Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Target/X86/X86InstrInfo.cpp
Warning:line 3761, column 19
Value stored to 'NewMI' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name X86InstrInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/X86 -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Target/X86 -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Target/X86/X86InstrInfo.cpp
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86InstrInfo.h"
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrFoldTables.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Sequence.h"
22#include "llvm/CodeGen/LiveIntervals.h"
23#include "llvm/CodeGen/LivePhysRegs.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/StackMaps.h"
32#include "llvm/IR/DebugInfoMetadata.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/MC/MCAsmInfo.h"
36#include "llvm/MC/MCExpr.h"
37#include "llvm/MC/MCInst.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetOptions.h"
43
44using namespace llvm;
45
46#define DEBUG_TYPE"x86-instr-info" "x86-instr-info"
47
48#define GET_INSTRINFO_CTOR_DTOR
49#include "X86GenInstrInfo.inc"
50
51static cl::opt<bool>
52 NoFusing("disable-spill-fusing",
53 cl::desc("Disable fusing of spill code into instructions"),
54 cl::Hidden);
55static cl::opt<bool>
56PrintFailedFusing("print-failed-fuse-candidates",
57 cl::desc("Print instructions that the allocator wants to"
58 " fuse, but the X86 backend currently can't"),
59 cl::Hidden);
60static cl::opt<bool>
61ReMatPICStubLoad("remat-pic-stub-load",
62 cl::desc("Re-materialize load from stub in PIC mode"),
63 cl::init(false), cl::Hidden);
64static cl::opt<unsigned>
65PartialRegUpdateClearance("partial-reg-update-clearance",
66 cl::desc("Clearance between two register writes "
67 "for inserting XOR to avoid partial "
68 "register update"),
69 cl::init(64), cl::Hidden);
70static cl::opt<unsigned>
71UndefRegClearance("undef-reg-clearance",
72 cl::desc("How many idle instructions we would like before "
73 "certain undef register reads"),
74 cl::init(128), cl::Hidden);
75
76
77// Pin the vtable to this file.
78void X86InstrInfo::anchor() {}
79
80X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
81 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
82 : X86::ADJCALLSTACKDOWN32),
83 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
84 : X86::ADJCALLSTACKUP32),
85 X86::CATCHRET,
86 (STI.is64Bit() ? X86::RET64 : X86::RET32)),
87 Subtarget(STI), RI(STI.getTargetTriple()) {
88}
89
90bool
91X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
92 Register &SrcReg, Register &DstReg,
93 unsigned &SubIdx) const {
94 switch (MI.getOpcode()) {
95 default: break;
96 case X86::MOVSX16rr8:
97 case X86::MOVZX16rr8:
98 case X86::MOVSX32rr8:
99 case X86::MOVZX32rr8:
100 case X86::MOVSX64rr8:
101 if (!Subtarget.is64Bit())
102 // It's not always legal to reference the low 8-bit of the larger
103 // register in 32-bit mode.
104 return false;
105 LLVM_FALLTHROUGH[[gnu::fallthrough]];
106 case X86::MOVSX32rr16:
107 case X86::MOVZX32rr16:
108 case X86::MOVSX64rr16:
109 case X86::MOVSX64rr32: {
110 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
111 // Be conservative.
112 return false;
113 SrcReg = MI.getOperand(1).getReg();
114 DstReg = MI.getOperand(0).getReg();
115 switch (MI.getOpcode()) {
116 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 116)
;
117 case X86::MOVSX16rr8:
118 case X86::MOVZX16rr8:
119 case X86::MOVSX32rr8:
120 case X86::MOVZX32rr8:
121 case X86::MOVSX64rr8:
122 SubIdx = X86::sub_8bit;
123 break;
124 case X86::MOVSX32rr16:
125 case X86::MOVZX32rr16:
126 case X86::MOVSX64rr16:
127 SubIdx = X86::sub_16bit;
128 break;
129 case X86::MOVSX64rr32:
130 SubIdx = X86::sub_32bit;
131 break;
132 }
133 return true;
134 }
135 }
136 return false;
137}
138
139bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
140 if (MI.mayLoad() || MI.mayStore())
141 return false;
142
143 // Some target-independent operations that trivially lower to data-invariant
144 // instructions.
145 if (MI.isCopyLike() || MI.isInsertSubreg())
146 return true;
147
148 unsigned Opcode = MI.getOpcode();
149 using namespace X86;
150 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
151 // However, they set flags and are perhaps the most surprisingly constant
152 // time operations so we call them out here separately.
153 if (isIMUL(Opcode))
154 return true;
155 // Bit scanning and counting instructions that are somewhat surprisingly
156 // constant time as they scan across bits and do other fairly complex
157 // operations like popcnt, but are believed to be constant time on x86.
158 // However, these set flags.
159 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
160 isTZCNT(Opcode))
161 return true;
162 // Bit manipulation instructions are effectively combinations of basic
163 // arithmetic ops, and should still execute in constant time. These also
164 // set flags.
165 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
166 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
167 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
168 isTZMSK(Opcode))
169 return true;
170 // Bit extracting and clearing instructions should execute in constant time,
171 // and set flags.
172 if (isBEXTR(Opcode) || isBZHI(Opcode))
173 return true;
174 // Shift and rotate.
175 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
176 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
177 return true;
178 // Basic arithmetic is constant time on the input but does set flags.
179 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
180 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
181 return true;
182 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
183 if (isADCX(Opcode) || isADOX(Opcode) || isANDN(Opcode))
184 return true;
185 // Unary arithmetic operations.
186 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
187 return true;
188 // Unlike other arithmetic, NOT doesn't set EFLAGS.
189 if (isNOT(Opcode))
190 return true;
191 // Various move instructions used to zero or sign extend things. Note that we
192 // intentionally don't support the _NOREX variants as we can't handle that
193 // register constraint anyways.
194 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
195 return true;
196 // Arithmetic instructions that are both constant time and don't set flags.
197 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
198 return true;
199 // LEA doesn't actually access memory, and its arithmetic is constant time.
200 if (isLEA(Opcode))
201 return true;
202 // By default, assume that the instruction is not data invariant.
203 return false;
204}
205
206bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
207 switch (MI.getOpcode()) {
208 default:
209 // By default, assume that the load will immediately leak.
210 return false;
211
212 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
213 // However, they set flags and are perhaps the most surprisingly constant
214 // time operations so we call them out here separately.
215 case X86::IMUL16rm:
216 case X86::IMUL16rmi8:
217 case X86::IMUL16rmi:
218 case X86::IMUL32rm:
219 case X86::IMUL32rmi8:
220 case X86::IMUL32rmi:
221 case X86::IMUL64rm:
222 case X86::IMUL64rmi32:
223 case X86::IMUL64rmi8:
224
225 // Bit scanning and counting instructions that are somewhat surprisingly
226 // constant time as they scan across bits and do other fairly complex
227 // operations like popcnt, but are believed to be constant time on x86.
228 // However, these set flags.
229 case X86::BSF16rm:
230 case X86::BSF32rm:
231 case X86::BSF64rm:
232 case X86::BSR16rm:
233 case X86::BSR32rm:
234 case X86::BSR64rm:
235 case X86::LZCNT16rm:
236 case X86::LZCNT32rm:
237 case X86::LZCNT64rm:
238 case X86::POPCNT16rm:
239 case X86::POPCNT32rm:
240 case X86::POPCNT64rm:
241 case X86::TZCNT16rm:
242 case X86::TZCNT32rm:
243 case X86::TZCNT64rm:
244
245 // Bit manipulation instructions are effectively combinations of basic
246 // arithmetic ops, and should still execute in constant time. These also
247 // set flags.
248 case X86::BLCFILL32rm:
249 case X86::BLCFILL64rm:
250 case X86::BLCI32rm:
251 case X86::BLCI64rm:
252 case X86::BLCIC32rm:
253 case X86::BLCIC64rm:
254 case X86::BLCMSK32rm:
255 case X86::BLCMSK64rm:
256 case X86::BLCS32rm:
257 case X86::BLCS64rm:
258 case X86::BLSFILL32rm:
259 case X86::BLSFILL64rm:
260 case X86::BLSI32rm:
261 case X86::BLSI64rm:
262 case X86::BLSIC32rm:
263 case X86::BLSIC64rm:
264 case X86::BLSMSK32rm:
265 case X86::BLSMSK64rm:
266 case X86::BLSR32rm:
267 case X86::BLSR64rm:
268 case X86::TZMSK32rm:
269 case X86::TZMSK64rm:
270
271 // Bit extracting and clearing instructions should execute in constant time,
272 // and set flags.
273 case X86::BEXTR32rm:
274 case X86::BEXTR64rm:
275 case X86::BEXTRI32mi:
276 case X86::BEXTRI64mi:
277 case X86::BZHI32rm:
278 case X86::BZHI64rm:
279
280 // Basic arithmetic is constant time on the input but does set flags.
281 case X86::ADC8rm:
282 case X86::ADC16rm:
283 case X86::ADC32rm:
284 case X86::ADC64rm:
285 case X86::ADCX32rm:
286 case X86::ADCX64rm:
287 case X86::ADD8rm:
288 case X86::ADD16rm:
289 case X86::ADD32rm:
290 case X86::ADD64rm:
291 case X86::ADOX32rm:
292 case X86::ADOX64rm:
293 case X86::AND8rm:
294 case X86::AND16rm:
295 case X86::AND32rm:
296 case X86::AND64rm:
297 case X86::ANDN32rm:
298 case X86::ANDN64rm:
299 case X86::OR8rm:
300 case X86::OR16rm:
301 case X86::OR32rm:
302 case X86::OR64rm:
303 case X86::SBB8rm:
304 case X86::SBB16rm:
305 case X86::SBB32rm:
306 case X86::SBB64rm:
307 case X86::SUB8rm:
308 case X86::SUB16rm:
309 case X86::SUB32rm:
310 case X86::SUB64rm:
311 case X86::XOR8rm:
312 case X86::XOR16rm:
313 case X86::XOR32rm:
314 case X86::XOR64rm:
315
316 // Integer multiply w/o affecting flags is still believed to be constant
317 // time on x86. Called out separately as this is among the most surprising
318 // instructions to exhibit that behavior.
319 case X86::MULX32rm:
320 case X86::MULX64rm:
321
322 // Arithmetic instructions that are both constant time and don't set flags.
323 case X86::RORX32mi:
324 case X86::RORX64mi:
325 case X86::SARX32rm:
326 case X86::SARX64rm:
327 case X86::SHLX32rm:
328 case X86::SHLX64rm:
329 case X86::SHRX32rm:
330 case X86::SHRX64rm:
331
332 // Conversions are believed to be constant time and don't set flags.
333 case X86::CVTTSD2SI64rm:
334 case X86::VCVTTSD2SI64rm:
335 case X86::VCVTTSD2SI64Zrm:
336 case X86::CVTTSD2SIrm:
337 case X86::VCVTTSD2SIrm:
338 case X86::VCVTTSD2SIZrm:
339 case X86::CVTTSS2SI64rm:
340 case X86::VCVTTSS2SI64rm:
341 case X86::VCVTTSS2SI64Zrm:
342 case X86::CVTTSS2SIrm:
343 case X86::VCVTTSS2SIrm:
344 case X86::VCVTTSS2SIZrm:
345 case X86::CVTSI2SDrm:
346 case X86::VCVTSI2SDrm:
347 case X86::VCVTSI2SDZrm:
348 case X86::CVTSI2SSrm:
349 case X86::VCVTSI2SSrm:
350 case X86::VCVTSI2SSZrm:
351 case X86::CVTSI642SDrm:
352 case X86::VCVTSI642SDrm:
353 case X86::VCVTSI642SDZrm:
354 case X86::CVTSI642SSrm:
355 case X86::VCVTSI642SSrm:
356 case X86::VCVTSI642SSZrm:
357 case X86::CVTSS2SDrm:
358 case X86::VCVTSS2SDrm:
359 case X86::VCVTSS2SDZrm:
360 case X86::CVTSD2SSrm:
361 case X86::VCVTSD2SSrm:
362 case X86::VCVTSD2SSZrm:
363 // AVX512 added unsigned integer conversions.
364 case X86::VCVTTSD2USI64Zrm:
365 case X86::VCVTTSD2USIZrm:
366 case X86::VCVTTSS2USI64Zrm:
367 case X86::VCVTTSS2USIZrm:
368 case X86::VCVTUSI2SDZrm:
369 case X86::VCVTUSI642SDZrm:
370 case X86::VCVTUSI2SSZrm:
371 case X86::VCVTUSI642SSZrm:
372
373 // Loads to register don't set flags.
374 case X86::MOV8rm:
375 case X86::MOV8rm_NOREX:
376 case X86::MOV16rm:
377 case X86::MOV32rm:
378 case X86::MOV64rm:
379 case X86::MOVSX16rm8:
380 case X86::MOVSX32rm16:
381 case X86::MOVSX32rm8:
382 case X86::MOVSX32rm8_NOREX:
383 case X86::MOVSX64rm16:
384 case X86::MOVSX64rm32:
385 case X86::MOVSX64rm8:
386 case X86::MOVZX16rm8:
387 case X86::MOVZX32rm16:
388 case X86::MOVZX32rm8:
389 case X86::MOVZX32rm8_NOREX:
390 case X86::MOVZX64rm16:
391 case X86::MOVZX64rm8:
392 return true;
393 }
394}
395
396int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
397 const MachineFunction *MF = MI.getParent()->getParent();
398 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
399
400 if (isFrameInstr(MI)) {
401 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
402 SPAdj -= getFrameAdjustment(MI);
403 if (!isFrameSetup(MI))
404 SPAdj = -SPAdj;
405 return SPAdj;
406 }
407
408 // To know whether a call adjusts the stack, we need information
409 // that is bound to the following ADJCALLSTACKUP pseudo.
410 // Look for the next ADJCALLSTACKUP that follows the call.
411 if (MI.isCall()) {
412 const MachineBasicBlock *MBB = MI.getParent();
413 auto I = ++MachineBasicBlock::const_iterator(MI);
414 for (auto E = MBB->end(); I != E; ++I) {
415 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
416 I->isCall())
417 break;
418 }
419
420 // If we could not find a frame destroy opcode, then it has already
421 // been simplified, so we don't care.
422 if (I->getOpcode() != getCallFrameDestroyOpcode())
423 return 0;
424
425 return -(I->getOperand(1).getImm());
426 }
427
428 // Currently handle only PUSHes we can reasonably expect to see
429 // in call sequences
430 switch (MI.getOpcode()) {
431 default:
432 return 0;
433 case X86::PUSH32i8:
434 case X86::PUSH32r:
435 case X86::PUSH32rmm:
436 case X86::PUSH32rmr:
437 case X86::PUSHi32:
438 return 4;
439 case X86::PUSH64i8:
440 case X86::PUSH64r:
441 case X86::PUSH64rmm:
442 case X86::PUSH64rmr:
443 case X86::PUSH64i32:
444 return 8;
445 }
446}
447
448/// Return true and the FrameIndex if the specified
449/// operand and follow operands form a reference to the stack frame.
450bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
451 int &FrameIndex) const {
452 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
453 MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
454 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
455 MI.getOperand(Op + X86::AddrDisp).isImm() &&
456 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
457 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
458 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
459 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
460 return true;
461 }
462 return false;
463}
464
465static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
466 switch (Opcode) {
467 default:
468 return false;
469 case X86::MOV8rm:
470 case X86::KMOVBkm:
471 MemBytes = 1;
472 return true;
473 case X86::MOV16rm:
474 case X86::KMOVWkm:
475 case X86::VMOVSHZrm:
476 case X86::VMOVSHZrm_alt:
477 MemBytes = 2;
478 return true;
479 case X86::MOV32rm:
480 case X86::MOVSSrm:
481 case X86::MOVSSrm_alt:
482 case X86::VMOVSSrm:
483 case X86::VMOVSSrm_alt:
484 case X86::VMOVSSZrm:
485 case X86::VMOVSSZrm_alt:
486 case X86::KMOVDkm:
487 MemBytes = 4;
488 return true;
489 case X86::MOV64rm:
490 case X86::LD_Fp64m:
491 case X86::MOVSDrm:
492 case X86::MOVSDrm_alt:
493 case X86::VMOVSDrm:
494 case X86::VMOVSDrm_alt:
495 case X86::VMOVSDZrm:
496 case X86::VMOVSDZrm_alt:
497 case X86::MMX_MOVD64rm:
498 case X86::MMX_MOVQ64rm:
499 case X86::KMOVQkm:
500 MemBytes = 8;
501 return true;
502 case X86::MOVAPSrm:
503 case X86::MOVUPSrm:
504 case X86::MOVAPDrm:
505 case X86::MOVUPDrm:
506 case X86::MOVDQArm:
507 case X86::MOVDQUrm:
508 case X86::VMOVAPSrm:
509 case X86::VMOVUPSrm:
510 case X86::VMOVAPDrm:
511 case X86::VMOVUPDrm:
512 case X86::VMOVDQArm:
513 case X86::VMOVDQUrm:
514 case X86::VMOVAPSZ128rm:
515 case X86::VMOVUPSZ128rm:
516 case X86::VMOVAPSZ128rm_NOVLX:
517 case X86::VMOVUPSZ128rm_NOVLX:
518 case X86::VMOVAPDZ128rm:
519 case X86::VMOVUPDZ128rm:
520 case X86::VMOVDQU8Z128rm:
521 case X86::VMOVDQU16Z128rm:
522 case X86::VMOVDQA32Z128rm:
523 case X86::VMOVDQU32Z128rm:
524 case X86::VMOVDQA64Z128rm:
525 case X86::VMOVDQU64Z128rm:
526 MemBytes = 16;
527 return true;
528 case X86::VMOVAPSYrm:
529 case X86::VMOVUPSYrm:
530 case X86::VMOVAPDYrm:
531 case X86::VMOVUPDYrm:
532 case X86::VMOVDQAYrm:
533 case X86::VMOVDQUYrm:
534 case X86::VMOVAPSZ256rm:
535 case X86::VMOVUPSZ256rm:
536 case X86::VMOVAPSZ256rm_NOVLX:
537 case X86::VMOVUPSZ256rm_NOVLX:
538 case X86::VMOVAPDZ256rm:
539 case X86::VMOVUPDZ256rm:
540 case X86::VMOVDQU8Z256rm:
541 case X86::VMOVDQU16Z256rm:
542 case X86::VMOVDQA32Z256rm:
543 case X86::VMOVDQU32Z256rm:
544 case X86::VMOVDQA64Z256rm:
545 case X86::VMOVDQU64Z256rm:
546 MemBytes = 32;
547 return true;
548 case X86::VMOVAPSZrm:
549 case X86::VMOVUPSZrm:
550 case X86::VMOVAPDZrm:
551 case X86::VMOVUPDZrm:
552 case X86::VMOVDQU8Zrm:
553 case X86::VMOVDQU16Zrm:
554 case X86::VMOVDQA32Zrm:
555 case X86::VMOVDQU32Zrm:
556 case X86::VMOVDQA64Zrm:
557 case X86::VMOVDQU64Zrm:
558 MemBytes = 64;
559 return true;
560 }
561}
562
563static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
564 switch (Opcode) {
565 default:
566 return false;
567 case X86::MOV8mr:
568 case X86::KMOVBmk:
569 MemBytes = 1;
570 return true;
571 case X86::MOV16mr:
572 case X86::KMOVWmk:
573 case X86::VMOVSHZmr:
574 MemBytes = 2;
575 return true;
576 case X86::MOV32mr:
577 case X86::MOVSSmr:
578 case X86::VMOVSSmr:
579 case X86::VMOVSSZmr:
580 case X86::KMOVDmk:
581 MemBytes = 4;
582 return true;
583 case X86::MOV64mr:
584 case X86::ST_FpP64m:
585 case X86::MOVSDmr:
586 case X86::VMOVSDmr:
587 case X86::VMOVSDZmr:
588 case X86::MMX_MOVD64mr:
589 case X86::MMX_MOVQ64mr:
590 case X86::MMX_MOVNTQmr:
591 case X86::KMOVQmk:
592 MemBytes = 8;
593 return true;
594 case X86::MOVAPSmr:
595 case X86::MOVUPSmr:
596 case X86::MOVAPDmr:
597 case X86::MOVUPDmr:
598 case X86::MOVDQAmr:
599 case X86::MOVDQUmr:
600 case X86::VMOVAPSmr:
601 case X86::VMOVUPSmr:
602 case X86::VMOVAPDmr:
603 case X86::VMOVUPDmr:
604 case X86::VMOVDQAmr:
605 case X86::VMOVDQUmr:
606 case X86::VMOVUPSZ128mr:
607 case X86::VMOVAPSZ128mr:
608 case X86::VMOVUPSZ128mr_NOVLX:
609 case X86::VMOVAPSZ128mr_NOVLX:
610 case X86::VMOVUPDZ128mr:
611 case X86::VMOVAPDZ128mr:
612 case X86::VMOVDQA32Z128mr:
613 case X86::VMOVDQU32Z128mr:
614 case X86::VMOVDQA64Z128mr:
615 case X86::VMOVDQU64Z128mr:
616 case X86::VMOVDQU8Z128mr:
617 case X86::VMOVDQU16Z128mr:
618 MemBytes = 16;
619 return true;
620 case X86::VMOVUPSYmr:
621 case X86::VMOVAPSYmr:
622 case X86::VMOVUPDYmr:
623 case X86::VMOVAPDYmr:
624 case X86::VMOVDQUYmr:
625 case X86::VMOVDQAYmr:
626 case X86::VMOVUPSZ256mr:
627 case X86::VMOVAPSZ256mr:
628 case X86::VMOVUPSZ256mr_NOVLX:
629 case X86::VMOVAPSZ256mr_NOVLX:
630 case X86::VMOVUPDZ256mr:
631 case X86::VMOVAPDZ256mr:
632 case X86::VMOVDQU8Z256mr:
633 case X86::VMOVDQU16Z256mr:
634 case X86::VMOVDQA32Z256mr:
635 case X86::VMOVDQU32Z256mr:
636 case X86::VMOVDQA64Z256mr:
637 case X86::VMOVDQU64Z256mr:
638 MemBytes = 32;
639 return true;
640 case X86::VMOVUPSZmr:
641 case X86::VMOVAPSZmr:
642 case X86::VMOVUPDZmr:
643 case X86::VMOVAPDZmr:
644 case X86::VMOVDQU8Zmr:
645 case X86::VMOVDQU16Zmr:
646 case X86::VMOVDQA32Zmr:
647 case X86::VMOVDQU32Zmr:
648 case X86::VMOVDQA64Zmr:
649 case X86::VMOVDQU64Zmr:
650 MemBytes = 64;
651 return true;
652 }
653 return false;
654}
655
656unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
657 int &FrameIndex) const {
658 unsigned Dummy;
659 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
660}
661
662unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
663 int &FrameIndex,
664 unsigned &MemBytes) const {
665 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
666 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
667 return MI.getOperand(0).getReg();
668 return 0;
669}
670
671unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
672 int &FrameIndex) const {
673 unsigned Dummy;
674 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
675 unsigned Reg;
676 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
677 return Reg;
678 // Check for post-frame index elimination operations
679 SmallVector<const MachineMemOperand *, 1> Accesses;
680 if (hasLoadFromStackSlot(MI, Accesses)) {
681 FrameIndex =
682 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
683 ->getFrameIndex();
684 return MI.getOperand(0).getReg();
685 }
686 }
687 return 0;
688}
689
690unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
691 int &FrameIndex) const {
692 unsigned Dummy;
693 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
694}
695
696unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
697 int &FrameIndex,
698 unsigned &MemBytes) const {
699 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
700 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
701 isFrameOperand(MI, 0, FrameIndex))
702 return MI.getOperand(X86::AddrNumOperands).getReg();
703 return 0;
704}
705
706unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
707 int &FrameIndex) const {
708 unsigned Dummy;
709 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
710 unsigned Reg;
711 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
712 return Reg;
713 // Check for post-frame index elimination operations
714 SmallVector<const MachineMemOperand *, 1> Accesses;
715 if (hasStoreToStackSlot(MI, Accesses)) {
716 FrameIndex =
717 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
718 ->getFrameIndex();
719 return MI.getOperand(X86::AddrNumOperands).getReg();
720 }
721 }
722 return 0;
723}
724
725/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
726static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
727 // Don't waste compile time scanning use-def chains of physregs.
728 if (!BaseReg.isVirtual())
729 return false;
730 bool isPICBase = false;
731 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
732 E = MRI.def_instr_end(); I != E; ++I) {
733 MachineInstr *DefMI = &*I;
734 if (DefMI->getOpcode() != X86::MOVPC32r)
735 return false;
736 assert(!isPICBase && "More than one PIC base?")(static_cast <bool> (!isPICBase && "More than one PIC base?"
) ? void (0) : __assert_fail ("!isPICBase && \"More than one PIC base?\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 736, __extension__ __PRETTY_FUNCTION__
))
;
737 isPICBase = true;
738 }
739 return isPICBase;
740}
741
742bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
743 AAResults *AA) const {
744 switch (MI.getOpcode()) {
745 default:
746 // This function should only be called for opcodes with the ReMaterializable
747 // flag set.
748 llvm_unreachable("Unknown rematerializable operation!")::llvm::llvm_unreachable_internal("Unknown rematerializable operation!"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 748)
;
749 break;
750
751 case X86::LOAD_STACK_GUARD:
752 case X86::AVX1_SETALLONES:
753 case X86::AVX2_SETALLONES:
754 case X86::AVX512_128_SET0:
755 case X86::AVX512_256_SET0:
756 case X86::AVX512_512_SET0:
757 case X86::AVX512_512_SETALLONES:
758 case X86::AVX512_FsFLD0SD:
759 case X86::AVX512_FsFLD0SH:
760 case X86::AVX512_FsFLD0SS:
761 case X86::AVX512_FsFLD0F128:
762 case X86::AVX_SET0:
763 case X86::FsFLD0SD:
764 case X86::FsFLD0SS:
765 case X86::FsFLD0F128:
766 case X86::KSET0D:
767 case X86::KSET0Q:
768 case X86::KSET0W:
769 case X86::KSET1D:
770 case X86::KSET1Q:
771 case X86::KSET1W:
772 case X86::MMX_SET0:
773 case X86::MOV32ImmSExti8:
774 case X86::MOV32r0:
775 case X86::MOV32r1:
776 case X86::MOV32r_1:
777 case X86::MOV32ri64:
778 case X86::MOV64ImmSExti8:
779 case X86::V_SET0:
780 case X86::V_SETALLONES:
781 case X86::MOV16ri:
782 case X86::MOV32ri:
783 case X86::MOV64ri:
784 case X86::MOV64ri32:
785 case X86::MOV8ri:
786 case X86::PTILEZEROV:
787 return true;
788
789 case X86::MOV8rm:
790 case X86::MOV8rm_NOREX:
791 case X86::MOV16rm:
792 case X86::MOV32rm:
793 case X86::MOV64rm:
794 case X86::MOVSSrm:
795 case X86::MOVSSrm_alt:
796 case X86::MOVSDrm:
797 case X86::MOVSDrm_alt:
798 case X86::MOVAPSrm:
799 case X86::MOVUPSrm:
800 case X86::MOVAPDrm:
801 case X86::MOVUPDrm:
802 case X86::MOVDQArm:
803 case X86::MOVDQUrm:
804 case X86::VMOVSSrm:
805 case X86::VMOVSSrm_alt:
806 case X86::VMOVSDrm:
807 case X86::VMOVSDrm_alt:
808 case X86::VMOVAPSrm:
809 case X86::VMOVUPSrm:
810 case X86::VMOVAPDrm:
811 case X86::VMOVUPDrm:
812 case X86::VMOVDQArm:
813 case X86::VMOVDQUrm:
814 case X86::VMOVAPSYrm:
815 case X86::VMOVUPSYrm:
816 case X86::VMOVAPDYrm:
817 case X86::VMOVUPDYrm:
818 case X86::VMOVDQAYrm:
819 case X86::VMOVDQUYrm:
820 case X86::MMX_MOVD64rm:
821 case X86::MMX_MOVQ64rm:
822 // AVX-512
823 case X86::VMOVSSZrm:
824 case X86::VMOVSSZrm_alt:
825 case X86::VMOVSDZrm:
826 case X86::VMOVSDZrm_alt:
827 case X86::VMOVSHZrm:
828 case X86::VMOVSHZrm_alt:
829 case X86::VMOVAPDZ128rm:
830 case X86::VMOVAPDZ256rm:
831 case X86::VMOVAPDZrm:
832 case X86::VMOVAPSZ128rm:
833 case X86::VMOVAPSZ256rm:
834 case X86::VMOVAPSZ128rm_NOVLX:
835 case X86::VMOVAPSZ256rm_NOVLX:
836 case X86::VMOVAPSZrm:
837 case X86::VMOVDQA32Z128rm:
838 case X86::VMOVDQA32Z256rm:
839 case X86::VMOVDQA32Zrm:
840 case X86::VMOVDQA64Z128rm:
841 case X86::VMOVDQA64Z256rm:
842 case X86::VMOVDQA64Zrm:
843 case X86::VMOVDQU16Z128rm:
844 case X86::VMOVDQU16Z256rm:
845 case X86::VMOVDQU16Zrm:
846 case X86::VMOVDQU32Z128rm:
847 case X86::VMOVDQU32Z256rm:
848 case X86::VMOVDQU32Zrm:
849 case X86::VMOVDQU64Z128rm:
850 case X86::VMOVDQU64Z256rm:
851 case X86::VMOVDQU64Zrm:
852 case X86::VMOVDQU8Z128rm:
853 case X86::VMOVDQU8Z256rm:
854 case X86::VMOVDQU8Zrm:
855 case X86::VMOVUPDZ128rm:
856 case X86::VMOVUPDZ256rm:
857 case X86::VMOVUPDZrm:
858 case X86::VMOVUPSZ128rm:
859 case X86::VMOVUPSZ256rm:
860 case X86::VMOVUPSZ128rm_NOVLX:
861 case X86::VMOVUPSZ256rm_NOVLX:
862 case X86::VMOVUPSZrm: {
863 // Loads from constant pools are trivially rematerializable.
864 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
865 MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
866 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
867 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
868 MI.isDereferenceableInvariantLoad(AA)) {
869 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
870 if (BaseReg == 0 || BaseReg == X86::RIP)
871 return true;
872 // Allow re-materialization of PIC load.
873 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
874 return false;
875 const MachineFunction &MF = *MI.getParent()->getParent();
876 const MachineRegisterInfo &MRI = MF.getRegInfo();
877 return regIsPICBase(BaseReg, MRI);
878 }
879 return false;
880 }
881
882 case X86::LEA32r:
883 case X86::LEA64r: {
884 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
885 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
886 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
887 !MI.getOperand(1 + X86::AddrDisp).isReg()) {
888 // lea fi#, lea GV, etc. are all rematerializable.
889 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
890 return true;
891 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
892 if (BaseReg == 0)
893 return true;
894 // Allow re-materialization of lea PICBase + x.
895 const MachineFunction &MF = *MI.getParent()->getParent();
896 const MachineRegisterInfo &MRI = MF.getRegInfo();
897 return regIsPICBase(BaseReg, MRI);
898 }
899 return false;
900 }
901 }
902}
903
904void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
905 MachineBasicBlock::iterator I,
906 Register DestReg, unsigned SubIdx,
907 const MachineInstr &Orig,
908 const TargetRegisterInfo &TRI) const {
909 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
910 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
911 MachineBasicBlock::LQR_Dead) {
912 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
913 // effects.
914 int Value;
915 switch (Orig.getOpcode()) {
916 case X86::MOV32r0: Value = 0; break;
917 case X86::MOV32r1: Value = 1; break;
918 case X86::MOV32r_1: Value = -1; break;
919 default:
920 llvm_unreachable("Unexpected instruction!")::llvm::llvm_unreachable_internal("Unexpected instruction!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 920)
;
921 }
922
923 const DebugLoc &DL = Orig.getDebugLoc();
924 BuildMI(MBB, I, DL, get(X86::MOV32ri))
925 .add(Orig.getOperand(0))
926 .addImm(Value);
927 } else {
928 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
929 MBB.insert(I, MI);
930 }
931
932 MachineInstr &NewMI = *std::prev(I);
933 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
934}
935
936/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
937bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
938 for (const MachineOperand &MO : MI.operands()) {
939 if (MO.isReg() && MO.isDef() &&
940 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
941 return true;
942 }
943 }
944 return false;
945}
946
947/// Check whether the shift count for a machine operand is non-zero.
948inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
949 unsigned ShiftAmtOperandIdx) {
950 // The shift count is six bits with the REX.W prefix and five bits without.
951 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
952 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
953 return Imm & ShiftCountMask;
954}
955
956/// Check whether the given shift count is appropriate
957/// can be represented by a LEA instruction.
958inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
959 // Left shift instructions can be transformed into load-effective-address
960 // instructions if we can encode them appropriately.
961 // A LEA instruction utilizes a SIB byte to encode its scale factor.
962 // The SIB.scale field is two bits wide which means that we can encode any
963 // shift amount less than 4.
964 return ShAmt < 4 && ShAmt > 0;
965}
966
967bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
968 unsigned Opc, bool AllowSP, Register &NewSrc,
969 bool &isKill, MachineOperand &ImplicitOp,
970 LiveVariables *LV, LiveIntervals *LIS) const {
971 MachineFunction &MF = *MI.getParent()->getParent();
972 const TargetRegisterClass *RC;
973 if (AllowSP) {
974 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
975 } else {
976 RC = Opc != X86::LEA32r ?
977 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
978 }
979 Register SrcReg = Src.getReg();
980 isKill = MI.killsRegister(SrcReg);
981
982 // For both LEA64 and LEA32 the register already has essentially the right
983 // type (32-bit or 64-bit) we may just need to forbid SP.
984 if (Opc != X86::LEA64_32r) {
985 NewSrc = SrcReg;
986 assert(!Src.isUndef() && "Undef op doesn't need optimization")(static_cast <bool> (!Src.isUndef() && "Undef op doesn't need optimization"
) ? void (0) : __assert_fail ("!Src.isUndef() && \"Undef op doesn't need optimization\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 986, __extension__ __PRETTY_FUNCTION__
))
;
987
988 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
989 return false;
990
991 return true;
992 }
993
994 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
995 // another we need to add 64-bit registers to the final MI.
996 if (SrcReg.isPhysical()) {
997 ImplicitOp = Src;
998 ImplicitOp.setImplicit();
999
1000 NewSrc = getX86SubSuperRegister(SrcReg, 64);
1001 assert(!Src.isUndef() && "Undef op doesn't need optimization")(static_cast <bool> (!Src.isUndef() && "Undef op doesn't need optimization"
) ? void (0) : __assert_fail ("!Src.isUndef() && \"Undef op doesn't need optimization\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1001, __extension__
__PRETTY_FUNCTION__))
;
1002 } else {
1003 // Virtual register of the wrong class, we have to create a temporary 64-bit
1004 // vreg to feed into the LEA.
1005 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1006 MachineInstr *Copy =
1007 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1008 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1009 .addReg(SrcReg, getKillRegState(isKill));
1010
1011 // Which is obviously going to be dead after we're done with it.
1012 isKill = true;
1013
1014 if (LV)
1015 LV->replaceKillInstruction(SrcReg, MI, *Copy);
1016
1017 if (LIS) {
1018 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1019 SlotIndex Idx = LIS->getInstructionIndex(MI);
1020 LiveInterval &LI = LIS->getInterval(SrcReg);
1021 LiveRange::Segment *S = LI.getSegmentContaining(Idx);
1022 if (S->end.getBaseIndex() == Idx)
1023 S->end = CopyIdx.getRegSlot();
1024 }
1025 }
1026
1027 // We've set all the parameters without issue.
1028 return true;
1029}
1030
1031MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1032 MachineInstr &MI,
1033 LiveVariables *LV,
1034 LiveIntervals *LIS,
1035 bool Is8BitOp) const {
1036 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1037 MachineBasicBlock &MBB = *MI.getParent();
1038 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1039 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits((static_cast <bool> ((Is8BitOp || RegInfo.getTargetRegisterInfo
()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0
).getReg())) == 16) && "Unexpected type for LEA transform"
) ? void (0) : __assert_fail ("(Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && \"Unexpected type for LEA transform\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1041, __extension__
__PRETTY_FUNCTION__))
1040 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&(static_cast <bool> ((Is8BitOp || RegInfo.getTargetRegisterInfo
()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0
).getReg())) == 16) && "Unexpected type for LEA transform"
) ? void (0) : __assert_fail ("(Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && \"Unexpected type for LEA transform\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1041, __extension__
__PRETTY_FUNCTION__))
1041 "Unexpected type for LEA transform")(static_cast <bool> ((Is8BitOp || RegInfo.getTargetRegisterInfo
()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0
).getReg())) == 16) && "Unexpected type for LEA transform"
) ? void (0) : __assert_fail ("(Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && \"Unexpected type for LEA transform\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1041, __extension__
__PRETTY_FUNCTION__))
;
1042
1043 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1044 // something like this:
1045 // Opcode = X86::LEA32r;
1046 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1047 // OutRegLEA =
1048 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1049 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1050 if (!Subtarget.is64Bit())
1051 return nullptr;
1052
1053 unsigned Opcode = X86::LEA64_32r;
1054 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1055 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1056 Register InRegLEA2;
1057
1058 // Build and insert into an implicit UNDEF value. This is OK because
1059 // we will be shifting and then extracting the lower 8/16-bits.
1060 // This has the potential to cause partial register stall. e.g.
1061 // movw (%rbp,%rcx,2), %dx
1062 // leal -65(%rdx), %esi
1063 // But testing has shown this *does* help performance in 64-bit mode (at
1064 // least on modern x86 machines).
1065 MachineBasicBlock::iterator MBBI = MI.getIterator();
1066 Register Dest = MI.getOperand(0).getReg();
1067 Register Src = MI.getOperand(1).getReg();
1068 Register Src2;
1069 bool IsDead = MI.getOperand(0).isDead();
1070 bool IsKill = MI.getOperand(1).isKill();
1071 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1072 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization")(static_cast <bool> (!MI.getOperand(1).isUndef() &&
"Undef op doesn't need optimization") ? void (0) : __assert_fail
("!MI.getOperand(1).isUndef() && \"Undef op doesn't need optimization\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1072, __extension__
__PRETTY_FUNCTION__))
;
1073 MachineInstr *ImpDef =
1074 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1075 MachineInstr *InsMI =
1076 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1077 .addReg(InRegLEA, RegState::Define, SubReg)
1078 .addReg(Src, getKillRegState(IsKill));
1079 MachineInstr *ImpDef2 = nullptr;
1080 MachineInstr *InsMI2 = nullptr;
1081
1082 MachineInstrBuilder MIB =
1083 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1084 switch (MIOpc) {
1085 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1085)
;
1086 case X86::SHL8ri:
1087 case X86::SHL16ri: {
1088 unsigned ShAmt = MI.getOperand(2).getImm();
1089 MIB.addReg(0).addImm(1ULL << ShAmt)
1090 .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
1091 break;
1092 }
1093 case X86::INC8r:
1094 case X86::INC16r:
1095 addRegOffset(MIB, InRegLEA, true, 1);
1096 break;
1097 case X86::DEC8r:
1098 case X86::DEC16r:
1099 addRegOffset(MIB, InRegLEA, true, -1);
1100 break;
1101 case X86::ADD8ri:
1102 case X86::ADD8ri_DB:
1103 case X86::ADD16ri:
1104 case X86::ADD16ri8:
1105 case X86::ADD16ri_DB:
1106 case X86::ADD16ri8_DB:
1107 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1108 break;
1109 case X86::ADD8rr:
1110 case X86::ADD8rr_DB:
1111 case X86::ADD16rr:
1112 case X86::ADD16rr_DB: {
1113 Src2 = MI.getOperand(2).getReg();
1114 bool IsKill2 = MI.getOperand(2).isKill();
1115 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization")(static_cast <bool> (!MI.getOperand(2).isUndef() &&
"Undef op doesn't need optimization") ? void (0) : __assert_fail
("!MI.getOperand(2).isUndef() && \"Undef op doesn't need optimization\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1115, __extension__
__PRETTY_FUNCTION__))
;
1116 if (Src == Src2) {
1117 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1118 // just a single insert_subreg.
1119 addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1120 } else {
1121 if (Subtarget.is64Bit())
1122 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1123 else
1124 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1125 // Build and insert into an implicit UNDEF value. This is OK because
1126 // we will be shifting and then extracting the lower 8/16-bits.
1127 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1128 InRegLEA2);
1129 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1130 .addReg(InRegLEA2, RegState::Define, SubReg)
1131 .addReg(Src2, getKillRegState(IsKill2));
1132 addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1133 }
1134 if (LV && IsKill2 && InsMI2)
1135 LV->replaceKillInstruction(Src2, MI, *InsMI2);
1136 break;
1137 }
1138 }
1139
1140 MachineInstr *NewMI = MIB;
1141 MachineInstr *ExtMI =
1142 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1143 .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1144 .addReg(OutRegLEA, RegState::Kill, SubReg);
1145
1146 if (LV) {
1147 // Update live variables.
1148 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1149 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1150 if (IsKill)
1151 LV->replaceKillInstruction(Src, MI, *InsMI);
1152 if (IsDead)
1153 LV->replaceKillInstruction(Dest, MI, *ExtMI);
1154 }
1155
1156 if (LIS) {
1157 LIS->InsertMachineInstrInMaps(*ImpDef);
1158 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1159 if (ImpDef2)
1160 LIS->InsertMachineInstrInMaps(*ImpDef2);
1161 SlotIndex Ins2Idx;
1162 if (InsMI2)
1163 Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1164 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1165 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1166 LIS->getInterval(InRegLEA);
1167 LIS->getInterval(OutRegLEA);
1168 if (InRegLEA2)
1169 LIS->getInterval(InRegLEA2);
1170
1171 // Move the use of Src up to InsMI.
1172 LiveInterval &SrcLI = LIS->getInterval(Src);
1173 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1174 if (SrcSeg->end == NewIdx.getRegSlot())
1175 SrcSeg->end = InsIdx.getRegSlot();
1176
1177 if (InsMI2) {
1178 // Move the use of Src2 up to InsMI2.
1179 LiveInterval &Src2LI = LIS->getInterval(Src2);
1180 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1181 if (Src2Seg->end == NewIdx.getRegSlot())
1182 Src2Seg->end = Ins2Idx.getRegSlot();
1183 }
1184
1185 // Move the definition of Dest down to ExtMI.
1186 LiveInterval &DestLI = LIS->getInterval(Dest);
1187 LiveRange::Segment *DestSeg =
1188 DestLI.getSegmentContaining(NewIdx.getRegSlot());
1189 assert(DestSeg->start == NewIdx.getRegSlot() &&(static_cast <bool> (DestSeg->start == NewIdx.getRegSlot
() && DestSeg->valno->def == NewIdx.getRegSlot(
)) ? void (0) : __assert_fail ("DestSeg->start == NewIdx.getRegSlot() && DestSeg->valno->def == NewIdx.getRegSlot()"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1190, __extension__
__PRETTY_FUNCTION__))
1190 DestSeg->valno->def == NewIdx.getRegSlot())(static_cast <bool> (DestSeg->start == NewIdx.getRegSlot
() && DestSeg->valno->def == NewIdx.getRegSlot(
)) ? void (0) : __assert_fail ("DestSeg->start == NewIdx.getRegSlot() && DestSeg->valno->def == NewIdx.getRegSlot()"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1190, __extension__
__PRETTY_FUNCTION__))
;
1191 DestSeg->start = ExtIdx.getRegSlot();
1192 DestSeg->valno->def = ExtIdx.getRegSlot();
1193 }
1194
1195 return ExtMI;
1196}
1197
1198/// This method must be implemented by targets that
1199/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1200/// may be able to convert a two-address instruction into a true
1201/// three-address instruction on demand. This allows the X86 target (for
1202/// example) to convert ADD and SHL instructions into LEA instructions if they
1203/// would require register copies due to two-addressness.
