| File: | build/source/llvm/lib/Target/X86/X86InterleavedAccess.cpp |
| Warning: | line 319, column 11 1st function call argument is an uninitialized value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- X86InterleavedAccess.cpp -------------------------------------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | /// \file | |||
| 10 | /// This file contains the X86 implementation of the interleaved accesses | |||
| 11 | /// optimization generating X86-specific instructions/intrinsics for | |||
| 12 | /// interleaved access groups. | |||
| 13 | // | |||
| 14 | //===----------------------------------------------------------------------===// | |||
| 15 | ||||
| 16 | #include "X86ISelLowering.h" | |||
| 17 | #include "X86Subtarget.h" | |||
| 18 | #include "llvm/ADT/ArrayRef.h" | |||
| 19 | #include "llvm/ADT/SmallVector.h" | |||
| 20 | #include "llvm/Analysis/VectorUtils.h" | |||
| 21 | #include "llvm/CodeGen/MachineValueType.h" | |||
| 22 | #include "llvm/IR/Constants.h" | |||
| 23 | #include "llvm/IR/DataLayout.h" | |||
| 24 | #include "llvm/IR/DerivedTypes.h" | |||
| 25 | #include "llvm/IR/IRBuilder.h" | |||
| 26 | #include "llvm/IR/Instruction.h" | |||
| 27 | #include "llvm/IR/Instructions.h" | |||
| 28 | #include "llvm/IR/Module.h" | |||
| 29 | #include "llvm/IR/Type.h" | |||
| 30 | #include "llvm/IR/Value.h" | |||
| 31 | #include "llvm/Support/Casting.h" | |||
| 32 | #include <algorithm> | |||
| 33 | #include <cassert> | |||
| 34 | #include <cmath> | |||
| 35 | #include <cstdint> | |||
| 36 | ||||
| 37 | using namespace llvm; | |||
| 38 | ||||
| 39 | namespace { | |||
| 40 | ||||
| 41 | /// This class holds necessary information to represent an interleaved | |||
| 42 | /// access group and supports utilities to lower the group into | |||
| 43 | /// X86-specific instructions/intrinsics. | |||
| 44 | /// E.g. A group of interleaving access loads (Factor = 2; accessing every | |||
| 45 | /// other element) | |||
| 46 | /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr | |||
| 47 | /// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> | |||
| 48 | /// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> | |||
| 49 | class X86InterleavedAccessGroup { | |||
| 50 | /// Reference to the wide-load instruction of an interleaved access | |||
| 51 | /// group. | |||
| 52 | Instruction *const Inst; | |||
| 53 | ||||
| 54 | /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'. | |||
| 55 | ArrayRef<ShuffleVectorInst *> Shuffles; | |||
| 56 | ||||
| 57 | /// Reference to the starting index of each user-shuffle. | |||
| 58 | ArrayRef<unsigned> Indices; | |||
| 59 | ||||
| 60 | /// Reference to the interleaving stride in terms of elements. | |||
| 61 | const unsigned Factor; | |||
| 62 | ||||
| 63 | /// Reference to the underlying target. | |||
| 64 | const X86Subtarget &Subtarget; | |||
| 65 | ||||
| 66 | const DataLayout &DL; | |||
| 67 | ||||
| 68 | IRBuilder<> &Builder; | |||
| 69 | ||||
| 70 | /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors | |||
| 71 | /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. | |||
| 72 | void decompose(Instruction *Inst, unsigned NumSubVectors, FixedVectorType *T, | |||
| 73 | SmallVectorImpl<Instruction *> &DecomposedVectors); | |||
| 74 | ||||
| 75 | /// Performs matrix transposition on a 4x4 matrix \p InputVectors and | |||
| 76 | /// returns the transposed-vectors in \p TransposedVectors. | |||
| 77 | /// E.g. | |||
| 78 | /// InputVectors: | |||
| 79 | /// In-V0 = p1, p2, p3, p4 | |||
| 80 | /// In-V1 = q1, q2, q3, q4 | |||
| 81 | /// In-V2 = r1, r2, r3, r4 | |||
| 82 | /// In-V3 = s1, s2, s3, s4 | |||
| 83 | /// OutputVectors: | |||
| 84 | /// Out-V0 = p1, q1, r1, s1 | |||
| 85 | /// Out-V1 = p2, q2, r2, s2 | |||
| 86 | /// Out-V2 = p3, q3, r3, s3 | |||
| 87 | /// Out-V3 = P4, q4, r4, s4 | |||
| 88 | void transpose_4x4(ArrayRef<Instruction *> InputVectors, | |||
| 89 | SmallVectorImpl<Value *> &TransposedMatrix); | |||
| 90 | void interleave8bitStride4(ArrayRef<Instruction *> InputVectors, | |||
| 91 | SmallVectorImpl<Value *> &TransposedMatrix, | |||
| 92 | unsigned NumSubVecElems); | |||
| 93 | void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors, | |||
| 94 | SmallVectorImpl<Value *> &TransposedMatrix); | |||
| 95 | void interleave8bitStride3(ArrayRef<Instruction *> InputVectors, | |||
| 96 | SmallVectorImpl<Value *> &TransposedMatrix, | |||
| 97 | unsigned NumSubVecElems); | |||
| 98 | void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors, | |||
| 99 | SmallVectorImpl<Value *> &TransposedMatrix, | |||
| 100 | unsigned NumSubVecElems); | |||
| 101 | ||||
| 102 | public: | |||
| 103 | /// In order to form an interleaved access group X86InterleavedAccessGroup | |||
| 104 | /// requires a wide-load instruction \p 'I', a group of interleaved-vectors | |||
| 105 | /// \p Shuffs, reference to the first indices of each interleaved-vector | |||
| 106 | /// \p 'Ind' and the interleaving stride factor \p F. In order to generate | |||
| 107 | /// X86-specific instructions/intrinsics it also requires the underlying | |||
| 108 | /// target information \p STarget. | |||
| 109 | explicit X86InterleavedAccessGroup(Instruction *I, | |||
| 110 | ArrayRef<ShuffleVectorInst *> Shuffs, | |||
| 111 | ArrayRef<unsigned> Ind, const unsigned F, | |||
| 112 | const X86Subtarget &STarget, | |||
| 113 | IRBuilder<> &B) | |||
| 114 | : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget), | |||
| 115 | DL(Inst->getModule()->getDataLayout()), Builder(B) {} | |||
| 116 | ||||
| 117 | /// Returns true if this interleaved access group can be lowered into | |||
| 118 | /// x86-specific instructions/intrinsics, false otherwise. | |||
| 119 | bool isSupported() const; | |||
| 120 | ||||
| 121 | /// Lowers this interleaved access group into X86-specific | |||
| 122 | /// instructions/intrinsics. | |||
| 123 | bool lowerIntoOptimizedSequence(); | |||
| 124 | }; | |||
| 125 | ||||
| 126 | } // end anonymous namespace | |||
| 127 | ||||
