the size of the object is
6127 // narrower than the load width, then it's not.
6128 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
6129 if (FoldedLoad && Size < RCSize) {
6130 // If this is a 64-bit load, but the spill slot is 32, then we can do
6131 // a 32-bit load which is implicitly zero-extended. This likely is
6132 // due to live interval analysis remat'ing a load from stack slot.
6133 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
6134 return nullptr;
6135 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
6136 return nullptr;
6137 Opcode = X86::MOV32rm;
6138 NarrowToMOV32rm = true;
6139 }
6140 // For stores, make sure the size of the object is equal to the size of
6141 // the store. If the object is larger, the extra bits would be garbage. If
6142 // the object is smaller we might overwrite another object or fault.
6143 if (FoldedStore && Size != RCSize)
6144 return nullptr;
6145 }
6146
6147 if (isTwoAddrFold)
6148 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
6149 else
6150 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
6151
6152 if (NarrowToMOV32rm) {
6153 // If this is the special case where we use a MOV32rm to load a 32-bit
6154 // value and zero-extend the top bits. Change the destination register
6155 // to a 32-bit one.
6156 Register DstReg = NewMI->getOperand(0).getReg();
6157 if (DstReg.isPhysical())
6158 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
6159 else
6160 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
6161 }
6162 return NewMI;
6163 }
6164
6165 // If the instruction and target operand are commutable, commute the
6166 // instruction and try again.
6167 if (AllowCommute) {
6168 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
6169 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
6170 bool HasDef = MI.getDesc().getNumDefs();
6171 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
6172 Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
6173 Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
6174 bool Tied1 =
6175 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
6176 bool Tied2 =
6177 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
6178
6179 // If either of the commutable operands are tied to the destination
6180 // then we can not commute + fold.
6181 if ((HasDef && Reg0 == Reg1 && Tied1) ||
6182 (HasDef && Reg0 == Reg2 && Tied2))
6183 return nullptr;
6184
6185 MachineInstr *CommutedMI =
6186 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
6187 if (!CommutedMI) {
6188 // Unable to commute.
6189 return nullptr;
6190 }
6191 if (CommutedMI != &MI) {
6192 // New instruction. We can't fold from this.
6193 CommutedMI->eraseFromParent();
6194 return nullptr;
6195 }
6196
6197 // Attempt to fold with the commuted version of the instruction.
6198 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
6199 Alignment, /*AllowCommute=*/false);
6200 if (NewMI)
6201 return NewMI;
6202
6203 // Folding failed again - undo the commute before returning.
6204 MachineInstr *UncommutedMI =
6205 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
6206 if (!UncommutedMI) {
6207 // Unable to commute.
6208 return nullptr;
6209 }
6210 if (UncommutedMI != &MI) {
6211 // New instruction. It doesn't need to be kept.
6212 UncommutedMI->eraseFromParent();
6213 return nullptr;
6214 }
6215
6216 // Return here to prevent duplicate fuse failure report.
6217 return nullptr;
6218 }
6219 }
6220
6221 // No fusion
6222 if (PrintFailedFusing && !MI.isCopy())
6223 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
6224 return nullptr;
6225}
6226
6227MachineInstr *
6228X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
6229 ArrayRef<unsigned> Ops,
6230 MachineBasicBlock::iterator InsertPt,
6231 int FrameIndex, LiveIntervals *LIS,
6232 VirtRegMap *VRM) const {
6233 // Check switch flag
6234 if (NoFusing)
6235 return nullptr;
6236
6237 // Avoid partial and undef register update stalls unless optimizing for size.
6238 if (!MF.getFunction().hasOptSize() &&
6239 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6240 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6241 return nullptr;
6242
6243 // Don't fold subreg spills, or reloads that use a high subreg.
6244 for (auto Op : Ops) {
6245 MachineOperand &MO = MI.getOperand(Op);
6246 auto SubReg = MO.getSubReg();
6247 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
6248 return nullptr;
6249 }
6250
6251 const MachineFrameInfo &MFI = MF.getFrameInfo();
6252 unsigned Size = MFI.getObjectSize(FrameIndex);
6253 Align Alignment = MFI.getObjectAlign(FrameIndex);
6254 // If the function stack isn't realigned we don't want to fold instructions
6255 // that need increased alignment.
6256 if (!RI.hasStackRealignment(MF))
6257 Alignment =
6258 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
6259 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6260 unsigned NewOpc = 0;
6261 unsigned RCSize = 0;
6262 switch (MI.getOpcode()) {
6263 default: return nullptr;
6264 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
6265 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
6266 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
6267 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
6268 }
6269 // Check if it's safe to fold the load. If the size of the object is
6270 // narrower than the load width, then it's not.
6271 if (Size < RCSize)
6272 return nullptr;
6273 // Change to CMPXXri r, 0 first.
6274 MI.setDesc(get(NewOpc));
6275 MI.getOperand(1).ChangeToImmediate(0);
6276 } else if (Ops.size() != 1)
6277 return nullptr;
6278
6279 return foldMemoryOperandImpl(MF, MI, Ops[0],
6280 MachineOperand::CreateFI(FrameIndex), InsertPt,
6281 Size, Alignment, /*AllowCommute=*/true);
6282}
6283
6284/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
6285/// because the latter uses contents that wouldn't be defined in the folded
6286/// version. For instance, this transformation isn't legal:
6287/// movss (%rdi), %xmm0
6288/// addps %xmm0, %xmm0
6289/// ->
6290/// addps (%rdi), %xmm0
6291///
6292/// But this one is:
6293/// movss (%rdi), %xmm0
6294/// addss %xmm0, %xmm0
6295/// ->
6296/// addss (%rdi), %xmm0
6297///
6298static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
6299 const MachineInstr &UserMI,
6300 const MachineFunction &MF) {
6301 unsigned Opc = LoadMI.getOpcode();
6302 unsigned UserOpc = UserMI.getOpcode();
6303 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6304 const TargetRegisterClass *RC =
6305 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
6306 unsigned RegSize = TRI.getRegSizeInBits(*RC);
6307
6308 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
6309 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
6310 Opc == X86::VMOVSSZrm_alt) &&
6311 RegSize > 32) {
6312 // These instructions only load 32 bits, we can't fold them if the
6313 // destination register is wider than 32 bits (4 bytes), and its user
6314 // instruction isn't scalar (SS).
6315 switch (UserOpc) {
6316 case X86::CVTSS2SDrr_Int:
6317 case X86::VCVTSS2SDrr_Int:
6318 case X86::VCVTSS2SDZrr_Int:
6319 case X86::VCVTSS2SDZrr_Intk:
6320 case X86::VCVTSS2SDZrr_Intkz:
6321 case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int:
6322 case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int:
6323 case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int:
6324 case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int:
6325 case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int:
6326 case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int:
6327 case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int:
6328 case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
6329 case X86::RCPSSr_Int: case X86::VRCPSSr_Int:
6330 case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
6331 case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
6332 case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
6333 case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
6334 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
6335 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
6336 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
6337 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
6338 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
6339 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
6340 case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
6341 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
6342 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
6343 case X86::VCMPSSZrr_Intk:
6344 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
6345 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
6346 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
6347 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
6348 case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
6349 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
6350 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
6351 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
6352 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
6353 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
6354 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
6355 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
6356 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
6357 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
6358 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
6359 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
6360 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
6361 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
6362 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
6363 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
6364 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
6365 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
6366 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
6367 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
6368 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
6369 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
6370 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
6371 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
6372 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
6373 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
6374 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
6375 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
6376 case X86::VFIXUPIMMSSZrri:
6377 case X86::VFIXUPIMMSSZrrik:
6378 case X86::VFIXUPIMMSSZrrikz:
6379 case X86::VFPCLASSSSZrr:
6380 case X86::VFPCLASSSSZrrk:
6381 case X86::VGETEXPSSZr:
6382 case X86::VGETEXPSSZrk:
6383 case X86::VGETEXPSSZrkz:
6384 case X86::VGETMANTSSZrri:
6385 case X86::VGETMANTSSZrrik:
6386 case X86::VGETMANTSSZrrikz:
6387 case X86::VRANGESSZrri:
6388 case X86::VRANGESSZrrik:
6389 case X86::VRANGESSZrrikz:
6390 case X86::VRCP14SSZrr:
6391 case X86::VRCP14SSZrrk:
6392 case X86::VRCP14SSZrrkz:
6393 case X86::VRCP28SSZr:
6394 case X86::VRCP28SSZrk:
6395 case X86::VRCP28SSZrkz:
6396 case X86::VREDUCESSZrri:
6397 case X86::VREDUCESSZrrik:
6398 case X86::VREDUCESSZrrikz:
6399 case X86::VRNDSCALESSZr_Int:
6400 case X86::VRNDSCALESSZr_Intk:
6401 case X86::VRNDSCALESSZr_Intkz:
6402 case X86::VRSQRT14SSZrr:
6403 case X86::VRSQRT14SSZrrk:
6404 case X86::VRSQRT14SSZrrkz:
6405 case X86::VRSQRT28SSZr:
6406 case X86::VRSQRT28SSZrk:
6407 case X86::VRSQRT28SSZrkz:
6408 case X86::VSCALEFSSZrr:
6409 case X86::VSCALEFSSZrrk:
6410 case X86::VSCALEFSSZrrkz:
6411 return false;
6412 default:
6413 return true;
6414 }
6415 }
6416
6417 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
6418 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
6419 Opc == X86::VMOVSDZrm_alt) &&
6420 RegSize > 64) {
6421 // These instructions only load 64 bits, we can't fold them if the
6422 // destination register is wider than 64 bits (8 bytes), and its user
6423 // instruction isn't scalar (SD).
6424 switch (UserOpc) {
6425 case X86::CVTSD2SSrr_Int:
6426 case X86::VCVTSD2SSrr_Int:
6427 case X86::VCVTSD2SSZrr_Int:
6428 case X86::VCVTSD2SSZrr_Intk:
6429 case X86::VCVTSD2SSZrr_Intkz:
6430 case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int:
6431 case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int:
6432 case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int:
6433 case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int:
6434 case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int:
6435 case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int:
6436 case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int:
6437 case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
6438 case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
6439 case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
6440 case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
6441 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
6442 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
6443 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
6444 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
6445 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
6446 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
6447 case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
6448 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
6449 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
6450 case X86::VCMPSDZrr_Intk:
6451 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
6452 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
6453 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
6454 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
6455 case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
6456 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
6457 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
6458 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
6459 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
6460 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
6461 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
6462 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
6463 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
6464 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
6465 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
6466 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
6467 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
6468 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
6469 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
6470 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
6471 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
6472 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
6473 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
6474 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
6475 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
6476 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
6477 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
6478 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
6479 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
6480 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
6481 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
6482 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
6483 case X86::VFIXUPIMMSDZrri:
6484 case X86::VFIXUPIMMSDZrrik:
6485 case X86::VFIXUPIMMSDZrrikz:
6486 case X86::VFPCLASSSDZrr:
6487 case X86::VFPCLASSSDZrrk:
6488 case X86::VGETEXPSDZr:
6489 case X86::VGETEXPSDZrk:
6490 case X86::VGETEXPSDZrkz:
6491 case X86::VGETMANTSDZrri:
6492 case X86::VGETMANTSDZrrik:
6493 case X86::VGETMANTSDZrrikz:
6494 case X86::VRANGESDZrri:
6495 case X86::VRANGESDZrrik:
6496 case X86::VRANGESDZrrikz:
6497 case X86::VRCP14SDZrr:
6498 case X86::VRCP14SDZrrk:
6499 case X86::VRCP14SDZrrkz:
6500 case X86::VRCP28SDZr:
6501 case X86::VRCP28SDZrk:
6502 case X86::VRCP28SDZrkz:
6503 case X86::VREDUCESDZrri:
6504 case X86::VREDUCESDZrrik:
6505 case X86::VREDUCESDZrrikz:
6506 case X86::VRNDSCALESDZr_Int:
6507 case X86::VRNDSCALESDZr_Intk:
6508 case X86::VRNDSCALESDZr_Intkz:
6509 case X86::VRSQRT14SDZrr:
6510 case X86::VRSQRT14SDZrrk:
6511 case X86::VRSQRT14SDZrrkz:
6512 case X86::VRSQRT28SDZr:
6513 case X86::VRSQRT28SDZrk:
6514 case X86::VRSQRT28SDZrkz:
6515 case X86::VSCALEFSDZrr:
6516 case X86::VSCALEFSDZrrk:
6517 case X86::VSCALEFSDZrrkz:
6518 return false;
6519 default:
6520 return true;
6521 }
6522 }
6523
6524 if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
6525 // These instructions only load 16 bits, we can't fold them if the
6526 // destination register is wider than 16 bits (2 bytes), and its user
6527 // instruction isn't scalar (SH).
6528 switch (UserOpc) {
6529 case X86::VADDSHZrr_Int:
6530 case X86::VCMPSHZrr_Int:
6531 case X86::VDIVSHZrr_Int:
6532 case X86::VMAXSHZrr_Int:
6533 case X86::VMINSHZrr_Int:
6534 case X86::VMULSHZrr_Int:
6535 case X86::VSUBSHZrr_Int:
6536 case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
6537 case X86::VCMPSHZrr_Intk:
6538 case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
6539 case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
6540 case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
6541 case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
6542 case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
6543 case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
6544 case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
6545 case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
6546 case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
6547 case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
6548 case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
6549 case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
6550 case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
6551 case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
6552 case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
6553 case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
6554 case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
6555 case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
6556 case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
6557 case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
6558 case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
6559 case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
6560 case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
6561 return false;
6562 default:
6563 return true;
6564 }
6565 }
6566
6567 return false;
6568}
6569
6570MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6571 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
6572 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
6573 LiveIntervals *LIS) const {
6574
6575 // TODO: Support the case where LoadMI loads a wide register, but MI
6576 // only uses a subreg.
6577 for (auto Op : Ops) {
6578 if (MI.getOperand(Op).getSubReg())
6579 return nullptr;
6580 }
6581
6582 // If loading from a FrameIndex, fold directly from the FrameIndex.
6583 unsigned NumOps = LoadMI.getDesc().getNumOperands();
6584 int FrameIndex;
6585 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
6586 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6587 return nullptr;
6588 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
6589 }
6590
6591 // Check switch flag
6592 if (NoFusing) return nullptr;
6593
6594 // Avoid partial and undef register update stalls unless optimizing for size.
6595 if (!MF.getFunction().hasOptSize() &&
6596 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6597 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6598 return nullptr;
6599
6600 // Determine the alignment of the load.
6601 Align Alignment;
6602 if (LoadMI.hasOneMemOperand())
6603 Alignment = (*LoadMI.memoperands_begin())->getAlign();
6604 else
6605 switch (LoadMI.getOpcode()) {
6606 case X86::AVX512_512_SET0:
6607 case X86::AVX512_512_SETALLONES:
6608 Alignment = Align(64);
6609 break;
6610 case X86::AVX2_SETALLONES:
6611 case X86::AVX1_SETALLONES:
6612 case X86::AVX_SET0:
6613 case X86::AVX512_256_SET0:
6614 Alignment = Align(32);
6615 break;
6616 case X86::V_SET0:
6617 case X86::V_SETALLONES:
6618 case X86::AVX512_128_SET0:
6619 case X86::FsFLD0F128:
6620 case X86::AVX512_FsFLD0F128:
6621 Alignment = Align(16);
6622 break;
6623 case X86::MMX_SET0:
6624 case X86::FsFLD0SD:
6625 case X86::AVX512_FsFLD0SD:
6626 Alignment = Align(8);
6627 break;
6628 case X86::FsFLD0SS:
6629 case X86::AVX512_FsFLD0SS:
6630 Alignment = Align(4);
6631 break;
6632 case X86::FsFLD0SH:
6633 case X86::AVX512_FsFLD0SH:
6634 Alignment = Align(2);
6635 break;
6636 default:
6637 return nullptr;
6638 }
6639 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6640 unsigned NewOpc = 0;
6641 switch (MI.getOpcode()) {
6642 default: return nullptr;
6643 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
6644 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
6645 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
6646 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
6647 }
6648 // Change to CMPXXri r, 0 first.
6649 MI.setDesc(get(NewOpc));
6650 MI.getOperand(1).ChangeToImmediate(0);
6651 } else if (Ops.size() != 1)
6652 return nullptr;
6653
6654 // Make sure the subregisters match.
6655 // Otherwise we risk changing the size of the load.
