Bug Summary

File:llvm/include/llvm/Analysis/TargetTransformInfoImpl.h
Warning:line 76, column 25
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name X86TargetTransformInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fdenormal-fp-math=ieee,ieee -fdenormal-fp-math-f32=ieee,ieee -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/build-llvm/lib/Target/X86 -I /build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86 -I /build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/build-llvm/lib/Target/X86 -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b=. -ferror-limit 19 -fmessage-length 0 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-02-26-193302-13812-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp

/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp

1//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements a TargetTransformInfo analysis pass specific to the
10/// X86 target machine. It uses the target's detailed information to provide
11/// more precise answers to certain TTI queries, while letting the target
12/// independent and default TTI implementations handle the rest.
13///
14//===----------------------------------------------------------------------===//
15/// About Cost Model numbers used below it's necessary to say the following:
16/// the numbers correspond to some "generic" X86 CPU instead of usage of
17/// concrete CPU model. Usually the numbers correspond to CPU where the feature
18/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19/// the lookups below the cost is based on Nehalem as that was the first CPU
20/// to support that feature level and thus has most likely the worst case cost.
21/// Some examples of other technologies/CPUs:
22/// SSE 3 - Pentium4 / Athlon64
23/// SSE 4.1 - Penryn
24/// SSE 4.2 - Nehalem
25/// AVX - Sandy Bridge
26/// AVX2 - Haswell
27/// AVX-512 - Xeon Phi / Skylake
28/// And some examples of instruction target dependent costs (latency)
29/// divss sqrtss rsqrtss
30/// AMD K7 11-16 19 3
31/// Piledriver 9-24 13-15 5
32/// Jaguar 14 16 2
33/// Pentium II,III 18 30 2
34/// Nehalem 7-14 7-18 3
35/// Haswell 10-13 11 5
36/// TODO: Develop and implement the target dependent cost model and
37/// specialize cost numbers for different Cost Model Targets such as throughput,
38/// code size, latency and uop count.
39//===----------------------------------------------------------------------===//
40
41#include "X86TargetTransformInfo.h"
42#include "llvm/Analysis/TargetTransformInfo.h"
43#include "llvm/CodeGen/BasicTTIImpl.h"
44#include "llvm/CodeGen/CostTable.h"
45#include "llvm/CodeGen/TargetLowering.h"
46#include "llvm/IR/IntrinsicInst.h"
47#include "llvm/Support/Debug.h"
48
49using namespace llvm;
50
51#define DEBUG_TYPE"x86tti" "x86tti"
52
53//===----------------------------------------------------------------------===//
54//
55// X86 cost model.
56//
57//===----------------------------------------------------------------------===//
58
59TargetTransformInfo::PopcntSupportKind
60X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2")((isPowerOf2_32(TyWidth) && "Ty width must be power of 2"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(TyWidth) && \"Ty width must be power of 2\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 61, __PRETTY_FUNCTION__))
;
62 // TODO: Currently the __builtin_popcount() implementation using SSE3
63 // instructions is inefficient. Once the problem is fixed, we should
64 // call ST->hasSSE3() instead of ST->hasPOPCNT().
65 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66}
67
68llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69 TargetTransformInfo::CacheLevel Level) const {
70 switch (Level) {
71 case TargetTransformInfo::CacheLevel::L1D:
72 // - Penryn
73 // - Nehalem
74 // - Westmere
75 // - Sandy Bridge
76 // - Ivy Bridge
77 // - Haswell
78 // - Broadwell
79 // - Skylake
80 // - Kabylake
81 return 32 * 1024; // 32 KByte
82 case TargetTransformInfo::CacheLevel::L2D:
83 // - Penryn
84 // - Nehalem
85 // - Westmere
86 // - Sandy Bridge
87 // - Ivy Bridge
88 // - Haswell
89 // - Broadwell
90 // - Skylake
91 // - Kabylake
92 return 256 * 1024; // 256 KByte
93 }
94
95 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel")::llvm::llvm_unreachable_internal("Unknown TargetTransformInfo::CacheLevel"
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 95)
;
96}
97
98llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99 TargetTransformInfo::CacheLevel Level) const {
100 // - Penryn
101 // - Nehalem
102 // - Westmere
103 // - Sandy Bridge
104 // - Ivy Bridge
105 // - Haswell
106 // - Broadwell
107 // - Skylake
108 // - Kabylake
109 switch (Level) {
110 case TargetTransformInfo::CacheLevel::L1D:
111 LLVM_FALLTHROUGH[[gnu::fallthrough]];
112 case TargetTransformInfo::CacheLevel::L2D:
113 return 8;
114 }
115
116 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel")::llvm::llvm_unreachable_internal("Unknown TargetTransformInfo::CacheLevel"
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 116)
;
117}
118
119unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120 bool Vector = (ClassID == 1);
121 if (Vector && !ST->hasSSE1())
122 return 0;
123
124 if (ST->is64Bit()) {
125 if (Vector && ST->hasAVX512())
126 return 32;
127 return 16;
128 }
129 return 8;
130}
131
132unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133 unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134 if (Vector) {
135 if (ST->hasAVX512() && PreferVectorWidth >= 512)
136 return 512;
137 if (ST->hasAVX() && PreferVectorWidth >= 256)
138 return 256;
139 if (ST->hasSSE1() && PreferVectorWidth >= 128)
140 return 128;
141 return 0;
142 }
143
144 if (ST->is64Bit())
145 return 64;
146
147 return 32;
148}
149
150unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151 return getRegisterBitWidth(true);
152}
153
154unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155 // If the loop will not be vectorized, don't interleave the loop.
156 // Let regular unroll to unroll the loop, which saves the overflow
157 // check and memory check cost.
158 if (VF == 1)
159 return 1;
160
161 if (ST->isAtom())
162 return 1;
163
164 // Sandybridge and Haswell have multiple execution ports and pipelined
165 // vector units.
166 if (ST->hasAVX())
167 return 4;
168
169 return 2;
170}
171
172int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
173 TTI::OperandValueKind Op1Info,
174 TTI::OperandValueKind Op2Info,
175 TTI::OperandValueProperties Opd1PropInfo,
176 TTI::OperandValueProperties Opd2PropInfo,
177 ArrayRef<const Value *> Args,
178 const Instruction *CxtI) {
179 // Legalize the type.
180 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
181
182 int ISD = TLI->InstructionOpcodeToISD(Opcode);
183 assert(ISD && "Invalid opcode")((ISD && "Invalid opcode") ? static_cast<void> (
0) : __assert_fail ("ISD && \"Invalid opcode\"", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 183, __PRETTY_FUNCTION__))
;
184
185 static const CostTblEntry GLMCostTable[] = {
186 { ISD::FDIV, MVT::f32, 18 }, // divss
187 { ISD::FDIV, MVT::v4f32, 35 }, // divps
188 { ISD::FDIV, MVT::f64, 33 }, // divsd
189 { ISD::FDIV, MVT::v2f64, 65 }, // divpd
190 };
191
192 if (ST->useGLMDivSqrtCosts())
193 if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
194 LT.second))
195 return LT.first * Entry->Cost;
196
197 static const CostTblEntry SLMCostTable[] = {
198 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
199 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
200 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
201 { ISD::FMUL, MVT::f64, 2 }, // mulsd
202 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
203 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
204 { ISD::FDIV, MVT::f32, 17 }, // divss
205 { ISD::FDIV, MVT::v4f32, 39 }, // divps
206 { ISD::FDIV, MVT::f64, 32 }, // divsd
207 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
208 { ISD::FADD, MVT::v2f64, 2 }, // addpd
209 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
210 // v2i64/v4i64 mul is custom lowered as a series of long:
211 // multiplies(3), shifts(3) and adds(2)
212 // slm muldq version throughput is 2 and addq throughput 4
213 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
214 // 3X4 (addq throughput) = 17
215 { ISD::MUL, MVT::v2i64, 17 },
216 // slm addq\subq throughput is 4
217 { ISD::ADD, MVT::v2i64, 4 },
218 { ISD::SUB, MVT::v2i64, 4 },
219 };
220
221 if (ST->isSLM()) {
222 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
223 // Check if the operands can be shrinked into a smaller datatype.
224 bool Op1Signed = false;
225 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
226 bool Op2Signed = false;
227 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
228
229 bool signedMode = Op1Signed | Op2Signed;
230 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
231
232 if (OpMinSize <= 7)
233 return LT.first * 3; // pmullw/sext
234 if (!signedMode && OpMinSize <= 8)
235 return LT.first * 3; // pmullw/zext
236 if (OpMinSize <= 15)
237 return LT.first * 5; // pmullw/pmulhw/pshuf
238 if (!signedMode && OpMinSize <= 16)
239 return LT.first * 5; // pmullw/pmulhw/pshuf
240 }
241
242 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
243 LT.second)) {
244 return LT.first * Entry->Cost;
245 }
246 }
247
248 if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
249 ISD == ISD::UREM) &&
250 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
251 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
252 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
253 if (ISD == ISD::SDIV || ISD == ISD::SREM) {
254 // On X86, vector signed division by constants power-of-two are
255 // normally expanded to the sequence SRA + SRL + ADD + SRA.
256 // The OperandValue properties may not be the same as that of the previous
257 // operation; conservatively assume OP_None.
258 int Cost =
259 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
260 TargetTransformInfo::OP_None,
261 TargetTransformInfo::OP_None);
262 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
263 TargetTransformInfo::OP_None,
264 TargetTransformInfo::OP_None);
265 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
266 TargetTransformInfo::OP_None,
267 TargetTransformInfo::OP_None);
268
269 if (ISD == ISD::SREM) {
270 // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
271 Cost += getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info);
272 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Op1Info, Op2Info);
273 }
274
275 return Cost;
276 }
277
278 // Vector unsigned division/remainder will be simplified to shifts/masks.
279 if (ISD == ISD::UDIV)
280 return getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
281 TargetTransformInfo::OP_None,
282 TargetTransformInfo::OP_None);
283
284 else // UREM
285 return getArithmeticInstrCost(Instruction::And, Ty, Op1Info, Op2Info,
286 TargetTransformInfo::OP_None,
287 TargetTransformInfo::OP_None);
288 }
289
290 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
291 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
292 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
293 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
294 };
295
296 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
297 ST->hasBWI()) {
298 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
299 LT.second))
300 return LT.first * Entry->Cost;
301 }
302
303 static const CostTblEntry AVX512UniformConstCostTable[] = {
304 { ISD::SRA, MVT::v2i64, 1 },
305 { ISD::SRA, MVT::v4i64, 1 },
306 { ISD::SRA, MVT::v8i64, 1 },
307 };
308
309 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
310 ST->hasAVX512()) {
311 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
312 LT.second))
313 return LT.first * Entry->Cost;
314 }
315
316 static const CostTblEntry AVX2UniformConstCostTable[] = {
317 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
318 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
319 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
320
321 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
322 };
323
324 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
325 ST->hasAVX2()) {
326 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
327 LT.second))
328 return LT.first * Entry->Cost;
329 }
330
331 static const CostTblEntry SSE2UniformConstCostTable[] = {
332 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
333 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
334 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
335
336 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split.
337 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split.
338 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
339 };
340
341 // XOP has faster vXi8 shifts.
342 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
343 ST->hasSSE2() && !ST->hasXOP()) {
344 if (const auto *Entry =
345 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
346 return LT.first * Entry->Cost;
347 }
348
349 static const CostTblEntry AVX512BWConstCostTable[] = {
350 { ISD::SDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence
351 { ISD::SREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
352 { ISD::UDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence
353 { ISD::UREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
354 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
355 { ISD::SREM, MVT::v32i16, 8 }, // vpmulhw+mul+sub sequence
356 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
357 { ISD::UREM, MVT::v32i16, 8 }, // vpmulhuw+mul+sub sequence
358 };
359
360 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
361 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
362 ST->hasBWI()) {
363 if (const auto *Entry =
364 CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
365 return LT.first * Entry->Cost;
366 }
367
368 static const CostTblEntry AVX512ConstCostTable[] = {
369 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
370 { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
371 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
372 { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
373 };
374
375 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
376 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
377 ST->hasAVX512()) {
378 if (const auto *Entry =
379 CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
380 return LT.first * Entry->Cost;
381 }
382
383 static const CostTblEntry AVX2ConstCostTable[] = {
384 { ISD::SDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence
385 { ISD::SREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
386 { ISD::UDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence
387 { ISD::UREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
388 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
389 { ISD::SREM, MVT::v16i16, 8 }, // vpmulhw+mul+sub sequence
390 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
391 { ISD::UREM, MVT::v16i16, 8 }, // vpmulhuw+mul+sub sequence
392 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
393 { ISD::SREM, MVT::v8i32, 19 }, // vpmuldq+mul+sub sequence
394 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
395 { ISD::UREM, MVT::v8i32, 19 }, // vpmuludq+mul+sub sequence
396 };
397
398 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
399 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
400 ST->hasAVX2()) {
401 if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
402 return LT.first * Entry->Cost;
403 }
404
405 static const CostTblEntry SSE2ConstCostTable[] = {
406 { ISD::SDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split.
407 { ISD::SREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
408 { ISD::SDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence
409 { ISD::SREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
410 { ISD::UDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split.
411 { ISD::UREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
412 { ISD::UDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence
413 { ISD::UREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
414 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
415 { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
416 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
417 { ISD::SREM, MVT::v8i16, 8 }, // pmulhw+mul+sub sequence
418 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
419 { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
420 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
421 { ISD::UREM, MVT::v8i16, 8 }, // pmulhuw+mul+sub sequence
422 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split.
423 { ISD::SREM, MVT::v8i32, 48+2 }, // 2*pmuludq+mul+sub sequence + split.
424 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
425 { ISD::SREM, MVT::v4i32, 24 }, // pmuludq+mul+sub sequence
426 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split.
427 { ISD::UREM, MVT::v8i32, 40+2 }, // 2*pmuludq+mul+sub sequence + split.
428 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
429 { ISD::UREM, MVT::v4i32, 20 }, // pmuludq+mul+sub sequence
430 };
431
432 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
433 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
434 ST->hasSSE2()) {
435 // pmuldq sequence.
436 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
437 return LT.first * 32;
438 if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
439 return LT.first * 38;
440 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
441 return LT.first * 15;
442 if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
443 return LT.first * 20;
444
445 if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
446 return LT.first * Entry->Cost;
447 }
448
449 static const CostTblEntry AVX2UniformCostTable[] = {
450 // Uniform splats are cheaper for the following instructions.
451 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
452 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
453 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
454 };
455
456 if (ST->hasAVX2() &&
457 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
458 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
459 if (const auto *Entry =
460 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
461 return LT.first * Entry->Cost;
462 }
463
464 static const CostTblEntry SSE2UniformCostTable[] = {
465 // Uniform splats are cheaper for the following instructions.
466 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
467 { ISD::SHL, MVT::v4i32, 1 }, // pslld
468 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
469
470 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
471 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
472 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
473
474 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
475 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
476 };
477
478 if (ST->hasSSE2() &&
479 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
480 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
481 if (const auto *Entry =
482 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
483 return LT.first * Entry->Cost;
484 }
485
486 static const CostTblEntry AVX512DQCostTable[] = {
487 { ISD::MUL, MVT::v2i64, 1 },
488 { ISD::MUL, MVT::v4i64, 1 },
489 { ISD::MUL, MVT::v8i64, 1 }
490 };
491
492 // Look for AVX512DQ lowering tricks for custom cases.
493 if (ST->hasDQI())
494 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
495 return LT.first * Entry->Cost;
496
497 static const CostTblEntry AVX512BWCostTable[] = {
498 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
499 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
500 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
501
502 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
503 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
504 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
505
506 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
507 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
508 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
509
510 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
511 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
512 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
513
514 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
515 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
516 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
517 };
518
519 // Look for AVX512BW lowering tricks for custom cases.
520 if (ST->hasBWI())
521 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
522 return LT.first * Entry->Cost;
523
524 static const CostTblEntry AVX512CostTable[] = {
525 { ISD::SHL, MVT::v16i32, 1 },
526 { ISD::SRL, MVT::v16i32, 1 },
527 { ISD::SRA, MVT::v16i32, 1 },
528
529 { ISD::SHL, MVT::v8i64, 1 },
530 { ISD::SRL, MVT::v8i64, 1 },
531
532 { ISD::SRA, MVT::v2i64, 1 },
533 { ISD::SRA, MVT::v4i64, 1 },
534 { ISD::SRA, MVT::v8i64, 1 },
535
536 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
537 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
538 { ISD::MUL, MVT::v16i32, 1 }, // pmulld (Skylake from agner.org)
539 { ISD::MUL, MVT::v8i32, 1 }, // pmulld (Skylake from agner.org)
540 { ISD::MUL, MVT::v4i32, 1 }, // pmulld (Skylake from agner.org)
541 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
542
543 { ISD::FADD, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
544 { ISD::FSUB, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
545 { ISD::FMUL, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
546
547 { ISD::FADD, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
548 { ISD::FSUB, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
549 { ISD::FMUL, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
550 };
551
552 if (ST->hasAVX512())
553 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
554 return LT.first * Entry->Cost;
555
556 static const CostTblEntry AVX2ShiftCostTable[] = {
557 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
558 // customize them to detect the cases where shift amount is a scalar one.
559 { ISD::SHL, MVT::v4i32, 1 },
560 { ISD::SRL, MVT::v4i32, 1 },
561 { ISD::SRA, MVT::v4i32, 1 },
562 { ISD::SHL, MVT::v8i32, 1 },
563 { ISD::SRL, MVT::v8i32, 1 },
564 { ISD::SRA, MVT::v8i32, 1 },
565 { ISD::SHL, MVT::v2i64, 1 },
566 { ISD::SRL, MVT::v2i64, 1 },
567 { ISD::SHL, MVT::v4i64, 1 },
568 { ISD::SRL, MVT::v4i64, 1 },
569 };
570
571 // Look for AVX2 lowering tricks.
572 if (ST->hasAVX2()) {
573 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
574 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
575 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
576 // On AVX2, a packed v16i16 shift left by a constant build_vector
577 // is lowered into a vector multiply (vpmullw).
578 return getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info,
579 TargetTransformInfo::OP_None,
580 TargetTransformInfo::OP_None);
581
582 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
583 return LT.first * Entry->Cost;
584 }
585
586 static const CostTblEntry XOPShiftCostTable[] = {
587 // 128bit shifts take 1cy, but right shifts require negation beforehand.
588 { ISD::SHL, MVT::v16i8, 1 },
589 { ISD::SRL, MVT::v16i8, 2 },
590 { ISD::SRA, MVT::v16i8, 2 },
591 { ISD::SHL, MVT::v8i16, 1 },
592 { ISD::SRL, MVT::v8i16, 2 },
593 { ISD::SRA, MVT::v8i16, 2 },
594 { ISD::SHL, MVT::v4i32, 1 },
595 { ISD::SRL, MVT::v4i32, 2 },
596 { ISD::SRA, MVT::v4i32, 2 },
597 { ISD::SHL, MVT::v2i64, 1 },
598 { ISD::SRL, MVT::v2i64, 2 },
599 { ISD::SRA, MVT::v2i64, 2 },
600 // 256bit shifts require splitting if AVX2 didn't catch them above.
601 { ISD::SHL, MVT::v32i8, 2+2 },
602 { ISD::SRL, MVT::v32i8, 4+2 },
603 { ISD::SRA, MVT::v32i8, 4+2 },
604 { ISD::SHL, MVT::v16i16, 2+2 },
605 { ISD::SRL, MVT::v16i16, 4+2 },
606 { ISD::SRA, MVT::v16i16, 4+2 },
607 { ISD::SHL, MVT::v8i32, 2+2 },
608 { ISD::SRL, MVT::v8i32, 4+2 },
609 { ISD::SRA, MVT::v8i32, 4+2 },
610 { ISD::SHL, MVT::v4i64, 2+2 },
611 { ISD::SRL, MVT::v4i64, 4+2 },
612 { ISD::SRA, MVT::v4i64, 4+2 },
613 };
614
615 // Look for XOP lowering tricks.
616 if (ST->hasXOP()) {
617 // If the right shift is constant then we'll fold the negation so
618 // it's as cheap as a left shift.
619 int ShiftISD = ISD;
620 if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
621 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
622 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
623 ShiftISD = ISD::SHL;
624 if (const auto *Entry =
625 CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
626 return LT.first * Entry->Cost;
627 }
628
629 static const CostTblEntry SSE2UniformShiftCostTable[] = {
630 // Uniform splats are cheaper for the following instructions.
631 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split.
632 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split.
633 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split.
634
635 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split.
636 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split.
637 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split.
638
639 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split.
640 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split.
641 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle.
642 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split.
643 };
644
645 if (ST->hasSSE2() &&
646 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
647 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
648
649 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
650 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
651 return LT.first * 4; // 2*psrad + shuffle.
652
653 if (const auto *Entry =
654 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
655 return LT.first * Entry->Cost;
656 }
657
658 if (ISD == ISD::SHL &&
659 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
660 MVT VT = LT.second;
661 // Vector shift left by non uniform constant can be lowered
662 // into vector multiply.
663 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
664 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
665 ISD = ISD::MUL;
666 }
667
668 static const CostTblEntry AVX2CostTable[] = {
669 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
670 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
671
672 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
673 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
674
675 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
676 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
677 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
678 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
679
680 { ISD::SUB, MVT::v32i8, 1 }, // psubb
681 { ISD::ADD, MVT::v32i8, 1 }, // paddb
682 { ISD::SUB, MVT::v16i16, 1 }, // psubw
683 { ISD::ADD, MVT::v16i16, 1 }, // paddw
684 { ISD::SUB, MVT::v8i32, 1 }, // psubd
685 { ISD::ADD, MVT::v8i32, 1 }, // paddd
686 { ISD::SUB, MVT::v4i64, 1 }, // psubq
687 { ISD::ADD, MVT::v4i64, 1 }, // paddq
688
689 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
690 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
691 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
692 { ISD::MUL, MVT::v8i32, 2 }, // pmulld (Haswell from agner.org)
693 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
694
695 { ISD::FADD, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
696 { ISD::FADD, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
697 { ISD::FSUB, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
698 { ISD::FSUB, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
699 { ISD::FMUL, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
700 { ISD::FMUL, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
701
702 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
703 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
704 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
705 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
706 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
707 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
708 };
709
710 // Look for AVX2 lowering tricks for custom cases.
711 if (ST->hasAVX2())
712 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
713 return LT.first * Entry->Cost;
714
715 static const CostTblEntry AVX1CostTable[] = {
716 // We don't have to scalarize unsupported ops. We can issue two half-sized
717 // operations and we only need to extract the upper YMM half.
718 // Two ops + 1 extract + 1 insert = 4.
719 { ISD::MUL, MVT::v16i16, 4 },
720 { ISD::MUL, MVT::v8i32, 4 },
721 { ISD::SUB, MVT::v32i8, 4 },
722 { ISD::ADD, MVT::v32i8, 4 },
723 { ISD::SUB, MVT::v16i16, 4 },
724 { ISD::ADD, MVT::v16i16, 4 },
725 { ISD::SUB, MVT::v8i32, 4 },
726 { ISD::ADD, MVT::v8i32, 4 },
727 { ISD::SUB, MVT::v4i64, 4 },
728 { ISD::ADD, MVT::v4i64, 4 },
729
730 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
731 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
732 // Because we believe v4i64 to be a legal type, we must also include the
733 // extract+insert in the cost table. Therefore, the cost here is 18
734 // instead of 8.
735 { ISD::MUL, MVT::v4i64, 18 },
736
737 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
738
739 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
740 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
741 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
742 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
743 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
744 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
745 };
746
747 if (ST->hasAVX())
748 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
749 return LT.first * Entry->Cost;
750
751 static const CostTblEntry SSE42CostTable[] = {
752 { ISD::FADD, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
753 { ISD::FADD, MVT::f32, 1 }, // Nehalem from http://www.agner.org/
754 { ISD::FADD, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
755 { ISD::FADD, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
756
757 { ISD::FSUB, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
758 { ISD::FSUB, MVT::f32 , 1 }, // Nehalem from http://www.agner.org/
759 { ISD::FSUB, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
760 { ISD::FSUB, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
761
762 { ISD::FMUL, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
763 { ISD::FMUL, MVT::f32, 1 }, // Nehalem from http://www.agner.org/
764 { ISD::FMUL, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
765 { ISD::FMUL, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
766
767 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
768 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
769 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
770 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
771 };
772
773 if (ST->hasSSE42())
774 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
775 return LT.first * Entry->Cost;
776
777 static const CostTblEntry SSE41CostTable[] = {
778 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
779 { ISD::SHL, MVT::v32i8, 2*11+2 }, // pblendvb sequence + split.
780 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
781 { ISD::SHL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
782 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
783 { ISD::SHL, MVT::v8i32, 2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
784
785 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
786 { ISD::SRL, MVT::v32i8, 2*12+2 }, // pblendvb sequence + split.
787 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
788 { ISD::SRL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
789 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
790 { ISD::SRL, MVT::v8i32, 2*11+2 }, // Shift each lane + blend + split.
791
792 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
793 { ISD::SRA, MVT::v32i8, 2*24+2 }, // pblendvb sequence + split.
794 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
795 { ISD::SRA, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
796 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
797 { ISD::SRA, MVT::v8i32, 2*12+2 }, // Shift each lane + blend + split.
798
799 { ISD::MUL, MVT::v4i32, 2 } // pmulld (Nehalem from agner.org)
800 };
801
802 if (ST->hasSSE41())
803 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
804 return LT.first * Entry->Cost;
805
806 static const CostTblEntry SSE2CostTable[] = {
807 // We don't correctly identify costs of casts because they are marked as
808 // custom.
809 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
810 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
811 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
812 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
813 { ISD::SHL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
814
815 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
816 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
817 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
818 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
819 { ISD::SRL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
820
821 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
822 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
823 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
824 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
825 { ISD::SRA, MVT::v4i64, 2*12+2 }, // srl/xor/sub sequence+split.
826
827 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
828 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
829 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
830 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
831
832 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
833 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
834 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
835 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
836
837 { ISD::FADD, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/
838 { ISD::FADD, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/
839
840 { ISD::FSUB, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/
841 { ISD::FSUB, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/
842 };
843
844 if (ST->hasSSE2())
845 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
846 return LT.first * Entry->Cost;
847
848 static const CostTblEntry SSE1CostTable[] = {
849 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
850 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
851
852 { ISD::FADD, MVT::f32, 1 }, // Pentium III from http://www.agner.org/
853 { ISD::FADD, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/
854
855 { ISD::FSUB, MVT::f32, 1 }, // Pentium III from http://www.agner.org/
856 { ISD::FSUB, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/
857
858 { ISD::ADD, MVT::i8, 1 }, // Pentium III from http://www.agner.org/
859 { ISD::ADD, MVT::i16, 1 }, // Pentium III from http://www.agner.org/
860 { ISD::ADD, MVT::i32, 1 }, // Pentium III from http://www.agner.org/
861
862 { ISD::SUB, MVT::i8, 1 }, // Pentium III from http://www.agner.org/
863 { ISD::SUB, MVT::i16, 1 }, // Pentium III from http://www.agner.org/
864 { ISD::SUB, MVT::i32, 1 }, // Pentium III from http://www.agner.org/
865 };
866
867 if (ST->hasSSE1())
868 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
869 return LT.first * Entry->Cost;
870
871 // It is not a good idea to vectorize division. We have to scalarize it and
872 // in the process we will often end up having to spilling regular
873 // registers. The overhead of division is going to dominate most kernels
874 // anyways so try hard to prevent vectorization of division - it is
875 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
876 // to hide "20 cycles" for each lane.
877 if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
878 ISD == ISD::UDIV || ISD == ISD::UREM)) {
879 int ScalarCost = getArithmeticInstrCost(
880 Opcode, Ty->getScalarType(), Op1Info, Op2Info,
881 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
882 return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
883 }
884
885 // Fallback to the default implementation.
886 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
887}
888
889int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
890 Type *SubTp) {
891 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
892 // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
893 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
894
895 // Treat Transpose as 2-op shuffles - there's no difference in lowering.
896 if (Kind == TTI::SK_Transpose)
897 Kind = TTI::SK_PermuteTwoSrc;
898
899 // For Broadcasts we are splatting the first element from the first input
900 // register, so only need to reference that input and all the output
901 // registers are the same.
902 if (Kind == TTI::SK_Broadcast)
903 LT.first = 1;
904
905 // Subvector extractions are free if they start at the beginning of a
906 // vector and cheap if the subvectors are aligned.
907 if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
908 int NumElts = LT.second.getVectorNumElements();
909 if ((Index % NumElts) == 0)
910 return 0;
911 std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
912 if (SubLT.second.isVector()) {
913 int NumSubElts = SubLT.second.getVectorNumElements();
914 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
915 return SubLT.first;
916 // Handle some cases for widening legalization. For now we only handle
917 // cases where the original subvector was naturally aligned and evenly
918 // fit in its legalized subvector type.
919 // FIXME: Remove some of the alignment restrictions.
920 // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
921 // vectors.
922 int OrigSubElts = SubTp->getVectorNumElements();
923 if (NumSubElts > OrigSubElts &&
924 (Index % OrigSubElts) == 0 && (NumSubElts % OrigSubElts) == 0 &&
925 LT.second.getVectorElementType() ==
926 SubLT.second.getVectorElementType() &&
927 LT.second.getVectorElementType().getSizeInBits() ==
928 Tp->getVectorElementType()->getPrimitiveSizeInBits()) {
929 assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&((NumElts >= NumSubElts && NumElts > OrigSubElts
&& "Unexpected number of elements!") ? static_cast<
void> (0) : __assert_fail ("NumElts >= NumSubElts && NumElts > OrigSubElts && \"Unexpected number of elements!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 930, __PRETTY_FUNCTION__))
930 "Unexpected number of elements!")((NumElts >= NumSubElts && NumElts > OrigSubElts
&& "Unexpected number of elements!") ? static_cast<
void> (0) : __assert_fail ("NumElts >= NumSubElts && NumElts > OrigSubElts && \"Unexpected number of elements!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 930, __PRETTY_FUNCTION__))
;
931 Type *VecTy = VectorType::get(Tp->getVectorElementType(),
932 LT.second.getVectorNumElements());
933 Type *SubTy = VectorType::get(Tp->getVectorElementType(),
934 SubLT.second.getVectorNumElements());
935 int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
936 int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
937 ExtractIndex, SubTy);
938
939 // If the original size is 32-bits or more, we can use pshufd. Otherwise
940 // if we have SSSE3 we can use pshufb.
941 if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
942 return ExtractCost + 1; // pshufd or pshufb
943
944 assert(SubTp->getPrimitiveSizeInBits() == 16 &&((SubTp->getPrimitiveSizeInBits() == 16 && "Unexpected vector size"
) ? static_cast<void> (0) : __assert_fail ("SubTp->getPrimitiveSizeInBits() == 16 && \"Unexpected vector size\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 945, __PRETTY_FUNCTION__))