1204///
1205/// This method returns a null pointer if the transformation cannot be
1206/// performed, otherwise it returns the new instruction.
1207///
1208MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
1209 LiveVariables *LV,
1210 LiveIntervals *LIS) const {
1211 // The following opcodes also sets the condition code register(s). Only
1212 // convert them to equivalent lea if the condition code register def's
1213 // are dead!
1214 if (hasLiveCondCodeDef(MI))
1215 return nullptr;
1216
1217 MachineFunction &MF = *MI.getParent()->getParent();
1218 // All instructions input are two-addr instructions. Get the known operands.
1219 const MachineOperand &Dest = MI.getOperand(0);
1220 const MachineOperand &Src = MI.getOperand(1);
1221
1222 // Ideally, operations with undef should be folded before we get here, but we
1223 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1224 // Without this, we have to forward undef state to new register operands to
1225 // avoid machine verifier errors.
1226 if (Src.isUndef())
1227 return nullptr;
1228 if (MI.getNumOperands() > 2)
1229 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1230 return nullptr;
1231
1232 MachineInstr *NewMI = nullptr;
1233 Register SrcReg, SrcReg2;
1234 bool Is64Bit = Subtarget.is64Bit();
1235
1236 bool Is8BitOp = false;
1237 unsigned MIOpc = MI.getOpcode();
1238 switch (MIOpc) {
1239 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1239)
;
1240 case X86::SHL64ri: {
1241 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown shift instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown shift instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1241, __extension__
__PRETTY_FUNCTION__))
;
1242 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1243 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1244
1245 // LEA can't handle RSP.
1246 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1247 Src.getReg(), &X86::GR64_NOSPRegClass))
1248 return nullptr;
1249
1250 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1251 .add(Dest)
1252 .addReg(0)
1253 .addImm(1ULL << ShAmt)
1254 .add(Src)
1255 .addImm(0)
1256 .addReg(0);
1257 break;
1258 }
1259 case X86::SHL32ri: {
1260 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown shift instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown shift instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1260, __extension__
__PRETTY_FUNCTION__))
;
1261 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1262 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1263
1264 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1265
1266 // LEA can't handle ESP.
1267 bool isKill;
1268 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1269 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1270 ImplicitOp, LV, LIS))
1271 return nullptr;
1272
1273 MachineInstrBuilder MIB =
1274 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1275 .add(Dest)
1276 .addReg(0)
1277 .addImm(1ULL << ShAmt)
1278 .addReg(SrcReg, getKillRegState(isKill))
1279 .addImm(0)
1280 .addReg(0);
1281 if (ImplicitOp.getReg() != 0)
1282 MIB.add(ImplicitOp);
1283 NewMI = MIB;
1284
1285 break;
1286 }
1287 case X86::SHL8ri:
1288 Is8BitOp = true;
1289 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1290 case X86::SHL16ri: {
1291 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown shift instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown shift instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1291, __extension__
__PRETTY_FUNCTION__))
;
1292 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1293 if (!isTruncatedShiftCountForLEA(ShAmt))
1294 return nullptr;
1295 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1296 }
1297 case X86::INC64r:
1298 case X86::INC32r: {
1299 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!")(static_cast <bool> (MI.getNumOperands() >= 2 &&
"Unknown inc instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 2 && \"Unknown inc instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1299, __extension__
__PRETTY_FUNCTION__))
;
1300 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
1301 (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1302 bool isKill;
1303 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1304 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1305 ImplicitOp, LV, LIS))
1306 return nullptr;
1307
1308 MachineInstrBuilder MIB =
1309 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1310 .add(Dest)
1311 .addReg(SrcReg, getKillRegState(isKill));
1312 if (ImplicitOp.getReg() != 0)
1313 MIB.add(ImplicitOp);
1314
1315 NewMI = addOffset(MIB, 1);
1316 break;
1317 }
1318 case X86::DEC64r:
1319 case X86::DEC32r: {
1320 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!")(static_cast <bool> (MI.getNumOperands() >= 2 &&
"Unknown dec instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 2 && \"Unknown dec instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1320, __extension__
__PRETTY_FUNCTION__))
;
1321 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1322 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1323
1324 bool isKill;
1325 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1326 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1327 ImplicitOp, LV, LIS))
1328 return nullptr;
1329
1330 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1331 .add(Dest)
1332 .addReg(SrcReg, getKillRegState(isKill));
1333 if (ImplicitOp.getReg() != 0)
1334 MIB.add(ImplicitOp);
1335
1336 NewMI = addOffset(MIB, -1);
1337
1338 break;
1339 }
1340 case X86::DEC8r:
1341 case X86::INC8r:
1342 Is8BitOp = true;
1343 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1344 case X86::DEC16r:
1345 case X86::INC16r:
1346 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1347 case X86::ADD64rr:
1348 case X86::ADD64rr_DB:
1349 case X86::ADD32rr:
1350 case X86::ADD32rr_DB: {
1351 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown add instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1351, __extension__
__PRETTY_FUNCTION__))
;
1352 unsigned Opc;
1353 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1354 Opc = X86::LEA64r;
1355 else
1356 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1357
1358 const MachineOperand &Src2 = MI.getOperand(2);
1359 bool isKill2;
1360 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1361 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
1362 ImplicitOp2, LV, LIS))
1363 return nullptr;
1364
1365 bool isKill;
1366 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1367 if (Src.getReg() == Src2.getReg()) {
1368 // Don't call classify LEAReg a second time on the same register, in case
1369 // the first call inserted a COPY from Src2 and marked it as killed.
1370 isKill = isKill2;
1371 SrcReg = SrcReg2;
1372 } else {
1373 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1374 ImplicitOp, LV, LIS))
1375 return nullptr;
1376 }
1377
1378 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1379 if (ImplicitOp.getReg() != 0)
1380 MIB.add(ImplicitOp);
1381 if (ImplicitOp2.getReg() != 0)
1382 MIB.add(ImplicitOp2);
1383
1384 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1385 if (LV && Src2.isKill())
1386 LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1387 break;
1388 }
1389 case X86::ADD8rr:
1390 case X86::ADD8rr_DB:
1391 Is8BitOp = true;
1392 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1393 case X86::ADD16rr:
1394 case X86::ADD16rr_DB:
1395 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1396 case X86::ADD64ri32:
1397 case X86::ADD64ri8:
1398 case X86::ADD64ri32_DB:
1399 case X86::ADD64ri8_DB:
1400 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown add instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1400, __extension__
__PRETTY_FUNCTION__))
;
1401 NewMI = addOffset(
1402 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1403 MI.getOperand(2));
1404 break;
1405 case X86::ADD32ri:
1406 case X86::ADD32ri8:
1407 case X86::ADD32ri_DB:
1408 case X86::ADD32ri8_DB: {
1409 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown add instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1409, __extension__
__PRETTY_FUNCTION__))
;
1410 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1411
1412 bool isKill;
1413 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1414 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1415 ImplicitOp, LV, LIS))
1416 return nullptr;
1417
1418 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1419 .add(Dest)
1420 .addReg(SrcReg, getKillRegState(isKill));
1421 if (ImplicitOp.getReg() != 0)
1422 MIB.add(ImplicitOp);
1423
1424 NewMI = addOffset(MIB, MI.getOperand(2));
1425 break;
1426 }
1427 case X86::ADD8ri:
1428 case X86::ADD8ri_DB:
1429 Is8BitOp = true;
1430 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1431 case X86::ADD16ri:
1432 case X86::ADD16ri8:
1433 case X86::ADD16ri_DB:
1434 case X86::ADD16ri8_DB:
1435 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1436 case X86::SUB8ri:
1437 case X86::SUB16ri8:
1438 case X86::SUB16ri:
1439 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1440 return nullptr;
1441 case X86::SUB32ri8:
1442 case X86::SUB32ri: {
1443 if (!MI.getOperand(2).isImm())
1444 return nullptr;
1445 int64_t Imm = MI.getOperand(2).getImm();
1446 if (!isInt<32>(-Imm))
1447 return nullptr;
1448
1449 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown add instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown add instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1449, __extension__
__PRETTY_FUNCTION__))
;
1450 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1451
1452 bool isKill;
1453 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1454 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1455 ImplicitOp, LV, LIS))
1456 return nullptr;
1457
1458 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1459 .add(Dest)
1460 .addReg(SrcReg, getKillRegState(isKill));
1461 if (ImplicitOp.getReg() != 0)
1462 MIB.add(ImplicitOp);
1463
1464 NewMI = addOffset(MIB, -Imm);
1465 break;
1466 }
1467
1468 case X86::SUB64ri8:
1469 case X86::SUB64ri32: {
1470 if (!MI.getOperand(2).isImm())
1471 return nullptr;
1472 int64_t Imm = MI.getOperand(2).getImm();
1473 if (!isInt<32>(-Imm))
1474 return nullptr;
1475
1476 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!")(static_cast <bool> (MI.getNumOperands() >= 3 &&
"Unknown sub instruction!") ? void (0) : __assert_fail ("MI.getNumOperands() >= 3 && \"Unknown sub instruction!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1476, __extension__
__PRETTY_FUNCTION__))
;
1477
1478 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1479 get(X86::LEA64r)).add(Dest).add(Src);
1480 NewMI = addOffset(MIB, -Imm);
1481 break;
1482 }
1483
1484 case X86::VMOVDQU8Z128rmk:
1485 case X86::VMOVDQU8Z256rmk:
1486 case X86::VMOVDQU8Zrmk:
1487 case X86::VMOVDQU16Z128rmk:
1488 case X86::VMOVDQU16Z256rmk:
1489 case X86::VMOVDQU16Zrmk:
1490 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1491 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1492 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
1493 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1494 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1495 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
1496 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
1497 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
1498 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
1499 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
1500 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
1501 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
1502 case X86::VBROADCASTSDZ256rmk:
1503 case X86::VBROADCASTSDZrmk:
1504 case X86::VBROADCASTSSZ128rmk:
1505 case X86::VBROADCASTSSZ256rmk:
1506 case X86::VBROADCASTSSZrmk:
1507 case X86::VPBROADCASTDZ128rmk:
1508 case X86::VPBROADCASTDZ256rmk:
1509 case X86::VPBROADCASTDZrmk:
1510 case X86::VPBROADCASTQZ128rmk:
1511 case X86::VPBROADCASTQZ256rmk:
1512 case X86::VPBROADCASTQZrmk: {
1513 unsigned Opc;
1514 switch (MIOpc) {
1515 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1515)
;
1516 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
1517 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
1518 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
1519 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1520 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1521 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
1522 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1523 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1524 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1525 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1526 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1527 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1528 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1529 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1530 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1531 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1532 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1533 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1534 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1535 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1536 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1537 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1538 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1539 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1540 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1541 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1542 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1543 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1544 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1545 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1546 case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
1547 case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
1548 case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
1549 case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
1550 case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
1551 case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
1552 case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
1553 case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
1554 case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
1555 case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
1556 case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
1557 }
1558
1559 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1560 .add(Dest)
1561 .add(MI.getOperand(2))
1562 .add(Src)
1563 .add(MI.getOperand(3))
1564 .add(MI.getOperand(4))
1565 .add(MI.getOperand(5))
1566 .add(MI.getOperand(6))
1567 .add(MI.getOperand(7));
1568 break;
1569 }
1570
1571 case X86::VMOVDQU8Z128rrk:
1572 case X86::VMOVDQU8Z256rrk:
1573 case X86::VMOVDQU8Zrrk:
1574 case X86::VMOVDQU16Z128rrk:
1575 case X86::VMOVDQU16Z256rrk:
1576 case X86::VMOVDQU16Zrrk:
1577 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1578 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1579 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
1580 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1581 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1582 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
1583 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
1584 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
1585 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
1586 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
1587 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
1588 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
1589 unsigned Opc;
1590 switch (MIOpc) {
1591 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1591)
;
1592 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
1593 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
1594 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
1595 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1596 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1597 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
1598 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1599 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1600 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1601 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1602 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1603 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1604 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1605 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1606 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1607 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1608 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1609 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1610 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1611 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1612 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1613 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1614 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1615 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1616 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1617 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1618 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1619 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1620 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1621 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1622 }
1623
1624 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1625 .add(Dest)
1626 .add(MI.getOperand(2))
1627 .add(Src)
1628 .add(MI.getOperand(3));
1629 break;
1630 }
1631 }
1632
1633 if (!NewMI) return nullptr;
1634
1635 if (LV) { // Update live variables
1636 if (Src.isKill())
1637 LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1638 if (Dest.isDead())
1639 LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1640 }
1641
1642 MachineBasicBlock &MBB = *MI.getParent();
1643 MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
1644
1645 if (LIS) {
1646 LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1647 if (SrcReg)
1648 LIS->getInterval(SrcReg);
1649 if (SrcReg2)
1650 LIS->getInterval(SrcReg2);
1651 }
1652
1653 return NewMI;
1654}
1655
1656/// This determines which of three possible cases of a three source commute
1657/// the source indexes correspond to taking into account any mask operands.
1658/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1659/// possible.
1660/// Case 0 - Possible to commute the first and second operands.
1661/// Case 1 - Possible to commute the first and third operands.
1662/// Case 2 - Possible to commute the second and third operands.
1663static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1664 unsigned SrcOpIdx2) {
1665 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1666 if (SrcOpIdx1 > SrcOpIdx2)
1667 std::swap(SrcOpIdx1, SrcOpIdx2);
1668
1669 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1670 if (X86II::isKMasked(TSFlags)) {
1671 Op2++;
1672 Op3++;
1673 }
1674
1675 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1676 return 0;
1677 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1678 return 1;
1679 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1680 return 2;
1681 llvm_unreachable("Unknown three src commute case.")::llvm::llvm_unreachable_internal("Unknown three src commute case."
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1681)
;
1682}
1683
1684unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1685 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1686 const X86InstrFMA3Group &FMA3Group) const {
1687
1688 unsigned Opc = MI.getOpcode();
1689
1690 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1691 // analysis. The commute optimization is legal only if all users of FMA*_Int
1692 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1693 // not implemented yet. So, just return 0 in that case.
1694 // When such analysis are available this place will be the right place for
1695 // calling it.
1696 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&(static_cast <bool> (!(FMA3Group.isIntrinsic() &&
(SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && "Intrinsic instructions can't commute operand 1"
) ? void (0) : __assert_fail ("!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && \"Intrinsic instructions can't commute operand 1\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1697, __extension__
__PRETTY_FUNCTION__))
1697 "Intrinsic instructions can't commute operand 1")(static_cast <bool> (!(FMA3Group.isIntrinsic() &&
(SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && "Intrinsic instructions can't commute operand 1"
) ? void (0) : __assert_fail ("!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && \"Intrinsic instructions can't commute operand 1\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1697, __extension__
__PRETTY_FUNCTION__))
;
1698
1699 // Determine which case this commute is or if it can't be done.
1700 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1701 SrcOpIdx2);
1702 assert(Case < 3 && "Unexpected case number!")(static_cast <bool> (Case < 3 && "Unexpected case number!"
) ? void (0) : __assert_fail ("Case < 3 && \"Unexpected case number!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1702, __extension__
__PRETTY_FUNCTION__))
;
1703
1704 // Define the FMA forms mapping array that helps to map input FMA form
1705 // to output FMA form to preserve the operation semantics after
1706 // commuting the operands.
1707 const unsigned Form132Index = 0;
1708 const unsigned Form213Index = 1;
1709 const unsigned Form231Index = 2;
1710 static const unsigned FormMapping[][3] = {
1711 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1712 // FMA132 A, C, b; ==> FMA231 C, A, b;
1713 // FMA213 B, A, c; ==> FMA213 A, B, c;
1714 // FMA231 C, A, b; ==> FMA132 A, C, b;
1715 { Form231Index, Form213Index, Form132Index },
1716 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1717 // FMA132 A, c, B; ==> FMA132 B, c, A;
1718 // FMA213 B, a, C; ==> FMA231 C, a, B;
1719 // FMA231 C, a, B; ==> FMA213 B, a, C;
1720 { Form132Index, Form231Index, Form213Index },
1721 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1722 // FMA132 a, C, B; ==> FMA213 a, B, C;
1723 // FMA213 b, A, C; ==> FMA132 b, C, A;
1724 // FMA231 c, A, B; ==> FMA231 c, B, A;
1725 { Form213Index, Form132Index, Form231Index }
1726 };
1727
1728 unsigned FMAForms[3];
1729 FMAForms[0] = FMA3Group.get132Opcode();
1730 FMAForms[1] = FMA3Group.get213Opcode();
1731 FMAForms[2] = FMA3Group.get231Opcode();
1732
1733 // Everything is ready, just adjust the FMA opcode and return it.
1734 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
1735 if (Opc == FMAForms[FormIndex])
1736 return FMAForms[FormMapping[Case][FormIndex]];
1737
1738 llvm_unreachable("Illegal FMA3 format")::llvm::llvm_unreachable_internal("Illegal FMA3 format", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1738)
;
1739}
1740
1741static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1742 unsigned SrcOpIdx2) {
1743 // Determine which case this commute is or if it can't be done.
1744 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1745 SrcOpIdx2);
1746 assert(Case < 3 && "Unexpected case value!")(static_cast <bool> (Case < 3 && "Unexpected case value!"
) ? void (0) : __assert_fail ("Case < 3 && \"Unexpected case value!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1746, __extension__
__PRETTY_FUNCTION__))
;
1747
1748 // For each case we need to swap two pairs of bits in the final immediate.
1749 static const uint8_t SwapMasks[3][4] = {
1750 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1751 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1752 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1753 };
1754
1755 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1756 // Clear out the bits we are swapping.
1757 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1758 SwapMasks[Case][2] | SwapMasks[Case][3]);
1759 // If the immediate had a bit of the pair set, then set the opposite bit.
1760 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1761 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1762 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1763 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1764 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1765}
1766
1767// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1768// commuted.
1769static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1770#define VPERM_CASES(Suffix) \
1771 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1772 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1773 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1774 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1775 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1776 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1777 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1778 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1779 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1780 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1781 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1782 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1783
1784#define VPERM_CASES_BROADCAST(Suffix) \
1785 VPERM_CASES(Suffix) \
1786 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1787 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1788 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1789 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1790 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1791 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1792
1793 switch (Opcode) {
1794 default: return false;
1795 VPERM_CASES(B)
1796 VPERM_CASES_BROADCAST(D)
1797 VPERM_CASES_BROADCAST(PD)
1798 VPERM_CASES_BROADCAST(PS)
1799 VPERM_CASES_BROADCAST(Q)
1800 VPERM_CASES(W)
1801 return true;
1802 }
1803#undef VPERM_CASES_BROADCAST
1804#undef VPERM_CASES
1805}
1806
1807// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1808// from the I opcode to the T opcode and vice versa.
1809static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1810#define VPERM_CASES(Orig, New) \
1811 case X86::Orig##128rr: return X86::New##128rr; \
1812 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1813 case X86::Orig##128rm: return X86::New##128rm; \
1814 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1815 case X86::Orig##256rr: return X86::New##256rr; \
1816 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1817 case X86::Orig##256rm: return X86::New##256rm; \
1818 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1819 case X86::Orig##rr: return X86::New##rr; \
1820 case X86::Orig##rrkz: return X86::New##rrkz; \
1821 case X86::Orig##rm: return X86::New##rm; \
1822 case X86::Orig##rmkz: return X86::New##rmkz;
1823
1824#define VPERM_CASES_BROADCAST(Orig, New) \
1825 VPERM_CASES(Orig, New) \
1826 case X86::Orig##128rmb: return X86::New##128rmb; \
1827 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1828 case X86::Orig##256rmb: return X86::New##256rmb; \
1829 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1830 case X86::Orig##rmb: return X86::New##rmb; \
1831 case X86::Orig##rmbkz: return X86::New##rmbkz;
1832
1833 switch (Opcode) {
1834 VPERM_CASES(VPERMI2B, VPERMT2B)
1835 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
1836 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1837 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1838 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
1839 VPERM_CASES(VPERMI2W, VPERMT2W)
1840 VPERM_CASES(VPERMT2B, VPERMI2B)
1841 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
1842 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1843 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1844 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
1845 VPERM_CASES(VPERMT2W, VPERMI2W)
1846 }
1847
1848 llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1848)
;
1849#undef VPERM_CASES_BROADCAST
1850#undef VPERM_CASES
1851}
1852
1853MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1854 unsigned OpIdx1,
1855 unsigned OpIdx2) const {
1856 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1857 if (NewMI)
1858 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1859 return MI;
1860 };
1861
1862 switch (MI.getOpcode()) {
1863 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1864 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1865 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1866 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1867 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1868 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1869 unsigned Opc;
1870 unsigned Size;
1871 switch (MI.getOpcode()) {
1872 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1872)
;
1873 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1874 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1875 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1876 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1877 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1878 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1879 }
1880 unsigned Amt = MI.getOperand(3).getImm();
1881 auto &WorkingMI = cloneIfNew(MI);
1882 WorkingMI.setDesc(get(Opc));
1883 WorkingMI.getOperand(3).setImm(Size - Amt);
1884 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1885 OpIdx1, OpIdx2);
1886 }
1887 case X86::PFSUBrr:
1888 case X86::PFSUBRrr: {
1889 // PFSUB x, y: x = x - y
1890 // PFSUBR x, y: x = y - x
1891 unsigned Opc =
1892 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1893 auto &WorkingMI = cloneIfNew(MI);
1894 WorkingMI.setDesc(get(Opc));
1895 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1896 OpIdx1, OpIdx2);
1897 }
1898 case X86::BLENDPDrri:
1899 case X86::BLENDPSrri:
1900 case X86::VBLENDPDrri:
1901 case X86::VBLENDPSrri:
1902 // If we're optimizing for size, try to use MOVSD/MOVSS.
1903 if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
1904 unsigned Mask, Opc;
1905 switch (MI.getOpcode()) {
1906 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1906)
;
1907 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
1908 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
1909 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1910 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1911 }
1912 if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1913 auto &WorkingMI = cloneIfNew(MI);
1914 WorkingMI.setDesc(get(Opc));
1915 WorkingMI.removeOperand(3);
1916 return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1917 /*NewMI=*/false,
1918 OpIdx1, OpIdx2);
1919 }
1920 }
1921 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1922 case X86::PBLENDWrri:
1923 case X86::VBLENDPDYrri:
1924 case X86::VBLENDPSYrri:
1925 case X86::VPBLENDDrri:
1926 case X86::VPBLENDWrri:
1927 case X86::VPBLENDDYrri:
1928 case X86::VPBLENDWYrri:{
1929 int8_t Mask;
1930 switch (MI.getOpcode()) {
1931 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1931)
;
1932 case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
1933 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
1934 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
1935 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
1936 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
1937 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
1938 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
1939 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
1940 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
1941 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
1942 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
1943 }
1944 // Only the least significant bits of Imm are used.
1945 // Using int8_t to ensure it will be sign extended to the int64_t that
1946 // setImm takes in order to match isel behavior.
1947 int8_t Imm = MI.getOperand(3).getImm() & Mask;
1948 auto &WorkingMI = cloneIfNew(MI);
1949 WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1950 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1951 OpIdx1, OpIdx2);
1952 }
1953 case X86::INSERTPSrr:
1954 case X86::VINSERTPSrr:
1955 case X86::VINSERTPSZrr: {
1956 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
1957 unsigned ZMask = Imm & 15;
1958 unsigned DstIdx = (Imm >> 4) & 3;
1959 unsigned SrcIdx = (Imm >> 6) & 3;
1960
1961 // We can commute insertps if we zero 2 of the elements, the insertion is
1962 // "inline" and we don't override the insertion with a zero.
1963 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
1964 countPopulation(ZMask) == 2) {
1965 unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
1966 assert(AltIdx < 4 && "Illegal insertion index")(static_cast <bool> (AltIdx < 4 && "Illegal insertion index"
) ? void (0) : __assert_fail ("AltIdx < 4 && \"Illegal insertion index\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1966, __extension__
__PRETTY_FUNCTION__))
;
1967 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
1968 auto &WorkingMI = cloneIfNew(MI);
1969 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
1970 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1971 OpIdx1, OpIdx2);
1972 }
1973 return nullptr;
1974 }
1975 case X86::MOVSDrr:
1976 case X86::MOVSSrr:
1977 case X86::VMOVSDrr:
1978 case X86::VMOVSSrr:{
1979 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1980 if (Subtarget.hasSSE41()) {
1981 unsigned Mask, Opc;
1982 switch (MI.getOpcode()) {
1983 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 1983)
;
1984 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
1985 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
1986 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1987 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1988 }
1989
1990 auto &WorkingMI = cloneIfNew(MI);
1991 WorkingMI.setDesc(get(Opc));
1992 WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1993 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1994 OpIdx1, OpIdx2);
1995 }
1996
1997 // Convert to SHUFPD.
1998 assert(MI.getOpcode() == X86::MOVSDrr &&(static_cast <bool> (MI.getOpcode() == X86::MOVSDrr &&
"Can only commute MOVSDrr without SSE4.1") ? void (0) : __assert_fail
("MI.getOpcode() == X86::MOVSDrr && \"Can only commute MOVSDrr without SSE4.1\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1999, __extension__
__PRETTY_FUNCTION__))
1999 "Can only commute MOVSDrr without SSE4.1")(static_cast <bool> (MI.getOpcode() == X86::MOVSDrr &&
"Can only commute MOVSDrr without SSE4.1") ? void (0) : __assert_fail
("MI.getOpcode() == X86::MOVSDrr && \"Can only commute MOVSDrr without SSE4.1\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 1999, __extension__
__PRETTY_FUNCTION__))
;
2000
2001 auto &WorkingMI = cloneIfNew(MI);
2002 WorkingMI.setDesc(get(X86::SHUFPDrri));
2003 WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
2004 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2005 OpIdx1, OpIdx2);
2006 }
2007 case X86::SHUFPDrri: {
2008 // Commute to MOVSD.
2009 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!")(static_cast <bool> (MI.getOperand(3).getImm() == 0x02 &&
"Unexpected immediate!") ? void (0) : __assert_fail ("MI.getOperand(3).getImm() == 0x02 && \"Unexpected immediate!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2009, __extension__
__PRETTY_FUNCTION__))
;
2010 auto &WorkingMI = cloneIfNew(MI);
2011 WorkingMI.setDesc(get(X86::MOVSDrr));
2012 WorkingMI.removeOperand(3);
2013 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2014 OpIdx1, OpIdx2);
2015 }
2016 case X86::PCLMULQDQrr:
2017 case X86::VPCLMULQDQrr:
2018 case X86::VPCLMULQDQYrr:
2019 case X86::VPCLMULQDQZrr:
2020 case X86::VPCLMULQDQZ128rr:
2021 case X86::VPCLMULQDQZ256rr: {
2022 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2023 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2024 unsigned Imm = MI.getOperand(3).getImm();
2025 unsigned Src1Hi = Imm & 0x01;
2026 unsigned Src2Hi = Imm & 0x10;
2027 auto &WorkingMI = cloneIfNew(MI);
2028 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2029 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2030 OpIdx1, OpIdx2);
2031 }
2032 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
2033 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
2034 case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
2035 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
2036 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
2037 case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
2038 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
2039 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
2040 case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
2041 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
2042 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
2043 case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
2044 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
2045 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
2046 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
2047 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
2048 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
2049 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
2050 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
2051 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
2052 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
2053 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
2054 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
2055 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
2056 // Flip comparison mode immediate (if necessary).
2057 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
2058 Imm = X86::getSwappedVPCMPImm(Imm);
2059 auto &WorkingMI = cloneIfNew(MI);
2060 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
2061 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2062 OpIdx1, OpIdx2);
2063 }
2064 case X86::VPCOMBri: case X86::VPCOMUBri:
2065 case X86::VPCOMDri: case X86::VPCOMUDri:
2066 case X86::VPCOMQri: case X86::VPCOMUQri:
2067 case X86::VPCOMWri: case X86::VPCOMUWri: {
2068 // Flip comparison mode immediate (if necessary).
2069 unsigned Imm = MI.getOperand(3).getImm() & 0x7;
2070 Imm = X86::getSwappedVPCOMImm(Imm);
2071 auto &WorkingMI = cloneIfNew(MI);
2072 WorkingMI.getOperand(3).setImm(Imm);
2073 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2074 OpIdx1, OpIdx2);
2075 }
2076 case X86::VCMPSDZrr:
2077 case X86::VCMPSSZrr:
2078 case X86::VCMPPDZrri:
2079 case X86::VCMPPSZrri:
2080 case X86::VCMPSHZrr:
2081 case X86::VCMPPHZrri:
2082 case X86::VCMPPHZ128rri:
2083 case X86::VCMPPHZ256rri:
2084 case X86::VCMPPDZ128rri:
2085 case X86::VCMPPSZ128rri:
2086 case X86::VCMPPDZ256rri:
2087 case X86::VCMPPSZ256rri:
2088 case X86::VCMPPDZrrik:
2089 case X86::VCMPPSZrrik:
2090 case X86::VCMPPDZ128rrik:
2091 case X86::VCMPPSZ128rrik:
2092 case X86::VCMPPDZ256rrik:
2093 case X86::VCMPPSZ256rrik: {
2094 unsigned Imm =
2095 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
2096 Imm = X86::getSwappedVCMPImm(Imm);
2097 auto &WorkingMI = cloneIfNew(MI);
2098 WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
2099 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2100 OpIdx1, OpIdx2);
2101 }
2102 case X86::VPERM2F128rr:
2103 case X86::VPERM2I128rr: {
2104 // Flip permute source immediate.
2105 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2106 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2107 int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
2108 auto &WorkingMI = cloneIfNew(MI);
2109 WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
2110 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2111 OpIdx1, OpIdx2);
2112 }
2113 case X86::MOVHLPSrr:
2114 case X86::UNPCKHPDrr:
2115 case X86::VMOVHLPSrr:
2116 case X86::VUNPCKHPDrr:
2117 case X86::VMOVHLPSZrr:
2118 case X86::VUNPCKHPDZ128rr: {
2119 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!")(static_cast <bool> (Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"
) ? void (0) : __assert_fail ("Subtarget.hasSSE2() && \"Commuting MOVHLP/UNPCKHPD requires SSE2!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2119, __extension__
__PRETTY_FUNCTION__))
;
2120
2121 unsigned Opc = MI.getOpcode();
2122 switch (Opc) {
2123 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2123)
;
2124 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
2125 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
2126 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
2127 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
2128 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
2129 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
2130 }
2131 auto &WorkingMI = cloneIfNew(MI);
2132 WorkingMI.setDesc(get(Opc));
2133 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2134 OpIdx1, OpIdx2);
2135 }
2136 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
2137 auto &WorkingMI = cloneIfNew(MI);
2138 unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2139 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2140 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2141 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2142 OpIdx1, OpIdx2);
2143 }
2144 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2145 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2146 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2147 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2148 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2149 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2150 case X86::VPTERNLOGDZrrik:
2151 case X86::VPTERNLOGDZ128rrik:
2152 case X86::VPTERNLOGDZ256rrik:
2153 case X86::VPTERNLOGQZrrik:
2154 case X86::VPTERNLOGQZ128rrik:
2155 case X86::VPTERNLOGQZ256rrik:
2156 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2157 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2158 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2159 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2160 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2161 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2162 case X86::VPTERNLOGDZ128rmbi:
2163 case X86::VPTERNLOGDZ256rmbi:
2164 case X86::VPTERNLOGDZrmbi:
2165 case X86::VPTERNLOGQZ128rmbi:
2166 case X86::VPTERNLOGQZ256rmbi:
2167 case X86::VPTERNLOGQZrmbi:
2168 case X86::VPTERNLOGDZ128rmbikz:
2169 case X86::VPTERNLOGDZ256rmbikz:
2170 case X86::VPTERNLOGDZrmbikz:
2171 case X86::VPTERNLOGQZ128rmbikz:
2172 case X86::VPTERNLOGQZ256rmbikz:
2173 case X86::VPTERNLOGQZrmbikz: {
2174 auto &WorkingMI = cloneIfNew(MI);
2175 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
2176 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2177 OpIdx1, OpIdx2);
2178 }
2179 default: {
2180 if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
2181 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
2182 auto &WorkingMI = cloneIfNew(MI);
2183 WorkingMI.setDesc(get(Opc));
2184 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2185 OpIdx1, OpIdx2);
2186 }
2187
2188 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2189 MI.getDesc().TSFlags);
2190 if (FMA3Group) {
2191 unsigned Opc =
2192 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
2193 auto &WorkingMI = cloneIfNew(MI);
2194 WorkingMI.setDesc(get(Opc));
2195 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2196 OpIdx1, OpIdx2);
2197 }
2198
2199 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2200 }
2201 }
2202}
2203
2204bool
2205X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2206 unsigned &SrcOpIdx1,
2207 unsigned &SrcOpIdx2,
2208 bool IsIntrinsic) const {
2209 uint64_t TSFlags = MI.getDesc().TSFlags;
2210
2211 unsigned FirstCommutableVecOp = 1;
2212 unsigned LastCommutableVecOp = 3;
2213 unsigned KMaskOp = -1U;
2214 if (X86II::isKMasked(TSFlags)) {
2215 // For k-zero-masked operations it is Ok to commute the first vector
2216 // operand. Unless this is an intrinsic instruction.
2217 // For regular k-masked operations a conservative choice is done as the
2218 // elements of the first vector operand, for which the corresponding bit
2219 // in the k-mask operand is set to 0, are copied to the result of the
2220 // instruction.
2221 // TODO/FIXME: The commute still may be legal if it is known that the
2222 // k-mask operand is set to either all ones or all zeroes.
2223 // It is also Ok to commute the 1st operand if all users of MI use only
2224 // the elements enabled by the k-mask operand. For example,
2225 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2226 // : v1[i];
2227 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2228 // // Ok, to commute v1 in FMADD213PSZrk.
2229
2230 // The k-mask operand has index = 2 for masked and zero-masked operations.
2231 KMaskOp = 2;
2232
2233 // The operand with index = 1 is used as a source for those elements for
2234 // which the corresponding bit in the k-mask is set to 0.
2235 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2236 FirstCommutableVecOp = 3;
2237
2238 LastCommutableVecOp++;
2239 } else if (IsIntrinsic) {
2240 // Commuting the first operand of an intrinsic instruction isn't possible
2241 // unless we can prove that only the lowest element of the result is used.
2242 FirstCommutableVecOp = 2;
2243 }
2244
2245 if (isMem(MI, LastCommutableVecOp))
2246 LastCommutableVecOp--;
2247
2248 // Only the first RegOpsNum operands are commutable.
2249 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2250 // that the operand is not specified/fixed.
2251 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2252 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2253 SrcOpIdx1 == KMaskOp))
2254 return false;
2255 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2256 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2257 SrcOpIdx2 == KMaskOp))
2258 return false;
2259
2260 // Look for two different register operands assumed to be commutable
2261 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2262 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2263 SrcOpIdx2 == CommuteAnyOperandIndex) {
2264 unsigned CommutableOpIdx2 = SrcOpIdx2;
2265
2266 // At least one of operands to be commuted is not specified and
2267 // this method is free to choose appropriate commutable operands.
2268 if (SrcOpIdx1 == SrcOpIdx2)
2269 // Both of operands are not fixed. By default set one of commutable
2270 // operands to the last register operand of the instruction.
2271 CommutableOpIdx2 = LastCommutableVecOp;
2272 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2273 // Only one of operands is not fixed.
2274 CommutableOpIdx2 = SrcOpIdx1;
2275
2276 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2277 // operand and assign its index to CommutableOpIdx1.
2278 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2279
2280 unsigned CommutableOpIdx1;
2281 for (CommutableOpIdx1 = LastCommutableVecOp;
2282 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2283 // Just ignore and skip the k-mask operand.
2284 if (CommutableOpIdx1 == KMaskOp)
2285 continue;
2286
2287 // The commuted operands must have different registers.
2288 // Otherwise, the commute transformation does not change anything and
2289 // is useless then.
2290 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2291 break;
2292 }
2293
2294 // No appropriate commutable operands were found.
2295 if (CommutableOpIdx1 < FirstCommutableVecOp)
2296 return false;
2297
2298 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2299 // to return those values.
2300 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2301 CommutableOpIdx1, CommutableOpIdx2))
2302 return false;
2303 }
2304
2305 return true;
2306}
2307
2308bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2309 unsigned &SrcOpIdx1,
2310 unsigned &SrcOpIdx2) const {
2311 const MCInstrDesc &Desc = MI.getDesc();
2312 if (!Desc.isCommutable())
2313 return false;
2314
2315 switch (MI.getOpcode()) {
2316 case X86::CMPSDrr:
2317 case X86::CMPSSrr:
2318 case X86::CMPPDrri:
2319 case X86::CMPPSrri:
2320 case X86::VCMPSDrr:
2321 case X86::VCMPSSrr:
2322 case X86::VCMPPDrri:
2323 case X86::VCMPPSrri:
2324 case X86::VCMPPDYrri:
2325 case X86::VCMPPSYrri:
2326 case X86::VCMPSDZrr:
2327 case X86::VCMPSSZrr:
2328 case X86::VCMPPDZrri:
2329 case X86::VCMPPSZrri:
2330 case X86::VCMPSHZrr:
2331 case X86::VCMPPHZrri:
2332 case X86::VCMPPHZ128rri:
2333 case X86::VCMPPHZ256rri:
2334 case X86::VCMPPDZ128rri:
2335 case X86::VCMPPSZ128rri:
2336 case X86::VCMPPDZ256rri:
2337 case X86::VCMPPSZ256rri:
2338 case X86::VCMPPDZrrik:
2339 case X86::VCMPPSZrrik:
2340 case X86::VCMPPDZ128rrik:
2341 case X86::VCMPPSZ128rrik:
2342 case X86::VCMPPDZ256rrik:
2343 case X86::VCMPPSZ256rrik: {
2344 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2345
2346 // Float comparison can be safely commuted for
2347 // Ordered/Unordered/Equal/NotEqual tests
2348 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2349 switch (Imm) {
2350 default:
2351 // EVEX versions can be commuted.
2352 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2353 break;
2354 return false;
2355 case 0x00: // EQUAL
2356 case 0x03: // UNORDERED
2357 case 0x04: // NOT EQUAL
2358 case 0x07: // ORDERED
2359 break;
2360 }
2361
2362 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2363 // when masked).
2364 // Assign them to the returned operand indices here.
2365 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2366 2 + OpOffset);
2367 }
2368 case X86::MOVSSrr:
2369 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2370 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2371 // AVX implies sse4.1.
2372 if (Subtarget.hasSSE41())
2373 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2374 return false;
2375 case X86::SHUFPDrri:
2376 // We can commute this to MOVSD.
2377 if (MI.getOperand(3).getImm() == 0x02)
2378 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2379 return false;
2380 case X86::MOVHLPSrr:
2381 case X86::UNPCKHPDrr:
2382 case X86::VMOVHLPSrr:
2383 case X86::VUNPCKHPDrr:
2384 case X86::VMOVHLPSZrr:
2385 case X86::VUNPCKHPDZ128rr:
2386 if (Subtarget.hasSSE2())
2387 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2388 return false;
2389 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2390 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2391 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2392 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2393 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2394 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2395 case X86::VPTERNLOGDZrrik:
2396 case X86::VPTERNLOGDZ128rrik:
2397 case X86::VPTERNLOGDZ256rrik:
2398 case X86::VPTERNLOGQZrrik:
2399 case X86::VPTERNLOGQZ128rrik:
2400 case X86::VPTERNLOGQZ256rrik:
2401 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2402 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2403 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2404 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2405 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2406 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2407 case X86::VPTERNLOGDZ128rmbi:
2408 case X86::VPTERNLOGDZ256rmbi:
2409 case X86::VPTERNLOGDZrmbi:
2410 case X86::VPTERNLOGQZ128rmbi:
2411 case X86::VPTERNLOGQZ256rmbi:
2412 case X86::VPTERNLOGQZrmbi:
2413 case X86::VPTERNLOGDZ128rmbikz:
2414 case X86::VPTERNLOGDZ256rmbikz:
2415 case X86::VPTERNLOGDZrmbikz:
2416 case X86::VPTERNLOGQZ128rmbikz:
2417 case X86::VPTERNLOGQZ256rmbikz:
2418 case X86::VPTERNLOGQZrmbikz:
2419 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2420 case X86::VPDPWSSDYrr:
2421 case X86::VPDPWSSDrr:
2422 case X86::VPDPWSSDSYrr:
2423 case X86::VPDPWSSDSrr:
2424 case X86::VPDPWSSDZ128r:
2425 case X86::VPDPWSSDZ128rk:
2426 case X86::VPDPWSSDZ128rkz:
2427 case X86::VPDPWSSDZ256r:
2428 case X86::VPDPWSSDZ256rk:
2429 case X86::VPDPWSSDZ256rkz:
2430 case X86::VPDPWSSDZr:
2431 case X86::VPDPWSSDZrk:
2432 case X86::VPDPWSSDZrkz:
2433 case X86::VPDPWSSDSZ128r:
2434 case X86::VPDPWSSDSZ128rk:
2435 case X86::VPDPWSSDSZ128rkz:
2436 case X86::VPDPWSSDSZ256r:
2437 case X86::VPDPWSSDSZ256rk:
2438 case X86::VPDPWSSDSZ256rkz:
2439 case X86::VPDPWSSDSZr:
2440 case X86::VPDPWSSDSZrk:
2441 case X86::VPDPWSSDSZrkz:
2442 case X86::VPMADD52HUQZ128r:
2443 case X86::VPMADD52HUQZ128rk:
2444 case X86::VPMADD52HUQZ128rkz:
2445 case X86::VPMADD52HUQZ256r:
2446 case X86::VPMADD52HUQZ256rk:
2447 case X86::VPMADD52HUQZ256rkz:
2448 case X86::VPMADD52HUQZr:
2449 case X86::VPMADD52HUQZrk:
2450 case X86::VPMADD52HUQZrkz:
2451 case X86::VPMADD52LUQZ128r:
2452 case X86::VPMADD52LUQZ128rk:
2453 case X86::VPMADD52LUQZ128rkz:
2454 case X86::VPMADD52LUQZ256r:
2455 case X86::VPMADD52LUQZ256rk:
2456 case X86::VPMADD52LUQZ256rkz:
2457 case X86::VPMADD52LUQZr:
2458 case X86::VPMADD52LUQZrk:
2459 case X86::VPMADD52LUQZrkz:
2460 case X86::VFMADDCPHZr:
2461 case X86::VFMADDCPHZrk:
2462 case X86::VFMADDCPHZrkz:
2463 case X86::VFMADDCPHZ128r:
2464 case X86::VFMADDCPHZ128rk:
2465 case X86::VFMADDCPHZ128rkz:
2466 case X86::VFMADDCPHZ256r:
2467 case X86::VFMADDCPHZ256rk:
2468 case X86::VFMADDCPHZ256rkz:
2469 case X86::VFMADDCSHZr:
2470 case X86::VFMADDCSHZrk:
2471 case X86::VFMADDCSHZrkz: {
2472 unsigned CommutableOpIdx1 = 2;
2473 unsigned CommutableOpIdx2 = 3;
2474 if (X86II::isKMasked(Desc.TSFlags)) {
2475 // Skip the mask register.