6656 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
6657 return nullptr;
6658
6659 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
6660 switch (LoadMI.getOpcode()) {
6661 case X86::MMX_SET0:
6662 case X86::V_SET0:
6663 case X86::V_SETALLONES:
6664 case X86::AVX2_SETALLONES:
6665 case X86::AVX1_SETALLONES:
6666 case X86::AVX_SET0:
6667 case X86::AVX512_128_SET0:
6668 case X86::AVX512_256_SET0:
6669 case X86::AVX512_512_SET0:
6670 case X86::AVX512_512_SETALLONES:
6671 case X86::FsFLD0SH:
6672 case X86::AVX512_FsFLD0SH:
6673 case X86::FsFLD0SD:
6674 case X86::AVX512_FsFLD0SD:
6675 case X86::FsFLD0SS:
6676 case X86::AVX512_FsFLD0SS:
6677 case X86::FsFLD0F128:
6678 case X86::AVX512_FsFLD0F128: {
6679 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6680 // Create a constant-pool entry and operands to load from it.
6681
6682 // Medium and large mode can't fold loads this way.
6683 if (MF.getTarget().getCodeModel() != CodeModel::Small &&
6684 MF.getTarget().getCodeModel() != CodeModel::Kernel)
6685 return nullptr;
6686
6687 // x86-32 PIC requires a PIC base register for constant pools.
6688 unsigned PICBase = 0;
6689 // Since we're using Small or Kernel code model, we can always use
6690 // RIP-relative addressing for a smaller encoding.
6691 if (Subtarget.is64Bit()) {
6692 PICBase = X86::RIP;
6693 } else if (MF.getTarget().isPositionIndependent()) {
6694 // FIXME: PICBase = getGlobalBaseReg(&MF);
6695 // This doesn't work for several reasons.
6696 // 1. GlobalBaseReg may have been spilled.
6697 // 2. It may not be live at MI.
6698 return nullptr;
6699 }
6700
6701 // Create a constant-pool entry.
6702 MachineConstantPool &MCP = *MF.getConstantPool();
6703 Type *Ty;
6704 unsigned Opc = LoadMI.getOpcode();
6705 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
6706 Ty = Type::getFloatTy(MF.getFunction().getContext());
6707 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
6708 Ty = Type::getDoubleTy(MF.getFunction().getContext());
6709 else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
6710 Ty = Type::getFP128Ty(MF.getFunction().getContext());
6711 else if (Opc == X86::FsFLD0SH || Opc == X86::AVX512_FsFLD0SH)
6712 Ty = Type::getHalfTy(MF.getFunction().getContext());
6713 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
6714 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6715 16);
6716 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
6717 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
6718 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6719 8);
6720 else if (Opc == X86::MMX_SET0)
6721 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6722 2);
6723 else
6724 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6725 4);
6726
6727 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
6728 Opc == X86::AVX512_512_SETALLONES ||
6729 Opc == X86::AVX1_SETALLONES);
6730 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
6731 Constant::getNullValue(Ty);
6732 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
6733
6734 // Create operands to load from the constant pool entry.
6735 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
6736 MOs.push_back(MachineOperand::CreateImm(1));
6737 MOs.push_back(MachineOperand::CreateReg(0, false));
6738 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
6739 MOs.push_back(MachineOperand::CreateReg(0, false));
6740 break;
6741 }
6742 default: {
6743 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6744 return nullptr;
6745
6746 // Folding a normal load. Just copy the load's address operands.
6747 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
6748 LoadMI.operands_begin() + NumOps);
6749 break;
6750 }
6751 }
6752 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
6753 /*Size=*/0, Alignment, /*AllowCommute=*/true);
6754}
6755
6756static SmallVector<MachineMemOperand *, 2>
6757extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6758 SmallVector<MachineMemOperand *, 2> LoadMMOs;
6759
6760 for (MachineMemOperand *MMO : MMOs) {
6761 if (!MMO->isLoad())
6762 continue;
6763
6764 if (!MMO->isStore()) {
6765 // Reuse the MMO.
6766 LoadMMOs.push_back(MMO);
6767 } else {
6768 // Clone the MMO and unset the store flag.
6769 LoadMMOs.push_back(MF.getMachineMemOperand(
6770 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
6771 }
6772 }
6773
6774 return LoadMMOs;
6775}
6776
6777static SmallVector<MachineMemOperand *, 2>
6778extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6779 SmallVector<MachineMemOperand *, 2> StoreMMOs;
6780
6781 for (MachineMemOperand *MMO : MMOs) {
6782 if (!MMO->isStore())
6783 continue;
6784
6785 if (!MMO->isLoad()) {
6786 // Reuse the MMO.
6787 StoreMMOs.push_back(MMO);
6788 } else {
6789 // Clone the MMO and unset the load flag.
6790 StoreMMOs.push_back(MF.getMachineMemOperand(
6791 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
6792 }
6793 }
6794
6795 return StoreMMOs;
6796}
6797
6798static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
6799 const TargetRegisterClass *RC,
6800 const X86Subtarget &STI) {
6801 assert(STI.hasAVX512() && "Expected at least AVX512!")(static_cast <bool> (STI.hasAVX512() && "Expected at least AVX512!"
) ? void (0) : __assert_fail ("STI.hasAVX512() && \"Expected at least AVX512!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6801, __extension__
__PRETTY_FUNCTION__))
;
6802 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
6803 assert((SpillSize == 64 || STI.hasVLX()) &&(static_cast <bool> ((SpillSize == 64 || STI.hasVLX()) &&
"Can't broadcast less than 64 bytes without AVX512VL!") ? void
(0) : __assert_fail ("(SpillSize == 64 || STI.hasVLX()) && \"Can't broadcast less than 64 bytes without AVX512VL!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6804, __extension__
__PRETTY_FUNCTION__))
6804 "Can't broadcast less than 64 bytes without AVX512VL!")(static_cast <bool> ((SpillSize == 64 || STI.hasVLX()) &&
"Can't broadcast less than 64 bytes without AVX512VL!") ? void
(0) : __assert_fail ("(SpillSize == 64 || STI.hasVLX()) && \"Can't broadcast less than 64 bytes without AVX512VL!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6804, __extension__
__PRETTY_FUNCTION__))
;
6805
6806 switch (I->Flags & TB_BCAST_MASK) {
6807 default: llvm_unreachable("Unexpected broadcast type!")::llvm::llvm_unreachable_internal("Unexpected broadcast type!"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6807)
;
6808 case TB_BCAST_D:
6809 switch (SpillSize) {
6810 default: llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6810)
;
6811 case 16: return X86::VPBROADCASTDZ128rm;
6812 case 32: return X86::VPBROADCASTDZ256rm;
6813 case 64: return X86::VPBROADCASTDZrm;
6814 }
6815 break;
6816 case TB_BCAST_Q:
6817 switch (SpillSize) {
6818 default: llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6818)
;
6819 case 16: return X86::VPBROADCASTQZ128rm;
6820 case 32: return X86::VPBROADCASTQZ256rm;
6821 case 64: return X86::VPBROADCASTQZrm;
6822 }
6823 break;
6824 case TB_BCAST_SS:
6825 switch (SpillSize) {
6826 default: llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6826)
;
6827 case 16: return X86::VBROADCASTSSZ128rm;
6828 case 32: return X86::VBROADCASTSSZ256rm;
6829 case 64: return X86::VBROADCASTSSZrm;
6830 }
6831 break;
6832 case TB_BCAST_SD:
6833 switch (SpillSize) {
6834 default: llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6834)
;
6835 case 16: return X86::VMOVDDUPZ128rm;
6836 case 32: return X86::VBROADCASTSDZ256rm;
6837 case 64: return X86::VBROADCASTSDZrm;
6838 }
6839 break;
6840 }
6841}
6842
6843bool X86InstrInfo::unfoldMemoryOperand(
6844 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
6845 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
6846 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
6847 if (I == nullptr)
6848 return false;
6849 unsigned Opc = I->DstOp;
6850 unsigned Index = I->Flags & TB_INDEX_MASK;
6851 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6852 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6853 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6854 if (UnfoldLoad && !FoldedLoad)
6855 return false;
6856 UnfoldLoad &= FoldedLoad;
6857 if (UnfoldStore && !FoldedStore)
6858 return false;
6859 UnfoldStore &= FoldedStore;
6860
6861 const MCInstrDesc &MCID = get(Opc);
6862
6863 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6864 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6865 // TODO: Check if 32-byte or greater accesses are slow too?
6866 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
6867 Subtarget.isUnalignedMem16Slow())
6868 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6869 // conservatively assume the address is unaligned. That's bad for
6870 // performance.
6871 return false;
6872 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
6873 SmallVector<MachineOperand,2> BeforeOps;
6874 SmallVector<MachineOperand,2> AfterOps;
6875 SmallVector<MachineOperand,4> ImpOps;
6876 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
6877 MachineOperand &Op = MI.getOperand(i);
6878 if (i >= Index && i < Index + X86::AddrNumOperands)
6879 AddrOps.push_back(Op);
6880 else if (Op.isReg() && Op.isImplicit())
6881 ImpOps.push_back(Op);
6882 else if (i < Index)
6883 BeforeOps.push_back(Op);
6884 else if (i > Index)
6885 AfterOps.push_back(Op);
6886 }
6887
6888 // Emit the load or broadcast instruction.
6889 if (UnfoldLoad) {
6890 auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
6891
6892 unsigned Opc;
6893 if (FoldedBCast) {
6894 Opc = getBroadcastOpcode(I, RC, Subtarget);
6895 } else {
6896 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6897 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6898 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
6899 }
6900
6901 DebugLoc DL;
6902 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
6903 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6904 MIB.add(AddrOps[i]);
6905 MIB.setMemRefs(MMOs);
6906 NewMIs.push_back(MIB);
6907
6908 if (UnfoldStore) {
6909 // Address operands cannot be marked isKill.
6910 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
6911 MachineOperand &MO = NewMIs[0]->getOperand(i);
6912 if (MO.isReg())
6913 MO.setIsKill(false);
6914 }
6915 }
6916 }
6917
6918 // Emit the data processing instruction.
6919 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
6920 MachineInstrBuilder MIB(MF, DataMI);
6921
6922 if (FoldedStore)
6923 MIB.addReg(Reg, RegState::Define);
6924 for (MachineOperand &BeforeOp : BeforeOps)
6925 MIB.add(BeforeOp);
6926 if (FoldedLoad)
6927 MIB.addReg(Reg);
6928 for (MachineOperand &AfterOp : AfterOps)
6929 MIB.add(AfterOp);
6930 for (MachineOperand &ImpOp : ImpOps) {
6931 MIB.addReg(ImpOp.getReg(),
6932 getDefRegState(ImpOp.isDef()) |
6933 RegState::Implicit |
6934 getKillRegState(ImpOp.isKill()) |
6935 getDeadRegState(ImpOp.isDead()) |
6936 getUndefRegState(ImpOp.isUndef()));
6937 }
6938 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6939 switch (DataMI->getOpcode()) {
6940 default: break;
6941 case X86::CMP64ri32:
6942 case X86::CMP64ri8:
6943 case X86::CMP32ri:
6944 case X86::CMP32ri8:
6945 case X86::CMP16ri:
6946 case X86::CMP16ri8:
6947 case X86::CMP8ri: {
6948 MachineOperand &MO0 = DataMI->getOperand(0);
6949 MachineOperand &MO1 = DataMI->getOperand(1);
6950 if (MO1.isImm() && MO1.getImm() == 0) {
6951 unsigned NewOpc;
6952 switch (DataMI->getOpcode()) {
6953 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6953)
;
6954 case X86::CMP64ri8:
6955 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
6956 case X86::CMP32ri8:
6957 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
6958 case X86::CMP16ri8:
6959 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
6960 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
6961 }
6962 DataMI->setDesc(get(NewOpc));
6963 MO1.ChangeToRegister(MO0.getReg(), false);
6964 }
6965 }
6966 }
6967 NewMIs.push_back(DataMI);
6968
6969 // Emit the store instruction.
6970 if (UnfoldStore) {
6971 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
6972 auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
6973 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
6974 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6975 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
6976 DebugLoc DL;
6977 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
6978 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6979 MIB.add(AddrOps[i]);
6980 MIB.addReg(Reg, RegState::Kill);
6981 MIB.setMemRefs(MMOs);
6982 NewMIs.push_back(MIB);
6983 }
6984
6985 return true;
6986}
6987
6988bool
6989X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
6990 SmallVectorImpl<SDNode*> &NewNodes) const {
6991 if (!N->isMachineOpcode())
6992 return false;
6993
6994 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
6995 if (I == nullptr)
6996 return false;
6997 unsigned Opc = I->DstOp;
6998 unsigned Index = I->Flags & TB_INDEX_MASK;
6999 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
7000 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
7001 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
7002 const MCInstrDesc &MCID = get(Opc);
7003 MachineFunction &MF = DAG.getMachineFunction();
7004 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7005 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
7006 unsigned NumDefs = MCID.NumDefs;
7007 std::vector<SDValue> AddrOps;
7008 std::vector<SDValue> BeforeOps;
7009 std::vector<SDValue> AfterOps;
7010 SDLoc dl(N);
7011 unsigned NumOps = N->getNumOperands();
7012 for (unsigned i = 0; i != NumOps-1; ++i) {
7013 SDValue Op = N->getOperand(i);
7014 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
7015 AddrOps.push_back(Op);
7016 else if (i < Index-NumDefs)
7017 BeforeOps.push_back(Op);
7018 else if (i > Index-NumDefs)
7019 AfterOps.push_back(Op);
7020 }
7021 SDValue Chain = N->getOperand(NumOps-1);
7022 AddrOps.push_back(Chain);
7023
7024 // Emit the load instruction.
7025 SDNode *Load = nullptr;
7026 if (FoldedLoad) {
7027 EVT VT = *TRI.legalclasstypes_begin(*RC);
7028 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
7029 if (MMOs.empty() && RC == &X86::VR128RegClass &&
7030 Subtarget.isUnalignedMem16Slow())
7031 // Do not introduce a slow unaligned load.
7032 return false;
7033 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
7034 // memory access is slow above.
7035
7036 unsigned Opc;
7037 if (FoldedBCast) {
7038 Opc = getBroadcastOpcode(I, RC, Subtarget);
7039 } else {
7040 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
7041 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
7042 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
7043 }
7044
7045 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
7046 NewNodes.push_back(Load);
7047
7048 // Preserve memory reference information.
7049 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
7050 }
7051
7052 // Emit the data processing instruction.
7053 std::vector<EVT> VTs;
7054 const TargetRegisterClass *DstRC = nullptr;
7055 if (MCID.getNumDefs() > 0) {
7056 DstRC = getRegClass(MCID, 0, &RI, MF);
7057 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
7058 }
7059 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
7060 EVT VT = N->getValueType(i);
7061 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
7062 VTs.push_back(VT);
7063 }
7064 if (Load)
7065 BeforeOps.push_back(SDValue(Load, 0));
7066 llvm::append_range(BeforeOps, AfterOps);
7067 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
7068 switch (Opc) {
7069 default: break;
7070 case X86::CMP64ri32:
7071 case X86::CMP64ri8:
7072 case X86::CMP32ri:
7073 case X86::CMP32ri8:
7074 case X86::CMP16ri:
7075 case X86::CMP16ri8:
7076 case X86::CMP8ri:
7077 if (isNullConstant(BeforeOps[1])) {
7078 switch (Opc) {
7079 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 7079)
;
7080 case X86::CMP64ri8:
7081 case X86::CMP64ri32: Opc = X86::TEST64rr; break;
7082 case X86::CMP32ri8:
7083 case X86::CMP32ri: Opc = X86::TEST32rr; break;
7084 case X86::CMP16ri8:
7085 case X86::CMP16ri: Opc = X86::TEST16rr; break;
7086 case X86::CMP8ri: Opc = X86::TEST8rr; break;
7087 }
7088 BeforeOps[1] = BeforeOps[0];
7089 }
7090 }
7091 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
7092 NewNodes.push_back(NewNode);
7093
7094 // Emit the store instruction.
7095 if (FoldedStore) {
7096 AddrOps.pop_back();
7097 AddrOps.push_back(SDValue(NewNode, 0));
7098 AddrOps.push_back(Chain);
7099 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
7100 if (MMOs.empty() && RC == &X86::VR128RegClass &&
7101 Subtarget.isUnalignedMem16Slow())
7102 // Do not introduce a slow unaligned store.
7103 return false;
7104 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
7105 // memory access is slow above.
7106 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
7107 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
7108 SDNode *Store =
7109 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
7110 dl, MVT::Other, AddrOps);
7111 NewNodes.push_back(Store);
7112
7113 // Preserve memory reference information.