945 "Unexpected vector size")((SubTp->getPrimitiveSizeInBits() == 16 && "Unexpected vector size"
) ? static_cast<void> (0) : __assert_fail ("SubTp->getPrimitiveSizeInBits() == 16 && \"Unexpected vector size\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 945, __PRETTY_FUNCTION__))
;
946
947 return ExtractCost + 2; // worst case pshufhw + pshufd
948 }
949 }
950 }
951
952 // We are going to permute multiple sources and the result will be in multiple
953 // destinations. Providing an accurate cost only for splits where the element
954 // type remains the same.
955 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
956 MVT LegalVT = LT.second;
957 if (LegalVT.isVector() &&
958 LegalVT.getVectorElementType().getSizeInBits() ==
959 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
960 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
961
962 unsigned VecTySize = DL.getTypeStoreSize(Tp);
963 unsigned LegalVTSize = LegalVT.getStoreSize();
964 // Number of source vectors after legalization:
965 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
966 // Number of destination vectors after legalization:
967 unsigned NumOfDests = LT.first;
968
969 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
970 LegalVT.getVectorNumElements());
971
972 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
973 return NumOfShuffles *
974 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
975 }
976
977 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
978 }
979
980 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
981 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
982 // We assume that source and destination have the same vector type.
983 int NumOfDests = LT.first;
984 int NumOfShufflesPerDest = LT.first * 2 - 1;
985 LT.first = NumOfDests * NumOfShufflesPerDest;
986 }
987
988 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
989 {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
990 {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
991
992 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
993 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
994
995 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 1}, // vpermt2b
996 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 1}, // vpermt2b
997 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1} // vpermt2b
998 };
999
1000 if (ST->hasVBMI())
1001 if (const auto *Entry =
1002 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1003 return LT.first * Entry->Cost;
1004
1005 static const CostTblEntry AVX512BWShuffleTbl[] = {
1006 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1007 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb
1008
1009 {TTI::SK_Reverse, MVT::v32i16, 1}, // vpermw
1010 {TTI::SK_Reverse, MVT::v16i16, 1}, // vpermw
1011 {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2
1012
1013 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 1}, // vpermw
1014 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 1}, // vpermw
1015 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // vpermw
1016 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16
1017 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 3}, // vpermw + zext/trunc
1018
1019 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 1}, // vpermt2w
1020 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 1}, // vpermt2w
1021 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpermt2w
1022 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 3}, // zext + vpermt2w + trunc
1023 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1024 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3} // zext + vpermt2w + trunc
1025 };
1026
1027 if (ST->hasBWI())
1028 if (const auto *Entry =
1029 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1030 return LT.first * Entry->Cost;
1031
1032 static const CostTblEntry AVX512ShuffleTbl[] = {
1033 {TTI::SK_Broadcast, MVT::v8f64, 1}, // vbroadcastpd
1034 {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1035 {TTI::SK_Broadcast, MVT::v8i64, 1}, // vpbroadcastq
1036 {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1037
1038 {TTI::SK_Reverse, MVT::v8f64, 1}, // vpermpd
1039 {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1040 {TTI::SK_Reverse, MVT::v8i64, 1}, // vpermq
1041 {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1042
1043 {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1}, // vpermpd
1044 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
1045 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // vpermpd
1046 {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1047 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
1048 {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1}, // vpermps
1049 {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1}, // vpermq
1050 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
1051 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // vpermq
1052 {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1053 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
1054 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // vpermd
1055 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1056
1057 {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1}, // vpermt2pd
1058 {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1059 {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1}, // vpermt2q
1060 {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1061 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1}, // vpermt2pd
1062 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1}, // vpermt2ps
1063 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1}, // vpermt2q
1064 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1}, // vpermt2d
1065 {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1}, // vpermt2pd
1066 {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1}, // vpermt2ps
1067 {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1}, // vpermt2q
1068 {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1} // vpermt2d
1069 };
1070
1071 if (ST->hasAVX512())
1072 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1073 return LT.first * Entry->Cost;
1074
1075 static const CostTblEntry AVX2ShuffleTbl[] = {
1076 {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd
1077 {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps
1078 {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq
1079 {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd
1080 {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1081 {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb
1082
1083 {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd
1084 {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps
1085 {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq
1086 {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd
1087 {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1088 {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb
1089
1090 {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1091 {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb
1092
1093 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
1094 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
1095 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
1096 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
1097 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1098 // + vpblendvb
1099 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb
1100 // + vpblendvb
1101
1102 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd
1103 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps
1104 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd
1105 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd
1106 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1107 // + vpblendvb
1108 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb
1109 // + vpblendvb
1110 };
1111
1112 if (ST->hasAVX2())
1113 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1114 return LT.first * Entry->Cost;
1115
1116 static const CostTblEntry XOPShuffleTbl[] = {
1117 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd
1118 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps
1119 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd
1120 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps
1121 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1122 // + vinsertf128
1123 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm
1124 // + vinsertf128
1125
1126 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1127 // + vinsertf128
1128 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm
1129 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm
1130 // + vinsertf128
1131 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm
1132 };
1133
1134 if (ST->hasXOP())
1135 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1136 return LT.first * Entry->Cost;
1137
1138 static const CostTblEntry AVX1ShuffleTbl[] = {
1139 {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
1140 {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps
1141 {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
1142 {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps
1143 {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1144 {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128
1145
1146 {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
1147 {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps
1148 {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
1149 {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps
1150 {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1151 // + vinsertf128
1152 {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb
1153 // + vinsertf128
1154
1155 {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd
1156 {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd
1157 {TTI::SK_Select, MVT::v8i32, 1}, // vblendps
1158 {TTI::SK_Select, MVT::v8f32, 1}, // vblendps
1159 {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1160 {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor
1161
1162 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd
1163 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd
1164 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1165 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1166 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1167 // + 2*por + vinsertf128
1168 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb
1169 // + 2*por + vinsertf128
1170
1171 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd
1172 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd
1173 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1174 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1175 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1176 // + 4*por + vinsertf128
1177 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb
1178 // + 4*por + vinsertf128
1179 };
1180
1181 if (ST->hasAVX())
1182 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1183 return LT.first * Entry->Cost;
1184
1185 static const CostTblEntry SSE41ShuffleTbl[] = {
1186 {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1187 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1188 {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1189 {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1190 {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1191 {TTI::SK_Select, MVT::v16i8, 1} // pblendvb
1192 };
1193
1194 if (ST->hasSSE41())
1195 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1196 return LT.first * Entry->Cost;
1197
1198 static const CostTblEntry SSSE3ShuffleTbl[] = {
1199 {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1200 {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1201
1202 {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1203 {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1204
1205 {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1206 {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1207
1208 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1209 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1210
1211 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1212 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1213 };
1214
1215 if (ST->hasSSSE3())
1216 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1217 return LT.first * Entry->Cost;
1218
1219 static const CostTblEntry SSE2ShuffleTbl[] = {
1220 {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1221 {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1222 {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1223 {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1224 {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1225
1226 {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1227 {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1228 {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1229 {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1230 {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1231 // + 2*pshufd + 2*unpck + packus
1232
1233 {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1234 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1235 {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1236 {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1237 {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1238
1239 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1240 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1241 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1242 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1243 // + pshufd/unpck
1244 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1245 // + 2*pshufd + 2*unpck + 2*packus
1246
1247 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
1248 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
1249 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
1250 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
1251 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
1252 };
1253
1254 if (ST->hasSSE2())
1255 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1256 return LT.first * Entry->Cost;
1257
1258 static const CostTblEntry SSE1ShuffleTbl[] = {
1259 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
1260 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
1261 { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps
1262 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1263 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
1264 };
1265
1266 if (ST->hasSSE1())
1267 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1268 return LT.first * Entry->Cost;
1269
1270 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
1271}
1272
1273int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1274 const Instruction *I) {
1275 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1276 assert(ISD && "Invalid opcode")((ISD && "Invalid opcode") ? static_cast<void> (
0) : __assert_fail ("ISD && \"Invalid opcode\"", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 1276, __PRETTY_FUNCTION__))
;
1277
1278 // FIXME: Need a better design of the cost table to handle non-simple types of
1279 // potential massive combinations (elem_num x src_type x dst_type).
1280
1281 static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1282 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1283 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1284
1285 // Mask sign extend has an instruction.
1286 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
1287 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
1288 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1289 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
1290 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1291 { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 },
1292
1293 // Mask zero extend is a load + broadcast.
1294 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
1295 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
1296 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1297 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
1298 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1299 { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 },
1300 };
1301
1302 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1303 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
1304 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1305 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
1306 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
1307 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
1308 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
1309
1310 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
1311 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1312 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
1313 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
1314 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
1315 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
1316
1317 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
1318 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
1319 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
1320 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
1321 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
1322 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
1323
1324 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
1325 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
1326 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
1327 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
1328 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
1329 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
1330 };
1331
1332 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1333 // 256-bit wide vectors.
1334
1335 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1336 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
1337 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
1338 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
1339
1340 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
1341 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
1342 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
1343 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
1344
1345 // v16i1 -> v16i32 - load + broadcast
1346 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
1347 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
1348 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1349 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1350 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1351 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1352 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
1353 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
1354 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1355 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1356 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1357 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1358
1359 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
1360 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
1361 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1362 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
1363 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1364 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1365 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
1366 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1367
1368 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
1369 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
1370 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
1371 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1372 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
1373 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1374 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
1375 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
1376 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1377 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1378 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1379 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1380 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
1381 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
1382 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1383 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1384 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1385 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1386 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
1387 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
1388 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
1389 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1390 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 },
1391 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 },
1392
1393 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 1 },
1394 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 },
1395 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 },
1396 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 },
1397
1398 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1399 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1400 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 },
1401 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
1402 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 },
1403 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 2 },
1404 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 2 },
1405 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
1406 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 2 },
1407 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 2 },
1408 };
1409
1410 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1411 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1412 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1413 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1414 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1415 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 1 },
1416 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 1 },
1417 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 1 },
1418 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 1 },
1419 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1420 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1421 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 1 },
1422 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 1 },
1423 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1424 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1425 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1426 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1427 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1428 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1429
1430 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1431 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1432 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1433 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1434 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1435 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
1436
1437 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1438 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
1439
1440 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
1441 };
1442
1443 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1444 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1445 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
1446 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1447 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
1448 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1449 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1450 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1451 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1452 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1453 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1454 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 4 },
1455 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1456 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1457 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1458 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1459 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1460
1461 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1462 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1463 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1464 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1465 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1466 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
1467 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 11 },
1468 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 9 },
1469 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
1470 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 11 },
1471
1472 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
1473 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
1474 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1475 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
1476 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
1477 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1478 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
1479 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
1480 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1481 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1482 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1483 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1484
1485 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
1486 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
1487 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1488 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
1489 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1490 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1491 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
1492 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1493 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1494 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
1495 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
1496 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
1497 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
1498 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1499 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 6 },
1500 // The generic code to compute the scalar overhead is currently broken.
1501 // Workaround this limitation by estimating the scalarization overhead
1502 // here. We have roughly 10 instructions per scalar element.
1503 // Multiply that by the vector width.
1504 // FIXME: remove that when PR19268 is fixed.
1505 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1506 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1507
1508 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
1509 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
1510 // This node is expanded into scalarized operations but BasicTTI is overly
1511 // optimistic estimating its cost. It computes 3 per element (one
1512 // vector-extract, one scalar conversion and one vector-insert). The
1513 // problem is that the inserts form a read-modify-write chain so latency
1514 // should be factored in too. Inflating the cost per element by 1.
1515 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
1516 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
1517
1518 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1519 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
1520 };
1521
1522 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1523 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1524 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1525 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1526 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1527 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1528 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1529
1530 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1531 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
1532 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1533 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1534 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1535 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1536 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1537 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1538 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1539 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1540 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1541 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1542 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1543 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1544 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1545 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1546 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1547 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1548
1549 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1550 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1551 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
1552 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
1553 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
1554 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
1555 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1556 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1 }, // PSHUFB
1557
1558 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 4 },
1559 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 },
1560 };
1561
1562 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1563 // These are somewhat magic numbers justified by looking at the output of
1564 // Intel's IACA, running some kernels and making sure when we take
1565 // legalization into account the throughput will be overestimated.
1566 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1567 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1568 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1569 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1570 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1571 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1572 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1573 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1574 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1575
1576 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1577 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1578 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1579 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1580 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1581 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1582 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1583 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1584
1585 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
1586 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
1587
1588 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1589
1590 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 6 },
1591 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 6 },
1592
1593 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
1594 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 },
1595
1596 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1597 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
1598 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1599 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1600 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1601 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1602 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1603 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1604 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1605 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1606 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1607 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1608 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1609 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1610 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1611 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1612 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1613 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1614 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1615 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1616 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1617 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1618 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1619 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
1620
1621 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // PAND+PACKUSWB
1622 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
1623 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1624 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1625 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 3 }, // PAND+3*PACKUSWB
1626 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 },
1627 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1628 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1629 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1630 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1631 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1632 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
1633 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB
1634 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW
1635 { ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1 }, // PSHUFD
1636 };
1637
1638 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1639 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1640
1641 if (ST->hasSSE2() && !ST->hasAVX()) {
1642 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1643 LTDest.second, LTSrc.second))
1644 return LTSrc.first * Entry->Cost;
1645 }
1646
1647 EVT SrcTy = TLI->getValueType(DL, Src);
1648 EVT DstTy = TLI->getValueType(DL, Dst);
1649
1650 // The function getSimpleVT only handles simple value types.
1651 if (!SrcTy.isSimple() || !DstTy.isSimple())
1652 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1653
1654 MVT SimpleSrcTy = SrcTy.getSimpleVT();
1655 MVT SimpleDstTy = DstTy.getSimpleVT();
1656
1657 // Make sure that neither type is going to be split before using the
1658 // AVX512 tables. This handles -mprefer-vector-width=256
1659 // with -min-legal-vector-width<=256
1660 if (TLI->getTypeAction(SimpleSrcTy) != TargetLowering::TypeSplitVector &&
1661 TLI->getTypeAction(SimpleDstTy) != TargetLowering::TypeSplitVector) {
1662 if (ST->hasBWI())
1663 if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1664 SimpleDstTy, SimpleSrcTy))
1665 return Entry->Cost;
1666
1667 if (ST->hasDQI())
1668 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1669 SimpleDstTy, SimpleSrcTy))
1670 return Entry->Cost;
1671
1672 if (ST->hasAVX512())
1673 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1674 SimpleDstTy, SimpleSrcTy))
1675 return Entry->Cost;
1676 }
1677
1678 if (ST->hasAVX2()) {
1679 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1680 SimpleDstTy, SimpleSrcTy))
1681 return Entry->Cost;
1682 }
1683
1684 if (ST->hasAVX()) {
1685 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1686 SimpleDstTy, SimpleSrcTy))
1687 return Entry->Cost;
1688 }
1689
1690 if (ST->hasSSE41()) {
1691 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1692 SimpleDstTy, SimpleSrcTy))
1693 return Entry->Cost;
1694 }
1695
1696 if (ST->hasSSE2()) {
1697 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1698 SimpleDstTy, SimpleSrcTy))
1699 return Entry->Cost;
1700 }
1701
1702 return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
1703}
1704
1705int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1706 const Instruction *I) {
1707 // Legalize the type.
1708 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1709
1710 MVT MTy = LT.second;
1711
1712 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1713 assert(ISD && "Invalid opcode")((ISD && "Invalid opcode") ? static_cast<void> (
0) : __assert_fail ("ISD && \"Invalid opcode\"", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 1713, __PRETTY_FUNCTION__))
;
1714
1715 unsigned ExtraCost = 0;
1716 if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
1717 // Some vector comparison predicates cost extra instructions.
1718 if (MTy.isVector() &&
1719 !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
1720 (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
1721 ST->hasBWI())) {
1722 switch (cast<CmpInst>(I)->getPredicate()) {
1723 case CmpInst::Predicate::ICMP_NE:
1724 // xor(cmpeq(x,y),-1)
1725 ExtraCost = 1;
1726 break;
1727 case CmpInst::Predicate::ICMP_SGE:
1728 case CmpInst::Predicate::ICMP_SLE:
1729 // xor(cmpgt(x,y),-1)
1730 ExtraCost = 1;
1731 break;
1732 case CmpInst::Predicate::ICMP_ULT:
1733 case CmpInst::Predicate::ICMP_UGT:
1734 // cmpgt(xor(x,signbit),xor(y,signbit))
1735 // xor(cmpeq(pmaxu(x,y),x),-1)
1736 ExtraCost = 2;
1737 break;
1738 case CmpInst::Predicate::ICMP_ULE:
1739 case CmpInst::Predicate::ICMP_UGE:
1740 if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
1741 (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
1742 // cmpeq(psubus(x,y),0)
1743 // cmpeq(pminu(x,y),x)
1744 ExtraCost = 1;
1745 } else {
1746 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
1747 ExtraCost = 3;
1748 }
1749 break;
1750 default:
1751 break;
1752 }
1753 }
1754 }
1755
1756 static const CostTblEntry SLMCostTbl[] = {
1757 // slm pcmpeq/pcmpgt throughput is 2
1758 { ISD::SETCC, MVT::v2i64, 2 },
1759 };
1760
1761 static const CostTblEntry AVX512BWCostTbl[] = {
1762 { ISD::SETCC, MVT::v32i16, 1 },
1763 { ISD::SETCC, MVT::v64i8, 1 },
1764
1765 { ISD::SELECT, MVT::v32i16, 1 },
1766 { ISD::SELECT, MVT::v64i8, 1 },
1767 };
1768
1769 static const CostTblEntry AVX512CostTbl[] = {
1770 { ISD::SETCC, MVT::v8i64, 1 },
1771 { ISD::SETCC, MVT::v16i32, 1 },
1772 { ISD::SETCC, MVT::v8f64, 1 },
1773 { ISD::SETCC, MVT::v16f32, 1 },
1774
1775 { ISD::SELECT, MVT::v8i64, 1 },
1776 { ISD::SELECT, MVT::v16i32, 1 },
1777 { ISD::SELECT, MVT::v8f64, 1 },
1778 { ISD::SELECT, MVT::v16f32, 1 },
1779 };
1780
1781 static const CostTblEntry AVX2CostTbl[] = {
1782 { ISD::SETCC, MVT::v4i64, 1 },
1783 { ISD::SETCC, MVT::v8i32, 1 },
1784 { ISD::SETCC, MVT::v16i16, 1 },
1785 { ISD::SETCC, MVT::v32i8, 1 },
1786
1787 { ISD::SELECT, MVT::v4i64, 1 }, // pblendvb
1788 { ISD::SELECT, MVT::v8i32, 1 }, // pblendvb
1789 { ISD::SELECT, MVT::v16i16, 1 }, // pblendvb
1790 { ISD::SELECT, MVT::v32i8, 1 }, // pblendvb
1791 };
1792
1793 static const CostTblEntry AVX1CostTbl[] = {
1794 { ISD::SETCC, MVT::v4f64, 1 },
1795 { ISD::SETCC, MVT::v8f32, 1 },
1796 // AVX1 does not support 8-wide integer compare.
1797 { ISD::SETCC, MVT::v4i64, 4 },
1798 { ISD::SETCC, MVT::v8i32, 4 },
1799 { ISD::SETCC, MVT::v16i16, 4 },
1800 { ISD::SETCC, MVT::v32i8, 4 },
1801
1802 { ISD::SELECT, MVT::v4f64, 1 }, // vblendvpd
1803 { ISD::SELECT, MVT::v8f32, 1 }, // vblendvps
1804 { ISD::SELECT, MVT::v4i64, 1 }, // vblendvpd
1805 { ISD::SELECT, MVT::v8i32, 1 }, // vblendvps