2476 ++CommutableOpIdx1;
2477 ++CommutableOpIdx2;
2478 }
2479 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2480 CommutableOpIdx1, CommutableOpIdx2))
2481 return false;
2482 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2483 !MI.getOperand(SrcOpIdx2).isReg())
2484 // No idea.
2485 return false;
2486 return true;
2487 }
2488
2489 default:
2490 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2491 MI.getDesc().TSFlags);
2492 if (FMA3Group)
2493 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2494 FMA3Group->isIntrinsic());
2495
2496 // Handled masked instructions since we need to skip over the mask input
2497 // and the preserved input.
2498 if (X86II::isKMasked(Desc.TSFlags)) {
2499 // First assume that the first input is the mask operand and skip past it.
2500 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2501 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2502 // Check if the first input is tied. If there isn't one then we only
2503 // need to skip the mask operand which we did above.
2504 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2505 MCOI::TIED_TO) != -1)) {
2506 // If this is zero masking instruction with a tied operand, we need to
2507 // move the first index back to the first input since this must
2508 // be a 3 input instruction and we want the first two non-mask inputs.
2509 // Otherwise this is a 2 input instruction with a preserved input and
2510 // mask, so we need to move the indices to skip one more input.
2511 if (X86II::isKMergeMasked(Desc.TSFlags)) {
2512 ++CommutableOpIdx1;
2513 ++CommutableOpIdx2;
2514 } else {
2515 --CommutableOpIdx1;
2516 }
2517 }
2518
2519 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2520 CommutableOpIdx1, CommutableOpIdx2))
2521 return false;
2522
2523 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2524 !MI.getOperand(SrcOpIdx2).isReg())
2525 // No idea.
2526 return false;
2527 return true;
2528 }
2529
2530 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2531 }
2532 return false;
2533}
2534
2535static bool isConvertibleLEA(MachineInstr *MI) {
2536 unsigned Opcode = MI->getOpcode();
2537 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
2538 Opcode != X86::LEA64_32r)
2539 return false;
2540
2541 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
2542 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
2543 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
2544
2545 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
2546 Scale.getImm() > 1)
2547 return false;
2548
2549 return true;
2550}
2551
2552bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
2553 // Currently we're interested in following sequence only.
2554 // r3 = lea r1, r2
2555 // r5 = add r3, r4
2556 // Both r3 and r4 are killed in add, we hope the add instruction has the
2557 // operand order
2558 // r5 = add r4, r3
2559 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
2560 unsigned Opcode = MI.getOpcode();
2561 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
2562 return false;
2563
2564 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2565 Register Reg1 = MI.getOperand(1).getReg();
2566 Register Reg2 = MI.getOperand(2).getReg();
2567
2568 // Check if Reg1 comes from LEA in the same MBB.
2569 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
2570 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2571 Commute = true;
2572 return true;
2573 }
2574 }
2575
2576 // Check if Reg2 comes from LEA in the same MBB.
2577 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
2578 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2579 Commute = false;
2580 return true;
2581 }
2582 }
2583
2584 return false;
2585}
2586
2587int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) {
2588 unsigned Opcode = MCID.getOpcode();
2589 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode)))
2590 return -1;
2591 // Assume that condition code is always the last use operand.
2592 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
2593 return NumUses - 1;
2594}
2595
2596X86::CondCode X86::getCondFromMI(const MachineInstr &MI) {
2597 const MCInstrDesc &MCID = MI.getDesc();
2598 int CondNo = getCondSrcNoFromDesc(MCID);
2599 if (CondNo < 0)
2600 return X86::COND_INVALID;
2601 CondNo += MCID.getNumDefs();
2602 return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
2603}
2604
2605X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2606 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2607 : X86::COND_INVALID;
2608}
2609
2610X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2611 return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2612 : X86::COND_INVALID;
2613}
2614
2615X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2616 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2617 : X86::COND_INVALID;
2618}
2619
2620/// Return the inverse of the specified condition,
2621/// e.g. turning COND_E to COND_NE.
2622X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2623 switch (CC) {
2624 default: llvm_unreachable("Illegal condition code!")::llvm::llvm_unreachable_internal("Illegal condition code!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2624)
;
2625 case X86::COND_E: return X86::COND_NE;
2626 case X86::COND_NE: return X86::COND_E;
2627 case X86::COND_L: return X86::COND_GE;
2628 case X86::COND_LE: return X86::COND_G;
2629 case X86::COND_G: return X86::COND_LE;
2630 case X86::COND_GE: return X86::COND_L;
2631 case X86::COND_B: return X86::COND_AE;
2632 case X86::COND_BE: return X86::COND_A;
2633 case X86::COND_A: return X86::COND_BE;
2634 case X86::COND_AE: return X86::COND_B;
2635 case X86::COND_S: return X86::COND_NS;
2636 case X86::COND_NS: return X86::COND_S;
2637 case X86::COND_P: return X86::COND_NP;
2638 case X86::COND_NP: return X86::COND_P;
2639 case X86::COND_O: return X86::COND_NO;
2640 case X86::COND_NO: return X86::COND_O;
2641 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
2642 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2643 }
2644}
2645
2646/// Assuming the flags are set by MI(a,b), return the condition code if we
2647/// modify the instructions such that flags are set by MI(b,a).
2648static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2649 switch (CC) {
2650 default: return X86::COND_INVALID;
2651 case X86::COND_E: return X86::COND_E;
2652 case X86::COND_NE: return X86::COND_NE;
2653 case X86::COND_L: return X86::COND_G;
2654 case X86::COND_LE: return X86::COND_GE;
2655 case X86::COND_G: return X86::COND_L;
2656 case X86::COND_GE: return X86::COND_LE;
2657 case X86::COND_B: return X86::COND_A;
2658 case X86::COND_BE: return X86::COND_AE;
2659 case X86::COND_A: return X86::COND_B;
2660 case X86::COND_AE: return X86::COND_BE;
2661 }
2662}
2663
2664std::pair<X86::CondCode, bool>
2665X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2666 X86::CondCode CC = X86::COND_INVALID;
2667 bool NeedSwap = false;
2668 switch (Predicate) {
2669 default: break;
2670 // Floating-point Predicates
2671 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
2672 case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
2673 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
2674 case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
2675 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
2676 case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
2677 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
2678 case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
2679 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
2680 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
2681 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
2682 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
2683 case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH[[gnu::fallthrough]];
2684 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2685
2686 // Integer Predicates
2687 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
2688 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
2689 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
2690 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
2691 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
2692 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
2693 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
2694 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
2695 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
2696 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
2697 }
2698
2699 return std::make_pair(CC, NeedSwap);
2700}
2701
2702/// Return a cmov opcode for the given register size in bytes, and operand type.
2703unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2704 switch(RegBytes) {
2705 default: llvm_unreachable("Illegal register size!")::llvm::llvm_unreachable_internal("Illegal register size!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2705)
;
2706 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2707 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2708 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2709 }
2710}
2711
2712/// Get the VPCMP immediate for the given condition.
2713unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2714 switch (CC) {
2715 default: llvm_unreachable("Unexpected SETCC condition")::llvm::llvm_unreachable_internal("Unexpected SETCC condition"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2715)
;
2716 case ISD::SETNE: return 4;
2717 case ISD::SETEQ: return 0;
2718 case ISD::SETULT:
2719 case ISD::SETLT: return 1;
2720 case ISD::SETUGT:
2721 case ISD::SETGT: return 6;
2722 case ISD::SETUGE:
2723 case ISD::SETGE: return 5;
2724 case ISD::SETULE:
2725 case ISD::SETLE: return 2;
2726 }
2727}
2728
2729/// Get the VPCMP immediate if the operands are swapped.
2730unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2731 switch (Imm) {
2732 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2732)
;
2733 case 0x01: Imm = 0x06; break; // LT -> NLE
2734 case 0x02: Imm = 0x05; break; // LE -> NLT
2735 case 0x05: Imm = 0x02; break; // NLT -> LE
2736 case 0x06: Imm = 0x01; break; // NLE -> LT
2737 case 0x00: // EQ
2738 case 0x03: // FALSE
2739 case 0x04: // NE
2740 case 0x07: // TRUE
2741 break;
2742 }
2743
2744 return Imm;
2745}
2746
2747/// Get the VPCOM immediate if the operands are swapped.
2748unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2749 switch (Imm) {
2750 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2750)
;
2751 case 0x00: Imm = 0x02; break; // LT -> GT
2752 case 0x01: Imm = 0x03; break; // LE -> GE
2753 case 0x02: Imm = 0x00; break; // GT -> LT
2754 case 0x03: Imm = 0x01; break; // GE -> LE
2755 case 0x04: // EQ
2756 case 0x05: // NE
2757 case 0x06: // FALSE
2758 case 0x07: // TRUE
2759 break;
2760 }
2761
2762 return Imm;
2763}
2764
2765/// Get the VCMP immediate if the operands are swapped.
2766unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2767 // Only need the lower 2 bits to distinquish.
2768 switch (Imm & 0x3) {
2769 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2769)
;
2770 case 0x00: case 0x03:
2771 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2772 break;
2773 case 0x01: case 0x02:
2774 // Need to toggle bits 3:0. Bit 4 stays the same.
2775 Imm ^= 0xf;
2776 break;
2777 }
2778
2779 return Imm;
2780}
2781
2782/// Return true if the Reg is X87 register.
2783static bool isX87Reg(unsigned Reg) {
2784 return (Reg == X86::FPCW || Reg == X86::FPSW ||
2785 (Reg >= X86::ST0 && Reg <= X86::ST7));
2786}
2787
2788/// check if the instruction is X87 instruction
2789bool X86::isX87Instruction(MachineInstr &MI) {
2790 for (const MachineOperand &MO : MI.operands()) {
2791 if (!MO.isReg())
2792 continue;
2793 if (isX87Reg(MO.getReg()))
2794 return true;
2795 }
2796 return false;
2797}
2798
2799bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2800 switch (MI.getOpcode()) {
2801 case X86::TCRETURNdi:
2802 case X86::TCRETURNri:
2803 case X86::TCRETURNmi:
2804 case X86::TCRETURNdi64:
2805 case X86::TCRETURNri64:
2806 case X86::TCRETURNmi64:
2807 return true;
2808 default:
2809 return false;
2810 }
2811}
2812
2813bool X86InstrInfo::canMakeTailCallConditional(
2814 SmallVectorImpl<MachineOperand> &BranchCond,
2815 const MachineInstr &TailCall) const {
2816 if (TailCall.getOpcode() != X86::TCRETURNdi &&
2817 TailCall.getOpcode() != X86::TCRETURNdi64) {
2818 // Only direct calls can be done with a conditional branch.
2819 return false;
2820 }
2821
2822 const MachineFunction *MF = TailCall.getParent()->getParent();
2823 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2824 // Conditional tail calls confuse the Win64 unwinder.
2825 return false;
2826 }
2827
2828 assert(BranchCond.size() == 1)(static_cast <bool> (BranchCond.size() == 1) ? void (0)
: __assert_fail ("BranchCond.size() == 1", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2828, __extension__ __PRETTY_FUNCTION__))
;
2829 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2830 // Can't make a conditional tail call with this condition.
2831 return false;
2832 }
2833
2834 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2835 if (X86FI->getTCReturnAddrDelta() != 0 ||
2836 TailCall.getOperand(1).getImm() != 0) {
2837 // A conditional tail call cannot do any stack adjustment.
2838 return false;
2839 }
2840
2841 return true;
2842}
2843
2844void X86InstrInfo::replaceBranchWithTailCall(
2845 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2846 const MachineInstr &TailCall) const {
2847 assert(canMakeTailCallConditional(BranchCond, TailCall))(static_cast <bool> (canMakeTailCallConditional(BranchCond
, TailCall)) ? void (0) : __assert_fail ("canMakeTailCallConditional(BranchCond, TailCall)"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2847, __extension__
__PRETTY_FUNCTION__))
;
2848
2849 MachineBasicBlock::iterator I = MBB.end();
2850 while (I != MBB.begin()) {
2851 --I;
2852 if (I->isDebugInstr())
2853 continue;
2854 if (!I->isBranch())
2855 assert(0 && "Can't find the branch to replace!")(static_cast <bool> (0 && "Can't find the branch to replace!"
) ? void (0) : __assert_fail ("0 && \"Can't find the branch to replace!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 2855, __extension__
__PRETTY_FUNCTION__))
;
2856
2857 X86::CondCode CC = X86::getCondFromBranch(*I);
2858 assert(BranchCond.size() == 1)(static_cast <bool> (BranchCond.size() == 1) ? void (0)
: __assert_fail ("BranchCond.size() == 1", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 2858, __extension__ __PRETTY_FUNCTION__))
;
2859 if (CC != BranchCond[0].getImm())
2860 continue;
2861
2862 break;
2863 }
2864
2865 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2866 : X86::TCRETURNdi64cc;
2867
2868 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2869 MIB->addOperand(TailCall.getOperand(0)); // Destination.
2870 MIB.addImm(0); // Stack offset (not used).
2871 MIB->addOperand(BranchCond[0]); // Condition.
2872 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2873
2874 // Add implicit uses and defs of all live regs potentially clobbered by the
2875 // call. This way they still appear live across the call.
2876 LivePhysRegs LiveRegs(getRegisterInfo());
2877 LiveRegs.addLiveOuts(MBB);
2878 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2879 LiveRegs.stepForward(*MIB, Clobbers);
2880 for (const auto &C : Clobbers) {
2881 MIB.addReg(C.first, RegState::Implicit);
2882 MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2883 }
2884
2885 I->eraseFromParent();
2886}
2887
2888// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2889// not be a fallthrough MBB now due to layout changes). Return nullptr if the
2890// fallthrough MBB cannot be identified.
2891static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2892 MachineBasicBlock *TBB) {
2893 // Look for non-EHPad successors other than TBB. If we find exactly one, it
2894 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2895 // and fallthrough MBB. If we find more than one, we cannot identify the
2896 // fallthrough MBB and should return nullptr.
2897 MachineBasicBlock *FallthroughBB = nullptr;
2898 for (MachineBasicBlock *Succ : MBB->successors()) {
2899 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
2900 continue;
2901 // Return a nullptr if we found more than one fallthrough successor.
2902 if (FallthroughBB && FallthroughBB != TBB)
2903 return nullptr;
2904 FallthroughBB = Succ;
2905 }
2906 return FallthroughBB;
2907}
2908
2909bool X86InstrInfo::AnalyzeBranchImpl(
2910 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2911 SmallVectorImpl<MachineOperand> &Cond,
2912 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2913
2914 // Start from the bottom of the block and work up, examining the
2915 // terminator instructions.
2916 MachineBasicBlock::iterator I = MBB.end();
2917 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2918 while (I != MBB.begin()) {
2919 --I;
2920 if (I->isDebugInstr())
2921 continue;
2922
2923 // Working from the bottom, when we see a non-terminator instruction, we're
2924 // done.
2925 if (!isUnpredicatedTerminator(*I))
2926 break;
2927
2928 // A terminator that isn't a branch can't easily be handled by this
2929 // analysis.
2930 if (!I->isBranch())
2931 return true;
2932
2933 // Handle unconditional branches.
2934 if (I->getOpcode() == X86::JMP_1) {
2935 UnCondBrIter = I;
2936
2937 if (!AllowModify) {
2938 TBB = I->getOperand(0).getMBB();
2939 continue;
2940 }
2941
2942 // If the block has any instructions after a JMP, delete them.
2943 while (std::next(I) != MBB.end())
2944 std::next(I)->eraseFromParent();
2945
2946 Cond.clear();
2947 FBB = nullptr;
2948
2949 // Delete the JMP if it's equivalent to a fall-through.
2950 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2951 TBB = nullptr;
2952 I->eraseFromParent();
2953 I = MBB.end();
2954 UnCondBrIter = MBB.end();
2955 continue;
2956 }
2957
2958 // TBB is used to indicate the unconditional destination.
2959 TBB = I->getOperand(0).getMBB();
2960 continue;
2961 }
2962
2963 // Handle conditional branches.
2964 X86::CondCode BranchCode = X86::getCondFromBranch(*I);
2965 if (BranchCode == X86::COND_INVALID)
2966 return true; // Can't handle indirect branch.
2967
2968 // In practice we should never have an undef eflags operand, if we do
2969 // abort here as we are not prepared to preserve the flag.
2970 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
2971 return true;
2972
2973 // Working from the bottom, handle the first conditional branch.
2974 if (Cond.empty()) {
2975 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2976 if (AllowModify && UnCondBrIter != MBB.end() &&
2977 MBB.isLayoutSuccessor(TargetBB)) {
2978 // If we can modify the code and it ends in something like:
2979 //
2980 // jCC L1
2981 // jmp L2
2982 // L1:
2983 // ...
2984 // L2:
2985 //
2986 // Then we can change this to:
2987 //
2988 // jnCC L2
2989 // L1:
2990 // ...
2991 // L2:
2992 //
2993 // Which is a bit more efficient.
2994 // We conditionally jump to the fall-through block.
2995 BranchCode = GetOppositeBranchCondition(BranchCode);
2996 MachineBasicBlock::iterator OldInst = I;
2997
2998 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
2999 .addMBB(UnCondBrIter->getOperand(0).getMBB())
3000 .addImm(BranchCode);
3001 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3002 .addMBB(TargetBB);
3003
3004 OldInst->eraseFromParent();
3005 UnCondBrIter->eraseFromParent();
3006
3007 // Restart the analysis.
3008 UnCondBrIter = MBB.end();
3009 I = MBB.end();
3010 continue;
3011 }
3012
3013 FBB = TBB;
3014 TBB = I->getOperand(0).getMBB();
3015 Cond.push_back(MachineOperand::CreateImm(BranchCode));
3016 CondBranches.push_back(&*I);
3017 continue;
3018 }
3019
3020 // Handle subsequent conditional branches. Only handle the case where all
3021 // conditional branches branch to the same destination and their condition
3022 // opcodes fit one of the special multi-branch idioms.
3023 assert(Cond.size() == 1)(static_cast <bool> (Cond.size() == 1) ? void (0) : __assert_fail
("Cond.size() == 1", "llvm/lib/Target/X86/X86InstrInfo.cpp",
3023, __extension__ __PRETTY_FUNCTION__))
;
3024 assert(TBB)(static_cast <bool> (TBB) ? void (0) : __assert_fail ("TBB"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3024, __extension__
__PRETTY_FUNCTION__))
;
3025
3026 // If the conditions are the same, we can leave them alone.
3027 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3028 auto NewTBB = I->getOperand(0).getMBB();
3029 if (OldBranchCode == BranchCode && TBB == NewTBB)
3030 continue;
3031
3032 // If they differ, see if they fit one of the known patterns. Theoretically,
3033 // we could handle more patterns here, but we shouldn't expect to see them
3034 // if instruction selection has done a reasonable job.
3035 if (TBB == NewTBB &&
3036 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3037 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3038 BranchCode = X86::COND_NE_OR_P;
3039 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3040 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3041 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3042 return true;
3043
3044 // X86::COND_E_AND_NP usually has two different branch destinations.
3045 //
3046 // JP B1
3047 // JE B2
3048 // JMP B1
3049 // B1:
3050 // B2:
3051 //
3052 // Here this condition branches to B2 only if NP && E. It has another
3053 // equivalent form:
3054 //
3055 // JNE B1
3056 // JNP B2
3057 // JMP B1
3058 // B1:
3059 // B2:
3060 //
3061 // Similarly it branches to B2 only if E && NP. That is why this condition
3062 // is named with COND_E_AND_NP.
3063 BranchCode = X86::COND_E_AND_NP;
3064 } else
3065 return true;
3066
3067 // Update the MachineOperand.
3068 Cond[0].setImm(BranchCode);
3069 CondBranches.push_back(&*I);
3070 }
3071
3072 return false;
3073}
3074
3075bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3076 MachineBasicBlock *&TBB,
3077 MachineBasicBlock *&FBB,
3078 SmallVectorImpl<MachineOperand> &Cond,
3079 bool AllowModify) const {
3080 SmallVector<MachineInstr *, 4> CondBranches;
3081 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3082}
3083
3084bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3085 MachineBranchPredicate &MBP,
3086 bool AllowModify) const {
3087 using namespace std::placeholders;
3088
3089 SmallVector<MachineOperand, 4> Cond;
3090 SmallVector<MachineInstr *, 4> CondBranches;
3091 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3092 AllowModify))
3093 return true;
3094
3095 if (Cond.size() != 1)
3096 return true;
3097
3098 assert(MBP.TrueDest && "expected!")(static_cast <bool> (MBP.TrueDest && "expected!"
) ? void (0) : __assert_fail ("MBP.TrueDest && \"expected!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3098, __extension__
__PRETTY_FUNCTION__))
;
3099
3100 if (!MBP.FalseDest)
3101 MBP.FalseDest = MBB.getNextNode();
3102
3103 const TargetRegisterInfo *TRI = &getRegisterInfo();
3104
3105 MachineInstr *ConditionDef = nullptr;
3106 bool SingleUseCondition = true;
3107
3108 for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
3109 if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3110 ConditionDef = &MI;
3111 break;
3112 }
3113
3114 if (MI.readsRegister(X86::EFLAGS, TRI))
3115 SingleUseCondition = false;
3116 }
3117
3118 if (!ConditionDef)
3119 return true;
3120
3121 if (SingleUseCondition) {
3122 for (auto *Succ : MBB.successors())
3123 if (Succ->isLiveIn(X86::EFLAGS))
3124 SingleUseCondition = false;
3125 }
3126
3127 MBP.ConditionDef = ConditionDef;
3128 MBP.SingleUseCondition = SingleUseCondition;
3129
3130 // Currently we only recognize the simple pattern:
3131 //
3132 // test %reg, %reg
3133 // je %label
3134 //
3135 const unsigned TestOpcode =
3136 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3137
3138 if (ConditionDef->getOpcode() == TestOpcode &&
3139 ConditionDef->getNumOperands() == 3 &&
3140 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3141 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3142 MBP.LHS = ConditionDef->getOperand(0);
3143 MBP.RHS = MachineOperand::CreateImm(0);
3144 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3145 ? MachineBranchPredicate::PRED_NE
3146 : MachineBranchPredicate::PRED_EQ;
3147 return false;
3148 }
3149
3150 return true;
3151}
3152
3153unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3154 int *BytesRemoved) const {
3155 assert(!BytesRemoved && "code size not handled")(static_cast <bool> (!BytesRemoved && "code size not handled"
) ? void (0) : __assert_fail ("!BytesRemoved && \"code size not handled\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3155, __extension__
__PRETTY_FUNCTION__))
;
3156
3157 MachineBasicBlock::iterator I = MBB.end();
3158 unsigned Count = 0;
3159
3160 while (I != MBB.begin()) {
3161 --I;
3162 if (I->isDebugInstr())
3163 continue;
3164 if (I->getOpcode() != X86::JMP_1 &&
3165 X86::getCondFromBranch(*I) == X86::COND_INVALID)
3166 break;
3167 // Remove the branch.
3168 I->eraseFromParent();
3169 I = MBB.end();
3170 ++Count;
3171 }
3172
3173 return Count;
3174}
3175
3176unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3177 MachineBasicBlock *TBB,
3178 MachineBasicBlock *FBB,
3179 ArrayRef<MachineOperand> Cond,
3180 const DebugLoc &DL,
3181 int *BytesAdded) const {
3182 // Shouldn't be a fall through.
3183 assert(TBB && "insertBranch must not be told to insert a fallthrough")(static_cast <bool> (TBB && "insertBranch must not be told to insert a fallthrough"
) ? void (0) : __assert_fail ("TBB && \"insertBranch must not be told to insert a fallthrough\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3183, __extension__
__PRETTY_FUNCTION__))
;
3184 assert((Cond.size() == 1 || Cond.size() == 0) &&(static_cast <bool> ((Cond.size() == 1 || Cond.size() ==
0) && "X86 branch conditions have one component!") ?
void (0) : __assert_fail ("(Cond.size() == 1 || Cond.size() == 0) && \"X86 branch conditions have one component!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3185, __extension__
__PRETTY_FUNCTION__))
3185 "X86 branch conditions have one component!")(static_cast <bool> ((Cond.size() == 1 || Cond.size() ==
0) && "X86 branch conditions have one component!") ?
void (0) : __assert_fail ("(Cond.size() == 1 || Cond.size() == 0) && \"X86 branch conditions have one component!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3185, __extension__
__PRETTY_FUNCTION__))
;
3186 assert(!BytesAdded && "code size not handled")(static_cast <bool> (!BytesAdded && "code size not handled"
) ? void (0) : __assert_fail ("!BytesAdded && \"code size not handled\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3186, __extension__
__PRETTY_FUNCTION__))
;
3187
3188 if (Cond.empty()) {
3189 // Unconditional branch?
3190 assert(!FBB && "Unconditional branch with multiple successors!")(static_cast <bool> (!FBB && "Unconditional branch with multiple successors!"
) ? void (0) : __assert_fail ("!FBB && \"Unconditional branch with multiple successors!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3190, __extension__
__PRETTY_FUNCTION__))
;
3191 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3192 return 1;
3193 }
3194
3195 // If FBB is null, it is implied to be a fall-through block.
3196 bool FallThru = FBB == nullptr;
3197
3198 // Conditional branch.
3199 unsigned Count = 0;
3200 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3201 switch (CC) {
3202 case X86::COND_NE_OR_P:
3203 // Synthesize NE_OR_P with two branches.
3204 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3205 ++Count;
3206 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3207 ++Count;
3208 break;
3209 case X86::COND_E_AND_NP:
3210 // Use the next block of MBB as FBB if it is null.
3211 if (FBB == nullptr) {
3212 FBB = getFallThroughMBB(&MBB, TBB);
3213 assert(FBB && "MBB cannot be the last block in function when the false "(static_cast <bool> (FBB && "MBB cannot be the last block in function when the false "
"body is a fall-through.") ? void (0) : __assert_fail ("FBB && \"MBB cannot be the last block in function when the false \" \"body is a fall-through.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3214, __extension__
__PRETTY_FUNCTION__))
3214 "body is a fall-through.")(static_cast <bool> (FBB && "MBB cannot be the last block in function when the false "
"body is a fall-through.") ? void (0) : __assert_fail ("FBB && \"MBB cannot be the last block in function when the false \" \"body is a fall-through.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3214, __extension__
__PRETTY_FUNCTION__))
;
3215 }
3216 // Synthesize COND_E_AND_NP with two branches.
3217 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3218 ++Count;
3219 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3220 ++Count;
3221 break;
3222 default: {
3223 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3224 ++Count;
3225 }
3226 }
3227 if (!FallThru) {
3228 // Two-way Conditional branch. Insert the second branch.
3229 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3230 ++Count;
3231 }
3232 return Count;
3233}
3234
3235bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3236 ArrayRef<MachineOperand> Cond,
3237 Register DstReg, Register TrueReg,
3238 Register FalseReg, int &CondCycles,
3239 int &TrueCycles, int &FalseCycles) const {
3240 // Not all subtargets have cmov instructions.
3241 if (!Subtarget.canUseCMOV())
3242 return false;
3243 if (Cond.size() != 1)
3244 return false;
3245 // We cannot do the composite conditions, at least not in SSA form.
3246 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
3247 return false;
3248
3249 // Check register classes.
3250 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3251 const TargetRegisterClass *RC =
3252 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3253 if (!RC)
3254 return false;
3255
3256 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3257 if (X86::GR16RegClass.hasSubClassEq(RC) ||
3258 X86::GR32RegClass.hasSubClassEq(RC) ||
3259 X86::GR64RegClass.hasSubClassEq(RC)) {
3260 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3261 // Bridge. Probably Ivy Bridge as well.
3262 CondCycles = 2;
3263 TrueCycles = 2;
3264 FalseCycles = 2;
3265 return true;
3266 }
3267
3268 // Can't do vectors.
3269 return false;
3270}
3271
3272void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3273 MachineBasicBlock::iterator I,
3274 const DebugLoc &DL, Register DstReg,
3275 ArrayRef<MachineOperand> Cond, Register TrueReg,
3276 Register FalseReg) const {
3277 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3278 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3279 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
3280 assert(Cond.size() == 1 && "Invalid Cond array")(static_cast <bool> (Cond.size() == 1 && "Invalid Cond array"
) ? void (0) : __assert_fail ("Cond.size() == 1 && \"Invalid Cond array\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3280, __extension__
__PRETTY_FUNCTION__))
;
3281 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
3282 false /*HasMemoryOperand*/);
3283 BuildMI(MBB, I, DL, get(Opc), DstReg)
3284 .addReg(FalseReg)
3285 .addReg(TrueReg)
3286 .addImm(Cond[0].getImm());
3287}
3288
3289/// Test if the given register is a physical h register.
3290static bool isHReg(unsigned Reg) {
3291 return X86::GR8_ABCD_HRegClass.contains(Reg);
3292}
3293
3294// Try and copy between VR128/VR64 and GR64 registers.
3295static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3296 const X86Subtarget &Subtarget) {
3297 bool HasAVX = Subtarget.hasAVX();
3298 bool HasAVX512 = Subtarget.hasAVX512();
3299
3300 // SrcReg(MaskReg) -> DestReg(GR64)
3301 // SrcReg(MaskReg) -> DestReg(GR32)
3302
3303 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3304 if (X86::VK16RegClass.contains(SrcReg)) {
3305 if (X86::GR64RegClass.contains(DestReg)) {
3306 assert(Subtarget.hasBWI())(static_cast <bool> (Subtarget.hasBWI()) ? void (0) : __assert_fail
("Subtarget.hasBWI()", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 3306, __extension__ __PRETTY_FUNCTION__))
;
3307 return X86::KMOVQrk;
3308 }
3309 if (X86::GR32RegClass.contains(DestReg))
3310 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
3311 }
3312
3313 // SrcReg(GR64) -> DestReg(MaskReg)
3314 // SrcReg(GR32) -> DestReg(MaskReg)
3315
3316 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3317 if (X86::VK16RegClass.contains(DestReg)) {
3318 if (X86::GR64RegClass.contains(SrcReg)) {
3319 assert(Subtarget.hasBWI())(static_cast <bool> (Subtarget.hasBWI()) ? void (0) : __assert_fail
("Subtarget.hasBWI()", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 3319, __extension__ __PRETTY_FUNCTION__))
;
3320 return X86::KMOVQkr;
3321 }
3322 if (X86::GR32RegClass.contains(SrcReg))
3323 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
3324 }
3325
3326
3327 // SrcReg(VR128) -> DestReg(GR64)
3328 // SrcReg(VR64) -> DestReg(GR64)
3329 // SrcReg(GR64) -> DestReg(VR128)
3330 // SrcReg(GR64) -> DestReg(VR64)
3331
3332 if (X86::GR64RegClass.contains(DestReg)) {
3333 if (X86::VR128XRegClass.contains(SrcReg))
3334 // Copy from a VR128 register to a GR64 register.
3335 return HasAVX512 ? X86::VMOVPQIto64Zrr :
3336 HasAVX ? X86::VMOVPQIto64rr :
3337 X86::MOVPQIto64rr;
3338 if (X86::VR64RegClass.contains(SrcReg))
3339 // Copy from a VR64 register to a GR64 register.
3340 return X86::MMX_MOVD64from64rr;
3341 } else if (X86::GR64RegClass.contains(SrcReg)) {
3342 // Copy from a GR64 register to a VR128 register.
3343 if (X86::VR128XRegClass.contains(DestReg))
3344 return HasAVX512 ? X86::VMOV64toPQIZrr :
3345 HasAVX ? X86::VMOV64toPQIrr :
3346 X86::MOV64toPQIrr;
3347 // Copy from a GR64 register to a VR64 register.
3348 if (X86::VR64RegClass.contains(DestReg))
3349 return X86::MMX_MOVD64to64rr;
3350 }
3351
3352 // SrcReg(VR128) -> DestReg(GR32)
3353 // SrcReg(GR32) -> DestReg(VR128)
3354
3355 if (X86::GR32RegClass.contains(DestReg) &&
3356 X86::VR128XRegClass.contains(SrcReg))
3357 // Copy from a VR128 register to a GR32 register.
3358 return HasAVX512 ? X86::VMOVPDI2DIZrr :
3359 HasAVX ? X86::VMOVPDI2DIrr :
3360 X86::MOVPDI2DIrr;
3361
3362 if (X86::VR128XRegClass.contains(DestReg) &&
3363 X86::GR32RegClass.contains(SrcReg))
3364 // Copy from a VR128 register to a VR128 register.
3365 return HasAVX512 ? X86::VMOVDI2PDIZrr :
3366 HasAVX ? X86::VMOVDI2PDIrr :
3367 X86::MOVDI2PDIrr;
3368 return 0;
3369}
3370
3371void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3372 MachineBasicBlock::iterator MI,
3373 const DebugLoc &DL, MCRegister DestReg,
3374 MCRegister SrcReg, bool KillSrc) const {
3375 // First deal with the normal symmetric copies.
3376 bool HasAVX = Subtarget.hasAVX();
3377 bool HasVLX = Subtarget.hasVLX();
3378 unsigned Opc = 0;
3379 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3380 Opc = X86::MOV64rr;
3381 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3382 Opc = X86::MOV32rr;
3383 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3384 Opc = X86::MOV16rr;
3385 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3386 // Copying to or from a physical H register on x86-64 requires a NOREX
3387 // move. Otherwise use a normal move.
3388 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3389 Subtarget.is64Bit()) {
3390 Opc = X86::MOV8rr_NOREX;
3391 // Both operands must be encodable without an REX prefix.
3392 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&(static_cast <bool> (X86::GR8_NOREXRegClass.contains(SrcReg
, DestReg) && "8-bit H register can not be copied outside GR8_NOREX"
) ? void (0) : __assert_fail ("X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && \"8-bit H register can not be copied outside GR8_NOREX\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3393, __extension__
__PRETTY_FUNCTION__))
3393 "8-bit H register can not be copied outside GR8_NOREX")(static_cast <bool> (X86::GR8_NOREXRegClass.contains(SrcReg
, DestReg) && "8-bit H register can not be copied outside GR8_NOREX"
) ? void (0) : __assert_fail ("X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && \"8-bit H register can not be copied outside GR8_NOREX\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3393, __extension__
__PRETTY_FUNCTION__))
;
3394 } else
3395 Opc = X86::MOV8rr;
3396 }
3397 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3398 Opc = X86::MMX_MOVQ64rr;
3399 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3400 if (HasVLX)
3401 Opc = X86::VMOVAPSZ128rr;
3402 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3403 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3404 else {
3405 // If this an extended register and we don't have VLX we need to use a
3406 // 512-bit move.
3407 Opc = X86::VMOVAPSZrr;
3408 const TargetRegisterInfo *TRI = &getRegisterInfo();
3409 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3410 &X86::VR512RegClass);
3411 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3412 &X86::VR512RegClass);
3413 }
3414 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3415 if (HasVLX)
3416 Opc = X86::VMOVAPSZ256rr;
3417 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3418 Opc = X86::VMOVAPSYrr;
3419 else {
3420 // If this an extended register and we don't have VLX we need to use a
3421 // 512-bit move.
3422 Opc = X86::VMOVAPSZrr;
3423 const TargetRegisterInfo *TRI = &getRegisterInfo();
3424 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3425 &X86::VR512RegClass);
3426 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3427 &X86::VR512RegClass);
3428 }
3429 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3430 Opc = X86::VMOVAPSZrr;
3431 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3432 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3433 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3434 if (!Opc)
3435 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3436
3437 if (Opc) {
3438 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3439 .addReg(SrcReg, getKillRegState(KillSrc));
3440 return;
3441 }
3442
3443 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3444 // FIXME: We use a fatal error here because historically LLVM has tried
3445 // lower some of these physreg copies and we want to ensure we get
3446 // reasonable bug reports if someone encounters a case no other testing
3447 // found. This path should be removed after the LLVM 7 release.
3448 report_fatal_error("Unable to copy EFLAGS physical register!");
3449 }
3450
3451 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "Cannot copy " <<
RI.getName(SrcReg) << " to " << RI.getName(DestReg
) << '\n'; } } while (false)
3452 << RI.getName(DestReg) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "Cannot copy " <<
RI.getName(SrcReg) << " to " << RI.getName(DestReg
) << '\n'; } } while (false)
;
3453 report_fatal_error("Cannot emit physreg copy instruction");
3454}
3455
3456Optional<DestSourcePair>
3457X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3458 if (MI.isMoveReg())
3459 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3460 return None;
3461}
3462
3463static unsigned getLoadStoreRegOpcode(Register Reg,
3464 const TargetRegisterClass *RC,
3465 bool IsStackAligned,
3466 const X86Subtarget &STI, bool load) {
3467 bool HasAVX = STI.hasAVX();
3468 bool HasAVX512 = STI.hasAVX512();
3469 bool HasVLX = STI.hasVLX();
3470
3471 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3472 default:
3473 llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 3473)
;
3474 case 1:
3475 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass")(static_cast <bool> (X86::GR8RegClass.hasSubClassEq(RC)
&& "Unknown 1-byte regclass") ? void (0) : __assert_fail
("X86::GR8RegClass.hasSubClassEq(RC) && \"Unknown 1-byte regclass\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3475, __extension__
__PRETTY_FUNCTION__))
;
3476 if (STI.is64Bit())
3477 // Copying to or from a physical H register on x86-64 requires a NOREX
3478 // move. Otherwise use a normal move.
3479 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3480 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3481 return load ? X86::MOV8rm : X86::MOV8mr;
3482 case 2:
3483 if (X86::VK16RegClass.hasSubClassEq(RC))
3484 return load ? X86::KMOVWkm : X86::KMOVWmk;
3485 if (X86::FR16XRegClass.hasSubClassEq(RC)) {
3486 assert(STI.hasFP16())(static_cast <bool> (STI.hasFP16()) ? void (0) : __assert_fail
("STI.hasFP16()", "llvm/lib/Target/X86/X86InstrInfo.cpp", 3486
, __extension__ __PRETTY_FUNCTION__))
;
3487 return load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
3488 }
3489 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass")(static_cast <bool> (X86::GR16RegClass.hasSubClassEq(RC
) && "Unknown 2-byte regclass") ? void (0) : __assert_fail
("X86::GR16RegClass.hasSubClassEq(RC) && \"Unknown 2-byte regclass\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3489, __extension__
__PRETTY_FUNCTION__))
;
3490 return load ? X86::MOV16rm : X86::MOV16mr;
3491 case 4:
3492 if (X86::GR32RegClass.hasSubClassEq(RC))
3493 return load ? X86::MOV32rm : X86::MOV32mr;
3494 if (X86::FR32XRegClass.hasSubClassEq(RC))
3495 return load ?
3496 (HasAVX512 ? X86::VMOVSSZrm_alt :
3497 HasAVX ? X86::VMOVSSrm_alt :
3498 X86::MOVSSrm_alt) :
3499 (HasAVX512 ? X86::VMOVSSZmr :
3500 HasAVX ? X86::VMOVSSmr :
3501 X86::MOVSSmr);
3502 if (X86::RFP32RegClass.hasSubClassEq(RC))
3503 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3504 if (X86::VK32RegClass.hasSubClassEq(RC)) {
3505 assert(STI.hasBWI() && "KMOVD requires BWI")(static_cast <bool> (STI.hasBWI() && "KMOVD requires BWI"
) ? void (0) : __assert_fail ("STI.hasBWI() && \"KMOVD requires BWI\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3505, __extension__
__PRETTY_FUNCTION__))
;
3506 return load ? X86::KMOVDkm : X86::KMOVDmk;
3507 }
3508 // All of these mask pair classes have the same spill size, the same kind
3509 // of kmov instructions can be used with all of them.
3510 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3511 X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3512 X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3513 X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3514 X86::VK16PAIRRegClass.hasSubClassEq(RC))
3515 return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3516 llvm_unreachable("Unknown 4-byte regclass")::llvm::llvm_unreachable_internal("Unknown 4-byte regclass", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 3516)
;
3517 case 8:
3518 if (X86::GR64RegClass.hasSubClassEq(RC))
3519 return load ? X86::MOV64rm : X86::MOV64mr;
3520 if (X86::FR64XRegClass.hasSubClassEq(RC))
3521 return load ?
3522 (HasAVX512 ? X86::VMOVSDZrm_alt :
3523 HasAVX ? X86::VMOVSDrm_alt :
3524 X86::MOVSDrm_alt) :
3525 (HasAVX512 ? X86::VMOVSDZmr :
3526 HasAVX ? X86::VMOVSDmr :
3527 X86::MOVSDmr);
3528 if (X86::VR64RegClass.hasSubClassEq(RC))
3529 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3530 if (X86::RFP64RegClass.hasSubClassEq(RC))
3531 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3532 if (X86::VK64RegClass.hasSubClassEq(RC)) {
3533 assert(STI.hasBWI() && "KMOVQ requires BWI")(static_cast <bool> (STI.hasBWI() && "KMOVQ requires BWI"
) ? void (0) : __assert_fail ("STI.hasBWI() && \"KMOVQ requires BWI\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3533, __extension__
__PRETTY_FUNCTION__))
;
3534 return load ? X86::KMOVQkm : X86::KMOVQmk;
3535 }
3536 llvm_unreachable("Unknown 8-byte regclass")::llvm::llvm_unreachable_internal("Unknown 8-byte regclass", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 3536)
;
3537 case 10:
3538 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass")(static_cast <bool> (X86::RFP80RegClass.hasSubClassEq(RC
) && "Unknown 10-byte regclass") ? void (0) : __assert_fail
("X86::RFP80RegClass.hasSubClassEq(RC) && \"Unknown 10-byte regclass\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3538, __extension__
__PRETTY_FUNCTION__))
;
3539 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3540 case 16: {
3541 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3542 // If stack is realigned we can use aligned stores.
3543 if (IsStackAligned)
3544 return load ?
3545 (HasVLX ? X86::VMOVAPSZ128rm :
3546 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3547 HasAVX ? X86::VMOVAPSrm :
3548 X86::MOVAPSrm):
3549 (HasVLX ? X86::VMOVAPSZ128mr :
3550 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3551 HasAVX ? X86::VMOVAPSmr :
3552 X86::MOVAPSmr);
3553 else
3554 return load ?
3555 (HasVLX ? X86::VMOVUPSZ128rm :
3556 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3557 HasAVX ? X86::VMOVUPSrm :
3558 X86::MOVUPSrm):
3559 (HasVLX ? X86::VMOVUPSZ128mr :
3560 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3561 HasAVX ? X86::VMOVUPSmr :
3562 X86::MOVUPSmr);
3563 }
3564 llvm_unreachable("Unknown 16-byte regclass")::llvm::llvm_unreachable_internal("Unknown 16-byte regclass",
"llvm/lib/Target/X86/X86InstrInfo.cpp", 3564)
;
3565 }
3566 case 32:
3567 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass")(static_cast <bool> (X86::VR256XRegClass.hasSubClassEq(
RC) && "Unknown 32-byte regclass") ? void (0) : __assert_fail
("X86::VR256XRegClass.hasSubClassEq(RC) && \"Unknown 32-byte regclass\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3567, __extension__
__PRETTY_FUNCTION__))
;
3568 // If stack is realigned we can use aligned stores.