| 128 | bool X86InterleavedAccessGroup::isSupported() const { | |||
| 129 | VectorType *ShuffleVecTy = Shuffles[0]->getType(); | |||
| 130 | Type *ShuffleEltTy = ShuffleVecTy->getElementType(); | |||
| 131 | unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy); | |||
| 132 | unsigned WideInstSize; | |||
| 133 | ||||
| 134 | // Currently, lowering is supported for the following vectors: | |||
| 135 | // Stride 4: | |||
| 136 | // 1. Store and load of 4-element vectors of 64 bits on AVX. | |||
| 137 | // 2. Store of 16/32-element vectors of 8 bits on AVX. | |||
| 138 | // Stride 3: | |||
| 139 | // 1. Load of 16/32-element vectors of 8 bits on AVX. | |||
| 140 | if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3)) | |||
| 141 | return false; | |||
| 142 | ||||
| 143 | if (isa<LoadInst>(Inst)) { | |||
| 144 | WideInstSize = DL.getTypeSizeInBits(Inst->getType()); | |||
| 145 | if (cast<LoadInst>(Inst)->getPointerAddressSpace()) | |||
| 146 | return false; | |||
| 147 | } else | |||
| 148 | WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType()); | |||
| 149 | ||||
| 150 | // We support shuffle represents stride 4 for byte type with size of | |||
| 151 | // WideInstSize. | |||
| 152 | if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4) | |||
| 153 | return true; | |||
| 154 | ||||
| 155 | if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 && | |||
| 156 | (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 || | |||
| 157 | WideInstSize == 2048)) | |||
| 158 | return true; | |||
| 159 | ||||
| 160 | if (ShuffleElemSize == 8 && Factor == 3 && | |||
| 161 | (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536)) | |||
| 162 | return true; | |||
| 163 | ||||
| 164 | return false; | |||
| 165 | } | |||
| 166 | ||||
| 167 | void X86InterleavedAccessGroup::decompose( | |||
| 168 | Instruction *VecInst, unsigned NumSubVectors, FixedVectorType *SubVecTy, | |||
| 169 | SmallVectorImpl<Instruction *> &DecomposedVectors) { | |||
| 170 | assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) &&(static_cast <bool> ((isa<LoadInst>(VecInst) || isa <ShuffleVectorInst>(VecInst)) && "Expected Load or Shuffle" ) ? void (0) : __assert_fail ("(isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) && \"Expected Load or Shuffle\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 171, __extension__ __PRETTY_FUNCTION__)) | |||
| 171 | "Expected Load or Shuffle")(static_cast <bool> ((isa<LoadInst>(VecInst) || isa <ShuffleVectorInst>(VecInst)) && "Expected Load or Shuffle" ) ? void (0) : __assert_fail ("(isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) && \"Expected Load or Shuffle\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 171, __extension__ __PRETTY_FUNCTION__)); | |||
| 172 | ||||
| 173 | Type *VecWidth = VecInst->getType(); | |||
| 174 | (void)VecWidth; | |||
| 175 | assert(VecWidth->isVectorTy() &&(static_cast <bool> (VecWidth->isVectorTy() && DL.getTypeSizeInBits(VecWidth) >= DL.getTypeSizeInBits(SubVecTy ) * NumSubVectors && "Invalid Inst-size!!!") ? void ( 0) : __assert_fail ("VecWidth->isVectorTy() && DL.getTypeSizeInBits(VecWidth) >= DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && \"Invalid Inst-size!!!\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 178, __extension__ __PRETTY_FUNCTION__)) | |||
| 176 | DL.getTypeSizeInBits(VecWidth) >=(static_cast <bool> (VecWidth->isVectorTy() && DL.getTypeSizeInBits(VecWidth) >= DL.getTypeSizeInBits(SubVecTy ) * NumSubVectors && "Invalid Inst-size!!!") ? void ( 0) : __assert_fail ("VecWidth->isVectorTy() && DL.getTypeSizeInBits(VecWidth) >= DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && \"Invalid Inst-size!!!\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 178, __extension__ __PRETTY_FUNCTION__)) | |||
| 177 | DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&(static_cast <bool> (VecWidth->isVectorTy() && DL.getTypeSizeInBits(VecWidth) >= DL.getTypeSizeInBits(SubVecTy ) * NumSubVectors && "Invalid Inst-size!!!") ? void ( 0) : __assert_fail ("VecWidth->isVectorTy() && DL.getTypeSizeInBits(VecWidth) >= DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && \"Invalid Inst-size!!!\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 178, __extension__ __PRETTY_FUNCTION__)) | |||
| 178 | "Invalid Inst-size!!!")(static_cast <bool> (VecWidth->isVectorTy() && DL.getTypeSizeInBits(VecWidth) >= DL.getTypeSizeInBits(SubVecTy ) * NumSubVectors && "Invalid Inst-size!!!") ? void ( 0) : __assert_fail ("VecWidth->isVectorTy() && DL.getTypeSizeInBits(VecWidth) >= DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && \"Invalid Inst-size!!!\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 178, __extension__ __PRETTY_FUNCTION__)); | |||
| 179 | ||||
| 180 | if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) { | |||
| 181 | Value *Op0 = SVI->getOperand(0); | |||
| 182 | Value *Op1 = SVI->getOperand(1); | |||
| 183 | ||||
| 184 | // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type. | |||
| 185 | for (unsigned i = 0; i < NumSubVectors; ++i) | |||
| 186 | DecomposedVectors.push_back( | |||
| 187 | cast<ShuffleVectorInst>(Builder.CreateShuffleVector( | |||
| 188 | Op0, Op1, | |||
| 189 | createSequentialMask(Indices[i], SubVecTy->getNumElements(), | |||
| 190 | 0)))); | |||
| 191 | return; | |||
| 192 | } | |||
| 193 | ||||
| 194 | // Decompose the load instruction. | |||
| 195 | LoadInst *LI = cast<LoadInst>(VecInst); | |||
| 196 | Type *VecBaseTy, *VecBasePtrTy; | |||
| 197 | Value *VecBasePtr; | |||
| 198 | unsigned int NumLoads = NumSubVectors; | |||
| 199 | // In the case of stride 3 with a vector of 32 elements load the information | |||
| 200 | // in the following way: | |||
| 201 | // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1] | |||
| 202 | unsigned VecLength = DL.getTypeSizeInBits(VecWidth); | |||
| 203 | if (VecLength == 768 || VecLength == 1536) { | |||
| 204 | VecBaseTy = FixedVectorType::get(Type::getInt8Ty(LI->getContext()), 16); | |||
| 205 | VecBasePtrTy = VecBaseTy->getPointerTo(LI->getPointerAddressSpace()); | |||