1806 { ISD::SELECT, MVT::v16i16, 3 }, // vandps + vandnps + vorps
1807 { ISD::SELECT, MVT::v32i8, 3 }, // vandps + vandnps + vorps
1808 };
1809
1810 static const CostTblEntry SSE42CostTbl[] = {
1811 { ISD::SETCC, MVT::v2f64, 1 },
1812 { ISD::SETCC, MVT::v4f32, 1 },
1813 { ISD::SETCC, MVT::v2i64, 1 },
1814 };
1815
1816 static const CostTblEntry SSE41CostTbl[] = {
1817 { ISD::SELECT, MVT::v2f64, 1 }, // blendvpd
1818 { ISD::SELECT, MVT::v4f32, 1 }, // blendvps
1819 { ISD::SELECT, MVT::v2i64, 1 }, // pblendvb
1820 { ISD::SELECT, MVT::v4i32, 1 }, // pblendvb
1821 { ISD::SELECT, MVT::v8i16, 1 }, // pblendvb
1822 { ISD::SELECT, MVT::v16i8, 1 }, // pblendvb
1823 };
1824
1825 static const CostTblEntry SSE2CostTbl[] = {
1826 { ISD::SETCC, MVT::v2f64, 2 },
1827 { ISD::SETCC, MVT::f64, 1 },
1828 { ISD::SETCC, MVT::v2i64, 8 },
1829 { ISD::SETCC, MVT::v4i32, 1 },
1830 { ISD::SETCC, MVT::v8i16, 1 },
1831 { ISD::SETCC, MVT::v16i8, 1 },
1832
1833 { ISD::SELECT, MVT::v2f64, 3 }, // andpd + andnpd + orpd
1834 { ISD::SELECT, MVT::v2i64, 3 }, // pand + pandn + por
1835 { ISD::SELECT, MVT::v4i32, 3 }, // pand + pandn + por
1836 { ISD::SELECT, MVT::v8i16, 3 }, // pand + pandn + por
1837 { ISD::SELECT, MVT::v16i8, 3 }, // pand + pandn + por
1838 };
1839
1840 static const CostTblEntry SSE1CostTbl[] = {
1841 { ISD::SETCC, MVT::v4f32, 2 },
1842 { ISD::SETCC, MVT::f32, 1 },
1843
1844 { ISD::SELECT, MVT::v4f32, 3 }, // andps + andnps + orps
1845 };
1846
1847 if (ST->isSLM())
1848 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
1849 return LT.first * (ExtraCost + Entry->Cost);
1850
1851 if (ST->hasBWI())
1852 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1853 return LT.first * (ExtraCost + Entry->Cost);
1854
1855 if (ST->hasAVX512())
1856 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1857 return LT.first * (ExtraCost + Entry->Cost);
1858
1859 if (ST->hasAVX2())
1860 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1861 return LT.first * (ExtraCost + Entry->Cost);
1862
1863 if (ST->hasAVX())
1864 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1865 return LT.first * (ExtraCost + Entry->Cost);
1866
1867 if (ST->hasSSE42())
1868 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1869 return LT.first * (ExtraCost + Entry->Cost);
1870
1871 if (ST->hasSSE41())
1872 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
1873 return LT.first * (ExtraCost + Entry->Cost);
1874
1875 if (ST->hasSSE2())
1876 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1877 return LT.first * (ExtraCost + Entry->Cost);
1878
1879 if (ST->hasSSE1())
1880 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1881 return LT.first * (ExtraCost + Entry->Cost);
1882
1883 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1884}
1885
1886unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1887
1888int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1889 ArrayRef<Type *> Tys, FastMathFlags FMF,
1890 unsigned ScalarizationCostPassed) {
1891 // Costs should match the codegen from:
1892 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1893 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
1894 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
1895 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
1896 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
1897 static const CostTblEntry AVX512CDCostTbl[] = {
1898 { ISD::CTLZ, MVT::v8i64, 1 },
1899 { ISD::CTLZ, MVT::v16i32, 1 },
1900 { ISD::CTLZ, MVT::v32i16, 8 },
1901 { ISD::CTLZ, MVT::v64i8, 20 },
1902 { ISD::CTLZ, MVT::v4i64, 1 },
1903 { ISD::CTLZ, MVT::v8i32, 1 },
1904 { ISD::CTLZ, MVT::v16i16, 4 },
1905 { ISD::CTLZ, MVT::v32i8, 10 },
1906 { ISD::CTLZ, MVT::v2i64, 1 },
1907 { ISD::CTLZ, MVT::v4i32, 1 },
1908 { ISD::CTLZ, MVT::v8i16, 4 },
1909 { ISD::CTLZ, MVT::v16i8, 4 },
1910 };
1911 static const CostTblEntry AVX512BWCostTbl[] = {
1912 { ISD::BITREVERSE, MVT::v8i64, 5 },
1913 { ISD::BITREVERSE, MVT::v16i32, 5 },
1914 { ISD::BITREVERSE, MVT::v32i16, 5 },
1915 { ISD::BITREVERSE, MVT::v64i8, 5 },
1916 { ISD::CTLZ, MVT::v8i64, 23 },
1917 { ISD::CTLZ, MVT::v16i32, 22 },
1918 { ISD::CTLZ, MVT::v32i16, 18 },
1919 { ISD::CTLZ, MVT::v64i8, 17 },
1920 { ISD::CTPOP, MVT::v8i64, 7 },
1921 { ISD::CTPOP, MVT::v16i32, 11 },
1922 { ISD::CTPOP, MVT::v32i16, 9 },
1923 { ISD::CTPOP, MVT::v64i8, 6 },
1924 { ISD::CTTZ, MVT::v8i64, 10 },
1925 { ISD::CTTZ, MVT::v16i32, 14 },
1926 { ISD::CTTZ, MVT::v32i16, 12 },
1927 { ISD::CTTZ, MVT::v64i8, 9 },
1928 { ISD::SADDSAT, MVT::v32i16, 1 },
1929 { ISD::SADDSAT, MVT::v64i8, 1 },
1930 { ISD::SSUBSAT, MVT::v32i16, 1 },
1931 { ISD::SSUBSAT, MVT::v64i8, 1 },
1932 { ISD::UADDSAT, MVT::v32i16, 1 },
1933 { ISD::UADDSAT, MVT::v64i8, 1 },
1934 { ISD::USUBSAT, MVT::v32i16, 1 },
1935 { ISD::USUBSAT, MVT::v64i8, 1 },
1936 };
1937 static const CostTblEntry AVX512CostTbl[] = {
1938 { ISD::BITREVERSE, MVT::v8i64, 36 },
1939 { ISD::BITREVERSE, MVT::v16i32, 24 },
1940 { ISD::CTLZ, MVT::v8i64, 29 },
1941 { ISD::CTLZ, MVT::v16i32, 35 },
1942 { ISD::CTPOP, MVT::v8i64, 16 },
1943 { ISD::CTPOP, MVT::v16i32, 24 },
1944 { ISD::CTTZ, MVT::v8i64, 20 },
1945 { ISD::CTTZ, MVT::v16i32, 28 },
1946 { ISD::USUBSAT, MVT::v16i32, 2 }, // pmaxud + psubd
1947 { ISD::USUBSAT, MVT::v2i64, 2 }, // pmaxuq + psubq
1948 { ISD::USUBSAT, MVT::v4i64, 2 }, // pmaxuq + psubq
1949 { ISD::USUBSAT, MVT::v8i64, 2 }, // pmaxuq + psubq
1950 { ISD::UADDSAT, MVT::v16i32, 3 }, // not + pminud + paddd
1951 { ISD::UADDSAT, MVT::v2i64, 3 }, // not + pminuq + paddq
1952 { ISD::UADDSAT, MVT::v4i64, 3 }, // not + pminuq + paddq
1953 { ISD::UADDSAT, MVT::v8i64, 3 }, // not + pminuq + paddq
1954 };
1955 static const CostTblEntry XOPCostTbl[] = {
1956 { ISD::BITREVERSE, MVT::v4i64, 4 },
1957 { ISD::BITREVERSE, MVT::v8i32, 4 },
1958 { ISD::BITREVERSE, MVT::v16i16, 4 },
1959 { ISD::BITREVERSE, MVT::v32i8, 4 },
1960 { ISD::BITREVERSE, MVT::v2i64, 1 },
1961 { ISD::BITREVERSE, MVT::v4i32, 1 },
1962 { ISD::BITREVERSE, MVT::v8i16, 1 },
1963 { ISD::BITREVERSE, MVT::v16i8, 1 },
1964 { ISD::BITREVERSE, MVT::i64, 3 },
1965 { ISD::BITREVERSE, MVT::i32, 3 },
1966 { ISD::BITREVERSE, MVT::i16, 3 },
1967 { ISD::BITREVERSE, MVT::i8, 3 }
1968 };
1969 static const CostTblEntry AVX2CostTbl[] = {
1970 { ISD::BITREVERSE, MVT::v4i64, 5 },
1971 { ISD::BITREVERSE, MVT::v8i32, 5 },
1972 { ISD::BITREVERSE, MVT::v16i16, 5 },
1973 { ISD::BITREVERSE, MVT::v32i8, 5 },
1974 { ISD::BSWAP, MVT::v4i64, 1 },
1975 { ISD::BSWAP, MVT::v8i32, 1 },
1976 { ISD::BSWAP, MVT::v16i16, 1 },
1977 { ISD::CTLZ, MVT::v4i64, 23 },
1978 { ISD::CTLZ, MVT::v8i32, 18 },
1979 { ISD::CTLZ, MVT::v16i16, 14 },
1980 { ISD::CTLZ, MVT::v32i8, 9 },
1981 { ISD::CTPOP, MVT::v4i64, 7 },
1982 { ISD::CTPOP, MVT::v8i32, 11 },
1983 { ISD::CTPOP, MVT::v16i16, 9 },
1984 { ISD::CTPOP, MVT::v32i8, 6 },
1985 { ISD::CTTZ, MVT::v4i64, 10 },
1986 { ISD::CTTZ, MVT::v8i32, 14 },
1987 { ISD::CTTZ, MVT::v16i16, 12 },
1988 { ISD::CTTZ, MVT::v32i8, 9 },
1989 { ISD::SADDSAT, MVT::v16i16, 1 },
1990 { ISD::SADDSAT, MVT::v32i8, 1 },
1991 { ISD::SSUBSAT, MVT::v16i16, 1 },
1992 { ISD::SSUBSAT, MVT::v32i8, 1 },
1993 { ISD::UADDSAT, MVT::v16i16, 1 },
1994 { ISD::UADDSAT, MVT::v32i8, 1 },
1995 { ISD::UADDSAT, MVT::v8i32, 3 }, // not + pminud + paddd
1996 { ISD::USUBSAT, MVT::v16i16, 1 },
1997 { ISD::USUBSAT, MVT::v32i8, 1 },
1998 { ISD::USUBSAT, MVT::v8i32, 2 }, // pmaxud + psubd
1999 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
2000 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
2001 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
2002 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
2003 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
2004 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
2005 };
2006 static const CostTblEntry AVX1CostTbl[] = {
2007 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert
2008 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert
2009 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2010 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert
2011 { ISD::BSWAP, MVT::v4i64, 4 },
2012 { ISD::BSWAP, MVT::v8i32, 4 },
2013 { ISD::BSWAP, MVT::v16i16, 4 },
2014 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert
2015 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert
2016 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2017 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
2018 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert
2019 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert
2020 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2021 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert
2022 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert
2023 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert
2024 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2025 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
2026 { ISD::SADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2027 { ISD::SADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2028 { ISD::SSUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2029 { ISD::SSUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2030 { ISD::UADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2031 { ISD::UADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2032 { ISD::UADDSAT, MVT::v8i32, 8 }, // 2 x 128-bit Op + extract/insert
2033 { ISD::USUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2034 { ISD::USUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2035 { ISD::USUBSAT, MVT::v8i32, 6 }, // 2 x 128-bit Op + extract/insert
2036 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
2037 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
2038 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
2039 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
2040 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
2041 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
2042 };
2043 static const CostTblEntry GLMCostTbl[] = {
2044 { ISD::FSQRT, MVT::f32, 19 }, // sqrtss
2045 { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2046 { ISD::FSQRT, MVT::f64, 34 }, // sqrtsd
2047 { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2048 };
2049 static const CostTblEntry SLMCostTbl[] = {
2050 { ISD::FSQRT, MVT::f32, 20 }, // sqrtss
2051 { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2052 { ISD::FSQRT, MVT::f64, 35 }, // sqrtsd
2053 { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2054 };
2055 static const CostTblEntry SSE42CostTbl[] = {
2056 { ISD::USUBSAT, MVT::v4i32, 2 }, // pmaxud + psubd
2057 { ISD::UADDSAT, MVT::v4i32, 3 }, // not + pminud + paddd
2058 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
2059 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
2060 };
2061 static const CostTblEntry SSSE3CostTbl[] = {
2062 { ISD::BITREVERSE, MVT::v2i64, 5 },
2063 { ISD::BITREVERSE, MVT::v4i32, 5 },
2064 { ISD::BITREVERSE, MVT::v8i16, 5 },
2065 { ISD::BITREVERSE, MVT::v16i8, 5 },
2066 { ISD::BSWAP, MVT::v2i64, 1 },
2067 { ISD::BSWAP, MVT::v4i32, 1 },
2068 { ISD::BSWAP, MVT::v8i16, 1 },
2069 { ISD::CTLZ, MVT::v2i64, 23 },
2070 { ISD::CTLZ, MVT::v4i32, 18 },
2071 { ISD::CTLZ, MVT::v8i16, 14 },
2072 { ISD::CTLZ, MVT::v16i8, 9 },
2073 { ISD::CTPOP, MVT::v2i64, 7 },
2074 { ISD::CTPOP, MVT::v4i32, 11 },
2075 { ISD::CTPOP, MVT::v8i16, 9 },
2076 { ISD::CTPOP, MVT::v16i8, 6 },
2077 { ISD::CTTZ, MVT::v2i64, 10 },
2078 { ISD::CTTZ, MVT::v4i32, 14 },
2079 { ISD::CTTZ, MVT::v8i16, 12 },
2080 { ISD::CTTZ, MVT::v16i8, 9 }
2081 };
2082 static const CostTblEntry SSE2CostTbl[] = {
2083 { ISD::BITREVERSE, MVT::v2i64, 29 },
2084 { ISD::BITREVERSE, MVT::v4i32, 27 },
2085 { ISD::BITREVERSE, MVT::v8i16, 27 },
2086 { ISD::BITREVERSE, MVT::v16i8, 20 },
2087 { ISD::BSWAP, MVT::v2i64, 7 },
2088 { ISD::BSWAP, MVT::v4i32, 7 },
2089 { ISD::BSWAP, MVT::v8i16, 7 },
2090 { ISD::CTLZ, MVT::v2i64, 25 },
2091 { ISD::CTLZ, MVT::v4i32, 26 },
2092 { ISD::CTLZ, MVT::v8i16, 20 },
2093 { ISD::CTLZ, MVT::v16i8, 17 },
2094 { ISD::CTPOP, MVT::v2i64, 12 },
2095 { ISD::CTPOP, MVT::v4i32, 15 },
2096 { ISD::CTPOP, MVT::v8i16, 13 },
2097 { ISD::CTPOP, MVT::v16i8, 10 },
2098 { ISD::CTTZ, MVT::v2i64, 14 },
2099 { ISD::CTTZ, MVT::v4i32, 18 },
2100 { ISD::CTTZ, MVT::v8i16, 16 },
2101 { ISD::CTTZ, MVT::v16i8, 13 },
2102 { ISD::SADDSAT, MVT::v8i16, 1 },
2103 { ISD::SADDSAT, MVT::v16i8, 1 },
2104 { ISD::SSUBSAT, MVT::v8i16, 1 },
2105 { ISD::SSUBSAT, MVT::v16i8, 1 },
2106 { ISD::UADDSAT, MVT::v8i16, 1 },
2107 { ISD::UADDSAT, MVT::v16i8, 1 },
2108 { ISD::USUBSAT, MVT::v8i16, 1 },
2109 { ISD::USUBSAT, MVT::v16i8, 1 },
2110 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
2111 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
2112 };
2113 static const CostTblEntry SSE1CostTbl[] = {
2114 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
2115 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
2116 };
2117 static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2118 { ISD::CTLZ, MVT::i64, 1 },
2119 };
2120 static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2121 { ISD::CTLZ, MVT::i32, 1 },
2122 { ISD::CTLZ, MVT::i16, 1 },
2123 { ISD::CTLZ, MVT::i8, 1 },
2124 };
2125 static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2126 { ISD::CTPOP, MVT::i64, 1 },
2127 };
2128 static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2129 { ISD::CTPOP, MVT::i32, 1 },
2130 { ISD::CTPOP, MVT::i16, 1 },
2131 { ISD::CTPOP, MVT::i8, 1 },
2132 };
2133 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2134 { ISD::BITREVERSE, MVT::i64, 14 },
2135 { ISD::CTLZ, MVT::i64, 4 }, // BSR+XOR or BSR+XOR+CMOV
2136 { ISD::CTPOP, MVT::i64, 10 },
2137 { ISD::SADDO, MVT::i64, 1 },
2138 { ISD::UADDO, MVT::i64, 1 },
2139 };
2140 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2141 { ISD::BITREVERSE, MVT::i32, 14 },
2142 { ISD::BITREVERSE, MVT::i16, 14 },
2143 { ISD::BITREVERSE, MVT::i8, 11 },
2144 { ISD::CTLZ, MVT::i32, 4 }, // BSR+XOR or BSR+XOR+CMOV
2145 { ISD::CTLZ, MVT::i16, 4 }, // BSR+XOR or BSR+XOR+CMOV
2146 { ISD::CTLZ, MVT::i8, 4 }, // BSR+XOR or BSR+XOR+CMOV
2147 { ISD::CTPOP, MVT::i32, 8 },
2148 { ISD::CTPOP, MVT::i16, 9 },
2149 { ISD::CTPOP, MVT::i8, 7 },
2150 { ISD::SADDO, MVT::i32, 1 },
2151 { ISD::SADDO, MVT::i16, 1 },
2152 { ISD::SADDO, MVT::i8, 1 },
2153 { ISD::UADDO, MVT::i32, 1 },
2154 { ISD::UADDO, MVT::i16, 1 },
2155 { ISD::UADDO, MVT::i8, 1 },
2156 };
2157
2158 Type *OpTy = RetTy;
2159 unsigned ISD = ISD::DELETED_NODE;
2160 switch (IID) {
2161 default:
2162 break;
2163 case Intrinsic::bitreverse:
2164 ISD = ISD::BITREVERSE;
2165 break;
2166 case Intrinsic::bswap:
2167 ISD = ISD::BSWAP;
2168 break;
2169 case Intrinsic::ctlz:
2170 ISD = ISD::CTLZ;
2171 break;
2172 case Intrinsic::ctpop:
2173 ISD = ISD::CTPOP;
2174 break;
2175 case Intrinsic::cttz:
2176 ISD = ISD::CTTZ;
2177 break;
2178 case Intrinsic::sadd_sat:
2179 ISD = ISD::SADDSAT;
2180 break;
2181 case Intrinsic::ssub_sat:
2182 ISD = ISD::SSUBSAT;
2183 break;
2184 case Intrinsic::uadd_sat:
2185 ISD = ISD::UADDSAT;
2186 break;
2187 case Intrinsic::usub_sat:
2188 ISD = ISD::USUBSAT;
2189 break;
2190 case Intrinsic::sqrt:
2191 ISD = ISD::FSQRT;
2192 break;
2193 case Intrinsic::sadd_with_overflow:
2194 case Intrinsic::ssub_with_overflow:
2195 // SSUBO has same costs so don't duplicate.
2196 ISD = ISD::SADDO;
2197 OpTy = RetTy->getContainedType(0);
2198 break;
2199 case Intrinsic::uadd_with_overflow:
2200 case Intrinsic::usub_with_overflow:
2201 // USUBO has same costs so don't duplicate.
2202 ISD = ISD::UADDO;
2203 OpTy = RetTy->getContainedType(0);
2204 break;
2205 }
2206
2207 if (ISD != ISD::DELETED_NODE) {
2208 // Legalize the type.
2209 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2210 MVT MTy = LT.second;
2211
2212 // Attempt to lookup cost.
2213 if (ST->useGLMDivSqrtCosts())
2214 if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2215 return LT.first * Entry->Cost;
2216
2217 if (ST->isSLM())
2218 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2219 return LT.first * Entry->Cost;
2220
2221 if (ST->hasCDI())
2222 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2223 return LT.first * Entry->Cost;
2224
2225 if (ST->hasBWI())
2226 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2227 return LT.first * Entry->Cost;
2228
2229 if (ST->hasAVX512())
2230 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2231 return LT.first * Entry->Cost;
2232
2233 if (ST->hasXOP())
2234 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2235 return LT.first * Entry->Cost;
2236
2237 if (ST->hasAVX2())
2238 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2239 return LT.first * Entry->Cost;
2240
2241 if (ST->hasAVX())
2242 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2243 return LT.first * Entry->Cost;
2244
2245 if (ST->hasSSE42())
2246 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2247 return LT.first * Entry->Cost;
2248
2249 if (ST->hasSSSE3())
2250 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2251 return LT.first * Entry->Cost;
2252
2253 if (ST->hasSSE2())
2254 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2255 return LT.first * Entry->Cost;
2256
2257 if (ST->hasSSE1())
2258 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2259 return LT.first * Entry->Cost;
2260
2261 if (ST->hasLZCNT()) {
2262 if (ST->is64Bit())
2263 if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2264 return LT.first * Entry->Cost;
2265
2266 if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2267 return LT.first * Entry->Cost;
2268 }
2269
2270 if (ST->hasPOPCNT()) {
2271 if (ST->is64Bit())
2272 if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2273 return LT.first * Entry->Cost;
2274
2275 if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2276 return LT.first * Entry->Cost;
2277 }
2278
2279 // TODO - add BMI (TZCNT) scalar handling
2280
2281 if (ST->is64Bit())
2282 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2283 return LT.first * Entry->Cost;
2284
2285 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2286 return LT.first * Entry->Cost;
2287 }
2288
2289 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
2290}
2291
2292int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
2293 ArrayRef<Value *> Args, FastMathFlags FMF,
2294 unsigned VF) {
2295 static const CostTblEntry AVX512CostTbl[] = {
2296 { ISD::ROTL, MVT::v8i64, 1 },
2297 { ISD::ROTL, MVT::v4i64, 1 },
2298 { ISD::ROTL, MVT::v2i64, 1 },
2299 { ISD::ROTL, MVT::v16i32, 1 },
2300 { ISD::ROTL, MVT::v8i32, 1 },
2301 { ISD::ROTL, MVT::v4i32, 1 },
2302 { ISD::ROTR, MVT::v8i64, 1 },
2303 { ISD::ROTR, MVT::v4i64, 1 },
2304 { ISD::ROTR, MVT::v2i64, 1 },
2305 { ISD::ROTR, MVT::v16i32, 1 },
2306 { ISD::ROTR, MVT::v8i32, 1 },
2307 { ISD::ROTR, MVT::v4i32, 1 }
2308 };
2309 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2310 static const CostTblEntry XOPCostTbl[] = {
2311 { ISD::ROTL, MVT::v4i64, 4 },
2312 { ISD::ROTL, MVT::v8i32, 4 },
2313 { ISD::ROTL, MVT::v16i16, 4 },
2314 { ISD::ROTL, MVT::v32i8, 4 },
2315 { ISD::ROTL, MVT::v2i64, 1 },
2316 { ISD::ROTL, MVT::v4i32, 1 },
2317 { ISD::ROTL, MVT::v8i16, 1 },
2318 { ISD::ROTL, MVT::v16i8, 1 },
2319 { ISD::ROTR, MVT::v4i64, 6 },
2320 { ISD::ROTR, MVT::v8i32, 6 },
2321 { ISD::ROTR, MVT::v16i16, 6 },
2322 { ISD::ROTR, MVT::v32i8, 6 },
2323 { ISD::ROTR, MVT::v2i64, 2 },
2324 { ISD::ROTR, MVT::v4i32, 2 },
2325 { ISD::ROTR, MVT::v8i16, 2 },
2326 { ISD::ROTR, MVT::v16i8, 2 }
2327 };
2328 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2329 { ISD::ROTL, MVT::i64, 1 },
2330 { ISD::ROTR, MVT::i64, 1 },
2331 { ISD::FSHL, MVT::i64, 4 }
2332 };
2333 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2334 { ISD::ROTL, MVT::i32, 1 },
2335 { ISD::ROTL, MVT::i16, 1 },
2336 { ISD::ROTL, MVT::i8, 1 },
2337 { ISD::ROTR, MVT::i32, 1 },
2338 { ISD::ROTR, MVT::i16, 1 },
2339 { ISD::ROTR, MVT::i8, 1 },
2340 { ISD::FSHL, MVT::i32, 4 },
2341 { ISD::FSHL, MVT::i16, 4 },
2342 { ISD::FSHL, MVT::i8, 4 }
2343 };
2344
2345 unsigned ISD = ISD::DELETED_NODE;
2346 switch (IID) {
2347 default:
2348 break;
2349 case Intrinsic::fshl:
2350 ISD = ISD::FSHL;
2351 if (Args[0] == Args[1])
2352 ISD = ISD::ROTL;
2353 break;
2354 case Intrinsic::fshr:
2355 // FSHR has same costs so don't duplicate.
2356 ISD = ISD::FSHL;
2357 if (Args[0] == Args[1])
2358 ISD = ISD::ROTR;
2359 break;
2360 }
2361
2362 if (ISD != ISD::DELETED_NODE) {
2363 // Legalize the type.
2364 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2365 MVT MTy = LT.second;
2366
2367 // Attempt to lookup cost.
2368 if (ST->hasAVX512())
2369 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2370 return LT.first * Entry->Cost;
2371
2372 if (ST->hasXOP())
2373 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2374 return LT.first * Entry->Cost;
2375
2376 if (ST->is64Bit())
2377 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2378 return LT.first * Entry->Cost;
2379
2380 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2381 return LT.first * Entry->Cost;
2382 }
2383
2384 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
2385}
2386
2387int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2388 static const CostTblEntry SLMCostTbl[] = {
2389 { ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 },
2390 { ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 },
2391 { ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 },
2392 { ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 }
2393 };
2394
2395 assert(Val->isVectorTy() && "This must be a vector type")((Val->isVectorTy() && "This must be a vector type"
) ? static_cast<void> (0) : __assert_fail ("Val->isVectorTy() && \"This must be a vector type\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 2395, __PRETTY_FUNCTION__))
;
2396
2397 Type *ScalarType = Val->getScalarType();
2398
2399 if (Index != -1U) {
2400 // Legalize the type.
2401 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2402
2403 // This type is legalized to a scalar type.
2404 if (!LT.second.isVector())
2405 return 0;
2406
2407 // The type may be split. Normalize the index to the new type.
2408 unsigned Width = LT.second.getVectorNumElements();
2409 Index = Index % Width;
2410
2411 if (Index == 0) {
2412 // Floating point scalars are already located in index #0.
2413 if (ScalarType->isFloatingPointTy())
2414 return 0;
2415
2416 // Assume movd/movq XMM <-> GPR is relatively cheap on all targets.
2417 if (ScalarType->isIntegerTy())
2418 return 1;
2419 }
2420
2421 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2422 assert(ISD && "Unexpected vector opcode")((ISD && "Unexpected vector opcode") ? static_cast<
void> (0) : __assert_fail ("ISD && \"Unexpected vector opcode\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 2422, __PRETTY_FUNCTION__))
;
2423 MVT MScalarTy = LT.second.getScalarType();
2424 if (ST->isSLM())
2425 if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
2426 return Entry->Cost;
2427 }
2428
2429 // Add to the base cost if we know that the extracted element of a vector is
2430 // destined to be moved to and used in the integer register file.
2431 int RegisterFileMoveCost = 0;
2432 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2433 RegisterFileMoveCost = 1;
2434
2435 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2436}
2437
2438int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
2439 MaybeAlign Alignment, unsigned AddressSpace,
2440 const Instruction *I) {
2441 // Handle non-power-of-two vectors such as <3 x float>
2442 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
2443 unsigned NumElem = VTy->getVectorNumElements();
2444
2445 // Handle a few common cases:
2446 // <3 x float>
2447 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2448 // Cost = 64 bit store + extract + 32 bit store.
2449 return 3;
2450
2451 // <3 x double>
2452 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
2453 // Cost = 128 bit store + unpack + 64 bit store.
2454 return 3;
2455
2456 // Assume that all other non-power-of-two numbers are scalarized.
2457 if (!isPowerOf2_32(NumElem)) {
2458 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
2459 AddressSpace);
2460 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
2461 Opcode == Instruction::Store);
2462 return NumElem * Cost + SplitCost;
2463 }
2464 }
2465
2466 // Legalize the type.
2467 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
2468 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&(((Opcode == Instruction::Load || Opcode == Instruction::Store
) && "Invalid Opcode") ? static_cast<void> (0) :
__assert_fail ("(Opcode == Instruction::Load || Opcode == Instruction::Store) && \"Invalid Opcode\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 2469, __PRETTY_FUNCTION__))
2469 "Invalid Opcode")(((Opcode == Instruction::Load || Opcode == Instruction::Store
) && "Invalid Opcode") ? static_cast<void> (0) :
__assert_fail ("(Opcode == Instruction::Load || Opcode == Instruction::Store) && \"Invalid Opcode\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 2469, __PRETTY_FUNCTION__))
;
2470
2471 // Each load/store unit costs 1.
2472 int Cost = LT.first * 1;
2473
2474 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
2475 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
2476 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
2477 Cost *= 2;
2478
2479 return Cost;
2480}
2481
2482int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
2483 unsigned Alignment,
2484 unsigned AddressSpace) {
2485 bool IsLoad = (Instruction::Load == Opcode);
2486 bool IsStore = (Instruction::Store == Opcode);
2487
2488 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
2489 if (!SrcVTy)
2490 // To calculate scalar take the regular cost, without mask
2491 return getMemoryOpCost(Opcode, SrcTy, MaybeAlign(Alignment), AddressSpace);
2492
2493 unsigned NumElem = SrcVTy->getVectorNumElements();
2494 VectorType *MaskTy =
2495 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
2496 if ((IsLoad && !isLegalMaskedLoad(SrcVTy, MaybeAlign(Alignment))) ||
2497 (IsStore && !isLegalMaskedStore(SrcVTy, MaybeAlign(Alignment))) ||
2498 !isPowerOf2_32(NumElem)) {
2499 // Scalarization
2500 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
2501 int ScalarCompareCost = getCmpSelInstrCost(
2502 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
2503 int BranchCost = getCFInstrCost(Instruction::Br);
2504 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
2505
2506 int ValueSplitCost = getScalarizationOverhead(SrcVTy, IsLoad, IsStore);
2507 int MemopCost =
2508 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2509 MaybeAlign(Alignment), AddressSpace);
2510 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
2511 }
2512
2513 // Legalize the type.
2514 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2515 auto VT = TLI->getValueType(DL, SrcVTy);
2516 int Cost = 0;
2517 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
2518 LT.second.getVectorNumElements() == NumElem)
2519 // Promotion requires expand/truncate for data and a shuffle for mask.
2520 Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
2521 getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
2522
2523 else if (LT.second.getVectorNumElements() > NumElem) {
2524 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
2525 LT.second.getVectorNumElements());
2526 // Expanding requires fill mask with zeroes
2527 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
2528 }
2529
2530 // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
2531 if (!ST->hasAVX512())
2532 return Cost + LT.first * (IsLoad ? 2 : 8);
2533
2534 // AVX-512 masked load/store is cheapper
2535 return Cost + LT.first;
2536}
2537
2538int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2539 const SCEV *Ptr) {
2540 // Address computations in vectorized code with non-consecutive addresses will
2541 // likely result in more instructions compared to scalar code where the
2542 // computation can more often be merged into the index mode. The resulting
2543 // extra micro-ops can significantly decrease throughput.
2544 const unsigned NumVectorInstToHideOverhead = 10;
2545
2546 // Cost modeling of Strided Access Computation is hidden by the indexing
2547 // modes of X86 regardless of the stride value. We dont believe that there
2548 // is a difference between constant strided access in gerenal and constant
2549 // strided value which is less than or equal to 64.
2550 // Even in the case of (loop invariant) stride whose value is not known at
2551 // compile time, the address computation will not incur more than one extra
2552 // ADD instruction.
2553 if (Ty->isVectorTy() && SE) {
2554 if (!BaseT::isStridedAccess(Ptr))
2555 return NumVectorInstToHideOverhead;
2556 if (!BaseT::getConstantStrideStep(SE, Ptr))
2557 return 1;
2558 }
2559
2560 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
2561}
2562
2563int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
2564 bool IsPairwise) {
2565 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2566 // and make it as the cost.
2567
2568 static const CostTblEntry SLMCostTblPairWise[] = {
2569 { ISD::FADD, MVT::v2f64, 3 },
2570 { ISD::ADD, MVT::v2i64, 5 },
2571 };
2572
2573 static const CostTblEntry SSE2CostTblPairWise[] = {
2574 { ISD::FADD, MVT::v2f64, 2 },
2575 { ISD::FADD, MVT::v4f32, 4 },
2576 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
2577 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32.
2578 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
2579 { ISD::ADD, MVT::v2i16, 3 }, // FIXME: chosen to be less than v4i16
2580 { ISD::ADD, MVT::v4i16, 4 }, // FIXME: chosen to be less than v8i16
2581 { ISD::ADD, MVT::v8i16, 5 },
2582 { ISD::ADD, MVT::v2i8, 2 },
2583 { ISD::ADD, MVT::v4i8, 2 },
2584 { ISD::ADD, MVT::v8i8, 2 },
2585 { ISD::ADD, MVT::v16i8, 3 },
2586 };
2587
2588 static const CostTblEntry AVX1CostTblPairWise[] = {
2589 { ISD::FADD, MVT::v4f64, 5 },
2590 { ISD::FADD, MVT::v8f32, 7 },
2591 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
2592 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
2593 { ISD::ADD, MVT::v8i32, 5 },
2594 { ISD::ADD, MVT::v16i16, 6 },
2595 { ISD::ADD, MVT::v32i8, 4 },
2596 };
2597
2598 static const CostTblEntry SLMCostTblNoPairWise[] = {
2599 { ISD::FADD, MVT::v2f64, 3 },
2600 { ISD::ADD, MVT::v2i64, 5 },
2601 };
2602
2603 static const CostTblEntry SSE2CostTblNoPairWise[] = {
2604 { ISD::FADD, MVT::v2f64, 2 },
2605 { ISD::FADD, MVT::v4f32, 4 },
2606 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
2607 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32
2608 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
2609 { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3".
2610 { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3".
2611 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
2612 { ISD::ADD, MVT::v2i8, 2 },
2613 { ISD::ADD, MVT::v4i8, 2 },
2614 { ISD::ADD, MVT::v8i8, 2 },
2615 { ISD::ADD, MVT::v16i8, 3 },
2616 };
2617
2618 static const CostTblEntry AVX1CostTblNoPairWise[] = {
2619 { ISD::FADD, MVT::v4f64, 3 },
2620 { ISD::FADD, MVT::v4f32, 3 },
2621 { ISD::FADD, MVT::v8f32, 4 },
2622 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
2623 { ISD::ADD, MVT::v4i64, 3 },
2624 { ISD::ADD, MVT::v8i32, 5 },
2625 { ISD::ADD, MVT::v16i16, 5 },
2626 { ISD::ADD, MVT::v32i8, 4 },
2627 };
2628
2629 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2630 assert(ISD && "Invalid opcode")((ISD && "Invalid opcode") ? static_cast<void> (
0) : __assert_fail ("ISD && \"Invalid opcode\"", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 2630, __PRETTY_FUNCTION__))
;
2631
2632 // Before legalizing the type, give a chance to look up illegal narrow types
2633 // in the table.
2634 // FIXME: Is there a better way to do this?
2635 EVT VT = TLI->getValueType(DL, ValTy);
2636 if (VT.isSimple()) {
2637 MVT MTy = VT.getSimpleVT();
2638 if (IsPairwise) {
2639 if (ST->isSLM())
2640 if (const auto *Entry = CostTableLookup(SLMCostTblPairWise, ISD, MTy))
2641 return Entry->Cost;
2642
2643 if (ST->hasAVX())
2644 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2645 return Entry->Cost;
2646
2647 if (ST->hasSSE2())
2648 if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2649 return Entry->Cost;
2650 } else {
2651 if (ST->isSLM())
2652 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
2653 return Entry->Cost;
2654
2655 if (ST->hasAVX())
2656 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2657 return Entry->Cost;
2658
2659 if (ST->hasSSE2())
2660 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2661 return Entry->Cost;
2662 }
2663 }
2664
2665 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2666
2667 MVT MTy = LT.second;
2668
2669 if (IsPairwise) {
2670 if (ST->isSLM())
2671 if (const auto *Entry = CostTableLookup(SLMCostTblPairWise, ISD, MTy))
2672 return LT.first * Entry->Cost;
2673
2674 if (ST->hasAVX())
2675 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2676 return LT.first * Entry->Cost;
2677
2678 if (ST->hasSSE2())
2679 if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2680 return LT.first * Entry->Cost;
2681 } else {
2682 if (ST->isSLM())
2683 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
2684 return LT.first * Entry->Cost;
2685
2686 if (ST->hasAVX())
2687 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2688 return LT.first * Entry->Cost;
2689
2690 if (ST->hasSSE2())
2691 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2692 return LT.first * Entry->Cost;
2693 }
2694
2695 // FIXME: These assume a naive kshift+binop lowering, which is probably
2696 // conservative in most cases.
2697 // FIXME: This doesn't cost large types like v128i1 correctly.
2698 static const CostTblEntry AVX512BoolReduction[] = {
2699 { ISD::AND, MVT::v2i1, 3 },
2700 { ISD::AND, MVT::v4i1, 5 },
2701 { ISD::AND, MVT::v8i1, 7 },
2702 { ISD::AND, MVT::v16i1, 9 },
2703 { ISD::AND, MVT::v32i1, 11 },
2704 { ISD::AND, MVT::v64i1, 13 },
2705 { ISD::OR, MVT::v2i1, 3 },
2706 { ISD::OR, MVT::v4i1, 5 },
2707 { ISD::OR, MVT::v8i1, 7 },
2708 { ISD::OR, MVT::v16i1, 9 },
2709 { ISD::OR, MVT::v32i1, 11 },
2710 { ISD::OR, MVT::v64i1, 13 },
2711 };
2712
2713 static const CostTblEntry AVX2BoolReduction[] = {
2714 { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp
2715 { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp
2716 { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp
2717 { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp
2718 };
2719
2720 static const CostTblEntry AVX1BoolReduction[] = {
2721 { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp
2722 { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp
2723 { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
2724 { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
2725 { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp
2726 { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp
2727 { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
2728 { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
2729 };
2730
2731 static const CostTblEntry SSE2BoolReduction[] = {
2732 { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp
2733 { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp
2734 { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp
2735 { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp
2736 { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp
2737 { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp
2738 { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp
2739 { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp
2740 };
2741
2742 // Handle bool allof/anyof patterns.
2743 if (!IsPairwise && ValTy->getVectorElementType()->isIntegerTy(1)) {
2744 if (ST->hasAVX512())
2745 if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
2746 return LT.first * Entry->Cost;
2747 if (ST->hasAVX2())
2748 if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
2749 return LT.first * Entry->Cost;
2750 if (ST->hasAVX())
2751 if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
2752 return LT.first * Entry->Cost;
2753 if (ST->hasSSE2())
2754 if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
2755 return LT.first * Entry->Cost;
2756 }
2757
2758 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
2759}
2760
2761int X86TTIImpl::getMinMaxReductionCost(Type *ValTy, Type *CondTy,
2762 bool IsPairwise, bool IsUnsigned) {
2763 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2764
2765 MVT MTy = LT.second;
2766
2767 int ISD;
2768 if (ValTy->isIntOrIntVectorTy()) {
2769 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
2770 } else {
2771 assert(ValTy->isFPOrFPVectorTy() &&((ValTy->isFPOrFPVectorTy() && "Expected float point or integer vector type."
) ? static_cast<void> (0) : __assert_fail ("ValTy->isFPOrFPVectorTy() && \"Expected float point or integer vector type.\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 2772, __PRETTY_FUNCTION__))
2772 "Expected float point or integer vector type.")((ValTy->isFPOrFPVectorTy() && "Expected float point or integer vector type."
) ? static_cast<void> (0) : __assert_fail ("ValTy->isFPOrFPVectorTy() && \"Expected float point or integer vector type.\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 2772, __PRETTY_FUNCTION__))
;
2773 ISD = ISD::FMINNUM;
2774 }
2775
2776 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2777 // and make it as the cost.
2778
2779 static const CostTblEntry SSE1CostTblPairWise[] = {
2780 {ISD::FMINNUM, MVT::v4f32, 4},
2781 };
2782
2783 static const CostTblEntry SSE2CostTblPairWise[] = {
2784 {ISD::FMINNUM, MVT::v2f64, 3},
2785 {ISD::SMIN, MVT::v2i64, 6},
2786 {ISD::UMIN, MVT::v2i64, 8},
2787 {ISD::SMIN, MVT::v4i32, 6},
2788 {ISD::UMIN, MVT::v4i32, 8},
2789 {ISD::SMIN, MVT::v8i16, 4},
2790 {ISD::UMIN, MVT::v8i16, 6},
2791 {ISD::SMIN, MVT::v16i8, 8},
2792 {ISD::UMIN, MVT::v16i8, 6},
2793 };
2794
2795 static const CostTblEntry SSE41CostTblPairWise[] = {
2796 {ISD::FMINNUM, MVT::v4f32, 2},
2797 {ISD::SMIN, MVT::v2i64, 9},
2798 {ISD::UMIN, MVT::v2i64,10},
2799 {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2800 {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2801 {ISD::SMIN, MVT::v8i16, 2},
2802 {ISD::UMIN, MVT::v8i16, 2},
2803 {ISD::SMIN, MVT::v16i8, 3},
2804 {ISD::UMIN, MVT::v16i8, 3},
2805 };
2806
2807 static const CostTblEntry SSE42CostTblPairWise[] = {
2808 {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2809 {ISD::UMIN, MVT::v2i64, 8}, // The data reported by the IACA is "8.6"
2810 };
2811
2812 static const CostTblEntry AVX1CostTblPairWise[] = {
2813 {ISD::FMINNUM, MVT::v4f32, 1},
2814 {ISD::FMINNUM, MVT::v4f64, 1},
2815 {ISD::FMINNUM, MVT::v8f32, 2},
2816 {ISD::SMIN, MVT::v2i64, 3},
2817 {ISD::UMIN, MVT::v2i64, 3},
2818 {ISD::SMIN, MVT::v4i32, 1},
2819 {ISD::UMIN, MVT::v4i32, 1},
2820 {ISD::SMIN, MVT::v8i16, 1},
2821 {ISD::UMIN, MVT::v8i16, 1},
2822 {ISD::SMIN, MVT::v16i8, 2},
2823 {ISD::UMIN, MVT::v16i8, 2},
2824 {ISD::SMIN, MVT::v4i64, 7},
2825 {ISD::UMIN, MVT::v4i64, 7},
2826 {ISD::SMIN, MVT::v8i32, 3},
2827 {ISD::UMIN, MVT::v8i32, 3},
2828 {ISD::SMIN, MVT::v16i16, 3},
2829 {ISD::UMIN, MVT::v16i16, 3},
2830 {ISD::SMIN, MVT::v32i8, 3},
2831 {ISD::UMIN, MVT::v32i8, 3},
2832 };
2833
2834 static const CostTblEntry AVX2CostTblPairWise[] = {
2835 {ISD::SMIN, MVT::v4i64, 2},
2836 {ISD::UMIN, MVT::v4i64, 2},
2837 {ISD::SMIN, MVT::v8i32, 1},
2838 {ISD::UMIN, MVT::v8i32, 1},
2839 {ISD::SMIN, MVT::v16i16, 1},
2840 {ISD::UMIN, MVT::v16i16, 1},
2841 {ISD::SMIN, MVT::v32i8, 2},
2842 {ISD::UMIN, MVT::v32i8, 2},
2843 };
2844
2845 static const CostTblEntry AVX512CostTblPairWise[] = {
2846 {ISD::FMINNUM, MVT::v8f64, 1},
2847 {ISD::FMINNUM, MVT::v16f32, 2},
2848 {ISD::SMIN, MVT::v8i64, 2},
2849 {ISD::UMIN, MVT::v8i64, 2},
2850 {ISD::SMIN, MVT::v16i32, 1},
2851 {ISD::UMIN, MVT::v16i32, 1},
2852 };
2853
2854 static const CostTblEntry SSE1CostTblNoPairWise[] = {