7114 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
7115 }
7116
7117 return true;
7118}
7119
7120unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
7121 bool UnfoldLoad, bool UnfoldStore,
7122 unsigned *LoadRegIndex) const {
7123 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
7124 if (I == nullptr)
7125 return 0;
7126 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
7127 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
7128 if (UnfoldLoad && !FoldedLoad)
7129 return 0;
7130 if (UnfoldStore && !FoldedStore)
7131 return 0;
7132 if (LoadRegIndex)
7133 *LoadRegIndex = I->Flags & TB_INDEX_MASK;
7134 return I->DstOp;
7135}
7136
7137bool
7138X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
7139 int64_t &Offset1, int64_t &Offset2) const {
7140 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
7141 return false;
7142 unsigned Opc1 = Load1->getMachineOpcode();
7143 unsigned Opc2 = Load2->getMachineOpcode();
7144 switch (Opc1) {
7145 default: return false;
7146 case X86::MOV8rm:
7147 case X86::MOV16rm:
7148 case X86::MOV32rm:
7149 case X86::MOV64rm:
7150 case X86::LD_Fp32m:
7151 case X86::LD_Fp64m:
7152 case X86::LD_Fp80m:
7153 case X86::MOVSSrm:
7154 case X86::MOVSSrm_alt:
7155 case X86::MOVSDrm:
7156 case X86::MOVSDrm_alt:
7157 case X86::MMX_MOVD64rm:
7158 case X86::MMX_MOVQ64rm:
7159 case X86::MOVAPSrm:
7160 case X86::MOVUPSrm:
7161 case X86::MOVAPDrm:
7162 case X86::MOVUPDrm:
7163 case X86::MOVDQArm:
7164 case X86::MOVDQUrm:
7165 // AVX load instructions
7166 case X86::VMOVSSrm:
7167 case X86::VMOVSSrm_alt:
7168 case X86::VMOVSDrm:
7169 case X86::VMOVSDrm_alt:
7170 case X86::VMOVAPSrm:
7171 case X86::VMOVUPSrm:
7172 case X86::VMOVAPDrm:
7173 case X86::VMOVUPDrm:
7174 case X86::VMOVDQArm:
7175 case X86::VMOVDQUrm:
7176 case X86::VMOVAPSYrm:
7177 case X86::VMOVUPSYrm:
7178 case X86::VMOVAPDYrm:
7179 case X86::VMOVUPDYrm:
7180 case X86::VMOVDQAYrm:
7181 case X86::VMOVDQUYrm:
7182 // AVX512 load instructions
7183 case X86::VMOVSSZrm:
7184 case X86::VMOVSSZrm_alt:
7185 case X86::VMOVSDZrm:
7186 case X86::VMOVSDZrm_alt:
7187 case X86::VMOVAPSZ128rm:
7188 case X86::VMOVUPSZ128rm:
7189 case X86::VMOVAPSZ128rm_NOVLX:
7190 case X86::VMOVUPSZ128rm_NOVLX:
7191 case X86::VMOVAPDZ128rm:
7192 case X86::VMOVUPDZ128rm:
7193 case X86::VMOVDQU8Z128rm:
7194 case X86::VMOVDQU16Z128rm:
7195 case X86::VMOVDQA32Z128rm:
7196 case X86::VMOVDQU32Z128rm:
7197 case X86::VMOVDQA64Z128rm:
7198 case X86::VMOVDQU64Z128rm:
7199 case X86::VMOVAPSZ256rm:
7200 case X86::VMOVUPSZ256rm:
7201 case X86::VMOVAPSZ256rm_NOVLX:
7202 case X86::VMOVUPSZ256rm_NOVLX:
7203 case X86::VMOVAPDZ256rm:
7204 case X86::VMOVUPDZ256rm:
7205 case X86::VMOVDQU8Z256rm:
7206 case X86::VMOVDQU16Z256rm:
7207 case X86::VMOVDQA32Z256rm:
7208 case X86::VMOVDQU32Z256rm:
7209 case X86::VMOVDQA64Z256rm:
7210 case X86::VMOVDQU64Z256rm:
7211 case X86::VMOVAPSZrm:
7212 case X86::VMOVUPSZrm:
7213 case X86::VMOVAPDZrm:
7214 case X86::VMOVUPDZrm:
7215 case X86::VMOVDQU8Zrm:
7216 case X86::VMOVDQU16Zrm:
7217 case X86::VMOVDQA32Zrm:
7218 case X86::VMOVDQU32Zrm:
7219 case X86::VMOVDQA64Zrm:
7220 case X86::VMOVDQU64Zrm:
7221 case X86::KMOVBkm:
7222 case X86::KMOVWkm:
7223 case X86::KMOVDkm:
7224 case X86::KMOVQkm:
7225 break;
7226 }
7227 switch (Opc2) {
7228 default: return false;
7229 case X86::MOV8rm:
7230 case X86::MOV16rm:
7231 case X86::MOV32rm:
7232 case X86::MOV64rm:
7233 case X86::LD_Fp32m:
7234 case X86::LD_Fp64m:
7235 case X86::LD_Fp80m:
7236 case X86::MOVSSrm:
7237 case X86::MOVSSrm_alt:
7238 case X86::MOVSDrm:
7239 case X86::MOVSDrm_alt:
7240 case X86::MMX_MOVD64rm:
7241 case X86::MMX_MOVQ64rm:
7242 case X86::MOVAPSrm:
7243 case X86::MOVUPSrm:
7244 case X86::MOVAPDrm:
7245 case X86::MOVUPDrm:
7246 case X86::MOVDQArm:
7247 case X86::MOVDQUrm:
7248 // AVX load instructions
7249 case X86::VMOVSSrm:
7250 case X86::VMOVSSrm_alt:
7251 case X86::VMOVSDrm:
7252 case X86::VMOVSDrm_alt:
7253 case X86::VMOVAPSrm:
7254 case X86::VMOVUPSrm:
7255 case X86::VMOVAPDrm:
7256 case X86::VMOVUPDrm:
7257 case X86::VMOVDQArm:
7258 case X86::VMOVDQUrm:
7259 case X86::VMOVAPSYrm:
7260 case X86::VMOVUPSYrm:
7261 case X86::VMOVAPDYrm:
7262 case X86::VMOVUPDYrm:
7263 case X86::VMOVDQAYrm:
7264 case X86::VMOVDQUYrm:
7265 // AVX512 load instructions
7266 case X86::VMOVSSZrm:
7267 case X86::VMOVSSZrm_alt:
7268 case X86::VMOVSDZrm:
7269 case X86::VMOVSDZrm_alt:
7270 case X86::VMOVAPSZ128rm:
7271 case X86::VMOVUPSZ128rm:
7272 case X86::VMOVAPSZ128rm_NOVLX:
7273 case X86::VMOVUPSZ128rm_NOVLX:
7274 case X86::VMOVAPDZ128rm:
7275 case X86::VMOVUPDZ128rm:
7276 case X86::VMOVDQU8Z128rm:
7277 case X86::VMOVDQU16Z128rm:
7278 case X86::VMOVDQA32Z128rm:
7279 case X86::VMOVDQU32Z128rm:
7280 case X86::VMOVDQA64Z128rm:
7281 case X86::VMOVDQU64Z128rm:
7282 case X86::VMOVAPSZ256rm:
7283 case X86::VMOVUPSZ256rm:
7284 case X86::VMOVAPSZ256rm_NOVLX:
7285 case X86::VMOVUPSZ256rm_NOVLX:
7286 case X86::VMOVAPDZ256rm:
7287 case X86::VMOVUPDZ256rm:
7288 case X86::VMOVDQU8Z256rm:
7289 case X86::VMOVDQU16Z256rm:
7290 case X86::VMOVDQA32Z256rm:
7291 case X86::VMOVDQU32Z256rm:
7292 case X86::VMOVDQA64Z256rm:
7293 case X86::VMOVDQU64Z256rm:
7294 case X86::VMOVAPSZrm:
7295 case X86::VMOVUPSZrm:
7296 case X86::VMOVAPDZrm:
7297 case X86::VMOVUPDZrm:
7298 case X86::VMOVDQU8Zrm:
7299 case X86::VMOVDQU16Zrm:
7300 case X86::VMOVDQA32Zrm:
7301 case X86::VMOVDQU32Zrm:
7302 case X86::VMOVDQA64Zrm:
7303 case X86::VMOVDQU64Zrm:
7304 case X86::KMOVBkm:
7305 case X86::KMOVWkm:
7306 case X86::KMOVDkm:
7307 case X86::KMOVQkm:
7308 break;
7309 }
7310
7311 // Lambda to check if both the loads have the same value for an operand index.
7312 auto HasSameOp = [&](int I) {
7313 return Load1->getOperand(I) == Load2->getOperand(I);
7314 };
7315
7316 // All operands except the displacement should match.
7317 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
7318 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
7319 return false;
7320
7321 // Chain Operand must be the same.
7322 if (!HasSameOp(5))
7323 return false;
7324
7325 // Now let's examine if the displacements are constants.
7326 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
7327 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
7328 if (!Disp1 || !Disp2)
7329 return false;
7330
7331 Offset1 = Disp1->getSExtValue();
7332 Offset2 = Disp2->getSExtValue();
7333 return true;
7334}
7335
7336bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
7337 int64_t Offset1, int64_t Offset2,
7338 unsigned NumLoads) const {
7339 assert(Offset2 > Offset1)(static_cast <bool> (Offset2 > Offset1) ? void (0) :
__assert_fail ("Offset2 > Offset1", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 7339, __extension__ __PRETTY_FUNCTION__))
;
7340 if ((Offset2 - Offset1) / 8 > 64)
7341 return false;
7342
7343 unsigned Opc1 = Load1->getMachineOpcode();
7344 unsigned Opc2 = Load2->getMachineOpcode();
7345 if (Opc1 != Opc2)
7346 return false; // FIXME: overly conservative?
7347
7348 switch (Opc1) {
7349 default: break;
7350 case X86::LD_Fp32m:
7351 case X86::LD_Fp64m:
7352 case X86::LD_Fp80m:
7353 case X86::MMX_MOVD64rm:
7354 case X86::MMX_MOVQ64rm:
7355 return false;
7356 }
7357
7358 EVT VT = Load1->getValueType(0);
7359 switch (VT.getSimpleVT().SimpleTy) {
7360 default:
7361 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
7362 // have 16 of them to play with.
7363 if (Subtarget.is64Bit()) {
7364 if (NumLoads >= 3)
7365 return false;
7366 } else if (NumLoads) {
7367 return false;
7368 }
7369 break;
7370 case MVT::i8:
7371 case MVT::i16:
7372 case MVT::i32:
7373 case MVT::i64:
7374 case MVT::f32:
7375 case MVT::f64:
7376 if (NumLoads)
7377 return false;
7378 break;
7379 }
7380
7381 return true;
7382}
7383
7384bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
7385 const MachineBasicBlock *MBB,
7386 const MachineFunction &MF) const {
7387
7388 // ENDBR instructions should not be scheduled around.
7389 unsigned Opcode = MI.getOpcode();
7390 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
7391 Opcode == X86::PLDTILECFGV)
7392 return true;
7393
7394 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
7395}
7396
7397bool X86InstrInfo::
7398reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
7399 assert(Cond.size() == 1 && "Invalid X86 branch condition!")(static_cast <bool> (Cond.size() == 1 && "Invalid X86 branch condition!"
) ? void (0) : __assert_fail ("Cond.size() == 1 && \"Invalid X86 branch condition!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7399, __extension__
__PRETTY_FUNCTION__))
;
7400 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
7401 Cond[0].setImm(GetOppositeBranchCondition(CC));
7402 return false;
7403}
7404
7405bool X86InstrInfo::
7406isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
7407 // FIXME: Return false for x87 stack register classes for now. We can't
7408 // allow any loads of these registers before FpGet_ST0_80.
7409 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
7410 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
7411 RC == &X86::RFP80RegClass);
7412}
7413
7414/// Return a virtual register initialized with the
7415/// the global base register value. Output instructions required to
7416/// initialize the register in the function entry block, if necessary.
7417///
7418/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
7419///
7420unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
7421 assert((!Subtarget.is64Bit() ||(static_cast <bool> ((!Subtarget.is64Bit() || MF->getTarget
().getCodeModel() == CodeModel::Medium || MF->getTarget().
getCodeModel() == CodeModel::Large) && "X86-64 PIC uses RIP relative addressing"
) ? void (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7424, __extension__
__PRETTY_FUNCTION__))
7422 MF->getTarget().getCodeModel() == CodeModel::Medium ||(static_cast <bool> ((!Subtarget.is64Bit() || MF->getTarget
().getCodeModel() == CodeModel::Medium || MF->getTarget().
getCodeModel() == CodeModel::Large) && "X86-64 PIC uses RIP relative addressing"
) ? void (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7424, __extension__
__PRETTY_FUNCTION__))
7423 MF->getTarget().getCodeModel() == CodeModel::Large) &&(static_cast <bool> ((!Subtarget.is64Bit() || MF->getTarget
().getCodeModel() == CodeModel::Medium || MF->getTarget().
getCodeModel() == CodeModel::Large) && "X86-64 PIC uses RIP relative addressing"
) ? void (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7424, __extension__
__PRETTY_FUNCTION__))
7424 "X86-64 PIC uses RIP relative addressing")(static_cast <bool> ((!Subtarget.is64Bit() || MF->getTarget
().getCodeModel() == CodeModel::Medium || MF->getTarget().
getCodeModel() == CodeModel::Large) && "X86-64 PIC uses RIP relative addressing"
) ? void (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7424, __extension__
__PRETTY_FUNCTION__))
;
7425
7426 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
7427 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
7428 if (GlobalBaseReg != 0)
7429 return GlobalBaseReg;
7430
7431 // Create the register. The code to initialize it is inserted
7432 // later, by the CGBR pass (below).
7433 MachineRegisterInfo &RegInfo = MF->getRegInfo();
7434 GlobalBaseReg = RegInfo.createVirtualRegister(
7435 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
7436 X86FI->setGlobalBaseReg(GlobalBaseReg);
7437 return GlobalBaseReg;
7438}
7439
7440// These are the replaceable SSE instructions. Some of these have Int variants
7441// that we don't include here. We don't want to replace instructions selected
7442// by intrinsics.
7443static const uint16_t ReplaceableInstrs[][3] = {
7444 //PackedSingle PackedDouble PackedInt
7445 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
7446 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
7447 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
7448 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
7449 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
7450 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
7451 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
7452 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
7453 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
7454 { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
7455 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
7456 { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
7457 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
7458 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
7459 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
7460 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
7461 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
7462 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
7463 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
7464 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
7465 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
7466 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
7467 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
7468 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
7469 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
7470 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
7471 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
7472 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
7473 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
7474 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
7475 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
7476 // AVX 128-bit support
7477 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
7478 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
7479 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
7480 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
7481 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
7482 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
7483 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
7484 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
7485 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
7486 { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
7487 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
7488 { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
7489 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
7490 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
7491 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
7492 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
7493 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
7494 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
7495 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
7496 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
7497 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
7498 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
7499 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
7500 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
7501 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
7502 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
7503 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
7504 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
7505 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
7506 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
7507 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
7508 // AVX 256-bit support
7509 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
7510 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
7511 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
7512 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
7513 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
7514 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
7515 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
7516 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
7517 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
7518 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
7519 // AVX512 support
7520 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
7521 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
7522 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
7523 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
7524 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
7525 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
7526 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
7527 { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm },
7528 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
7529 { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm },
7530 { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
7531 { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
7532 { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
7533 { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
7534 { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr },
7535 { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm },
7536 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr },
7537 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm },
7538 { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
7539 { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
7540 { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr },
7541 { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm },
7542 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
7543 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
7544 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
7545 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
7546 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
7547 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
7548 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
7549 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
7550 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
7551 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
7552 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
7553 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
7554 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
7555 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
7556 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
7557 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
7558 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
7559 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
7560 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
7561 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
7562 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
7563 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
7564 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
7565 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
7566 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
7567 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
7568 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
7569 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
7570 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
7571 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
7572 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
7573 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
7574 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
7575 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
7576 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
7577 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
7578 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
7579 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
7580 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
7581 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
7582 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
7583 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
7584 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
7585 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
7586 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
7587 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
7588 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
7589 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
7590 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
7591 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
7592 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
7593 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
7594 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
7595 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
7596 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
7597 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
7598 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
7599 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
7600 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
7601 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
7602 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
7603 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
7604 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
7605 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
7606 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
7607 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
7608 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
7609 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
7610 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
7611 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
7612};
7613
7614static const uint16_t ReplaceableInstrsAVX2[][3] = {
7615 //PackedSingle PackedDouble PackedInt
7616 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
7617 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
7618 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
7619 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
7620 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
7621 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
7622 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
7623 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
7624 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
7625 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
7626 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
7627 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
7628 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
7629 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
7630 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
7631 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
7632 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
7633 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
7634 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
7635 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
7636 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
7637 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
7638 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
7639 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
7640 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
7641 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
7642 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
7643 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
7644 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
7645 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
7646 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
7647};
7648
7649static const uint16_t ReplaceableInstrsFP[][3] = {
7650 //PackedSingle PackedDouble
7651 { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END },
7652 { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END },
7653 { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END },
7654 { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END },
7655 { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END },
7656 { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END },
7657 { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
7658 { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
7659 { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
7660};
7661
7662static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
7663 //PackedSingle PackedDouble PackedInt
7664 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
7665 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
7666 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
7667 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
7668};
7669
7670static const uint16_t ReplaceableInstrsAVX512[][4] = {
7671 // Two integer columns for 64-bit and 32-bit elements.