| 206 | VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy); | |||
| 207 | NumLoads = NumSubVectors * (VecLength / 384); | |||
| 208 | } else { | |||
| 209 | VecBaseTy = SubVecTy; | |||
| 210 | VecBasePtrTy = VecBaseTy->getPointerTo(LI->getPointerAddressSpace()); | |||
| 211 | VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy); | |||
| 212 | } | |||
| 213 | // Generate N loads of T type. | |||
| 214 | assert(VecBaseTy->getPrimitiveSizeInBits().isKnownMultipleOf(8) &&(static_cast <bool> (VecBaseTy->getPrimitiveSizeInBits ().isKnownMultipleOf(8) && "VecBaseTy's size must be a multiple of 8" ) ? void (0) : __assert_fail ("VecBaseTy->getPrimitiveSizeInBits().isKnownMultipleOf(8) && \"VecBaseTy's size must be a multiple of 8\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 215, __extension__ __PRETTY_FUNCTION__)) | |||
| 215 | "VecBaseTy's size must be a multiple of 8")(static_cast <bool> (VecBaseTy->getPrimitiveSizeInBits ().isKnownMultipleOf(8) && "VecBaseTy's size must be a multiple of 8" ) ? void (0) : __assert_fail ("VecBaseTy->getPrimitiveSizeInBits().isKnownMultipleOf(8) && \"VecBaseTy's size must be a multiple of 8\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 215, __extension__ __PRETTY_FUNCTION__)); | |||
| 216 | const Align FirstAlignment = LI->getAlign(); | |||
| 217 | const Align SubsequentAlignment = commonAlignment( | |||
| 218 | FirstAlignment, VecBaseTy->getPrimitiveSizeInBits().getFixedValue() / 8); | |||
| 219 | Align Alignment = FirstAlignment; | |||
| 220 | for (unsigned i = 0; i < NumLoads; i++) { | |||
| 221 | // TODO: Support inbounds GEP. | |||
| 222 | Value *NewBasePtr = | |||
| 223 | Builder.CreateGEP(VecBaseTy, VecBasePtr, Builder.getInt32(i)); | |||
| 224 | Instruction *NewLoad = | |||
| 225 | Builder.CreateAlignedLoad(VecBaseTy, NewBasePtr, Alignment); | |||
| 226 | DecomposedVectors.push_back(NewLoad); | |||
| 227 | Alignment = SubsequentAlignment; | |||
| 228 | } | |||
| 229 | } | |||
| 230 | ||||
| 231 | // Changing the scale of the vector type by reducing the number of elements and | |||
| 232 | // doubling the scalar size. | |||
| 233 | static MVT scaleVectorType(MVT VT) { | |||
| 234 | unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2; | |||
| 235 | return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), | |||
| 236 | VT.getVectorNumElements() / 2); | |||
| 237 | } | |||
| 238 | ||||
| 239 | static constexpr int Concat[] = { | |||
| 240 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |||
| 241 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | |||
| 242 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, | |||
| 243 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}; | |||
| 244 | ||||
| 245 | // genShuffleBland - Creates shuffle according to two vectors.This function is | |||
| 246 | // only works on instructions with lane inside 256 registers. According to | |||
| 247 | // the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The | |||
| 248 | // offset amount depends on the two integer, 'LowOffset' and 'HighOffset'. | |||
| 249 | // Where the 'LowOffset' refers to the first vector and the highOffset refers to | |||
| 250 | // the second vector. | |||
| 251 | // |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20| | |||
| 252 | // |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25| | |||
| 253 | // |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31| | |||
| 254 | // For the sequence to work as a mirror to the load. | |||
| 255 | // We must consider the elements order as above. | |||
| 256 | // In this function we are combining two types of shuffles. | |||
| 257 | // The first one is vpshufed and the second is a type of "blend" shuffle. | |||
| 258 | // By computing the shuffle on a sequence of 16 elements(one lane) and add the | |||
| 259 | // correct offset. We are creating a vpsuffed + blend sequence between two | |||
| 260 | // shuffles. | |||
| 261 | static void genShuffleBland(MVT VT, ArrayRef<int> Mask, | |||
| 262 | SmallVectorImpl<int> &Out, int LowOffset, | |||
| 263 | int HighOffset) { | |||
| 264 | assert(VT.getSizeInBits() >= 256 &&(static_cast <bool> (VT.getSizeInBits() >= 256 && "This function doesn't accept width smaller then 256") ? void (0) : __assert_fail ("VT.getSizeInBits() >= 256 && \"This function doesn't accept width smaller then 256\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 265, __extension__ __PRETTY_FUNCTION__)) | |||
| 265 | "This function doesn't accept width smaller then 256")(static_cast <bool> (VT.getSizeInBits() >= 256 && "This function doesn't accept width smaller then 256") ? void (0) : __assert_fail ("VT.getSizeInBits() >= 256 && \"This function doesn't accept width smaller then 256\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 265, __extension__ __PRETTY_FUNCTION__)); | |||
| 266 | unsigned NumOfElm = VT.getVectorNumElements(); | |||
| 267 | for (int I : Mask) | |||
| 268 | Out.push_back(I + LowOffset); | |||
| 269 | for (int I : Mask) | |||
| 270 | Out.push_back(I + HighOffset + NumOfElm); | |||
| 271 | } | |||
| 272 | ||||
| 273 | // reorderSubVector returns the data to is the original state. And de-facto is | |||
| 274 | // the opposite of the function concatSubVector. | |||
| 275 | ||||
| 276 | // For VecElems = 16 | |||
| 277 | // Invec[0] - |0| TransposedMatrix[0] - |0| | |||
| 278 | // Invec[1] - |1| => TransposedMatrix[1] - |1| | |||
| 279 | // Invec[2] - |2| TransposedMatrix[2] - |2| | |||
| 280 | ||||
| 281 | // For VecElems = 32 | |||
| 282 | // Invec[0] - |0|3| TransposedMatrix[0] - |0|1| | |||
| 283 | // Invec[1] - |1|4| => TransposedMatrix[1] - |2|3| | |||
| 284 | // Invec[2] - |2|5| TransposedMatrix[2] - |4|5| | |||
| 285 | ||||
| 286 | // For VecElems = 64 | |||
| 287 | // Invec[0] - |0|3|6|9 | TransposedMatrix[0] - |0|1|2 |3 | | |||
| 288 | // Invec[1] - |1|4|7|10| => TransposedMatrix[1] - |4|5|6 |7 | | |||
| 289 | // Invec[2] - |2|5|8|11| TransposedMatrix[2] - |8|9|10|11| | |||
| 290 | ||||