2855 {ISD::FMINNUM, MVT::v4f32, 4},
2856 };
2857
2858 static const CostTblEntry SSE2CostTblNoPairWise[] = {
2859 {ISD::FMINNUM, MVT::v2f64, 3},
2860 {ISD::SMIN, MVT::v2i64, 6},
2861 {ISD::UMIN, MVT::v2i64, 8},
2862 {ISD::SMIN, MVT::v4i32, 6},
2863 {ISD::UMIN, MVT::v4i32, 8},
2864 {ISD::SMIN, MVT::v8i16, 4},
2865 {ISD::UMIN, MVT::v8i16, 6},
2866 {ISD::SMIN, MVT::v16i8, 8},
2867 {ISD::UMIN, MVT::v16i8, 6},
2868 };
2869
2870 static const CostTblEntry SSE41CostTblNoPairWise[] = {
2871 {ISD::FMINNUM, MVT::v4f32, 3},
2872 {ISD::SMIN, MVT::v2i64, 9},
2873 {ISD::UMIN, MVT::v2i64,11},
2874 {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2875 {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2876 {ISD::SMIN, MVT::v8i16, 1}, // The data reported by the IACA is "1.5"
2877 {ISD::UMIN, MVT::v8i16, 2}, // The data reported by the IACA is "1.8"
2878 {ISD::SMIN, MVT::v16i8, 3},
2879 {ISD::UMIN, MVT::v16i8, 3},
2880 };
2881
2882 static const CostTblEntry SSE42CostTblNoPairWise[] = {
2883 {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2884 {ISD::UMIN, MVT::v2i64, 9}, // The data reported by the IACA is "8.6"
2885 };
2886
2887 static const CostTblEntry AVX1CostTblNoPairWise[] = {
2888 {ISD::FMINNUM, MVT::v4f32, 1},
2889 {ISD::FMINNUM, MVT::v4f64, 1},
2890 {ISD::FMINNUM, MVT::v8f32, 1},
2891 {ISD::SMIN, MVT::v2i64, 3},
2892 {ISD::UMIN, MVT::v2i64, 3},
2893 {ISD::SMIN, MVT::v4i32, 1},
2894 {ISD::UMIN, MVT::v4i32, 1},
2895 {ISD::SMIN, MVT::v8i16, 1},
2896 {ISD::UMIN, MVT::v8i16, 1},
2897 {ISD::SMIN, MVT::v16i8, 2},
2898 {ISD::UMIN, MVT::v16i8, 2},
2899 {ISD::SMIN, MVT::v4i64, 7},
2900 {ISD::UMIN, MVT::v4i64, 7},
2901 {ISD::SMIN, MVT::v8i32, 2},
2902 {ISD::UMIN, MVT::v8i32, 2},
2903 {ISD::SMIN, MVT::v16i16, 2},
2904 {ISD::UMIN, MVT::v16i16, 2},
2905 {ISD::SMIN, MVT::v32i8, 2},
2906 {ISD::UMIN, MVT::v32i8, 2},
2907 };
2908
2909 static const CostTblEntry AVX2CostTblNoPairWise[] = {
2910 {ISD::SMIN, MVT::v4i64, 1},
2911 {ISD::UMIN, MVT::v4i64, 1},
2912 {ISD::SMIN, MVT::v8i32, 1},
2913 {ISD::UMIN, MVT::v8i32, 1},
2914 {ISD::SMIN, MVT::v16i16, 1},
2915 {ISD::UMIN, MVT::v16i16, 1},
2916 {ISD::SMIN, MVT::v32i8, 1},
2917 {ISD::UMIN, MVT::v32i8, 1},
2918 };
2919
2920 static const CostTblEntry AVX512CostTblNoPairWise[] = {
2921 {ISD::FMINNUM, MVT::v8f64, 1},
2922 {ISD::FMINNUM, MVT::v16f32, 2},
2923 {ISD::SMIN, MVT::v8i64, 1},
2924 {ISD::UMIN, MVT::v8i64, 1},
2925 {ISD::SMIN, MVT::v16i32, 1},
2926 {ISD::UMIN, MVT::v16i32, 1},
2927 };
2928
2929 if (IsPairwise) {
2930 if (ST->hasAVX512())
2931 if (const auto *Entry = CostTableLookup(AVX512CostTblPairWise, ISD, MTy))
2932 return LT.first * Entry->Cost;
2933
2934 if (ST->hasAVX2())
2935 if (const auto *Entry = CostTableLookup(AVX2CostTblPairWise, ISD, MTy))
2936 return LT.first * Entry->Cost;
2937
2938 if (ST->hasAVX())
2939 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2940 return LT.first * Entry->Cost;
2941
2942 if (ST->hasSSE42())
2943 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2944 return LT.first * Entry->Cost;
2945
2946 if (ST->hasSSE41())
2947 if (const auto *Entry = CostTableLookup(SSE41CostTblPairWise, ISD, MTy))
2948 return LT.first * Entry->Cost;
2949
2950 if (ST->hasSSE2())
2951 if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2952 return LT.first * Entry->Cost;
2953
2954 if (ST->hasSSE1())
2955 if (const auto *Entry = CostTableLookup(SSE1CostTblPairWise, ISD, MTy))
2956 return LT.first * Entry->Cost;
2957 } else {
2958 if (ST->hasAVX512())
2959 if (const auto *Entry =
2960 CostTableLookup(AVX512CostTblNoPairWise, ISD, MTy))
2961 return LT.first * Entry->Cost;
2962
2963 if (ST->hasAVX2())
2964 if (const auto *Entry = CostTableLookup(AVX2CostTblNoPairWise, ISD, MTy))
2965 return LT.first * Entry->Cost;
2966
2967 if (ST->hasAVX())
2968 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2969 return LT.first * Entry->Cost;
2970
2971 if (ST->hasSSE42())
2972 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2973 return LT.first * Entry->Cost;
2974
2975 if (ST->hasSSE41())
2976 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
2977 return LT.first * Entry->Cost;
2978
2979 if (ST->hasSSE2())
2980 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2981 return LT.first * Entry->Cost;
2982
2983 if (ST->hasSSE1())
2984 if (const auto *Entry = CostTableLookup(SSE1CostTblNoPairWise, ISD, MTy))
2985 return LT.first * Entry->Cost;
2986 }
2987
2988 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned);
2989}
2990
2991/// Calculate the cost of materializing a 64-bit value. This helper
2992/// method might only calculate a fraction of a larger immediate. Therefore it
2993/// is valid to return a cost of ZERO.
2994int X86TTIImpl::getIntImmCost(int64_t Val) {
2995 if (Val == 0)
2996 return TTI::TCC_Free;
2997
2998 if (isInt<32>(Val))
2999 return TTI::TCC_Basic;
3000
3001 return 2 * TTI::TCC_Basic;
3002}
3003
3004int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
3005 assert(Ty->isIntegerTy())((Ty->isIntegerTy()) ? static_cast<void> (0) : __assert_fail
("Ty->isIntegerTy()", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 3005, __PRETTY_FUNCTION__))
;
3006
3007 unsigned BitSize = Ty->getPrimitiveSizeInBits();
3008 if (BitSize == 0)
3009 return ~0U;
3010
3011 // Never hoist constants larger than 128bit, because this might lead to
3012 // incorrect code generation or assertions in codegen.
3013 // Fixme: Create a cost model for types larger than i128 once the codegen
3014 // issues have been fixed.
3015 if (BitSize > 128)
3016 return TTI::TCC_Free;
3017
3018 if (Imm == 0)
3019 return TTI::TCC_Free;
3020
3021 // Sign-extend all constants to a multiple of 64-bit.
3022 APInt ImmVal = Imm;
3023 if (BitSize % 64 != 0)
3024 ImmVal = Imm.sext(alignTo(BitSize, 64));
3025
3026 // Split the constant into 64-bit chunks and calculate the cost for each
3027 // chunk.
3028 int Cost = 0;
3029 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3030 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3031 int64_t Val = Tmp.getSExtValue();
3032 Cost += getIntImmCost(Val);
3033 }
3034 // We need at least one instruction to materialize the constant.
3035 return std::max(1, Cost);
3036}
3037
3038int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
3039 Type *Ty) {
3040 assert(Ty->isIntegerTy())((Ty->isIntegerTy()) ? static_cast<void> (0) : __assert_fail
("Ty->isIntegerTy()", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 3040, __PRETTY_FUNCTION__))
;
3041
3042 unsigned BitSize = Ty->getPrimitiveSizeInBits();
3043 // There is no cost model for constants with a bit size of 0. Return TCC_Free
3044 // here, so that constant hoisting will ignore this constant.
3045 if (BitSize == 0)
3046 return TTI::TCC_Free;
3047
3048 unsigned ImmIdx = ~0U;
3049 switch (Opcode) {
3050 default:
3051 return TTI::TCC_Free;
3052 case Instruction::GetElementPtr:
3053 // Always hoist the base address of a GetElementPtr. This prevents the
3054 // creation of new constants for every base constant that gets constant
3055 // folded with the offset.
3056 if (Idx == 0)
3057 return 2 * TTI::TCC_Basic;
3058 return TTI::TCC_Free;
3059 case Instruction::Store:
3060 ImmIdx = 0;
3061 break;
3062 case Instruction::ICmp:
3063 // This is an imperfect hack to prevent constant hoisting of
3064 // compares that might be trying to check if a 64-bit value fits in
3065 // 32-bits. The backend can optimize these cases using a right shift by 32.
3066 // Ideally we would check the compare predicate here. There also other
3067 // similar immediates the backend can use shifts for.
3068 if (Idx == 1 && Imm.getBitWidth() == 64) {
3069 uint64_t ImmVal = Imm.getZExtValue();
3070 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3071 return TTI::TCC_Free;
3072 }
3073 ImmIdx = 1;
3074 break;
3075 case Instruction::And:
3076 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3077 // by using a 32-bit operation with implicit zero extension. Detect such
3078 // immediates here as the normal path expects bit 31 to be sign extended.
3079 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3080 return TTI::TCC_Free;
3081 ImmIdx = 1;
3082 break;
3083 case Instruction::Add:
3084 case Instruction::Sub:
3085 // For add/sub, we can use the opposite instruction for INT32_MIN.
3086 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3087 return TTI::TCC_Free;
3088 ImmIdx = 1;
3089 break;
3090 case Instruction::UDiv:
3091 case Instruction::SDiv:
3092 case Instruction::URem:
3093 case Instruction::SRem:
3094 // Division by constant is typically expanded later into a different
3095 // instruction sequence. This completely changes the constants.
3096 // Report them as "free" to stop ConstantHoist from marking them as opaque.
3097 return TTI::TCC_Free;
3098 case Instruction::Mul:
3099 case Instruction::Or:
3100 case Instruction::Xor:
3101 ImmIdx = 1;
3102 break;
3103 // Always return TCC_Free for the shift value of a shift instruction.
3104 case Instruction::Shl:
3105 case Instruction::LShr:
3106 case Instruction::AShr:
3107 if (Idx == 1)
3108 return TTI::TCC_Free;
3109 break;
3110 case Instruction::Trunc:
3111 case Instruction::ZExt:
3112 case Instruction::SExt:
3113 case Instruction::IntToPtr:
3114 case Instruction::PtrToInt:
3115 case Instruction::BitCast:
3116 case Instruction::PHI:
3117 case Instruction::Call:
3118 case Instruction::Select:
3119 case Instruction::Ret:
3120 case Instruction::Load:
3121 break;
3122 }
3123
3124 if (Idx == ImmIdx) {
3125 int NumConstants = divideCeil(BitSize, 64);
3126 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
3127 return (Cost <= NumConstants * TTI::TCC_Basic)
3128 ? static_cast<int>(TTI::TCC_Free)
3129 : Cost;
3130 }
3131
3132 return X86TTIImpl::getIntImmCost(Imm, Ty);
3133}
3134
3135int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
3136 const APInt &Imm, Type *Ty) {
3137 assert(Ty->isIntegerTy())((Ty->isIntegerTy()) ? static_cast<void> (0) : __assert_fail
("Ty->isIntegerTy()", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 3137, __PRETTY_FUNCTION__))
;
3138
3139 unsigned BitSize = Ty->getPrimitiveSizeInBits();
3140 // There is no cost model for constants with a bit size of 0. Return TCC_Free
3141 // here, so that constant hoisting will ignore this constant.
3142 if (BitSize == 0)
3143 return TTI::TCC_Free;
3144
3145 switch (IID) {
3146 default:
3147 return TTI::TCC_Free;
3148 case Intrinsic::sadd_with_overflow:
3149 case Intrinsic::uadd_with_overflow:
3150 case Intrinsic::ssub_with_overflow:
3151 case Intrinsic::usub_with_overflow:
3152 case Intrinsic::smul_with_overflow:
3153 case Intrinsic::umul_with_overflow:
3154 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3155 return TTI::TCC_Free;
3156 break;
3157 case Intrinsic::experimental_stackmap:
3158 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3159 return TTI::TCC_Free;
3160 break;
3161 case Intrinsic::experimental_patchpoint_void:
3162 case Intrinsic::experimental_patchpoint_i64:
3163 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3164 return TTI::TCC_Free;
3165 break;
3166 }
3167 return X86TTIImpl::getIntImmCost(Imm, Ty);
3168}
3169
3170unsigned X86TTIImpl::getUserCost(const User *U,
3171 ArrayRef<const Value *> Operands) {
3172 if (isa<StoreInst>(U)) {
1
Assuming 'U' is not a 'StoreInst'
2
Taking false branch
3173 Value *Ptr = U->getOperand(1);
3174 // Store instruction with index and scale costs 2 Uops.
3175 // Check the preceding GEP to identify non-const indices.
3176 if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3177 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3178 return TTI::TCC_Basic * 2;
3179 }
3180 return TTI::TCC_Basic;
3181 }
3182 return BaseT::getUserCost(U, Operands);
3
Calling 'TargetTransformInfoImplCRTPBase::getUserCost'
3183}
3184
3185// Return an average cost of Gather / Scatter instruction, maybe improved later
3186int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
3187 unsigned Alignment, unsigned AddressSpace) {
3188
3189 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost")((isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost"
) ? static_cast<void> (0) : __assert_fail ("isa<VectorType>(SrcVTy) && \"Unexpected type in getGSVectorCost\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 3189, __PRETTY_FUNCTION__))
;
3190 unsigned VF = SrcVTy->getVectorNumElements();
3191
3192 // Try to reduce index size from 64 bit (default for GEP)
3193 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
3194 // operation will use 16 x 64 indices which do not fit in a zmm and needs
3195 // to split. Also check that the base pointer is the same for all lanes,
3196 // and that there's at most one variable index.
3197 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
3198 unsigned IndexSize = DL.getPointerSizeInBits();
3199 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3200 if (IndexSize < 64 || !GEP)
3201 return IndexSize;
3202
3203 unsigned NumOfVarIndices = 0;
3204 Value *Ptrs = GEP->getPointerOperand();
3205 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
3206 return IndexSize;
3207 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
3208 if (isa<Constant>(GEP->getOperand(i)))
3209 continue;
3210 Type *IndxTy = GEP->getOperand(i)->getType();
3211 if (IndxTy->isVectorTy())
3212 IndxTy = IndxTy->getVectorElementType();
3213 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
3214 !isa<SExtInst>(GEP->getOperand(i))) ||
3215 ++NumOfVarIndices > 1)
3216 return IndexSize; // 64
3217 }
3218 return (unsigned)32;
3219 };
3220
3221
3222 // Trying to reduce IndexSize to 32 bits for vector 16.
3223 // By default the IndexSize is equal to pointer size.
3224 unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
3225 ? getIndexSizeInBits(Ptr, DL)
3226 : DL.getPointerSizeInBits();
3227
3228 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
3229 IndexSize), VF);
3230 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
3231 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3232 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
3233 if (SplitFactor > 1) {
3234 // Handle splitting of vector of pointers
3235 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
3236 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
3237 AddressSpace);
3238 }
3239
3240 // The gather / scatter cost is given by Intel architects. It is a rough
3241 // number since we are looking at one instruction in a time.
3242 const int GSOverhead = (Opcode == Instruction::Load)
3243 ? ST->getGatherOverhead()
3244 : ST->getScatterOverhead();
3245 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3246 MaybeAlign(Alignment), AddressSpace);
3247}
3248
3249/// Return the cost of full scalarization of gather / scatter operation.
3250///
3251/// Opcode - Load or Store instruction.
3252/// SrcVTy - The type of the data vector that should be gathered or scattered.
3253/// VariableMask - The mask is non-constant at compile time.
3254/// Alignment - Alignment for one element.
3255/// AddressSpace - pointer[s] address space.
3256///
3257int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
3258 bool VariableMask, unsigned Alignment,
3259 unsigned AddressSpace) {
3260 unsigned VF = SrcVTy->getVectorNumElements();
3261
3262 int MaskUnpackCost = 0;
3263 if (VariableMask) {
3264 VectorType *MaskTy =
3265 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
3266 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
3267 int ScalarCompareCost =
3268 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
3269 nullptr);
3270 int BranchCost = getCFInstrCost(Instruction::Br);
3271 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
3272 }
3273
3274 // The cost of the scalar loads/stores.
3275 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3276 MaybeAlign(Alignment), AddressSpace);
3277
3278 int InsertExtractCost = 0;
3279 if (Opcode == Instruction::Load)
3280 for (unsigned i = 0; i < VF; ++i)
3281 // Add the cost of inserting each scalar load into the vector
3282 InsertExtractCost +=
3283 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
3284 else
3285 for (unsigned i = 0; i < VF; ++i)
3286 // Add the cost of extracting each element out of the data vector
3287 InsertExtractCost +=
3288 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
3289
3290 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
3291}
3292
3293/// Calculate the cost of Gather / Scatter operation
3294int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
3295 Value *Ptr, bool VariableMask,
3296 unsigned Alignment) {
3297 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter")((SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter"
) ? static_cast<void> (0) : __assert_fail ("SrcVTy->isVectorTy() && \"Unexpected data type for Gather/Scatter\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 3297, __PRETTY_FUNCTION__))
;
3298 unsigned VF = SrcVTy->getVectorNumElements();
3299 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3300 if (!PtrTy && Ptr->getType()->isVectorTy())
3301 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
3302 assert(PtrTy && "Unexpected type for Ptr argument")((PtrTy && "Unexpected type for Ptr argument") ? static_cast
<void> (0) : __assert_fail ("PtrTy && \"Unexpected type for Ptr argument\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 3302, __PRETTY_FUNCTION__))
;
3303 unsigned AddressSpace = PtrTy->getAddressSpace();
3304
3305 bool Scalarize = false;
3306 if ((Opcode == Instruction::Load &&
3307 !isLegalMaskedGather(SrcVTy, MaybeAlign(Alignment))) ||
3308 (Opcode == Instruction::Store &&
3309 !isLegalMaskedScatter(SrcVTy, MaybeAlign(Alignment))))
3310 Scalarize = true;
3311 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
3312 // Vector-4 of gather/scatter instruction does not exist on KNL.
3313 // We can extend it to 8 elements, but zeroing upper bits of
3314 // the mask vector will add more instructions. Right now we give the scalar
3315 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
3316 // is better in the VariableMask case.
3317 if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
3318 Scalarize = true;
3319
3320 if (Scalarize)
3321 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
3322 AddressSpace);
3323
3324 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
3325}
3326
3327bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
3328 TargetTransformInfo::LSRCost &C2) {
3329 // X86 specific here are "instruction number 1st priority".
3330 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
3331 C1.NumIVMuls, C1.NumBaseAdds,
3332 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
3333 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
3334 C2.NumIVMuls, C2.NumBaseAdds,
3335 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
3336}
3337
3338bool X86TTIImpl::canMacroFuseCmp() {
3339 return ST->hasMacroFusion() || ST->hasBranchFusion();
3340}
3341
3342bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) {
3343 if (!ST->hasAVX())
3344 return false;
3345
3346 // The backend can't handle a single element vector.
3347 if (isa<VectorType>(DataTy) && DataTy->getVectorNumElements() == 1)
3348 return false;
3349 Type *ScalarTy = DataTy->getScalarType();
3350
3351 if (ScalarTy->isPointerTy())
3352 return true;
3353
3354 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3355 return true;
3356
3357 if (!ScalarTy->isIntegerTy())
3358 return false;
3359
3360 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3361 return IntWidth == 32 || IntWidth == 64 ||
3362 ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
3363}
3364
3365bool X86TTIImpl::isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) {
3366 return isLegalMaskedLoad(DataType, Alignment);
3367}
3368
3369bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
3370 unsigned DataSize = DL.getTypeStoreSize(DataType);
3371 // The only supported nontemporal loads are for aligned vectors of 16 or 32
3372 // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2
3373 // (the equivalent stores only require AVX).
3374 if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
3375 return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2();
3376
3377 return false;
3378}
3379
3380bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
3381 unsigned DataSize = DL.getTypeStoreSize(DataType);
3382
3383 // SSE4A supports nontemporal stores of float and double at arbitrary
3384 // alignment.
3385 if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
3386 return true;
3387
3388 // Besides the SSE4A subtarget exception above, only aligned stores are
3389 // available nontemporaly on any other subtarget. And only stores with a size
3390 // of 4..32 bytes (powers of 2, only) are permitted.
3391 if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
3392 !isPowerOf2_32(DataSize))
3393 return false;
3394
3395 // 32-byte vector nontemporal stores are supported by AVX (the equivalent
3396 // loads require AVX2).
3397 if (DataSize == 32)
3398 return ST->hasAVX();
3399 else if (DataSize == 16)
3400 return ST->hasSSE1();
3401 return true;
3402}
3403
3404bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
3405 if (!isa<VectorType>(DataTy))
3406 return false;
3407
3408 if (!ST->hasAVX512())
3409 return false;
3410
3411 // The backend can't handle a single element vector.
3412 if (DataTy->getVectorNumElements() == 1)
3413 return false;
3414
3415 Type *ScalarTy = DataTy->getVectorElementType();
3416
3417 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3418 return true;
3419
3420 if (!ScalarTy->isIntegerTy())
3421 return false;
3422
3423 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3424 return IntWidth == 32 || IntWidth == 64 ||
3425 ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
3426}
3427
3428bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
3429 return isLegalMaskedExpandLoad(DataTy);
3430}
3431
3432bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, MaybeAlign Alignment) {
3433 // Some CPUs have better gather performance than others.
3434 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
3435 // enable gather with a -march.
3436 if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
3437 return false;
3438
3439 // This function is called now in two cases: from the Loop Vectorizer
3440 // and from the Scalarizer.
3441 // When the Loop Vectorizer asks about legality of the feature,
3442 // the vectorization factor is not calculated yet. The Loop Vectorizer
3443 // sends a scalar type and the decision is based on the width of the
3444 // scalar element.
3445 // Later on, the cost model will estimate usage this intrinsic based on
3446 // the vector type.
3447 // The Scalarizer asks again about legality. It sends a vector type.
3448 // In this case we can reject non-power-of-2 vectors.
3449 // We also reject single element vectors as the type legalizer can't
3450 // scalarize it.
3451 if (isa<VectorType>(DataTy)) {
3452 unsigned NumElts = DataTy->getVectorNumElements();
3453 if (NumElts == 1 || !isPowerOf2_32(NumElts))
3454 return false;
3455 }
3456 Type *ScalarTy = DataTy->getScalarType();
3457 if (ScalarTy->isPointerTy())
3458 return true;
3459
3460 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3461 return true;
3462
3463 if (!ScalarTy->isIntegerTy())
3464 return false;
3465
3466 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3467 return IntWidth == 32 || IntWidth == 64;
3468}
3469
3470bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) {
3471 // AVX2 doesn't support scatter
3472 if (!ST->hasAVX512())
3473 return false;
3474 return isLegalMaskedGather(DataType, Alignment);
3475}
3476
3477bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
3478 EVT VT = TLI->getValueType(DL, DataType);
3479 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
3480}
3481
3482bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
3483 return false;
3484}
3485
3486bool X86TTIImpl::areInlineCompatible(const Function *Caller,
3487 const Function *Callee) const {
3488 const TargetMachine &TM = getTLI()->getTargetMachine();
3489
3490 // Work this as a subsetting of subtarget features.
3491 const FeatureBitset &CallerBits =
3492 TM.getSubtargetImpl(*Caller)->getFeatureBits();
3493 const FeatureBitset &CalleeBits =
3494 TM.getSubtargetImpl(*Callee)->getFeatureBits();
3495
3496 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
3497 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
3498 return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
3499}
3500
3501bool X86TTIImpl::areFunctionArgsABICompatible(
3502 const Function *Caller, const Function *Callee,
3503 SmallPtrSetImpl<Argument *> &Args) const {
3504 if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
3505 return false;
3506
3507 // If we get here, we know the target features match. If one function
3508 // considers 512-bit vectors legal and the other does not, consider them
3509 // incompatible.
3510 // FIXME Look at the arguments and only consider 512 bit or larger vectors?
3511 const TargetMachine &TM = getTLI()->getTargetMachine();
3512
3513 return TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
3514 TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs();
3515}
3516
3517X86TTIImpl::TTI::MemCmpExpansionOptions
3518X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
3519 TTI::MemCmpExpansionOptions Options;
3520 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3521 Options.NumLoadsPerBlock = 2;
3522 if (IsZeroCmp) {
3523 // Only enable vector loads for equality comparison. Right now the vector
3524 // version is not as fast for three way compare (see #33329).
3525 const unsigned PreferredWidth = ST->getPreferVectorWidth();
3526 if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
3527 if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
3528 if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
3529 // All GPR and vector loads can be unaligned.
3530 Options.AllowOverlappingLoads = true;
3531 }
3532 if (ST->is64Bit()) {
3533 Options.LoadSizes.push_back(8);
3534 }
3535 Options.LoadSizes.push_back(4);
3536 Options.LoadSizes.push_back(2);
3537 Options.LoadSizes.push_back(1);
3538 return Options;
3539}
3540
3541bool X86TTIImpl::enableInterleavedAccessVectorization() {
3542 // TODO: We expect this to be beneficial regardless of arch,
3543 // but there are currently some unexplained performance artifacts on Atom.
3544 // As a temporary solution, disable on Atom.
3545 return !(ST->isAtom());
3546}
3547
3548// Get estimation for interleaved load/store operations for AVX2.
3549// \p Factor is the interleaved-access factor (stride) - number of
3550// (interleaved) elements in the group.
3551// \p Indices contains the indices for a strided load: when the
3552// interleaved load has gaps they indicate which elements are used.
3553// If Indices is empty (or if the number of indices is equal to the size
3554// of the interleaved-access as given in \p Factor) the access has no gaps.
3555//
3556// As opposed to AVX-512, AVX2 does not have generic shuffles that allow
3557// computing the cost using a generic formula as a function of generic
3558// shuffles. We therefore use a lookup table instead, filled according to
3559// the instruction sequences that codegen currently generates.
3560int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
3561 unsigned Factor,
3562 ArrayRef<unsigned> Indices,
3563 unsigned Alignment,
3564 unsigned AddressSpace,
3565 bool UseMaskForCond,
3566 bool UseMaskForGaps) {
3567
3568 if (UseMaskForCond || UseMaskForGaps)
3569 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3570 Alignment, AddressSpace,
3571 UseMaskForCond, UseMaskForGaps);
3572
3573 // We currently Support only fully-interleaved groups, with no gaps.
3574 // TODO: Support also strided loads (interleaved-groups with gaps).
3575 if (Indices.size() && Indices.size() != Factor)
3576 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3577 Alignment, AddressSpace);
3578
3579 // VecTy for interleave memop is <VF*Factor x Elt>.
3580 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3581 // VecTy = <12 x i32>.
3582 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3583
3584 // This function can be called with VecTy=<6xi128>, Factor=3, in which case
3585 // the VF=2, while v2i128 is an unsupported MVT vector type
3586 // (see MachineValueType.h::getVectorVT()).
3587 if (!LegalVT.isVector())
3588 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3589 Alignment, AddressSpace);
3590
3591 unsigned VF = VecTy->getVectorNumElements() / Factor;
3592 Type *ScalarTy = VecTy->getVectorElementType();
3593
3594 // Calculate the number of memory operations (NumOfMemOps), required
3595 // for load/store the VecTy.
3596 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3597 unsigned LegalVTSize = LegalVT.getStoreSize();
3598 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3599
3600 // Get the cost of one memory operation.
3601 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3602 LegalVT.getVectorNumElements());
3603 unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
3604 MaybeAlign(Alignment), AddressSpace);
3605
3606 VectorType *VT = VectorType::get(ScalarTy, VF);
3607 EVT ETy = TLI->getValueType(DL, VT);
3608 if (!ETy.isSimple())
3609 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3610 Alignment, AddressSpace);
3611
3612 // TODO: Complete for other data-types and strides.
3613 // Each combination of Stride, ElementTy and VF results in a different
3614 // sequence; The cost tables are therefore accessed with:
3615 // Factor (stride) and VectorType=VFxElemType.
3616 // The Cost accounts only for the shuffle sequence;
3617 // The cost of the loads/stores is accounted for separately.
3618 //
3619 static const CostTblEntry AVX2InterleavedLoadTbl[] = {
3620 { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
3621 { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
3622
3623 { 3, MVT::v2i8, 10 }, //(load 6i8 and) deinterleave into 3 x 2i8
3624 { 3, MVT::v4i8, 4 }, //(load 12i8 and) deinterleave into 3 x 4i8
3625 { 3, MVT::v8i8, 9 }, //(load 24i8 and) deinterleave into 3 x 8i8
3626 { 3, MVT::v16i8, 11}, //(load 48i8 and) deinterleave into 3 x 16i8
3627 { 3, MVT::v32i8, 13}, //(load 96i8 and) deinterleave into 3 x 32i8
3628 { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
3629
3630 { 4, MVT::v2i8, 12 }, //(load 8i8 and) deinterleave into 4 x 2i8
3631 { 4, MVT::v4i8, 4 }, //(load 16i8 and) deinterleave into 4 x 4i8
3632 { 4, MVT::v8i8, 20 }, //(load 32i8 and) deinterleave into 4 x 8i8
3633 { 4, MVT::v16i8, 39 }, //(load 64i8 and) deinterleave into 4 x 16i8
3634 { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
3635
3636 { 8, MVT::v8f32, 40 } //(load 64f32 and)deinterleave into 8 x 8f32
3637 };
3638
3639 static const CostTblEntry AVX2InterleavedStoreTbl[] = {
3640 { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
3641 { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
3642
3643 { 3, MVT::v2i8, 7 }, //interleave 3 x 2i8 into 6i8 (and store)
3644 { 3, MVT::v4i8, 8 }, //interleave 3 x 4i8 into 12i8 (and store)
3645 { 3, MVT::v8i8, 11 }, //interleave 3 x 8i8 into 24i8 (and store)
3646 { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
3647 { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
3648
3649 { 4, MVT::v2i8, 12 }, //interleave 4 x 2i8 into 8i8 (and store)
3650 { 4, MVT::v4i8, 9 }, //interleave 4 x 4i8 into 16i8 (and store)
3651 { 4, MVT::v8i8, 10 }, //interleave 4 x 8i8 into 32i8 (and store)
3652 { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
3653 { 4, MVT::v32i8, 12 } //interleave 4 x 32i8 into 128i8 (and store)
3654 };
3655
3656 if (Opcode == Instruction::Load) {
3657 if (const auto *Entry =
3658 CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
3659 return NumOfMemOps * MemOpCost + Entry->Cost;
3660 } else {
3661 assert(Opcode == Instruction::Store &&((Opcode == Instruction::Store && "Expected Store Instruction at this point"
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::Store && \"Expected Store Instruction at this point\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 3662, __PRETTY_FUNCTION__))
3662 "Expected Store Instruction at this point")((Opcode == Instruction::Store && "Expected Store Instruction at this point"
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::Store && \"Expected Store Instruction at this point\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 3662, __PRETTY_FUNCTION__))
;
3663 if (const auto *Entry =
3664 CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
3665 return NumOfMemOps * MemOpCost + Entry->Cost;
3666 }
3667
3668 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3669 Alignment, AddressSpace);
3670}
3671
3672// Get estimation for interleaved load/store operations and strided load.
3673// \p Indices contains indices for strided load.
3674// \p Factor - the factor of interleaving.
3675// AVX-512 provides 3-src shuffles that significantly reduces the cost.
3676int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
3677 unsigned Factor,
3678 ArrayRef<unsigned> Indices,
3679 unsigned Alignment,
3680 unsigned AddressSpace,
3681 bool UseMaskForCond,
3682 bool UseMaskForGaps) {
3683
3684 if (UseMaskForCond || UseMaskForGaps)
3685 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3686 Alignment, AddressSpace,
3687 UseMaskForCond, UseMaskForGaps);
3688
3689 // VecTy for interleave memop is <VF*Factor x Elt>.
3690 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3691 // VecTy = <12 x i32>.
3692
3693 // Calculate the number of memory operations (NumOfMemOps), required
3694 // for load/store the VecTy.
3695 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3696 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3697 unsigned LegalVTSize = LegalVT.getStoreSize();
3698 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3699
3700 // Get the cost of one memory operation.
3701 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3702 LegalVT.getVectorNumElements());
3703 unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
3704 MaybeAlign(Alignment), AddressSpace);
3705
3706 unsigned VF = VecTy->getVectorNumElements() / Factor;
3707 MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
3708
3709 if (Opcode == Instruction::Load) {
3710 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
3711 // contain the cost of the optimized shuffle sequence that the
3712 // X86InterleavedAccess pass will generate.
3713 // The cost of loads and stores are computed separately from the table.
3714
3715 // X86InterleavedAccess support only the following interleaved-access group.
3716 static const CostTblEntry AVX512InterleavedLoadTbl[] = {
3717 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
3718 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
3719 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
3720 };
3721
3722 if (const auto *Entry =
3723 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
3724 return NumOfMemOps * MemOpCost + Entry->Cost;
3725 //If an entry does not exist, fallback to the default implementation.
3726
3727 // Kind of shuffle depends on number of loaded values.
3728 // If we load the entire data in one register, we can use a 1-src shuffle.
3729 // Otherwise, we'll merge 2 sources in each operation.
3730 TTI::ShuffleKind ShuffleKind =
3731 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
3732
3733 unsigned ShuffleCost =
3734 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
3735
3736 unsigned NumOfLoadsInInterleaveGrp =
3737 Indices.size() ? Indices.size() : Factor;
3738 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
3739 VecTy->getVectorNumElements() / Factor);
3740 unsigned NumOfResults =
3741 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
3742 NumOfLoadsInInterleaveGrp;
3743
3744 // About a half of the loads may be folded in shuffles when we have only
3745 // one result. If we have more than one result, we do not fold loads at all.
3746 unsigned NumOfUnfoldedLoads =
3747 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
3748
3749 // Get a number of shuffle operations per result.
3750 unsigned NumOfShufflesPerResult =
3751 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
3752
3753 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3754 // When we have more than one destination, we need additional instructions
3755 // to keep sources.
3756 unsigned NumOfMoves = 0;
3757 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
3758 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
3759
3760 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
3761 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
3762
3763 return Cost;
3764 }
3765
3766 // Store.
3767 assert(Opcode == Instruction::Store &&((Opcode == Instruction::Store && "Expected Store Instruction at this point"
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::Store && \"Expected Store Instruction at this point\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 3768, __PRETTY_FUNCTION__))
3768 "Expected Store Instruction at this point")((Opcode == Instruction::Store && "Expected Store Instruction at this point"
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::Store && \"Expected Store Instruction at this point\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 3768, __PRETTY_FUNCTION__))
;
3769 // X86InterleavedAccess support only the following interleaved-access group.
3770 static const CostTblEntry AVX512InterleavedStoreTbl[] = {
3771 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
3772 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
3773 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
3774
3775 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
3776 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store)
3777 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
3778 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store)
3779 };
3780
3781 if (const auto *Entry =
3782 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
3783 return NumOfMemOps * MemOpCost + Entry->Cost;
3784 //If an entry does not exist, fallback to the default implementation.
3785
3786 // There is no strided stores meanwhile. And store can't be folded in
3787 // shuffle.
3788 unsigned NumOfSources = Factor; // The number of values to be merged.
3789 unsigned ShuffleCost =
3790 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
3791 unsigned NumOfShufflesPerStore = NumOfSources - 1;
3792
3793 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3794 // We need additional instructions to keep sources.
3795 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
3796 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
3797 NumOfMoves;
3798 return Cost;
3799}
3800
3801int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
3802 unsigned Factor,
3803 ArrayRef<unsigned> Indices,
3804 unsigned Alignment,
3805 unsigned AddressSpace,
3806 bool UseMaskForCond,
3807 bool UseMaskForGaps) {
3808 auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
3809 Type *EltTy = VecTy->getVectorElementType();
3810 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
3811 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
3812 return true;
3813 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
3814 return HasBW;
3815 return false;
3816 };
3817 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
3818 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
3819 Alignment, AddressSpace,
3820 UseMaskForCond, UseMaskForGaps);
3821 if (ST->hasAVX2())
3822 return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
3823 Alignment, AddressSpace,
3824 UseMaskForCond, UseMaskForGaps);
3825
3826 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3827 Alignment, AddressSpace,
3828 UseMaskForCond, UseMaskForGaps);
3829}