3569 if (IsStackAligned)
3570 return load ?
3571 (HasVLX ? X86::VMOVAPSZ256rm :
3572 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3573 X86::VMOVAPSYrm) :
3574 (HasVLX ? X86::VMOVAPSZ256mr :
3575 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3576 X86::VMOVAPSYmr);
3577 else
3578 return load ?
3579 (HasVLX ? X86::VMOVUPSZ256rm :
3580 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3581 X86::VMOVUPSYrm) :
3582 (HasVLX ? X86::VMOVUPSZ256mr :
3583 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3584 X86::VMOVUPSYmr);
3585 case 64:
3586 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass")(static_cast <bool> (X86::VR512RegClass.hasSubClassEq(RC
) && "Unknown 64-byte regclass") ? void (0) : __assert_fail
("X86::VR512RegClass.hasSubClassEq(RC) && \"Unknown 64-byte regclass\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3586, __extension__
__PRETTY_FUNCTION__))
;
3587 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512")(static_cast <bool> (STI.hasAVX512() && "Using 512-bit register requires AVX512"
) ? void (0) : __assert_fail ("STI.hasAVX512() && \"Using 512-bit register requires AVX512\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3587, __extension__
__PRETTY_FUNCTION__))
;
3588 if (IsStackAligned)
3589 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3590 else
3591 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3592 }
3593}
3594
3595Optional<ExtAddrMode>
3596X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
3597 const TargetRegisterInfo *TRI) const {
3598 const MCInstrDesc &Desc = MemI.getDesc();
3599 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3600 if (MemRefBegin < 0)
3601 return None;
3602
3603 MemRefBegin += X86II::getOperandBias(Desc);
3604
3605 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
3606 if (!BaseOp.isReg()) // Can be an MO_FrameIndex
3607 return None;
3608
3609 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
3610 // Displacement can be symbolic
3611 if (!DispMO.isImm())
3612 return None;
3613
3614 ExtAddrMode AM;
3615 AM.BaseReg = BaseOp.getReg();
3616 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
3617 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
3618 AM.Displacement = DispMO.getImm();
3619 return AM;
3620}
3621
3622bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
3623 const Register Reg,
3624 int64_t &ImmVal) const {
3625 if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
3626 return false;
3627 // Mov Src can be a global address.
3628 if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
3629 return false;
3630 ImmVal = MI.getOperand(1).getImm();
3631 return true;
3632}
3633
3634bool X86InstrInfo::preservesZeroValueInReg(
3635 const MachineInstr *MI, const Register NullValueReg,
3636 const TargetRegisterInfo *TRI) const {
3637 if (!MI->modifiesRegister(NullValueReg, TRI))
3638 return true;
3639 switch (MI->getOpcode()) {
3640 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3641 // X.
3642 case X86::SHR64ri:
3643 case X86::SHR32ri:
3644 case X86::SHL64ri:
3645 case X86::SHL32ri:
3646 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&(static_cast <bool> (MI->getOperand(0).isDef() &&
MI->getOperand(1).isUse() && "expected for shift opcode!"
) ? void (0) : __assert_fail ("MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && \"expected for shift opcode!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3647, __extension__
__PRETTY_FUNCTION__))
3647 "expected for shift opcode!")(static_cast <bool> (MI->getOperand(0).isDef() &&
MI->getOperand(1).isUse() && "expected for shift opcode!"
) ? void (0) : __assert_fail ("MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && \"expected for shift opcode!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3647, __extension__
__PRETTY_FUNCTION__))
;
3648 return MI->getOperand(0).getReg() == NullValueReg &&
3649 MI->getOperand(1).getReg() == NullValueReg;
3650 // Zero extend of a sub-reg of NullValueReg into itself does not change the
3651 // null value.
3652 case X86::MOV32rr:
3653 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
3654 return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
3655 });
3656 default:
3657 return false;
3658 }
3659 llvm_unreachable("Should be handled above!")::llvm::llvm_unreachable_internal("Should be handled above!",
"llvm/lib/Target/X86/X86InstrInfo.cpp", 3659)
;
3660}
3661
3662bool X86InstrInfo::getMemOperandsWithOffsetWidth(
3663 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
3664 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3665 const TargetRegisterInfo *TRI) const {
3666 const MCInstrDesc &Desc = MemOp.getDesc();
3667 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3668 if (MemRefBegin < 0)
3669 return false;
3670
3671 MemRefBegin += X86II::getOperandBias(Desc);
3672
3673 const MachineOperand *BaseOp =
3674 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3675 if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3676 return false;
3677
3678 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3679 return false;
3680
3681 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3682 X86::NoRegister)
3683 return false;
3684
3685 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3686
3687 // Displacement can be symbolic
3688 if (!DispMO.isImm())
3689 return false;
3690
3691 Offset = DispMO.getImm();
3692
3693 if (!BaseOp->isReg())
3694 return false;
3695
3696 OffsetIsScalable = false;
3697 // FIXME: Relying on memoperands() may not be right thing to do here. Check
3698 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3699 // there is no use of `Width` for X86 back-end at the moment.
3700 Width =
3701 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
3702 BaseOps.push_back(BaseOp);
3703 return true;
3704}
3705
3706static unsigned getStoreRegOpcode(Register SrcReg,
3707 const TargetRegisterClass *RC,
3708 bool IsStackAligned,
3709 const X86Subtarget &STI) {
3710 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
3711}
3712
3713static unsigned getLoadRegOpcode(Register DestReg,
3714 const TargetRegisterClass *RC,
3715 bool IsStackAligned, const X86Subtarget &STI) {
3716 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
3717}
3718
3719void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3720 MachineBasicBlock::iterator MI,
3721 Register SrcReg, bool isKill, int FrameIdx,
3722 const TargetRegisterClass *RC,
3723 const TargetRegisterInfo *TRI) const {
3724 const MachineFunction &MF = *MBB.getParent();
3725 const MachineFrameInfo &MFI = MF.getFrameInfo();
3726 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&(static_cast <bool> (MFI.getObjectSize(FrameIdx) >= TRI
->getSpillSize(*RC) && "Stack slot too small for store"
) ? void (0) : __assert_fail ("MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && \"Stack slot too small for store\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3727, __extension__
__PRETTY_FUNCTION__))
3727 "Stack slot too small for store")(static_cast <bool> (MFI.getObjectSize(FrameIdx) >= TRI
->getSpillSize(*RC) && "Stack slot too small for store"
) ? void (0) : __assert_fail ("MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && \"Stack slot too small for store\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 3727, __extension__
__PRETTY_FUNCTION__))
;
3728 if (RC->getID() == X86::TILERegClassID) {
3729 unsigned Opc = X86::TILESTORED;
3730 // tilestored %tmm, (%sp, %idx)
3731 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3732 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3733 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3734 MachineInstr *NewMI =
3735 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3736 .addReg(SrcReg, getKillRegState(isKill));
3737 MachineOperand &MO = NewMI->getOperand(2);
3738 MO.setReg(VirtReg);
3739 MO.setIsKill(true);
3740 } else {
3741 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3742 bool isAligned =
3743 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3744 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3745 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3746 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3747 .addReg(SrcReg, getKillRegState(isKill));
3748 }
3749}
3750
3751void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3752 MachineBasicBlock::iterator MI,
3753 Register DestReg, int FrameIdx,
3754 const TargetRegisterClass *RC,
3755 const TargetRegisterInfo *TRI) const {
3756 if (RC->getID() == X86::TILERegClassID) {
3757 unsigned Opc = X86::TILELOADD;
3758 // tileloadd (%sp, %idx), %tmm
3759 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3760 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3761 MachineInstr *NewMI =
Value stored to 'NewMI' during its initialization is never read
3762 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3763 NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3764 FrameIdx);
3765 MachineOperand &MO = NewMI->getOperand(3);
3766 MO.setReg(VirtReg);
3767 MO.setIsKill(true);
3768 } else {
3769 const MachineFunction &MF = *MBB.getParent();
3770 const MachineFrameInfo &MFI = MF.getFrameInfo();
3771 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3772 bool isAligned =
3773 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3774 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3775 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3776 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3777 FrameIdx);
3778 }
3779}
3780
3781bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
3782 Register &SrcReg2, int64_t &CmpMask,
3783 int64_t &CmpValue) const {
3784 switch (MI.getOpcode()) {
3785 default: break;
3786 case X86::CMP64ri32:
3787 case X86::CMP64ri8:
3788 case X86::CMP32ri:
3789 case X86::CMP32ri8:
3790 case X86::CMP16ri:
3791 case X86::CMP16ri8:
3792 case X86::CMP8ri:
3793 SrcReg = MI.getOperand(0).getReg();
3794 SrcReg2 = 0;
3795 if (MI.getOperand(1).isImm()) {
3796 CmpMask = ~0;
3797 CmpValue = MI.getOperand(1).getImm();
3798 } else {
3799 CmpMask = CmpValue = 0;
3800 }
3801 return true;
3802 // A SUB can be used to perform comparison.
3803 case X86::SUB64rm:
3804 case X86::SUB32rm:
3805 case X86::SUB16rm:
3806 case X86::SUB8rm:
3807 SrcReg = MI.getOperand(1).getReg();
3808 SrcReg2 = 0;
3809 CmpMask = 0;
3810 CmpValue = 0;
3811 return true;
3812 case X86::SUB64rr:
3813 case X86::SUB32rr:
3814 case X86::SUB16rr:
3815 case X86::SUB8rr:
3816 SrcReg = MI.getOperand(1).getReg();
3817 SrcReg2 = MI.getOperand(2).getReg();
3818 CmpMask = 0;
3819 CmpValue = 0;
3820 return true;
3821 case X86::SUB64ri32:
3822 case X86::SUB64ri8:
3823 case X86::SUB32ri:
3824 case X86::SUB32ri8:
3825 case X86::SUB16ri:
3826 case X86::SUB16ri8:
3827 case X86::SUB8ri:
3828 SrcReg = MI.getOperand(1).getReg();
3829 SrcReg2 = 0;
3830 if (MI.getOperand(2).isImm()) {
3831 CmpMask = ~0;
3832 CmpValue = MI.getOperand(2).getImm();
3833 } else {
3834 CmpMask = CmpValue = 0;
3835 }
3836 return true;
3837 case X86::CMP64rr:
3838 case X86::CMP32rr:
3839 case X86::CMP16rr:
3840 case X86::CMP8rr:
3841 SrcReg = MI.getOperand(0).getReg();
3842 SrcReg2 = MI.getOperand(1).getReg();
3843 CmpMask = 0;
3844 CmpValue = 0;
3845 return true;
3846 case X86::TEST8rr:
3847 case X86::TEST16rr:
3848 case X86::TEST32rr:
3849 case X86::TEST64rr:
3850 SrcReg = MI.getOperand(0).getReg();
3851 if (MI.getOperand(1).getReg() != SrcReg)
3852 return false;
3853 // Compare against zero.
3854 SrcReg2 = 0;
3855 CmpMask = ~0;
3856 CmpValue = 0;
3857 return true;
3858 }
3859 return false;
3860}
3861
3862bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
3863 Register SrcReg, Register SrcReg2,
3864 int64_t ImmMask, int64_t ImmValue,
3865 const MachineInstr &OI, bool *IsSwapped,
3866 int64_t *ImmDelta) const {
3867 switch (OI.getOpcode()) {
3868 case X86::CMP64rr:
3869 case X86::CMP32rr:
3870 case X86::CMP16rr:
3871 case X86::CMP8rr:
3872 case X86::SUB64rr:
3873 case X86::SUB32rr:
3874 case X86::SUB16rr:
3875 case X86::SUB8rr: {
3876 Register OISrcReg;
3877 Register OISrcReg2;
3878 int64_t OIMask;
3879 int64_t OIValue;
3880 if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
3881 OIMask != ImmMask || OIValue != ImmValue)
3882 return false;
3883 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
3884 *IsSwapped = false;
3885 return true;
3886 }
3887 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
3888 *IsSwapped = true;
3889 return true;
3890 }
3891 return false;
3892 }
3893 case X86::CMP64ri32:
3894 case X86::CMP64ri8:
3895 case X86::CMP32ri:
3896 case X86::CMP32ri8:
3897 case X86::CMP16ri:
3898 case X86::CMP16ri8:
3899 case X86::CMP8ri:
3900 case X86::SUB64ri32:
3901 case X86::SUB64ri8:
3902 case X86::SUB32ri:
3903 case X86::SUB32ri8:
3904 case X86::SUB16ri:
3905 case X86::SUB16ri8:
3906 case X86::SUB8ri:
3907 case X86::TEST64rr:
3908 case X86::TEST32rr:
3909 case X86::TEST16rr:
3910 case X86::TEST8rr: {
3911 if (ImmMask != 0) {
3912 Register OISrcReg;
3913 Register OISrcReg2;
3914 int64_t OIMask;
3915 int64_t OIValue;
3916 if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
3917 SrcReg == OISrcReg && ImmMask == OIMask) {
3918 if (OIValue == ImmValue) {
3919 *ImmDelta = 0;
3920 return true;
3921 } else if (static_cast<uint64_t>(ImmValue) ==
3922 static_cast<uint64_t>(OIValue) - 1) {
3923 *ImmDelta = -1;
3924 return true;
3925 } else if (static_cast<uint64_t>(ImmValue) ==
3926 static_cast<uint64_t>(OIValue) + 1) {
3927 *ImmDelta = 1;
3928 return true;
3929 } else {
3930 return false;
3931 }
3932 }
3933 }
3934 return FlagI.isIdenticalTo(OI);
3935 }
3936 default:
3937 return false;
3938 }
3939}
3940
3941/// Check whether the definition can be converted
3942/// to remove a comparison against zero.
3943inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
3944 bool &ClearsOverflowFlag) {
3945 NoSignFlag = false;
3946 ClearsOverflowFlag = false;
3947
3948 switch (MI.getOpcode()) {
3949 default: return false;
3950
3951 // The shift instructions only modify ZF if their shift count is non-zero.
3952 // N.B.: The processor truncates the shift count depending on the encoding.
3953 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
3954 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
3955 return getTruncatedShiftCount(MI, 2) != 0;
3956
3957 // Some left shift instructions can be turned into LEA instructions but only
3958 // if their flags aren't used. Avoid transforming such instructions.
3959 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
3960 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3961 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3962 return ShAmt != 0;
3963 }
3964
3965 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3966 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3967 return getTruncatedShiftCount(MI, 3) != 0;
3968
3969 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3970 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
3971 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
3972 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
3973 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
3974 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
3975 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3976 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
3977 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
3978 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
3979 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
3980 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
3981 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3982 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
3983 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
3984 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
3985 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
3986 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3987 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
3988 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
3989 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
3990 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
3991 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
3992 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
3993 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
3994 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
3995 case X86::LZCNT16rr: case X86::LZCNT16rm:
3996 case X86::LZCNT32rr: case X86::LZCNT32rm:
3997 case X86::LZCNT64rr: case X86::LZCNT64rm:
3998 case X86::POPCNT16rr:case X86::POPCNT16rm:
3999 case X86::POPCNT32rr:case X86::POPCNT32rm:
4000 case X86::POPCNT64rr:case X86::POPCNT64rm:
4001 case X86::TZCNT16rr: case X86::TZCNT16rm:
4002 case X86::TZCNT32rr: case X86::TZCNT32rm:
4003 case X86::TZCNT64rr: case X86::TZCNT64rm:
4004 return true;
4005 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4006 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
4007 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
4008 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
4009 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
4010 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4011 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
4012 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
4013 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
4014 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
4015 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
4016 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
4017 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
4018 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
4019 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
4020 case X86::ANDN32rr: case X86::ANDN32rm:
4021 case X86::ANDN64rr: case X86::ANDN64rm:
4022 case X86::BLSI32rr: case X86::BLSI32rm:
4023 case X86::BLSI64rr: case X86::BLSI64rm:
4024 case X86::BLSMSK32rr: case X86::BLSMSK32rm:
4025 case X86::BLSMSK64rr: case X86::BLSMSK64rm:
4026 case X86::BLSR32rr: case X86::BLSR32rm:
4027 case X86::BLSR64rr: case X86::BLSR64rm:
4028 case X86::BLCFILL32rr: case X86::BLCFILL32rm:
4029 case X86::BLCFILL64rr: case X86::BLCFILL64rm:
4030 case X86::BLCI32rr: case X86::BLCI32rm:
4031 case X86::BLCI64rr: case X86::BLCI64rm:
4032 case X86::BLCIC32rr: case X86::BLCIC32rm:
4033 case X86::BLCIC64rr: case X86::BLCIC64rm:
4034 case X86::BLCMSK32rr: case X86::BLCMSK32rm:
4035 case X86::BLCMSK64rr: case X86::BLCMSK64rm:
4036 case X86::BLCS32rr: case X86::BLCS32rm:
4037 case X86::BLCS64rr: case X86::BLCS64rm:
4038 case X86::BLSFILL32rr: case X86::BLSFILL32rm:
4039 case X86::BLSFILL64rr: case X86::BLSFILL64rm:
4040 case X86::BLSIC32rr: case X86::BLSIC32rm:
4041 case X86::BLSIC64rr: case X86::BLSIC64rm:
4042 case X86::BZHI32rr: case X86::BZHI32rm:
4043 case X86::BZHI64rr: case X86::BZHI64rm:
4044 case X86::T1MSKC32rr: case X86::T1MSKC32rm:
4045 case X86::T1MSKC64rr: case X86::T1MSKC64rm:
4046 case X86::TZMSK32rr: case X86::TZMSK32rm:
4047 case X86::TZMSK64rr: case X86::TZMSK64rm:
4048 // These instructions clear the overflow flag just like TEST.
4049 // FIXME: These are not the only instructions in this switch that clear the
4050 // overflow flag.
4051 ClearsOverflowFlag = true;
4052 return true;
4053 case X86::BEXTR32rr: case X86::BEXTR64rr:
4054 case X86::BEXTR32rm: case X86::BEXTR64rm:
4055 case X86::BEXTRI32ri: case X86::BEXTRI32mi:
4056 case X86::BEXTRI64ri: case X86::BEXTRI64mi:
4057 // BEXTR doesn't update the sign flag so we can't use it. It does clear
4058 // the overflow flag, but that's not useful without the sign flag.
4059 NoSignFlag = true;
4060 return true;
4061 }
4062}
4063
4064/// Check whether the use can be converted to remove a comparison against zero.
4065static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
4066 switch (MI.getOpcode()) {
4067 default: return X86::COND_INVALID;
4068 case X86::NEG8r:
4069 case X86::NEG16r:
4070 case X86::NEG32r:
4071 case X86::NEG64r:
4072 return X86::COND_AE;
4073 case X86::LZCNT16rr:
4074 case X86::LZCNT32rr:
4075 case X86::LZCNT64rr:
4076 return X86::COND_B;
4077 case X86::POPCNT16rr:
4078 case X86::POPCNT32rr:
4079 case X86::POPCNT64rr:
4080 return X86::COND_E;
4081 case X86::TZCNT16rr:
4082 case X86::TZCNT32rr:
4083 case X86::TZCNT64rr:
4084 return X86::COND_B;
4085 case X86::BSF16rr:
4086 case X86::BSF32rr:
4087 case X86::BSF64rr:
4088 case X86::BSR16rr:
4089 case X86::BSR32rr:
4090 case X86::BSR64rr:
4091 return X86::COND_E;
4092 case X86::BLSI32rr:
4093 case X86::BLSI64rr:
4094 return X86::COND_AE;
4095 case X86::BLSR32rr:
4096 case X86::BLSR64rr:
4097 case X86::BLSMSK32rr:
4098 case X86::BLSMSK64rr:
4099 return X86::COND_B;
4100 // TODO: TBM instructions.
4101 }
4102}
4103
4104/// Check if there exists an earlier instruction that
4105/// operates on the same source operands and sets flags in the same way as
4106/// Compare; remove Compare if possible.
4107bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
4108 Register SrcReg2, int64_t CmpMask,
4109 int64_t CmpValue,
4110 const MachineRegisterInfo *MRI) const {
4111 // Check whether we can replace SUB with CMP.
4112 switch (CmpInstr.getOpcode()) {
4113 default: break;
4114 case X86::SUB64ri32:
4115 case X86::SUB64ri8:
4116 case X86::SUB32ri:
4117 case X86::SUB32ri8:
4118 case X86::SUB16ri:
4119 case X86::SUB16ri8:
4120 case X86::SUB8ri:
4121 case X86::SUB64rm:
4122 case X86::SUB32rm:
4123 case X86::SUB16rm:
4124 case X86::SUB8rm:
4125 case X86::SUB64rr:
4126 case X86::SUB32rr:
4127 case X86::SUB16rr:
4128 case X86::SUB8rr: {
4129 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
4130 return false;
4131 // There is no use of the destination register, we can replace SUB with CMP.
4132 unsigned NewOpcode = 0;
4133 switch (CmpInstr.getOpcode()) {
4134 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 4134)
;
4135 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
4136 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
4137 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
4138 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
4139 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
4140 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
4141 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
4142 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
4143 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4144 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
4145 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
4146 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
4147 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
4148 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
4149 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
4150 }
4151 CmpInstr.setDesc(get(NewOpcode));
4152 CmpInstr.removeOperand(0);
4153 // Mutating this instruction invalidates any debug data associated with it.
4154 CmpInstr.dropDebugNumber();
4155 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4156 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4157 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4158 return false;
4159 }
4160 }
4161
4162 // The following code tries to remove the comparison by re-using EFLAGS
4163 // from earlier instructions.
4164
4165 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
4166
4167 // Transformation currently requires SSA values.
4168 if (SrcReg2.isPhysical())
4169 return false;
4170 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
4171 assert(SrcRegDef && "Must have a definition (SSA)")(static_cast <bool> (SrcRegDef && "Must have a definition (SSA)"
) ? void (0) : __assert_fail ("SrcRegDef && \"Must have a definition (SSA)\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4171, __extension__
__PRETTY_FUNCTION__))
;
4172
4173 MachineInstr *MI = nullptr;
4174 MachineInstr *Sub = nullptr;
4175 MachineInstr *Movr0Inst = nullptr;
4176 bool NoSignFlag = false;
4177 bool ClearsOverflowFlag = false;
4178 bool ShouldUpdateCC = false;
4179 bool IsSwapped = false;
4180 X86::CondCode NewCC = X86::COND_INVALID;
4181 int64_t ImmDelta = 0;
4182
4183 // Search backward from CmpInstr for the next instruction defining EFLAGS.
4184 const TargetRegisterInfo *TRI = &getRegisterInfo();
4185 MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
4186 MachineBasicBlock::reverse_iterator From =
4187 std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
4188 for (MachineBasicBlock *MBB = &CmpMBB;;) {
4189 for (MachineInstr &Inst : make_range(From, MBB->rend())) {
4190 // Try to use EFLAGS from the instruction defining %SrcReg. Example:
4191 // %eax = addl ...
4192 // ... // EFLAGS not changed
4193 // testl %eax, %eax // <-- can be removed
4194 if (&Inst == SrcRegDef) {
4195 if (IsCmpZero &&
4196 isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
4197 MI = &Inst;
4198 break;
4199 }
4200 // Cannot find other candidates before definition of SrcReg.
4201 return false;
4202 }
4203
4204 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
4205 // Try to use EFLAGS produced by an instruction reading %SrcReg.
4206 // Example:
4207 // %eax = ...
4208 // ...
4209 // popcntl %eax
4210 // ... // EFLAGS not changed
4211 // testl %eax, %eax // <-- can be removed
4212 if (IsCmpZero) {
4213 NewCC = isUseDefConvertible(Inst);
4214 if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
4215 Inst.getOperand(1).getReg() == SrcReg) {
4216 ShouldUpdateCC = true;
4217 MI = &Inst;
4218 break;
4219 }
4220 }
4221
4222 // Try to use EFLAGS from an instruction with similar flag results.
4223 // Example:
4224 // sub x, y or cmp x, y
4225 // ... // EFLAGS not changed
4226 // cmp x, y // <-- can be removed
4227 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
4228 Inst, &IsSwapped, &ImmDelta)) {
4229 Sub = &Inst;
4230 break;
4231 }
4232
4233 // MOV32r0 is implemented with xor which clobbers condition code. It is
4234 // safe to move up, if the definition to EFLAGS is dead and earlier
4235 // instructions do not read or write EFLAGS.
4236 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
4237 Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
4238 Movr0Inst = &Inst;
4239 continue;
4240 }
4241
4242 // Cannot do anything for any other EFLAG changes.
4243 return false;
4244 }
4245 }
4246
4247 if (MI || Sub)
4248 break;
4249
4250 // Reached begin of basic block. Continue in predecessor if there is
4251 // exactly one.
4252 if (MBB->pred_size() != 1)
4253 return false;
4254 MBB = *MBB->pred_begin();
4255 From = MBB->rbegin();
4256 }
4257
4258 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4259 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4260 // If we are done with the basic block, we need to check whether EFLAGS is
4261 // live-out.
4262 bool FlagsMayLiveOut = true;
4263 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
4264 MachineBasicBlock::iterator AfterCmpInstr =
4265 std::next(MachineBasicBlock::iterator(CmpInstr));
4266 for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
4267 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4268 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4269 // We should check the usage if this instruction uses and updates EFLAGS.
4270 if (!UseEFLAGS && ModifyEFLAGS) {
4271 // It is safe to remove CmpInstr if EFLAGS is updated again.
4272 FlagsMayLiveOut = false;
4273 break;
4274 }
4275 if (!UseEFLAGS && !ModifyEFLAGS)
4276 continue;
4277
4278 // EFLAGS is used by this instruction.
4279 X86::CondCode OldCC = X86::COND_INVALID;
4280 if (MI || IsSwapped || ImmDelta != 0) {
4281 // We decode the condition code from opcode.
4282 if (Instr.isBranch())
4283 OldCC = X86::getCondFromBranch(Instr);
4284 else {
4285 OldCC = X86::getCondFromSETCC(Instr);
4286 if (OldCC == X86::COND_INVALID)
4287 OldCC = X86::getCondFromCMov(Instr);
4288 }
4289 if (OldCC == X86::COND_INVALID) return false;
4290 }
4291 X86::CondCode ReplacementCC = X86::COND_INVALID;
4292 if (MI) {
4293 switch (OldCC) {
4294 default: break;
4295 case X86::COND_A: case X86::COND_AE:
4296 case X86::COND_B: case X86::COND_BE:
4297 // CF is used, we can't perform this optimization.
4298 return false;
4299 case X86::COND_G: case X86::COND_GE:
4300 case X86::COND_L: case X86::COND_LE:
4301 case X86::COND_O: case X86::COND_NO:
4302 // If OF is used, the instruction needs to clear it like CmpZero does.
4303 if (!ClearsOverflowFlag)
4304 return false;
4305 break;
4306 case X86::COND_S: case X86::COND_NS:
4307 // If SF is used, but the instruction doesn't update the SF, then we
4308 // can't do the optimization.
4309 if (NoSignFlag)
4310 return false;
4311 break;
4312 }
4313
4314 // If we're updating the condition code check if we have to reverse the
4315 // condition.
4316 if (ShouldUpdateCC)
4317 switch (OldCC) {
4318 default:
4319 return false;
4320 case X86::COND_E:
4321 ReplacementCC = NewCC;
4322 break;
4323 case X86::COND_NE:
4324 ReplacementCC = GetOppositeBranchCondition(NewCC);
4325 break;
4326 }
4327 } else if (IsSwapped) {
4328 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4329 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4330 // We swap the condition code and synthesize the new opcode.
4331 ReplacementCC = getSwappedCondition(OldCC);
4332 if (ReplacementCC == X86::COND_INVALID)
4333 return false;
4334 ShouldUpdateCC = true;
4335 } else if (ImmDelta != 0) {
4336 unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
4337 // Shift amount for min/max constants to adjust for 8/16/32 instruction
4338 // sizes.
4339 switch (OldCC) {
4340 case X86::COND_L: // x <s (C + 1) --> x <=s C
4341 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4342 return false;
4343 ReplacementCC = X86::COND_LE;
4344 break;
4345 case X86::COND_B: // x <u (C + 1) --> x <=u C
4346 if (ImmDelta != 1 || CmpValue == 0)
4347 return false;
4348 ReplacementCC = X86::COND_BE;
4349 break;
4350 case X86::COND_GE: // x >=s (C + 1) --> x >s C
4351 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4352 return false;
4353 ReplacementCC = X86::COND_G;
4354 break;
4355 case X86::COND_AE: // x >=u (C + 1) --> x >u C
4356 if (ImmDelta != 1 || CmpValue == 0)
4357 return false;
4358 ReplacementCC = X86::COND_A;
4359 break;
4360 case X86::COND_G: // x >s (C - 1) --> x >=s C
4361 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4362 return false;
4363 ReplacementCC = X86::COND_GE;
4364 break;
4365 case X86::COND_A: // x >u (C - 1) --> x >=u C
4366 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4367 return false;
4368 ReplacementCC = X86::COND_AE;
4369 break;
4370 case X86::COND_LE: // x <=s (C - 1) --> x <s C
4371 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4372 return false;
4373 ReplacementCC = X86::COND_L;
4374 break;
4375 case X86::COND_BE: // x <=u (C - 1) --> x <u C
4376 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4377 return false;
4378 ReplacementCC = X86::COND_B;
4379 break;
4380 default:
4381 return false;
4382 }
4383 ShouldUpdateCC = true;
4384 }
4385
4386 if (ShouldUpdateCC && ReplacementCC != OldCC) {
4387 // Push the MachineInstr to OpsToUpdate.
4388 // If it is safe to remove CmpInstr, the condition code of these
4389 // instructions will be modified.
4390 OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
4391 }
4392 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4393 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4394 FlagsMayLiveOut = false;
4395 break;
4396 }
4397 }
4398
4399 // If we have to update users but EFLAGS is live-out abort, since we cannot
4400 // easily find all of the users.
4401 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
4402 for (MachineBasicBlock *Successor : CmpMBB.successors())
4403 if (Successor->isLiveIn(X86::EFLAGS))
4404 return false;
4405 }
4406
4407 // The instruction to be updated is either Sub or MI.
4408 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set")(static_cast <bool> ((MI == nullptr || Sub == nullptr) &&
"Should not have Sub and MI set") ? void (0) : __assert_fail
("(MI == nullptr || Sub == nullptr) && \"Should not have Sub and MI set\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4408, __extension__
__PRETTY_FUNCTION__))
;
4409 Sub = MI != nullptr ? MI : Sub;
4410 MachineBasicBlock *SubBB = Sub->getParent();
4411 // Move Movr0Inst to the appropriate place before Sub.
4412 if (Movr0Inst) {
4413 // Only move within the same block so we don't accidentally move to a
4414 // block with higher execution frequency.
4415 if (&CmpMBB != SubBB)
4416 return false;
4417 // Look backwards until we find a def that doesn't use the current EFLAGS.
4418 MachineBasicBlock::reverse_iterator InsertI = Sub,
4419 InsertE = Sub->getParent()->rend();
4420 for (; InsertI != InsertE; ++InsertI) {
4421 MachineInstr *Instr = &*InsertI;
4422 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4423 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4424 Movr0Inst->getParent()->remove(Movr0Inst);
4425 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4426 Movr0Inst);
4427 break;
4428 }
4429 }
4430 if (InsertI == InsertE)
4431 return false;
4432 }
4433
4434 // Make sure Sub instruction defines EFLAGS and mark the def live.
4435 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
4436 assert(FlagDef && "Unable to locate a def EFLAGS operand")(static_cast <bool> (FlagDef && "Unable to locate a def EFLAGS operand"
) ? void (0) : __assert_fail ("FlagDef && \"Unable to locate a def EFLAGS operand\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4436, __extension__
__PRETTY_FUNCTION__))
;
4437 FlagDef->setIsDead(false);
4438
4439 CmpInstr.eraseFromParent();
4440
4441 // Modify the condition code of instructions in OpsToUpdate.
4442 for (auto &Op : OpsToUpdate) {
4443 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
4444 .setImm(Op.second);
4445 }
4446 // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
4447 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
4448 MBB = *MBB->pred_begin()) {
4449 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor")(static_cast <bool> (MBB->pred_size() == 1 &&
"Expected exactly one predecessor") ? void (0) : __assert_fail
("MBB->pred_size() == 1 && \"Expected exactly one predecessor\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4449, __extension__
__PRETTY_FUNCTION__))
;
4450 if (!MBB->isLiveIn(X86::EFLAGS))
4451 MBB->addLiveIn(X86::EFLAGS);
4452 }
4453 return true;
4454}
4455
4456/// Try to remove the load by folding it to a register
4457/// operand at the use. We fold the load instructions if load defines a virtual
4458/// register, the virtual register is used once in the same BB, and the
4459/// instructions in-between do not load or store, and have no side effects.
4460MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
4461 const MachineRegisterInfo *MRI,
4462 Register &FoldAsLoadDefReg,
4463 MachineInstr *&DefMI) const {
4464 // Check whether we can move DefMI here.
4465 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4466 assert(DefMI)(static_cast <bool> (DefMI) ? void (0) : __assert_fail (
"DefMI", "llvm/lib/Target/X86/X86InstrInfo.cpp", 4466, __extension__
__PRETTY_FUNCTION__))
;
4467 bool SawStore = false;
4468 if (!DefMI->isSafeToMove(nullptr, SawStore))
4469 return nullptr;
4470
4471 // Collect information about virtual register operands of MI.
4472 SmallVector<unsigned, 1> SrcOperandIds;
4473 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4474 MachineOperand &MO = MI.getOperand(i);
4475 if (!MO.isReg())
4476 continue;
4477 Register Reg = MO.getReg();
4478 if (Reg != FoldAsLoadDefReg)
4479 continue;
4480 // Do not fold if we have a subreg use or a def.
4481 if (MO.getSubReg() || MO.isDef())
4482 return nullptr;
4483 SrcOperandIds.push_back(i);
4484 }
4485 if (SrcOperandIds.empty())
4486 return nullptr;
4487
4488 // Check whether we can fold the def into SrcOperandId.
4489 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
4490 FoldAsLoadDefReg = 0;
4491 return FoldMI;
4492 }
4493
4494 return nullptr;
4495}
4496
4497/// Expand a single-def pseudo instruction to a two-addr
4498/// instruction with two undef reads of the register being defined.
4499/// This is used for mapping:
4500/// %xmm4 = V_SET0
4501/// to:
4502/// %xmm4 = PXORrr undef %xmm4, undef %xmm4
4503///
4504static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4505 const MCInstrDesc &Desc) {
4506 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.")(static_cast <bool> (Desc.getNumOperands() == 3 &&
"Expected two-addr instruction.") ? void (0) : __assert_fail
("Desc.getNumOperands() == 3 && \"Expected two-addr instruction.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4506, __extension__
__PRETTY_FUNCTION__))
;
4507 Register Reg = MIB.getReg(0);
4508 MIB->setDesc(Desc);
4509
4510 // MachineInstr::addOperand() will insert explicit operands before any
4511 // implicit operands.
4512 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4513 // But we don't trust that.
4514 assert(MIB.getReg(1) == Reg &&(static_cast <bool> (MIB.getReg(1) == Reg && MIB
.getReg(2) == Reg && "Misplaced operand") ? void (0) :
__assert_fail ("MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && \"Misplaced operand\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4515, __extension__
__PRETTY_FUNCTION__))
4515 MIB.getReg(2) == Reg && "Misplaced operand")(static_cast <bool> (MIB.getReg(1) == Reg && MIB
.getReg(2) == Reg && "Misplaced operand") ? void (0) :
__assert_fail ("MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && \"Misplaced operand\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4515, __extension__
__PRETTY_FUNCTION__))
;
4516 return true;
4517}
4518
4519/// Expand a single-def pseudo instruction to a two-addr
4520/// instruction with two %k0 reads.
4521/// This is used for mapping:
4522/// %k4 = K_SET1
4523/// to:
4524/// %k4 = KXNORrr %k0, %k0
4525static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
4526 Register Reg) {
4527 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.")(static_cast <bool> (Desc.getNumOperands() == 3 &&
"Expected two-addr instruction.") ? void (0) : __assert_fail
("Desc.getNumOperands() == 3 && \"Expected two-addr instruction.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4527, __extension__
__PRETTY_FUNCTION__))
;
4528 MIB->setDesc(Desc);
4529 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4530 return true;
4531}
4532
4533static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
4534 bool MinusOne) {
4535 MachineBasicBlock &MBB = *MIB->getParent();
4536 const DebugLoc &DL = MIB->getDebugLoc();
4537 Register Reg = MIB.getReg(0);
4538
4539 // Insert the XOR.
4540 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
4541 .addReg(Reg, RegState::Undef)
4542 .addReg(Reg, RegState::Undef);
4543
4544 // Turn the pseudo into an INC or DEC.
4545 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4546 MIB.addReg(Reg);
4547
4548 return true;
4549}
4550
4551static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4552 const TargetInstrInfo &TII,
4553 const X86Subtarget &Subtarget) {
4554 MachineBasicBlock &MBB = *MIB->getParent();
4555 const DebugLoc &DL = MIB->getDebugLoc();
4556 int64_t Imm = MIB->getOperand(1).getImm();
4557 assert(Imm != 0 && "Using push/pop for 0 is not efficient.")(static_cast <bool> (Imm != 0 && "Using push/pop for 0 is not efficient."
) ? void (0) : __assert_fail ("Imm != 0 && \"Using push/pop for 0 is not efficient.\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4557, __extension__
__PRETTY_FUNCTION__))
;
4558 MachineBasicBlock::iterator I = MIB.getInstr();
4559
4560 int StackAdjustment;
4561
4562 if (Subtarget.is64Bit()) {
4563 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||(static_cast <bool> (MIB->getOpcode() == X86::MOV64ImmSExti8
|| MIB->getOpcode() == X86::MOV32ImmSExti8) ? void (0) : __assert_fail
("MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode() == X86::MOV32ImmSExti8"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4564, __extension__
__PRETTY_FUNCTION__))
4564 MIB->getOpcode() == X86::MOV32ImmSExti8)(static_cast <bool> (MIB->getOpcode() == X86::MOV64ImmSExti8
|| MIB->getOpcode() == X86::MOV32ImmSExti8) ? void (0) : __assert_fail
("MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode() == X86::MOV32ImmSExti8"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4564, __extension__
__PRETTY_FUNCTION__))
;
4565
4566 // Can't use push/pop lowering if the function might write to the red zone.
4567 X86MachineFunctionInfo *X86FI =
4568 MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4569 if (X86FI->getUsesRedZone()) {
4570 MIB->setDesc(TII.get(MIB->getOpcode() ==
4571 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4572 return true;
4573 }
4574
4575 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4576 // widen the register if necessary.
4577 StackAdjustment = 8;
4578 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4579 MIB->setDesc(TII.get(X86::POP64r));
4580 MIB->getOperand(0)
4581 .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
4582 } else {
4583 assert(MIB->getOpcode() == X86::MOV32ImmSExti8)(static_cast <bool> (MIB->getOpcode() == X86::MOV32ImmSExti8
) ? void (0) : __assert_fail ("MIB->getOpcode() == X86::MOV32ImmSExti8"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4583, __extension__
__PRETTY_FUNCTION__))
;
4584 StackAdjustment = 4;
4585 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4586 MIB->setDesc(TII.get(X86::POP32r));
4587 }
4588 MIB->removeOperand(1);
4589 MIB->addImplicitDefUseOperands(*MBB.getParent());
4590
4591 // Build CFI if necessary.
4592 MachineFunction &MF = *MBB.getParent();
4593 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4594 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4595 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
4596 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4597 if (EmitCFI) {
4598 TFL->BuildCFI(MBB, I, DL,
4599 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4600 TFL->BuildCFI(MBB, std::next(I), DL,
4601 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4602 }
4603
4604 return true;
4605}
4606
4607// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4608// code sequence is needed for other targets.
4609static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4610 const TargetInstrInfo &TII) {
4611 MachineBasicBlock &MBB = *MIB->getParent();
4612 const DebugLoc &DL = MIB->getDebugLoc();
4613 Register Reg = MIB.getReg(0);
4614 const GlobalValue *GV =
4615 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4616 auto Flags = MachineMemOperand::MOLoad |
4617 MachineMemOperand::MODereferenceable |
4618 MachineMemOperand::MOInvariant;
4619 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4620 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
4621 MachineBasicBlock::iterator I = MIB.getInstr();
4622
4623 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4624 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4625 .addMemOperand(MMO);
4626 MIB->setDebugLoc(DL);
4627 MIB->setDesc(TII.get(X86::MOV64rm));
4628 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4629}
4630
4631static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4632 MachineBasicBlock &MBB = *MIB->getParent();
4633 MachineFunction &MF = *MBB.getParent();
4634 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4635 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4636 unsigned XorOp =
4637 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4638 MIB->setDesc(TII.get(XorOp));
4639 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4640 return true;
4641}
4642
4643// This is used to handle spills for 128/256-bit registers when we have AVX512,
4644// but not VLX. If it uses an extended register we need to use an instruction
4645// that loads the lower 128/256-bit, but is available with only AVX512F.
4646static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4647 const TargetRegisterInfo *TRI,
4648 const MCInstrDesc &LoadDesc,
4649 const MCInstrDesc &BroadcastDesc,
4650 unsigned SubIdx) {
4651 Register DestReg = MIB.getReg(0);
4652 // Check if DestReg is XMM16-31 or YMM16-31.
4653 if (TRI->getEncodingValue(DestReg) < 16) {
4654 // We can use a normal VEX encoded load.
4655 MIB->setDesc(LoadDesc);
4656 } else {
4657 // Use a 128/256-bit VBROADCAST instruction.
4658 MIB->setDesc(BroadcastDesc);
4659 // Change the destination to a 512-bit register.
4660 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4661 MIB->getOperand(0).setReg(DestReg);
4662 }
4663 return true;
4664}
4665
4666// This is used to handle spills for 128/256-bit registers when we have AVX512,
4667// but not VLX. If it uses an extended register we need to use an instruction
4668// that stores the lower 128/256-bit, but is available with only AVX512F.
4669static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4670 const TargetRegisterInfo *TRI,
4671 const MCInstrDesc &StoreDesc,
4672 const MCInstrDesc &ExtractDesc,
4673 unsigned SubIdx) {
4674 Register SrcReg = MIB.getReg(X86::AddrNumOperands);
4675 // Check if DestReg is XMM16-31 or YMM16-31.
4676 if (TRI->getEncodingValue(SrcReg) < 16) {
4677 // We can use a normal VEX encoded store.
4678 MIB->setDesc(StoreDesc);
4679 } else {
4680 // Use a VEXTRACTF instruction.
4681 MIB->setDesc(ExtractDesc);
4682 // Change the destination to a 512-bit register.
4683 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4684 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4685 MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4686 }
4687
4688 return true;
4689}
4690
4691static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4692 MIB->setDesc(Desc);
4693 int64_t ShiftAmt = MIB->getOperand(2).getImm();
4694 // Temporarily remove the immediate so we can add another source register.
4695 MIB->removeOperand(2);
4696 // Add the register. Don't copy the kill flag if there is one.