| 291 | static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix, | |||
| 292 | ArrayRef<Value *> Vec, ArrayRef<int> VPShuf, | |||
| 293 | unsigned VecElems, unsigned Stride, | |||
| 294 | IRBuilder<> &Builder) { | |||
| 295 | ||||
| 296 | if (VecElems == 16) { | |||
| ||||
| 297 | for (unsigned i = 0; i < Stride; i++) | |||
| 298 | TransposedMatrix[i] = Builder.CreateShuffleVector(Vec[i], VPShuf); | |||
| 299 | return; | |||
| 300 | } | |||
| 301 | ||||
| 302 | SmallVector<int, 32> OptimizeShuf; | |||
| 303 | Value *Temp[8]; | |||
| 304 | ||||
| 305 | for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) { | |||
| 306 | genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16, | |||
| 307 | (i + 1) / Stride * 16); | |||
| 308 | Temp[i / 2] = Builder.CreateShuffleVector( | |||
| 309 | Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf); | |||
| 310 | OptimizeShuf.clear(); | |||
| 311 | } | |||
| 312 | ||||
| 313 | if (VecElems == 32) { | |||
| 314 | std::copy(Temp, Temp + Stride, TransposedMatrix.begin()); | |||
| 315 | return; | |||
| 316 | } else | |||
| 317 | for (unsigned i = 0; i < Stride; i++) | |||
| 318 | TransposedMatrix[i] = | |||
| 319 | Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat); | |||
| ||||
| 320 | } | |||
| 321 | ||||
| 322 | void X86InterleavedAccessGroup::interleave8bitStride4VF8( | |||
| 323 | ArrayRef<Instruction *> Matrix, | |||
| 324 | SmallVectorImpl<Value *> &TransposedMatrix) { | |||
| 325 | // Assuming we start from the following vectors: | |||
| 326 | // Matrix[0]= c0 c1 c2 c3 c4 ... c7 | |||
| 327 | // Matrix[1]= m0 m1 m2 m3 m4 ... m7 | |||
| 328 | // Matrix[2]= y0 y1 y2 y3 y4 ... y7 | |||
| 329 | // Matrix[3]= k0 k1 k2 k3 k4 ... k7 | |||
| 330 | ||||
| 331 | MVT VT = MVT::v8i16; | |||
| 332 | TransposedMatrix.resize(2); | |||
| 333 | SmallVector<int, 16> MaskLow; | |||
| 334 | SmallVector<int, 32> MaskLowTemp1, MaskLowWord; | |||
| 335 | SmallVector<int, 32> MaskHighTemp1, MaskHighWord; | |||
| 336 | ||||
| 337 | for (unsigned i = 0; i < 8; ++i) { | |||
| 338 | MaskLow.push_back(i); | |||
| 339 | MaskLow.push_back(i + 8); | |||
| 340 | } | |||
| 341 | ||||
| 342 | createUnpackShuffleMask(VT, MaskLowTemp1, true, false); | |||
| 343 | createUnpackShuffleMask(VT, MaskHighTemp1, false, false); | |||
| 344 | narrowShuffleMaskElts(2, MaskHighTemp1, MaskHighWord); | |||
| 345 | narrowShuffleMaskElts(2, MaskLowTemp1, MaskLowWord); | |||
| 346 | // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7 | |||
| 347 | // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7 | |||
| 348 | Value *IntrVec1Low = | |||
| 349 | Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); | |||
| 350 | Value *IntrVec2Low = | |||
| 351 | Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); | |||
| 352 | ||||
| 353 | // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 | |||
| 354 | // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7 | |||
| 355 | ||||
| 356 | TransposedMatrix[0] = | |||
| 357 | Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord); | |||
| 358 | TransposedMatrix[1] = | |||
| 359 | Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord); | |||
| 360 | } | |||
| 361 | ||||
| 362 | void X86InterleavedAccessGroup::interleave8bitStride4( | |||
| 363 | ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix, | |||
| 364 | unsigned NumOfElm) { | |||
| 365 | // Example: Assuming we start from the following vectors: | |||
| 366 | // Matrix[0]= c0 c1 c2 c3 c4 ... c31 | |||
| 367 | // Matrix[1]= m0 m1 m2 m3 m4 ... m31 | |||
| 368 | // Matrix[2]= y0 y1 y2 y3 y4 ... y31 | |||
| 369 | // Matrix[3]= k0 k1 k2 k3 k4 ... k31 | |||
| 370 | ||||
| 371 | MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm); | |||
| 372 | MVT HalfVT = scaleVectorType(VT); | |||
| 373 | ||||
| 374 | TransposedMatrix.resize(4); | |||
| 375 | SmallVector<int, 32> MaskHigh; | |||
| 376 | SmallVector<int, 32> MaskLow; | |||
| 377 | SmallVector<int, 32> LowHighMask[2]; | |||
| 378 | SmallVector<int, 32> MaskHighTemp; | |||
| 379 | SmallVector<int, 32> MaskLowTemp; | |||
| 380 | ||||
| 381 | // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86 | |||
| 382 | // shuffle pattern. | |||
| 383 | ||||
| 384 | createUnpackShuffleMask(VT, MaskLow, true, false); | |||
| 385 | createUnpackShuffleMask(VT, MaskHigh, false, false); | |||
| 386 | ||||
| 387 | // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86 | |||
| 388 | // shuffle pattern. | |||
| 389 | ||||
| 390 | createUnpackShuffleMask(HalfVT, MaskLowTemp, true, false); | |||
| 391 | createUnpackShuffleMask(HalfVT, MaskHighTemp, false, false); | |||
| 392 | narrowShuffleMaskElts(2, MaskLowTemp, LowHighMask[0]); | |||
| 393 | narrowShuffleMaskElts(2, MaskHighTemp, LowHighMask[1]); | |||
| 394 | ||||
| 395 | // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23 | |||
| 396 | // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31 | |||
| 397 | // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23 | |||
| 398 | // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31 | |||
| 399 | Value *IntrVec[4]; | |||
| 400 | ||||
| 401 | IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); | |||
| 402 | IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh); | |||
| 403 | IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); | |||
| 404 | IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh); | |||
| 405 | ||||
| 406 | // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23 | |||
| 407 | // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31 | |||
| 408 | // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19 | |||
| 409 | // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27 | |||
| 410 | ||||
| 411 | Value *VecOut[4]; | |||
| 412 | for (int i = 0; i < 4; i++) | |||
| 413 | VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2], | |||
| 414 | LowHighMask[i % 2]); | |||
| 415 | ||||
| 416 | // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7 | |||
| 417 | // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15 | |||