7672 //PackedSingle PackedDouble PackedInt PackedInt
7673 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
7674 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
7675 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
7676 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
7677 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
7678 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
7679 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
7680 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
7681 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
7682 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
7683 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
7684 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
7685 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
7686 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
7687 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
7688};
7689
7690static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
7691 // Two integer columns for 64-bit and 32-bit elements.
7692 //PackedSingle PackedDouble PackedInt PackedInt
7693 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7694 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7695 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
7696 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
7697 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
7698 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
7699 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
7700 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
7701 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7702 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7703 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
7704 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
7705 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
7706 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
7707 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
7708 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
7709 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
7710 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
7711 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
7712 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
7713 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
7714 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
7715 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
7716 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
7717};
7718
7719static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
7720 // Two integer columns for 64-bit and 32-bit elements.
7721 //PackedSingle PackedDouble
7722 //PackedInt PackedInt
7723 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
7724 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
7725 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
7726 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
7727 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
7728 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
7729 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
7730 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
7731 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
7732 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
7733 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
7734 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
7735 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
7736 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
7737 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
7738 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
7739 { X86::VORPSZ128rmk, X86::VORPDZ128rmk,
7740 X86::VPORQZ128rmk, X86::VPORDZ128rmk },
7741 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
7742 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
7743 { X86::VORPSZ128rrk, X86::VORPDZ128rrk,
7744 X86::VPORQZ128rrk, X86::VPORDZ128rrk },
7745 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
7746 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
7747 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
7748 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
7749 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
7750 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
7751 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
7752 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
7753 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
7754 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
7755 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
7756 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
7757 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
7758 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
7759 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
7760 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
7761 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
7762 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
7763 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
7764 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
7765 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
7766 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
7767 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
7768 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
7769 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
7770 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
7771 { X86::VORPSZ256rmk, X86::VORPDZ256rmk,
7772 X86::VPORQZ256rmk, X86::VPORDZ256rmk },
7773 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
7774 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
7775 { X86::VORPSZ256rrk, X86::VORPDZ256rrk,
7776 X86::VPORQZ256rrk, X86::VPORDZ256rrk },
7777 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
7778 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
7779 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
7780 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
7781 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
7782 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
7783 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
7784 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
7785 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
7786 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
7787 { X86::VANDNPSZrmk, X86::VANDNPDZrmk,
7788 X86::VPANDNQZrmk, X86::VPANDNDZrmk },
7789 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
7790 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
7791 { X86::VANDNPSZrrk, X86::VANDNPDZrrk,
7792 X86::VPANDNQZrrk, X86::VPANDNDZrrk },
7793 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
7794 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
7795 { X86::VANDPSZrmk, X86::VANDPDZrmk,
7796 X86::VPANDQZrmk, X86::VPANDDZrmk },
7797 { X86::VANDPSZrmkz, X86::VANDPDZrmkz,
7798 X86::VPANDQZrmkz, X86::VPANDDZrmkz },
7799 { X86::VANDPSZrrk, X86::VANDPDZrrk,
7800 X86::VPANDQZrrk, X86::VPANDDZrrk },
7801 { X86::VANDPSZrrkz, X86::VANDPDZrrkz,
7802 X86::VPANDQZrrkz, X86::VPANDDZrrkz },
7803 { X86::VORPSZrmk, X86::VORPDZrmk,
7804 X86::VPORQZrmk, X86::VPORDZrmk },
7805 { X86::VORPSZrmkz, X86::VORPDZrmkz,
7806 X86::VPORQZrmkz, X86::VPORDZrmkz },
7807 { X86::VORPSZrrk, X86::VORPDZrrk,
7808 X86::VPORQZrrk, X86::VPORDZrrk },
7809 { X86::VORPSZrrkz, X86::VORPDZrrkz,
7810 X86::VPORQZrrkz, X86::VPORDZrrkz },
7811 { X86::VXORPSZrmk, X86::VXORPDZrmk,
7812 X86::VPXORQZrmk, X86::VPXORDZrmk },
7813 { X86::VXORPSZrmkz, X86::VXORPDZrmkz,
7814 X86::VPXORQZrmkz, X86::VPXORDZrmkz },
7815 { X86::VXORPSZrrk, X86::VXORPDZrrk,
7816 X86::VPXORQZrrk, X86::VPXORDZrrk },
7817 { X86::VXORPSZrrkz, X86::VXORPDZrrkz,
7818 X86::VPXORQZrrkz, X86::VPXORDZrrkz },
7819 // Broadcast loads can be handled the same as masked operations to avoid
7820 // changing element size.
7821 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
7822 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
7823 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
7824 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
7825 { X86::VORPSZ128rmb, X86::VORPDZ128rmb,
7826 X86::VPORQZ128rmb, X86::VPORDZ128rmb },
7827 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
7828 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
7829 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
7830 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
7831 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
7832 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
7833 { X86::VORPSZ256rmb, X86::VORPDZ256rmb,
7834 X86::VPORQZ256rmb, X86::VPORDZ256rmb },
7835 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
7836 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
7837 { X86::VANDNPSZrmb, X86::VANDNPDZrmb,
7838 X86::VPANDNQZrmb, X86::VPANDNDZrmb },
7839 { X86::VANDPSZrmb, X86::VANDPDZrmb,
7840 X86::VPANDQZrmb, X86::VPANDDZrmb },
7841 { X86::VANDPSZrmb, X86::VANDPDZrmb,
7842 X86::VPANDQZrmb, X86::VPANDDZrmb },
7843 { X86::VORPSZrmb, X86::VORPDZrmb,
7844 X86::VPORQZrmb, X86::VPORDZrmb },
7845 { X86::VXORPSZrmb, X86::VXORPDZrmb,
7846 X86::VPXORQZrmb, X86::VPXORDZrmb },
7847 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
7848 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
7849 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
7850 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
7851 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
7852 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
7853 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
7854 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
7855 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
7856 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
7857 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
7858 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
7859 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
7860 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
7861 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
7862 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
7863 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
7864 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
7865 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
7866 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
7867 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
7868 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
7869 { X86::VORPSZrmbk, X86::VORPDZrmbk,
7870 X86::VPORQZrmbk, X86::VPORDZrmbk },
7871 { X86::VXORPSZrmbk, X86::VXORPDZrmbk,
7872 X86::VPXORQZrmbk, X86::VPXORDZrmbk },
7873 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
7874 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
7875 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
7876 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
7877 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
7878 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
7879 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
7880 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
7881 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
7882 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
7883 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
7884 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
7885 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
7886 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
7887 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
7888 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
7889 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
7890 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
7891 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
7892 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
7893 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
7894 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
7895 { X86::VORPSZrmbkz, X86::VORPDZrmbkz,
7896 X86::VPORQZrmbkz, X86::VPORDZrmbkz },
7897 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
7898 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
7899};
7900
7901// NOTE: These should only be used by the custom domain methods.
7902static const uint16_t ReplaceableBlendInstrs[][3] = {
7903 //PackedSingle PackedDouble PackedInt
7904 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
7905 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
7906 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
7907 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
7908 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
7909 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
7910};
7911static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
7912 //PackedSingle PackedDouble PackedInt
7913 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
7914 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
7915 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
7916 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
7917};
7918
7919// Special table for changing EVEX logic instructions to VEX.
7920// TODO: Should we run EVEX->VEX earlier?
7921static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
7922 // Two integer columns for 64-bit and 32-bit elements.
7923 //PackedSingle PackedDouble PackedInt PackedInt
7924 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7925 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7926 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
7927 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
7928 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
7929 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
7930 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
7931 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
7932 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7933 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7934 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
7935 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
7936 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
7937 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
7938 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
7939 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
7940};
7941
7942// FIXME: Some shuffle and unpack instructions have equivalents in different
7943// domains, but they require a bit more work than just switching opcodes.
7944
7945static const uint16_t *lookup(unsigned opcode, unsigned domain,
7946 ArrayRef<uint16_t[3]> Table) {
7947 for (const uint16_t (&Row)[3] : Table)
7948 if (Row[domain-1] == opcode)
7949 return Row;
7950 return nullptr;
7951}
7952
7953static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
7954 ArrayRef<uint16_t[4]> Table) {
7955 // If this is the integer domain make sure to check both integer columns.
7956 for (const uint16_t (&Row)[4] : Table)
7957 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
7958 return Row;
7959 return nullptr;
7960}
7961
7962// Helper to attempt to widen/narrow blend masks.
7963static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
7964 unsigned NewWidth, unsigned *pNewMask = nullptr) {
7965 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&(static_cast <bool> (((OldWidth % NewWidth) == 0 || (NewWidth
% OldWidth) == 0) && "Illegal blend mask scale") ? void
(0) : __assert_fail ("((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && \"Illegal blend mask scale\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7966, __extension__
__PRETTY_FUNCTION__))
7966 "Illegal blend mask scale")(static_cast <bool> (((OldWidth % NewWidth) == 0 || (NewWidth
% OldWidth) == 0) && "Illegal blend mask scale") ? void
(0) : __assert_fail ("((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && \"Illegal blend mask scale\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7966, __extension__
__PRETTY_FUNCTION__))
;
7967 unsigned NewMask = 0;
7968
7969 if ((OldWidth % NewWidth) == 0) {
7970 unsigned Scale = OldWidth / NewWidth;
7971 unsigned SubMask = (1u << Scale) - 1;
7972 for (unsigned i = 0; i != NewWidth; ++i) {
7973 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
7974 if (Sub == SubMask)
7975 NewMask |= (1u << i);
7976 else if (Sub != 0x0)
7977 return false;
7978 }
7979 } else {
7980 unsigned Scale = NewWidth / OldWidth;
7981 unsigned SubMask = (1u << Scale) - 1;
7982 for (unsigned i = 0; i != OldWidth; ++i) {
7983 if (OldMask & (1 << i)) {
7984 NewMask |= (SubMask << (i * Scale));
7985 }
7986 }
7987 }
7988
7989 if (pNewMask)
7990 *pNewMask = NewMask;
7991 return true;
7992}
7993
7994uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
7995 unsigned Opcode = MI.getOpcode();
7996 unsigned NumOperands = MI.getDesc().getNumOperands();
7997
7998 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
7999 uint16_t validDomains = 0;
8000 if (MI.getOperand(NumOperands - 1).isImm()) {
8001 unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
8002 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
8003 validDomains |= 0x2; // PackedSingle
8004 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
8005 validDomains |= 0x4; // PackedDouble
8006 if (!Is256 || Subtarget.hasAVX2())
8007 validDomains |= 0x8; // PackedInt
8008 }
8009 return validDomains;
8010 };
8011
8012 switch (Opcode) {
8013 case X86::BLENDPDrmi:
8014 case X86::BLENDPDrri:
8015 case X86::VBLENDPDrmi:
8016 case X86::VBLENDPDrri:
8017 return GetBlendDomains(2, false);
8018 case X86::VBLENDPDYrmi:
8019 case X86::VBLENDPDYrri:
8020 return GetBlendDomains(4, true);
8021 case X86::BLENDPSrmi:
8022 case X86::BLENDPSrri:
8023 case X86::VBLENDPSrmi:
8024 case X86::VBLENDPSrri:
8025 case X86::VPBLENDDrmi:
8026 case X86::VPBLENDDrri:
8027 return GetBlendDomains(4, false);
8028 case X86::VBLENDPSYrmi:
8029 case X86::VBLENDPSYrri:
8030 case X86::VPBLENDDYrmi:
8031 case X86::VPBLENDDYrri:
8032 return GetBlendDomains(8, true);
8033 case X86::PBLENDWrmi:
8034 case X86::PBLENDWrri:
8035 case X86::VPBLENDWrmi:
8036 case X86::VPBLENDWrri:
8037 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
8038 case X86::VPBLENDWYrmi:
8039 case X86::VPBLENDWYrri:
8040 return GetBlendDomains(8, false);
8041 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
8042 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
8043 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
8044 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
8045 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
8046 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
8047 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
8048 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
8049 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
8050 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
8051 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
8052 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
8053 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
8054 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
8055 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
8056 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
8057 // If we don't have DQI see if we can still switch from an EVEX integer
8058 // instruction to a VEX floating point instruction.
8059 if (Subtarget.hasDQI())
8060 return 0;
8061
8062 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
8063 return 0;
8064 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
8065 return 0;
8066 // Register forms will have 3 operands. Memory form will have more.
8067 if (NumOperands == 3 &&
8068 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
8069 return 0;
8070
8071 // All domains are valid.
8072 return 0xe;
8073 case X86::MOVHLPSrr:
8074 // We can swap domains when both inputs are the same register.
8075 // FIXME: This doesn't catch all the cases we would like. If the input
8076 // register isn't KILLed by the instruction, the two address instruction
8077 // pass puts a COPY on one input. The other input uses the original
8078 // register. This prevents the same physical register from being used by
8079 // both inputs.
8080 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
8081 MI.getOperand(0).getSubReg() == 0 &&
8082 MI.getOperand(1).getSubReg() == 0 &&
8083 MI.getOperand(2).getSubReg() == 0)
8084 return 0x6;
8085 return 0;
8086 case X86::SHUFPDrri:
8087 return 0x6;
8088 }
8089 return 0;
8090}
8091
8092bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
8093 unsigned Domain) const {
8094 assert(Domain > 0 && Domain < 4 && "Invalid execution domain")(static_cast <bool> (Domain > 0 && Domain <
4 && "Invalid execution domain") ? void (0) : __assert_fail
("Domain > 0 && Domain < 4 && \"Invalid execution domain\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8094, __extension__
__PRETTY_FUNCTION__))
;
8095 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8096 assert(dom && "Not an SSE instruction")(static_cast <bool> (dom && "Not an SSE instruction"
) ? void (0) : __assert_fail ("dom && \"Not an SSE instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8096, __extension__
__PRETTY_FUNCTION__))
;
8097
8098 unsigned Opcode = MI.getOpcode();
8099 unsigned NumOperands = MI.getDesc().getNumOperands();
8100
8101 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
8102 if (MI.getOperand(NumOperands - 1).isImm()) {
8103 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
8104 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
8105 unsigned NewImm = Imm;
8106
8107 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
8108 if (!table)
8109 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8110
8111 if (Domain == 1) { // PackedSingle
8112 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
8113 } else if (Domain == 2) { // PackedDouble
8114 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
8115 } else if (Domain == 3) { // PackedInt
8116 if (Subtarget.hasAVX2()) {
8117 // If we are already VPBLENDW use that, else use VPBLENDD.
8118 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
8119 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8120 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
8121 }
8122 } else {
8123 assert(!Is256 && "128-bit vector expected")(static_cast <bool> (!Is256 && "128-bit vector expected"
) ? void (0) : __assert_fail ("!Is256 && \"128-bit vector expected\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8123, __extension__
__PRETTY_FUNCTION__))
;
8124 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
8125 }
8126 }
8127
8128 assert(table && table[Domain - 1] && "Unknown domain op")(static_cast <bool> (table && table[Domain - 1]
&& "Unknown domain op") ? void (0) : __assert_fail (
"table && table[Domain - 1] && \"Unknown domain op\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8128, __extension__
__PRETTY_FUNCTION__))
;
8129 MI.setDesc(get(table[Domain - 1]));
8130 MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
8131 }
8132 return true;
8133 };
8134
8135 switch (Opcode) {
8136 case X86::BLENDPDrmi:
8137 case X86::BLENDPDrri:
8138 case X86::VBLENDPDrmi:
8139 case X86::VBLENDPDrri:
8140 return SetBlendDomain(2, false);
8141 case X86::VBLENDPDYrmi:
8142 case X86::VBLENDPDYrri:
8143 return SetBlendDomain(4, true);
8144 case X86::BLENDPSrmi:
8145 case X86::BLENDPSrri:
8146 case X86::VBLENDPSrmi:
8147 case X86::VBLENDPSrri:
8148 case X86::VPBLENDDrmi:
8149 case X86::VPBLENDDrri:
8150 return SetBlendDomain(4, false);
8151 case X86::VBLENDPSYrmi:
8152 case X86::VBLENDPSYrri:
8153 case X86::VPBLENDDYrmi:
8154 case X86::VPBLENDDYrri:
8155 return SetBlendDomain(8, true);
8156 case X86::PBLENDWrmi:
8157 case X86::PBLENDWrri:
8158 case X86::VPBLENDWrmi:
8159 case X86::VPBLENDWrri:
8160 return SetBlendDomain(8, false);
8161 case X86::VPBLENDWYrmi:
8162 case X86::VPBLENDWYrri:
8163 return SetBlendDomain(16, true);
8164 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
8165 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
8166 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
8167 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
8168 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
8169 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
8170 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
8171 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
8172 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
8173 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
8174 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
8175 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
8176 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
8177 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
8178 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
8179 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
8180 // Without DQI, convert EVEX instructions to VEX instructions.