4697 MIB.addReg(MIB.getReg(1),
4698 getUndefRegState(MIB->getOperand(1).isUndef()));
4699 // Add back the immediate.
4700 MIB.addImm(ShiftAmt);
4701 return true;
4702}
4703
4704bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4705 bool HasAVX = Subtarget.hasAVX();
4706 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4707 switch (MI.getOpcode()) {
4708 case X86::MOV32r0:
4709 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4710 case X86::MOV32r1:
4711 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4712 case X86::MOV32r_1:
4713 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4714 case X86::MOV32ImmSExti8:
4715 case X86::MOV64ImmSExti8:
4716 return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4717 case X86::SETB_C32r:
4718 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4719 case X86::SETB_C64r:
4720 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4721 case X86::MMX_SET0:
4722 return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
4723 case X86::V_SET0:
4724 case X86::FsFLD0SS:
4725 case X86::FsFLD0SD:
4726 case X86::FsFLD0F128:
4727 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4728 case X86::AVX_SET0: {
4729 assert(HasAVX && "AVX not supported")(static_cast <bool> (HasAVX && "AVX not supported"
) ? void (0) : __assert_fail ("HasAVX && \"AVX not supported\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 4729, __extension__
__PRETTY_FUNCTION__))
;
4730 const TargetRegisterInfo *TRI = &getRegisterInfo();
4731 Register SrcReg = MIB.getReg(0);
4732 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4733 MIB->getOperand(0).setReg(XReg);
4734 Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4735 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4736 return true;
4737 }
4738 case X86::AVX512_128_SET0:
4739 case X86::AVX512_FsFLD0SH:
4740 case X86::AVX512_FsFLD0SS:
4741 case X86::AVX512_FsFLD0SD:
4742 case X86::AVX512_FsFLD0F128: {
4743 bool HasVLX = Subtarget.hasVLX();
4744 Register SrcReg = MIB.getReg(0);
4745 const TargetRegisterInfo *TRI = &getRegisterInfo();
4746 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4747 return Expand2AddrUndef(MIB,
4748 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4749 // Extended register without VLX. Use a larger XOR.
4750 SrcReg =
4751 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4752 MIB->getOperand(0).setReg(SrcReg);
4753 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4754 }
4755 case X86::AVX512_256_SET0:
4756 case X86::AVX512_512_SET0: {
4757 bool HasVLX = Subtarget.hasVLX();
4758 Register SrcReg = MIB.getReg(0);
4759 const TargetRegisterInfo *TRI = &getRegisterInfo();
4760 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4761 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4762 MIB->getOperand(0).setReg(XReg);
4763 Expand2AddrUndef(MIB,
4764 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4765 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4766 return true;
4767 }
4768 if (MI.getOpcode() == X86::AVX512_256_SET0) {
4769 // No VLX so we must reference a zmm.
4770 unsigned ZReg =
4771 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4772 MIB->getOperand(0).setReg(ZReg);
4773 }
4774 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4775 }
4776 case X86::V_SETALLONES:
4777 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4778 case X86::AVX2_SETALLONES:
4779 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4780 case X86::AVX1_SETALLONES: {
4781 Register Reg = MIB.getReg(0);
4782 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4783 MIB->setDesc(get(X86::VCMPPSYrri));
4784 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4785 return true;
4786 }
4787 case X86::AVX512_512_SETALLONES: {
4788 Register Reg = MIB.getReg(0);
4789 MIB->setDesc(get(X86::VPTERNLOGDZrri));
4790 // VPTERNLOGD needs 3 register inputs and an immediate.
4791 // 0xff will return 1s for any input.
4792 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4793 .addReg(Reg, RegState::Undef).addImm(0xff);
4794 return true;
4795 }
4796 case X86::AVX512_512_SEXT_MASK_32:
4797 case X86::AVX512_512_SEXT_MASK_64: {
4798 Register Reg = MIB.getReg(0);
4799 Register MaskReg = MIB.getReg(1);
4800 unsigned MaskState = getRegState(MIB->getOperand(1));
4801 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4802 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4803 MI.removeOperand(1);
4804 MIB->setDesc(get(Opc));
4805 // VPTERNLOG needs 3 register inputs and an immediate.
4806 // 0xff will return 1s for any input.
4807 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4808 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4809 return true;
4810 }
4811 case X86::VMOVAPSZ128rm_NOVLX:
4812 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4813 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4814 case X86::VMOVUPSZ128rm_NOVLX:
4815 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4816 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4817 case X86::VMOVAPSZ256rm_NOVLX:
4818 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4819 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4820 case X86::VMOVUPSZ256rm_NOVLX:
4821 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4822 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4823 case X86::VMOVAPSZ128mr_NOVLX:
4824 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4825 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4826 case X86::VMOVUPSZ128mr_NOVLX:
4827 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4828 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4829 case X86::VMOVAPSZ256mr_NOVLX:
4830 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4831 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4832 case X86::VMOVUPSZ256mr_NOVLX:
4833 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4834 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4835 case X86::MOV32ri64: {
4836 Register Reg = MIB.getReg(0);
4837 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4838 MI.setDesc(get(X86::MOV32ri));
4839 MIB->getOperand(0).setReg(Reg32);
4840 MIB.addReg(Reg, RegState::ImplicitDefine);
4841 return true;
4842 }
4843
4844 // KNL does not recognize dependency-breaking idioms for mask registers,
4845 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4846 // Using %k0 as the undef input register is a performance heuristic based
4847 // on the assumption that %k0 is used less frequently than the other mask
4848 // registers, since it is not usable as a write mask.
4849 // FIXME: A more advanced approach would be to choose the best input mask
4850 // register based on context.
4851 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4852 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4853 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4854 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4855 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4856 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4857 case TargetOpcode::LOAD_STACK_GUARD:
4858 expandLoadStackGuard(MIB, *this);
4859 return true;
4860 case X86::XOR64_FP:
4861 case X86::XOR32_FP:
4862 return expandXorFP(MIB, *this);
4863 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4864 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4865 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4866 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4867 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
4868 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
4869 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
4870 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
4871 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
4872 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
4873 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
4874 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4875 case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
4876 case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
4877 case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
4878 }
4879 return false;
4880}
4881
4882/// Return true for all instructions that only update
4883/// the first 32 or 64-bits of the destination register and leave the rest
4884/// unmodified. This can be used to avoid folding loads if the instructions
4885/// only update part of the destination register, and the non-updated part is
4886/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4887/// instructions breaks the partial register dependency and it can improve
4888/// performance. e.g.:
4889///
4890/// movss (%rdi), %xmm0
4891/// cvtss2sd %xmm0, %xmm0
4892///
4893/// Instead of
4894/// cvtss2sd (%rdi), %xmm0
4895///
4896/// FIXME: This should be turned into a TSFlags.
4897///
4898static bool hasPartialRegUpdate(unsigned Opcode,
4899 const X86Subtarget &Subtarget,
4900 bool ForLoadFold = false) {
4901 switch (Opcode) {
4902 case X86::CVTSI2SSrr:
4903 case X86::CVTSI2SSrm:
4904 case X86::CVTSI642SSrr:
4905 case X86::CVTSI642SSrm:
4906 case X86::CVTSI2SDrr:
4907 case X86::CVTSI2SDrm:
4908 case X86::CVTSI642SDrr:
4909 case X86::CVTSI642SDrm:
4910 // Load folding won't effect the undef register update since the input is
4911 // a GPR.
4912 return !ForLoadFold;
4913 case X86::CVTSD2SSrr:
4914 case X86::CVTSD2SSrm:
4915 case X86::CVTSS2SDrr:
4916 case X86::CVTSS2SDrm:
4917 case X86::MOVHPDrm:
4918 case X86::MOVHPSrm:
4919 case X86::MOVLPDrm:
4920 case X86::MOVLPSrm:
4921 case X86::RCPSSr:
4922 case X86::RCPSSm:
4923 case X86::RCPSSr_Int:
4924 case X86::RCPSSm_Int:
4925 case X86::ROUNDSDr:
4926 case X86::ROUNDSDm:
4927 case X86::ROUNDSSr:
4928 case X86::ROUNDSSm:
4929 case X86::RSQRTSSr:
4930 case X86::RSQRTSSm:
4931 case X86::RSQRTSSr_Int:
4932 case X86::RSQRTSSm_Int:
4933 case X86::SQRTSSr:
4934 case X86::SQRTSSm:
4935 case X86::SQRTSSr_Int:
4936 case X86::SQRTSSm_Int:
4937 case X86::SQRTSDr:
4938 case X86::SQRTSDm:
4939 case X86::SQRTSDr_Int:
4940 case X86::SQRTSDm_Int:
4941 return true;
4942 // GPR
4943 case X86::POPCNT32rm:
4944 case X86::POPCNT32rr:
4945 case X86::POPCNT64rm:
4946 case X86::POPCNT64rr:
4947 return Subtarget.hasPOPCNTFalseDeps();
4948 case X86::LZCNT32rm:
4949 case X86::LZCNT32rr:
4950 case X86::LZCNT64rm:
4951 case X86::LZCNT64rr:
4952 case X86::TZCNT32rm:
4953 case X86::TZCNT32rr:
4954 case X86::TZCNT64rm:
4955 case X86::TZCNT64rr:
4956 return Subtarget.hasLZCNTFalseDeps();
4957 }
4958
4959 return false;
4960}
4961
4962/// Inform the BreakFalseDeps pass how many idle
4963/// instructions we would like before a partial register update.
4964unsigned X86InstrInfo::getPartialRegUpdateClearance(
4965 const MachineInstr &MI, unsigned OpNum,
4966 const TargetRegisterInfo *TRI) const {
4967 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4968 return 0;
4969
4970 // If MI is marked as reading Reg, the partial register update is wanted.
4971 const MachineOperand &MO = MI.getOperand(0);
4972 Register Reg = MO.getReg();
4973 if (Reg.isVirtual()) {
4974 if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4975 return 0;
4976 } else {
4977 if (MI.readsRegister(Reg, TRI))
4978 return 0;
4979 }
4980
4981 // If any instructions in the clearance range are reading Reg, insert a
4982 // dependency breaking instruction, which is inexpensive and is likely to
4983 // be hidden in other instruction's cycles.
4984 return PartialRegUpdateClearance;
4985}
4986
4987// Return true for any instruction the copies the high bits of the first source
4988// operand into the unused high bits of the destination operand.
4989// Also returns true for instructions that have two inputs where one may
4990// be undef and we want it to use the same register as the other input.
4991static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
4992 bool ForLoadFold = false) {
4993 // Set the OpNum parameter to the first source operand.
4994 switch (Opcode) {
4995 case X86::MMX_PUNPCKHBWrr:
4996 case X86::MMX_PUNPCKHWDrr:
4997 case X86::MMX_PUNPCKHDQrr:
4998 case X86::MMX_PUNPCKLBWrr:
4999 case X86::MMX_PUNPCKLWDrr:
5000 case X86::MMX_PUNPCKLDQrr:
5001 case X86::MOVHLPSrr:
5002 case X86::PACKSSWBrr:
5003 case X86::PACKUSWBrr:
5004 case X86::PACKSSDWrr:
5005 case X86::PACKUSDWrr:
5006 case X86::PUNPCKHBWrr:
5007 case X86::PUNPCKLBWrr:
5008 case X86::PUNPCKHWDrr:
5009 case X86::PUNPCKLWDrr:
5010 case X86::PUNPCKHDQrr:
5011 case X86::PUNPCKLDQrr:
5012 case X86::PUNPCKHQDQrr:
5013 case X86::PUNPCKLQDQrr:
5014 case X86::SHUFPDrri:
5015 case X86::SHUFPSrri:
5016 // These instructions are sometimes used with an undef first or second
5017 // source. Return true here so BreakFalseDeps will assign this source to the
5018 // same register as the first source to avoid a false dependency.
5019 // Operand 1 of these instructions is tied so they're separate from their
5020 // VEX counterparts.
5021 return OpNum == 2 && !ForLoadFold;
5022
5023 case X86::VMOVLHPSrr:
5024 case X86::VMOVLHPSZrr:
5025 case X86::VPACKSSWBrr:
5026 case X86::VPACKUSWBrr:
5027 case X86::VPACKSSDWrr:
5028 case X86::VPACKUSDWrr:
5029 case X86::VPACKSSWBZ128rr:
5030 case X86::VPACKUSWBZ128rr:
5031 case X86::VPACKSSDWZ128rr:
5032 case X86::VPACKUSDWZ128rr:
5033 case X86::VPERM2F128rr:
5034 case X86::VPERM2I128rr:
5035 case X86::VSHUFF32X4Z256rri:
5036 case X86::VSHUFF32X4Zrri:
5037 case X86::VSHUFF64X2Z256rri:
5038 case X86::VSHUFF64X2Zrri:
5039 case X86::VSHUFI32X4Z256rri:
5040 case X86::VSHUFI32X4Zrri:
5041 case X86::VSHUFI64X2Z256rri:
5042 case X86::VSHUFI64X2Zrri:
5043 case X86::VPUNPCKHBWrr:
5044 case X86::VPUNPCKLBWrr:
5045 case X86::VPUNPCKHBWYrr:
5046 case X86::VPUNPCKLBWYrr:
5047 case X86::VPUNPCKHBWZ128rr:
5048 case X86::VPUNPCKLBWZ128rr:
5049 case X86::VPUNPCKHBWZ256rr:
5050 case X86::VPUNPCKLBWZ256rr:
5051 case X86::VPUNPCKHBWZrr:
5052 case X86::VPUNPCKLBWZrr:
5053 case X86::VPUNPCKHWDrr:
5054 case X86::VPUNPCKLWDrr:
5055 case X86::VPUNPCKHWDYrr:
5056 case X86::VPUNPCKLWDYrr:
5057 case X86::VPUNPCKHWDZ128rr:
5058 case X86::VPUNPCKLWDZ128rr:
5059 case X86::VPUNPCKHWDZ256rr:
5060 case X86::VPUNPCKLWDZ256rr:
5061 case X86::VPUNPCKHWDZrr:
5062 case X86::VPUNPCKLWDZrr:
5063 case X86::VPUNPCKHDQrr:
5064 case X86::VPUNPCKLDQrr:
5065 case X86::VPUNPCKHDQYrr:
5066 case X86::VPUNPCKLDQYrr:
5067 case X86::VPUNPCKHDQZ128rr:
5068 case X86::VPUNPCKLDQZ128rr:
5069 case X86::VPUNPCKHDQZ256rr:
5070 case X86::VPUNPCKLDQZ256rr:
5071 case X86::VPUNPCKHDQZrr:
5072 case X86::VPUNPCKLDQZrr:
5073 case X86::VPUNPCKHQDQrr:
5074 case X86::VPUNPCKLQDQrr:
5075 case X86::VPUNPCKHQDQYrr:
5076 case X86::VPUNPCKLQDQYrr:
5077 case X86::VPUNPCKHQDQZ128rr:
5078 case X86::VPUNPCKLQDQZ128rr:
5079 case X86::VPUNPCKHQDQZ256rr:
5080 case X86::VPUNPCKLQDQZ256rr:
5081 case X86::VPUNPCKHQDQZrr:
5082 case X86::VPUNPCKLQDQZrr:
5083 // These instructions are sometimes used with an undef first or second
5084 // source. Return true here so BreakFalseDeps will assign this source to the
5085 // same register as the first source to avoid a false dependency.
5086 return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
5087
5088 case X86::VCVTSI2SSrr:
5089 case X86::VCVTSI2SSrm:
5090 case X86::VCVTSI2SSrr_Int:
5091 case X86::VCVTSI2SSrm_Int:
5092 case X86::VCVTSI642SSrr:
5093 case X86::VCVTSI642SSrm:
5094 case X86::VCVTSI642SSrr_Int:
5095 case X86::VCVTSI642SSrm_Int:
5096 case X86::VCVTSI2SDrr:
5097 case X86::VCVTSI2SDrm:
5098 case X86::VCVTSI2SDrr_Int:
5099 case X86::VCVTSI2SDrm_Int:
5100 case X86::VCVTSI642SDrr:
5101 case X86::VCVTSI642SDrm:
5102 case X86::VCVTSI642SDrr_Int:
5103 case X86::VCVTSI642SDrm_Int:
5104 // AVX-512
5105 case X86::VCVTSI2SSZrr:
5106 case X86::VCVTSI2SSZrm:
5107 case X86::VCVTSI2SSZrr_Int:
5108 case X86::VCVTSI2SSZrrb_Int:
5109 case X86::VCVTSI2SSZrm_Int:
5110 case X86::VCVTSI642SSZrr:
5111 case X86::VCVTSI642SSZrm:
5112 case X86::VCVTSI642SSZrr_Int:
5113 case X86::VCVTSI642SSZrrb_Int:
5114 case X86::VCVTSI642SSZrm_Int:
5115 case X86::VCVTSI2SDZrr:
5116 case X86::VCVTSI2SDZrm:
5117 case X86::VCVTSI2SDZrr_Int:
5118 case X86::VCVTSI2SDZrm_Int:
5119 case X86::VCVTSI642SDZrr:
5120 case X86::VCVTSI642SDZrm:
5121 case X86::VCVTSI642SDZrr_Int:
5122 case X86::VCVTSI642SDZrrb_Int:
5123 case X86::VCVTSI642SDZrm_Int:
5124 case X86::VCVTUSI2SSZrr:
5125 case X86::VCVTUSI2SSZrm:
5126 case X86::VCVTUSI2SSZrr_Int:
5127 case X86::VCVTUSI2SSZrrb_Int:
5128 case X86::VCVTUSI2SSZrm_Int:
5129 case X86::VCVTUSI642SSZrr:
5130 case X86::VCVTUSI642SSZrm:
5131 case X86::VCVTUSI642SSZrr_Int:
5132 case X86::VCVTUSI642SSZrrb_Int:
5133 case X86::VCVTUSI642SSZrm_Int:
5134 case X86::VCVTUSI2SDZrr:
5135 case X86::VCVTUSI2SDZrm:
5136 case X86::VCVTUSI2SDZrr_Int:
5137 case X86::VCVTUSI2SDZrm_Int:
5138 case X86::VCVTUSI642SDZrr:
5139 case X86::VCVTUSI642SDZrm:
5140 case X86::VCVTUSI642SDZrr_Int:
5141 case X86::VCVTUSI642SDZrrb_Int:
5142 case X86::VCVTUSI642SDZrm_Int:
5143 case X86::VCVTSI2SHZrr:
5144 case X86::VCVTSI2SHZrm:
5145 case X86::VCVTSI2SHZrr_Int:
5146 case X86::VCVTSI2SHZrrb_Int:
5147 case X86::VCVTSI2SHZrm_Int:
5148 case X86::VCVTSI642SHZrr:
5149 case X86::VCVTSI642SHZrm:
5150 case X86::VCVTSI642SHZrr_Int:
5151 case X86::VCVTSI642SHZrrb_Int:
5152 case X86::VCVTSI642SHZrm_Int:
5153 case X86::VCVTUSI2SHZrr:
5154 case X86::VCVTUSI2SHZrm:
5155 case X86::VCVTUSI2SHZrr_Int:
5156 case X86::VCVTUSI2SHZrrb_Int:
5157 case X86::VCVTUSI2SHZrm_Int:
5158 case X86::VCVTUSI642SHZrr:
5159 case X86::VCVTUSI642SHZrm:
5160 case X86::VCVTUSI642SHZrr_Int:
5161 case X86::VCVTUSI642SHZrrb_Int:
5162 case X86::VCVTUSI642SHZrm_Int:
5163 // Load folding won't effect the undef register update since the input is
5164 // a GPR.
5165 return OpNum == 1 && !ForLoadFold;
5166 case X86::VCVTSD2SSrr:
5167 case X86::VCVTSD2SSrm:
5168 case X86::VCVTSD2SSrr_Int:
5169 case X86::VCVTSD2SSrm_Int:
5170 case X86::VCVTSS2SDrr:
5171 case X86::VCVTSS2SDrm:
5172 case X86::VCVTSS2SDrr_Int:
5173 case X86::VCVTSS2SDrm_Int:
5174 case X86::VRCPSSr:
5175 case X86::VRCPSSr_Int:
5176 case X86::VRCPSSm:
5177 case X86::VRCPSSm_Int:
5178 case X86::VROUNDSDr:
5179 case X86::VROUNDSDm:
5180 case X86::VROUNDSDr_Int:
5181 case X86::VROUNDSDm_Int:
5182 case X86::VROUNDSSr:
5183 case X86::VROUNDSSm:
5184 case X86::VROUNDSSr_Int:
5185 case X86::VROUNDSSm_Int:
5186 case X86::VRSQRTSSr:
5187 case X86::VRSQRTSSr_Int:
5188 case X86::VRSQRTSSm:
5189 case X86::VRSQRTSSm_Int:
5190 case X86::VSQRTSSr:
5191 case X86::VSQRTSSr_Int:
5192 case X86::VSQRTSSm:
5193 case X86::VSQRTSSm_Int:
5194 case X86::VSQRTSDr:
5195 case X86::VSQRTSDr_Int:
5196 case X86::VSQRTSDm:
5197 case X86::VSQRTSDm_Int:
5198 // AVX-512
5199 case X86::VCVTSD2SSZrr:
5200 case X86::VCVTSD2SSZrr_Int:
5201 case X86::VCVTSD2SSZrrb_Int:
5202 case X86::VCVTSD2SSZrm:
5203 case X86::VCVTSD2SSZrm_Int:
5204 case X86::VCVTSS2SDZrr:
5205 case X86::VCVTSS2SDZrr_Int:
5206 case X86::VCVTSS2SDZrrb_Int:
5207 case X86::VCVTSS2SDZrm:
5208 case X86::VCVTSS2SDZrm_Int:
5209 case X86::VGETEXPSDZr:
5210 case X86::VGETEXPSDZrb:
5211 case X86::VGETEXPSDZm:
5212 case X86::VGETEXPSSZr:
5213 case X86::VGETEXPSSZrb:
5214 case X86::VGETEXPSSZm:
5215 case X86::VGETMANTSDZrri:
5216 case X86::VGETMANTSDZrrib:
5217 case X86::VGETMANTSDZrmi:
5218 case X86::VGETMANTSSZrri:
5219 case X86::VGETMANTSSZrrib:
5220 case X86::VGETMANTSSZrmi:
5221 case X86::VRNDSCALESDZr:
5222 case X86::VRNDSCALESDZr_Int:
5223 case X86::VRNDSCALESDZrb_Int:
5224 case X86::VRNDSCALESDZm:
5225 case X86::VRNDSCALESDZm_Int:
5226 case X86::VRNDSCALESSZr:
5227 case X86::VRNDSCALESSZr_Int:
5228 case X86::VRNDSCALESSZrb_Int:
5229 case X86::VRNDSCALESSZm:
5230 case X86::VRNDSCALESSZm_Int:
5231 case X86::VRCP14SDZrr:
5232 case X86::VRCP14SDZrm:
5233 case X86::VRCP14SSZrr:
5234 case X86::VRCP14SSZrm:
5235 case X86::VRCPSHZrr:
5236 case X86::VRCPSHZrm:
5237 case X86::VRSQRTSHZrr:
5238 case X86::VRSQRTSHZrm:
5239 case X86::VREDUCESHZrmi:
5240 case X86::VREDUCESHZrri:
5241 case X86::VREDUCESHZrrib:
5242 case X86::VGETEXPSHZr:
5243 case X86::VGETEXPSHZrb:
5244 case X86::VGETEXPSHZm:
5245 case X86::VGETMANTSHZrri:
5246 case X86::VGETMANTSHZrrib:
5247 case X86::VGETMANTSHZrmi:
5248 case X86::VRNDSCALESHZr:
5249 case X86::VRNDSCALESHZr_Int:
5250 case X86::VRNDSCALESHZrb_Int:
5251 case X86::VRNDSCALESHZm:
5252 case X86::VRNDSCALESHZm_Int:
5253 case X86::VSQRTSHZr:
5254 case X86::VSQRTSHZr_Int:
5255 case X86::VSQRTSHZrb_Int:
5256 case X86::VSQRTSHZm:
5257 case X86::VSQRTSHZm_Int:
5258 case X86::VRCP28SDZr:
5259 case X86::VRCP28SDZrb:
5260 case X86::VRCP28SDZm:
5261 case X86::VRCP28SSZr:
5262 case X86::VRCP28SSZrb:
5263 case X86::VRCP28SSZm:
5264 case X86::VREDUCESSZrmi:
5265 case X86::VREDUCESSZrri:
5266 case X86::VREDUCESSZrrib:
5267 case X86::VRSQRT14SDZrr:
5268 case X86::VRSQRT14SDZrm:
5269 case X86::VRSQRT14SSZrr:
5270 case X86::VRSQRT14SSZrm:
5271 case X86::VRSQRT28SDZr:
5272 case X86::VRSQRT28SDZrb:
5273 case X86::VRSQRT28SDZm:
5274 case X86::VRSQRT28SSZr:
5275 case X86::VRSQRT28SSZrb:
5276 case X86::VRSQRT28SSZm:
5277 case X86::VSQRTSSZr:
5278 case X86::VSQRTSSZr_Int:
5279 case X86::VSQRTSSZrb_Int:
5280 case X86::VSQRTSSZm:
5281 case X86::VSQRTSSZm_Int:
5282 case X86::VSQRTSDZr:
5283 case X86::VSQRTSDZr_Int:
5284 case X86::VSQRTSDZrb_Int:
5285 case X86::VSQRTSDZm:
5286 case X86::VSQRTSDZm_Int:
5287 case X86::VCVTSD2SHZrr:
5288 case X86::VCVTSD2SHZrr_Int:
5289 case X86::VCVTSD2SHZrrb_Int:
5290 case X86::VCVTSD2SHZrm:
5291 case X86::VCVTSD2SHZrm_Int:
5292 case X86::VCVTSS2SHZrr:
5293 case X86::VCVTSS2SHZrr_Int:
5294 case X86::VCVTSS2SHZrrb_Int:
5295 case X86::VCVTSS2SHZrm:
5296 case X86::VCVTSS2SHZrm_Int:
5297 case X86::VCVTSH2SDZrr:
5298 case X86::VCVTSH2SDZrr_Int:
5299 case X86::VCVTSH2SDZrrb_Int:
5300 case X86::VCVTSH2SDZrm:
5301 case X86::VCVTSH2SDZrm_Int:
5302 case X86::VCVTSH2SSZrr:
5303 case X86::VCVTSH2SSZrr_Int:
5304 case X86::VCVTSH2SSZrrb_Int:
5305 case X86::VCVTSH2SSZrm:
5306 case X86::VCVTSH2SSZrm_Int:
5307 return OpNum == 1;
5308 case X86::VMOVSSZrrk:
5309 case X86::VMOVSDZrrk:
5310 return OpNum == 3 && !ForLoadFold;
5311 case X86::VMOVSSZrrkz:
5312 case X86::VMOVSDZrrkz:
5313 return OpNum == 2 && !ForLoadFold;
5314 }
5315
5316 return false;
5317}
5318
5319/// Inform the BreakFalseDeps pass how many idle instructions we would like
5320/// before certain undef register reads.
5321///
5322/// This catches the VCVTSI2SD family of instructions:
5323///
5324/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
5325///
5326/// We should to be careful *not* to catch VXOR idioms which are presumably
5327/// handled specially in the pipeline:
5328///
5329/// vxorps undef %xmm1, undef %xmm1, %xmm1
5330///
5331/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5332/// high bits that are passed-through are not live.
5333unsigned
5334X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
5335 const TargetRegisterInfo *TRI) const {
5336 const MachineOperand &MO = MI.getOperand(OpNum);
5337 if (Register::isPhysicalRegister(MO.getReg()) &&
5338 hasUndefRegUpdate(MI.getOpcode(), OpNum))
5339 return UndefRegClearance;
5340
5341 return 0;
5342}
5343
5344void X86InstrInfo::breakPartialRegDependency(
5345 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5346 Register Reg = MI.getOperand(OpNum).getReg();
5347 // If MI kills this register, the false dependence is already broken.
5348 if (MI.killsRegister(Reg, TRI))
5349 return;
5350
5351 if (X86::VR128RegClass.contains(Reg)) {
5352 // These instructions are all floating point domain, so xorps is the best
5353 // choice.
5354 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
5355 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
5356 .addReg(Reg, RegState::Undef)
5357 .addReg(Reg, RegState::Undef);
5358 MI.addRegisterKilled(Reg, TRI, true);
5359 } else if (X86::VR256RegClass.contains(Reg)) {
5360 // Use vxorps to clear the full ymm register.
5361 // It wants to read and write the xmm sub-register.
5362 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5363 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
5364 .addReg(XReg, RegState::Undef)
5365 .addReg(XReg, RegState::Undef)
5366 .addReg(Reg, RegState::ImplicitDefine);
5367 MI.addRegisterKilled(Reg, TRI, true);
5368 } else if (X86::GR64RegClass.contains(Reg)) {
5369 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
5370 // as well.
5371 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
5372 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
5373 .addReg(XReg, RegState::Undef)
5374 .addReg(XReg, RegState::Undef)
5375 .addReg(Reg, RegState::ImplicitDefine);
5376 MI.addRegisterKilled(Reg, TRI, true);
5377 } else if (X86::GR32RegClass.contains(Reg)) {
5378 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
5379 .addReg(Reg, RegState::Undef)
5380 .addReg(Reg, RegState::Undef);
5381 MI.addRegisterKilled(Reg, TRI, true);
5382 }
5383}
5384
5385static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
5386 int PtrOffset = 0) {
5387 unsigned NumAddrOps = MOs.size();
5388
5389 if (NumAddrOps < 4) {
5390 // FrameIndex only - add an immediate offset (whether its zero or not).
5391 for (unsigned i = 0; i != NumAddrOps; ++i)
5392 MIB.add(MOs[i]);
5393 addOffset(MIB, PtrOffset);
5394 } else {
5395 // General Memory Addressing - we need to add any offset to an existing
5396 // offset.
5397 assert(MOs.size() == 5 && "Unexpected memory operand list length")(static_cast <bool> (MOs.size() == 5 && "Unexpected memory operand list length"
) ? void (0) : __assert_fail ("MOs.size() == 5 && \"Unexpected memory operand list length\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 5397, __extension__
__PRETTY_FUNCTION__))
;
5398 for (unsigned i = 0; i != NumAddrOps; ++i) {
5399 const MachineOperand &MO = MOs[i];
5400 if (i == 3 && PtrOffset != 0) {
5401 MIB.addDisp(MO, PtrOffset);
5402 } else {
5403 MIB.add(MO);
5404 }
5405 }
5406 }
5407}
5408
5409static void updateOperandRegConstraints(MachineFunction &MF,
5410 MachineInstr &NewMI,
5411 const TargetInstrInfo &TII) {
5412 MachineRegisterInfo &MRI = MF.getRegInfo();
5413 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
5414
5415 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
5416 MachineOperand &MO = NewMI.getOperand(Idx);
5417 // We only need to update constraints on virtual register operands.
5418 if (!MO.isReg())
5419 continue;
5420 Register Reg = MO.getReg();
5421 if (!Reg.isVirtual())
5422 continue;
5423
5424 auto *NewRC = MRI.constrainRegClass(
5425 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
5426 if (!NewRC) {
5427 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
5428 dbgs() << "WARNING: Unable to update register constraint for operand "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
5429 << Idx << " of instruction:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
5430 NewMI.dump(); dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("x86-instr-info")) { dbgs() << "WARNING: Unable to update register constraint for operand "
<< Idx << " of instruction:\n"; NewMI.dump(); dbgs
() << "\n"; } } while (false)
;
5431 }
5432 }
5433}
5434
5435static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
5436 ArrayRef<MachineOperand> MOs,
5437 MachineBasicBlock::iterator InsertPt,
5438 MachineInstr &MI,
5439 const TargetInstrInfo &TII) {
5440 // Create the base instruction with the memory operand as the first part.
5441 // Omit the implicit operands, something BuildMI can't do.
5442 MachineInstr *NewMI =
5443 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5444 MachineInstrBuilder MIB(MF, NewMI);
5445 addOperands(MIB, MOs);
5446
5447 // Loop over the rest of the ri operands, converting them over.
5448 unsigned NumOps = MI.getDesc().getNumOperands() - 2;
5449 for (unsigned i = 0; i != NumOps; ++i) {
5450 MachineOperand &MO = MI.getOperand(i + 2);
5451 MIB.add(MO);
5452 }
5453 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
5454 MIB.add(MO);
5455
5456 updateOperandRegConstraints(MF, *NewMI, TII);
5457
5458 MachineBasicBlock *MBB = InsertPt->getParent();
5459 MBB->insert(InsertPt, NewMI);
5460
5461 return MIB;
5462}
5463
5464static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
5465 unsigned OpNo, ArrayRef<MachineOperand> MOs,
5466 MachineBasicBlock::iterator InsertPt,
5467 MachineInstr &MI, const TargetInstrInfo &TII,
5468 int PtrOffset = 0) {
5469 // Omit the implicit operands, something BuildMI can't do.
5470 MachineInstr *NewMI =
5471 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5472 MachineInstrBuilder MIB(MF, NewMI);
5473
5474 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5475 MachineOperand &MO = MI.getOperand(i);
5476 if (i == OpNo) {
5477 assert(MO.isReg() && "Expected to fold into reg operand!")(static_cast <bool> (MO.isReg() && "Expected to fold into reg operand!"
) ? void (0) : __assert_fail ("MO.isReg() && \"Expected to fold into reg operand!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 5477, __extension__
__PRETTY_FUNCTION__))
;
5478 addOperands(MIB, MOs, PtrOffset);
5479 } else {
5480 MIB.add(MO);
5481 }
5482 }
5483
5484 updateOperandRegConstraints(MF, *NewMI, TII);
5485
5486 // Copy the NoFPExcept flag from the instruction we're fusing.
5487 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
5488 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
5489
5490 MachineBasicBlock *MBB = InsertPt->getParent();
5491 MBB->insert(InsertPt, NewMI);
5492
5493 return MIB;
5494}
5495
5496static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
5497 ArrayRef<MachineOperand> MOs,
5498 MachineBasicBlock::iterator InsertPt,
5499 MachineInstr &MI) {
5500 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
5501 MI.getDebugLoc(), TII.get(Opcode));
5502 addOperands(MIB, MOs);
5503 return MIB.addImm(0);
5504}
5505
5506MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
5507 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5508 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5509 unsigned Size, Align Alignment) const {
5510 switch (MI.getOpcode()) {
5511 case X86::INSERTPSrr:
5512 case X86::VINSERTPSrr:
5513 case X86::VINSERTPSZrr:
5514 // Attempt to convert the load of inserted vector into a fold load
5515 // of a single float.
5516 if (OpNum == 2) {
5517 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
5518 unsigned ZMask = Imm & 15;
5519 unsigned DstIdx = (Imm >> 4) & 3;
5520 unsigned SrcIdx = (Imm >> 6) & 3;
5521
5522 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5523 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5524 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5525 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
5526 int PtrOffset = SrcIdx * 4;
5527 unsigned NewImm = (DstIdx << 4) | ZMask;
5528 unsigned NewOpCode =
5529 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
5530 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
5531 X86::INSERTPSrm;
5532 MachineInstr *NewMI =
5533 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
5534 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
5535 return NewMI;
5536 }
5537 }
5538 break;
5539 case X86::MOVHLPSrr:
5540 case X86::VMOVHLPSrr:
5541 case X86::VMOVHLPSZrr:
5542 // Move the upper 64-bits of the second operand to the lower 64-bits.
5543 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
5544 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
5545 if (OpNum == 2) {
5546 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5547 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5548 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5549 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
5550 unsigned NewOpCode =
5551 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
5552 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
5553 X86::MOVLPSrm;
5554 MachineInstr *NewMI =
5555 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
5556 return NewMI;
5557 }
5558 }
5559 break;
5560 case X86::UNPCKLPDrr:
5561 // If we won't be able to fold this to the memory form of UNPCKL, use
5562 // MOVHPD instead. Done as custom because we can't have this in the load
5563 // table twice.
5564 if (OpNum == 2) {
5565 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5566 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5567 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5568 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
5569 MachineInstr *NewMI =
5570 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
5571 return NewMI;
5572 }
5573 }
5574 break;
5575 }
5576
5577 return nullptr;
5578}
5579
5580static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
5581 MachineInstr &MI) {
5582 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
5583 !MI.getOperand(1).isReg())
5584 return false;
5585
5586 // The are two cases we need to handle depending on where in the pipeline
5587 // the folding attempt is being made.
5588 // -Register has the undef flag set.
5589 // -Register is produced by the IMPLICIT_DEF instruction.
5590
5591 if (MI.getOperand(1).isUndef())
5592 return true;
5593
5594 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5595 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
5596 return VRegDef && VRegDef->isImplicitDef();
5597}
5598
5599MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5600 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5601 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5602 unsigned Size, Align Alignment, bool AllowCommute) const {
5603 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
5604 bool isTwoAddrFold = false;
5605
5606 // For CPUs that favor the register form of a call or push,
5607 // do not fold loads into calls or pushes, unless optimizing for size
5608 // aggressively.
5609 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
5610 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
5611 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
5612 MI.getOpcode() == X86::PUSH64r))
5613 return nullptr;
5614
5615 // Avoid partial and undef register update stalls unless optimizing for size.
5616 if (!MF.getFunction().hasOptSize() &&
5617 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5618 shouldPreventUndefRegUpdateMemFold(MF, MI)))
5619 return nullptr;
5620
5621 unsigned NumOps = MI.getDesc().getNumOperands();
5622 bool isTwoAddr =
5623 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
5624
5625 // FIXME: AsmPrinter doesn't know how to handle
5626 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5627 if (MI.getOpcode() == X86::ADD32ri &&
5628 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5629 return nullptr;
5630
5631 // GOTTPOFF relocation loads can only be folded into add instructions.
5632 // FIXME: Need to exclude other relocations that only support specific
5633 // instructions.
5634 if (MOs.size() == X86::AddrNumOperands &&
5635 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
5636 MI.getOpcode() != X86::ADD64rr)
5637 return nullptr;
5638
5639 MachineInstr *NewMI = nullptr;
5640
5641 // Attempt to fold any custom cases we have.
5642 if (MachineInstr *CustomMI = foldMemoryOperandCustom(
5643 MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
5644 return CustomMI;
5645
5646 const X86MemoryFoldTableEntry *I = nullptr;
5647
5648 // Folding a memory location into the two-address part of a two-address
5649 // instruction is different than folding it other places. It requires
5650 // replacing the *two* registers with the memory location.
5651 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
5652 MI.getOperand(1).isReg() &&
5653 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
5654 I = lookupTwoAddrFoldTable(MI.getOpcode());
5655 isTwoAddrFold = true;
5656 } else {
5657 if (OpNum == 0) {
5658 if (MI.getOpcode() == X86::MOV32r0) {
5659 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
5660 if (NewMI)
5661 return NewMI;
5662 }
5663 }
5664
5665 I = lookupFoldTable(MI.getOpcode(), OpNum);
5666 }
5667
5668 if (I != nullptr) {
5669 unsigned Opcode = I->DstOp;
5670 bool FoldedLoad =
5671 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
5672 bool FoldedStore =
5673 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
5674 MaybeAlign MinAlign =
5675 decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
5676 if (MinAlign && Alignment < *MinAlign)
5677 return nullptr;
5678 bool NarrowToMOV32rm = false;
5679 if (Size) {
5680 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5681 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
5682 &RI, MF);
5683 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5684 // Check if it's safe to fold the load. If the size of the object is
5685 // narrower than the load width, then it's not.
5686 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
5687 if (FoldedLoad && Size < RCSize) {
5688 // If this is a 64-bit load, but the spill slot is 32, then we can do
5689 // a 32-bit load which is implicitly zero-extended. This likely is
5690 // due to live interval analysis remat'ing a load from stack slot.
5691 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
5692 return nullptr;
5693 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
5694 return nullptr;
5695 Opcode = X86::MOV32rm;
5696 NarrowToMOV32rm = true;
5697 }
5698 // For stores, make sure the size of the object is equal to the size of
5699 // the store. If the object is larger, the extra bits would be garbage. If
5700 // the object is smaller we might overwrite another object or fault.
5701 if (FoldedStore && Size != RCSize)
5702 return nullptr;
5703 }
5704
5705 if (isTwoAddrFold)
5706 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
5707 else
5708 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
5709
5710 if (NarrowToMOV32rm) {
5711 // If this is the special case where we use a MOV32rm to load a 32-bit
5712 // value and zero-extend the top bits. Change the destination register
5713 // to a 32-bit one.
5714 Register DstReg = NewMI->getOperand(0).getReg();
5715 if (DstReg.isPhysical())
5716 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
5717 else
5718 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
5719 }
5720 return NewMI;
5721 }
5722
5723 // If the instruction and target operand are commutable, commute the
5724 // instruction and try again.
5725 if (AllowCommute) {
5726 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
5727 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
5728 bool HasDef = MI.getDesc().getNumDefs();
5729 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
5730 Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
5731 Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
5732 bool Tied1 =
5733 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
5734 bool Tied2 =
5735 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
5736
5737 // If either of the commutable operands are tied to the destination
5738 // then we can not commute + fold.
5739 if ((HasDef && Reg0 == Reg1 && Tied1) ||
5740 (HasDef && Reg0 == Reg2 && Tied2))
5741 return nullptr;
5742
5743 MachineInstr *CommutedMI =
5744 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5745 if (!CommutedMI) {
5746 // Unable to commute.
5747 return nullptr;
5748 }
5749 if (CommutedMI != &MI) {
5750 // New instruction. We can't fold from this.
5751 CommutedMI->eraseFromParent();
5752 return nullptr;
5753 }
5754
5755 // Attempt to fold with the commuted version of the instruction.
5756 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
5757 Alignment, /*AllowCommute=*/false);
5758 if (NewMI)
5759 return NewMI;
5760
5761 // Folding failed again - undo the commute before returning.
5762 MachineInstr *UncommutedMI =
5763 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5764 if (!UncommutedMI) {
5765 // Unable to commute.
5766 return nullptr;
5767 }
5768 if (UncommutedMI != &MI) {
5769 // New instruction. It doesn't need to be kept.
5770 UncommutedMI->eraseFromParent();
5771 return nullptr;
5772 }
5773
5774 // Return here to prevent duplicate fuse failure report.
5775 return nullptr;
5776 }
5777 }
5778
5779 // No fusion
5780 if (PrintFailedFusing && !MI.isCopy())
5781 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
5782 return nullptr;
5783}
5784
5785MachineInstr *
5786X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
5787 ArrayRef<unsigned> Ops,
5788 MachineBasicBlock::iterator InsertPt,
5789 int FrameIndex, LiveIntervals *LIS,
5790 VirtRegMap *VRM) const {
5791 // Check switch flag
5792 if (NoFusing)
5793 return nullptr;
5794
5795 // Avoid partial and undef register update stalls unless optimizing for size.
5796 if (!MF.getFunction().hasOptSize() &&
5797 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5798 shouldPreventUndefRegUpdateMemFold(MF, MI)))
5799 return nullptr;
5800
5801 // Don't fold subreg spills, or reloads that use a high subreg.