| 418 | // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23 | |||
| 419 | // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31 | |||
| 420 | ||||
| 421 | if (VT == MVT::v16i8) { | |||
| 422 | std::copy(VecOut, VecOut + 4, TransposedMatrix.begin()); | |||
| 423 | return; | |||
| 424 | } | |||
| 425 | ||||
| 426 | reorderSubVector(VT, TransposedMatrix, VecOut, ArrayRef(Concat, 16), NumOfElm, | |||
| 427 | 4, Builder); | |||
| 428 | } | |||
| 429 | ||||
| 430 | // createShuffleStride returns shuffle mask of size N. | |||
| 431 | // The shuffle pattern is as following : | |||
| 432 | // {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane), | |||
| 433 | // (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),..., | |||
| 434 | // (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)} | |||
| 435 | // Where Lane is the # of lanes in a register: | |||
| 436 | // VectorSize = 128 => Lane = 1 | |||
| 437 | // VectorSize = 256 => Lane = 2 | |||
| 438 | // For example shuffle pattern for VF 16 register size 256 -> lanes = 2 | |||
| 439 | // {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>} | |||
| 440 | static void createShuffleStride(MVT VT, int Stride, | |||
| 441 | SmallVectorImpl<int> &Mask) { | |||
| 442 | int VectorSize = VT.getSizeInBits(); | |||
| 443 | int VF = VT.getVectorNumElements(); | |||
| 444 | int LaneCount = std::max(VectorSize / 128, 1); | |||
| 445 | for (int Lane = 0; Lane < LaneCount; Lane++) | |||
| 446 | for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i) | |||
| 447 | Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane); | |||
| 448 | } | |||
| 449 | ||||
| 450 | // setGroupSize sets 'SizeInfo' to the size(number of elements) of group | |||
| 451 | // inside mask a shuffleMask. A mask contains exactly 3 groups, where | |||
| 452 | // each group is a monotonically increasing sequence with stride 3. | |||
| 453 | // For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2} | |||
| 454 | static void setGroupSize(MVT VT, SmallVectorImpl<int> &SizeInfo) { | |||
| 455 | int VectorSize = VT.getSizeInBits(); | |||
| 456 | int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1); | |||
| 457 | for (int i = 0, FirstGroupElement = 0; i < 3; i++) { | |||
| 458 | int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0); | |||
| 459 | SizeInfo.push_back(GroupSize); | |||
| 460 | FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF; | |||
| 461 | } | |||
| 462 | } | |||
| 463 | ||||
| 464 | // DecodePALIGNRMask returns the shuffle mask of vpalign instruction. | |||
| 465 | // vpalign works according to lanes | |||
| 466 | // Where Lane is the # of lanes in a register: | |||
| 467 | // VectorWide = 128 => Lane = 1 | |||
| 468 | // VectorWide = 256 => Lane = 2 | |||
| 469 | // For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}. | |||
| 470 | // For Lane = 2 shuffle pattern is: | |||
| 471 | // {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}. | |||
| 472 | // Imm variable sets the offset amount. The result of the | |||
| 473 | // function is stored inside ShuffleMask vector and it built as described in | |||
| 474 | // the begin of the description. AlignDirection is a boolean that indicates the | |||
| 475 | // direction of the alignment. (false - align to the "right" side while true - | |||
| 476 | // align to the "left" side) | |||
| 477 | static void DecodePALIGNRMask(MVT VT, unsigned Imm, | |||
| 478 | SmallVectorImpl<int> &ShuffleMask, | |||
| 479 | bool AlignDirection = true, bool Unary = false) { | |||
| 480 | unsigned NumElts = VT.getVectorNumElements(); | |||
| 481 | unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1); | |||
| 482 | unsigned NumLaneElts = NumElts / NumLanes; | |||
| 483 | ||||
| 484 | Imm = AlignDirection ? Imm : (NumLaneElts - Imm); | |||
| 485 | unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8); | |||
| 486 | ||||
| 487 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { | |||
| 488 | for (unsigned i = 0; i != NumLaneElts; ++i) { | |||
| 489 | unsigned Base = i + Offset; | |||
| 490 | // if i+offset is out of this lane then we actually need the other source | |||
| 491 | // If Unary the other source is the first source. | |||
| 492 | if (Base >= NumLaneElts) | |||
| 493 | Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts; | |||
| 494 | ShuffleMask.push_back(Base + l); | |||
| 495 | } | |||
| 496 | } | |||
| 497 | } | |||
| 498 | ||||
| 499 | // concatSubVector - The function rebuilds the data to a correct expected | |||
| 500 | // order. An assumption(The shape of the matrix) was taken for the | |||
| 501 | // deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'. | |||
| 502 | // This function ensures that the data is built in correct way for the lane | |||
| 503 | // instructions. Each lane inside the vector is a 128-bit length. | |||
| 504 | // | |||
| 505 | // The 'InVec' argument contains the data in increasing order. In InVec[0] You | |||
| 506 | // can find the first 128 bit data. The number of different lanes inside a | |||
| 507 | // vector depends on the 'VecElems'.In general, the formula is | |||
| 508 | // VecElems * type / 128. The size of the array 'InVec' depends and equal to | |||
| 509 | // 'VecElems'. | |||
| 510 | ||||
| 511 | // For VecElems = 16 | |||
| 512 | // Invec[0] - |0| Vec[0] - |0| | |||
| 513 | // Invec[1] - |1| => Vec[1] - |1| | |||
| 514 | // Invec[2] - |2| Vec[2] - |2| | |||
| 515 | ||||
| 516 | // For VecElems = 32 | |||
| 517 | // Invec[0] - |0|1| Vec[0] - |0|3| | |||
| 518 | // Invec[1] - |2|3| => Vec[1] - |1|4| | |||
| 519 | // Invec[2] - |4|5| Vec[2] - |2|5| | |||
| 520 | ||||
| 521 | // For VecElems = 64 | |||
| 522 | // Invec[0] - |0|1|2 |3 | Vec[0] - |0|3|6|9 | | |||
| 523 | // Invec[1] - |4|5|6 |7 | => Vec[1] - |1|4|7|10| | |||
| 524 | // Invec[2] - |8|9|10|11| Vec[2] - |2|5|8|11| | |||
| 525 | ||||
| 526 | static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec, | |||
| 527 | unsigned VecElems, IRBuilder<> &Builder) { | |||
| 528 | if (VecElems == 16) { | |||
| 529 | for (int i = 0; i < 3; i++) | |||