/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h

1//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file provides helpers for the implementation of
10/// a TargetTransformInfo-conforming class.
11///
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
15#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
16
17#include "llvm/Analysis/ScalarEvolutionExpressions.h"
18#include "llvm/Analysis/TargetTransformInfo.h"
19#include "llvm/Analysis/VectorUtils.h"
20#include "llvm/IR/CallSite.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/GetElementPtrTypeIterator.h"
24#include "llvm/IR/Operator.h"
25#include "llvm/IR/Type.h"
26
27namespace llvm {
28
29/// Base class for use as a mix-in that aids implementing
30/// a TargetTransformInfo-compatible class.
31class TargetTransformInfoImplBase {
32protected:
33 typedef TargetTransformInfo TTI;
34
35 const DataLayout &DL;
36
37 explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
38
39public:
40 // Provide value semantics. MSVC requires that we spell all of these out.
41 TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
42 : DL(Arg.DL) {}
43 TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
44
45 const DataLayout &getDataLayout() const { return DL; }
46
47 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
48 switch (Opcode) {
47
Control jumps to 'case IntToPtr:' at line 73
49 default:
50 // By default, just classify everything as 'basic'.
51 return TTI::TCC_Basic;
52
53 case Instruction::GetElementPtr:
54 llvm_unreachable("Use getGEPCost for GEP operations!")::llvm::llvm_unreachable_internal("Use getGEPCost for GEP operations!"
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 54)
;
55
56 case Instruction::BitCast:
57 assert(OpTy && "Cast instructions must provide the operand type")((OpTy && "Cast instructions must provide the operand type"
) ? static_cast<void> (0) : __assert_fail ("OpTy && \"Cast instructions must provide the operand type\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 57, __PRETTY_FUNCTION__))
;
58 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
59 // Identity and pointer-to-pointer casts are free.
60 return TTI::TCC_Free;
61
62 // Otherwise, the default basic cost is used.
63 return TTI::TCC_Basic;
64
65 case Instruction::FDiv:
66 case Instruction::FRem:
67 case Instruction::SDiv:
68 case Instruction::SRem:
69 case Instruction::UDiv:
70 case Instruction::URem:
71 return TTI::TCC_Expensive;
72
73 case Instruction::IntToPtr: {
74 // An inttoptr cast is free so long as the input is a legal integer type
75 // which doesn't contain values outside the range of a pointer.
76 unsigned OpSize = OpTy->getScalarSizeInBits();
48
Called C++ object pointer is null
77 if (DL.isLegalInteger(OpSize) &&
78 OpSize <= DL.getPointerTypeSizeInBits(Ty))
79 return TTI::TCC_Free;
80
81 // Otherwise it's not a no-op.
82 return TTI::TCC_Basic;
83 }
84 case Instruction::PtrToInt: {
85 // A ptrtoint cast is free so long as the result is large enough to store
86 // the pointer, and a legal integer type.
87 unsigned DestSize = Ty->getScalarSizeInBits();
88 if (DL.isLegalInteger(DestSize) &&
89 DestSize >= DL.getPointerTypeSizeInBits(OpTy))
90 return TTI::TCC_Free;
91
92 // Otherwise it's not a no-op.
93 return TTI::TCC_Basic;
94 }
95 case Instruction::Trunc:
96 // trunc to a native type is free (assuming the target has compare and
97 // shift-right of the same width).
98 if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
99 return TTI::TCC_Free;
100
101 return TTI::TCC_Basic;
102 }
103 }
104
105 int getGEPCost(Type *PointeeType, const Value *Ptr,
106 ArrayRef<const Value *> Operands) {
107 // In the basic model, we just assume that all-constant GEPs will be folded
108 // into their uses via addressing modes.
109 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
110 if (!isa<Constant>(Operands[Idx]))
111 return TTI::TCC_Basic;
112
113 return TTI::TCC_Free;
114 }
115
116 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
117 unsigned &JTSize,
118 ProfileSummaryInfo *PSI,
119 BlockFrequencyInfo *BFI) {
120 (void)PSI;
121 (void)BFI;
122 JTSize = 0;
123 return SI.getNumCases();
124 }
125
126 int getExtCost(const Instruction *I, const Value *Src) {
127 return TTI::TCC_Basic;
128 }
129
130 unsigned getCallCost(FunctionType *FTy, int NumArgs, const User *U) {
131 assert(FTy && "FunctionType must be provided to this routine.")((FTy && "FunctionType must be provided to this routine."
) ? static_cast<void> (0) : __assert_fail ("FTy && \"FunctionType must be provided to this routine.\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 131, __PRETTY_FUNCTION__))
;
132
133 // The target-independent implementation just measures the size of the
134 // function by approximating that each argument will take on average one
135 // instruction to prepare.
136
137 if (NumArgs < 0)
138 // Set the argument number to the number of explicit arguments in the
139 // function.
140 NumArgs = FTy->getNumParams();
141
142 return TTI::TCC_Basic * (NumArgs + 1);
143 }
144
145 unsigned getInliningThresholdMultiplier() { return 1; }
146
147 int getInlinerVectorBonusPercent() { return 150; }
148
149 unsigned getMemcpyCost(const Instruction *I) {
150 return TTI::TCC_Expensive;
151 }
152
153 bool hasBranchDivergence() { return false; }
154
155 bool useGPUDivergenceAnalysis() { return false; }
156
157 bool isSourceOfDivergence(const Value *V) { return false; }
158
159 bool isAlwaysUniform(const Value *V) { return false; }
160
161 unsigned getFlatAddressSpace () {
162 return -1;
163 }
164
165 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
166 Intrinsic::ID IID) const {
167 return false;
168 }
169
170 bool rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
171 Value *OldV, Value *NewV) const {
172 return false;
173 }
174
175 bool isLoweredToCall(const Function *F) {
176 assert(F && "A concrete function must be provided to this routine.")((F && "A concrete function must be provided to this routine."
) ? static_cast<void> (0) : __assert_fail ("F && \"A concrete function must be provided to this routine.\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 176, __PRETTY_FUNCTION__))
;
177
178 // FIXME: These should almost certainly not be handled here, and instead
179 // handled with the help of TLI or the target itself. This was largely
180 // ported from existing analysis heuristics here so that such refactorings
181 // can take place in the future.
182
183 if (F->isIntrinsic())
184 return false;
185
186 if (F->hasLocalLinkage() || !F->hasName())
187 return true;
188
189 StringRef Name = F->getName();
190
191 // These will all likely lower to a single selection DAG node.
192 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
193 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
194 Name == "fmin" || Name == "fminf" || Name == "fminl" ||
195 Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
196 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
197 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
198 return false;
199
200 // These are all likely to be optimized into something smaller.
201 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
202 Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
203 Name == "floorf" || Name == "ceil" || Name == "round" ||
204 Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
205 Name == "llabs")
206 return false;
207
208 return true;
209 }
210
211 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
212 AssumptionCache &AC,
213 TargetLibraryInfo *LibInfo,
214 HardwareLoopInfo &HWLoopInfo) {
215 return false;
216 }
217
218 bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
219 AssumptionCache &AC, TargetLibraryInfo *TLI,
220 DominatorTree *DT,
221 const LoopAccessInfo *LAI) const {
222 return false;
223 }
224
225 void getUnrollingPreferences(Loop *, ScalarEvolution &,
226 TTI::UnrollingPreferences &) {}
227
228 bool isLegalAddImmediate(int64_t Imm) { return false; }
229
230 bool isLegalICmpImmediate(int64_t Imm) { return false; }
231
232 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
233 bool HasBaseReg, int64_t Scale,
234 unsigned AddrSpace, Instruction *I = nullptr) {
235 // Guess that only reg and reg+reg addressing is allowed. This heuristic is
236 // taken from the implementation of LSR.
237 return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
238 }
239
240 bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) {
241 return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
242 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
243 std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
244 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
245 }
246
247 bool canMacroFuseCmp() { return false; }
248
249 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
250 DominatorTree *DT, AssumptionCache *AC,
251 TargetLibraryInfo *LibInfo) {
252 return false;
253 }
254
255 bool shouldFavorPostInc() const { return false; }
256
257 bool shouldFavorBackedgeIndex(const Loop *L) const { return false; }
258
259 bool isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) { return false; }
260
261 bool isLegalMaskedLoad(Type *DataType, MaybeAlign Alignment) { return false; }
262
263 bool isLegalNTStore(Type *DataType, Align Alignment) {
264 // By default, assume nontemporal memory stores are available for stores
265 // that are aligned and have a size that is a power of 2.
266 unsigned DataSize = DL.getTypeStoreSize(DataType);
267 return Alignment >= DataSize && isPowerOf2_32(DataSize);
268 }
269
270 bool isLegalNTLoad(Type *DataType, Align Alignment) {
271 // By default, assume nontemporal memory loads are available for loads that
272 // are aligned and have a size that is a power of 2.
273 unsigned DataSize = DL.getTypeStoreSize(DataType);
274 return Alignment >= DataSize && isPowerOf2_32(DataSize);
275 }
276
277 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) {
278 return false;
279 }
280
281 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) {
282 return false;
283 }
284
285 bool isLegalMaskedCompressStore(Type *DataType) { return false; }
286
287 bool isLegalMaskedExpandLoad(Type *DataType) { return false; }
288
289 bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }
290
291 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; }
292
293 bool prefersVectorizedAddressing() { return true; }
294
295 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
296 bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
297 // Guess that all legal addressing mode are free.
298 if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
299 Scale, AddrSpace))
300 return 0;
301 return -1;
302 }
303
304 bool LSRWithInstrQueries() { return false; }
305
306 bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
307
308 bool isProfitableToHoist(Instruction *I) { return true; }
309
310 bool useAA() { return false; }
311
312 bool isTypeLegal(Type *Ty) { return false; }
313
314 bool shouldBuildLookupTables() { return true; }
315 bool shouldBuildLookupTablesForConstant(Constant *C) { return true; }
316
317 bool useColdCCForColdCall(Function &F) { return false; }
318
319 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
320 return 0;
321 }
322
323 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
324 unsigned VF) { return 0; }
325
326 bool supportsEfficientVectorElementLoadStore() { return false; }
327
328 bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
329
330 TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
331 bool IsZeroCmp) const {
332 return {};
333 }
334
335 bool enableInterleavedAccessVectorization() { return false; }
336
337 bool enableMaskedInterleavedAccessVectorization() { return false; }
338
339 bool isFPVectorizationPotentiallyUnsafe() { return false; }
340
341 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
342 unsigned BitWidth,
343 unsigned AddressSpace,
344 unsigned Alignment,
345 bool *Fast) { return false; }
346
347 TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
348 return TTI::PSK_Software;
349 }
350
351 bool haveFastSqrt(Type *Ty) { return false; }
352
353 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; }
354
355 unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
356
357 int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
358 Type *Ty) {
359 return 0;
360 }
361
362 unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
363
364 unsigned getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
365 Type *Ty) {
366 return TTI::TCC_Free;
367 }
368
369 unsigned getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
370 const APInt &Imm, Type *Ty) {
371 return TTI::TCC_Free;
372 }
373
374 unsigned getNumberOfRegisters(unsigned ClassID) const { return 8; }
375
376 unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const {
377 return Vector ? 1 : 0;
378 };
379
380 const char* getRegisterClassName(unsigned ClassID) const {
381 switch (ClassID) {
382 default:
383 return "Generic::Unknown Register Class";
384 case 0: return "Generic::ScalarRC";
385 case 1: return "Generic::VectorRC";
386 }
387 }
388
389 unsigned getRegisterBitWidth(bool Vector) const { return 32; }
390
391 unsigned getMinVectorRegisterBitWidth() { return 128; }
392
393 bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; }
394
395 unsigned getMinimumVF(unsigned ElemWidth) const { return 0; }
396
397 bool
398 shouldConsiderAddressTypePromotion(const Instruction &I,
399 bool &AllowPromotionWithoutCommonHeader) {
400 AllowPromotionWithoutCommonHeader = false;
401 return false;
402 }
403
404 unsigned getCacheLineSize() const { return 0; }
405
406 llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) const {
407 switch (Level) {
408 case TargetTransformInfo::CacheLevel::L1D:
409 LLVM_FALLTHROUGH[[gnu::fallthrough]];
410 case TargetTransformInfo::CacheLevel::L2D:
411 return llvm::Optional<unsigned>();
412 }
413 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel")::llvm::llvm_unreachable_internal("Unknown TargetTransformInfo::CacheLevel"
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 413)
;
414 }
415
416 llvm::Optional<unsigned> getCacheAssociativity(
417 TargetTransformInfo::CacheLevel Level) const {
418 switch (Level) {
419 case TargetTransformInfo::CacheLevel::L1D:
420 LLVM_FALLTHROUGH[[gnu::fallthrough]];
421 case TargetTransformInfo::CacheLevel::L2D:
422 return llvm::Optional<unsigned>();
423 }
424
425 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel")::llvm::llvm_unreachable_internal("Unknown TargetTransformInfo::CacheLevel"
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 425)
;
426 }
427
428 unsigned getPrefetchDistance() const { return 0; }
429 unsigned getMinPrefetchStride() const { return 1; }
430 unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX(2147483647 *2U +1U); }
431
432 unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
433
434 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
435 TTI::OperandValueKind Opd1Info,
436 TTI::OperandValueKind Opd2Info,
437 TTI::OperandValueProperties Opd1PropInfo,
438 TTI::OperandValueProperties Opd2PropInfo,
439 ArrayRef<const Value *> Args,
440 const Instruction *CxtI = nullptr) {
441 return 1;
442 }
443
444 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
445 Type *SubTp) {
446 return 1;
447 }
448
449 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
450 const Instruction *I) { return 1; }
451
452 unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
453 VectorType *VecTy, unsigned Index) {
454 return 1;
455 }
456
457 unsigned getCFInstrCost(unsigned Opcode) { return 1; }
458
459 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
460 const Instruction *I) {
461 return 1;
462 }
463
464 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
465 return 1;
466 }
467
468 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
469 unsigned AddressSpace, const Instruction *I) {
470 return 1;
471 }
472
473 unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
474 unsigned AddressSpace) {
475 return 1;
476 }
477
478 unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
479 bool VariableMask,
480 unsigned Alignment) {
481 return 1;
482 }
483
484 unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
485 unsigned Factor,
486 ArrayRef<unsigned> Indices,
487 unsigned Alignment, unsigned AddressSpace,
488 bool UseMaskForCond = false,
489 bool UseMaskForGaps = false) {
490 return 1;
491 }
492
493 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
494 ArrayRef<Type *> Tys, FastMathFlags FMF,
495 unsigned ScalarizationCostPassed) {
496 return 1;
497 }
498 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
499 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
500 return 1;
501 }
502
503 unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
504 return 1;
505 }
506
507 unsigned getNumberOfParts(Type *Tp) { return 0; }
508
509 unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
510 const SCEV *) {
511 return 0;
512 }
513
514 unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }
515
516 unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }
517
518 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
519
520 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
521 return false;
522 }
523
524 unsigned getAtomicMemIntrinsicMaxElementSize() const {
525 // Note for overrides: You must ensure for all element unordered-atomic
526 // memory intrinsics that all power-of-2 element sizes up to, and
527 // including, the return value of this method have a corresponding
528 // runtime lib call. These runtime lib call definitions can be found
529 // in RuntimeLibcalls.h
530 return 0;
531 }
532
533 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
534 Type *ExpectedType) {
535 return nullptr;
536 }
537
538 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
539 unsigned SrcAlign, unsigned DestAlign) const {
540 return Type::getInt8Ty(Context);
541 }
542
543 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
544 LLVMContext &Context,
545 unsigned RemainingBytes,
546 unsigned SrcAlign,
547 unsigned DestAlign) const {
548 for (unsigned i = 0; i != RemainingBytes; ++i)
549 OpsOut.push_back(Type::getInt8Ty(Context));
550 }
551
552 bool areInlineCompatible(const Function *Caller,
553 const Function *Callee) const {
554 return (Caller->getFnAttribute("target-cpu") ==
555 Callee->getFnAttribute("target-cpu")) &&
556 (Caller->getFnAttribute("target-features") ==
557 Callee->getFnAttribute("target-features"));
558 }
559
560 bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
561 SmallPtrSetImpl<Argument *> &Args) const {
562 return (Caller->getFnAttribute("target-cpu") ==
563 Callee->getFnAttribute("target-cpu")) &&
564 (Caller->getFnAttribute("target-features") ==
565 Callee->getFnAttribute("target-features"));
566 }
567
568 bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
569 const DataLayout &DL) const {
570 return false;
571 }
572
573 bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
574 const DataLayout &DL) const {
575 return false;
576 }
577
578 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
579
580 bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
581
582 bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
583
584 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
585 unsigned Alignment,
586 unsigned AddrSpace) const {
587 return true;
588 }
589
590 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
591 unsigned Alignment,
592 unsigned AddrSpace) const {
593 return true;
594 }
595
596 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
597 unsigned ChainSizeInBytes,
598 VectorType *VecTy) const {
599 return VF;
600 }
601
602 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
603 unsigned ChainSizeInBytes,
604 VectorType *VecTy) const {
605 return VF;
606 }
607
608 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
609 TTI::ReductionFlags Flags) const {
610 return false;
611 }
612
613 bool shouldExpandReduction(const IntrinsicInst *II) const {
614 return true;
615 }
616
617 unsigned getGISelRematGlobalCost() const {
618 return 1;
619 }
620
621protected:
622 // Obtain the minimum required size to hold the value (without the sign)
623 // In case of a vector it returns the min required size for one element.
624 unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
625 if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
626 const auto* VectorValue = cast<Constant>(Val);
627
628 // In case of a vector need to pick the max between the min
629 // required size for each element
630 auto *VT = cast<VectorType>(Val->getType());
631
632 // Assume unsigned elements
633 isSigned = false;
634
635 // The max required size is the total vector width divided by num
636 // of elements in the vector
637 unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
638
639 unsigned MinRequiredSize = 0;
640 for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
641 if (auto* IntElement =
642 dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
643 bool signedElement = IntElement->getValue().isNegative();
644 // Get the element min required size.
645 unsigned ElementMinRequiredSize =
646 IntElement->getValue().getMinSignedBits() - 1;
647 // In case one element is signed then all the vector is signed.
648 isSigned |= signedElement;
649 // Save the max required bit size between all the elements.
650 MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
651 }
652 else {
653 // not an int constant element
654 return MaxRequiredSize;
655 }
656 }
657 return MinRequiredSize;
658 }
659
660 if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
661 isSigned = CI->getValue().isNegative();
662 return CI->getValue().getMinSignedBits() - 1;
663 }
664
665 if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
666 isSigned = true;
667 return Cast->getSrcTy()->getScalarSizeInBits() - 1;
668 }
669
670 if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
671 isSigned = false;
672 return Cast->getSrcTy()->getScalarSizeInBits();
673 }
674
675 isSigned = false;
676 return Val->getType()->getScalarSizeInBits();
677 }
678
679 bool isStridedAccess(const SCEV *Ptr) {
680 return Ptr && isa<SCEVAddRecExpr>(Ptr);
681 }
682
683 const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
684 const SCEV *Ptr) {
685 if (!isStridedAccess(Ptr))
686 return nullptr;
687 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
688 return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
689 }
690
691 bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
692 int64_t MergeDistance) {
693 const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
694 if (!Step)
695 return false;
696 APInt StrideVal = Step->getAPInt();
697 if (StrideVal.getBitWidth() > 64)
698 return false;
699 // FIXME: Need to take absolute value for negative stride case.
700 return StrideVal.getSExtValue() < MergeDistance;
701 }
702};
703
704/// CRTP base class for use as a mix-in that aids implementing
705/// a TargetTransformInfo-compatible class.
706template <typename T>
707class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
708private:
709 typedef TargetTransformInfoImplBase BaseT;
710
711protected:
712 explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
713
714public:
715 using BaseT::getCallCost;
716
717 unsigned getCallCost(const Function *F, int NumArgs, const User *U) {
718 assert(F && "A concrete function must be provided to this routine.")((F && "A concrete function must be provided to this routine."
) ? static_cast<void> (0) : __assert_fail ("F && \"A concrete function must be provided to this routine.\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 718, __PRETTY_FUNCTION__))
;
719
720 if (NumArgs < 0)
721 // Set the argument number to the number of explicit arguments in the
722 // function.
723 NumArgs = F->arg_size();
724
725 if (Intrinsic::ID IID = F->getIntrinsicID()) {
726 FunctionType *FTy = F->getFunctionType();
727 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
728 return static_cast<T *>(this)
729 ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys, U);
730 }
731
732 if (!static_cast<T *>(this)->isLoweredToCall(F))
733 return TTI::TCC_Basic; // Give a basic cost if it will be lowered
734 // directly.
735
736 return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs, U);
737 }
738
739 unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments,
740 const User *U) {
741 // Simply delegate to generic handling of the call.
742 // FIXME: We should use instsimplify or something else to catch calls which
743 // will constant fold with these arguments.
744 return static_cast<T *>(this)->getCallCost(F, Arguments.size(), U);
745 }
746
747 using BaseT::getGEPCost;
748
749 int getGEPCost(Type *PointeeType, const Value *Ptr,
750 ArrayRef<const Value *> Operands) {
751 assert(PointeeType && Ptr && "can't get GEPCost of nullptr")((PointeeType && Ptr && "can't get GEPCost of nullptr"
) ? static_cast<void> (0) : __assert_fail ("PointeeType && Ptr && \"can't get GEPCost of nullptr\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 751, __PRETTY_FUNCTION__))
;
752 // TODO: will remove this when pointers have an opaque type.
753 assert(Ptr->getType()->getScalarType()->getPointerElementType() ==((Ptr->getType()->getScalarType()->getPointerElementType
() == PointeeType && "explicit pointee type doesn't match operand's pointee type"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->getScalarType()->getPointerElementType() == PointeeType && \"explicit pointee type doesn't match operand's pointee type\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 755, __PRETTY_FUNCTION__))
754 PointeeType &&((Ptr->getType()->getScalarType()->getPointerElementType
() == PointeeType && "explicit pointee type doesn't match operand's pointee type"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->getScalarType()->getPointerElementType() == PointeeType && \"explicit pointee type doesn't match operand's pointee type\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 755, __PRETTY_FUNCTION__))
755 "explicit pointee type doesn't match operand's pointee type")((Ptr->getType()->getScalarType()->getPointerElementType
() == PointeeType && "explicit pointee type doesn't match operand's pointee type"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->getScalarType()->getPointerElementType() == PointeeType && \"explicit pointee type doesn't match operand's pointee type\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 755, __PRETTY_FUNCTION__))
;
756 auto *BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
757 bool HasBaseReg = (BaseGV == nullptr);
758
759 auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
760 APInt BaseOffset(PtrSizeBits, 0);
761 int64_t Scale = 0;
762
763 auto GTI = gep_type_begin(PointeeType, Operands);
764 Type *TargetType = nullptr;
765
766 // Handle the case where the GEP instruction has a single operand,
767 // the basis, therefore TargetType is a nullptr.
768 if (Operands.empty())
769 return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
770
771 for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
772 TargetType = GTI.getIndexedType();
773 // We assume that the cost of Scalar GEP with constant index and the
774 // cost of Vector GEP with splat constant index are the same.
775 const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
776 if (!ConstIdx)
777 if (auto Splat = getSplatValue(*I))
778 ConstIdx = dyn_cast<ConstantInt>(Splat);
779 if (StructType *STy = GTI.getStructTypeOrNull()) {
780 // For structures the index is always splat or scalar constant
781 assert(ConstIdx && "Unexpected GEP index")((ConstIdx && "Unexpected GEP index") ? static_cast<
void> (0) : __assert_fail ("ConstIdx && \"Unexpected GEP index\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 781, __PRETTY_FUNCTION__))
;
782 uint64_t Field = ConstIdx->getZExtValue();
783 BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
784 } else {
785 int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
786 if (ConstIdx) {
787 BaseOffset +=
788 ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
789 } else {
790 // Needs scale register.
791 if (Scale != 0)
792 // No addressing mode takes two scale registers.
793 return TTI::TCC_Basic;
794 Scale = ElementSize;
795 }
796 }
797 }
798
799 if (static_cast<T *>(this)->isLegalAddressingMode(
800 TargetType, const_cast<GlobalValue *>(BaseGV),
801 BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale,
802 Ptr->getType()->getPointerAddressSpace()))
803 return TTI::TCC_Free;
804 return TTI::TCC_Basic;
805 }
806
807 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
808 ArrayRef<Type *> ParamTys, const User *U) {
809 switch (IID) {
810 default:
811 // Intrinsics rarely (if ever) have normal argument setup constraints.
812 // Model them as having a basic instruction cost.
813 return TTI::TCC_Basic;
814
815 // TODO: other libc intrinsics.
816 case Intrinsic::memcpy:
817 return static_cast<T *>(this)->getMemcpyCost(dyn_cast<Instruction>(U));
818
819 case Intrinsic::annotation:
820 case Intrinsic::assume:
821 case Intrinsic::sideeffect:
822 case Intrinsic::dbg_declare:
823 case Intrinsic::dbg_value:
824 case Intrinsic::dbg_label:
825 case Intrinsic::invariant_start:
826 case Intrinsic::invariant_end:
827 case Intrinsic::launder_invariant_group:
828 case Intrinsic::strip_invariant_group:
829 case Intrinsic::is_constant:
830 case Intrinsic::lifetime_start:
831 case Intrinsic::lifetime_end:
832 case Intrinsic::objectsize:
833 case Intrinsic::ptr_annotation:
834 case Intrinsic::var_annotation:
835 case Intrinsic::experimental_gc_result:
836 case Intrinsic::experimental_gc_relocate:
837 case Intrinsic::coro_alloc:
838 case Intrinsic::coro_begin:
839 case Intrinsic::coro_free:
840 case Intrinsic::coro_end:
841 case Intrinsic::coro_frame:
842 case Intrinsic::coro_size:
843 case Intrinsic::coro_suspend:
844 case Intrinsic::coro_param:
845 case Intrinsic::coro_subfn_addr:
846 // These intrinsics don't actually represent code after lowering.
847 return TTI::TCC_Free;
848 }
849 }
850
851 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
852 ArrayRef<const Value *> Arguments, const User *U) {
853 // Delegate to the generic intrinsic handling code. This mostly provides an
854 // opportunity for targets to (for example) special case the cost of
855 // certain intrinsics based on constants used as arguments.
856 SmallVector<Type *, 8> ParamTys;
857 ParamTys.reserve(Arguments.size());
858 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
859 ParamTys.push_back(Arguments[Idx]->getType());
860 return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys, U);
861 }
862
863 unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
864 if (isa<PHINode>(U))
4
Assuming 'U' is not a 'PHINode'
5
Taking false branch
865 return TTI::TCC_Free; // Model all PHI nodes as free.
866
867 if (isa<ExtractValueInst>(U))
6
Assuming 'U' is not a 'ExtractValueInst'
7
Taking false branch
868 return TTI::TCC_Free; // Model all ExtractValue nodes as free.
869
870 if (isa<FreezeInst>(U))
8
Assuming 'U' is not a 'FreezeInst'
9
Taking false branch
871 return TTI::TCC_Free; // Model all Freeze nodes as free.
872
873 // Static alloca doesn't generate target instructions.
874 if (auto *A
10.1
'A' is null
10.1
'A' is null
10.1
'A' is null
10.1
'A' is null
10.1
'A' is null
10.1
'A' is null
10.1
'A' is null
= dyn_cast<AllocaInst>(U))
10
Assuming 'U' is not a 'AllocaInst'
11
Taking false branch
875 if (A->isStaticAlloca())
876 return TTI::TCC_Free;
877
878 if (const GEPOperator *GEP
12.1
'GEP' is null
12.1
'GEP' is null
12.1
'GEP' is null
12.1
'GEP' is null
12.1
'GEP' is null
12.1
'GEP' is null
12.1
'GEP' is null
= dyn_cast<GEPOperator>(U)) {
12
Assuming 'U' is not a 'GEPOperator'
13
Taking false branch
879 return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
880 GEP->getPointerOperand(),
881 Operands.drop_front());
882 }
883
884 if (auto CS = ImmutableCallSite(U)) {
14
Calling 'CallSiteBase::operator bool'
28
Returning from 'CallSiteBase::operator bool'
29
Taking false branch
885 const Function *F = CS.getCalledFunction();
886 if (!F) {
887 // Just use the called value type.
888 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
889 return static_cast<T *>(this)
890 ->getCallCost(cast<FunctionType>(FTy), CS.arg_size(), U);
891 }
892
893 SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
894 return static_cast<T *>(this)->getCallCost(F, Arguments, U);
895 }
896
897 if (isa<SExtInst>(U) || isa<ZExtInst>(U) || isa<FPExtInst>(U))
30
Assuming 'U' is not a 'SExtInst'
31
Assuming 'U' is not a 'ZExtInst'
32
Assuming 'U' is not a 'FPExtInst'
33
Taking false branch
898 // The old behaviour of generally treating extensions of icmp to be free
899 // has been removed. A target that needs it should override getUserCost().
900 return static_cast<T *>(this)->getExtCost(cast<Instruction>(U),
901 Operands.back());
902
903 return static_cast<T *>(this)->getOperationCost(
42
Calling 'BasicTTIImplBase::getOperationCost'
904 Operator::getOpcode(U), U->getType(),
34
Calling 'Operator::getOpcode'
38
Returning from 'Operator::getOpcode'
905 U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
39
Assuming the condition is false
40
'?' condition is false
41
Passing null pointer value via 3rd parameter 'OpTy'
906 }
907
908 int getInstructionLatency(const Instruction *I) {
909 SmallVector<const Value *, 4> Operands(I->value_op_begin(),
910 I->value_op_end());
911 if (getUserCost(I, Operands) == TTI::TCC_Free)
912 return 0;
913
914 if (isa<LoadInst>(I))
915 return 4;
916
917 Type *DstTy = I->getType();
918
919 // Usually an intrinsic is a simple instruction.
920 // A real function call is much slower.
921 if (auto *CI = dyn_cast<CallInst>(I)) {
922 const Function *F = CI->getCalledFunction();
923 if (!F || static_cast<T *>(this)->isLoweredToCall(F))
924 return 40;
925 // Some intrinsics return a value and a flag, we use the value type
926 // to decide its latency.
927 if (StructType* StructTy = dyn_cast<StructType>(DstTy))
928 DstTy = StructTy->getElementType(0);
929 // Fall through to simple instructions.
930 }
931
932 if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
933 DstTy = VectorTy->getElementType();
934 if (DstTy->isFloatingPointTy())
935 return 3;
936
937 return 1;
938 }
939};
940}
941
942#endif