8181 if (Subtarget.hasDQI())
8182 return false;
8183
8184 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
8185 ReplaceableCustomAVX512LogicInstrs);
8186 assert(table && "Instruction not found in table?")(static_cast <bool> (table && "Instruction not found in table?"
) ? void (0) : __assert_fail ("table && \"Instruction not found in table?\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8186, __extension__
__PRETTY_FUNCTION__))
;
8187 // Don't change integer Q instructions to D instructions and
8188 // use D intructions if we started with a PS instruction.
8189 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8190 Domain = 4;
8191 MI.setDesc(get(table[Domain - 1]));
8192 return true;
8193 }
8194 case X86::UNPCKHPDrr:
8195 case X86::MOVHLPSrr:
8196 // We just need to commute the instruction which will switch the domains.
8197 if (Domain != dom && Domain != 3 &&
8198 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
8199 MI.getOperand(0).getSubReg() == 0 &&
8200 MI.getOperand(1).getSubReg() == 0 &&
8201 MI.getOperand(2).getSubReg() == 0) {
8202 commuteInstruction(MI, false);
8203 return true;
8204 }
8205 // We must always return true for MOVHLPSrr.
8206 if (Opcode == X86::MOVHLPSrr)
8207 return true;
8208 break;
8209 case X86::SHUFPDrri: {
8210 if (Domain == 1) {
8211 unsigned Imm = MI.getOperand(3).getImm();
8212 unsigned NewImm = 0x44;
8213 if (Imm & 1) NewImm |= 0x0a;
8214 if (Imm & 2) NewImm |= 0xa0;
8215 MI.getOperand(3).setImm(NewImm);
8216 MI.setDesc(get(X86::SHUFPSrri));
8217 }
8218 return true;
8219 }
8220 }
8221 return false;
8222}
8223
8224std::pair<uint16_t, uint16_t>
8225X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
8226 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8227 unsigned opcode = MI.getOpcode();
8228 uint16_t validDomains = 0;
8229 if (domain) {
8230 // Attempt to match for custom instructions.
8231 validDomains = getExecutionDomainCustom(MI);
8232 if (validDomains)
8233 return std::make_pair(domain, validDomains);
8234
8235 if (lookup(opcode, domain, ReplaceableInstrs)) {
8236 validDomains = 0xe;
8237 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
8238 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
8239 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
8240 validDomains = 0x6;
8241 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
8242 // Insert/extract instructions should only effect domain if AVX2
8243 // is enabled.
8244 if (!Subtarget.hasAVX2())
8245 return std::make_pair(0, 0);
8246 validDomains = 0xe;
8247 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
8248 validDomains = 0xe;
8249 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
8250 ReplaceableInstrsAVX512DQ)) {
8251 validDomains = 0xe;
8252 } else if (Subtarget.hasDQI()) {
8253 if (const uint16_t *table = lookupAVX512(opcode, domain,
8254 ReplaceableInstrsAVX512DQMasked)) {
8255 if (domain == 1 || (domain == 3 && table[3] == opcode))
8256 validDomains = 0xa;
8257 else
8258 validDomains = 0xc;
8259 }
8260 }
8261 }
8262 return std::make_pair(domain, validDomains);
8263}
8264
8265void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
8266 assert(Domain>0 && Domain<4 && "Invalid execution domain")(static_cast <bool> (Domain>0 && Domain<4
&& "Invalid execution domain") ? void (0) : __assert_fail
("Domain>0 && Domain<4 && \"Invalid execution domain\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8266, __extension__
__PRETTY_FUNCTION__))
;
8267 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8268 assert(dom && "Not an SSE instruction")(static_cast <bool> (dom && "Not an SSE instruction"
) ? void (0) : __assert_fail ("dom && \"Not an SSE instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8268, __extension__
__PRETTY_FUNCTION__))
;
8269
8270 // Attempt to match for custom instructions.
8271 if (setExecutionDomainCustom(MI, Domain))
8272 return;
8273
8274 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
8275 if (!table) { // try the other table
8276 assert((Subtarget.hasAVX2() || Domain < 3) &&(static_cast <bool> ((Subtarget.hasAVX2() || Domain <
3) && "256-bit vector operations only available in AVX2"
) ? void (0) : __assert_fail ("(Subtarget.hasAVX2() || Domain < 3) && \"256-bit vector operations only available in AVX2\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8277, __extension__
__PRETTY_FUNCTION__))
8277 "256-bit vector operations only available in AVX2")(static_cast <bool> ((Subtarget.hasAVX2() || Domain <
3) && "256-bit vector operations only available in AVX2"
) ? void (0) : __assert_fail ("(Subtarget.hasAVX2() || Domain < 3) && \"256-bit vector operations only available in AVX2\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8277, __extension__
__PRETTY_FUNCTION__))
;
8278 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
8279 }
8280 if (!table) { // try the FP table
8281 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
8282 assert((!table || Domain < 3) &&(static_cast <bool> ((!table || Domain < 3) &&
"Can only select PackedSingle or PackedDouble") ? void (0) :
__assert_fail ("(!table || Domain < 3) && \"Can only select PackedSingle or PackedDouble\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8283, __extension__
__PRETTY_FUNCTION__))
8283 "Can only select PackedSingle or PackedDouble")(static_cast <bool> ((!table || Domain < 3) &&
"Can only select PackedSingle or PackedDouble") ? void (0) :
__assert_fail ("(!table || Domain < 3) && \"Can only select PackedSingle or PackedDouble\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8283, __extension__
__PRETTY_FUNCTION__))
;
8284 }
8285 if (!table) { // try the other table
8286 assert(Subtarget.hasAVX2() &&(static_cast <bool> (Subtarget.hasAVX2() && "256-bit insert/extract only available in AVX2"
) ? void (0) : __assert_fail ("Subtarget.hasAVX2() && \"256-bit insert/extract only available in AVX2\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8287, __extension__
__PRETTY_FUNCTION__))
8287 "256-bit insert/extract only available in AVX2")(static_cast <bool> (Subtarget.hasAVX2() && "256-bit insert/extract only available in AVX2"
) ? void (0) : __assert_fail ("Subtarget.hasAVX2() && \"256-bit insert/extract only available in AVX2\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8287, __extension__
__PRETTY_FUNCTION__))
;
8288 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
8289 }
8290 if (!table) { // try the AVX512 table
8291 assert(Subtarget.hasAVX512() && "Requires AVX-512")(static_cast <bool> (Subtarget.hasAVX512() && "Requires AVX-512"
) ? void (0) : __assert_fail ("Subtarget.hasAVX512() && \"Requires AVX-512\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8291, __extension__
__PRETTY_FUNCTION__))
;
8292 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
8293 // Don't change integer Q instructions to D instructions.
8294 if (table && Domain == 3 && table[3] == MI.getOpcode())
8295 Domain = 4;
8296 }
8297 if (!table) { // try the AVX512DQ table
8298 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ")(static_cast <bool> ((Subtarget.hasDQI() || Domain >=
3) && "Requires AVX-512DQ") ? void (0) : __assert_fail
("(Subtarget.hasDQI() || Domain >= 3) && \"Requires AVX-512DQ\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8298, __extension__
__PRETTY_FUNCTION__))
;
8299 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
8300 // Don't change integer Q instructions to D instructions and
8301 // use D instructions if we started with a PS instruction.
8302 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8303 Domain = 4;
8304 }
8305 if (!table) { // try the AVX512DQMasked table
8306 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ")(static_cast <bool> ((Subtarget.hasDQI() || Domain >=
3) && "Requires AVX-512DQ") ? void (0) : __assert_fail
("(Subtarget.hasDQI() || Domain >= 3) && \"Requires AVX-512DQ\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8306, __extension__
__PRETTY_FUNCTION__))
;
8307 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
8308 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8309 Domain = 4;
8310 }
8311 assert(table && "Cannot change domain")(static_cast <bool> (table && "Cannot change domain"
) ? void (0) : __assert_fail ("table && \"Cannot change domain\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8311, __extension__
__PRETTY_FUNCTION__))
;
8312 MI.setDesc(get(table[Domain - 1]));
8313}
8314
8315/// Return the noop instruction to use for a noop.
8316MCInst X86InstrInfo::getNop() const {
8317 MCInst Nop;
8318 Nop.setOpcode(X86::NOOP);
8319 return Nop;
8320}
8321
8322bool X86InstrInfo::isHighLatencyDef(int opc) const {
8323 switch (opc) {
8324 default: return false;
8325 case X86::DIVPDrm:
8326 case X86::DIVPDrr:
8327 case X86::DIVPSrm:
8328 case X86::DIVPSrr:
8329 case X86::DIVSDrm:
8330 case X86::DIVSDrm_Int:
8331 case X86::DIVSDrr:
8332 case X86::DIVSDrr_Int:
8333 case X86::DIVSSrm:
8334 case X86::DIVSSrm_Int:
8335 case X86::DIVSSrr:
8336 case X86::DIVSSrr_Int:
8337 case X86::SQRTPDm:
8338 case X86::SQRTPDr:
8339 case X86::SQRTPSm:
8340 case X86::SQRTPSr:
8341 case X86::SQRTSDm:
8342 case X86::SQRTSDm_Int:
8343 case X86::SQRTSDr:
8344 case X86::SQRTSDr_Int:
8345 case X86::SQRTSSm:
8346 case X86::SQRTSSm_Int:
8347 case X86::SQRTSSr:
8348 case X86::SQRTSSr_Int:
8349 // AVX instructions with high latency
8350 case X86::VDIVPDrm:
8351 case X86::VDIVPDrr:
8352 case X86::VDIVPDYrm:
8353 case X86::VDIVPDYrr:
8354 case X86::VDIVPSrm:
8355 case X86::VDIVPSrr:
8356 case X86::VDIVPSYrm:
8357 case X86::VDIVPSYrr:
8358 case X86::VDIVSDrm:
8359 case X86::VDIVSDrm_Int:
8360 case X86::VDIVSDrr:
8361 case X86::VDIVSDrr_Int:
8362 case X86::VDIVSSrm:
8363 case X86::VDIVSSrm_Int:
8364 case X86::VDIVSSrr:
8365 case X86::VDIVSSrr_Int:
8366 case X86::VSQRTPDm:
8367 case X86::VSQRTPDr:
8368 case X86::VSQRTPDYm:
8369 case X86::VSQRTPDYr:
8370 case X86::VSQRTPSm:
8371 case X86::VSQRTPSr:
8372 case X86::VSQRTPSYm:
8373 case X86::VSQRTPSYr:
8374 case X86::VSQRTSDm:
8375 case X86::VSQRTSDm_Int:
8376 case X86::VSQRTSDr:
8377 case X86::VSQRTSDr_Int:
8378 case X86::VSQRTSSm:
8379 case X86::VSQRTSSm_Int:
8380 case X86::VSQRTSSr:
8381 case X86::VSQRTSSr_Int:
8382 // AVX512 instructions with high latency
8383 case X86::VDIVPDZ128rm:
8384 case X86::VDIVPDZ128rmb:
8385 case X86::VDIVPDZ128rmbk:
8386 case X86::VDIVPDZ128rmbkz:
8387 case X86::VDIVPDZ128rmk:
8388 case X86::VDIVPDZ128rmkz:
8389 case X86::VDIVPDZ128rr:
8390 case X86::VDIVPDZ128rrk:
8391 case X86::VDIVPDZ128rrkz:
8392 case X86::VDIVPDZ256rm:
8393 case X86::VDIVPDZ256rmb:
8394 case X86::VDIVPDZ256rmbk:
8395 case X86::VDIVPDZ256rmbkz:
8396 case X86::VDIVPDZ256rmk:
8397 case X86::VDIVPDZ256rmkz:
8398 case X86::VDIVPDZ256rr:
8399 case X86::VDIVPDZ256rrk:
8400 case X86::VDIVPDZ256rrkz:
8401 case X86::VDIVPDZrrb:
8402 case X86::VDIVPDZrrbk:
8403 case X86::VDIVPDZrrbkz:
8404 case X86::VDIVPDZrm:
8405 case X86::VDIVPDZrmb:
8406 case X86::VDIVPDZrmbk:
8407 case X86::VDIVPDZrmbkz:
8408 case X86::VDIVPDZrmk:
8409 case X86::VDIVPDZrmkz:
8410 case X86::VDIVPDZrr:
8411 case X86::VDIVPDZrrk:
8412 case X86::VDIVPDZrrkz:
8413 case X86::VDIVPSZ128rm:
8414 case X86::VDIVPSZ128rmb:
8415 case X86::VDIVPSZ128rmbk:
8416 case X86::VDIVPSZ128rmbkz:
8417 case X86::VDIVPSZ128rmk:
8418 case X86::VDIVPSZ128rmkz:
8419 case X86::VDIVPSZ128rr:
8420 case X86::VDIVPSZ128rrk:
8421 case X86::VDIVPSZ128rrkz:
8422 case X86::VDIVPSZ256rm:
8423 case X86::VDIVPSZ256rmb:
8424 case X86::VDIVPSZ256rmbk:
8425 case X86::VDIVPSZ256rmbkz:
8426 case X86::VDIVPSZ256rmk:
8427 case X86::VDIVPSZ256rmkz:
8428 case X86::VDIVPSZ256rr:
8429 case X86::VDIVPSZ256rrk:
8430 case X86::VDIVPSZ256rrkz:
8431 case X86::VDIVPSZrrb:
8432 case X86::VDIVPSZrrbk:
8433 case X86::VDIVPSZrrbkz:
8434 case X86::VDIVPSZrm:
8435 case X86::VDIVPSZrmb:
8436 case X86::VDIVPSZrmbk:
8437 case X86::VDIVPSZrmbkz:
8438 case X86::VDIVPSZrmk:
8439 case X86::VDIVPSZrmkz:
8440 case X86::VDIVPSZrr:
8441 case X86::VDIVPSZrrk:
8442 case X86::VDIVPSZrrkz:
8443 case X86::VDIVSDZrm:
8444 case X86::VDIVSDZrr:
8445 case X86::VDIVSDZrm_Int:
8446 case X86::VDIVSDZrm_Intk:
8447 case X86::VDIVSDZrm_Intkz:
8448 case X86::VDIVSDZrr_Int:
8449 case X86::VDIVSDZrr_Intk:
8450 case X86::VDIVSDZrr_Intkz:
8451 case X86::VDIVSDZrrb_Int:
8452 case X86::VDIVSDZrrb_Intk:
8453 case X86::VDIVSDZrrb_Intkz:
8454 case X86::VDIVSSZrm:
8455 case X86::VDIVSSZrr:
8456 case X86::VDIVSSZrm_Int:
8457 case X86::VDIVSSZrm_Intk:
8458 case X86::VDIVSSZrm_Intkz:
8459 case X86::VDIVSSZrr_Int:
8460 case X86::VDIVSSZrr_Intk:
8461 case X86::VDIVSSZrr_Intkz:
8462 case X86::VDIVSSZrrb_Int:
8463 case X86::VDIVSSZrrb_Intk:
8464 case X86::VDIVSSZrrb_Intkz:
8465 case X86::VSQRTPDZ128m:
8466 case X86::VSQRTPDZ128mb:
8467 case X86::VSQRTPDZ128mbk:
8468 case X86::VSQRTPDZ128mbkz:
8469 case X86::VSQRTPDZ128mk:
8470 case X86::VSQRTPDZ128mkz:
8471 case X86::VSQRTPDZ128r:
8472 case X86::VSQRTPDZ128rk:
8473 case X86::VSQRTPDZ128rkz:
8474 case X86::VSQRTPDZ256m:
8475 case X86::VSQRTPDZ256mb:
8476 case X86::VSQRTPDZ256mbk:
8477 case X86::VSQRTPDZ256mbkz:
8478 case X86::VSQRTPDZ256mk:
8479 case X86::VSQRTPDZ256mkz:
8480 case X86::VSQRTPDZ256r:
8481 case X86::VSQRTPDZ256rk:
8482 case X86::VSQRTPDZ256rkz:
8483 case X86::VSQRTPDZm:
8484 case X86::VSQRTPDZmb:
8485 case X86::VSQRTPDZmbk:
8486 case X86::VSQRTPDZmbkz:
8487 case X86::VSQRTPDZmk:
8488 case X86::VSQRTPDZmkz:
8489 case X86::VSQRTPDZr:
8490 case X86::VSQRTPDZrb:
8491 case X86::VSQRTPDZrbk:
8492 case X86::VSQRTPDZrbkz:
8493 case X86::VSQRTPDZrk:
8494 case X86::VSQRTPDZrkz:
8495 case X86::VSQRTPSZ128m:
8496 case X86::VSQRTPSZ128mb:
8497 case X86::VSQRTPSZ128mbk:
8498 case X86::VSQRTPSZ128mbkz:
8499 case X86::VSQRTPSZ128mk:
8500 case X86::VSQRTPSZ128mkz:
8501 case X86::VSQRTPSZ128r:
8502 case X86::VSQRTPSZ128rk:
8503 case X86::VSQRTPSZ128rkz:
8504 case X86::VSQRTPSZ256m:
8505 case X86::VSQRTPSZ256mb:
8506 case X86::VSQRTPSZ256mbk:
8507 case X86::VSQRTPSZ256mbkz:
8508 case X86::VSQRTPSZ256mk:
8509 case X86::VSQRTPSZ256mkz:
8510 case X86::VSQRTPSZ256r:
8511 case X86::VSQRTPSZ256rk:
8512 case X86::VSQRTPSZ256rkz:
8513 case X86::VSQRTPSZm:
8514 case X86::VSQRTPSZmb:
8515 case X86::VSQRTPSZmbk:
8516 case X86::VSQRTPSZmbkz:
8517 case X86::VSQRTPSZmk:
8518 case X86::VSQRTPSZmkz:
8519 case X86::VSQRTPSZr:
8520 case X86::VSQRTPSZrb:
8521 case X86::VSQRTPSZrbk:
8522 case X86::VSQRTPSZrbkz:
8523 case X86::VSQRTPSZrk:
8524 case X86::VSQRTPSZrkz:
8525 case X86::VSQRTSDZm:
8526 case X86::VSQRTSDZm_Int:
8527 case X86::VSQRTSDZm_Intk:
8528 case X86::VSQRTSDZm_Intkz:
8529 case X86::VSQRTSDZr:
8530 case X86::VSQRTSDZr_Int:
8531 case X86::VSQRTSDZr_Intk:
8532 case X86::VSQRTSDZr_Intkz:
8533 case X86::VSQRTSDZrb_Int:
8534 case X86::VSQRTSDZrb_Intk:
8535 case X86::VSQRTSDZrb_Intkz:
8536 case X86::VSQRTSSZm:
8537 case X86::VSQRTSSZm_Int:
8538 case X86::VSQRTSSZm_Intk:
8539 case X86::VSQRTSSZm_Intkz:
8540 case X86::VSQRTSSZr:
8541 case X86::VSQRTSSZr_Int:
8542 case X86::VSQRTSSZr_Intk:
8543 case X86::VSQRTSSZr_Intkz:
8544 case X86::VSQRTSSZrb_Int:
8545 case X86::VSQRTSSZrb_Intk:
8546 case X86::VSQRTSSZrb_Intkz:
8547
8548 case X86::VGATHERDPDYrm:
8549 case X86::VGATHERDPDZ128rm:
8550 case X86::VGATHERDPDZ256rm:
8551 case X86::VGATHERDPDZrm:
8552 case X86::VGATHERDPDrm:
8553 case X86::VGATHERDPSYrm:
8554 case X86::VGATHERDPSZ128rm:
8555 case X86::VGATHERDPSZ256rm:
8556 case X86::VGATHERDPSZrm:
8557 case X86::VGATHERDPSrm:
8558 case X86::VGATHERPF0DPDm:
8559 case X86::VGATHERPF0DPSm:
8560 case X86::VGATHERPF0QPDm:
8561 case X86::VGATHERPF0QPSm:
8562 case X86::VGATHERPF1DPDm:
8563 case X86::VGATHERPF1DPSm:
8564 case X86::VGATHERPF1QPDm:
8565 case X86::VGATHERPF1QPSm:
8566 case X86::VGATHERQPDYrm:
8567 case X86::VGATHERQPDZ128rm:
8568 case X86::VGATHERQPDZ256rm:
8569 case X86::VGATHERQPDZrm:
8570 case X86::VGATHERQPDrm:
8571 case X86::VGATHERQPSYrm:
8572 case X86::VGATHERQPSZ128rm:
8573 case X86::VGATHERQPSZ256rm:
8574 case X86::VGATHERQPSZrm:
8575 case X86::VGATHERQPSrm:
8576 case X86::VPGATHERDDYrm:
8577 case X86::VPGATHERDDZ128rm:
8578 case X86::VPGATHERDDZ256rm:
8579 case X86::VPGATHERDDZrm:
8580 case X86::VPGATHERDDrm:
8581 case X86::VPGATHERDQYrm:
8582 case X86::VPGATHERDQZ128rm:
8583 case X86::VPGATHERDQZ256rm:
8584 case X86::VPGATHERDQZrm:
8585 case X86::VPGATHERDQrm:
8586 case X86::VPGATHERQDYrm:
8587 case X86::VPGATHERQDZ128rm:
8588 case X86::VPGATHERQDZ256rm:
8589 case X86::VPGATHERQDZrm:
8590 case X86::VPGATHERQDrm:
8591 case X86::VPGATHERQQYrm:
8592 case X86::VPGATHERQQZ128rm:
8593 case X86::VPGATHERQQZ256rm:
8594 case X86::VPGATHERQQZrm:
8595 case X86::VPGATHERQQrm:
8596 case X86::VSCATTERDPDZ128mr:
8597 case X86::VSCATTERDPDZ256mr:
8598 case X86::VSCATTERDPDZmr:
8599 case X86::VSCATTERDPSZ128mr:
8600 case X86::VSCATTERDPSZ256mr:
8601 case X86::VSCATTERDPSZmr:
8602 case X86::VSCATTERPF0DPDm:
8603 case X86::VSCATTERPF0DPSm:
8604 case X86::VSCATTERPF0QPDm:
8605 case X86::VSCATTERPF0QPSm:
8606 case X86::VSCATTERPF1DPDm:
8607 case X86::VSCATTERPF1DPSm:
8608 case X86::VSCATTERPF1QPDm:
8609 case X86::VSCATTERPF1QPSm:
8610 case X86::VSCATTERQPDZ128mr:
8611 case X86::VSCATTERQPDZ256mr:
8612 case X86::VSCATTERQPDZmr:
8613 case X86::VSCATTERQPSZ128mr:
8614 case X86::VSCATTERQPSZ256mr:
8615 case X86::VSCATTERQPSZmr:
8616 case X86::VPSCATTERDDZ128mr:
8617 case X86::VPSCATTERDDZ256mr:
8618 case X86::VPSCATTERDDZmr:
8619 case X86::VPSCATTERDQZ128mr:
8620 case X86::VPSCATTERDQZ256mr:
8621 case X86::VPSCATTERDQZmr:
8622 case X86::VPSCATTERQDZ128mr:
8623 case X86::VPSCATTERQDZ256mr:
8624 case X86::VPSCATTERQDZmr:
8625 case X86::VPSCATTERQQZ128mr:
8626 case X86::VPSCATTERQQZ256mr:
8627 case X86::VPSCATTERQQZmr:
8628 return true;
8629 }
8630}
8631
8632bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
8633 const MachineRegisterInfo *MRI,
8634 const MachineInstr &DefMI,
8635 unsigned DefIdx,
8636 const MachineInstr &UseMI,
8637 unsigned UseIdx) const {
8638 return isHighLatencyDef(DefMI.getOpcode());
8639}
8640
8641bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
8642 const MachineBasicBlock *MBB) const {
8643 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&(static_cast <bool> (Inst.getNumExplicitOperands() == 3
&& Inst.getNumExplicitDefs() == 1 && Inst.getNumDefs
() <= 2 && "Reassociation needs binary operators")
? void (0) : __assert_fail ("Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && Inst.getNumDefs() <= 2 && \"Reassociation needs binary operators\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8644, __extension__
__PRETTY_FUNCTION__))
8644 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators")(static_cast <bool> (Inst.getNumExplicitOperands() == 3
&& Inst.getNumExplicitDefs() == 1 && Inst.getNumDefs
() <= 2 && "Reassociation needs binary operators")
? void (0) : __assert_fail ("Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && Inst.getNumDefs() <= 2 && \"Reassociation needs binary operators\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8644, __extension__
__PRETTY_FUNCTION__))
;
8645
8646 // Integer binary math/logic instructions have a third source operand:
8647 // the EFLAGS register. That operand must be both defined here and never
8648 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
8649 // not change anything because rearranging the operands could affect other
8650 // instructions that depend on the exact status flags (zero, sign, etc.)
8651 // that are set by using these particular operands with this operation.
8652 const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
8653 assert((Inst.getNumDefs() == 1 || FlagDef) &&(static_cast <bool> ((Inst.getNumDefs() == 1 || FlagDef
) && "Implicit def isn't flags?") ? void (0) : __assert_fail
("(Inst.getNumDefs() == 1 || FlagDef) && \"Implicit def isn't flags?\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8654, __extension__
__PRETTY_FUNCTION__))
8654 "Implicit def isn't flags?")(static_cast <bool> ((Inst.getNumDefs() == 1 || FlagDef
) && "Implicit def isn't flags?") ? void (0) : __assert_fail
("(Inst.getNumDefs() == 1 || FlagDef) && \"Implicit def isn't flags?\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8654, __extension__
__PRETTY_FUNCTION__))
;
8655 if (FlagDef && !FlagDef->isDead())
8656 return false;
8657
8658 return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
8659}
8660
8661// TODO: There are many more machine instruction opcodes to match:
8662// 1. Other data types (integer, vectors)
8663// 2. Other math / logic operations (xor, or)
8664// 3. Other forms of the same operation (intrinsics and other variants)
8665bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
8666 switch (Inst.getOpcode()) {
8667 case X86::AND8rr:
8668 case X86::AND16rr:
8669 case X86::AND32rr:
8670 case X86::AND64rr:
8671 case X86::OR8rr:
8672 case X86::OR16rr:
8673 case X86::OR32rr:
8674 case X86::OR64rr:
8675 case X86::XOR8rr:
8676 case X86::XOR16rr:
8677 case X86::XOR32rr:
8678 case X86::XOR64rr:
8679 case X86::IMUL16rr:
8680 case X86::IMUL32rr:
8681 case X86::IMUL64rr:
8682 case X86::PANDrr:
8683 case X86::PORrr:
8684 case X86::PXORrr:
8685 case X86::ANDPDrr:
8686 case X86::ANDPSrr:
8687 case X86::ORPDrr:
8688 case X86::ORPSrr:
8689 case X86::XORPDrr:
8690 case X86::XORPSrr:
8691 case X86::PADDBrr:
8692 case X86::PADDWrr:
8693 case X86::PADDDrr:
8694 case X86::PADDQrr:
8695 case X86::PMULLWrr:
8696 case X86::PMULLDrr:
8697 case X86::PMAXSBrr:
8698 case X86::PMAXSDrr:
8699 case X86::PMAXSWrr:
8700 case X86::PMAXUBrr:
8701 case X86::PMAXUDrr:
8702 case X86::PMAXUWrr:
8703 case X86::PMINSBrr:
8704 case X86::PMINSDrr:
8705 case X86::PMINSWrr:
8706 case X86::PMINUBrr:
8707 case X86::PMINUDrr:
8708 case X86::PMINUWrr:
8709 case X86::VPANDrr:
8710 case X86::VPANDYrr:
8711 case X86::VPANDDZ128rr:
8712 case X86::VPANDDZ256rr:
8713 case X86::VPANDDZrr:
8714 case X86::VPANDQZ128rr:
8715 case X86::VPANDQZ256rr:
8716 case X86::VPANDQZrr:
8717 case X86::VPORrr:
8718 case X86::VPORYrr:
8719 case X86::VPORDZ128rr:
8720 case X86::VPORDZ256rr:
8721 case X86::VPORDZrr:
8722 case X86::VPORQZ128rr:
8723 case X86::VPORQZ256rr:
8724 case X86::VPORQZrr:
8725 case X86::VPXORrr:
8726 case X86::VPXORYrr:
8727 case X86::VPXORDZ128rr:
8728 case X86::VPXORDZ256rr:
8729 case X86::VPXORDZrr:
8730 case X86::VPXORQZ128rr:
8731 case X86::VPXORQZ256rr:
8732 case X86::VPXORQZrr:
8733 case X86::VANDPDrr:
8734 case X86::VANDPSrr:
8735 case X86::VANDPDYrr:
8736 case X86::VANDPSYrr:
8737 case X86::VANDPDZ128rr:
8738 case X86::VANDPSZ128rr:
8739 case X86::VANDPDZ256rr:
8740 case X86::VANDPSZ256rr:
8741 case X86::VANDPDZrr:
8742 case X86::VANDPSZrr:
8743 case X86::VORPDrr:
8744 case X86::VORPSrr:
8745 case X86::VORPDYrr:
8746 case X86::VORPSYrr:
8747 case X86::VORPDZ128rr:
8748 case X86::VORPSZ128rr:
8749 case X86::VORPDZ256rr:
8750 case X86::VORPSZ256rr:
8751 case X86::VORPDZrr:
8752 case X86::VORPSZrr:
8753 case X86::VXORPDrr:
8754 case X86::VXORPSrr:
8755 case X86::VXORPDYrr:
8756 case X86::VXORPSYrr:
8757 case X86::VXORPDZ128rr:
8758 case X86::VXORPSZ128rr:
8759 case X86::VXORPDZ256rr:
8760 case X86::VXORPSZ256rr:
8761 case X86::VXORPDZrr:
8762 case X86::VXORPSZrr:
8763 case X86::KADDBrr:
8764 case X86::KADDWrr:
8765 case X86::KADDDrr:
8766 case X86::KADDQrr:
8767 case X86::KANDBrr:
8768 case X86::KANDWrr:
8769 case X86::KANDDrr:
8770 case X86::KANDQrr:
8771 case X86::KORBrr:
8772 case X86::KORWrr:
8773 case X86::KORDrr:
8774 case X86::KORQrr:
8775 case X86::KXORBrr:
8776 case X86::KXORWrr:
8777 case X86::KXORDrr:
8778 case X86::KXORQrr:
8779 case X86::VPADDBrr:
8780 case X86::VPADDWrr:
8781 case X86::VPADDDrr:
8782 case X86::VPADDQrr:
8783 case X86::VPADDBYrr:
8784 case X86::VPADDWYrr:
8785 case X86::VPADDDYrr:
8786 case X86::VPADDQYrr:
8787 case X86::VPADDBZ128rr:
8788 case X86::VPADDWZ128rr:
8789 case X86::VPADDDZ128rr:
8790 case X86::VPADDQZ128rr:
8791 case X86::VPADDBZ256rr:
8792 case X86::VPADDWZ256rr:
8793 case X86::VPADDDZ256rr:
8794 case X86::VPADDQZ256rr:
8795 case X86::VPADDBZrr:
8796 case X86::VPADDWZrr:
8797 case X86::VPADDDZrr:
8798 case X86::VPADDQZrr:
8799 case X86::VPMULLWrr:
8800 case X86::VPMULLWYrr:
8801 case X86::VPMULLWZ128rr:
8802 case X86::VPMULLWZ256rr:
8803 case X86::VPMULLWZrr:
8804 case X86::VPMULLDrr:
8805 case X86::VPMULLDYrr:
8806 case X86::VPMULLDZ128rr:
8807 case X86::VPMULLDZ256rr:
8808 case X86::VPMULLDZrr:
8809 case X86::VPMULLQZ128rr:
8810 case X86::VPMULLQZ256rr:
8811 case X86::VPMULLQZrr:
8812 case X86::VPMAXSBrr:
8813 case X86::VPMAXSBYrr:
8814 case X86::VPMAXSBZ128rr:
8815 case X86::VPMAXSBZ256rr:
8816 case X86::VPMAXSBZrr:
8817 case X86::VPMAXSDrr:
8818 case X86::VPMAXSDYrr:
8819 case X86::VPMAXSDZ128rr:
8820 case X86::VPMAXSDZ256rr:
8821 case X86::VPMAXSDZrr:
8822 case X86::VPMAXSQZ128rr:
8823 case X86::VPMAXSQZ256rr:
8824 case X86::VPMAXSQZrr:
8825 case X86::VPMAXSWrr:
8826 case X86::VPMAXSWYrr:
8827 case X86::VPMAXSWZ128rr:
8828 case X86::VPMAXSWZ256rr:
8829 case X86::VPMAXSWZrr:
8830 case X86::VPMAXUBrr:
8831 case X86::VPMAXUBYrr:
8832 case X86::VPMAXUBZ128rr:
8833 case X86::VPMAXUBZ256rr:
8834 case X86::VPMAXUBZrr:
8835 case X86::VPMAXUDrr:
8836 case X86::VPMAXUDYrr:
8837 case X86::VPMAXUDZ128rr:
8838 case X86::VPMAXUDZ256rr:
8839 case X86::VPMAXUDZrr:
8840 case X86::VPMAXUQZ128rr:
8841 case X86::VPMAXUQZ256rr:
8842 case X86::VPMAXUQZrr:
8843 case X86::VPMAXUWrr:
8844 case X86::VPMAXUWYrr:
8845 case X86::VPMAXUWZ128rr:
8846 case X86::VPMAXUWZ256rr:
8847 case X86::VPMAXUWZrr:
8848 case X86::VPMINSBrr:
8849 case X86::VPMINSBYrr:
8850 case X86::VPMINSBZ128rr:
8851 case X86::VPMINSBZ256rr:
8852 case X86::VPMINSBZrr:
8853 case X86::VPMINSDrr:
8854 case X86::VPMINSDYrr:
8855 case X86::VPMINSDZ128rr:
8856 case X86::VPMINSDZ256rr:
8857 case X86::VPMINSDZrr:
8858 case X86::VPMINSQZ128rr:
8859 case X86::VPMINSQZ256rr:
8860 case X86::VPMINSQZrr:
8861 case X86::VPMINSWrr:
8862 case X86::VPMINSWYrr:
8863 case X86::VPMINSWZ128rr:
8864 case X86::VPMINSWZ256rr:
8865 case X86::VPMINSWZrr:
8866 case X86::VPMINUBrr:
8867 case X86::VPMINUBYrr:
8868 case X86::VPMINUBZ128rr:
8869 case X86::VPMINUBZ256rr:
8870 case X86::VPMINUBZrr:
8871 case X86::VPMINUDrr:
8872 case X86::VPMINUDYrr:
8873 case X86::VPMINUDZ128rr:
8874 case X86::VPMINUDZ256rr:
8875 case X86::VPMINUDZrr:
8876 case X86::VPMINUQZ128rr:
8877 case X86::VPMINUQZ256rr:
8878 case X86::VPMINUQZrr:
8879 case X86::VPMINUWrr:
8880 case X86::VPMINUWYrr:
8881 case X86::VPMINUWZ128rr:
8882 case X86::VPMINUWZ256rr:
8883 case X86::VPMINUWZrr:
8884 // Normal min/max instructions are not commutative because of NaN and signed
8885 // zero semantics, but these are. Thus, there's no need to check for global
8886 // relaxed math; the instructions themselves have the properties we need.