| 530 | Vec[i] = InVec[i]; | |||
| 531 | return; | |||
| 532 | } | |||
| 533 | ||||
| 534 | for (unsigned j = 0; j < VecElems / 32; j++) | |||
| 535 | for (int i = 0; i < 3; i++) | |||
| 536 | Vec[i + j * 3] = Builder.CreateShuffleVector( | |||
| 537 | InVec[j * 6 + i], InVec[j * 6 + i + 3], ArrayRef(Concat, 32)); | |||
| 538 | ||||
| 539 | if (VecElems == 32) | |||
| 540 | return; | |||
| 541 | ||||
| 542 | for (int i = 0; i < 3; i++) | |||
| 543 | Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat); | |||
| 544 | } | |||
| 545 | ||||
| 546 | void X86InterleavedAccessGroup::deinterleave8bitStride3( | |||
| 547 | ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, | |||
| 548 | unsigned VecElems) { | |||
| 549 | // Example: Assuming we start from the following vectors: | |||
| 550 | // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2 | |||
| 551 | // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5 | |||
| 552 | // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7 | |||
| 553 | ||||
| 554 | TransposedMatrix.resize(3); | |||
| 555 | SmallVector<int, 32> VPShuf; | |||
| 556 | SmallVector<int, 32> VPAlign[2]; | |||
| 557 | SmallVector<int, 32> VPAlign2; | |||
| 558 | SmallVector<int, 32> VPAlign3; | |||
| 559 | SmallVector<int, 3> GroupSize; | |||
| 560 | Value *Vec[6], *TempVector[3]; | |||
| 561 | ||||
| 562 | MVT VT = MVT::getVT(Shuffles[0]->getType()); | |||
| 563 | ||||
| 564 | createShuffleStride(VT, 3, VPShuf); | |||
| 565 | setGroupSize(VT, GroupSize); | |||
| 566 | ||||
| 567 | for (int i = 0; i < 2; i++) | |||
| 568 | DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false); | |||
| 569 | ||||
| 570 | DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true); | |||
| 571 | DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true); | |||
| 572 | ||||
| 573 | concatSubVector(Vec, InVec, VecElems, Builder); | |||
| 574 | // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 | |||
| 575 | // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 | |||
| 576 | // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 | |||
| 577 | ||||
| 578 | for (int i = 0; i < 3; i++) | |||
| 579 | Vec[i] = Builder.CreateShuffleVector(Vec[i], VPShuf); | |||
| 580 | ||||
| 581 | // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2 | |||
| 582 | // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5 | |||
| 583 | // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7 | |||
| 584 | ||||
| 585 | for (int i = 0; i < 3; i++) | |||
| 586 | TempVector[i] = | |||
| 587 | Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]); | |||
| 588 | ||||
| 589 | // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 | |||
| 590 | // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 | |||
| 591 | // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 | |||
| 592 | ||||
| 593 | for (int i = 0; i < 3; i++) | |||
| 594 | Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i], | |||
| 595 | VPAlign[1]); | |||
| 596 | ||||
| 597 | // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 | |||
| 598 | // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 | |||
| 599 | // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7 | |||
| 600 | ||||
| 601 | Value *TempVec = Builder.CreateShuffleVector(Vec[1], VPAlign3); | |||
| 602 | TransposedMatrix[0] = Builder.CreateShuffleVector(Vec[0], VPAlign2); | |||
| 603 | TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec; | |||
| 604 | TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2]; | |||
| 605 | } | |||
| 606 | ||||
| 607 | // group2Shuffle reorder the shuffle stride back into continuous order. | |||
| 608 | // For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} => | |||
| 609 | // MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}. | |||
| 610 | static void group2Shuffle(MVT VT, SmallVectorImpl<int> &Mask, | |||
| 611 | SmallVectorImpl<int> &Output) { | |||
| 612 | int IndexGroup[3] = {0, 0, 0}; | |||
| 613 | int Index = 0; | |||
| 614 | int VectorWidth = VT.getSizeInBits(); | |||
| 615 | int VF = VT.getVectorNumElements(); | |||
| 616 | // Find the index of the different groups. | |||
| 617 | int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1; | |||
| 618 | for (int i = 0; i < 3; i++) { | |||
| 619 | IndexGroup[(Index * 3) % (VF / Lane)] = Index; | |||
| 620 | Index += Mask[i]; | |||
| 621 | } | |||
| 622 | // According to the index compute the convert mask. | |||
| 623 | for (int i = 0; i < VF / Lane; i++) { | |||
| 624 | Output.push_back(IndexGroup[i % 3]); | |||
| 625 | IndexGroup[i % 3]++; | |||
| 626 | } | |||
| 627 | } | |||
| 628 | ||||
| 629 | void X86InterleavedAccessGroup::interleave8bitStride3( | |||
| 630 | ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, | |||
| 631 | unsigned VecElems) { | |||
| 632 | // Example: Assuming we start from the following vectors: | |||
| 633 | // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 | |||
| 634 | // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 | |||
| 635 | // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7 | |||
| 636 | ||||
| 637 | TransposedMatrix.resize(3); | |||
| 638 | SmallVector<int, 3> GroupSize; | |||
| 639 | SmallVector<int, 32> VPShuf; | |||
| 640 | SmallVector<int, 32> VPAlign[3]; | |||
| 641 | SmallVector<int, 32> VPAlign2; | |||
| 642 | SmallVector<int, 32> VPAlign3; | |||
| 643 | ||||
| 644 | Value *Vec[3], *TempVector[3]; | |||
| 645 | MVT VT = MVT::getVectorVT(MVT::i8, VecElems); | |||
| 646 | ||||
| 647 | setGroupSize(VT, GroupSize); | |||
| 648 | ||||
| 649 | for (int i = 0; i < 3; i++) | |||
| 650 | DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]); | |||
| 651 | ||||
| 652 | DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true); | |||
| 653 | DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true); | |||
| 654 | ||||
| 655 | // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 | |||
| 656 | // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 | |||
| 657 | // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 | |||