/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h

1//===- CallSite.h - Abstract Call & Invoke instrs ---------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the CallSite class, which is a handy wrapper for code that
10// wants to treat Call, Invoke and CallBr instructions in a generic way. When
11// in non-mutation context (e.g. an analysis) ImmutableCallSite should be used.
12// Finally, when some degree of customization is necessary between these two
13// extremes, CallSiteBase<> can be supplied with fine-tuned parameters.
14//
15// NOTE: These classes are supposed to have "value semantics". So they should be
16// passed by value, not by reference; they should not be "new"ed or "delete"d.
17// They are efficiently copyable, assignable and constructable, with cost
18// equivalent to copying a pointer (notice that they have only a single data
19// member). The internal representation carries a flag which indicates which of
20// the three variants is enclosed. This allows for cheaper checks when various
21// accessors of CallSite are employed.
22//
23//===----------------------------------------------------------------------===//
24
25#ifndef LLVM_IR_CALLSITE_H
26#define LLVM_IR_CALLSITE_H
27
28#include "llvm/ADT/Optional.h"
29#include "llvm/ADT/PointerIntPair.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/IR/Attributes.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/Use.h"
38#include "llvm/IR/User.h"
39#include "llvm/IR/Value.h"
40#include "llvm/Support/Casting.h"
41#include <cassert>
42#include <cstdint>
43#include <iterator>
44
45namespace llvm {
46
47namespace Intrinsic {
48typedef unsigned ID;
49}
50
51template <typename FunTy = const Function, typename BBTy = const BasicBlock,
52 typename ValTy = const Value, typename UserTy = const User,
53 typename UseTy = const Use, typename InstrTy = const Instruction,
54 typename CallTy = const CallInst,
55 typename InvokeTy = const InvokeInst,
56 typename CallBrTy = const CallBrInst,
57 typename IterTy = User::const_op_iterator>
58class CallSiteBase {
59protected:
60 PointerIntPair<InstrTy *, 2, int> I;
61
62 CallSiteBase() = default;
63 CallSiteBase(CallTy *CI) : I(CI, 1) { assert(CI)((CI) ? static_cast<void> (0) : __assert_fail ("CI", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 63, __PRETTY_FUNCTION__))
; }
64 CallSiteBase(InvokeTy *II) : I(II, 0) { assert(II)((II) ? static_cast<void> (0) : __assert_fail ("II", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 64, __PRETTY_FUNCTION__))
; }
65 CallSiteBase(CallBrTy *CBI) : I(CBI, 2) { assert(CBI)((CBI) ? static_cast<void> (0) : __assert_fail ("CBI", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 65, __PRETTY_FUNCTION__))
; }
66 explicit CallSiteBase(ValTy *II) { *this = get(II); }
67
68private:
69 /// This static method is like a constructor. It will create an appropriate
70 /// call site for a Call, Invoke or CallBr instruction, but it can also create
71 /// a null initialized CallSiteBase object for something which is NOT a call
72 /// site.
73 static CallSiteBase get(ValTy *V) {
74 if (InstrTy *II = dyn_cast<InstrTy>(V)) {
75 if (II->getOpcode() == Instruction::Call)
76 return CallSiteBase(static_cast<CallTy*>(II));
77 if (II->getOpcode() == Instruction::Invoke)
78 return CallSiteBase(static_cast<InvokeTy*>(II));
79 if (II->getOpcode() == Instruction::CallBr)
80 return CallSiteBase(static_cast<CallBrTy *>(II));
81 }
82 return CallSiteBase();
83 }
84
85public:
86 /// Return true if a CallInst is enclosed.
87 bool isCall() const { return I.getInt() == 1; }
88
89 /// Return true if a InvokeInst is enclosed. !I.getInt() may also signify a
90 /// NULL instruction pointer, so check that.
91 bool isInvoke() const { return getInstruction() && I.getInt() == 0; }
92
93 /// Return true if a CallBrInst is enclosed.
94 bool isCallBr() const { return I.getInt() == 2; }
95
96 InstrTy *getInstruction() const { return I.getPointer(); }
97 InstrTy *operator->() const { return I.getPointer(); }
98 explicit operator bool() const { return I.getPointer(); }
15
Calling 'PointerIntPair::getPointer'
26
Returning from 'PointerIntPair::getPointer'
27
Returning zero, which participates in a condition later
99
100 /// Get the basic block containing the call site.
101 BBTy* getParent() const { return getInstruction()->getParent(); }
102
103 /// Return the pointer to function that is being called.
104 ValTy *getCalledValue() const {
105 assert(getInstruction() && "Not a call, invoke or callbr instruction!")((getInstruction() && "Not a call, invoke or callbr instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call, invoke or callbr instruction!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 105, __PRETTY_FUNCTION__))
;
106 return *getCallee();
107 }
108
109 /// Return the function being called if this is a direct call, otherwise
110 /// return null (if it's an indirect call).
111 FunTy *getCalledFunction() const {
112 return dyn_cast<FunTy>(getCalledValue());
113 }
114
115 /// Return true if the callsite is an indirect call.
116 bool isIndirectCall() const {
117 const Value *V = getCalledValue();
118 if (!V)
119 return false;
120 if (isa<FunTy>(V) || isa<Constant>(V))
121 return false;
122 if (const CallBase *CB = dyn_cast<CallBase>(getInstruction()))
123 if (CB->isInlineAsm())
124 return false;
125 return true;
126 }
127
128 /// Set the callee to the specified value. Unlike the function of the same
129 /// name on CallBase, does not modify the type!
130 void setCalledFunction(Value *V) {
131 assert(getInstruction() && "Not a call, callbr, or invoke instruction!")((getInstruction() && "Not a call, callbr, or invoke instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call, callbr, or invoke instruction!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 131, __PRETTY_FUNCTION__))
;
132 assert(cast<PointerType>(V->getType())->getElementType() ==((cast<PointerType>(V->getType())->getElementType
() == cast<CallBase>(getInstruction())->getFunctionType
() && "New callee type does not match FunctionType on call"
) ? static_cast<void> (0) : __assert_fail ("cast<PointerType>(V->getType())->getElementType() == cast<CallBase>(getInstruction())->getFunctionType() && \"New callee type does not match FunctionType on call\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 134, __PRETTY_FUNCTION__))
133 cast<CallBase>(getInstruction())->getFunctionType() &&((cast<PointerType>(V->getType())->getElementType
() == cast<CallBase>(getInstruction())->getFunctionType
() && "New callee type does not match FunctionType on call"
) ? static_cast<void> (0) : __assert_fail ("cast<PointerType>(V->getType())->getElementType() == cast<CallBase>(getInstruction())->getFunctionType() && \"New callee type does not match FunctionType on call\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 134, __PRETTY_FUNCTION__))
134 "New callee type does not match FunctionType on call")((cast<PointerType>(V->getType())->getElementType
() == cast<CallBase>(getInstruction())->getFunctionType
() && "New callee type does not match FunctionType on call"
) ? static_cast<void> (0) : __assert_fail ("cast<PointerType>(V->getType())->getElementType() == cast<CallBase>(getInstruction())->getFunctionType() && \"New callee type does not match FunctionType on call\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 134, __PRETTY_FUNCTION__))
;
135 *getCallee() = V;
136 }
137
138 /// Return the intrinsic ID of the intrinsic called by this CallSite,
139 /// or Intrinsic::not_intrinsic if the called function is not an
140 /// intrinsic, or if this CallSite is an indirect call.
141 Intrinsic::ID getIntrinsicID() const {
142 if (auto *F = getCalledFunction())
143 return F->getIntrinsicID();
144 // Don't use Intrinsic::not_intrinsic, as it will require pulling
145 // Intrinsics.h into every header that uses CallSite.
146 return static_cast<Intrinsic::ID>(0);
147 }
148
149 /// Determine whether the passed iterator points to the callee operand's Use.
150 bool isCallee(Value::const_user_iterator UI) const {
151 return isCallee(&UI.getUse());
152 }
153
154 /// Determine whether this Use is the callee operand's Use.
155 bool isCallee(const Use *U) const { return getCallee() == U; }
156
157 /// Determine whether the passed iterator points to an argument operand.
158 bool isArgOperand(Value::const_user_iterator UI) const {
159 return isArgOperand(&UI.getUse());
160 }
161
162 /// Determine whether the passed use points to an argument operand.
163 bool isArgOperand(const Use *U) const {
164 assert(getInstruction() == U->getUser())((getInstruction() == U->getUser()) ? static_cast<void>
(0) : __assert_fail ("getInstruction() == U->getUser()", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 164, __PRETTY_FUNCTION__))
;
165 return arg_begin() <= U && U < arg_end();
166 }
167
168 /// Determine whether the passed iterator points to a bundle operand.
169 bool isBundleOperand(Value::const_user_iterator UI) const {
170 return isBundleOperand(&UI.getUse());
171 }
172
173 /// Determine whether the passed use points to a bundle operand.
174 bool isBundleOperand(const Use *U) const {
175 assert(getInstruction() == U->getUser())((getInstruction() == U->getUser()) ? static_cast<void>
(0) : __assert_fail ("getInstruction() == U->getUser()", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 175, __PRETTY_FUNCTION__))
;
176 if (!hasOperandBundles())
177 return false;
178 unsigned OperandNo = U - (*this)->op_begin();
179 return getBundleOperandsStartIndex() <= OperandNo &&
180 OperandNo < getBundleOperandsEndIndex();
181 }
182
183 /// Determine whether the passed iterator points to a data operand.
184 bool isDataOperand(Value::const_user_iterator UI) const {
185 return isDataOperand(&UI.getUse());
186 }
187
188 /// Determine whether the passed use points to a data operand.
189 bool isDataOperand(const Use *U) const {
190 return data_operands_begin() <= U && U < data_operands_end();
191 }
192
193 ValTy *getArgument(unsigned ArgNo) const {
194 assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!")((arg_begin() + ArgNo < arg_end() && "Argument # out of range!"
) ? static_cast<void> (0) : __assert_fail ("arg_begin() + ArgNo < arg_end() && \"Argument # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 194, __PRETTY_FUNCTION__))
;
195 return *(arg_begin() + ArgNo);
196 }
197
198 void setArgument(unsigned ArgNo, Value* newVal) {
199 assert(getInstruction() && "Not a call, invoke or callbr instruction!")((getInstruction() && "Not a call, invoke or callbr instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call, invoke or callbr instruction!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 199, __PRETTY_FUNCTION__))
;
200 assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!")((arg_begin() + ArgNo < arg_end() && "Argument # out of range!"
) ? static_cast<void> (0) : __assert_fail ("arg_begin() + ArgNo < arg_end() && \"Argument # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 200, __PRETTY_FUNCTION__))
;
201 getInstruction()->setOperand(ArgNo, newVal);
202 }
203
204 /// Given a value use iterator, returns the argument that corresponds to it.
205 /// Iterator must actually correspond to an argument.
206 unsigned getArgumentNo(Value::const_user_iterator I) const {
207 return getArgumentNo(&I.getUse());
208 }
209
210 /// Given a use for an argument, get the argument number that corresponds to
211 /// it.
212 unsigned getArgumentNo(const Use *U) const {
213 assert(getInstruction() && "Not a call, invoke or callbr instruction!")((getInstruction() && "Not a call, invoke or callbr instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call, invoke or callbr instruction!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 213, __PRETTY_FUNCTION__))
;
214 assert(isArgOperand(U) && "Argument # out of range!")((isArgOperand(U) && "Argument # out of range!") ? static_cast
<void> (0) : __assert_fail ("isArgOperand(U) && \"Argument # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 214, __PRETTY_FUNCTION__))
;
215 return U - arg_begin();
216 }
217
218 /// The type of iterator to use when looping over actual arguments at this
219 /// call site.
220 using arg_iterator = IterTy;
221
222 iterator_range<IterTy> args() const {
223 return make_range(arg_begin(), arg_end());
224 }
225 bool arg_empty() const { return arg_end() == arg_begin(); }
226 unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }
227
228 /// Given a value use iterator, return the data operand corresponding to it.
229 /// Iterator must actually correspond to a data operand.
230 unsigned getDataOperandNo(Value::const_user_iterator UI) const {
231 return getDataOperandNo(&UI.getUse());
232 }
233
234 /// Given a use for a data operand, get the data operand number that
235 /// corresponds to it.
236 unsigned getDataOperandNo(const Use *U) const {
237 assert(getInstruction() && "Not a call, invoke or callbr instruction!")((getInstruction() && "Not a call, invoke or callbr instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call, invoke or callbr instruction!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 237, __PRETTY_FUNCTION__))
;
238 assert(isDataOperand(U) && "Data operand # out of range!")((isDataOperand(U) && "Data operand # out of range!")
? static_cast<void> (0) : __assert_fail ("isDataOperand(U) && \"Data operand # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 238, __PRETTY_FUNCTION__))
;
239 return U - data_operands_begin();
240 }
241
242 /// Type of iterator to use when looping over data operands at this call site
243 /// (see below).
244 using data_operand_iterator = IterTy;
245
246 /// data_operands_begin/data_operands_end - Return iterators iterating over
247 /// the call / invoke / callbr argument list and bundle operands. For invokes,
248 /// this is the set of instruction operands except the invoke target and the
249 /// two successor blocks; for calls this is the set of instruction operands
250 /// except the call target; for callbrs the number of labels to skip must be
251 /// determined first.
252
253 IterTy data_operands_begin() const {
254 assert(getInstruction() && "Not a call or invoke instruction!")((getInstruction() && "Not a call or invoke instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call or invoke instruction!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 254, __PRETTY_FUNCTION__))
;
255 return cast<CallBase>(getInstruction())->data_operands_begin();
256 }
257 IterTy data_operands_end() const {
258 assert(getInstruction() && "Not a call or invoke instruction!")((getInstruction() && "Not a call or invoke instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call or invoke instruction!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 258, __PRETTY_FUNCTION__))
;
259 return cast<CallBase>(getInstruction())->data_operands_end();
260 }
261 iterator_range<IterTy> data_ops() const {
262 return make_range(data_operands_begin(), data_operands_end());
263 }
264 bool data_operands_empty() const {
265 return data_operands_end() == data_operands_begin();
266 }
267 unsigned data_operands_size() const {
268 return std::distance(data_operands_begin(), data_operands_end());
269 }
270
271 /// Return the type of the instruction that generated this call site.
272 Type *getType() const { return (*this)->getType(); }
273
274 /// Return the caller function for this call site.
275 FunTy *getCaller() const { return (*this)->getParent()->getParent(); }
276
277 /// Tests if this call site must be tail call optimized. Only a CallInst can
278 /// be tail call optimized.
279 bool isMustTailCall() const {
280 return isCall() && cast<CallInst>(getInstruction())->isMustTailCall();
281 }
282
283 /// Tests if this call site is marked as a tail call.
284 bool isTailCall() const {
285 return isCall() && cast<CallInst>(getInstruction())->isTailCall();
286 }
287
288#define CALLSITE_DELEGATE_GETTER(METHOD) \
289 InstrTy *II = getInstruction(); \
290 return isCall() ? cast<CallInst>(II)->METHOD \
291 : isCallBr() ? cast<CallBrInst>(II)->METHOD \
292 : cast<InvokeInst>(II)->METHOD
293
294#define CALLSITE_DELEGATE_SETTER(METHOD) \
295 InstrTy *II = getInstruction(); \
296 if (isCall()) \
297 cast<CallInst>(II)->METHOD; \
298 else if (isCallBr()) \
299 cast<CallBrInst>(II)->METHOD; \
300 else \
301 cast<InvokeInst>(II)->METHOD
302
303 unsigned getNumArgOperands() const {
304 CALLSITE_DELEGATE_GETTER(getNumArgOperands());
305 }
306
307 ValTy *getArgOperand(unsigned i) const {
308 CALLSITE_DELEGATE_GETTER(getArgOperand(i));
309 }
310
311 ValTy *getReturnedArgOperand() const {
312 CALLSITE_DELEGATE_GETTER(getReturnedArgOperand());
313 }
314
315 bool isInlineAsm() const {
316 return cast<CallBase>(getInstruction())->isInlineAsm();
317 }
318
319 /// Get the calling convention of the call.
320 CallingConv::ID getCallingConv() const {
321 CALLSITE_DELEGATE_GETTER(getCallingConv());
322 }
323 /// Set the calling convention of the call.
324 void setCallingConv(CallingConv::ID CC) {
325 CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
326 }
327
328 FunctionType *getFunctionType() const {
329 CALLSITE_DELEGATE_GETTER(getFunctionType());
330 }
331
332 void mutateFunctionType(FunctionType *Ty) const {
333 CALLSITE_DELEGATE_SETTER(mutateFunctionType(Ty));
334 }
335
336 /// Get the parameter attributes of the call.
337 AttributeList getAttributes() const {
338 CALLSITE_DELEGATE_GETTER(getAttributes());
339 }
340 /// Set the parameter attributes of the call.
341 void setAttributes(AttributeList PAL) {
342 CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
343 }
344
345 void addAttribute(unsigned i, Attribute::AttrKind Kind) {
346 CALLSITE_DELEGATE_SETTER(addAttribute(i, Kind));
347 }
348
349 void addAttribute(unsigned i, Attribute Attr) {
350 CALLSITE_DELEGATE_SETTER(addAttribute(i, Attr));
351 }
352
353 void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
354 CALLSITE_DELEGATE_SETTER(addParamAttr(ArgNo, Kind));
355 }
356
357 void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
358 CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
359 }
360
361 void removeAttribute(unsigned i, StringRef Kind) {
362 CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
363 }
364
365 void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
366 CALLSITE_DELEGATE_SETTER(removeParamAttr(ArgNo, Kind));
367 }
368
369 /// Return true if this function has the given attribute.
370 bool hasFnAttr(Attribute::AttrKind Kind) const {
371 CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
372 }
373
374 /// Return true if this function has the given attribute.
375 bool hasFnAttr(StringRef Kind) const {
376 CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
377 }
378
379 /// Return true if this return value has the given attribute.
380 bool hasRetAttr(Attribute::AttrKind Kind) const {
381 CALLSITE_DELEGATE_GETTER(hasRetAttr(Kind));
382 }
383
384 /// Return true if the call or the callee has the given attribute.
385 bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
386 CALLSITE_DELEGATE_GETTER(paramHasAttr(ArgNo, Kind));
387 }
388
389 Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
390 CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
391 }
392
393 Attribute getAttribute(unsigned i, StringRef Kind) const {
394 CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
395 }
396
397 /// Return true if the data operand at index \p i directly or indirectly has
398 /// the attribute \p A.
399 ///
400 /// Normal call, invoke or callbr arguments have per operand attributes, as
401 /// specified in the attribute set attached to this instruction, while operand
402 /// bundle operands may have some attributes implied by the type of its
403 /// containing operand bundle.
404 bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
405 CALLSITE_DELEGATE_GETTER(dataOperandHasImpliedAttr(i, Kind));
406 }
407
408 /// Extract the alignment of the return value.
409 unsigned getRetAlignment() const {
410 CALLSITE_DELEGATE_GETTER(getRetAlignment());
411 }
412
413 /// Extract the alignment for a call or parameter (0=unknown).
414 unsigned getParamAlignment(unsigned ArgNo) const {
415 CALLSITE_DELEGATE_GETTER(getParamAlignment(ArgNo));
416 }
417
418 /// Extract the byval type for a call or parameter (nullptr=unknown).
419 Type *getParamByValType(unsigned ArgNo) const {
420 CALLSITE_DELEGATE_GETTER(getParamByValType(ArgNo));
421 }
422
423 /// Extract the number of dereferenceable bytes for a call or parameter
424 /// (0=unknown).
425 uint64_t getDereferenceableBytes(unsigned i) const {
426 CALLSITE_DELEGATE_GETTER(getDereferenceableBytes(i));
427 }
428
429 /// Extract the number of dereferenceable_or_null bytes for a call or
430 /// parameter (0=unknown).
431 uint64_t getDereferenceableOrNullBytes(unsigned i) const {
432 CALLSITE_DELEGATE_GETTER(getDereferenceableOrNullBytes(i));
433 }
434
435 /// Determine if the return value is marked with NoAlias attribute.
436 bool returnDoesNotAlias() const {
437 CALLSITE_DELEGATE_GETTER(returnDoesNotAlias());
438 }
439
440 /// Return true if the call should not be treated as a call to a builtin.
441 bool isNoBuiltin() const {
442 CALLSITE_DELEGATE_GETTER(isNoBuiltin());
443 }
444
445 /// Return true if the call requires strict floating point semantics.
446 bool isStrictFP() const {
447 CALLSITE_DELEGATE_GETTER(isStrictFP());
448 }
449
450 /// Return true if the call should not be inlined.
451 bool isNoInline() const {
452 CALLSITE_DELEGATE_GETTER(isNoInline());
453 }
454 void setIsNoInline(bool Value = true) {
455 CALLSITE_DELEGATE_SETTER(setIsNoInline(Value));
456 }
457
458 /// Determine if the call does not access memory.
459 bool doesNotAccessMemory() const {
460 CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
461 }
462 void setDoesNotAccessMemory() {
463 CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory());
464 }
465
466 /// Determine if the call does not access or only reads memory.
467 bool onlyReadsMemory() const {
468 CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
469 }
470 void setOnlyReadsMemory() {
471 CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory());
472 }
473
474 /// Determine if the call does not access or only writes memory.
475 bool doesNotReadMemory() const {
476 CALLSITE_DELEGATE_GETTER(doesNotReadMemory());
477 }
478 void setDoesNotReadMemory() {
479 CALLSITE_DELEGATE_SETTER(setDoesNotReadMemory());
480 }
481
482 /// Determine if the call can access memmory only using pointers based
483 /// on its arguments.
484 bool onlyAccessesArgMemory() const {
485 CALLSITE_DELEGATE_GETTER(onlyAccessesArgMemory());
486 }
487 void setOnlyAccessesArgMemory() {
488 CALLSITE_DELEGATE_SETTER(setOnlyAccessesArgMemory());
489 }
490
491 /// Determine if the function may only access memory that is
492 /// inaccessible from the IR.
493 bool onlyAccessesInaccessibleMemory() const {
494 CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemory());
495 }
496 void setOnlyAccessesInaccessibleMemory() {
497 CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemory());
498 }
499
500 /// Determine if the function may only access memory that is
501 /// either inaccessible from the IR or pointed to by its arguments.
502 bool onlyAccessesInaccessibleMemOrArgMem() const {
503 CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemOrArgMem());
504 }
505 void setOnlyAccessesInaccessibleMemOrArgMem() {
506 CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemOrArgMem());
507 }
508
509 /// Determine if the call cannot return.
510 bool doesNotReturn() const {
511 CALLSITE_DELEGATE_GETTER(doesNotReturn());
512 }
513 void setDoesNotReturn() {
514 CALLSITE_DELEGATE_SETTER(setDoesNotReturn());
515 }
516
517 /// Determine if the call cannot unwind.
518 bool doesNotThrow() const {
519 CALLSITE_DELEGATE_GETTER(doesNotThrow());
520 }
521 void setDoesNotThrow() {
522 CALLSITE_DELEGATE_SETTER(setDoesNotThrow());
523 }
524
525 /// Determine if the call can be duplicated.
526 bool cannotDuplicate() const {
527 CALLSITE_DELEGATE_GETTER(cannotDuplicate());
528 }
529 void setCannotDuplicate() {
530 CALLSITE_DELEGATE_SETTER(setCannotDuplicate());
531 }
532
533 /// Determine if the call is convergent.
534 bool isConvergent() const {
535 CALLSITE_DELEGATE_GETTER(isConvergent());
536 }
537 void setConvergent() {
538 CALLSITE_DELEGATE_SETTER(setConvergent());
539 }
540 void setNotConvergent() {
541 CALLSITE_DELEGATE_SETTER(setNotConvergent());
542 }
543
544 unsigned getNumOperandBundles() const {
545 CALLSITE_DELEGATE_GETTER(getNumOperandBundles());
546 }
547
548 bool hasOperandBundles() const {
549 CALLSITE_DELEGATE_GETTER(hasOperandBundles());
550 }
551
552 unsigned getBundleOperandsStartIndex() const {
553 CALLSITE_DELEGATE_GETTER(getBundleOperandsStartIndex());
554 }
555
556 unsigned getBundleOperandsEndIndex() const {
557 CALLSITE_DELEGATE_GETTER(getBundleOperandsEndIndex());
558 }
559
560 unsigned getNumTotalBundleOperands() const {
561 CALLSITE_DELEGATE_GETTER(getNumTotalBundleOperands());
562 }
563
564 OperandBundleUse getOperandBundleAt(unsigned Index) const {
565 CALLSITE_DELEGATE_GETTER(getOperandBundleAt(Index));
566 }
567
568 Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
569 CALLSITE_DELEGATE_GETTER(getOperandBundle(Name));
570 }
571
572 Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
573 CALLSITE_DELEGATE_GETTER(getOperandBundle(ID));
574 }
575
576 unsigned countOperandBundlesOfType(uint32_t ID) const {
577 CALLSITE_DELEGATE_GETTER(countOperandBundlesOfType(ID));
578 }
579
580 bool isBundleOperand(unsigned Idx) const {
581 CALLSITE_DELEGATE_GETTER(isBundleOperand(Idx));
582 }
583
584 IterTy arg_begin() const {
585 CALLSITE_DELEGATE_GETTER(arg_begin());
586 }
587
588 IterTy arg_end() const {
589 CALLSITE_DELEGATE_GETTER(arg_end());
590 }
591
592#undef CALLSITE_DELEGATE_GETTER
593#undef CALLSITE_DELEGATE_SETTER
594
595 void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
596 // Since this is actually a getter that "looks like" a setter, don't use the
597 // above macros to avoid confusion.
598 cast<CallBase>(getInstruction())->getOperandBundlesAsDefs(Defs);
599 }
600
601 /// Determine whether this data operand is not captured.
602 bool doesNotCapture(unsigned OpNo) const {
603 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
604 }
605
606 /// Determine whether this argument is passed by value.
607 bool isByValArgument(unsigned ArgNo) const {
608 return paramHasAttr(ArgNo, Attribute::ByVal);
609 }
610
611 /// Determine whether this argument is passed in an alloca.
612 bool isInAllocaArgument(unsigned ArgNo) const {
613 return paramHasAttr(ArgNo, Attribute::InAlloca);
614 }
615
616 /// Determine whether this argument is passed by value or in an alloca.
617 bool isByValOrInAllocaArgument(unsigned ArgNo) const {
618 return paramHasAttr(ArgNo, Attribute::ByVal) ||
619 paramHasAttr(ArgNo, Attribute::InAlloca);
620 }
621
622 /// Determine if there are is an inalloca argument. Only the last argument can
623 /// have the inalloca attribute.
624 bool hasInAllocaArgument() const {
625 return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
626 }
627
628 bool doesNotAccessMemory(unsigned OpNo) const {
629 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
630 }
631
632 bool onlyReadsMemory(unsigned OpNo) const {
633 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
634 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
635 }
636
637 bool doesNotReadMemory(unsigned OpNo) const {
638 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
639 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
640 }
641
642 /// Return true if the return value is known to be not null.
643 /// This may be because it has the nonnull attribute, or because at least
644 /// one byte is dereferenceable and the pointer is in addrspace(0).
645 bool isReturnNonNull() const {
646 if (hasRetAttr(Attribute::NonNull))
647 return true;
648 else if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
649 !NullPointerIsDefined(getCaller(),
650 getType()->getPointerAddressSpace()))
651 return true;
652
653 return false;
654 }
655
656 /// Returns true if this CallSite passes the given Value* as an argument to
657 /// the called function.
658 bool hasArgument(const Value *Arg) const {
659 for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E;
660 ++AI)
661 if (AI->get() == Arg)
662 return true;
663 return false;
664 }
665
666private:
667 IterTy getCallee() const {
668 return cast<CallBase>(getInstruction())->op_end() - 1;
669 }
670};
671
672class CallSite : public CallSiteBase<Function, BasicBlock, Value, User, Use,
673 Instruction, CallInst, InvokeInst,
674 CallBrInst, User::op_iterator> {
675public:
676 CallSite() = default;
677 CallSite(CallSiteBase B) : CallSiteBase(B) {}
678 CallSite(CallInst *CI) : CallSiteBase(CI) {}
679 CallSite(InvokeInst *II) : CallSiteBase(II) {}
680 CallSite(CallBrInst *CBI) : CallSiteBase(CBI) {}
681 explicit CallSite(Instruction *II) : CallSiteBase(II) {}
682 explicit CallSite(Value *V) : CallSiteBase(V) {}
683
684 bool operator==(const CallSite &CS) const { return I == CS.I; }
685 bool operator!=(const CallSite &CS) const { return I != CS.I; }
686 bool operator<(const CallSite &CS) const {
687 return getInstruction() < CS.getInstruction();
688 }
689
690private:
691 friend struct DenseMapInfo<CallSite>;
692
693 User::op_iterator getCallee() const;
694};
695
696/// Establish a view to a call site for examination.
697class ImmutableCallSite : public CallSiteBase<> {
698public:
699 ImmutableCallSite() = default;
700 ImmutableCallSite(const CallInst *CI) : CallSiteBase(CI) {}
701 ImmutableCallSite(const InvokeInst *II) : CallSiteBase(II) {}
702 ImmutableCallSite(const CallBrInst *CBI) : CallSiteBase(CBI) {}
703 explicit ImmutableCallSite(const Instruction *II) : CallSiteBase(II) {}
704 explicit ImmutableCallSite(const Value *V) : CallSiteBase(V) {}
705 ImmutableCallSite(CallSite CS) : CallSiteBase(CS.getInstruction()) {}
706};
707
708/// AbstractCallSite
709///
710/// An abstract call site is a wrapper that allows to treat direct,
711/// indirect, and callback calls the same. If an abstract call site
712/// represents a direct or indirect call site it behaves like a stripped
713/// down version of a normal call site object. The abstract call site can
714/// also represent a callback call, thus the fact that the initially
715/// called function (=broker) may invoke a third one (=callback callee).
716/// In this case, the abstract call site hides the middle man, hence the
717/// broker function. The result is a representation of the callback call,
718/// inside the broker, but in the context of the original call to the broker.
719///
720/// There are up to three functions involved when we talk about callback call
721/// sites. The caller (1), which invokes the broker function. The broker
722/// function (2), that will invoke the callee zero or more times. And finally
723/// the callee (3), which is the target of the callback call.
724///
725/// The abstract call site will handle the mapping from parameters to arguments
726/// depending on the semantic of the broker function. However, it is important
727/// to note that the mapping is often partial. Thus, some arguments of the
728/// call/invoke instruction are mapped to parameters of the callee while others
729/// are not.
730class AbstractCallSite {
731public:
732
733 /// The encoding of a callback with regards to the underlying instruction.
734 struct CallbackInfo {
735
736 /// For direct/indirect calls the parameter encoding is empty. If it is not,
737 /// the abstract call site represents a callback. In that case, the first
738 /// element of the encoding vector represents which argument of the call
739 /// site CS is the callback callee. The remaining elements map parameters
740 /// (identified by their position) to the arguments that will be passed
741 /// through (also identified by position but in the call site instruction).
742 ///
743 /// NOTE that we use LLVM argument numbers (starting at 0) and not
744 /// clang/source argument numbers (starting at 1). The -1 entries represent
745 /// unknown values that are passed to the callee.
746 using ParameterEncodingTy = SmallVector<int, 0>;
747 ParameterEncodingTy ParameterEncoding;
748
749 };
750
751private:
752
753 /// The underlying call site:
754 /// caller -> callee, if this is a direct or indirect call site
755 /// caller -> broker function, if this is a callback call site
756 CallSite CS;
757
758 /// The encoding of a callback with regards to the underlying instruction.
759 CallbackInfo CI;
760
761public:
762 /// Sole constructor for abstract call sites (ACS).
763 ///
764 /// An abstract call site can only be constructed through a llvm::Use because
765 /// each operand (=use) of an instruction could potentially be a different
766 /// abstract call site. Furthermore, even if the value of the llvm::Use is the
767 /// same, and the user is as well, the abstract call sites might not be.
768 ///
769 /// If a use is not associated with an abstract call site the constructed ACS
770 /// will evaluate to false if converted to a boolean.
771 ///
772 /// If the use is the callee use of a call or invoke instruction, the
773 /// constructed abstract call site will behave as a llvm::CallSite would.
774 ///
775 /// If the use is not a callee use of a call or invoke instruction, the
776 /// callback metadata is used to determine the argument <-> parameter mapping
777 /// as well as the callee of the abstract call site.
778 AbstractCallSite(const Use *U);
779
780 /// Add operand uses of \p ICS that represent callback uses into \p CBUses.
781 ///
782 /// All uses added to \p CBUses can be used to create abstract call sites for
783 /// which AbstractCallSite::isCallbackCall() will return true.
784 static void getCallbackUses(ImmutableCallSite ICS,
785 SmallVectorImpl<const Use *> &CBUses);
786
787 /// Conversion operator to conveniently check for a valid/initialized ACS.
788 explicit operator bool() const { return (bool)CS; }
789
790 /// Return the underlying instruction.
791 Instruction *getInstruction() const { return CS.getInstruction(); }
792
793 /// Return the call site abstraction for the underlying instruction.
794 CallSite getCallSite() const { return CS; }
795
796 /// Return true if this ACS represents a direct call.
797 bool isDirectCall() const {
798 return !isCallbackCall() && !CS.isIndirectCall();
799 }
800
801 /// Return true if this ACS represents an indirect call.
802 bool isIndirectCall() const {
803 return !isCallbackCall() && CS.isIndirectCall();
804 }
805
806 /// Return true if this ACS represents a callback call.
807 bool isCallbackCall() const {
808 // For a callback call site the callee is ALWAYS stored first in the
809 // transitive values vector. Thus, a non-empty vector indicates a callback.
810 return !CI.ParameterEncoding.empty();
811 }
812
813 /// Return true if @p UI is the use that defines the callee of this ACS.
814 bool isCallee(Value::const_user_iterator UI) const {
815 return isCallee(&UI.getUse());
816 }
817
818 /// Return true if @p U is the use that defines the callee of this ACS.
819 bool isCallee(const Use *U) const {
820 if (isDirectCall())
821 return CS.isCallee(U);
822
823 assert(!CI.ParameterEncoding.empty() &&((!CI.ParameterEncoding.empty() && "Callback without parameter encoding!"
) ? static_cast<void> (0) : __assert_fail ("!CI.ParameterEncoding.empty() && \"Callback without parameter encoding!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 824, __PRETTY_FUNCTION__))
824 "Callback without parameter encoding!")((!CI.ParameterEncoding.empty() && "Callback without parameter encoding!"
) ? static_cast<void> (0) : __assert_fail ("!CI.ParameterEncoding.empty() && \"Callback without parameter encoding!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 824, __PRETTY_FUNCTION__))
;
825
826 return (int)CS.getArgumentNo(U) == CI.ParameterEncoding[0];
827 }
828
829 /// Return the number of parameters of the callee.
830 unsigned getNumArgOperands() const {
831 if (isDirectCall())
832 return CS.getNumArgOperands();
833 // Subtract 1 for the callee encoding.
834 return CI.ParameterEncoding.size() - 1;
835 }
836
837 /// Return the operand index of the underlying instruction associated with @p
838 /// Arg.
839 int getCallArgOperandNo(Argument &Arg) const {
840 return getCallArgOperandNo(Arg.getArgNo());
841 }
842
843 /// Return the operand index of the underlying instruction associated with
844 /// the function parameter number @p ArgNo or -1 if there is none.
845 int getCallArgOperandNo(unsigned ArgNo) const {
846 if (isDirectCall())
847 return ArgNo;
848 // Add 1 for the callee encoding.
849 return CI.ParameterEncoding[ArgNo + 1];
850 }
851
852 /// Return the operand of the underlying instruction associated with @p Arg.
853 Value *getCallArgOperand(Argument &Arg) const {
854 return getCallArgOperand(Arg.getArgNo());
855 }
856
857 /// Return the operand of the underlying instruction associated with the
858 /// function parameter number @p ArgNo or nullptr if there is none.
859 Value *getCallArgOperand(unsigned ArgNo) const {
860 if (isDirectCall())
861 return CS.getArgOperand(ArgNo);
862 // Add 1 for the callee encoding.
863 return CI.ParameterEncoding[ArgNo + 1] >= 0
864 ? CS.getArgOperand(CI.ParameterEncoding[ArgNo + 1])
865 : nullptr;
866 }
867
868 /// Return the operand index of the underlying instruction associated with the
869 /// callee of this ACS. Only valid for callback calls!
870 int getCallArgOperandNoForCallee() const {
871 assert(isCallbackCall())((isCallbackCall()) ? static_cast<void> (0) : __assert_fail
("isCallbackCall()", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 871, __PRETTY_FUNCTION__))
;
872 assert(CI.ParameterEncoding.size() && CI.ParameterEncoding[0] >= 0)((CI.ParameterEncoding.size() && CI.ParameterEncoding
[0] >= 0) ? static_cast<void> (0) : __assert_fail ("CI.ParameterEncoding.size() && CI.ParameterEncoding[0] >= 0"
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 872, __PRETTY_FUNCTION__))
;
873 return CI.ParameterEncoding[0];
874 }
875
876 /// Return the use of the callee value in the underlying instruction. Only
877 /// valid for callback calls!
878 const Use &getCalleeUseForCallback() const {
879 int CalleeArgIdx = getCallArgOperandNoForCallee();
880 assert(CalleeArgIdx >= 0 &&((CalleeArgIdx >= 0 && unsigned(CalleeArgIdx) <
getInstruction()->getNumOperands()) ? static_cast<void
> (0) : __assert_fail ("CalleeArgIdx >= 0 && unsigned(CalleeArgIdx) < getInstruction()->getNumOperands()"
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 881, __PRETTY_FUNCTION__))
881 unsigned(CalleeArgIdx) < getInstruction()->getNumOperands())((CalleeArgIdx >= 0 && unsigned(CalleeArgIdx) <
getInstruction()->getNumOperands()) ? static_cast<void
> (0) : __assert_fail ("CalleeArgIdx >= 0 && unsigned(CalleeArgIdx) < getInstruction()->getNumOperands()"
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/CallSite.h"
, 881, __PRETTY_FUNCTION__))
;
882 return getInstruction()->getOperandUse(CalleeArgIdx);
883 }
884
885 /// Return the pointer to function that is being called.
886 Value *getCalledValue() const {
887 if (isDirectCall())
888 return CS.getCalledValue();
889 return CS.getArgOperand(getCallArgOperandNoForCallee());
890 }
891
892 /// Return the function being called if this is a direct call, otherwise
893 /// return null (if it's an indirect call).
894 Function *getCalledFunction() const {
895 Value *V = getCalledValue();
896 return V ? dyn_cast<Function>(V->stripPointerCasts()) : nullptr;
897 }
898};
899
900template <> struct DenseMapInfo<CallSite> {
901 using BaseInfo = DenseMapInfo<decltype(CallSite::I)>;
902
903 static CallSite getEmptyKey() {
904 CallSite CS;
905 CS.I = BaseInfo::getEmptyKey();
906 return CS;
907 }
908
909 static CallSite getTombstoneKey() {
910 CallSite CS;
911 CS.I = BaseInfo::getTombstoneKey();
912 return CS;
913 }
914
915 static unsigned getHashValue(const CallSite &CS) {
916 return BaseInfo::getHashValue(CS.I);
917 }
918
919 static bool isEqual(const CallSite &LHS, const CallSite &RHS) {
920 return LHS == RHS;
921 }
922};
923
924} // end namespace llvm
925
926#endif // LLVM_IR_CALLSITE_H