8887 case X86::MAXCPDrr:
8888 case X86::MAXCPSrr:
8889 case X86::MAXCSDrr:
8890 case X86::MAXCSSrr:
8891 case X86::MINCPDrr:
8892 case X86::MINCPSrr:
8893 case X86::MINCSDrr:
8894 case X86::MINCSSrr:
8895 case X86::VMAXCPDrr:
8896 case X86::VMAXCPSrr:
8897 case X86::VMAXCPDYrr:
8898 case X86::VMAXCPSYrr:
8899 case X86::VMAXCPDZ128rr:
8900 case X86::VMAXCPSZ128rr:
8901 case X86::VMAXCPDZ256rr:
8902 case X86::VMAXCPSZ256rr:
8903 case X86::VMAXCPDZrr:
8904 case X86::VMAXCPSZrr:
8905 case X86::VMAXCSDrr:
8906 case X86::VMAXCSSrr:
8907 case X86::VMAXCSDZrr:
8908 case X86::VMAXCSSZrr:
8909 case X86::VMINCPDrr:
8910 case X86::VMINCPSrr:
8911 case X86::VMINCPDYrr:
8912 case X86::VMINCPSYrr:
8913 case X86::VMINCPDZ128rr:
8914 case X86::VMINCPSZ128rr:
8915 case X86::VMINCPDZ256rr:
8916 case X86::VMINCPSZ256rr:
8917 case X86::VMINCPDZrr:
8918 case X86::VMINCPSZrr:
8919 case X86::VMINCSDrr:
8920 case X86::VMINCSSrr:
8921 case X86::VMINCSDZrr:
8922 case X86::VMINCSSZrr:
8923 case X86::VMAXCPHZ128rr:
8924 case X86::VMAXCPHZ256rr:
8925 case X86::VMAXCPHZrr:
8926 case X86::VMAXCSHZrr:
8927 case X86::VMINCPHZ128rr:
8928 case X86::VMINCPHZ256rr:
8929 case X86::VMINCPHZrr:
8930 case X86::VMINCSHZrr:
8931 return true;
8932 case X86::ADDPDrr:
8933 case X86::ADDPSrr:
8934 case X86::ADDSDrr:
8935 case X86::ADDSSrr:
8936 case X86::MULPDrr:
8937 case X86::MULPSrr:
8938 case X86::MULSDrr:
8939 case X86::MULSSrr:
8940 case X86::VADDPDrr:
8941 case X86::VADDPSrr:
8942 case X86::VADDPDYrr:
8943 case X86::VADDPSYrr:
8944 case X86::VADDPDZ128rr:
8945 case X86::VADDPSZ128rr:
8946 case X86::VADDPDZ256rr:
8947 case X86::VADDPSZ256rr:
8948 case X86::VADDPDZrr:
8949 case X86::VADDPSZrr:
8950 case X86::VADDSDrr:
8951 case X86::VADDSSrr:
8952 case X86::VADDSDZrr:
8953 case X86::VADDSSZrr:
8954 case X86::VMULPDrr:
8955 case X86::VMULPSrr:
8956 case X86::VMULPDYrr:
8957 case X86::VMULPSYrr:
8958 case X86::VMULPDZ128rr:
8959 case X86::VMULPSZ128rr:
8960 case X86::VMULPDZ256rr:
8961 case X86::VMULPSZ256rr:
8962 case X86::VMULPDZrr:
8963 case X86::VMULPSZrr:
8964 case X86::VMULSDrr:
8965 case X86::VMULSSrr:
8966 case X86::VMULSDZrr:
8967 case X86::VMULSSZrr:
8968 case X86::VADDPHZ128rr:
8969 case X86::VADDPHZ256rr:
8970 case X86::VADDPHZrr:
8971 case X86::VADDSHZrr:
8972 case X86::VMULPHZ128rr:
8973 case X86::VMULPHZ256rr:
8974 case X86::VMULPHZrr:
8975 case X86::VMULSHZrr:
8976 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
8977 Inst.getFlag(MachineInstr::MIFlag::FmNsz);
8978 default:
8979 return false;
8980 }
8981}
8982
8983/// If \p DescribedReg overlaps with the MOVrr instruction's destination
8984/// register then, if possible, describe the value in terms of the source
8985/// register.
8986static Optional<ParamLoadedValue>
8987describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
8988 const TargetRegisterInfo *TRI) {
8989 Register DestReg = MI.getOperand(0).getReg();
8990 Register SrcReg = MI.getOperand(1).getReg();
8991
8992 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8993
8994 // If the described register is the destination, just return the source.
8995 if (DestReg == DescribedReg)
8996 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8997
8998 // If the described register is a sub-register of the destination register,
8999 // then pick out the source register's corresponding sub-register.
9000 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
9001 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
9002 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
9003 }
9004
9005 // The remaining case to consider is when the described register is a
9006 // super-register of the destination register. MOV8rr and MOV16rr does not
9007 // write to any of the other bytes in the register, meaning that we'd have to
9008 // describe the value using a combination of the source register and the
9009 // non-overlapping bits in the described register, which is not currently
9010 // possible.
9011 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
9012 !TRI->isSuperRegister(DestReg, DescribedReg))
9013 return None;
9014
9015 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case")(static_cast <bool> (MI.getOpcode() == X86::MOV32rr &&
"Unexpected super-register case") ? void (0) : __assert_fail
("MI.getOpcode() == X86::MOV32rr && \"Unexpected super-register case\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9015, __extension__
__PRETTY_FUNCTION__))
;
9016 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
9017}
9018
9019Optional<ParamLoadedValue>
9020X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
9021 const MachineOperand *Op = nullptr;
9022 DIExpression *Expr = nullptr;
9023
9024 const TargetRegisterInfo *TRI = &getRegisterInfo();
9025
9026 switch (MI.getOpcode()) {
9027 case X86::LEA32r:
9028 case X86::LEA64r:
9029 case X86::LEA64_32r: {
9030 // We may need to describe a 64-bit parameter with a 32-bit LEA.
9031 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9032 return None;
9033
9034 // Operand 4 could be global address. For now we do not support
9035 // such situation.
9036 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
9037 return None;
9038
9039 const MachineOperand &Op1 = MI.getOperand(1);
9040 const MachineOperand &Op2 = MI.getOperand(3);
9041 assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||(static_cast <bool> (Op2.isReg() && (Op2.getReg
() == X86::NoRegister || Register::isPhysicalRegister(Op2.getReg
()))) ? void (0) : __assert_fail ("Op2.isReg() && (Op2.getReg() == X86::NoRegister || Register::isPhysicalRegister(Op2.getReg()))"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9042, __extension__
__PRETTY_FUNCTION__))
9042 Register::isPhysicalRegister(Op2.getReg())))(static_cast <bool> (Op2.isReg() && (Op2.getReg
() == X86::NoRegister || Register::isPhysicalRegister(Op2.getReg
()))) ? void (0) : __assert_fail ("Op2.isReg() && (Op2.getReg() == X86::NoRegister || Register::isPhysicalRegister(Op2.getReg()))"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9042, __extension__
__PRETTY_FUNCTION__))
;
9043
9044 // Omit situations like:
9045 // %rsi = lea %rsi, 4, ...
9046 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
9047 Op2.getReg() == MI.getOperand(0).getReg())
9048 return None;
9049 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
9050 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
9051 (Op2.getReg() != X86::NoRegister &&
9052 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
9053 return None;
9054
9055 int64_t Coef = MI.getOperand(2).getImm();
9056 int64_t Offset = MI.getOperand(4).getImm();
9057 SmallVector<uint64_t, 8> Ops;
9058
9059 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
9060 Op = &Op1;
9061 } else if (Op1.isFI())
9062 Op = &Op1;
9063
9064 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
9065 Ops.push_back(dwarf::DW_OP_constu);
9066 Ops.push_back(Coef + 1);
9067 Ops.push_back(dwarf::DW_OP_mul);
9068 } else {
9069 if (Op && Op2.getReg() != X86::NoRegister) {
9070 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
9071 if (dwarfReg < 0)
9072 return None;
9073 else if (dwarfReg < 32) {
9074 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
9075 Ops.push_back(0);
9076 } else {
9077 Ops.push_back(dwarf::DW_OP_bregx);
9078 Ops.push_back(dwarfReg);
9079 Ops.push_back(0);
9080 }
9081 } else if (!Op) {
9082 assert(Op2.getReg() != X86::NoRegister)(static_cast <bool> (Op2.getReg() != X86::NoRegister) ?
void (0) : __assert_fail ("Op2.getReg() != X86::NoRegister",
"llvm/lib/Target/X86/X86InstrInfo.cpp", 9082, __extension__ __PRETTY_FUNCTION__
))
;
9083 Op = &Op2;
9084 }
9085
9086 if (Coef > 1) {
9087 assert(Op2.getReg() != X86::NoRegister)(static_cast <bool> (Op2.getReg() != X86::NoRegister) ?
void (0) : __assert_fail ("Op2.getReg() != X86::NoRegister",
"llvm/lib/Target/X86/X86InstrInfo.cpp", 9087, __extension__ __PRETTY_FUNCTION__
))
;
9088 Ops.push_back(dwarf::DW_OP_constu);
9089 Ops.push_back(Coef);
9090 Ops.push_back(dwarf::DW_OP_mul);
9091 }
9092
9093 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
9094 Op2.getReg() != X86::NoRegister) {
9095 Ops.push_back(dwarf::DW_OP_plus);
9096 }
9097 }
9098
9099 DIExpression::appendOffset(Ops, Offset);
9100 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
9101
9102 return ParamLoadedValue(*Op, Expr);;
9103 }
9104 case X86::MOV8ri:
9105 case X86::MOV16ri:
9106 // TODO: Handle MOV8ri and MOV16ri.
9107 return None;
9108 case X86::MOV32ri:
9109 case X86::MOV64ri:
9110 case X86::MOV64ri32:
9111 // MOV32ri may be used for producing zero-extended 32-bit immediates in
9112 // 64-bit parameters, so we need to consider super-registers.
9113 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9114 return None;
9115 return ParamLoadedValue(MI.getOperand(1), Expr);
9116 case X86::MOV8rr:
9117 case X86::MOV16rr:
9118 case X86::MOV32rr:
9119 case X86::MOV64rr:
9120 return describeMOVrrLoadedValue(MI, Reg, TRI);
9121 case X86::XOR32rr: {
9122 // 64-bit parameters are zero-materialized using XOR32rr, so also consider
9123 // super-registers.
9124 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9125 return None;
9126 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
9127 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
9128 return None;
9129 }
9130 case X86::MOVSX64rr32: {
9131 // We may need to describe the lower 32 bits of the MOVSX; for example, in
9132 // cases like this:
9133 //
9134 // $ebx = [...]
9135 // $rdi = MOVSX64rr32 $ebx
9136 // $esi = MOV32rr $edi
9137 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
9138 return None;
9139
9140 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
9141
9142 // If the described register is the destination register we need to
9143 // sign-extend the source register from 32 bits. The other case we handle
9144 // is when the described register is the 32-bit sub-register of the
9145 // destination register, in case we just need to return the source
9146 // register.
9147 if (Reg == MI.getOperand(0).getReg())
9148 Expr = DIExpression::appendExt(Expr, 32, 64, true);
9149 else
9150 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&(static_cast <bool> (X86MCRegisterClasses[X86::GR32RegClassID
].contains(Reg) && "Unhandled sub-register case for MOVSX64rr32"
) ? void (0) : __assert_fail ("X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && \"Unhandled sub-register case for MOVSX64rr32\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9151, __extension__
__PRETTY_FUNCTION__))
9151 "Unhandled sub-register case for MOVSX64rr32")(static_cast <bool> (X86MCRegisterClasses[X86::GR32RegClassID
].contains(Reg) && "Unhandled sub-register case for MOVSX64rr32"
) ? void (0) : __assert_fail ("X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && \"Unhandled sub-register case for MOVSX64rr32\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9151, __extension__
__PRETTY_FUNCTION__))
;
9152
9153 return ParamLoadedValue(MI.getOperand(1), Expr);
9154 }
9155 default:
9156 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction")(static_cast <bool> (!MI.isMoveImmediate() && "Unexpected MoveImm instruction"
) ? void (0) : __assert_fail ("!MI.isMoveImmediate() && \"Unexpected MoveImm instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9156, __extension__
__PRETTY_FUNCTION__))
;
9157 return TargetInstrInfo::describeLoadedValue(MI, Reg);
9158 }
9159}
9160
9161/// This is an architecture-specific helper function of reassociateOps.
9162/// Set special operand attributes for new instructions after reassociation.
9163void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
9164 MachineInstr &OldMI2,
9165 MachineInstr &NewMI1,
9166 MachineInstr &NewMI2) const {
9167 // Propagate FP flags from the original instructions.
9168 // But clear poison-generating flags because those may not be valid now.
9169 // TODO: There should be a helper function for copying only fast-math-flags.
9170 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
9171 NewMI1.setFlags(IntersectedFlags);
9172 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
9173 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
9174 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
9175
9176 NewMI2.setFlags(IntersectedFlags);
9177 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
9178 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
9179 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
9180
9181 // Integer instructions may define an implicit EFLAGS dest register operand.
9182 MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
9183 MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
9184
9185 assert(!OldFlagDef1 == !OldFlagDef2 &&(static_cast <bool> (!OldFlagDef1 == !OldFlagDef2 &&
"Unexpected instruction type for reassociation") ? void (0) :
__assert_fail ("!OldFlagDef1 == !OldFlagDef2 && \"Unexpected instruction type for reassociation\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9186, __extension__
__PRETTY_FUNCTION__))
9186 "Unexpected instruction type for reassociation")(static_cast <bool> (!OldFlagDef1 == !OldFlagDef2 &&
"Unexpected instruction type for reassociation") ? void (0) :
__assert_fail ("!OldFlagDef1 == !OldFlagDef2 && \"Unexpected instruction type for reassociation\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9186, __extension__
__PRETTY_FUNCTION__))
;
9187
9188 if (!OldFlagDef1 || !OldFlagDef2)
9189 return;
9190
9191 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&(static_cast <bool> (OldFlagDef1->isDead() &&
OldFlagDef2->isDead() && "Must have dead EFLAGS operand in reassociable instruction"
) ? void (0) : __assert_fail ("OldFlagDef1->isDead() && OldFlagDef2->isDead() && \"Must have dead EFLAGS operand in reassociable instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9192, __extension__
__PRETTY_FUNCTION__))
9192 "Must have dead EFLAGS operand in reassociable instruction")(static_cast <bool> (OldFlagDef1->isDead() &&
OldFlagDef2->isDead() && "Must have dead EFLAGS operand in reassociable instruction"
) ? void (0) : __assert_fail ("OldFlagDef1->isDead() && OldFlagDef2->isDead() && \"Must have dead EFLAGS operand in reassociable instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9192, __extension__
__PRETTY_FUNCTION__))
;
9193
9194 MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
9195 MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
9196
9197 assert(NewFlagDef1 && NewFlagDef2 &&(static_cast <bool> (NewFlagDef1 && NewFlagDef2
&& "Unexpected operand in reassociable instruction")
? void (0) : __assert_fail ("NewFlagDef1 && NewFlagDef2 && \"Unexpected operand in reassociable instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9198, __extension__
__PRETTY_FUNCTION__))
9198 "Unexpected operand in reassociable instruction")(static_cast <bool> (NewFlagDef1 && NewFlagDef2
&& "Unexpected operand in reassociable instruction")
? void (0) : __assert_fail ("NewFlagDef1 && NewFlagDef2 && \"Unexpected operand in reassociable instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 9198, __extension__
__PRETTY_FUNCTION__))
;
9199
9200 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
9201 // of this pass or other passes. The EFLAGS operands must be dead in these new
9202 // instructions because the EFLAGS operands in the original instructions must
9203 // be dead in order for reassociation to occur.