| 658 | ||||
| 659 | Vec[0] = Builder.CreateShuffleVector(InVec[0], VPAlign2); | |||
| 660 | Vec[1] = Builder.CreateShuffleVector(InVec[1], VPAlign3); | |||
| 661 | Vec[2] = InVec[2]; | |||
| 662 | ||||
| 663 | // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2 | |||
| 664 | // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5 | |||
| 665 | // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7 | |||
| 666 | ||||
| 667 | for (int i = 0; i < 3; i++) | |||
| 668 | TempVector[i] = | |||
| 669 | Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]); | |||
| 670 | ||||
| 671 | // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 | |||
| 672 | // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 | |||
| 673 | // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 | |||
| 674 | ||||
| 675 | for (int i = 0; i < 3; i++) | |||
| 676 | Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3], | |||
| 677 | VPAlign[2]); | |||
| 678 | ||||
| 679 | // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2 | |||
| 680 | // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5 | |||
| 681 | // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7 | |||
| 682 | ||||
| 683 | unsigned NumOfElm = VT.getVectorNumElements(); | |||
| 684 | group2Shuffle(VT, GroupSize, VPShuf); | |||
| 685 | reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm, 3, Builder); | |||
| 686 | } | |||
| 687 | ||||
| 688 | void X86InterleavedAccessGroup::transpose_4x4( | |||
| 689 | ArrayRef<Instruction *> Matrix, | |||
| 690 | SmallVectorImpl<Value *> &TransposedMatrix) { | |||
| 691 | assert(Matrix.size() == 4 && "Invalid matrix size")(static_cast <bool> (Matrix.size() == 4 && "Invalid matrix size" ) ? void (0) : __assert_fail ("Matrix.size() == 4 && \"Invalid matrix size\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 691, __extension__ __PRETTY_FUNCTION__)); | |||
| 692 | TransposedMatrix.resize(4); | |||
| 693 | ||||
| 694 | // dst = src1[0,1],src2[0,1] | |||
| 695 | static constexpr int IntMask1[] = {0, 1, 4, 5}; | |||
| 696 | ArrayRef<int> Mask = ArrayRef(IntMask1, 4); | |||
| 697 | Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); | |||
| 698 | Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); | |||
| 699 | ||||
| 700 | // dst = src1[2,3],src2[2,3] | |||
| 701 | static constexpr int IntMask2[] = {2, 3, 6, 7}; | |||
| 702 | Mask = ArrayRef(IntMask2, 4); | |||
| 703 | Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); | |||
| 704 | Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); | |||
| 705 | ||||
| 706 | // dst = src1[0],src2[0],src1[2],src2[2] | |||
| 707 | static constexpr int IntMask3[] = {0, 4, 2, 6}; | |||
| 708 | Mask = ArrayRef(IntMask3, 4); | |||
| 709 | TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); | |||
| 710 | TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); | |||
| 711 | ||||
| 712 | // dst = src1[1],src2[1],src1[3],src2[3] | |||
| 713 | static constexpr int IntMask4[] = {1, 5, 3, 7}; | |||
| 714 | Mask = ArrayRef(IntMask4, 4); | |||
| 715 | TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); | |||
| 716 | TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); | |||
| 717 | } | |||
| 718 | ||||
| 719 | // Lowers this interleaved access group into X86-specific | |||
| 720 | // instructions/intrinsics. | |||
| 721 | bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { | |||
| 722 | SmallVector<Instruction *, 4> DecomposedVectors; | |||
| 723 | SmallVector<Value *, 4> TransposedVectors; | |||
| 724 | auto *ShuffleTy = cast<FixedVectorType>(Shuffles[0]->getType()); | |||
| 725 | ||||
| 726 | if (isa<LoadInst>(Inst)) { | |||
| 727 | auto *ShuffleEltTy = cast<FixedVectorType>(Inst->getType()); | |||
| 728 | unsigned NumSubVecElems = ShuffleEltTy->getNumElements() / Factor; | |||
| 729 | switch (NumSubVecElems) { | |||
| 730 | default: | |||
| 731 | return false; | |||
| 732 | case 4: | |||
| 733 | case 8: | |||
| 734 | case 16: | |||
| 735 | case 32: | |||
| 736 | case 64: | |||
| 737 | if (ShuffleTy->getNumElements() != NumSubVecElems) | |||
| 738 | return false; | |||
| 739 | break; | |||
| 740 | } | |||
| 741 | ||||
| 742 | // Try to generate target-sized register(/instruction). | |||
| 743 | decompose(Inst, Factor, ShuffleTy, DecomposedVectors); | |||
| 744 | ||||
| 745 | // Perform matrix-transposition in order to compute interleaved | |||
| 746 | // results by generating some sort of (optimized) target-specific | |||
| 747 | // instructions. | |||
| 748 | ||||
| 749 | if (NumSubVecElems == 4) | |||
| 750 | transpose_4x4(DecomposedVectors, TransposedVectors); | |||
| 751 | else | |||
| 752 | deinterleave8bitStride3(DecomposedVectors, TransposedVectors, | |||
| 753 | NumSubVecElems); | |||
| 754 | ||||
| 755 | // Now replace the unoptimized-interleaved-vectors with the | |||
| 756 | // transposed-interleaved vectors. | |||
| 757 | for (unsigned i = 0, e = Shuffles.size(); i < e; ++i) | |||
| 758 | Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]); | |||
| 759 | ||||
| 760 | return true; | |||
| 761 | } | |||
| 762 | ||||
| 763 | Type *ShuffleEltTy = ShuffleTy->getElementType(); | |||
| 764 | unsigned NumSubVecElems = ShuffleTy->getNumElements() / Factor; | |||
| 765 | ||||
| 766 | // Lower the interleaved stores: | |||
| 767 | // 1. Decompose the interleaved wide shuffle into individual shuffle | |||
| 768 | // vectors. | |||
| 769 | decompose(Shuffles[0], Factor, | |||
| 770 | FixedVectorType::get(ShuffleEltTy, NumSubVecElems), | |||
| 771 | DecomposedVectors); | |||
| 772 | ||||
| 773 | // 2. Transpose the interleaved-vectors into vectors of contiguous | |||
| 774 | // elements. | |||
| 775 | switch (NumSubVecElems) { | |||
| 776 | case 4: | |||
| 777 | transpose_4x4(DecomposedVectors, TransposedVectors); | |||
| 778 | break; | |||
| 779 | case 8: | |||
| 780 | interleave8bitStride4VF8(DecomposedVectors, TransposedVectors); | |||
| 781 | break; | |||
| 782 | case 16: | |||
| 783 | case 32: | |||
| 784 | case 64: | |||
| 785 | if (Factor == 4) | |||