5802 for (auto Op : Ops) {
5803 MachineOperand &MO = MI.getOperand(Op);
5804 auto SubReg = MO.getSubReg();
5805 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
5806 return nullptr;
5807 }
5808
5809 const MachineFrameInfo &MFI = MF.getFrameInfo();
5810 unsigned Size = MFI.getObjectSize(FrameIndex);
5811 Align Alignment = MFI.getObjectAlign(FrameIndex);
5812 // If the function stack isn't realigned we don't want to fold instructions
5813 // that need increased alignment.
5814 if (!RI.hasStackRealignment(MF))
5815 Alignment =
5816 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
5817 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5818 unsigned NewOpc = 0;
5819 unsigned RCSize = 0;
5820 switch (MI.getOpcode()) {
5821 default: return nullptr;
5822 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
5823 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5824 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5825 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5826 }
5827 // Check if it's safe to fold the load. If the size of the object is
5828 // narrower than the load width, then it's not.
5829 if (Size < RCSize)
5830 return nullptr;
5831 // Change to CMPXXri r, 0 first.
5832 MI.setDesc(get(NewOpc));
5833 MI.getOperand(1).ChangeToImmediate(0);
5834 } else if (Ops.size() != 1)
5835 return nullptr;
5836
5837 return foldMemoryOperandImpl(MF, MI, Ops[0],
5838 MachineOperand::CreateFI(FrameIndex), InsertPt,
5839 Size, Alignment, /*AllowCommute=*/true);
5840}
5841
5842/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5843/// because the latter uses contents that wouldn't be defined in the folded
5844/// version. For instance, this transformation isn't legal:
5845/// movss (%rdi), %xmm0
5846/// addps %xmm0, %xmm0
5847/// ->
5848/// addps (%rdi), %xmm0
5849///
5850/// But this one is:
5851/// movss (%rdi), %xmm0
5852/// addss %xmm0, %xmm0
5853/// ->
5854/// addss (%rdi), %xmm0
5855///
5856static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5857 const MachineInstr &UserMI,
5858 const MachineFunction &MF) {
5859 unsigned Opc = LoadMI.getOpcode();
5860 unsigned UserOpc = UserMI.getOpcode();
5861 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5862 const TargetRegisterClass *RC =
5863 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
5864 unsigned RegSize = TRI.getRegSizeInBits(*RC);
5865
5866 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
5867 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
5868 Opc == X86::VMOVSSZrm_alt) &&
5869 RegSize > 32) {
5870 // These instructions only load 32 bits, we can't fold them if the
5871 // destination register is wider than 32 bits (4 bytes), and its user
5872 // instruction isn't scalar (SS).
5873 switch (UserOpc) {
5874 case X86::CVTSS2SDrr_Int:
5875 case X86::VCVTSS2SDrr_Int:
5876 case X86::VCVTSS2SDZrr_Int:
5877 case X86::VCVTSS2SDZrr_Intk:
5878 case X86::VCVTSS2SDZrr_Intkz:
5879 case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int:
5880 case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int:
5881 case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int:
5882 case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int:
5883 case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int:
5884 case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int:
5885 case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int:
5886 case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
5887 case X86::RCPSSr_Int: case X86::VRCPSSr_Int:
5888 case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
5889 case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
5890 case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
5891 case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
5892 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
5893 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
5894 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
5895 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
5896 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
5897 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
5898 case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
5899 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
5900 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
5901 case X86::VCMPSSZrr_Intk:
5902 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
5903 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
5904 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5905 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5906 case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
5907 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5908 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
5909 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
5910 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
5911 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
5912 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
5913 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
5914 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
5915 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
5916 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5917 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5918 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5919 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5920 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5921 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5922 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5923 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5924 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5925 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5926 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5927 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5928 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5929 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5930 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5931 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5932 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5933 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5934 case X86::VFIXUPIMMSSZrri:
5935 case X86::VFIXUPIMMSSZrrik:
5936 case X86::VFIXUPIMMSSZrrikz:
5937 case X86::VFPCLASSSSZrr:
5938 case X86::VFPCLASSSSZrrk:
5939 case X86::VGETEXPSSZr:
5940 case X86::VGETEXPSSZrk:
5941 case X86::VGETEXPSSZrkz:
5942 case X86::VGETMANTSSZrri:
5943 case X86::VGETMANTSSZrrik:
5944 case X86::VGETMANTSSZrrikz:
5945 case X86::VRANGESSZrri:
5946 case X86::VRANGESSZrrik:
5947 case X86::VRANGESSZrrikz:
5948 case X86::VRCP14SSZrr:
5949 case X86::VRCP14SSZrrk:
5950 case X86::VRCP14SSZrrkz:
5951 case X86::VRCP28SSZr:
5952 case X86::VRCP28SSZrk:
5953 case X86::VRCP28SSZrkz:
5954 case X86::VREDUCESSZrri:
5955 case X86::VREDUCESSZrrik:
5956 case X86::VREDUCESSZrrikz:
5957 case X86::VRNDSCALESSZr_Int:
5958 case X86::VRNDSCALESSZr_Intk:
5959 case X86::VRNDSCALESSZr_Intkz:
5960 case X86::VRSQRT14SSZrr:
5961 case X86::VRSQRT14SSZrrk:
5962 case X86::VRSQRT14SSZrrkz:
5963 case X86::VRSQRT28SSZr:
5964 case X86::VRSQRT28SSZrk:
5965 case X86::VRSQRT28SSZrkz:
5966 case X86::VSCALEFSSZrr:
5967 case X86::VSCALEFSSZrrk:
5968 case X86::VSCALEFSSZrrkz:
5969 return false;
5970 default:
5971 return true;
5972 }
5973 }
5974
5975 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
5976 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
5977 Opc == X86::VMOVSDZrm_alt) &&
5978 RegSize > 64) {
5979 // These instructions only load 64 bits, we can't fold them if the
5980 // destination register is wider than 64 bits (8 bytes), and its user
5981 // instruction isn't scalar (SD).
5982 switch (UserOpc) {
5983 case X86::CVTSD2SSrr_Int:
5984 case X86::VCVTSD2SSrr_Int:
5985 case X86::VCVTSD2SSZrr_Int:
5986 case X86::VCVTSD2SSZrr_Intk:
5987 case X86::VCVTSD2SSZrr_Intkz:
5988 case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int:
5989 case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int:
5990 case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int:
5991 case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int:
5992 case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int:
5993 case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int:
5994 case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int:
5995 case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
5996 case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
5997 case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
5998 case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
5999 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
6000 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
6001 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
6002 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
6003 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
6004 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
6005 case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
6006 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
6007 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
6008 case X86::VCMPSDZrr_Intk:
6009 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
6010 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
6011 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
6012 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
6013 case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
6014 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
6015 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
6016 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
6017 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
6018 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
6019 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
6020 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
6021 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
6022 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
6023 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
6024 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
6025 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
6026 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
6027 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
6028 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
6029 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
6030 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
6031 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
6032 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
6033 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
6034 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
6035 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
6036 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
6037 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
6038 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
6039 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
6040 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
6041 case X86::VFIXUPIMMSDZrri:
6042 case X86::VFIXUPIMMSDZrrik:
6043 case X86::VFIXUPIMMSDZrrikz:
6044 case X86::VFPCLASSSDZrr:
6045 case X86::VFPCLASSSDZrrk:
6046 case X86::VGETEXPSDZr:
6047 case X86::VGETEXPSDZrk:
6048 case X86::VGETEXPSDZrkz:
6049 case X86::VGETMANTSDZrri:
6050 case X86::VGETMANTSDZrrik:
6051 case X86::VGETMANTSDZrrikz:
6052 case X86::VRANGESDZrri:
6053 case X86::VRANGESDZrrik:
6054 case X86::VRANGESDZrrikz:
6055 case X86::VRCP14SDZrr:
6056 case X86::VRCP14SDZrrk:
6057 case X86::VRCP14SDZrrkz:
6058 case X86::VRCP28SDZr:
6059 case X86::VRCP28SDZrk:
6060 case X86::VRCP28SDZrkz:
6061 case X86::VREDUCESDZrri:
6062 case X86::VREDUCESDZrrik:
6063 case X86::VREDUCESDZrrikz:
6064 case X86::VRNDSCALESDZr_Int:
6065 case X86::VRNDSCALESDZr_Intk:
6066 case X86::VRNDSCALESDZr_Intkz:
6067 case X86::VRSQRT14SDZrr:
6068 case X86::VRSQRT14SDZrrk:
6069 case X86::VRSQRT14SDZrrkz:
6070 case X86::VRSQRT28SDZr:
6071 case X86::VRSQRT28SDZrk:
6072 case X86::VRSQRT28SDZrkz:
6073 case X86::VSCALEFSDZrr:
6074 case X86::VSCALEFSDZrrk:
6075 case X86::VSCALEFSDZrrkz:
6076 return false;
6077 default:
6078 return true;
6079 }
6080 }
6081
6082 if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
6083 // These instructions only load 16 bits, we can't fold them if the
6084 // destination register is wider than 16 bits (2 bytes), and its user
6085 // instruction isn't scalar (SH).
6086 switch (UserOpc) {
6087 case X86::VADDSHZrr_Int:
6088 case X86::VCMPSHZrr_Int:
6089 case X86::VDIVSHZrr_Int:
6090 case X86::VMAXSHZrr_Int:
6091 case X86::VMINSHZrr_Int:
6092 case X86::VMULSHZrr_Int:
6093 case X86::VSUBSHZrr_Int:
6094 case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
6095 case X86::VCMPSHZrr_Intk:
6096 case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
6097 case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
6098 case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
6099 case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
6100 case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
6101 case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
6102 case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
6103 case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
6104 case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
6105 case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
6106 case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
6107 case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
6108 case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
6109 case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
6110 case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
6111 case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
6112 case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
6113 case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
6114 case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
6115 case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
6116 case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
6117 case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
6118 case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
6119 return false;
6120 default:
6121 return true;
6122 }
6123 }
6124
6125 return false;
6126}
6127
6128MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6129 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
6130 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
6131 LiveIntervals *LIS) const {
6132
6133 // TODO: Support the case where LoadMI loads a wide register, but MI
6134 // only uses a subreg.
6135 for (auto Op : Ops) {
6136 if (MI.getOperand(Op).getSubReg())
6137 return nullptr;
6138 }
6139
6140 // If loading from a FrameIndex, fold directly from the FrameIndex.
6141 unsigned NumOps = LoadMI.getDesc().getNumOperands();
6142 int FrameIndex;
6143 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
6144 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6145 return nullptr;
6146 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
6147 }
6148
6149 // Check switch flag
6150 if (NoFusing) return nullptr;
6151
6152 // Avoid partial and undef register update stalls unless optimizing for size.
6153 if (!MF.getFunction().hasOptSize() &&
6154 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6155 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6156 return nullptr;
6157
6158 // Determine the alignment of the load.
6159 Align Alignment;
6160 if (LoadMI.hasOneMemOperand())
6161 Alignment = (*LoadMI.memoperands_begin())->getAlign();
6162 else
6163 switch (LoadMI.getOpcode()) {
6164 case X86::AVX512_512_SET0:
6165 case X86::AVX512_512_SETALLONES:
6166 Alignment = Align(64);
6167 break;
6168 case X86::AVX2_SETALLONES:
6169 case X86::AVX1_SETALLONES:
6170 case X86::AVX_SET0:
6171 case X86::AVX512_256_SET0:
6172 Alignment = Align(32);
6173 break;
6174 case X86::V_SET0:
6175 case X86::V_SETALLONES:
6176 case X86::AVX512_128_SET0:
6177 case X86::FsFLD0F128:
6178 case X86::AVX512_FsFLD0F128:
6179 Alignment = Align(16);
6180 break;
6181 case X86::MMX_SET0:
6182 case X86::FsFLD0SD:
6183 case X86::AVX512_FsFLD0SD:
6184 Alignment = Align(8);
6185 break;
6186 case X86::FsFLD0SS:
6187 case X86::AVX512_FsFLD0SS:
6188 Alignment = Align(4);
6189 break;
6190 case X86::AVX512_FsFLD0SH:
6191 Alignment = Align(2);
6192 break;
6193 default:
6194 return nullptr;
6195 }
6196 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6197 unsigned NewOpc = 0;
6198 switch (MI.getOpcode()) {
6199 default: return nullptr;
6200 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
6201 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
6202 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
6203 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
6204 }
6205 // Change to CMPXXri r, 0 first.
6206 MI.setDesc(get(NewOpc));
6207 MI.getOperand(1).ChangeToImmediate(0);
6208 } else if (Ops.size() != 1)
6209 return nullptr;
6210
6211 // Make sure the subregisters match.
6212 // Otherwise we risk changing the size of the load.
6213 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
6214 return nullptr;
6215
6216 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
6217 switch (LoadMI.getOpcode()) {
6218 case X86::MMX_SET0:
6219 case X86::V_SET0:
6220 case X86::V_SETALLONES:
6221 case X86::AVX2_SETALLONES:
6222 case X86::AVX1_SETALLONES:
6223 case X86::AVX_SET0:
6224 case X86::AVX512_128_SET0:
6225 case X86::AVX512_256_SET0:
6226 case X86::AVX512_512_SET0:
6227 case X86::AVX512_512_SETALLONES:
6228 case X86::AVX512_FsFLD0SH:
6229 case X86::FsFLD0SD:
6230 case X86::AVX512_FsFLD0SD:
6231 case X86::FsFLD0SS:
6232 case X86::AVX512_FsFLD0SS:
6233 case X86::FsFLD0F128:
6234 case X86::AVX512_FsFLD0F128: {
6235 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6236 // Create a constant-pool entry and operands to load from it.
6237
6238 // Medium and large mode can't fold loads this way.
6239 if (MF.getTarget().getCodeModel() != CodeModel::Small &&
6240 MF.getTarget().getCodeModel() != CodeModel::Kernel)
6241 return nullptr;
6242
6243 // x86-32 PIC requires a PIC base register for constant pools.
6244 unsigned PICBase = 0;
6245 // Since we're using Small or Kernel code model, we can always use
6246 // RIP-relative addressing for a smaller encoding.
6247 if (Subtarget.is64Bit()) {
6248 PICBase = X86::RIP;
6249 } else if (MF.getTarget().isPositionIndependent()) {
6250 // FIXME: PICBase = getGlobalBaseReg(&MF);
6251 // This doesn't work for several reasons.
6252 // 1. GlobalBaseReg may have been spilled.
6253 // 2. It may not be live at MI.
6254 return nullptr;
6255 }
6256
6257 // Create a constant-pool entry.
6258 MachineConstantPool &MCP = *MF.getConstantPool();
6259 Type *Ty;
6260 unsigned Opc = LoadMI.getOpcode();
6261 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
6262 Ty = Type::getFloatTy(MF.getFunction().getContext());
6263 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
6264 Ty = Type::getDoubleTy(MF.getFunction().getContext());
6265 else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
6266 Ty = Type::getFP128Ty(MF.getFunction().getContext());
6267 else if (Opc == X86::AVX512_FsFLD0SH)
6268 Ty = Type::getHalfTy(MF.getFunction().getContext());
6269 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
6270 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6271 16);
6272 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
6273 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
6274 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6275 8);
6276 else if (Opc == X86::MMX_SET0)
6277 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6278 2);
6279 else
6280 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6281 4);
6282
6283 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
6284 Opc == X86::AVX512_512_SETALLONES ||
6285 Opc == X86::AVX1_SETALLONES);
6286 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
6287 Constant::getNullValue(Ty);
6288 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
6289
6290 // Create operands to load from the constant pool entry.
6291 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
6292 MOs.push_back(MachineOperand::CreateImm(1));
6293 MOs.push_back(MachineOperand::CreateReg(0, false));
6294 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
6295 MOs.push_back(MachineOperand::CreateReg(0, false));
6296 break;
6297 }
6298 default: {
6299 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6300 return nullptr;
6301
6302 // Folding a normal load. Just copy the load's address operands.
6303 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
6304 LoadMI.operands_begin() + NumOps);
6305 break;
6306 }
6307 }
6308 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
6309 /*Size=*/0, Alignment, /*AllowCommute=*/true);
6310}
6311
6312static SmallVector<MachineMemOperand *, 2>
6313extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6314 SmallVector<MachineMemOperand *, 2> LoadMMOs;
6315
6316 for (MachineMemOperand *MMO : MMOs) {
6317 if (!MMO->isLoad())
6318 continue;
6319
6320 if (!MMO->isStore()) {
6321 // Reuse the MMO.
6322 LoadMMOs.push_back(MMO);
6323 } else {
6324 // Clone the MMO and unset the store flag.
6325 LoadMMOs.push_back(MF.getMachineMemOperand(
6326 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
6327 }
6328 }
6329
6330 return LoadMMOs;
6331}
6332
6333static SmallVector<MachineMemOperand *, 2>
6334extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6335 SmallVector<MachineMemOperand *, 2> StoreMMOs;
6336
6337 for (MachineMemOperand *MMO : MMOs) {
6338 if (!MMO->isStore())
6339 continue;
6340
6341 if (!MMO->isLoad()) {
6342 // Reuse the MMO.
6343 StoreMMOs.push_back(MMO);
6344 } else {
6345 // Clone the MMO and unset the load flag.
6346 StoreMMOs.push_back(MF.getMachineMemOperand(
6347 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
6348 }
6349 }
6350
6351 return StoreMMOs;
6352}
6353
6354static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
6355 const TargetRegisterClass *RC,
6356 const X86Subtarget &STI) {
6357 assert(STI.hasAVX512() && "Expected at least AVX512!")(static_cast <bool> (STI.hasAVX512() && "Expected at least AVX512!"
) ? void (0) : __assert_fail ("STI.hasAVX512() && \"Expected at least AVX512!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6357, __extension__
__PRETTY_FUNCTION__))
;
6358 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
6359 assert((SpillSize == 64 || STI.hasVLX()) &&(static_cast <bool> ((SpillSize == 64 || STI.hasVLX()) &&
"Can't broadcast less than 64 bytes without AVX512VL!") ? void
(0) : __assert_fail ("(SpillSize == 64 || STI.hasVLX()) && \"Can't broadcast less than 64 bytes without AVX512VL!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6360, __extension__
__PRETTY_FUNCTION__))
6360 "Can't broadcast less than 64 bytes without AVX512VL!")(static_cast <bool> ((SpillSize == 64 || STI.hasVLX()) &&
"Can't broadcast less than 64 bytes without AVX512VL!") ? void
(0) : __assert_fail ("(SpillSize == 64 || STI.hasVLX()) && \"Can't broadcast less than 64 bytes without AVX512VL!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6360, __extension__
__PRETTY_FUNCTION__))
;
6361
6362 switch (I->Flags & TB_BCAST_MASK) {
6363 default: llvm_unreachable("Unexpected broadcast type!")::llvm::llvm_unreachable_internal("Unexpected broadcast type!"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6363)
;
6364 case TB_BCAST_D:
6365 switch (SpillSize) {
6366 default: llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6366)
;
6367 case 16: return X86::VPBROADCASTDZ128rm;
6368 case 32: return X86::VPBROADCASTDZ256rm;
6369 case 64: return X86::VPBROADCASTDZrm;
6370 }
6371 break;
6372 case TB_BCAST_Q:
6373 switch (SpillSize) {
6374 default: llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6374)
;
6375 case 16: return X86::VPBROADCASTQZ128rm;
6376 case 32: return X86::VPBROADCASTQZ256rm;
6377 case 64: return X86::VPBROADCASTQZrm;
6378 }
6379 break;
6380 case TB_BCAST_SS:
6381 switch (SpillSize) {
6382 default: llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6382)
;
6383 case 16: return X86::VBROADCASTSSZ128rm;
6384 case 32: return X86::VBROADCASTSSZ256rm;
6385 case 64: return X86::VBROADCASTSSZrm;
6386 }
6387 break;
6388 case TB_BCAST_SD:
6389 switch (SpillSize) {
6390 default: llvm_unreachable("Unknown spill size")::llvm::llvm_unreachable_internal("Unknown spill size", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6390)
;
6391 case 16: return X86::VMOVDDUPZ128rm;
6392 case 32: return X86::VBROADCASTSDZ256rm;
6393 case 64: return X86::VBROADCASTSDZrm;
6394 }
6395 break;
6396 }
6397}
6398
6399bool X86InstrInfo::unfoldMemoryOperand(
6400 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
6401 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
6402 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
6403 if (I == nullptr)
6404 return false;
6405 unsigned Opc = I->DstOp;
6406 unsigned Index = I->Flags & TB_INDEX_MASK;
6407 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6408 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6409 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6410 if (UnfoldLoad && !FoldedLoad)
6411 return false;
6412 UnfoldLoad &= FoldedLoad;
6413 if (UnfoldStore && !FoldedStore)
6414 return false;
6415 UnfoldStore &= FoldedStore;
6416
6417 const MCInstrDesc &MCID = get(Opc);
6418
6419 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6420 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6421 // TODO: Check if 32-byte or greater accesses are slow too?
6422 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
6423 Subtarget.isUnalignedMem16Slow())
6424 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6425 // conservatively assume the address is unaligned. That's bad for
6426 // performance.
6427 return false;
6428 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
6429 SmallVector<MachineOperand,2> BeforeOps;
6430 SmallVector<MachineOperand,2> AfterOps;
6431 SmallVector<MachineOperand,4> ImpOps;
6432 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
6433 MachineOperand &Op = MI.getOperand(i);
6434 if (i >= Index && i < Index + X86::AddrNumOperands)
6435 AddrOps.push_back(Op);
6436 else if (Op.isReg() && Op.isImplicit())
6437 ImpOps.push_back(Op);
6438 else if (i < Index)
6439 BeforeOps.push_back(Op);
6440 else if (i > Index)
6441 AfterOps.push_back(Op);
6442 }
6443
6444 // Emit the load or broadcast instruction.
6445 if (UnfoldLoad) {
6446 auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
6447
6448 unsigned Opc;
6449 if (FoldedBCast) {
6450 Opc = getBroadcastOpcode(I, RC, Subtarget);
6451 } else {
6452 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6453 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6454 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
6455 }
6456
6457 DebugLoc DL;
6458 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
6459 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6460 MIB.add(AddrOps[i]);
6461 MIB.setMemRefs(MMOs);
6462 NewMIs.push_back(MIB);
6463
6464 if (UnfoldStore) {
6465 // Address operands cannot be marked isKill.
6466 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
6467 MachineOperand &MO = NewMIs[0]->getOperand(i);
6468 if (MO.isReg())
6469 MO.setIsKill(false);
6470 }
6471 }
6472 }
6473
6474 // Emit the data processing instruction.
6475 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
6476 MachineInstrBuilder MIB(MF, DataMI);
6477
6478 if (FoldedStore)
6479 MIB.addReg(Reg, RegState::Define);
6480 for (MachineOperand &BeforeOp : BeforeOps)
6481 MIB.add(BeforeOp);
6482 if (FoldedLoad)
6483 MIB.addReg(Reg);
6484 for (MachineOperand &AfterOp : AfterOps)
6485 MIB.add(AfterOp);
6486 for (MachineOperand &ImpOp : ImpOps) {
6487 MIB.addReg(ImpOp.getReg(),
6488 getDefRegState(ImpOp.isDef()) |
6489 RegState::Implicit |
6490 getKillRegState(ImpOp.isKill()) |
6491 getDeadRegState(ImpOp.isDead()) |
6492 getUndefRegState(ImpOp.isUndef()));
6493 }
6494 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6495 switch (DataMI->getOpcode()) {
6496 default: break;
6497 case X86::CMP64ri32:
6498 case X86::CMP64ri8:
6499 case X86::CMP32ri:
6500 case X86::CMP32ri8:
6501 case X86::CMP16ri:
6502 case X86::CMP16ri8:
6503 case X86::CMP8ri: {
6504 MachineOperand &MO0 = DataMI->getOperand(0);
6505 MachineOperand &MO1 = DataMI->getOperand(1);
6506 if (MO1.isImm() && MO1.getImm() == 0) {
6507 unsigned NewOpc;
6508 switch (DataMI->getOpcode()) {
6509 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6509)
;
6510 case X86::CMP64ri8:
6511 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
6512 case X86::CMP32ri8:
6513 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
6514 case X86::CMP16ri8:
6515 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
6516 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
6517 }
6518 DataMI->setDesc(get(NewOpc));
6519 MO1.ChangeToRegister(MO0.getReg(), false);
6520 }
6521 }
6522 }
6523 NewMIs.push_back(DataMI);
6524
6525 // Emit the store instruction.
6526 if (UnfoldStore) {
6527 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
6528 auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
6529 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
6530 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6531 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
6532 DebugLoc DL;
6533 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
6534 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6535 MIB.add(AddrOps[i]);
6536 MIB.addReg(Reg, RegState::Kill);
6537 MIB.setMemRefs(MMOs);
6538 NewMIs.push_back(MIB);
6539 }
6540
6541 return true;
6542}
6543
6544bool
6545X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
6546 SmallVectorImpl<SDNode*> &NewNodes) const {
6547 if (!N->isMachineOpcode())
6548 return false;
6549
6550 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
6551 if (I == nullptr)
6552 return false;
6553 unsigned Opc = I->DstOp;
6554 unsigned Index = I->Flags & TB_INDEX_MASK;
6555 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6556 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6557 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6558 const MCInstrDesc &MCID = get(Opc);
6559 MachineFunction &MF = DAG.getMachineFunction();
6560 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6561 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6562 unsigned NumDefs = MCID.NumDefs;
6563 std::vector<SDValue> AddrOps;
6564 std::vector<SDValue> BeforeOps;
6565 std::vector<SDValue> AfterOps;
6566 SDLoc dl(N);
6567 unsigned NumOps = N->getNumOperands();
6568 for (unsigned i = 0; i != NumOps-1; ++i) {
6569 SDValue Op = N->getOperand(i);
6570 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
6571 AddrOps.push_back(Op);
6572 else if (i < Index-NumDefs)
6573 BeforeOps.push_back(Op);
6574 else if (i > Index-NumDefs)
6575 AfterOps.push_back(Op);
6576 }
6577 SDValue Chain = N->getOperand(NumOps-1);
6578 AddrOps.push_back(Chain);
6579
6580 // Emit the load instruction.
6581 SDNode *Load = nullptr;
6582 if (FoldedLoad) {
6583 EVT VT = *TRI.legalclasstypes_begin(*RC);
6584 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
6585 if (MMOs.empty() && RC == &X86::VR128RegClass &&
6586 Subtarget.isUnalignedMem16Slow())
6587 // Do not introduce a slow unaligned load.
6588 return false;
6589 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6590 // memory access is slow above.
6591
6592 unsigned Opc;
6593 if (FoldedBCast) {
6594 Opc = getBroadcastOpcode(I, RC, Subtarget);
6595 } else {
6596 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6597 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6598 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
6599 }
6600
6601 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
6602 NewNodes.push_back(Load);
6603
6604 // Preserve memory reference information.
6605 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
6606 }
6607
6608 // Emit the data processing instruction.
6609 std::vector<EVT> VTs;
6610 const TargetRegisterClass *DstRC = nullptr;
6611 if (MCID.getNumDefs() > 0) {
6612 DstRC = getRegClass(MCID, 0, &RI, MF);
6613 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
6614 }
6615 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
6616 EVT VT = N->getValueType(i);
6617 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
6618 VTs.push_back(VT);
6619 }
6620 if (Load)
6621 BeforeOps.push_back(SDValue(Load, 0));
6622 llvm::append_range(BeforeOps, AfterOps);
6623 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6624 switch (Opc) {
6625 default: break;
6626 case X86::CMP64ri32:
6627 case X86::CMP64ri8:
6628 case X86::CMP32ri:
6629 case X86::CMP32ri8:
6630 case X86::CMP16ri:
6631 case X86::CMP16ri8:
6632 case X86::CMP8ri:
6633 if (isNullConstant(BeforeOps[1])) {
6634 switch (Opc) {
6635 default: llvm_unreachable("Unreachable!")::llvm::llvm_unreachable_internal("Unreachable!", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6635)
;
6636 case X86::CMP64ri8:
6637 case X86::CMP64ri32: Opc = X86::TEST64rr; break;
6638 case X86::CMP32ri8:
6639 case X86::CMP32ri: Opc = X86::TEST32rr; break;
6640 case X86::CMP16ri8:
6641 case X86::CMP16ri: Opc = X86::TEST16rr; break;
6642 case X86::CMP8ri: Opc = X86::TEST8rr; break;
6643 }
6644 BeforeOps[1] = BeforeOps[0];
6645 }
6646 }
6647 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
6648 NewNodes.push_back(NewNode);
6649
6650 // Emit the store instruction.
6651 if (FoldedStore) {
6652 AddrOps.pop_back();
6653 AddrOps.push_back(SDValue(NewNode, 0));
6654 AddrOps.push_back(Chain);
6655 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
6656 if (MMOs.empty() && RC == &X86::VR128RegClass &&
6657 Subtarget.isUnalignedMem16Slow())
6658 // Do not introduce a slow unaligned store.
6659 return false;
6660 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6661 // memory access is slow above.
6662 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6663 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6664 SDNode *Store =
6665 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
6666 dl, MVT::Other, AddrOps);
6667 NewNodes.push_back(Store);
6668
6669 // Preserve memory reference information.
6670 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
6671 }
6672
6673 return true;
6674}
6675
6676unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
6677 bool UnfoldLoad, bool UnfoldStore,
6678 unsigned *LoadRegIndex) const {
6679 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
6680 if (I == nullptr)
6681 return 0;
6682 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6683 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6684 if (UnfoldLoad && !FoldedLoad)
6685 return 0;
6686 if (UnfoldStore && !FoldedStore)
6687 return 0;
6688 if (LoadRegIndex)
6689 *LoadRegIndex = I->Flags & TB_INDEX_MASK;
6690 return I->DstOp;
6691}
6692
6693bool
6694X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
6695 int64_t &Offset1, int64_t &Offset2) const {
6696 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
6697 return false;
6698 unsigned Opc1 = Load1->getMachineOpcode();
6699 unsigned Opc2 = Load2->getMachineOpcode();
6700 switch (Opc1) {
6701 default: return false;
6702 case X86::MOV8rm:
6703 case X86::MOV16rm:
6704 case X86::MOV32rm:
6705 case X86::MOV64rm:
6706 case X86::LD_Fp32m:
6707 case X86::LD_Fp64m:
6708 case X86::LD_Fp80m:
6709 case X86::MOVSSrm:
6710 case X86::MOVSSrm_alt:
6711 case X86::MOVSDrm:
6712 case X86::MOVSDrm_alt:
6713 case X86::MMX_MOVD64rm:
6714 case X86::MMX_MOVQ64rm:
6715 case X86::MOVAPSrm:
6716 case X86::MOVUPSrm:
6717 case X86::MOVAPDrm:
6718 case X86::MOVUPDrm:
6719 case X86::MOVDQArm:
6720 case X86::MOVDQUrm:
6721 // AVX load instructions
6722 case X86::VMOVSSrm:
6723 case X86::VMOVSSrm_alt:
6724 case X86::VMOVSDrm:
6725 case X86::VMOVSDrm_alt:
6726 case X86::VMOVAPSrm:
6727 case X86::VMOVUPSrm:
6728 case X86::VMOVAPDrm:
6729 case X86::VMOVUPDrm:
6730 case X86::VMOVDQArm:
6731 case X86::VMOVDQUrm:
6732 case X86::VMOVAPSYrm:
6733 case X86::VMOVUPSYrm:
6734 case X86::VMOVAPDYrm:
6735 case X86::VMOVUPDYrm:
6736 case X86::VMOVDQAYrm:
6737 case X86::VMOVDQUYrm:
6738 // AVX512 load instructions
6739 case X86::VMOVSSZrm:
6740 case X86::VMOVSSZrm_alt:
6741 case X86::VMOVSDZrm:
6742 case X86::VMOVSDZrm_alt:
6743 case X86::VMOVAPSZ128rm:
6744 case X86::VMOVUPSZ128rm:
6745 case X86::VMOVAPSZ128rm_NOVLX:
6746 case X86::VMOVUPSZ128rm_NOVLX:
6747 case X86::VMOVAPDZ128rm:
6748 case X86::VMOVUPDZ128rm:
6749 case X86::VMOVDQU8Z128rm:
6750 case X86::VMOVDQU16Z128rm:
6751 case X86::VMOVDQA32Z128rm:
6752 case X86::VMOVDQU32Z128rm:
6753 case X86::VMOVDQA64Z128rm:
6754 case X86::VMOVDQU64Z128rm:
6755 case X86::VMOVAPSZ256rm:
6756 case X86::VMOVUPSZ256rm:
6757 case X86::VMOVAPSZ256rm_NOVLX:
6758 case X86::VMOVUPSZ256rm_NOVLX:
6759 case X86::VMOVAPDZ256rm:
6760 case X86::VMOVUPDZ256rm:
6761 case X86::VMOVDQU8Z256rm:
6762 case X86::VMOVDQU16Z256rm:
6763 case X86::VMOVDQA32Z256rm:
6764 case X86::VMOVDQU32Z256rm:
6765 case X86::VMOVDQA64Z256rm:
6766 case X86::VMOVDQU64Z256rm:
6767 case X86::VMOVAPSZrm:
6768 case X86::VMOVUPSZrm:
6769 case X86::VMOVAPDZrm:
6770 case X86::VMOVUPDZrm:
6771 case X86::VMOVDQU8Zrm:
6772 case X86::VMOVDQU16Zrm:
6773 case X86::VMOVDQA32Zrm:
6774 case X86::VMOVDQU32Zrm:
6775 case X86::VMOVDQA64Zrm:
6776 case X86::VMOVDQU64Zrm:
6777 case X86::KMOVBkm:
6778 case X86::KMOVWkm:
6779 case X86::KMOVDkm:
6780 case X86::KMOVQkm:
6781 break;
6782 }
6783 switch (Opc2) {
6784 default: return false;
6785 case X86::MOV8rm:
6786 case X86::MOV16rm:
6787 case X86::MOV32rm:
6788 case X86::MOV64rm:
6789 case X86::LD_Fp32m:
6790 case X86::LD_Fp64m:
6791 case X86::LD_Fp80m:
6792 case X86::MOVSSrm:
6793 case X86::MOVSSrm_alt:
6794 case X86::MOVSDrm:
6795 case X86::MOVSDrm_alt:
6796 case X86::MMX_MOVD64rm:
6797 case X86::MMX_MOVQ64rm:
6798 case X86::MOVAPSrm:
6799 case X86::MOVUPSrm:
6800 case X86::MOVAPDrm:
6801 case X86::MOVUPDrm:
6802 case X86::MOVDQArm:
6803 case X86::MOVDQUrm:
6804 // AVX load instructions
6805 case X86::VMOVSSrm:
6806 case X86::VMOVSSrm_alt:
6807 case X86::VMOVSDrm:
6808 case X86::VMOVSDrm_alt:
6809 case X86::VMOVAPSrm:
6810 case X86::VMOVUPSrm:
6811 case X86::VMOVAPDrm:
6812 case X86::VMOVUPDrm:
6813 case X86::VMOVDQArm:
6814 case X86::VMOVDQUrm:
6815 case X86::VMOVAPSYrm:
6816 case X86::VMOVUPSYrm:
6817 case X86::VMOVAPDYrm:
6818 case X86::VMOVUPDYrm:
6819 case X86::VMOVDQAYrm:
6820 case X86::VMOVDQUYrm:
6821 // AVX512 load instructions
6822 case X86::VMOVSSZrm:
6823 case X86::VMOVSSZrm_alt:
6824 case X86::VMOVSDZrm:
6825 case X86::VMOVSDZrm_alt:
6826 case X86::VMOVAPSZ128rm:
6827 case X86::VMOVUPSZ128rm:
6828 case X86::VMOVAPSZ128rm_NOVLX:
6829 case X86::VMOVUPSZ128rm_NOVLX:
6830 case X86::VMOVAPDZ128rm:
6831 case X86::VMOVUPDZ128rm:
6832 case X86::VMOVDQU8Z128rm:
6833 case X86::VMOVDQU16Z128rm:
6834 case X86::VMOVDQA32Z128rm:
6835 case X86::VMOVDQU32Z128rm:
6836 case X86::VMOVDQA64Z128rm:
6837 case X86::VMOVDQU64Z128rm:
6838 case X86::VMOVAPSZ256rm:
6839 case X86::VMOVUPSZ256rm:
6840 case X86::VMOVAPSZ256rm_NOVLX:
6841 case X86::VMOVUPSZ256rm_NOVLX:
6842 case X86::VMOVAPDZ256rm:
6843 case X86::VMOVUPDZ256rm:
6844 case X86::VMOVDQU8Z256rm:
6845 case X86::VMOVDQU16Z256rm:
6846 case X86::VMOVDQA32Z256rm:
6847 case X86::VMOVDQU32Z256rm:
6848 case X86::VMOVDQA64Z256rm:
6849 case X86::VMOVDQU64Z256rm:
6850 case X86::VMOVAPSZrm:
6851 case X86::VMOVUPSZrm:
6852 case X86::VMOVAPDZrm:
6853 case X86::VMOVUPDZrm:
6854 case X86::VMOVDQU8Zrm:
6855 case X86::VMOVDQU16Zrm:
6856 case X86::VMOVDQA32Zrm:
6857 case X86::VMOVDQU32Zrm:
6858 case X86::VMOVDQA64Zrm:
6859 case X86::VMOVDQU64Zrm:
6860 case X86::KMOVBkm:
6861 case X86::KMOVWkm:
6862 case X86::KMOVDkm:
6863 case X86::KMOVQkm:
6864 break;
6865 }
6866
6867 // Lambda to check if both the loads have the same value for an operand index.
6868 auto HasSameOp = [&](int I) {
6869 return Load1->getOperand(I) == Load2->getOperand(I);
6870 };
6871
6872 // All operands except the displacement should match.
6873 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
6874 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
6875 return false;
6876
6877 // Chain Operand must be the same.
6878 if (!HasSameOp(5))
6879 return false;
6880
6881 // Now let's examine if the displacements are constants.
6882 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
6883 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
6884 if (!Disp1 || !Disp2)
6885 return false;
6886
6887 Offset1 = Disp1->getSExtValue();
6888 Offset2 = Disp2->getSExtValue();
6889 return true;
6890}
6891
6892bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
6893 int64_t Offset1, int64_t Offset2,
6894 unsigned NumLoads) const {
6895 assert(Offset2 > Offset1)(static_cast <bool> (Offset2 > Offset1) ? void (0) :
__assert_fail ("Offset2 > Offset1", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 6895, __extension__ __PRETTY_FUNCTION__))
;
6896 if ((Offset2 - Offset1) / 8 > 64)
6897 return false;
6898
6899 unsigned Opc1 = Load1->getMachineOpcode();
6900 unsigned Opc2 = Load2->getMachineOpcode();
6901 if (Opc1 != Opc2)
6902 return false; // FIXME: overly conservative?
6903
6904 switch (Opc1) {
6905 default: break;
6906 case X86::LD_Fp32m:
6907 case X86::LD_Fp64m:
6908 case X86::LD_Fp80m:
6909 case X86::MMX_MOVD64rm:
6910 case X86::MMX_MOVQ64rm:
6911 return false;
6912 }
6913
6914 EVT VT = Load1->getValueType(0);
6915 switch (VT.getSimpleVT().SimpleTy) {
6916 default:
6917 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
6918 // have 16 of them to play with.
6919 if (Subtarget.is64Bit()) {
6920 if (NumLoads >= 3)
6921 return false;
6922 } else if (NumLoads) {
6923 return false;
6924 }
6925 break;
6926 case MVT::i8:
6927 case MVT::i16:
6928 case MVT::i32:
6929 case MVT::i64:
6930 case MVT::f32:
6931 case MVT::f64:
6932 if (NumLoads)
6933 return false;
6934 break;
6935 }
6936
6937 return true;
6938}
6939
6940bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
6941 const MachineBasicBlock *MBB,
6942 const MachineFunction &MF) const {
6943
6944 // ENDBR instructions should not be scheduled around.
6945 unsigned Opcode = MI.getOpcode();
6946 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
6947 Opcode == X86::LDTILECFG)
6948 return true;
6949
6950 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
6951}
6952
6953bool X86InstrInfo::
6954reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
6955 assert(Cond.size() == 1 && "Invalid X86 branch condition!")(static_cast <bool> (Cond.size() == 1 && "Invalid X86 branch condition!"
) ? void (0) : __assert_fail ("Cond.size() == 1 && \"Invalid X86 branch condition!\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6955, __extension__
__PRETTY_FUNCTION__))
;
6956 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
6957 Cond[0].setImm(GetOppositeBranchCondition(CC));
6958 return false;
6959}
6960
6961bool X86InstrInfo::
6962isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
6963 // FIXME: Return false for x87 stack register classes for now. We can't
6964 // allow any loads of these registers before FpGet_ST0_80.
6965 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
6966 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
6967 RC == &X86::RFP80RegClass);
6968}
6969
6970/// Return a virtual register initialized with the
6971/// the global base register value. Output instructions required to
6972/// initialize the register in the function entry block, if necessary.
6973///
6974/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6975///
6976unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
6977 assert((!Subtarget.is64Bit() ||(static_cast <bool> ((!Subtarget.is64Bit() || MF->getTarget
().getCodeModel() == CodeModel::Medium || MF->getTarget().
getCodeModel() == CodeModel::Large) && "X86-64 PIC uses RIP relative addressing"
) ? void (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6980, __extension__
__PRETTY_FUNCTION__))
6978 MF->getTarget().getCodeModel() == CodeModel::Medium ||(static_cast <bool> ((!Subtarget.is64Bit() || MF->getTarget
().getCodeModel() == CodeModel::Medium || MF->getTarget().
getCodeModel() == CodeModel::Large) && "X86-64 PIC uses RIP relative addressing"
) ? void (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6980, __extension__
__PRETTY_FUNCTION__))
6979 MF->getTarget().getCodeModel() == CodeModel::Large) &&(static_cast <bool> ((!Subtarget.is64Bit() || MF->getTarget
().getCodeModel() == CodeModel::Medium || MF->getTarget().
getCodeModel() == CodeModel::Large) && "X86-64 PIC uses RIP relative addressing"
) ? void (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6980, __extension__
__PRETTY_FUNCTION__))
6980 "X86-64 PIC uses RIP relative addressing")(static_cast <bool> ((!Subtarget.is64Bit() || MF->getTarget
().getCodeModel() == CodeModel::Medium || MF->getTarget().
getCodeModel() == CodeModel::Large) && "X86-64 PIC uses RIP relative addressing"
) ? void (0) : __assert_fail ("(!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && \"X86-64 PIC uses RIP relative addressing\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 6980, __extension__
__PRETTY_FUNCTION__))
;
6981
6982 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
6983 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
6984 if (GlobalBaseReg != 0)
6985 return GlobalBaseReg;
6986
6987 // Create the register. The code to initialize it is inserted
6988 // later, by the CGBR pass (below).
6989 MachineRegisterInfo &RegInfo = MF->getRegInfo();
6990 GlobalBaseReg = RegInfo.createVirtualRegister(
6991 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
6992 X86FI->setGlobalBaseReg(GlobalBaseReg);
6993 return GlobalBaseReg;
6994}
6995
6996// These are the replaceable SSE instructions. Some of these have Int variants
6997// that we don't include here. We don't want to replace instructions selected
6998// by intrinsics.