9204 NewFlagDef1->setIsDead();
9205 NewFlagDef2->setIsDead();
9206}
9207
9208std::pair<unsigned, unsigned>
9209X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
9210 return std::make_pair(TF, 0u);
9211}
9212
9213ArrayRef<std::pair<unsigned, const char *>>
9214X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
9215 using namespace X86II;
9216 static const std::pair<unsigned, const char *> TargetFlags[] = {
9217 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
9218 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
9219 {MO_GOT, "x86-got"},
9220 {MO_GOTOFF, "x86-gotoff"},
9221 {MO_GOTPCREL, "x86-gotpcrel"},
9222 {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
9223 {MO_PLT, "x86-plt"},
9224 {MO_TLSGD, "x86-tlsgd"},
9225 {MO_TLSLD, "x86-tlsld"},
9226 {MO_TLSLDM, "x86-tlsldm"},
9227 {MO_GOTTPOFF, "x86-gottpoff"},
9228 {MO_INDNTPOFF, "x86-indntpoff"},
9229 {MO_TPOFF, "x86-tpoff"},
9230 {MO_DTPOFF, "x86-dtpoff"},
9231 {MO_NTPOFF, "x86-ntpoff"},
9232 {MO_GOTNTPOFF, "x86-gotntpoff"},
9233 {MO_DLLIMPORT, "x86-dllimport"},
9234 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
9235 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
9236 {MO_TLVP, "x86-tlvp"},
9237 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
9238 {MO_SECREL, "x86-secrel"},
9239 {MO_COFFSTUB, "x86-coffstub"}};
9240 return makeArrayRef(TargetFlags);
9241}
9242
9243namespace {
9244 /// Create Global Base Reg pass. This initializes the PIC
9245 /// global base register for x86-32.
9246 struct CGBR : public MachineFunctionPass {
9247 static char ID;
9248 CGBR() : MachineFunctionPass(ID) {}
9249
9250 bool runOnMachineFunction(MachineFunction &MF) override {
9251 const X86TargetMachine *TM =
9252 static_cast<const X86TargetMachine *>(&MF.getTarget());
9253 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
9254
9255 // Don't do anything in the 64-bit small and kernel code models. They use
9256 // RIP-relative addressing for everything.
9257 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
9258 TM->getCodeModel() == CodeModel::Kernel))
9259 return false;
9260
9261 // Only emit a global base reg in PIC mode.
9262 if (!TM->isPositionIndependent())
9263 return false;
9264
9265 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9266 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
9267
9268 // If we didn't need a GlobalBaseReg, don't insert code.
9269 if (GlobalBaseReg == 0)
9270 return false;
9271
9272 // Insert the set of GlobalBaseReg into the first MBB of the function
9273 MachineBasicBlock &FirstMBB = MF.front();
9274 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
9275 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
9276 MachineRegisterInfo &RegInfo = MF.getRegInfo();
9277 const X86InstrInfo *TII = STI.getInstrInfo();
9278
9279 Register PC;
9280 if (STI.isPICStyleGOT())
9281 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
9282 else
9283 PC = GlobalBaseReg;
9284
9285 if (STI.is64Bit()) {
9286 if (TM->getCodeModel() == CodeModel::Medium) {
9287 // In the medium code model, use a RIP-relative LEA to materialize the
9288 // GOT.
9289 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
9290 .addReg(X86::RIP)
9291 .addImm(0)
9292 .addReg(0)
9293 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
9294 .addReg(0);
9295 } else if (TM->getCodeModel() == CodeModel::Large) {
9296 // In the large code model, we are aiming for this code, though the
9297 // register allocation may vary:
9298 // leaq .LN$pb(%rip), %rax
9299 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
9300 // addq %rcx, %rax
9301 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
9302 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
9303 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
9304 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
9305 .addReg(X86::RIP)
9306 .addImm(0)
9307 .addReg(0)
9308 .addSym(MF.getPICBaseSymbol())
9309 .addReg(0);
9310 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
9311 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
9312 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
9313 X86II::MO_PIC_BASE_OFFSET);
9314 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
9315 .addReg(PBReg, RegState::Kill)
9316 .addReg(GOTReg, RegState::Kill);
9317 } else {
9318 llvm_unreachable("unexpected code model")::llvm::llvm_unreachable_internal("unexpected code model", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 9318)
;
9319 }
9320 } else {
9321 // Operand of MovePCtoStack is completely ignored by asm printer. It's
9322 // only used in JIT code emission as displacement to pc.
9323 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
9324
9325 // If we're using vanilla 'GOT' PIC style, we should use relative
9326 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
9327 if (STI.isPICStyleGOT()) {
9328 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
9329 // %some_register
9330 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
9331 .addReg(PC)
9332 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
9333 X86II::MO_GOT_ABSOLUTE_ADDRESS);
9334 }
9335 }
9336
9337 return true;
9338 }
9339
9340 StringRef getPassName() const override {
9341 return "X86 PIC Global Base Reg Initialization";
9342 }
9343
9344 void getAnalysisUsage(AnalysisUsage &AU) const override {
9345 AU.setPreservesCFG();
9346 MachineFunctionPass::getAnalysisUsage(AU);
9347 }
9348 };
9349} // namespace
9350
9351char CGBR::ID = 0;
9352FunctionPass*
9353llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
9354
9355namespace {
9356 struct LDTLSCleanup : public MachineFunctionPass {
9357 static char ID;
9358 LDTLSCleanup() : MachineFunctionPass(ID) {}
9359
9360 bool runOnMachineFunction(MachineFunction &MF) override {
9361 if (skipFunction(MF.getFunction()))
9362 return false;
9363
9364 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
9365 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
9366 // No point folding accesses if there isn't at least two.
9367 return false;
9368 }
9369
9370 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
9371 return VisitNode(DT->getRootNode(), 0);
9372 }
9373
9374 // Visit the dominator subtree rooted at Node in pre-order.
9375 // If TLSBaseAddrReg is non-null, then use that to replace any
9376 // TLS_base_addr instructions. Otherwise, create the register
9377 // when the first such instruction is seen, and then use it
9378 // as we encounter more instructions.
9379 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
9380 MachineBasicBlock *BB = Node->getBlock();
9381 bool Changed = false;
9382
9383 // Traverse the current block.
9384 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
9385 ++I) {
9386 switch (I->getOpcode()) {
9387 case X86::TLS_base_addr32:
9388 case X86::TLS_base_addr64:
9389 if (TLSBaseAddrReg)
9390 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
9391 else
9392 I = SetRegister(*I, &TLSBaseAddrReg);
9393 Changed = true;
9394 break;
9395 default:
9396 break;
9397 }
9398 }
9399
9400 // Visit the children of this block in the dominator tree.
9401 for (auto &I : *Node) {
9402 Changed |= VisitNode(I, TLSBaseAddrReg);
9403 }
9404
9405 return Changed;
9406 }
9407
9408 // Replace the TLS_base_addr instruction I with a copy from
9409 // TLSBaseAddrReg, returning the new instruction.
9410 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
9411 unsigned TLSBaseAddrReg) {
9412 MachineFunction *MF = I.getParent()->getParent();
9413 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9414 const bool is64Bit = STI.is64Bit();
9415 const X86InstrInfo *TII = STI.getInstrInfo();
9416
9417 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
9418 MachineInstr *Copy =
9419 BuildMI(*I.getParent(), I, I.getDebugLoc(),
9420 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
9421 .addReg(TLSBaseAddrReg);
9422
9423 // Erase the TLS_base_addr instruction.
9424 I.eraseFromParent();
9425
9426 return Copy;
9427 }
9428
9429 // Create a virtual register in *TLSBaseAddrReg, and populate it by
9430 // inserting a copy instruction after I. Returns the new instruction.
9431 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
9432 MachineFunction *MF = I.getParent()->getParent();
9433 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9434 const bool is64Bit = STI.is64Bit();
9435 const X86InstrInfo *TII = STI.getInstrInfo();
9436
9437 // Create a virtual register for the TLS base address.
9438 MachineRegisterInfo &RegInfo = MF->getRegInfo();
9439 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
9440 ? &X86::GR64RegClass
9441 : &X86::GR32RegClass);
9442
9443 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
9444 MachineInstr *Next = I.getNextNode();
9445 MachineInstr *Copy =
9446 BuildMI(*I.getParent(), Next, I.getDebugLoc(),
9447 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
9448 .addReg(is64Bit ? X86::RAX : X86::EAX);
9449
9450 return Copy;
9451 }
9452
9453 StringRef getPassName() const override {
9454 return "Local Dynamic TLS Access Clean-up";
9455 }
9456
9457 void getAnalysisUsage(AnalysisUsage &AU) const override {
9458 AU.setPreservesCFG();
9459 AU.addRequired<MachineDominatorTree>();
9460 MachineFunctionPass::getAnalysisUsage(AU);
9461 }
9462 };
9463}
9464
9465char LDTLSCleanup::ID = 0;
9466FunctionPass*
9467llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
9468
9469/// Constants defining how certain sequences should be outlined.
9470///
9471/// \p MachineOutlinerDefault implies that the function is called with a call
9472/// instruction, and a return must be emitted for the outlined function frame.
9473///
9474/// That is,
9475///
9476/// I1 OUTLINED_FUNCTION:
9477/// I2 --> call OUTLINED_FUNCTION I1
9478/// I3 I2
9479/// I3
9480/// ret
9481///
9482/// * Call construction overhead: 1 (call instruction)
9483/// * Frame construction overhead: 1 (return instruction)
9484///
9485/// \p MachineOutlinerTailCall implies that the function is being tail called.
9486/// A jump is emitted instead of a call, and the return is already present in
9487/// the outlined sequence. That is,
9488///
9489/// I1 OUTLINED_FUNCTION:
9490/// I2 --> jmp OUTLINED_FUNCTION I1
9491/// ret I2
9492/// ret
9493///
9494/// * Call construction overhead: 1 (jump instruction)
9495/// * Frame construction overhead: 0 (don't need to return)
9496///
9497enum MachineOutlinerClass {
9498 MachineOutlinerDefault,
9499 MachineOutlinerTailCall
9500};
9501
9502outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
9503 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
9504 unsigned SequenceSize =
9505 std::accumulate(RepeatedSequenceLocs[0].front(),
9506 std::next(RepeatedSequenceLocs[0].back()), 0,
9507 [](unsigned Sum, const MachineInstr &MI) {
9508 // FIXME: x86 doesn't implement getInstSizeInBytes, so
9509 // we can't tell the cost. Just assume each instruction
9510 // is one byte.
9511 if (MI.isDebugInstr() || MI.isKill())
9512 return Sum;
9513 return Sum + 1;
9514 });
9515
9516 // We check to see if CFI Instructions are present, and if they are
9517 // we find the number of CFI Instructions in the candidates.
9518 unsigned CFICount = 0;
9519 for (auto &I : make_range(RepeatedSequenceLocs[0].front(),
9520 std::next(RepeatedSequenceLocs[0].back()))) {
9521 if (I.isCFIInstruction())
9522 CFICount++;
9523 }
9524
9525 // We compare the number of found CFI Instructions to the number of CFI
9526 // instructions in the parent function for each candidate. We must check this
9527 // since if we outline one of the CFI instructions in a function, we have to
9528 // outline them all for correctness. If we do not, the address offsets will be
9529 // incorrect between the two sections of the program.
9530 for (outliner::Candidate &C : RepeatedSequenceLocs) {
9531 std::vector<MCCFIInstruction> CFIInstructions =
9532 C.getMF()->getFrameInstructions();
9533
9534 if (CFICount > 0 && CFICount != CFIInstructions.size())
9535 return outliner::OutlinedFunction();
9536 }
9537
9538 // FIXME: Use real size in bytes for call and ret instructions.
9539 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
9540 for (outliner::Candidate &C : RepeatedSequenceLocs)
9541 C.setCallInfo(MachineOutlinerTailCall, 1);
9542
9543 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
9544 0, // Number of bytes to emit frame.
9545 MachineOutlinerTailCall // Type of frame.
9546 );
9547 }
9548
9549 if (CFICount > 0)
9550 return outliner::OutlinedFunction();
9551
9552 for (outliner::Candidate &C : RepeatedSequenceLocs)
9553 C.setCallInfo(MachineOutlinerDefault, 1);
9554
9555 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
9556 MachineOutlinerDefault);
9557}
9558
9559bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
9560 bool OutlineFromLinkOnceODRs) const {
9561 const Function &F = MF.getFunction();
9562
9563 // Does the function use a red zone? If it does, then we can't risk messing
9564 // with the stack.
9565 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
9566 // It could have a red zone. If it does, then we don't want to touch it.
9567 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9568 if (!X86FI || X86FI->getUsesRedZone())
9569 return false;
9570 }
9571
9572 // If we *don't* want to outline from things that could potentially be deduped
9573 // then return false.
9574 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
9575 return false;
9576
9577 // This function is viable for outlining, so return true.
9578 return true;
9579}
9580
9581outliner::InstrType
9582X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
9583 MachineInstr &MI = *MIT;
9584 // Don't allow debug values to impact outlining type.
9585 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
9586 return outliner::InstrType::Invisible;
9587
9588 // At this point, KILL instructions don't really tell us much so we can go
9589 // ahead and skip over them.
9590 if (MI.isKill())
9591 return outliner::InstrType::Invisible;
9592
9593 // Is this a tail call? If yes, we can outline as a tail call.
9594 if (isTailCall(MI))
9595 return outliner::InstrType::Legal;
9596
9597 // Is this the terminator of a basic block?
9598 if (MI.isTerminator() || MI.isReturn()) {
9599
9600 // Does its parent have any successors in its MachineFunction?
9601 if (MI.getParent()->succ_empty())
9602 return outliner::InstrType::Legal;
9603
9604 // It does, so we can't tail call it.
9605 return outliner::InstrType::Illegal;
9606 }
9607
9608 // Don't outline anything that modifies or reads from the stack pointer.
9609 //
9610 // FIXME: There are instructions which are being manually built without
9611 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
9612 // able to remove the extra checks once those are fixed up. For example,
9613 // sometimes we might get something like %rax = POP64r 1. This won't be
9614 // caught by modifiesRegister or readsRegister even though the instruction
9615 // really ought to be formed so that modifiesRegister/readsRegister would
9616 // catch it.
9617 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
9618 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
9619 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
9620 return outliner::InstrType::Illegal;
9621
9622 // Outlined calls change the instruction pointer, so don't read from it.
9623 if (MI.readsRegister(X86::RIP, &RI) ||
9624 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
9625 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
9626 return outliner::InstrType::Illegal;
9627
9628 // Positions can't safely be outlined.
9629 if (MI.isPosition())
9630 return outliner::InstrType::Illegal;
9631
9632 // Make sure none of the operands of this instruction do anything tricky.
9633 for (const MachineOperand &MOP : MI.operands())
9634 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
9635 MOP.isTargetIndex())
9636 return outliner::InstrType::Illegal;
9637
9638 return outliner::InstrType::Legal;
9639}
9640
9641void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
9642 MachineFunction &MF,
9643 const outliner::OutlinedFunction &OF)
9644 const {
9645 // If we're a tail call, we already have a return, so don't do anything.
9646 if (OF.FrameConstructionID == MachineOutlinerTailCall)
9647 return;
9648
9649 // We're a normal call, so our sequence doesn't have a return instruction.
9650 // Add it in.
9651 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
9652 MBB.insert(MBB.end(), retq);
9653}
9654
9655MachineBasicBlock::iterator
9656X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
9657 MachineBasicBlock::iterator &It,
9658 MachineFunction &MF,
9659 outliner::Candidate &C) const {
9660 // Is it a tail call?
9661 if (C.CallConstructionID == MachineOutlinerTailCall) {
9662 // Yes, just insert a JMP.
9663 It = MBB.insert(It,
9664 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
9665 .addGlobalAddress(M.getNamedValue(MF.getName())));
9666 } else {
9667 // No, insert a call.
9668 It = MBB.insert(It,
9669 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
9670 .addGlobalAddress(M.getNamedValue(MF.getName())));
9671 }
9672
9673 return It;
9674}
9675
9676#define GET_INSTRINFO_HELPERS
9677#include "X86GenInstrInfo.inc"