| 786 | interleave8bitStride4(DecomposedVectors, TransposedVectors, | |||
| 787 | NumSubVecElems); | |||
| 788 | if (Factor == 3) | |||
| 789 | interleave8bitStride3(DecomposedVectors, TransposedVectors, | |||
| 790 | NumSubVecElems); | |||
| 791 | break; | |||
| 792 | default: | |||
| 793 | return false; | |||
| 794 | } | |||
| 795 | ||||
| 796 | // 3. Concatenate the contiguous-vectors back into a wide vector. | |||
| 797 | Value *WideVec = concatenateVectors(Builder, TransposedVectors); | |||
| 798 | ||||
| 799 | // 4. Generate a store instruction for wide-vec. | |||
| 800 | StoreInst *SI = cast<StoreInst>(Inst); | |||
| 801 | Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), SI->getAlign()); | |||
| 802 | ||||
| 803 | return true; | |||
| 804 | } | |||
| 805 | ||||
| 806 | // Lower interleaved load(s) into target specific instructions/ | |||
| 807 | // intrinsics. Lowering sequence varies depending on the vector-types, factor, | |||
| 808 | // number of shuffles and ISA. | |||
| 809 | // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX. | |||
| 810 | bool X86TargetLowering::lowerInterleavedLoad( | |||
| 811 | LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, | |||
| 812 | ArrayRef<unsigned> Indices, unsigned Factor) const { | |||
| 813 | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&(static_cast <bool> (Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor" ) ? void (0) : __assert_fail ("Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && \"Invalid interleave factor\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 814, __extension__ __PRETTY_FUNCTION__)) | |||
| 814 | "Invalid interleave factor")(static_cast <bool> (Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor" ) ? void (0) : __assert_fail ("Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && \"Invalid interleave factor\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 814, __extension__ __PRETTY_FUNCTION__)); | |||
| 815 | assert(!Shuffles.empty() && "Empty shufflevector input")(static_cast <bool> (!Shuffles.empty() && "Empty shufflevector input" ) ? void (0) : __assert_fail ("!Shuffles.empty() && \"Empty shufflevector input\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 815, __extension__ __PRETTY_FUNCTION__)); | |||
| 816 | assert(Shuffles.size() == Indices.size() &&(static_cast <bool> (Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices") ? void (0) : __assert_fail ("Shuffles.size() == Indices.size() && \"Unmatched number of shufflevectors and indices\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 817, __extension__ __PRETTY_FUNCTION__)) | |||
| 817 | "Unmatched number of shufflevectors and indices")(static_cast <bool> (Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices") ? void (0) : __assert_fail ("Shuffles.size() == Indices.size() && \"Unmatched number of shufflevectors and indices\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 817, __extension__ __PRETTY_FUNCTION__)); | |||
| 818 | ||||
| 819 | // Create an interleaved access group. | |||
| 820 | IRBuilder<> Builder(LI); | |||
| 821 | X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget, | |||
| 822 | Builder); | |||
| 823 | ||||
| 824 | return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); | |||
| 825 | } | |||
| 826 | ||||
| 827 | bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI, | |||
| 828 | ShuffleVectorInst *SVI, | |||
| 829 | unsigned Factor) const { | |||
| 830 | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&(static_cast <bool> (Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor" ) ? void (0) : __assert_fail ("Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && \"Invalid interleave factor\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 831, __extension__ __PRETTY_FUNCTION__)) | |||
| 831 | "Invalid interleave factor")(static_cast <bool> (Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor" ) ? void (0) : __assert_fail ("Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && \"Invalid interleave factor\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 831, __extension__ __PRETTY_FUNCTION__)); | |||
| 832 | ||||
| 833 | assert(cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor ==(static_cast <bool> (cast<FixedVectorType>(SVI-> getType())->getNumElements() % Factor == 0 && "Invalid interleaved store" ) ? void (0) : __assert_fail ("cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor == 0 && \"Invalid interleaved store\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 835, __extension__ __PRETTY_FUNCTION__)) | |||
| 834 | 0 &&(static_cast <bool> (cast<FixedVectorType>(SVI-> getType())->getNumElements() % Factor == 0 && "Invalid interleaved store" ) ? void (0) : __assert_fail ("cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor == 0 && \"Invalid interleaved store\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 835, __extension__ __PRETTY_FUNCTION__)) | |||
| 835 | "Invalid interleaved store")(static_cast <bool> (cast<FixedVectorType>(SVI-> getType())->getNumElements() % Factor == 0 && "Invalid interleaved store" ) ? void (0) : __assert_fail ("cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor == 0 && \"Invalid interleaved store\"" , "llvm/lib/Target/X86/X86InterleavedAccess.cpp", 835, __extension__ __PRETTY_FUNCTION__)); | |||
| 836 | ||||
| 837 | // Holds the indices of SVI that correspond to the starting index of each | |||
| 838 | // interleaved shuffle. | |||
| 839 | SmallVector<unsigned, 4> Indices; | |||
| 840 | auto Mask = SVI->getShuffleMask(); | |||
| 841 | for (unsigned i = 0; i < Factor; i++) | |||
| 842 | Indices.push_back(Mask[i]); | |||
| 843 | ||||
| 844 | ArrayRef<ShuffleVectorInst *> Shuffles = ArrayRef(SVI); | |||
| 845 | ||||
| 846 | // Create an interleaved access group. | |||
| 847 | IRBuilder<> Builder(SI); | |||
| 848 | X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget, | |||
| 849 | Builder); | |||
| 850 | ||||
| 851 | return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); | |||
| 852 | } |