6999static const uint16_t ReplaceableInstrs[][3] = {
7000 //PackedSingle PackedDouble PackedInt
7001 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
7002 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
7003 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
7004 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
7005 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
7006 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
7007 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
7008 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
7009 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
7010 { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
7011 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
7012 { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
7013 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
7014 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
7015 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
7016 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
7017 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
7018 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
7019 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
7020 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
7021 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
7022 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
7023 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
7024 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
7025 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
7026 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
7027 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
7028 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
7029 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
7030 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
7031 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
7032 // AVX 128-bit support
7033 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
7034 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
7035 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
7036 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
7037 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
7038 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
7039 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
7040 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
7041 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
7042 { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
7043 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
7044 { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
7045 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
7046 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
7047 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
7048 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
7049 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
7050 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
7051 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
7052 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
7053 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
7054 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
7055 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
7056 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
7057 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
7058 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
7059 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
7060 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
7061 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
7062 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
7063 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
7064 // AVX 256-bit support
7065 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
7066 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
7067 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
7068 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
7069 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
7070 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
7071 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
7072 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
7073 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
7074 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
7075 // AVX512 support
7076 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
7077 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
7078 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
7079 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
7080 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
7081 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
7082 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
7083 { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm },
7084 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
7085 { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm },
7086 { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
7087 { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
7088 { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
7089 { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
7090 { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr },
7091 { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm },
7092 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr },
7093 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm },
7094 { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
7095 { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
7096 { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr },
7097 { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm },
7098 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
7099 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
7100 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
7101 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
7102 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
7103 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
7104 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
7105 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
7106 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
7107 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
7108 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
7109 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
7110 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
7111 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
7112 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
7113 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
7114 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
7115 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
7116 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
7117 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
7118 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
7119 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
7120 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
7121 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
7122 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
7123 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
7124 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
7125 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
7126 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
7127 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
7128 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
7129 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
7130 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
7131 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
7132 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
7133 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
7134 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
7135 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
7136 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
7137 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
7138 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
7139 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
7140 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
7141 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
7142 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
7143 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
7144 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
7145 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
7146 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
7147 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
7148 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
7149 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
7150 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
7151 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
7152 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
7153 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
7154 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
7155 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
7156 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
7157 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
7158 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
7159 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
7160 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
7161 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
7162 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
7163 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
7164 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
7165 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
7166 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
7167 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
7168};
7169
7170static const uint16_t ReplaceableInstrsAVX2[][3] = {
7171 //PackedSingle PackedDouble PackedInt
7172 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
7173 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
7174 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
7175 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
7176 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
7177 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
7178 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
7179 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
7180 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
7181 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
7182 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
7183 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
7184 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
7185 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
7186 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
7187 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
7188 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
7189 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
7190 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
7191 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
7192 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
7193 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
7194 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
7195 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
7196 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
7197 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
7198 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
7199 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
7200 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
7201 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
7202 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
7203};
7204
7205static const uint16_t ReplaceableInstrsFP[][3] = {
7206 //PackedSingle PackedDouble
7207 { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END },
7208 { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END },
7209 { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END },
7210 { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END },
7211 { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END },
7212 { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END },
7213 { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
7214 { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
7215 { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
7216};
7217
7218static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
7219 //PackedSingle PackedDouble PackedInt
7220 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
7221 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
7222 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
7223 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
7224};
7225
7226static const uint16_t ReplaceableInstrsAVX512[][4] = {
7227 // Two integer columns for 64-bit and 32-bit elements.
7228 //PackedSingle PackedDouble PackedInt PackedInt
7229 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
7230 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
7231 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
7232 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
7233 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
7234 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
7235 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
7236 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
7237 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
7238 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
7239 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
7240 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
7241 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
7242 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
7243 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
7244};
7245
7246static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
7247 // Two integer columns for 64-bit and 32-bit elements.
7248 //PackedSingle PackedDouble PackedInt PackedInt
7249 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7250 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7251 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
7252 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
7253 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
7254 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
7255 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
7256 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
7257 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7258 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7259 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
7260 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
7261 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
7262 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
7263 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
7264 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
7265 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
7266 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
7267 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
7268 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
7269 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
7270 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
7271 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
7272 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
7273};
7274
7275static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
7276 // Two integer columns for 64-bit and 32-bit elements.
7277 //PackedSingle PackedDouble
7278 //PackedInt PackedInt
7279 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
7280 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
7281 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
7282 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
7283 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
7284 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
7285 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
7286 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
7287 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
7288 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
7289 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
7290 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
7291 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
7292 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
7293 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
7294 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
7295 { X86::VORPSZ128rmk, X86::VORPDZ128rmk,
7296 X86::VPORQZ128rmk, X86::VPORDZ128rmk },
7297 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
7298 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
7299 { X86::VORPSZ128rrk, X86::VORPDZ128rrk,
7300 X86::VPORQZ128rrk, X86::VPORDZ128rrk },
7301 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
7302 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
7303 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
7304 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
7305 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
7306 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
7307 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
7308 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
7309 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
7310 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
7311 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
7312 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
7313 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
7314 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
7315 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
7316 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
7317 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
7318 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
7319 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
7320 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
7321 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
7322 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
7323 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
7324 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
7325 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
7326 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
7327 { X86::VORPSZ256rmk, X86::VORPDZ256rmk,
7328 X86::VPORQZ256rmk, X86::VPORDZ256rmk },
7329 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
7330 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
7331 { X86::VORPSZ256rrk, X86::VORPDZ256rrk,
7332 X86::VPORQZ256rrk, X86::VPORDZ256rrk },
7333 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
7334 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
7335 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
7336 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
7337 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
7338 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
7339 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
7340 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
7341 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
7342 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
7343 { X86::VANDNPSZrmk, X86::VANDNPDZrmk,
7344 X86::VPANDNQZrmk, X86::VPANDNDZrmk },
7345 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
7346 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
7347 { X86::VANDNPSZrrk, X86::VANDNPDZrrk,
7348 X86::VPANDNQZrrk, X86::VPANDNDZrrk },
7349 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
7350 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
7351 { X86::VANDPSZrmk, X86::VANDPDZrmk,
7352 X86::VPANDQZrmk, X86::VPANDDZrmk },
7353 { X86::VANDPSZrmkz, X86::VANDPDZrmkz,
7354 X86::VPANDQZrmkz, X86::VPANDDZrmkz },
7355 { X86::VANDPSZrrk, X86::VANDPDZrrk,
7356 X86::VPANDQZrrk, X86::VPANDDZrrk },
7357 { X86::VANDPSZrrkz, X86::VANDPDZrrkz,
7358 X86::VPANDQZrrkz, X86::VPANDDZrrkz },
7359 { X86::VORPSZrmk, X86::VORPDZrmk,
7360 X86::VPORQZrmk, X86::VPORDZrmk },
7361 { X86::VORPSZrmkz, X86::VORPDZrmkz,
7362 X86::VPORQZrmkz, X86::VPORDZrmkz },
7363 { X86::VORPSZrrk, X86::VORPDZrrk,
7364 X86::VPORQZrrk, X86::VPORDZrrk },
7365 { X86::VORPSZrrkz, X86::VORPDZrrkz,
7366 X86::VPORQZrrkz, X86::VPORDZrrkz },
7367 { X86::VXORPSZrmk, X86::VXORPDZrmk,
7368 X86::VPXORQZrmk, X86::VPXORDZrmk },
7369 { X86::VXORPSZrmkz, X86::VXORPDZrmkz,
7370 X86::VPXORQZrmkz, X86::VPXORDZrmkz },
7371 { X86::VXORPSZrrk, X86::VXORPDZrrk,
7372 X86::VPXORQZrrk, X86::VPXORDZrrk },
7373 { X86::VXORPSZrrkz, X86::VXORPDZrrkz,
7374 X86::VPXORQZrrkz, X86::VPXORDZrrkz },
7375 // Broadcast loads can be handled the same as masked operations to avoid
7376 // changing element size.
7377 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
7378 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
7379 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
7380 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
7381 { X86::VORPSZ128rmb, X86::VORPDZ128rmb,
7382 X86::VPORQZ128rmb, X86::VPORDZ128rmb },
7383 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
7384 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
7385 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
7386 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
7387 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
7388 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
7389 { X86::VORPSZ256rmb, X86::VORPDZ256rmb,
7390 X86::VPORQZ256rmb, X86::VPORDZ256rmb },
7391 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
7392 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
7393 { X86::VANDNPSZrmb, X86::VANDNPDZrmb,
7394 X86::VPANDNQZrmb, X86::VPANDNDZrmb },
7395 { X86::VANDPSZrmb, X86::VANDPDZrmb,
7396 X86::VPANDQZrmb, X86::VPANDDZrmb },
7397 { X86::VANDPSZrmb, X86::VANDPDZrmb,
7398 X86::VPANDQZrmb, X86::VPANDDZrmb },
7399 { X86::VORPSZrmb, X86::VORPDZrmb,
7400 X86::VPORQZrmb, X86::VPORDZrmb },
7401 { X86::VXORPSZrmb, X86::VXORPDZrmb,
7402 X86::VPXORQZrmb, X86::VPXORDZrmb },
7403 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
7404 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
7405 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
7406 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
7407 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
7408 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
7409 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
7410 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
7411 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
7412 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
7413 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
7414 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
7415 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
7416 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
7417 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
7418 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
7419 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
7420 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
7421 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
7422 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
7423 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
7424 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
7425 { X86::VORPSZrmbk, X86::VORPDZrmbk,
7426 X86::VPORQZrmbk, X86::VPORDZrmbk },
7427 { X86::VXORPSZrmbk, X86::VXORPDZrmbk,
7428 X86::VPXORQZrmbk, X86::VPXORDZrmbk },
7429 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
7430 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
7431 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
7432 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
7433 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
7434 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
7435 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
7436 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
7437 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
7438 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
7439 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
7440 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
7441 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
7442 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
7443 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
7444 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
7445 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
7446 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
7447 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
7448 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
7449 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
7450 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
7451 { X86::VORPSZrmbkz, X86::VORPDZrmbkz,
7452 X86::VPORQZrmbkz, X86::VPORDZrmbkz },
7453 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
7454 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
7455};
7456
7457// NOTE: These should only be used by the custom domain methods.
7458static const uint16_t ReplaceableBlendInstrs[][3] = {
7459 //PackedSingle PackedDouble PackedInt
7460 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
7461 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
7462 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
7463 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
7464 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
7465 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
7466};
7467static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
7468 //PackedSingle PackedDouble PackedInt
7469 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
7470 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
7471 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
7472 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
7473};
7474
7475// Special table for changing EVEX logic instructions to VEX.
7476// TODO: Should we run EVEX->VEX earlier?
7477static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
7478 // Two integer columns for 64-bit and 32-bit elements.
7479 //PackedSingle PackedDouble PackedInt PackedInt
7480 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7481 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7482 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
7483 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
7484 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
7485 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
7486 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
7487 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
7488 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7489 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7490 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
7491 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
7492 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
7493 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
7494 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
7495 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
7496};
7497
7498// FIXME: Some shuffle and unpack instructions have equivalents in different
7499// domains, but they require a bit more work than just switching opcodes.
7500
7501static const uint16_t *lookup(unsigned opcode, unsigned domain,
7502 ArrayRef<uint16_t[3]> Table) {
7503 for (const uint16_t (&Row)[3] : Table)
7504 if (Row[domain-1] == opcode)
7505 return Row;
7506 return nullptr;
7507}
7508
7509static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
7510 ArrayRef<uint16_t[4]> Table) {
7511 // If this is the integer domain make sure to check both integer columns.
7512 for (const uint16_t (&Row)[4] : Table)
7513 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
7514 return Row;
7515 return nullptr;
7516}
7517
7518// Helper to attempt to widen/narrow blend masks.
7519static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
7520 unsigned NewWidth, unsigned *pNewMask = nullptr) {
7521 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&(static_cast <bool> (((OldWidth % NewWidth) == 0 || (NewWidth
% OldWidth) == 0) && "Illegal blend mask scale") ? void
(0) : __assert_fail ("((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && \"Illegal blend mask scale\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7522, __extension__
__PRETTY_FUNCTION__))
7522 "Illegal blend mask scale")(static_cast <bool> (((OldWidth % NewWidth) == 0 || (NewWidth
% OldWidth) == 0) && "Illegal blend mask scale") ? void
(0) : __assert_fail ("((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && \"Illegal blend mask scale\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7522, __extension__
__PRETTY_FUNCTION__))
;
7523 unsigned NewMask = 0;
7524
7525 if ((OldWidth % NewWidth) == 0) {
7526 unsigned Scale = OldWidth / NewWidth;
7527 unsigned SubMask = (1u << Scale) - 1;
7528 for (unsigned i = 0; i != NewWidth; ++i) {
7529 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
7530 if (Sub == SubMask)
7531 NewMask |= (1u << i);
7532 else if (Sub != 0x0)
7533 return false;
7534 }
7535 } else {
7536 unsigned Scale = NewWidth / OldWidth;
7537 unsigned SubMask = (1u << Scale) - 1;
7538 for (unsigned i = 0; i != OldWidth; ++i) {
7539 if (OldMask & (1 << i)) {
7540 NewMask |= (SubMask << (i * Scale));
7541 }
7542 }
7543 }
7544
7545 if (pNewMask)
7546 *pNewMask = NewMask;
7547 return true;
7548}
7549
7550uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
7551 unsigned Opcode = MI.getOpcode();
7552 unsigned NumOperands = MI.getDesc().getNumOperands();
7553
7554 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
7555 uint16_t validDomains = 0;
7556 if (MI.getOperand(NumOperands - 1).isImm()) {
7557 unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
7558 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
7559 validDomains |= 0x2; // PackedSingle
7560 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
7561 validDomains |= 0x4; // PackedDouble
7562 if (!Is256 || Subtarget.hasAVX2())
7563 validDomains |= 0x8; // PackedInt
7564 }
7565 return validDomains;
7566 };
7567
7568 switch (Opcode) {
7569 case X86::BLENDPDrmi:
7570 case X86::BLENDPDrri:
7571 case X86::VBLENDPDrmi:
7572 case X86::VBLENDPDrri:
7573 return GetBlendDomains(2, false);
7574 case X86::VBLENDPDYrmi:
7575 case X86::VBLENDPDYrri:
7576 return GetBlendDomains(4, true);
7577 case X86::BLENDPSrmi:
7578 case X86::BLENDPSrri:
7579 case X86::VBLENDPSrmi:
7580 case X86::VBLENDPSrri:
7581 case X86::VPBLENDDrmi:
7582 case X86::VPBLENDDrri:
7583 return GetBlendDomains(4, false);
7584 case X86::VBLENDPSYrmi:
7585 case X86::VBLENDPSYrri:
7586 case X86::VPBLENDDYrmi:
7587 case X86::VPBLENDDYrri:
7588 return GetBlendDomains(8, true);
7589 case X86::PBLENDWrmi:
7590 case X86::PBLENDWrri:
7591 case X86::VPBLENDWrmi:
7592 case X86::VPBLENDWrri:
7593 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
7594 case X86::VPBLENDWYrmi:
7595 case X86::VPBLENDWYrri:
7596 return GetBlendDomains(8, false);
7597 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
7598 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
7599 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
7600 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
7601 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
7602 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
7603 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
7604 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
7605 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
7606 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
7607 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
7608 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
7609 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
7610 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
7611 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
7612 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
7613 // If we don't have DQI see if we can still switch from an EVEX integer
7614 // instruction to a VEX floating point instruction.
7615 if (Subtarget.hasDQI())
7616 return 0;
7617
7618 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
7619 return 0;
7620 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
7621 return 0;
7622 // Register forms will have 3 operands. Memory form will have more.
7623 if (NumOperands == 3 &&
7624 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
7625 return 0;
7626
7627 // All domains are valid.
7628 return 0xe;
7629 case X86::MOVHLPSrr:
7630 // We can swap domains when both inputs are the same register.
7631 // FIXME: This doesn't catch all the cases we would like. If the input
7632 // register isn't KILLed by the instruction, the two address instruction
7633 // pass puts a COPY on one input. The other input uses the original
7634 // register. This prevents the same physical register from being used by
7635 // both inputs.
7636 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
7637 MI.getOperand(0).getSubReg() == 0 &&
7638 MI.getOperand(1).getSubReg() == 0 &&
7639 MI.getOperand(2).getSubReg() == 0)
7640 return 0x6;
7641 return 0;
7642 case X86::SHUFPDrri:
7643 return 0x6;
7644 }
7645 return 0;
7646}
7647
7648bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
7649 unsigned Domain) const {
7650 assert(Domain > 0 && Domain < 4 && "Invalid execution domain")(static_cast <bool> (Domain > 0 && Domain <
4 && "Invalid execution domain") ? void (0) : __assert_fail
("Domain > 0 && Domain < 4 && \"Invalid execution domain\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7650, __extension__
__PRETTY_FUNCTION__))
;
7651 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7652 assert(dom && "Not an SSE instruction")(static_cast <bool> (dom && "Not an SSE instruction"
) ? void (0) : __assert_fail ("dom && \"Not an SSE instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7652, __extension__
__PRETTY_FUNCTION__))
;
7653
7654 unsigned Opcode = MI.getOpcode();
7655 unsigned NumOperands = MI.getDesc().getNumOperands();
7656
7657 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
7658 if (MI.getOperand(NumOperands - 1).isImm()) {
7659 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
7660 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
7661 unsigned NewImm = Imm;
7662
7663 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
7664 if (!table)
7665 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
7666
7667 if (Domain == 1) { // PackedSingle
7668 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
7669 } else if (Domain == 2) { // PackedDouble
7670 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
7671 } else if (Domain == 3) { // PackedInt
7672 if (Subtarget.hasAVX2()) {
7673 // If we are already VPBLENDW use that, else use VPBLENDD.
7674 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
7675 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
7676 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
7677 }
7678 } else {
7679 assert(!Is256 && "128-bit vector expected")(static_cast <bool> (!Is256 && "128-bit vector expected"
) ? void (0) : __assert_fail ("!Is256 && \"128-bit vector expected\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7679, __extension__
__PRETTY_FUNCTION__))
;
7680 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
7681 }
7682 }
7683
7684 assert(table && table[Domain - 1] && "Unknown domain op")(static_cast <bool> (table && table[Domain - 1]
&& "Unknown domain op") ? void (0) : __assert_fail (
"table && table[Domain - 1] && \"Unknown domain op\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7684, __extension__
__PRETTY_FUNCTION__))
;
7685 MI.setDesc(get(table[Domain - 1]));
7686 MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
7687 }
7688 return true;
7689 };
7690
7691 switch (Opcode) {
7692 case X86::BLENDPDrmi:
7693 case X86::BLENDPDrri:
7694 case X86::VBLENDPDrmi:
7695 case X86::VBLENDPDrri:
7696 return SetBlendDomain(2, false);
7697 case X86::VBLENDPDYrmi:
7698 case X86::VBLENDPDYrri:
7699 return SetBlendDomain(4, true);
7700 case X86::BLENDPSrmi:
7701 case X86::BLENDPSrri:
7702 case X86::VBLENDPSrmi:
7703 case X86::VBLENDPSrri:
7704 case X86::VPBLENDDrmi:
7705 case X86::VPBLENDDrri:
7706 return SetBlendDomain(4, false);
7707 case X86::VBLENDPSYrmi:
7708 case X86::VBLENDPSYrri:
7709 case X86::VPBLENDDYrmi:
7710 case X86::VPBLENDDYrri:
7711 return SetBlendDomain(8, true);
7712 case X86::PBLENDWrmi:
7713 case X86::PBLENDWrri:
7714 case X86::VPBLENDWrmi:
7715 case X86::VPBLENDWrri:
7716 return SetBlendDomain(8, false);
7717 case X86::VPBLENDWYrmi:
7718 case X86::VPBLENDWYrri:
7719 return SetBlendDomain(16, true);
7720 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
7721 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
7722 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
7723 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
7724 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
7725 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
7726 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
7727 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
7728 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
7729 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
7730 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
7731 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
7732 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
7733 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
7734 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
7735 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
7736 // Without DQI, convert EVEX instructions to VEX instructions.
7737 if (Subtarget.hasDQI())
7738 return false;
7739
7740 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
7741 ReplaceableCustomAVX512LogicInstrs);
7742 assert(table && "Instruction not found in table?")(static_cast <bool> (table && "Instruction not found in table?"
) ? void (0) : __assert_fail ("table && \"Instruction not found in table?\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7742, __extension__
__PRETTY_FUNCTION__))
;
7743 // Don't change integer Q instructions to D instructions and
7744 // use D intructions if we started with a PS instruction.
7745 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7746 Domain = 4;
7747 MI.setDesc(get(table[Domain - 1]));
7748 return true;
7749 }
7750 case X86::UNPCKHPDrr:
7751 case X86::MOVHLPSrr:
7752 // We just need to commute the instruction which will switch the domains.
7753 if (Domain != dom && Domain != 3 &&
7754 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
7755 MI.getOperand(0).getSubReg() == 0 &&
7756 MI.getOperand(1).getSubReg() == 0 &&
7757 MI.getOperand(2).getSubReg() == 0) {
7758 commuteInstruction(MI, false);
7759 return true;
7760 }
7761 // We must always return true for MOVHLPSrr.
7762 if (Opcode == X86::MOVHLPSrr)
7763 return true;
7764 break;
7765 case X86::SHUFPDrri: {
7766 if (Domain == 1) {
7767 unsigned Imm = MI.getOperand(3).getImm();
7768 unsigned NewImm = 0x44;
7769 if (Imm & 1) NewImm |= 0x0a;
7770 if (Imm & 2) NewImm |= 0xa0;
7771 MI.getOperand(3).setImm(NewImm);
7772 MI.setDesc(get(X86::SHUFPSrri));
7773 }
7774 return true;
7775 }
7776 }
7777 return false;
7778}
7779
7780std::pair<uint16_t, uint16_t>
7781X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
7782 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7783 unsigned opcode = MI.getOpcode();
7784 uint16_t validDomains = 0;
7785 if (domain) {
7786 // Attempt to match for custom instructions.
7787 validDomains = getExecutionDomainCustom(MI);
7788 if (validDomains)
7789 return std::make_pair(domain, validDomains);
7790
7791 if (lookup(opcode, domain, ReplaceableInstrs)) {
7792 validDomains = 0xe;
7793 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
7794 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
7795 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
7796 validDomains = 0x6;
7797 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
7798 // Insert/extract instructions should only effect domain if AVX2
7799 // is enabled.
7800 if (!Subtarget.hasAVX2())
7801 return std::make_pair(0, 0);
7802 validDomains = 0xe;
7803 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
7804 validDomains = 0xe;
7805 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
7806 ReplaceableInstrsAVX512DQ)) {
7807 validDomains = 0xe;
7808 } else if (Subtarget.hasDQI()) {
7809 if (const uint16_t *table = lookupAVX512(opcode, domain,
7810 ReplaceableInstrsAVX512DQMasked)) {
7811 if (domain == 1 || (domain == 3 && table[3] == opcode))
7812 validDomains = 0xa;
7813 else
7814 validDomains = 0xc;
7815 }
7816 }
7817 }
7818 return std::make_pair(domain, validDomains);
7819}
7820
7821void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
7822 assert(Domain>0 && Domain<4 && "Invalid execution domain")(static_cast <bool> (Domain>0 && Domain<4
&& "Invalid execution domain") ? void (0) : __assert_fail
("Domain>0 && Domain<4 && \"Invalid execution domain\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7822, __extension__
__PRETTY_FUNCTION__))
;
7823 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7824 assert(dom && "Not an SSE instruction")(static_cast <bool> (dom && "Not an SSE instruction"
) ? void (0) : __assert_fail ("dom && \"Not an SSE instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7824, __extension__
__PRETTY_FUNCTION__))
;
7825
7826 // Attempt to match for custom instructions.
7827 if (setExecutionDomainCustom(MI, Domain))
7828 return;
7829
7830 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
7831 if (!table) { // try the other table
7832 assert((Subtarget.hasAVX2() || Domain < 3) &&(static_cast <bool> ((Subtarget.hasAVX2() || Domain <
3) && "256-bit vector operations only available in AVX2"
) ? void (0) : __assert_fail ("(Subtarget.hasAVX2() || Domain < 3) && \"256-bit vector operations only available in AVX2\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7833, __extension__
__PRETTY_FUNCTION__))
7833 "256-bit vector operations only available in AVX2")(static_cast <bool> ((Subtarget.hasAVX2() || Domain <
3) && "256-bit vector operations only available in AVX2"
) ? void (0) : __assert_fail ("(Subtarget.hasAVX2() || Domain < 3) && \"256-bit vector operations only available in AVX2\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7833, __extension__
__PRETTY_FUNCTION__))
;
7834 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
7835 }
7836 if (!table) { // try the FP table
7837 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
7838 assert((!table || Domain < 3) &&(static_cast <bool> ((!table || Domain < 3) &&
"Can only select PackedSingle or PackedDouble") ? void (0) :
__assert_fail ("(!table || Domain < 3) && \"Can only select PackedSingle or PackedDouble\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7839, __extension__
__PRETTY_FUNCTION__))
7839 "Can only select PackedSingle or PackedDouble")(static_cast <bool> ((!table || Domain < 3) &&
"Can only select PackedSingle or PackedDouble") ? void (0) :
__assert_fail ("(!table || Domain < 3) && \"Can only select PackedSingle or PackedDouble\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7839, __extension__
__PRETTY_FUNCTION__))
;
7840 }
7841 if (!table) { // try the other table
7842 assert(Subtarget.hasAVX2() &&(static_cast <bool> (Subtarget.hasAVX2() && "256-bit insert/extract only available in AVX2"
) ? void (0) : __assert_fail ("Subtarget.hasAVX2() && \"256-bit insert/extract only available in AVX2\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7843, __extension__
__PRETTY_FUNCTION__))
7843 "256-bit insert/extract only available in AVX2")(static_cast <bool> (Subtarget.hasAVX2() && "256-bit insert/extract only available in AVX2"
) ? void (0) : __assert_fail ("Subtarget.hasAVX2() && \"256-bit insert/extract only available in AVX2\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7843, __extension__
__PRETTY_FUNCTION__))
;
7844 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
7845 }
7846 if (!table) { // try the AVX512 table
7847 assert(Subtarget.hasAVX512() && "Requires AVX-512")(static_cast <bool> (Subtarget.hasAVX512() && "Requires AVX-512"
) ? void (0) : __assert_fail ("Subtarget.hasAVX512() && \"Requires AVX-512\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7847, __extension__
__PRETTY_FUNCTION__))
;
7848 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
7849 // Don't change integer Q instructions to D instructions.
7850 if (table && Domain == 3 && table[3] == MI.getOpcode())
7851 Domain = 4;
7852 }
7853 if (!table) { // try the AVX512DQ table
7854 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ")(static_cast <bool> ((Subtarget.hasDQI() || Domain >=
3) && "Requires AVX-512DQ") ? void (0) : __assert_fail
("(Subtarget.hasDQI() || Domain >= 3) && \"Requires AVX-512DQ\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7854, __extension__
__PRETTY_FUNCTION__))
;
7855 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
7856 // Don't change integer Q instructions to D instructions and
7857 // use D instructions if we started with a PS instruction.
7858 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7859 Domain = 4;
7860 }
7861 if (!table) { // try the AVX512DQMasked table
7862 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ")(static_cast <bool> ((Subtarget.hasDQI() || Domain >=
3) && "Requires AVX-512DQ") ? void (0) : __assert_fail
("(Subtarget.hasDQI() || Domain >= 3) && \"Requires AVX-512DQ\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7862, __extension__
__PRETTY_FUNCTION__))
;
7863 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
7864 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7865 Domain = 4;
7866 }
7867 assert(table && "Cannot change domain")(static_cast <bool> (table && "Cannot change domain"
) ? void (0) : __assert_fail ("table && \"Cannot change domain\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 7867, __extension__
__PRETTY_FUNCTION__))
;
7868 MI.setDesc(get(table[Domain - 1]));
7869}
7870
7871/// Return the noop instruction to use for a noop.
7872MCInst X86InstrInfo::getNop() const {
7873 MCInst Nop;
7874 Nop.setOpcode(X86::NOOP);
7875 return Nop;
7876}
7877
7878bool X86InstrInfo::isHighLatencyDef(int opc) const {
7879 switch (opc) {
7880 default: return false;
7881 case X86::DIVPDrm:
7882 case X86::DIVPDrr:
7883 case X86::DIVPSrm:
7884 case X86::DIVPSrr:
7885 case X86::DIVSDrm:
7886 case X86::DIVSDrm_Int:
7887 case X86::DIVSDrr:
7888 case X86::DIVSDrr_Int:
7889 case X86::DIVSSrm:
7890 case X86::DIVSSrm_Int:
7891 case X86::DIVSSrr:
7892 case X86::DIVSSrr_Int:
7893 case X86::SQRTPDm:
7894 case X86::SQRTPDr:
7895 case X86::SQRTPSm:
7896 case X86::SQRTPSr:
7897 case X86::SQRTSDm:
7898 case X86::SQRTSDm_Int:
7899 case X86::SQRTSDr:
7900 case X86::SQRTSDr_Int:
7901 case X86::SQRTSSm:
7902 case X86::SQRTSSm_Int:
7903 case X86::SQRTSSr:
7904 case X86::SQRTSSr_Int:
7905 // AVX instructions with high latency
7906 case X86::VDIVPDrm:
7907 case X86::VDIVPDrr:
7908 case X86::VDIVPDYrm:
7909 case X86::VDIVPDYrr:
7910 case X86::VDIVPSrm:
7911 case X86::VDIVPSrr:
7912 case X86::VDIVPSYrm:
7913 case X86::VDIVPSYrr:
7914 case X86::VDIVSDrm:
7915 case X86::VDIVSDrm_Int:
7916 case X86::VDIVSDrr:
7917 case X86::VDIVSDrr_Int:
7918 case X86::VDIVSSrm:
7919 case X86::VDIVSSrm_Int:
7920 case X86::VDIVSSrr:
7921 case X86::VDIVSSrr_Int:
7922 case X86::VSQRTPDm:
7923 case X86::VSQRTPDr:
7924 case X86::VSQRTPDYm:
7925 case X86::VSQRTPDYr:
7926 case X86::VSQRTPSm:
7927 case X86::VSQRTPSr:
7928 case X86::VSQRTPSYm:
7929 case X86::VSQRTPSYr:
7930 case X86::VSQRTSDm:
7931 case X86::VSQRTSDm_Int:
7932 case X86::VSQRTSDr:
7933 case X86::VSQRTSDr_Int:
7934 case X86::VSQRTSSm:
7935 case X86::VSQRTSSm_Int:
7936 case X86::VSQRTSSr:
7937 case X86::VSQRTSSr_Int:
7938 // AVX512 instructions with high latency
7939 case X86::VDIVPDZ128rm:
7940 case X86::VDIVPDZ128rmb:
7941 case X86::VDIVPDZ128rmbk:
7942 case X86::VDIVPDZ128rmbkz:
7943 case X86::VDIVPDZ128rmk:
7944 case X86::VDIVPDZ128rmkz:
7945 case X86::VDIVPDZ128rr:
7946 case X86::VDIVPDZ128rrk:
7947 case X86::VDIVPDZ128rrkz:
7948 case X86::VDIVPDZ256rm:
7949 case X86::VDIVPDZ256rmb:
7950 case X86::VDIVPDZ256rmbk:
7951 case X86::VDIVPDZ256rmbkz:
7952 case X86::VDIVPDZ256rmk:
7953 case X86::VDIVPDZ256rmkz:
7954 case X86::VDIVPDZ256rr:
7955 case X86::VDIVPDZ256rrk:
7956 case X86::VDIVPDZ256rrkz:
7957 case X86::VDIVPDZrrb:
7958 case X86::VDIVPDZrrbk:
7959 case X86::VDIVPDZrrbkz:
7960 case X86::VDIVPDZrm:
7961 case X86::VDIVPDZrmb:
7962 case X86::VDIVPDZrmbk:
7963 case X86::VDIVPDZrmbkz:
7964 case X86::VDIVPDZrmk:
7965 case X86::VDIVPDZrmkz:
7966 case X86::VDIVPDZrr:
7967 case X86::VDIVPDZrrk:
7968 case X86::VDIVPDZrrkz:
7969 case X86::VDIVPSZ128rm:
7970 case X86::VDIVPSZ128rmb:
7971 case X86::VDIVPSZ128rmbk:
7972 case X86::VDIVPSZ128rmbkz:
7973 case X86::VDIVPSZ128rmk:
7974 case X86::VDIVPSZ128rmkz:
7975 case X86::VDIVPSZ128rr:
7976 case X86::VDIVPSZ128rrk:
7977 case X86::VDIVPSZ128rrkz:
7978 case X86::VDIVPSZ256rm:
7979 case X86::VDIVPSZ256rmb:
7980 case X86::VDIVPSZ256rmbk:
7981 case X86::VDIVPSZ256rmbkz:
7982 case X86::VDIVPSZ256rmk:
7983 case X86::VDIVPSZ256rmkz:
7984 case X86::VDIVPSZ256rr:
7985 case X86::VDIVPSZ256rrk:
7986 case X86::VDIVPSZ256rrkz:
7987 case X86::VDIVPSZrrb:
7988 case X86::VDIVPSZrrbk:
7989 case X86::VDIVPSZrrbkz:
7990 case X86::VDIVPSZrm:
7991 case X86::VDIVPSZrmb:
7992 case X86::VDIVPSZrmbk:
7993 case X86::VDIVPSZrmbkz:
7994 case X86::VDIVPSZrmk:
7995 case X86::VDIVPSZrmkz:
7996 case X86::VDIVPSZrr:
7997 case X86::VDIVPSZrrk:
7998 case X86::VDIVPSZrrkz:
7999 case X86::VDIVSDZrm:
8000 case X86::VDIVSDZrr:
8001 case X86::VDIVSDZrm_Int:
8002 case X86::VDIVSDZrm_Intk:
8003 case X86::VDIVSDZrm_Intkz:
8004 case X86::VDIVSDZrr_Int:
8005 case X86::VDIVSDZrr_Intk:
8006 case X86::VDIVSDZrr_Intkz:
8007 case X86::VDIVSDZrrb_Int:
8008 case X86::VDIVSDZrrb_Intk:
8009 case X86::VDIVSDZrrb_Intkz:
8010 case X86::VDIVSSZrm:
8011 case X86::VDIVSSZrr:
8012 case X86::VDIVSSZrm_Int:
8013 case X86::VDIVSSZrm_Intk:
8014 case X86::VDIVSSZrm_Intkz:
8015 case X86::VDIVSSZrr_Int:
8016 case X86::VDIVSSZrr_Intk:
8017 case X86::VDIVSSZrr_Intkz:
8018 case X86::VDIVSSZrrb_Int:
8019 case X86::VDIVSSZrrb_Intk:
8020 case X86::VDIVSSZrrb_Intkz:
8021 case X86::VSQRTPDZ128m:
8022 case X86::VSQRTPDZ128mb:
8023 case X86::VSQRTPDZ128mbk:
8024 case X86::VSQRTPDZ128mbkz:
8025 case X86::VSQRTPDZ128mk:
8026 case X86::VSQRTPDZ128mkz:
8027 case X86::VSQRTPDZ128r:
8028 case X86::VSQRTPDZ128rk:
8029 case X86::VSQRTPDZ128rkz:
8030 case X86::VSQRTPDZ256m:
8031 case X86::VSQRTPDZ256mb:
8032 case X86::VSQRTPDZ256mbk:
8033 case X86::VSQRTPDZ256mbkz:
8034 case X86::VSQRTPDZ256mk:
8035 case X86::VSQRTPDZ256mkz:
8036 case X86::VSQRTPDZ256r:
8037 case X86::VSQRTPDZ256rk:
8038 case X86::VSQRTPDZ256rkz:
8039 case X86::VSQRTPDZm:
8040 case X86::VSQRTPDZmb:
8041 case X86::VSQRTPDZmbk:
8042 case X86::VSQRTPDZmbkz:
8043 case X86::VSQRTPDZmk:
8044 case X86::VSQRTPDZmkz:
8045 case X86::VSQRTPDZr:
8046 case X86::VSQRTPDZrb:
8047 case X86::VSQRTPDZrbk:
8048 case X86::VSQRTPDZrbkz:
8049 case X86::VSQRTPDZrk:
8050 case X86::VSQRTPDZrkz:
8051 case X86::VSQRTPSZ128m:
8052 case X86::VSQRTPSZ128mb:
8053 case X86::VSQRTPSZ128mbk:
8054 case X86::VSQRTPSZ128mbkz:
8055 case X86::VSQRTPSZ128mk:
8056 case X86::VSQRTPSZ128mkz:
8057 case X86::VSQRTPSZ128r:
8058 case X86::VSQRTPSZ128rk:
8059 case X86::VSQRTPSZ128rkz:
8060 case X86::VSQRTPSZ256m:
8061 case X86::VSQRTPSZ256mb:
8062 case X86::VSQRTPSZ256mbk:
8063 case X86::VSQRTPSZ256mbkz:
8064 case X86::VSQRTPSZ256mk:
8065 case X86::VSQRTPSZ256mkz:
8066 case X86::VSQRTPSZ256r:
8067 case X86::VSQRTPSZ256rk:
8068 case X86::VSQRTPSZ256rkz:
8069 case X86::VSQRTPSZm:
8070 case X86::VSQRTPSZmb:
8071 case X86::VSQRTPSZmbk:
8072 case X86::VSQRTPSZmbkz:
8073 case X86::VSQRTPSZmk:
8074 case X86::VSQRTPSZmkz:
8075 case X86::VSQRTPSZr:
8076 case X86::VSQRTPSZrb:
8077 case X86::VSQRTPSZrbk:
8078 case X86::VSQRTPSZrbkz:
8079 case X86::VSQRTPSZrk:
8080 case X86::VSQRTPSZrkz:
8081 case X86::VSQRTSDZm:
8082 case X86::VSQRTSDZm_Int:
8083 case X86::VSQRTSDZm_Intk:
8084 case X86::VSQRTSDZm_Intkz:
8085 case X86::VSQRTSDZr:
8086 case X86::VSQRTSDZr_Int:
8087 case X86::VSQRTSDZr_Intk:
8088 case X86::VSQRTSDZr_Intkz:
8089 case X86::VSQRTSDZrb_Int:
8090 case X86::VSQRTSDZrb_Intk:
8091 case X86::VSQRTSDZrb_Intkz:
8092 case X86::VSQRTSSZm:
8093 case X86::VSQRTSSZm_Int:
8094 case X86::VSQRTSSZm_Intk:
8095 case X86::VSQRTSSZm_Intkz:
8096 case X86::VSQRTSSZr:
8097 case X86::VSQRTSSZr_Int:
8098 case X86::VSQRTSSZr_Intk:
8099 case X86::VSQRTSSZr_Intkz:
8100 case X86::VSQRTSSZrb_Int:
8101 case X86::VSQRTSSZrb_Intk:
8102 case X86::VSQRTSSZrb_Intkz:
8103
8104 case X86::VGATHERDPDYrm:
8105 case X86::VGATHERDPDZ128rm:
8106 case X86::VGATHERDPDZ256rm:
8107 case X86::VGATHERDPDZrm:
8108 case X86::VGATHERDPDrm:
8109 case X86::VGATHERDPSYrm:
8110 case X86::VGATHERDPSZ128rm:
8111 case X86::VGATHERDPSZ256rm:
8112 case X86::VGATHERDPSZrm:
8113 case X86::VGATHERDPSrm:
8114 case X86::VGATHERPF0DPDm:
8115 case X86::VGATHERPF0DPSm:
8116 case X86::VGATHERPF0QPDm:
8117 case X86::VGATHERPF0QPSm:
8118 case X86::VGATHERPF1DPDm:
8119 case X86::VGATHERPF1DPSm:
8120 case X86::VGATHERPF1QPDm:
8121 case X86::VGATHERPF1QPSm:
8122 case X86::VGATHERQPDYrm:
8123 case X86::VGATHERQPDZ128rm:
8124 case X86::VGATHERQPDZ256rm:
8125 case X86::VGATHERQPDZrm:
8126 case X86::VGATHERQPDrm:
8127 case X86::VGATHERQPSYrm:
8128 case X86::VGATHERQPSZ128rm:
8129 case X86::VGATHERQPSZ256rm:
8130 case X86::VGATHERQPSZrm:
8131 case X86::VGATHERQPSrm:
8132 case X86::VPGATHERDDYrm:
8133 case X86::VPGATHERDDZ128rm:
8134 case X86::VPGATHERDDZ256rm:
8135 case X86::VPGATHERDDZrm:
8136 case X86::VPGATHERDDrm:
8137 case X86::VPGATHERDQYrm:
8138 case X86::VPGATHERDQZ128rm:
8139 case X86::VPGATHERDQZ256rm:
8140 case X86::VPGATHERDQZrm:
8141 case X86::VPGATHERDQrm:
8142 case X86::VPGATHERQDYrm:
8143 case X86::VPGATHERQDZ128rm:
8144 case X86::VPGATHERQDZ256rm:
8145 case X86::VPGATHERQDZrm:
8146 case X86::VPGATHERQDrm:
8147 case X86::VPGATHERQQYrm:
8148 case X86::VPGATHERQQZ128rm:
8149 case X86::VPGATHERQQZ256rm:
8150 case X86::VPGATHERQQZrm:
8151 case X86::VPGATHERQQrm:
8152 case X86::VSCATTERDPDZ128mr:
8153 case X86::VSCATTERDPDZ256mr:
8154 case X86::VSCATTERDPDZmr:
8155 case X86::VSCATTERDPSZ128mr:
8156 case X86::VSCATTERDPSZ256mr:
8157 case X86::VSCATTERDPSZmr:
8158 case X86::VSCATTERPF0DPDm:
8159 case X86::VSCATTERPF0DPSm:
8160 case X86::VSCATTERPF0QPDm:
8161 case X86::VSCATTERPF0QPSm:
8162 case X86::VSCATTERPF1DPDm:
8163 case X86::VSCATTERPF1DPSm:
8164 case X86::VSCATTERPF1QPDm:
8165 case X86::VSCATTERPF1QPSm:
8166 case X86::VSCATTERQPDZ128mr:
8167 case X86::VSCATTERQPDZ256mr:
8168 case X86::VSCATTERQPDZmr:
8169 case X86::VSCATTERQPSZ128mr:
8170 case X86::VSCATTERQPSZ256mr:
8171 case X86::VSCATTERQPSZmr:
8172 case X86::VPSCATTERDDZ128mr:
8173 case X86::VPSCATTERDDZ256mr:
8174 case X86::VPSCATTERDDZmr:
8175 case X86::VPSCATTERDQZ128mr:
8176 case X86::VPSCATTERDQZ256mr:
8177 case X86::VPSCATTERDQZmr:
8178 case X86::VPSCATTERQDZ128mr:
8179 case X86::VPSCATTERQDZ256mr:
8180 case X86::VPSCATTERQDZmr:
8181 case X86::VPSCATTERQQZ128mr:
8182 case X86::VPSCATTERQQZ256mr:
8183 case X86::VPSCATTERQQZmr:
8184 return true;
8185 }
8186}
8187
8188bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
8189 const MachineRegisterInfo *MRI,
8190 const MachineInstr &DefMI,
8191 unsigned DefIdx,
8192 const MachineInstr &UseMI,
8193 unsigned UseIdx) const {
8194 return isHighLatencyDef(DefMI.getOpcode());
8195}
8196
8197bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
8198 const MachineBasicBlock *MBB) const {
8199 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&(static_cast <bool> (Inst.getNumExplicitOperands() == 3
&& Inst.getNumExplicitDefs() == 1 && Inst.getNumDefs
() <= 2 && "Reassociation needs binary operators")
? void (0) : __assert_fail ("Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && Inst.getNumDefs() <= 2 && \"Reassociation needs binary operators\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8200, __extension__
__PRETTY_FUNCTION__))
8200 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators")(static_cast <bool> (Inst.getNumExplicitOperands() == 3
&& Inst.getNumExplicitDefs() == 1 && Inst.getNumDefs
() <= 2 && "Reassociation needs binary operators")
? void (0) : __assert_fail ("Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && Inst.getNumDefs() <= 2 && \"Reassociation needs binary operators\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8200, __extension__
__PRETTY_FUNCTION__))
;
8201
8202 // Integer binary math/logic instructions have a third source operand:
8203 // the EFLAGS register. That operand must be both defined here and never
8204 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
8205 // not change anything because rearranging the operands could affect other
8206 // instructions that depend on the exact status flags (zero, sign, etc.)