/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/ADT/PointerIntPair.h

1//===- llvm/ADT/PointerIntPair.h - Pair for pointer and int -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the PointerIntPair class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_POINTERINTPAIR_H
14#define LLVM_ADT_POINTERINTPAIR_H
15
16#include "llvm/Support/Compiler.h"
17#include "llvm/Support/PointerLikeTypeTraits.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <cstdint>
21#include <limits>
22
23namespace llvm {
24
25template <typename T> struct DenseMapInfo;
26template <typename PointerT, unsigned IntBits, typename PtrTraits>
27struct PointerIntPairInfo;
28
29/// PointerIntPair - This class implements a pair of a pointer and small
30/// integer. It is designed to represent this in the space required by one
31/// pointer by bitmangling the integer into the low part of the pointer. This
32/// can only be done for small integers: typically up to 3 bits, but it depends
33/// on the number of bits available according to PointerLikeTypeTraits for the
34/// type.
35///
36/// Note that PointerIntPair always puts the IntVal part in the highest bits
37/// possible. For example, PointerIntPair<void*, 1, bool> will put the bit for
38/// the bool into bit #2, not bit #0, which allows the low two bits to be used
39/// for something else. For example, this allows:
40/// PointerIntPair<PointerIntPair<void*, 1, bool>, 1, bool>
41/// ... and the two bools will land in different bits.
42template <typename PointerTy, unsigned IntBits, typename IntType = unsigned,
43 typename PtrTraits = PointerLikeTypeTraits<PointerTy>,
44 typename Info = PointerIntPairInfo<PointerTy, IntBits, PtrTraits>>
45class PointerIntPair {
46 // Used by MSVC visualizer and generally helpful for debugging/visualizing.
47 using InfoTy = Info;
48 intptr_t Value = 0;
49
50public:
51 constexpr PointerIntPair() = default;
52
53 PointerIntPair(PointerTy PtrVal, IntType IntVal) {
54 setPointerAndInt(PtrVal, IntVal);
55 }
56
57 explicit PointerIntPair(PointerTy PtrVal) { initWithPointer(PtrVal); }
58
59 PointerTy getPointer() const { return Info::getPointer(Value); }
16
Calling 'PointerIntPairInfo::getPointer'
24
Returning from 'PointerIntPairInfo::getPointer'
25
Returning null pointer, which participates in a condition later
60
61 IntType getInt() const { return (IntType)Info::getInt(Value); }
62
63 void setPointer(PointerTy PtrVal) LLVM_LVALUE_FUNCTION& {
64 Value = Info::updatePointer(Value, PtrVal);
65 }
66
67 void setInt(IntType IntVal) LLVM_LVALUE_FUNCTION& {
68 Value = Info::updateInt(Value, static_cast<intptr_t>(IntVal));
69 }
70
71 void initWithPointer(PointerTy PtrVal) LLVM_LVALUE_FUNCTION& {
72 Value = Info::updatePointer(0, PtrVal);
73 }
74
75 void setPointerAndInt(PointerTy PtrVal, IntType IntVal) LLVM_LVALUE_FUNCTION& {
76 Value = Info::updateInt(Info::updatePointer(0, PtrVal),
77 static_cast<intptr_t>(IntVal));
78 }
79
80 PointerTy const *getAddrOfPointer() const {
81 return const_cast<PointerIntPair *>(this)->getAddrOfPointer();
82 }
83
84 PointerTy *getAddrOfPointer() {
85 assert(Value == reinterpret_cast<intptr_t>(getPointer()) &&((Value == reinterpret_cast<intptr_t>(getPointer()) &&
"Can only return the address if IntBits is cleared and " "PtrTraits doesn't change the pointer"
) ? static_cast<void> (0) : __assert_fail ("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/ADT/PointerIntPair.h"
, 87, __PRETTY_FUNCTION__))
86 "Can only return the address if IntBits is cleared and "((Value == reinterpret_cast<intptr_t>(getPointer()) &&
"Can only return the address if IntBits is cleared and " "PtrTraits doesn't change the pointer"
) ? static_cast<void> (0) : __assert_fail ("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/ADT/PointerIntPair.h"
, 87, __PRETTY_FUNCTION__))
87 "PtrTraits doesn't change the pointer")((Value == reinterpret_cast<intptr_t>(getPointer()) &&
"Can only return the address if IntBits is cleared and " "PtrTraits doesn't change the pointer"
) ? static_cast<void> (0) : __assert_fail ("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/ADT/PointerIntPair.h"
, 87, __PRETTY_FUNCTION__))
;
88 return reinterpret_cast<PointerTy *>(&Value);
89 }
90
91 void *getOpaqueValue() const { return reinterpret_cast<void *>(Value); }
92
93 void setFromOpaqueValue(void *Val) LLVM_LVALUE_FUNCTION& {
94 Value = reinterpret_cast<intptr_t>(Val);
95 }
96
97 static PointerIntPair getFromOpaqueValue(void *V) {
98 PointerIntPair P;
99 P.setFromOpaqueValue(V);
100 return P;
101 }
102
103 // Allow PointerIntPairs to be created from const void * if and only if the
104 // pointer type could be created from a const void *.
105 static PointerIntPair getFromOpaqueValue(const void *V) {
106 (void)PtrTraits::getFromVoidPointer(V);
107 return getFromOpaqueValue(const_cast<void *>(V));
108 }
109
110 bool operator==(const PointerIntPair &RHS) const {
111 return Value == RHS.Value;
112 }
113
114 bool operator!=(const PointerIntPair &RHS) const {
115 return Value != RHS.Value;
116 }
117
118 bool operator<(const PointerIntPair &RHS) const { return Value < RHS.Value; }
119 bool operator>(const PointerIntPair &RHS) const { return Value > RHS.Value; }
120
121 bool operator<=(const PointerIntPair &RHS) const {
122 return Value <= RHS.Value;
123 }
124
125 bool operator>=(const PointerIntPair &RHS) const {
126 return Value >= RHS.Value;
127 }
128};
129
130// Specialize is_trivially_copyable to avoid limitation of llvm::is_trivially_copyable
131// when compiled with gcc 4.9.
132template <typename PointerTy, unsigned IntBits, typename IntType,
133 typename PtrTraits,
134 typename Info>
135struct is_trivially_copyable<PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info>> : std::true_type {
136#ifdef HAVE_STD_IS_TRIVIALLY_COPYABLE
137 static_assert(std::is_trivially_copyable<PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info>>::value,
138 "inconsistent behavior between llvm:: and std:: implementation of is_trivially_copyable");
139#endif
140};
141
142
143template <typename PointerT, unsigned IntBits, typename PtrTraits>
144struct PointerIntPairInfo {
145 static_assert(PtrTraits::NumLowBitsAvailable <
146 std::numeric_limits<uintptr_t>::digits,
147 "cannot use a pointer type that has all bits free");
148 static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
149 "PointerIntPair with integer size too large for pointer");
150 enum MaskAndShiftConstants : uintptr_t {
151 /// PointerBitMask - The bits that come from the pointer.
152 PointerBitMask =
153 ~(uintptr_t)(((intptr_t)1 << PtrTraits::NumLowBitsAvailable) - 1),
154
155 /// IntShift - The number of low bits that we reserve for other uses, and
156 /// keep zero.
157 IntShift = (uintptr_t)PtrTraits::NumLowBitsAvailable - IntBits,
158
159 /// IntMask - This is the unshifted mask for valid bits of the int type.
160 IntMask = (uintptr_t)(((intptr_t)1 << IntBits) - 1),
161
162 // ShiftedIntMask - This is the bits for the integer shifted in place.
163 ShiftedIntMask = (uintptr_t)(IntMask << IntShift)
164 };
165
166 static PointerT getPointer(intptr_t Value) {
167 return PtrTraits::getFromVoidPointer(
17
Calling 'PointerLikeTypeTraits::getFromVoidPointer'
22
Returning from 'PointerLikeTypeTraits::getFromVoidPointer'
23
Returning null pointer, which participates in a condition later
168 reinterpret_cast<void *>(Value & PointerBitMask));
169 }
170
171 static intptr_t getInt(intptr_t Value) {
172 return (Value >> IntShift) & IntMask;
173 }
174
175 static intptr_t updatePointer(intptr_t OrigValue, PointerT Ptr) {
176 intptr_t PtrWord =
177 reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(Ptr));
178 assert((PtrWord & ~PointerBitMask) == 0 &&(((PtrWord & ~PointerBitMask) == 0 && "Pointer is not sufficiently aligned"
) ? static_cast<void> (0) : __assert_fail ("(PtrWord & ~PointerBitMask) == 0 && \"Pointer is not sufficiently aligned\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/ADT/PointerIntPair.h"
, 179, __PRETTY_FUNCTION__))
179 "Pointer is not sufficiently aligned")(((PtrWord & ~PointerBitMask) == 0 && "Pointer is not sufficiently aligned"
) ? static_cast<void> (0) : __assert_fail ("(PtrWord & ~PointerBitMask) == 0 && \"Pointer is not sufficiently aligned\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/ADT/PointerIntPair.h"
, 179, __PRETTY_FUNCTION__))
;
180 // Preserve all low bits, just update the pointer.
181 return PtrWord | (OrigValue & ~PointerBitMask);
182 }
183
184 static intptr_t updateInt(intptr_t OrigValue, intptr_t Int) {
185 intptr_t IntWord = static_cast<intptr_t>(Int);
186 assert((IntWord & ~IntMask) == 0 && "Integer too large for field")(((IntWord & ~IntMask) == 0 && "Integer too large for field"
) ? static_cast<void> (0) : __assert_fail ("(IntWord & ~IntMask) == 0 && \"Integer too large for field\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/ADT/PointerIntPair.h"
, 186, __PRETTY_FUNCTION__))
;
187
188 // Preserve all bits other than the ones we are updating.
189 return (OrigValue & ~ShiftedIntMask) | IntWord << IntShift;
190 }
191};
192
193// Provide specialization of DenseMapInfo for PointerIntPair.
194template <typename PointerTy, unsigned IntBits, typename IntType>
195struct DenseMapInfo<PointerIntPair<PointerTy, IntBits, IntType>> {
196 using Ty = PointerIntPair<PointerTy, IntBits, IntType>;
197
198 static Ty getEmptyKey() {
199 uintptr_t Val = static_cast<uintptr_t>(-1);
200 Val <<= PointerLikeTypeTraits<Ty>::NumLowBitsAvailable;
201 return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
202 }
203
204 static Ty getTombstoneKey() {
205 uintptr_t Val = static_cast<uintptr_t>(-2);
206 Val <<= PointerLikeTypeTraits<PointerTy>::NumLowBitsAvailable;
207 return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
208 }
209
210 static unsigned getHashValue(Ty V) {
211 uintptr_t IV = reinterpret_cast<uintptr_t>(V.getOpaqueValue());
212 return unsigned(IV) ^ unsigned(IV >> 9);
213 }
214
215 static bool isEqual(const Ty &LHS, const Ty &RHS) { return LHS == RHS; }
216};
217
218// Teach SmallPtrSet that PointerIntPair is "basically a pointer".
219template <typename PointerTy, unsigned IntBits, typename IntType,
220 typename PtrTraits>
221struct PointerLikeTypeTraits<
222 PointerIntPair<PointerTy, IntBits, IntType, PtrTraits>> {
223 static inline void *
224 getAsVoidPointer(const PointerIntPair<PointerTy, IntBits, IntType> &P) {
225 return P.getOpaqueValue();
226 }
227
228 static inline PointerIntPair<PointerTy, IntBits, IntType>
229 getFromVoidPointer(void *P) {
230 return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
231 }
232
233 static inline PointerIntPair<PointerTy, IntBits, IntType>
234 getFromVoidPointer(const void *P) {
235 return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
236 }
237
238 static constexpr int NumLowBitsAvailable =
239 PtrTraits::NumLowBitsAvailable - IntBits;
240};
241
242} // end namespace llvm
243
244#endif // LLVM_ADT_POINTERINTPAIR_H

/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Support/PointerLikeTypeTraits.h