8207 // that are set by using these particular operands with this operation.
8208 const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
8209 assert((Inst.getNumDefs() == 1 || FlagDef) &&(static_cast <bool> ((Inst.getNumDefs() == 1 || FlagDef
) && "Implicit def isn't flags?") ? void (0) : __assert_fail
("(Inst.getNumDefs() == 1 || FlagDef) && \"Implicit def isn't flags?\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8210, __extension__
__PRETTY_FUNCTION__))
8210 "Implicit def isn't flags?")(static_cast <bool> ((Inst.getNumDefs() == 1 || FlagDef
) && "Implicit def isn't flags?") ? void (0) : __assert_fail
("(Inst.getNumDefs() == 1 || FlagDef) && \"Implicit def isn't flags?\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8210, __extension__
__PRETTY_FUNCTION__))
;
8211 if (FlagDef && !FlagDef->isDead())
8212 return false;
8213
8214 return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
8215}
8216
8217// TODO: There are many more machine instruction opcodes to match:
8218// 1. Other data types (integer, vectors)
8219// 2. Other math / logic operations (xor, or)
8220// 3. Other forms of the same operation (intrinsics and other variants)
8221bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
8222 switch (Inst.getOpcode()) {
8223 case X86::AND8rr:
8224 case X86::AND16rr:
8225 case X86::AND32rr:
8226 case X86::AND64rr:
8227 case X86::OR8rr:
8228 case X86::OR16rr:
8229 case X86::OR32rr:
8230 case X86::OR64rr:
8231 case X86::XOR8rr:
8232 case X86::XOR16rr:
8233 case X86::XOR32rr:
8234 case X86::XOR64rr:
8235 case X86::IMUL16rr:
8236 case X86::IMUL32rr:
8237 case X86::IMUL64rr:
8238 case X86::PANDrr:
8239 case X86::PORrr:
8240 case X86::PXORrr:
8241 case X86::ANDPDrr:
8242 case X86::ANDPSrr:
8243 case X86::ORPDrr:
8244 case X86::ORPSrr:
8245 case X86::XORPDrr:
8246 case X86::XORPSrr:
8247 case X86::PADDBrr:
8248 case X86::PADDWrr:
8249 case X86::PADDDrr:
8250 case X86::PADDQrr:
8251 case X86::PMULLWrr:
8252 case X86::PMULLDrr:
8253 case X86::PMAXSBrr:
8254 case X86::PMAXSDrr:
8255 case X86::PMAXSWrr:
8256 case X86::PMAXUBrr:
8257 case X86::PMAXUDrr:
8258 case X86::PMAXUWrr:
8259 case X86::PMINSBrr:
8260 case X86::PMINSDrr:
8261 case X86::PMINSWrr:
8262 case X86::PMINUBrr:
8263 case X86::PMINUDrr:
8264 case X86::PMINUWrr:
8265 case X86::VPANDrr:
8266 case X86::VPANDYrr:
8267 case X86::VPANDDZ128rr:
8268 case X86::VPANDDZ256rr:
8269 case X86::VPANDDZrr:
8270 case X86::VPANDQZ128rr:
8271 case X86::VPANDQZ256rr:
8272 case X86::VPANDQZrr:
8273 case X86::VPORrr:
8274 case X86::VPORYrr:
8275 case X86::VPORDZ128rr:
8276 case X86::VPORDZ256rr:
8277 case X86::VPORDZrr:
8278 case X86::VPORQZ128rr:
8279 case X86::VPORQZ256rr:
8280 case X86::VPORQZrr:
8281 case X86::VPXORrr:
8282 case X86::VPXORYrr:
8283 case X86::VPXORDZ128rr:
8284 case X86::VPXORDZ256rr:
8285 case X86::VPXORDZrr:
8286 case X86::VPXORQZ128rr:
8287 case X86::VPXORQZ256rr:
8288 case X86::VPXORQZrr:
8289 case X86::VANDPDrr:
8290 case X86::VANDPSrr:
8291 case X86::VANDPDYrr:
8292 case X86::VANDPSYrr:
8293 case X86::VANDPDZ128rr:
8294 case X86::VANDPSZ128rr:
8295 case X86::VANDPDZ256rr:
8296 case X86::VANDPSZ256rr:
8297 case X86::VANDPDZrr:
8298 case X86::VANDPSZrr:
8299 case X86::VORPDrr:
8300 case X86::VORPSrr:
8301 case X86::VORPDYrr:
8302 case X86::VORPSYrr:
8303 case X86::VORPDZ128rr:
8304 case X86::VORPSZ128rr:
8305 case X86::VORPDZ256rr:
8306 case X86::VORPSZ256rr:
8307 case X86::VORPDZrr:
8308 case X86::VORPSZrr:
8309 case X86::VXORPDrr:
8310 case X86::VXORPSrr:
8311 case X86::VXORPDYrr:
8312 case X86::VXORPSYrr:
8313 case X86::VXORPDZ128rr:
8314 case X86::VXORPSZ128rr:
8315 case X86::VXORPDZ256rr:
8316 case X86::VXORPSZ256rr:
8317 case X86::VXORPDZrr:
8318 case X86::VXORPSZrr:
8319 case X86::KADDBrr:
8320 case X86::KADDWrr:
8321 case X86::KADDDrr:
8322 case X86::KADDQrr:
8323 case X86::KANDBrr:
8324 case X86::KANDWrr:
8325 case X86::KANDDrr:
8326 case X86::KANDQrr:
8327 case X86::KORBrr:
8328 case X86::KORWrr:
8329 case X86::KORDrr:
8330 case X86::KORQrr:
8331 case X86::KXORBrr:
8332 case X86::KXORWrr:
8333 case X86::KXORDrr:
8334 case X86::KXORQrr:
8335 case X86::VPADDBrr:
8336 case X86::VPADDWrr:
8337 case X86::VPADDDrr:
8338 case X86::VPADDQrr:
8339 case X86::VPADDBYrr:
8340 case X86::VPADDWYrr:
8341 case X86::VPADDDYrr:
8342 case X86::VPADDQYrr:
8343 case X86::VPADDBZ128rr:
8344 case X86::VPADDWZ128rr:
8345 case X86::VPADDDZ128rr:
8346 case X86::VPADDQZ128rr:
8347 case X86::VPADDBZ256rr:
8348 case X86::VPADDWZ256rr:
8349 case X86::VPADDDZ256rr:
8350 case X86::VPADDQZ256rr:
8351 case X86::VPADDBZrr:
8352 case X86::VPADDWZrr:
8353 case X86::VPADDDZrr:
8354 case X86::VPADDQZrr:
8355 case X86::VPMULLWrr:
8356 case X86::VPMULLWYrr:
8357 case X86::VPMULLWZ128rr:
8358 case X86::VPMULLWZ256rr:
8359 case X86::VPMULLWZrr:
8360 case X86::VPMULLDrr:
8361 case X86::VPMULLDYrr:
8362 case X86::VPMULLDZ128rr:
8363 case X86::VPMULLDZ256rr:
8364 case X86::VPMULLDZrr:
8365 case X86::VPMULLQZ128rr:
8366 case X86::VPMULLQZ256rr:
8367 case X86::VPMULLQZrr:
8368 case X86::VPMAXSBrr:
8369 case X86::VPMAXSBYrr:
8370 case X86::VPMAXSBZ128rr:
8371 case X86::VPMAXSBZ256rr:
8372 case X86::VPMAXSBZrr:
8373 case X86::VPMAXSDrr:
8374 case X86::VPMAXSDYrr:
8375 case X86::VPMAXSDZ128rr:
8376 case X86::VPMAXSDZ256rr:
8377 case X86::VPMAXSDZrr:
8378 case X86::VPMAXSQZ128rr:
8379 case X86::VPMAXSQZ256rr:
8380 case X86::VPMAXSQZrr:
8381 case X86::VPMAXSWrr:
8382 case X86::VPMAXSWYrr:
8383 case X86::VPMAXSWZ128rr:
8384 case X86::VPMAXSWZ256rr:
8385 case X86::VPMAXSWZrr:
8386 case X86::VPMAXUBrr:
8387 case X86::VPMAXUBYrr:
8388 case X86::VPMAXUBZ128rr:
8389 case X86::VPMAXUBZ256rr:
8390 case X86::VPMAXUBZrr:
8391 case X86::VPMAXUDrr:
8392 case X86::VPMAXUDYrr:
8393 case X86::VPMAXUDZ128rr:
8394 case X86::VPMAXUDZ256rr:
8395 case X86::VPMAXUDZrr:
8396 case X86::VPMAXUQZ128rr:
8397 case X86::VPMAXUQZ256rr:
8398 case X86::VPMAXUQZrr:
8399 case X86::VPMAXUWrr:
8400 case X86::VPMAXUWYrr:
8401 case X86::VPMAXUWZ128rr:
8402 case X86::VPMAXUWZ256rr:
8403 case X86::VPMAXUWZrr:
8404 case X86::VPMINSBrr:
8405 case X86::VPMINSBYrr:
8406 case X86::VPMINSBZ128rr:
8407 case X86::VPMINSBZ256rr:
8408 case X86::VPMINSBZrr:
8409 case X86::VPMINSDrr:
8410 case X86::VPMINSDYrr:
8411 case X86::VPMINSDZ128rr:
8412 case X86::VPMINSDZ256rr:
8413 case X86::VPMINSDZrr:
8414 case X86::VPMINSQZ128rr:
8415 case X86::VPMINSQZ256rr:
8416 case X86::VPMINSQZrr:
8417 case X86::VPMINSWrr:
8418 case X86::VPMINSWYrr:
8419 case X86::VPMINSWZ128rr:
8420 case X86::VPMINSWZ256rr:
8421 case X86::VPMINSWZrr:
8422 case X86::VPMINUBrr:
8423 case X86::VPMINUBYrr:
8424 case X86::VPMINUBZ128rr:
8425 case X86::VPMINUBZ256rr:
8426 case X86::VPMINUBZrr:
8427 case X86::VPMINUDrr:
8428 case X86::VPMINUDYrr:
8429 case X86::VPMINUDZ128rr:
8430 case X86::VPMINUDZ256rr:
8431 case X86::VPMINUDZrr:
8432 case X86::VPMINUQZ128rr:
8433 case X86::VPMINUQZ256rr:
8434 case X86::VPMINUQZrr:
8435 case X86::VPMINUWrr:
8436 case X86::VPMINUWYrr:
8437 case X86::VPMINUWZ128rr:
8438 case X86::VPMINUWZ256rr:
8439 case X86::VPMINUWZrr:
8440 // Normal min/max instructions are not commutative because of NaN and signed
8441 // zero semantics, but these are. Thus, there's no need to check for global
8442 // relaxed math; the instructions themselves have the properties we need.
8443 case X86::MAXCPDrr:
8444 case X86::MAXCPSrr:
8445 case X86::MAXCSDrr:
8446 case X86::MAXCSSrr:
8447 case X86::MINCPDrr:
8448 case X86::MINCPSrr:
8449 case X86::MINCSDrr:
8450 case X86::MINCSSrr:
8451 case X86::VMAXCPDrr:
8452 case X86::VMAXCPSrr:
8453 case X86::VMAXCPDYrr:
8454 case X86::VMAXCPSYrr:
8455 case X86::VMAXCPDZ128rr:
8456 case X86::VMAXCPSZ128rr:
8457 case X86::VMAXCPDZ256rr:
8458 case X86::VMAXCPSZ256rr:
8459 case X86::VMAXCPDZrr:
8460 case X86::VMAXCPSZrr:
8461 case X86::VMAXCSDrr:
8462 case X86::VMAXCSSrr:
8463 case X86::VMAXCSDZrr:
8464 case X86::VMAXCSSZrr:
8465 case X86::VMINCPDrr:
8466 case X86::VMINCPSrr:
8467 case X86::VMINCPDYrr:
8468 case X86::VMINCPSYrr:
8469 case X86::VMINCPDZ128rr:
8470 case X86::VMINCPSZ128rr:
8471 case X86::VMINCPDZ256rr:
8472 case X86::VMINCPSZ256rr:
8473 case X86::VMINCPDZrr:
8474 case X86::VMINCPSZrr:
8475 case X86::VMINCSDrr:
8476 case X86::VMINCSSrr:
8477 case X86::VMINCSDZrr:
8478 case X86::VMINCSSZrr:
8479 case X86::VMAXCPHZ128rr:
8480 case X86::VMAXCPHZ256rr:
8481 case X86::VMAXCPHZrr:
8482 case X86::VMAXCSHZrr:
8483 case X86::VMINCPHZ128rr:
8484 case X86::VMINCPHZ256rr:
8485 case X86::VMINCPHZrr:
8486 case X86::VMINCSHZrr:
8487 return true;
8488 case X86::ADDPDrr:
8489 case X86::ADDPSrr:
8490 case X86::ADDSDrr:
8491 case X86::ADDSSrr:
8492 case X86::MULPDrr:
8493 case X86::MULPSrr:
8494 case X86::MULSDrr:
8495 case X86::MULSSrr:
8496 case X86::VADDPDrr:
8497 case X86::VADDPSrr:
8498 case X86::VADDPDYrr:
8499 case X86::VADDPSYrr:
8500 case X86::VADDPDZ128rr:
8501 case X86::VADDPSZ128rr:
8502 case X86::VADDPDZ256rr:
8503 case X86::VADDPSZ256rr:
8504 case X86::VADDPDZrr:
8505 case X86::VADDPSZrr:
8506 case X86::VADDSDrr:
8507 case X86::VADDSSrr:
8508 case X86::VADDSDZrr:
8509 case X86::VADDSSZrr:
8510 case X86::VMULPDrr:
8511 case X86::VMULPSrr:
8512 case X86::VMULPDYrr:
8513 case X86::VMULPSYrr:
8514 case X86::VMULPDZ128rr:
8515 case X86::VMULPSZ128rr:
8516 case X86::VMULPDZ256rr:
8517 case X86::VMULPSZ256rr:
8518 case X86::VMULPDZrr:
8519 case X86::VMULPSZrr:
8520 case X86::VMULSDrr:
8521 case X86::VMULSSrr:
8522 case X86::VMULSDZrr:
8523 case X86::VMULSSZrr:
8524 case X86::VADDPHZ128rr:
8525 case X86::VADDPHZ256rr:
8526 case X86::VADDPHZrr:
8527 case X86::VADDSHZrr:
8528 case X86::VMULPHZ128rr:
8529 case X86::VMULPHZ256rr:
8530 case X86::VMULPHZrr:
8531 case X86::VMULSHZrr:
8532 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
8533 Inst.getFlag(MachineInstr::MIFlag::FmNsz);
8534 default:
8535 return false;
8536 }
8537}
8538
8539/// If \p DescribedReg overlaps with the MOVrr instruction's destination
8540/// register then, if possible, describe the value in terms of the source
8541/// register.
8542static Optional<ParamLoadedValue>
8543describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
8544 const TargetRegisterInfo *TRI) {
8545 Register DestReg = MI.getOperand(0).getReg();
8546 Register SrcReg = MI.getOperand(1).getReg();
8547
8548 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8549
8550 // If the described register is the destination, just return the source.
8551 if (DestReg == DescribedReg)
8552 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8553
8554 // If the described register is a sub-register of the destination register,
8555 // then pick out the source register's corresponding sub-register.
8556 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
8557 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
8558 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
8559 }
8560
8561 // The remaining case to consider is when the described register is a
8562 // super-register of the destination register. MOV8rr and MOV16rr does not
8563 // write to any of the other bytes in the register, meaning that we'd have to
8564 // describe the value using a combination of the source register and the
8565 // non-overlapping bits in the described register, which is not currently
8566 // possible.
8567 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
8568 !TRI->isSuperRegister(DestReg, DescribedReg))
8569 return None;
8570
8571 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case")(static_cast <bool> (MI.getOpcode() == X86::MOV32rr &&
"Unexpected super-register case") ? void (0) : __assert_fail
("MI.getOpcode() == X86::MOV32rr && \"Unexpected super-register case\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8571, __extension__
__PRETTY_FUNCTION__))
;
8572 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8573}
8574
8575Optional<ParamLoadedValue>
8576X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
8577 const MachineOperand *Op = nullptr;
8578 DIExpression *Expr = nullptr;
8579
8580 const TargetRegisterInfo *TRI = &getRegisterInfo();
8581
8582 switch (MI.getOpcode()) {
8583 case X86::LEA32r:
8584 case X86::LEA64r:
8585 case X86::LEA64_32r: {
8586 // We may need to describe a 64-bit parameter with a 32-bit LEA.
8587 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8588 return None;
8589
8590 // Operand 4 could be global address. For now we do not support
8591 // such situation.
8592 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
8593 return None;
8594
8595 const MachineOperand &Op1 = MI.getOperand(1);
8596 const MachineOperand &Op2 = MI.getOperand(3);
8597 assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||(static_cast <bool> (Op2.isReg() && (Op2.getReg
() == X86::NoRegister || Register::isPhysicalRegister(Op2.getReg
()))) ? void (0) : __assert_fail ("Op2.isReg() && (Op2.getReg() == X86::NoRegister || Register::isPhysicalRegister(Op2.getReg()))"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8598, __extension__
__PRETTY_FUNCTION__))
8598 Register::isPhysicalRegister(Op2.getReg())))(static_cast <bool> (Op2.isReg() && (Op2.getReg
() == X86::NoRegister || Register::isPhysicalRegister(Op2.getReg
()))) ? void (0) : __assert_fail ("Op2.isReg() && (Op2.getReg() == X86::NoRegister || Register::isPhysicalRegister(Op2.getReg()))"
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8598, __extension__
__PRETTY_FUNCTION__))
;
8599
8600 // Omit situations like:
8601 // %rsi = lea %rsi, 4, ...
8602 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
8603 Op2.getReg() == MI.getOperand(0).getReg())
8604 return None;
8605 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
8606 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
8607 (Op2.getReg() != X86::NoRegister &&
8608 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
8609 return None;
8610
8611 int64_t Coef = MI.getOperand(2).getImm();
8612 int64_t Offset = MI.getOperand(4).getImm();
8613 SmallVector<uint64_t, 8> Ops;
8614
8615 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
8616 Op = &Op1;
8617 } else if (Op1.isFI())
8618 Op = &Op1;
8619
8620 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
8621 Ops.push_back(dwarf::DW_OP_constu);
8622 Ops.push_back(Coef + 1);
8623 Ops.push_back(dwarf::DW_OP_mul);
8624 } else {
8625 if (Op && Op2.getReg() != X86::NoRegister) {
8626 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
8627 if (dwarfReg < 0)
8628 return None;
8629 else if (dwarfReg < 32) {
8630 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
8631 Ops.push_back(0);
8632 } else {
8633 Ops.push_back(dwarf::DW_OP_bregx);
8634 Ops.push_back(dwarfReg);
8635 Ops.push_back(0);
8636 }
8637 } else if (!Op) {
8638 assert(Op2.getReg() != X86::NoRegister)(static_cast <bool> (Op2.getReg() != X86::NoRegister) ?
void (0) : __assert_fail ("Op2.getReg() != X86::NoRegister",
"llvm/lib/Target/X86/X86InstrInfo.cpp", 8638, __extension__ __PRETTY_FUNCTION__
))
;
8639 Op = &Op2;
8640 }
8641
8642 if (Coef > 1) {
8643 assert(Op2.getReg() != X86::NoRegister)(static_cast <bool> (Op2.getReg() != X86::NoRegister) ?
void (0) : __assert_fail ("Op2.getReg() != X86::NoRegister",
"llvm/lib/Target/X86/X86InstrInfo.cpp", 8643, __extension__ __PRETTY_FUNCTION__
))
;
8644 Ops.push_back(dwarf::DW_OP_constu);
8645 Ops.push_back(Coef);
8646 Ops.push_back(dwarf::DW_OP_mul);
8647 }
8648
8649 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
8650 Op2.getReg() != X86::NoRegister) {
8651 Ops.push_back(dwarf::DW_OP_plus);
8652 }
8653 }
8654
8655 DIExpression::appendOffset(Ops, Offset);
8656 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
8657
8658 return ParamLoadedValue(*Op, Expr);;
8659 }
8660 case X86::MOV8ri:
8661 case X86::MOV16ri:
8662 // TODO: Handle MOV8ri and MOV16ri.
8663 return None;
8664 case X86::MOV32ri:
8665 case X86::MOV64ri:
8666 case X86::MOV64ri32:
8667 // MOV32ri may be used for producing zero-extended 32-bit immediates in
8668 // 64-bit parameters, so we need to consider super-registers.
8669 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8670 return None;
8671 return ParamLoadedValue(MI.getOperand(1), Expr);
8672 case X86::MOV8rr:
8673 case X86::MOV16rr:
8674 case X86::MOV32rr:
8675 case X86::MOV64rr:
8676 return describeMOVrrLoadedValue(MI, Reg, TRI);
8677 case X86::XOR32rr: {
8678 // 64-bit parameters are zero-materialized using XOR32rr, so also consider
8679 // super-registers.
8680 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8681 return None;
8682 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
8683 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
8684 return None;
8685 }
8686 case X86::MOVSX64rr32: {
8687 // We may need to describe the lower 32 bits of the MOVSX; for example, in
8688 // cases like this:
8689 //
8690 // $ebx = [...]
8691 // $rdi = MOVSX64rr32 $ebx
8692 // $esi = MOV32rr $edi
8693 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
8694 return None;
8695
8696 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8697
8698 // If the described register is the destination register we need to
8699 // sign-extend the source register from 32 bits. The other case we handle
8700 // is when the described register is the 32-bit sub-register of the
8701 // destination register, in case we just need to return the source
8702 // register.
8703 if (Reg == MI.getOperand(0).getReg())
8704 Expr = DIExpression::appendExt(Expr, 32, 64, true);
8705 else
8706 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&(static_cast <bool> (X86MCRegisterClasses[X86::GR32RegClassID
].contains(Reg) && "Unhandled sub-register case for MOVSX64rr32"
) ? void (0) : __assert_fail ("X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && \"Unhandled sub-register case for MOVSX64rr32\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8707, __extension__
__PRETTY_FUNCTION__))
8707 "Unhandled sub-register case for MOVSX64rr32")(static_cast <bool> (X86MCRegisterClasses[X86::GR32RegClassID
].contains(Reg) && "Unhandled sub-register case for MOVSX64rr32"
) ? void (0) : __assert_fail ("X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && \"Unhandled sub-register case for MOVSX64rr32\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8707, __extension__
__PRETTY_FUNCTION__))
;
8708
8709 return ParamLoadedValue(MI.getOperand(1), Expr);
8710 }
8711 default:
8712 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction")(static_cast <bool> (!MI.isMoveImmediate() && "Unexpected MoveImm instruction"
) ? void (0) : __assert_fail ("!MI.isMoveImmediate() && \"Unexpected MoveImm instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8712, __extension__
__PRETTY_FUNCTION__))
;
8713 return TargetInstrInfo::describeLoadedValue(MI, Reg);
8714 }
8715}
8716
8717/// This is an architecture-specific helper function of reassociateOps.
8718/// Set special operand attributes for new instructions after reassociation.
8719void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
8720 MachineInstr &OldMI2,
8721 MachineInstr &NewMI1,
8722 MachineInstr &NewMI2) const {
8723 // Propagate FP flags from the original instructions.
8724 // But clear poison-generating flags because those may not be valid now.
8725 // TODO: There should be a helper function for copying only fast-math-flags.
8726 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
8727 NewMI1.setFlags(IntersectedFlags);
8728 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
8729 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
8730 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
8731
8732 NewMI2.setFlags(IntersectedFlags);
8733 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
8734 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
8735 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
8736
8737 // Integer instructions may define an implicit EFLAGS dest register operand.
8738 MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
8739 MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
8740
8741 assert(!OldFlagDef1 == !OldFlagDef2 &&(static_cast <bool> (!OldFlagDef1 == !OldFlagDef2 &&
"Unexpected instruction type for reassociation") ? void (0) :
__assert_fail ("!OldFlagDef1 == !OldFlagDef2 && \"Unexpected instruction type for reassociation\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8742, __extension__
__PRETTY_FUNCTION__))
8742 "Unexpected instruction type for reassociation")(static_cast <bool> (!OldFlagDef1 == !OldFlagDef2 &&
"Unexpected instruction type for reassociation") ? void (0) :
__assert_fail ("!OldFlagDef1 == !OldFlagDef2 && \"Unexpected instruction type for reassociation\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8742, __extension__
__PRETTY_FUNCTION__))
;
8743
8744 if (!OldFlagDef1 || !OldFlagDef2)
8745 return;
8746
8747 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&(static_cast <bool> (OldFlagDef1->isDead() &&
OldFlagDef2->isDead() && "Must have dead EFLAGS operand in reassociable instruction"
) ? void (0) : __assert_fail ("OldFlagDef1->isDead() && OldFlagDef2->isDead() && \"Must have dead EFLAGS operand in reassociable instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8748, __extension__
__PRETTY_FUNCTION__))
8748 "Must have dead EFLAGS operand in reassociable instruction")(static_cast <bool> (OldFlagDef1->isDead() &&
OldFlagDef2->isDead() && "Must have dead EFLAGS operand in reassociable instruction"
) ? void (0) : __assert_fail ("OldFlagDef1->isDead() && OldFlagDef2->isDead() && \"Must have dead EFLAGS operand in reassociable instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8748, __extension__
__PRETTY_FUNCTION__))
;
8749
8750 MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
8751 MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
8752
8753 assert(NewFlagDef1 && NewFlagDef2 &&(static_cast <bool> (NewFlagDef1 && NewFlagDef2
&& "Unexpected operand in reassociable instruction")
? void (0) : __assert_fail ("NewFlagDef1 && NewFlagDef2 && \"Unexpected operand in reassociable instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8754, __extension__
__PRETTY_FUNCTION__))
8754 "Unexpected operand in reassociable instruction")(static_cast <bool> (NewFlagDef1 && NewFlagDef2
&& "Unexpected operand in reassociable instruction")
? void (0) : __assert_fail ("NewFlagDef1 && NewFlagDef2 && \"Unexpected operand in reassociable instruction\""
, "llvm/lib/Target/X86/X86InstrInfo.cpp", 8754, __extension__
__PRETTY_FUNCTION__))
;
8755
8756 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
8757 // of this pass or other passes. The EFLAGS operands must be dead in these new
8758 // instructions because the EFLAGS operands in the original instructions must
8759 // be dead in order for reassociation to occur.
8760 NewFlagDef1->setIsDead();
8761 NewFlagDef2->setIsDead();
8762}
8763
8764std::pair<unsigned, unsigned>
8765X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
8766 return std::make_pair(TF, 0u);
8767}
8768
8769ArrayRef<std::pair<unsigned, const char *>>
8770X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
8771 using namespace X86II;
8772 static const std::pair<unsigned, const char *> TargetFlags[] = {
8773 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
8774 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
8775 {MO_GOT, "x86-got"},
8776 {MO_GOTOFF, "x86-gotoff"},
8777 {MO_GOTPCREL, "x86-gotpcrel"},
8778 {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
8779 {MO_PLT, "x86-plt"},
8780 {MO_TLSGD, "x86-tlsgd"},
8781 {MO_TLSLD, "x86-tlsld"},
8782 {MO_TLSLDM, "x86-tlsldm"},
8783 {MO_GOTTPOFF, "x86-gottpoff"},
8784 {MO_INDNTPOFF, "x86-indntpoff"},
8785 {MO_TPOFF, "x86-tpoff"},
8786 {MO_DTPOFF, "x86-dtpoff"},
8787 {MO_NTPOFF, "x86-ntpoff"},
8788 {MO_GOTNTPOFF, "x86-gotntpoff"},
8789 {MO_DLLIMPORT, "x86-dllimport"},
8790 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
8791 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
8792 {MO_TLVP, "x86-tlvp"},
8793 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
8794 {MO_SECREL, "x86-secrel"},
8795 {MO_COFFSTUB, "x86-coffstub"}};
8796 return makeArrayRef(TargetFlags);
8797}
8798
8799namespace {
8800 /// Create Global Base Reg pass. This initializes the PIC
8801 /// global base register for x86-32.
8802 struct CGBR : public MachineFunctionPass {
8803 static char ID;
8804 CGBR() : MachineFunctionPass(ID) {}
8805
8806 bool runOnMachineFunction(MachineFunction &MF) override {
8807 const X86TargetMachine *TM =
8808 static_cast<const X86TargetMachine *>(&MF.getTarget());
8809 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
8810
8811 // Don't do anything in the 64-bit small and kernel code models. They use
8812 // RIP-relative addressing for everything.
8813 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
8814 TM->getCodeModel() == CodeModel::Kernel))
8815 return false;
8816
8817 // Only emit a global base reg in PIC mode.
8818 if (!TM->isPositionIndependent())
8819 return false;
8820
8821 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
8822 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
8823
8824 // If we didn't need a GlobalBaseReg, don't insert code.
8825 if (GlobalBaseReg == 0)
8826 return false;
8827
8828 // Insert the set of GlobalBaseReg into the first MBB of the function
8829 MachineBasicBlock &FirstMBB = MF.front();
8830 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
8831 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
8832 MachineRegisterInfo &RegInfo = MF.getRegInfo();
8833 const X86InstrInfo *TII = STI.getInstrInfo();
8834
8835 Register PC;
8836 if (STI.isPICStyleGOT())
8837 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
8838 else
8839 PC = GlobalBaseReg;
8840
8841 if (STI.is64Bit()) {
8842 if (TM->getCodeModel() == CodeModel::Medium) {
8843 // In the medium code model, use a RIP-relative LEA to materialize the
8844 // GOT.
8845 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
8846 .addReg(X86::RIP)
8847 .addImm(0)
8848 .addReg(0)
8849 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
8850 .addReg(0);
8851 } else if (TM->getCodeModel() == CodeModel::Large) {
8852 // In the large code model, we are aiming for this code, though the
8853 // register allocation may vary:
8854 // leaq .LN$pb(%rip), %rax
8855 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
8856 // addq %rcx, %rax
8857 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
8858 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
8859 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
8860 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
8861 .addReg(X86::RIP)
8862 .addImm(0)
8863 .addReg(0)
8864 .addSym(MF.getPICBaseSymbol())
8865 .addReg(0);
8866 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
8867 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
8868 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
8869 X86II::MO_PIC_BASE_OFFSET);
8870 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
8871 .addReg(PBReg, RegState::Kill)
8872 .addReg(GOTReg, RegState::Kill);
8873 } else {
8874 llvm_unreachable("unexpected code model")::llvm::llvm_unreachable_internal("unexpected code model", "llvm/lib/Target/X86/X86InstrInfo.cpp"
, 8874)
;
8875 }
8876 } else {
8877 // Operand of MovePCtoStack is completely ignored by asm printer. It's
8878 // only used in JIT code emission as displacement to pc.
8879 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
8880
8881 // If we're using vanilla 'GOT' PIC style, we should use relative
8882 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
8883 if (STI.isPICStyleGOT()) {
8884 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
8885 // %some_register
8886 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
8887 .addReg(PC)
8888 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
8889 X86II::MO_GOT_ABSOLUTE_ADDRESS);
8890 }
8891 }
8892
8893 return true;
8894 }
8895
8896 StringRef getPassName() const override {
8897 return "X86 PIC Global Base Reg Initialization";
8898 }
8899
8900 void getAnalysisUsage(AnalysisUsage &AU) const override {
8901 AU.setPreservesCFG();
8902 MachineFunctionPass::getAnalysisUsage(AU);
8903 }
8904 };
8905} // namespace
8906
8907char CGBR::ID = 0;
8908FunctionPass*
8909llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
8910
8911namespace {
8912 struct LDTLSCleanup : public MachineFunctionPass {
8913 static char ID;
8914 LDTLSCleanup() : MachineFunctionPass(ID) {}
8915
8916 bool runOnMachineFunction(MachineFunction &MF) override {
8917 if (skipFunction(MF.getFunction()))
8918 return false;
8919
8920 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
8921 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
8922 // No point folding accesses if there isn't at least two.
8923 return false;
8924 }
8925
8926 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
8927 return VisitNode(DT->getRootNode(), 0);
8928 }
8929
8930 // Visit the dominator subtree rooted at Node in pre-order.
8931 // If TLSBaseAddrReg is non-null, then use that to replace any
8932 // TLS_base_addr instructions. Otherwise, create the register
8933 // when the first such instruction is seen, and then use it
8934 // as we encounter more instructions.
8935 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
8936 MachineBasicBlock *BB = Node->getBlock();
8937 bool Changed = false;
8938
8939 // Traverse the current block.
8940 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
8941 ++I) {
8942 switch (I->getOpcode()) {
8943 case X86::TLS_base_addr32:
8944 case X86::TLS_base_addr64:
8945 if (TLSBaseAddrReg)
8946 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
8947 else
8948 I = SetRegister(*I, &TLSBaseAddrReg);
8949 Changed = true;
8950 break;
8951 default:
8952 break;
8953 }
8954 }
8955
8956 // Visit the children of this block in the dominator tree.
8957 for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
8958 Changed |= VisitNode(*I, TLSBaseAddrReg);
8959 }
8960
8961 return Changed;
8962 }
8963
8964 // Replace the TLS_base_addr instruction I with a copy from
8965 // TLSBaseAddrReg, returning the new instruction.
8966 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
8967 unsigned TLSBaseAddrReg) {
8968 MachineFunction *MF = I.getParent()->getParent();
8969 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
8970 const bool is64Bit = STI.is64Bit();
8971 const X86InstrInfo *TII = STI.getInstrInfo();
8972
8973 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
8974 MachineInstr *Copy =
8975 BuildMI(*I.getParent(), I, I.getDebugLoc(),
8976 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
8977 .addReg(TLSBaseAddrReg);
8978
8979 // Erase the TLS_base_addr instruction.
8980 I.eraseFromParent();
8981
8982 return Copy;
8983 }
8984
8985 // Create a virtual register in *TLSBaseAddrReg, and populate it by
8986 // inserting a copy instruction after I. Returns the new instruction.
8987 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
8988 MachineFunction *MF = I.getParent()->getParent();
8989 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
8990 const bool is64Bit = STI.is64Bit();
8991 const X86InstrInfo *TII = STI.getInstrInfo();
8992
8993 // Create a virtual register for the TLS base address.
8994 MachineRegisterInfo &RegInfo = MF->getRegInfo();
8995 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
8996 ? &X86::GR64RegClass
8997 : &X86::GR32RegClass);
8998
8999 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
9000 MachineInstr *Next = I.getNextNode();
9001 MachineInstr *Copy =
9002 BuildMI(*I.getParent(), Next, I.getDebugLoc(),
9003 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
9004 .addReg(is64Bit ? X86::RAX : X86::EAX);
9005
9006 return Copy;
9007 }
9008
9009 StringRef getPassName() const override {
9010 return "Local Dynamic TLS Access Clean-up";
9011 }
9012
9013 void getAnalysisUsage(AnalysisUsage &AU) const override {
9014 AU.setPreservesCFG();
9015 AU.addRequired<MachineDominatorTree>();
9016 MachineFunctionPass::getAnalysisUsage(AU);
9017 }
9018 };
9019}
9020
9021char LDTLSCleanup::ID = 0;
9022FunctionPass*
9023llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
9024
9025/// Constants defining how certain sequences should be outlined.
9026///
9027/// \p MachineOutlinerDefault implies that the function is called with a call
9028/// instruction, and a return must be emitted for the outlined function frame.
9029///
9030/// That is,
9031///
9032/// I1 OUTLINED_FUNCTION:
9033/// I2 --> call OUTLINED_FUNCTION I1
9034/// I3 I2
9035/// I3
9036/// ret
9037///
9038/// * Call construction overhead: 1 (call instruction)
9039/// * Frame construction overhead: 1 (return instruction)
9040///
9041/// \p MachineOutlinerTailCall implies that the function is being tail called.
9042/// A jump is emitted instead of a call, and the return is already present in
9043/// the outlined sequence. That is,
9044///
9045/// I1 OUTLINED_FUNCTION:
9046/// I2 --> jmp OUTLINED_FUNCTION I1
9047/// ret I2
9048/// ret
9049///
9050/// * Call construction overhead: 1 (jump instruction)
9051/// * Frame construction overhead: 0 (don't need to return)
9052///
9053enum MachineOutlinerClass {
9054 MachineOutlinerDefault,
9055 MachineOutlinerTailCall
9056};
9057
9058outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
9059 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
9060 unsigned SequenceSize =
9061 std::accumulate(RepeatedSequenceLocs[0].front(),
9062 std::next(RepeatedSequenceLocs[0].back()), 0,
9063 [](unsigned Sum, const MachineInstr &MI) {
9064 // FIXME: x86 doesn't implement getInstSizeInBytes, so
9065 // we can't tell the cost. Just assume each instruction
9066 // is one byte.
9067 if (MI.isDebugInstr() || MI.isKill())
9068 return Sum;
9069 return Sum + 1;
9070 });
9071
9072 // We check to see if CFI Instructions are present, and if they are
9073 // we find the number of CFI Instructions in the candidates.
9074 unsigned CFICount = 0;
9075 MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
9076 for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
9077 Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
9078 if (MBBI->isCFIInstruction())
9079 CFICount++;
9080 MBBI++;
9081 }
9082
9083 // We compare the number of found CFI Instructions to the number of CFI
9084 // instructions in the parent function for each candidate. We must check this
9085 // since if we outline one of the CFI instructions in a function, we have to
9086 // outline them all for correctness. If we do not, the address offsets will be
9087 // incorrect between the two sections of the program.
9088 for (outliner::Candidate &C : RepeatedSequenceLocs) {
9089 std::vector<MCCFIInstruction> CFIInstructions =
9090 C.getMF()->getFrameInstructions();
9091
9092 if (CFICount > 0 && CFICount != CFIInstructions.size())
9093 return outliner::OutlinedFunction();
9094 }
9095
9096 // FIXME: Use real size in bytes for call and ret instructions.
9097 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
9098 for (outliner::Candidate &C : RepeatedSequenceLocs)
9099 C.setCallInfo(MachineOutlinerTailCall, 1);
9100
9101 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
9102 0, // Number of bytes to emit frame.
9103 MachineOutlinerTailCall // Type of frame.
9104 );
9105 }
9106
9107 if (CFICount > 0)
9108 return outliner::OutlinedFunction();
9109
9110 for (outliner::Candidate &C : RepeatedSequenceLocs)
9111 C.setCallInfo(MachineOutlinerDefault, 1);
9112
9113 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
9114 MachineOutlinerDefault);
9115}
9116
9117bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
9118 bool OutlineFromLinkOnceODRs) const {
9119 const Function &F = MF.getFunction();
9120
9121 // Does the function use a red zone? If it does, then we can't risk messing
9122 // with the stack.
9123 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
9124 // It could have a red zone. If it does, then we don't want to touch it.
9125 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9126 if (!X86FI || X86FI->getUsesRedZone())
9127 return false;
9128 }
9129
9130 // If we *don't* want to outline from things that could potentially be deduped
9131 // then return false.
9132 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
9133 return false;
9134
9135 // This function is viable for outlining, so return true.
9136 return true;
9137}
9138
9139outliner::InstrType
9140X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
9141 MachineInstr &MI = *MIT;
9142 // Don't allow debug values to impact outlining type.
9143 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
9144 return outliner::InstrType::Invisible;
9145
9146 // At this point, KILL instructions don't really tell us much so we can go
9147 // ahead and skip over them.
9148 if (MI.isKill())
9149 return outliner::InstrType::Invisible;
9150
9151 // Is this a tail call? If yes, we can outline as a tail call.
9152 if (isTailCall(MI))
9153 return outliner::InstrType::Legal;
9154
9155 // Is this the terminator of a basic block?
9156 if (MI.isTerminator() || MI.isReturn()) {
9157
9158 // Does its parent have any successors in its MachineFunction?
9159 if (MI.getParent()->succ_empty())
9160 return outliner::InstrType::Legal;
9161
9162 // It does, so we can't tail call it.
9163 return outliner::InstrType::Illegal;
9164 }
9165
9166 // Don't outline anything that modifies or reads from the stack pointer.
9167 //
9168 // FIXME: There are instructions which are being manually built without
9169 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
9170 // able to remove the extra checks once those are fixed up. For example,
9171 // sometimes we might get something like %rax = POP64r 1. This won't be
9172 // caught by modifiesRegister or readsRegister even though the instruction
9173 // really ought to be formed so that modifiesRegister/readsRegister would
9174 // catch it.
9175 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
9176 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
9177 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
9178 return outliner::InstrType::Illegal;
9179
9180 // Outlined calls change the instruction pointer, so don't read from it.
9181 if (MI.readsRegister(X86::RIP, &RI) ||
9182 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
9183 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
9184 return outliner::InstrType::Illegal;
9185
9186 // Positions can't safely be outlined.
9187 if (MI.isPosition())
9188 return outliner::InstrType::Illegal;
9189
9190 // Make sure none of the operands of this instruction do anything tricky.
9191 for (const MachineOperand &MOP : MI.operands())
9192 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
9193 MOP.isTargetIndex())
9194 return outliner::InstrType::Illegal;
9195
9196 return outliner::InstrType::Legal;
9197}
9198
9199void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
9200 MachineFunction &MF,
9201 const outliner::OutlinedFunction &OF)
9202 const {
9203 // If we're a tail call, we already have a return, so don't do anything.
9204 if (OF.FrameConstructionID == MachineOutlinerTailCall)
9205 return;
9206
9207 // We're a normal call, so our sequence doesn't have a return instruction.
9208 // Add it in.
9209 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
9210 MBB.insert(MBB.end(), retq);
9211}
9212
9213MachineBasicBlock::iterator
9214X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
9215 MachineBasicBlock::iterator &It,
9216 MachineFunction &MF,
9217 outliner::Candidate &C) const {
9218 // Is it a tail call?
9219 if (C.CallConstructionID == MachineOutlinerTailCall) {
9220 // Yes, just insert a JMP.
9221 It = MBB.insert(It,
9222 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
9223 .addGlobalAddress(M.getNamedValue(MF.getName())));
9224 } else {
9225 // No, insert a call.
9226 It = MBB.insert(It,
9227 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
9228 .addGlobalAddress(M.getNamedValue(MF.getName())));
9229 }
9230
9231 return It;
9232}
9233
9234#define GET_INSTRINFO_HELPERS
9235#include "X86GenInstrInfo.inc"