1//===- llvm/Support/PointerLikeTypeTraits.h - Pointer Traits ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the PointerLikeTypeTraits class. This allows data
10// structures to reason about pointers and other things that are pointer sized.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_POINTERLIKETYPETRAITS_H
15#define LLVM_SUPPORT_POINTERLIKETYPETRAITS_H
16
17#include "llvm/Support/DataTypes.h"
18#include <assert.h>
19#include <type_traits>
20
21namespace llvm {
22
23/// A traits type that is used to handle pointer types and things that are just
24/// wrappers for pointers as a uniform entity.
25template <typename T> struct PointerLikeTypeTraits;
26
27namespace detail {
28/// A tiny meta function to compute the log2 of a compile time constant.
29template <size_t N>
30struct ConstantLog2
31 : std::integral_constant<size_t, ConstantLog2<N / 2>::value + 1> {};
32template <> struct ConstantLog2<1> : std::integral_constant<size_t, 0> {};
33
34// Provide a trait to check if T is pointer-like.
35template <typename T, typename U = void> struct HasPointerLikeTypeTraits {
36 static const bool value = false;
37};
38
39// sizeof(T) is valid only for a complete T.
40template <typename T> struct HasPointerLikeTypeTraits<
41 T, decltype((sizeof(PointerLikeTypeTraits<T>) + sizeof(T)), void())> {
42 static const bool value = true;
43};
44
45template <typename T> struct IsPointerLike {
46 static const bool value = HasPointerLikeTypeTraits<T>::value;
47};
48
49template <typename T> struct IsPointerLike<T *> {
50 static const bool value = true;
51};
52} // namespace detail
53
54// Provide PointerLikeTypeTraits for non-cvr pointers.
55template <typename T> struct PointerLikeTypeTraits<T *> {
56 static inline void *getAsVoidPointer(T *P) { return P; }
57 static inline T *getFromVoidPointer(void *P) { return static_cast<T *>(P); }
19
Returning null pointer (loaded from 'P'), which participates in a condition later
58
59 static constexpr int NumLowBitsAvailable =
60 detail::ConstantLog2<alignof(T)>::value;
61};
62
63template <> struct PointerLikeTypeTraits<void *> {
64 static inline void *getAsVoidPointer(void *P) { return P; }
65 static inline void *getFromVoidPointer(void *P) { return P; }
66
67 /// Note, we assume here that void* is related to raw malloc'ed memory and
68 /// that malloc returns objects at least 4-byte aligned. However, this may be
69 /// wrong, or pointers may be from something other than malloc. In this case,
70 /// you should specify a real typed pointer or avoid this template.
71 ///
72 /// All clients should use assertions to do a run-time check to ensure that
73 /// this is actually true.
74 static constexpr int NumLowBitsAvailable = 2;
75};
76
77// Provide PointerLikeTypeTraits for const things.
78template <typename T> struct PointerLikeTypeTraits<const T> {
79 typedef PointerLikeTypeTraits<T> NonConst;
80
81 static inline const void *getAsVoidPointer(const T P) {
82 return NonConst::getAsVoidPointer(P);
83 }
84 static inline const T getFromVoidPointer(const void *P) {
85 return NonConst::getFromVoidPointer(const_cast<void *>(P));
86 }
87 static constexpr int NumLowBitsAvailable = NonConst::NumLowBitsAvailable;
88};
89
90// Provide PointerLikeTypeTraits for const pointers.
91template <typename T> struct PointerLikeTypeTraits<const T *> {
92 typedef PointerLikeTypeTraits<T *> NonConst;
93
94 static inline const void *getAsVoidPointer(const T *P) {
95 return NonConst::getAsVoidPointer(const_cast<T *>(P));
96 }
97 static inline const T *getFromVoidPointer(const void *P) {
98 return NonConst::getFromVoidPointer(const_cast<void *>(P));
18
Calling 'PointerLikeTypeTraits::getFromVoidPointer'
20
Returning from 'PointerLikeTypeTraits::getFromVoidPointer'
21
Returning null pointer, which participates in a condition later
99 }
100 static constexpr int NumLowBitsAvailable = NonConst::NumLowBitsAvailable;
101};
102
103// Provide PointerLikeTypeTraits for uintptr_t.
104template <> struct PointerLikeTypeTraits<uintptr_t> {
105 static inline void *getAsVoidPointer(uintptr_t P) {
106 return reinterpret_cast<void *>(P);
107 }
108 static inline uintptr_t getFromVoidPointer(void *P) {
109 return reinterpret_cast<uintptr_t>(P);
110 }
111 // No bits are available!
112 static constexpr int NumLowBitsAvailable = 0;
113};
114
115/// Provide suitable custom traits struct for function pointers.
116///
117/// Function pointers can't be directly given these traits as functions can't
118/// have their alignment computed with `alignof` and we need different casting.
119///
120/// To rely on higher alignment for a specialized use, you can provide a
121/// customized form of this template explicitly with higher alignment, and
122/// potentially use alignment attributes on functions to satisfy that.
123template <int Alignment, typename FunctionPointerT>
124struct FunctionPointerLikeTypeTraits {
125 static constexpr int NumLowBitsAvailable =
126 detail::ConstantLog2<Alignment>::value;
127 static inline void *getAsVoidPointer(FunctionPointerT P) {
128 assert((reinterpret_cast<uintptr_t>(P) &(((reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1
<< NumLowBitsAvailable)) == 0 && "Alignment not satisfied for an actual function pointer!"
) ? static_cast<void> (0) : __assert_fail ("(reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 && \"Alignment not satisfied for an actual function pointer!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Support/PointerLikeTypeTraits.h"
, 130, __PRETTY_FUNCTION__))
129 ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 &&(((reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1
<< NumLowBitsAvailable)) == 0 && "Alignment not satisfied for an actual function pointer!"
) ? static_cast<void> (0) : __assert_fail ("(reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 && \"Alignment not satisfied for an actual function pointer!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Support/PointerLikeTypeTraits.h"
, 130, __PRETTY_FUNCTION__))
130 "Alignment not satisfied for an actual function pointer!")(((reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1
<< NumLowBitsAvailable)) == 0 && "Alignment not satisfied for an actual function pointer!"
) ? static_cast<void> (0) : __assert_fail ("(reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 && \"Alignment not satisfied for an actual function pointer!\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/Support/PointerLikeTypeTraits.h"
, 130, __PRETTY_FUNCTION__))
;
131 return reinterpret_cast<void *>(P);
132 }
133 static inline FunctionPointerT getFromVoidPointer(void *P) {
134 return reinterpret_cast<FunctionPointerT>(P);
135 }
136};
137
138/// Provide a default specialization for function pointers that assumes 4-byte
139/// alignment.
140///
141/// We assume here that functions used with this are always at least 4-byte
142/// aligned. This means that, for example, thumb functions won't work or systems
143/// with weird unaligned function pointers won't work. But all practical systems
144/// we support satisfy this requirement.
145template <typename ReturnT, typename... ParamTs>
146struct PointerLikeTypeTraits<ReturnT (*)(ParamTs...)>
147 : FunctionPointerLikeTypeTraits<4, ReturnT (*)(ParamTs...)> {};
148
149} // end namespace llvm
150
151#endif

/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/IR/Operator.h

1//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines various classes for working with Instructions and
10// ConstantExprs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_OPERATOR_H
15#define LLVM_IR_OPERATOR_H
16
17#include "llvm/ADT/None.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Instruction.h"
21#include "llvm/IR/Type.h"
22#include "llvm/IR/Value.h"
23#include "llvm/Support/Casting.h"
24#include <cstddef>
25
26namespace llvm {
27
28/// This is a utility class that provides an abstraction for the common
29/// functionality between Instructions and ConstantExprs.
30class Operator : public User {
31public:
32 // The Operator class is intended to be used as a utility, and is never itself
33 // instantiated.
34 Operator() = delete;
35 ~Operator() = delete;
36
37 void *operator new(size_t s) = delete;
38
39 /// Return the opcode for this Instruction or ConstantExpr.
40 unsigned getOpcode() const {
41 if (const Instruction *I = dyn_cast<Instruction>(this))
42 return I->getOpcode();
43 return cast<ConstantExpr>(this)->getOpcode();
44 }
45
46 /// If V is an Instruction or ConstantExpr, return its opcode.
47 /// Otherwise return UserOp1.
48 static unsigned getOpcode(const Value *V) {
49 if (const Instruction *I
35.1
'I' is non-null
35.1
'I' is non-null
35.1
'I' is non-null
35.1
'I' is non-null
35.1
'I' is non-null
35.1
'I' is non-null
35.1
'I' is non-null
= dyn_cast<Instruction>(V))
35
Assuming 'V' is a 'Instruction'
36
Taking true branch
50 return I->getOpcode();
37
Returning value, which participates in a condition later
51 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
52 return CE->getOpcode();
53 return Instruction::UserOp1;
54 }
55
56 static bool classof(const Instruction *) { return true; }
57 static bool classof(const ConstantExpr *) { return true; }
58 static bool classof(const Value *V) {
59 return isa<Instruction>(V) || isa<ConstantExpr>(V);
60 }
61};
62
63/// Utility class for integer operators which may exhibit overflow - Add, Sub,
64/// Mul, and Shl. It does not include SDiv, despite that operator having the
65/// potential for overflow.
66class OverflowingBinaryOperator : public Operator {
67public:
68 enum {
69 AnyWrap = 0,
70 NoUnsignedWrap = (1 << 0),
71 NoSignedWrap = (1 << 1)
72 };
73
74private:
75 friend class Instruction;
76 friend class ConstantExpr;
77
78 void setHasNoUnsignedWrap(bool B) {
79 SubclassOptionalData =
80 (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
81 }
82 void setHasNoSignedWrap(bool B) {
83 SubclassOptionalData =
84 (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
85 }
86
87public:
88 /// Test whether this operation is known to never
89 /// undergo unsigned overflow, aka the nuw property.
90 bool hasNoUnsignedWrap() const {
91 return SubclassOptionalData & NoUnsignedWrap;
92 }
93
94 /// Test whether this operation is known to never
95 /// undergo signed overflow, aka the nsw property.
96 bool hasNoSignedWrap() const {
97 return (SubclassOptionalData & NoSignedWrap) != 0;
98 }
99
100 static bool classof(const Instruction *I) {
101 return I->getOpcode() == Instruction::Add ||
102 I->getOpcode() == Instruction::Sub ||
103 I->getOpcode() == Instruction::Mul ||
104 I->getOpcode() == Instruction::Shl;
105 }
106 static bool classof(const ConstantExpr *CE) {
107 return CE->getOpcode() == Instruction::Add ||
108 CE->getOpcode() == Instruction::Sub ||
109 CE->getOpcode() == Instruction::Mul ||
110 CE->getOpcode() == Instruction::Shl;
111 }
112 static bool classof(const Value *V) {
113 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
114 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
115 }
116};
117
118/// A udiv or sdiv instruction, which can be marked as "exact",
119/// indicating that no bits are destroyed.
120class PossiblyExactOperator : public Operator {
121public:
122 enum {
123 IsExact = (1 << 0)
124 };
125
126private:
127 friend class Instruction;
128 friend class ConstantExpr;
129
130 void setIsExact(bool B) {
131 SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
132 }
133
134public:
135 /// Test whether this division is known to be exact, with zero remainder.
136 bool isExact() const {
137 return SubclassOptionalData & IsExact;
138 }
139
140 static bool isPossiblyExactOpcode(unsigned OpC) {
141 return OpC == Instruction::SDiv ||
142 OpC == Instruction::UDiv ||
143 OpC == Instruction::AShr ||
144 OpC == Instruction::LShr;
145 }
146
147 static bool classof(const ConstantExpr *CE) {
148 return isPossiblyExactOpcode(CE->getOpcode());
149 }
150 static bool classof(const Instruction *I) {
151 return isPossiblyExactOpcode(I->getOpcode());
152 }
153 static bool classof(const Value *V) {
154 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
155 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
156 }
157};
158
159/// Convenience struct for specifying and reasoning about fast-math flags.
160class FastMathFlags {
161private:
162 friend class FPMathOperator;
163
164 unsigned Flags = 0;
165
166 FastMathFlags(unsigned F) {
167 // If all 7 bits are set, turn this into -1. If the number of bits grows,
168 // this must be updated. This is intended to provide some forward binary
169 // compatibility insurance for the meaning of 'fast' in case bits are added.
170 if (F == 0x7F) Flags = ~0U;
171 else Flags = F;
172 }
173
174public:
175 // This is how the bits are used in Value::SubclassOptionalData so they
176 // should fit there too.
177 // WARNING: We're out of space. SubclassOptionalData only has 7 bits. New
178 // functionality will require a change in how this information is stored.
179 enum {
180 AllowReassoc = (1 << 0),
181 NoNaNs = (1 << 1),
182 NoInfs = (1 << 2),
183 NoSignedZeros = (1 << 3),
184 AllowReciprocal = (1 << 4),
185 AllowContract = (1 << 5),
186 ApproxFunc = (1 << 6)
187 };
188
189 FastMathFlags() = default;
190
191 static FastMathFlags getFast() {
192 FastMathFlags FMF;
193 FMF.setFast();
194 return FMF;
195 }
196
197 bool any() const { return Flags != 0; }
198 bool none() const { return Flags == 0; }
199 bool all() const { return Flags == ~0U; }
200
201 void clear() { Flags = 0; }
202 void set() { Flags = ~0U; }
203
204 /// Flag queries
205 bool allowReassoc() const { return 0 != (Flags & AllowReassoc); }
206 bool noNaNs() const { return 0 != (Flags & NoNaNs); }
207 bool noInfs() const { return 0 != (Flags & NoInfs); }
208 bool noSignedZeros() const { return 0 != (Flags & NoSignedZeros); }
209 bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); }
210 bool allowContract() const { return 0 != (Flags & AllowContract); }
211 bool approxFunc() const { return 0 != (Flags & ApproxFunc); }
212 /// 'Fast' means all bits are set.
213 bool isFast() const { return all(); }
214
215 /// Flag setters
216 void setAllowReassoc(bool B = true) {
217 Flags = (Flags & ~AllowReassoc) | B * AllowReassoc;
218 }
219 void setNoNaNs(bool B = true) {
220 Flags = (Flags & ~NoNaNs) | B * NoNaNs;
221 }
222 void setNoInfs(bool B = true) {
223 Flags = (Flags & ~NoInfs) | B * NoInfs;
224 }
225 void setNoSignedZeros(bool B = true) {
226 Flags = (Flags & ~NoSignedZeros) | B * NoSignedZeros;
227 }
228 void setAllowReciprocal(bool B = true) {
229 Flags = (Flags & ~AllowReciprocal) | B * AllowReciprocal;
230 }
231 void setAllowContract(bool B = true) {
232 Flags = (Flags & ~AllowContract) | B * AllowContract;
233 }
234 void setApproxFunc(bool B = true) {
235 Flags = (Flags & ~ApproxFunc) | B * ApproxFunc;
236 }
237 void setFast(bool B = true) { B ? set() : clear(); }
238
239 void operator&=(const FastMathFlags &OtherFlags) {
240 Flags &= OtherFlags.Flags;
241 }
242};
243
244/// Utility class for floating point operations which can have
245/// information about relaxed accuracy requirements attached to them.
246class FPMathOperator : public Operator {
247private:
248 friend class Instruction;
249
250 /// 'Fast' means all bits are set.
251 void setFast(bool B) {
252 setHasAllowReassoc(B);
253 setHasNoNaNs(B);
254 setHasNoInfs(B);
255 setHasNoSignedZeros(B);
256 setHasAllowReciprocal(B);
257 setHasAllowContract(B);
258 setHasApproxFunc(B);
259 }
260
261 void setHasAllowReassoc(bool B) {
262 SubclassOptionalData =
263 (SubclassOptionalData & ~FastMathFlags::AllowReassoc) |
264 (B * FastMathFlags::AllowReassoc);
265 }
266
267 void setHasNoNaNs(bool B) {
268 SubclassOptionalData =
269 (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
270 (B * FastMathFlags::NoNaNs);
271 }
272
273 void setHasNoInfs(bool B) {
274 SubclassOptionalData =
275 (SubclassOptionalData & ~FastMathFlags::NoInfs) |
276 (B * FastMathFlags::NoInfs);
277 }
278
279 void setHasNoSignedZeros(bool B) {
280 SubclassOptionalData =
281 (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
282 (B * FastMathFlags::NoSignedZeros);
283 }
284
285 void setHasAllowReciprocal(bool B) {
286 SubclassOptionalData =
287 (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
288 (B * FastMathFlags::AllowReciprocal);
289 }
290
291 void setHasAllowContract(bool B) {
292 SubclassOptionalData =
293 (SubclassOptionalData & ~FastMathFlags::AllowContract) |
294 (B * FastMathFlags::AllowContract);
295 }
296
297 void setHasApproxFunc(bool B) {
298 SubclassOptionalData =
299 (SubclassOptionalData & ~FastMathFlags::ApproxFunc) |
300 (B * FastMathFlags::ApproxFunc);
301 }
302
303 /// Convenience function for setting multiple fast-math flags.
304 /// FMF is a mask of the bits to set.
305 void setFastMathFlags(FastMathFlags FMF) {
306 SubclassOptionalData |= FMF.Flags;
307 }
308
309 /// Convenience function for copying all fast-math flags.
310 /// All values in FMF are transferred to this operator.
311 void copyFastMathFlags(FastMathFlags FMF) {
312 SubclassOptionalData = FMF.Flags;
313 }
314
315public:
316 /// Test if this operation allows all non-strict floating-point transforms.
317 bool isFast() const {
318 return ((SubclassOptionalData & FastMathFlags::AllowReassoc) != 0 &&
319 (SubclassOptionalData & FastMathFlags::NoNaNs) != 0 &&
320 (SubclassOptionalData & FastMathFlags::NoInfs) != 0 &&
321 (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0 &&
322 (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0 &&
323 (SubclassOptionalData & FastMathFlags::AllowContract) != 0 &&
324 (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0);
325 }
326
327 /// Test if this operation may be simplified with reassociative transforms.
328 bool hasAllowReassoc() const {
329 return (SubclassOptionalData & FastMathFlags::AllowReassoc) != 0;
330 }
331
332 /// Test if this operation's arguments and results are assumed not-NaN.
333 bool hasNoNaNs() const {
334 return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
335 }
336
337 /// Test if this operation's arguments and results are assumed not-infinite.
338 bool hasNoInfs() const {
339 return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
340 }
341
342 /// Test if this operation can ignore the sign of zero.
343 bool hasNoSignedZeros() const {
344 return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
345 }
346
347 /// Test if this operation can use reciprocal multiply instead of division.
348 bool hasAllowReciprocal() const {
349 return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
350 }
351
352 /// Test if this operation can be floating-point contracted (FMA).
353 bool hasAllowContract() const {
354 return (SubclassOptionalData & FastMathFlags::AllowContract) != 0;
355 }
356
357 /// Test if this operation allows approximations of math library functions or
358 /// intrinsics.
359 bool hasApproxFunc() const {
360 return (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0;
361 }
362
363 /// Convenience function for getting all the fast-math flags
364 FastMathFlags getFastMathFlags() const {
365 return FastMathFlags(SubclassOptionalData);
366 }
367
368 /// Get the maximum error permitted by this operation in ULPs. An accuracy of
369 /// 0.0 means that the operation should be performed with the default
370 /// precision.
371 float getFPAccuracy() const;
372
373 static bool classof(const Value *V) {
374 unsigned Opcode;
375 if (auto *I = dyn_cast<Instruction>(V))
376 Opcode = I->getOpcode();
377 else if (auto *CE = dyn_cast<ConstantExpr>(V))
378 Opcode = CE->getOpcode();
379 else
380 return false;
381
382 switch (Opcode) {
383 case Instruction::FNeg:
384 case Instruction::FAdd:
385 case Instruction::FSub:
386 case Instruction::FMul:
387 case Instruction::FDiv:
388 case Instruction::FRem:
389 // FIXME: To clean up and correct the semantics of fast-math-flags, FCmp
390 // should not be treated as a math op, but the other opcodes should.
391 // This would make things consistent with Select/PHI (FP value type
392 // determines whether they are math ops and, therefore, capable of
393 // having fast-math-flags).
394 case Instruction::FCmp:
395 return true;
396 case Instruction::PHI:
397 case Instruction::Select:
398 case Instruction::Call: {
399 Type *Ty = V->getType();
400 while (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty))
401 Ty = ArrTy->getElementType();
402 return Ty->isFPOrFPVectorTy();
403 }
404 default:
405 return false;
406 }
407 }
408};
409
410/// A helper template for defining operators for individual opcodes.
411template<typename SuperClass, unsigned Opc>
412class ConcreteOperator : public SuperClass {
413public:
414 static bool classof(const Instruction *I) {
415 return I->getOpcode() == Opc;
416 }
417 static bool classof(const ConstantExpr *CE) {
418 return CE->getOpcode() == Opc;
419 }
420 static bool classof(const Value *V) {
421 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
422 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
423 }
424};
425
426class AddOperator
427 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
428};
429class SubOperator
430 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
431};
432class MulOperator
433 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
434};
435class ShlOperator
436 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
437};
438
439class SDivOperator
440 : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
441};
442class UDivOperator
443 : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
444};
445class AShrOperator
446 : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
447};
448class LShrOperator
449 : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
450};
451
452class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {};
453
454class GEPOperator
455 : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
456 friend class GetElementPtrInst;
457 friend class ConstantExpr;
458
459 enum {
460 IsInBounds = (1 << 0),
461 // InRangeIndex: bits 1-6
462 };
463
464 void setIsInBounds(bool B) {
465 SubclassOptionalData =
466 (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
467 }
468
469public:
470 /// Test whether this is an inbounds GEP, as defined by LangRef.html.
471 bool isInBounds() const {
472 return SubclassOptionalData & IsInBounds;
473 }
474
475 /// Returns the offset of the index with an inrange attachment, or None if
476 /// none.
477 Optional<unsigned> getInRangeIndex() const {
478 if (SubclassOptionalData >> 1 == 0) return None;
479 return (SubclassOptionalData >> 1) - 1;
480 }
481
482 inline op_iterator idx_begin() { return op_begin()+1; }
483 inline const_op_iterator idx_begin() const { return op_begin()+1; }
484 inline op_iterator idx_end() { return op_end(); }
485 inline const_op_iterator idx_end() const { return op_end(); }
486
487 Value *getPointerOperand() {
488 return getOperand(0);
489 }
490 const Value *getPointerOperand() const {
491 return getOperand(0);
492 }
493 static unsigned getPointerOperandIndex() {
494 return 0U; // get index for modifying correct operand
495 }
496
497 /// Method to return the pointer operand as a PointerType.
498 Type *getPointerOperandType() const {
499 return getPointerOperand()->getType();
500 }
501
502 Type *getSourceElementType() const;
503 Type *getResultElementType() const;
504
505 /// Method to return the address space of the pointer operand.
506 unsigned getPointerAddressSpace() const {
507 return getPointerOperandType()->getPointerAddressSpace();
508 }
509
510 unsigned getNumIndices() const { // Note: always non-negative
511 return getNumOperands() - 1;
512 }
513
514 bool hasIndices() const {
515 return getNumOperands() > 1;
516 }
517
518 /// Return true if all of the indices of this GEP are zeros.
519 /// If so, the result pointer and the first operand have the same
520 /// value, just potentially different types.
521 bool hasAllZeroIndices() const {
522 for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
523 if (ConstantInt *C = dyn_cast<ConstantInt>(I))
524 if (C->isZero())
525 continue;
526 return false;
527 }
528 return true;
529 }
530
531 /// Return true if all of the indices of this GEP are constant integers.
532 /// If so, the result pointer and the first operand have
533 /// a constant offset between them.
534 bool hasAllConstantIndices() const {
535 for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
536 if (!isa<ConstantInt>(I))
537 return false;
538 }
539 return true;
540 }
541
542 unsigned countNonConstantIndices() const {
543 return count_if(make_range(idx_begin(), idx_end()), [](const Use& use) {
544 return !isa<ConstantInt>(*use);
545 });
546 }
547
548 /// Accumulate the constant address offset of this GEP if possible.
549 ///
550 /// This routine accepts an APInt into which it will accumulate the constant
551 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
552 /// all-constant, it returns false and the value of the offset APInt is
553 /// undefined (it is *not* preserved!). The APInt passed into this routine
554 /// must be at exactly as wide as the IntPtr type for the address space of the
555 /// base GEP pointer.
556 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
557};
558
559class PtrToIntOperator
560 : public ConcreteOperator<Operator, Instruction::PtrToInt> {
561 friend class PtrToInt;
562 friend class ConstantExpr;
563
564public:
565 Value *getPointerOperand() {
566 return getOperand(0);
567 }
568 const Value *getPointerOperand() const {
569 return getOperand(0);
570 }
571
572 static unsigned getPointerOperandIndex() {
573 return 0U; // get index for modifying correct operand
574 }
575
576 /// Method to return the pointer operand as a PointerType.
577 Type *getPointerOperandType() const {
578 return getPointerOperand()->getType();
579 }
580
581 /// Method to return the address space of the pointer operand.
582 unsigned getPointerAddressSpace() const {
583 return cast<PointerType>(getPointerOperandType())->getAddressSpace();
584 }
585};
586
587class BitCastOperator
588 : public ConcreteOperator<Operator, Instruction::BitCast> {
589 friend class BitCastInst;
590 friend class ConstantExpr;
591
592public:
593 Type *getSrcTy() const {
594 return getOperand(0)->getType();
595 }
596
597 Type *getDestTy() const {
598 return getType();
599 }
600};
601
602} // end namespace llvm
603
604#endif // LLVM_IR_OPERATOR_H

/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h

1//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file provides a helper that implements much of the TTI interface in
11/// terms of the target-independent code generator and TargetLowering
12/// interfaces.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
17#define LLVM_CODEGEN_BASICTTIIMPL_H
18
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/BitVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/TargetTransformInfo.h"
26#include "llvm/Analysis/TargetTransformInfoImpl.h"
27#include "llvm/CodeGen/ISDOpcodes.h"
28#include "llvm/CodeGen/TargetLowering.h"
29#include "llvm/CodeGen/TargetSubtargetInfo.h"
30#include "llvm/CodeGen/ValueTypes.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/CallSite.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/InstrTypes.h"
38#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Type.h"
43#include "llvm/IR/Value.h"
44#include "llvm/MC/MCSchedule.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/MachineValueType.h"
49#include "llvm/Support/MathExtras.h"
50#include <algorithm>
51#include <cassert>
52#include <cstdint>
53#include <limits>
54#include <utility>
55
56namespace llvm {
57
58class Function;
59class GlobalValue;
60class LLVMContext;
61class ScalarEvolution;
62class SCEV;
63class TargetMachine;
64
65extern cl::opt<unsigned> PartialUnrollingThreshold;
66
67/// Base class which can be used to help build a TTI implementation.
68///
69/// This class provides as much implementation of the TTI interface as is
70/// possible using the target independent parts of the code generator.
71///
72/// In order to subclass it, your class must implement a getST() method to
73/// return the subtarget, and a getTLI() method to return the target lowering.
74/// We need these methods implemented in the derived class so that this class
75/// doesn't have to duplicate storage for them.
76template <typename T>
77class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
78private:
79 using BaseT = TargetTransformInfoImplCRTPBase<T>;
80 using TTI = TargetTransformInfo;
81
82 /// Estimate a cost of Broadcast as an extract and sequence of insert
83 /// operations.
84 unsigned getBroadcastShuffleOverhead(Type *Ty) {
85 assert(Ty->isVectorTy() && "Can only shuffle vectors")((Ty->isVectorTy() && "Can only shuffle vectors") ?
static_cast<void> (0) : __assert_fail ("Ty->isVectorTy() && \"Can only shuffle vectors\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 85, __PRETTY_FUNCTION__))
;
86 unsigned Cost = 0;
87 // Broadcast cost is equal to the cost of extracting the zero'th element
88 // plus the cost of inserting it into every element of the result vector.
89 Cost += static_cast<T *>(this)->getVectorInstrCost(
90 Instruction::ExtractElement, Ty, 0);
91
92 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
93 Cost += static_cast<T *>(this)->getVectorInstrCost(
94 Instruction::InsertElement, Ty, i);
95 }
96 return Cost;
97 }
98
99 /// Estimate a cost of shuffle as a sequence of extract and insert
100 /// operations.
101 unsigned getPermuteShuffleOverhead(Type *Ty) {
102 assert(Ty->isVectorTy() && "Can only shuffle vectors")((Ty->isVectorTy() && "Can only shuffle vectors") ?
static_cast<void> (0) : __assert_fail ("Ty->isVectorTy() && \"Can only shuffle vectors\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 102, __PRETTY_FUNCTION__))
;
103 unsigned Cost = 0;
104 // Shuffle cost is equal to the cost of extracting element from its argument
105 // plus the cost of inserting them onto the result vector.
106
107 // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
108 // index 0 of first vector, index 1 of second vector,index 2 of first
109 // vector and finally index 3 of second vector and insert them at index
110 // <0,1,2,3> of result vector.
111 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
112 Cost += static_cast<T *>(this)
113 ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
114 Cost += static_cast<T *>(this)
115 ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
116 }
117 return Cost;
118 }
119
120 /// Estimate a cost of subvector extraction as a sequence of extract and
121 /// insert operations.
122 unsigned getExtractSubvectorOverhead(Type *Ty, int Index, Type *SubTy) {
123 assert(Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() &&((Ty && Ty->isVectorTy() && SubTy &&
SubTy->isVectorTy() && "Can only extract subvectors from vectors"
) ? static_cast<void> (0) : __assert_fail ("Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() && \"Can only extract subvectors from vectors\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 124, __PRETTY_FUNCTION__))
124 "Can only extract subvectors from vectors")((Ty && Ty->isVectorTy() && SubTy &&
SubTy->isVectorTy() && "Can only extract subvectors from vectors"
) ? static_cast<void> (0) : __assert_fail ("Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() && \"Can only extract subvectors from vectors\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 124, __PRETTY_FUNCTION__))
;
125 int NumSubElts = SubTy->getVectorNumElements();
126 assert((Index + NumSubElts) <= (int)Ty->getVectorNumElements() &&(((Index + NumSubElts) <= (int)Ty->getVectorNumElements
() && "SK_ExtractSubvector index out of range") ? static_cast
<void> (0) : __assert_fail ("(Index + NumSubElts) <= (int)Ty->getVectorNumElements() && \"SK_ExtractSubvector index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 127, __PRETTY_FUNCTION__))
127 "SK_ExtractSubvector index out of range")(((Index + NumSubElts) <= (int)Ty->getVectorNumElements
() && "SK_ExtractSubvector index out of range") ? static_cast
<void> (0) : __assert_fail ("(Index + NumSubElts) <= (int)Ty->getVectorNumElements() && \"SK_ExtractSubvector index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 127, __PRETTY_FUNCTION__))
;
128
129 unsigned Cost = 0;
130 // Subvector extraction cost is equal to the cost of extracting element from
131 // the source type plus the cost of inserting them into the result vector
132 // type.
133 for (int i = 0; i != NumSubElts; ++i) {
134 Cost += static_cast<T *>(this)->getVectorInstrCost(
135 Instruction::ExtractElement, Ty, i + Index);
136 Cost += static_cast<T *>(this)->getVectorInstrCost(
137 Instruction::InsertElement, SubTy, i);
138 }
139 return Cost;
140 }
141
142 /// Estimate a cost of subvector insertion as a sequence of extract and
143 /// insert operations.
144 unsigned getInsertSubvectorOverhead(Type *Ty, int Index, Type *SubTy) {
145 assert(Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() &&((Ty && Ty->isVectorTy() && SubTy &&
SubTy->isVectorTy() && "Can only insert subvectors into vectors"
) ? static_cast<void> (0) : __assert_fail ("Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() && \"Can only insert subvectors into vectors\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 146, __PRETTY_FUNCTION__))
146 "Can only insert subvectors into vectors")((Ty && Ty->isVectorTy() && SubTy &&
SubTy->isVectorTy() && "Can only insert subvectors into vectors"
) ? static_cast<void> (0) : __assert_fail ("Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() && \"Can only insert subvectors into vectors\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 146, __PRETTY_FUNCTION__))
;
147 int NumSubElts = SubTy->getVectorNumElements();
148 assert((Index + NumSubElts) <= (int)Ty->getVectorNumElements() &&(((Index + NumSubElts) <= (int)Ty->getVectorNumElements
() && "SK_InsertSubvector index out of range") ? static_cast
<void> (0) : __assert_fail ("(Index + NumSubElts) <= (int)Ty->getVectorNumElements() && \"SK_InsertSubvector index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 149, __PRETTY_FUNCTION__))
149 "SK_InsertSubvector index out of range")(((Index + NumSubElts) <= (int)Ty->getVectorNumElements
() && "SK_InsertSubvector index out of range") ? static_cast
<void> (0) : __assert_fail ("(Index + NumSubElts) <= (int)Ty->getVectorNumElements() && \"SK_InsertSubvector index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 149, __PRETTY_FUNCTION__))
;
150
151 unsigned Cost = 0;
152 // Subvector insertion cost is equal to the cost of extracting element from
153 // the source type plus the cost of inserting them into the result vector
154 // type.
155 for (int i = 0; i != NumSubElts; ++i) {
156 Cost += static_cast<T *>(this)->getVectorInstrCost(
157 Instruction::ExtractElement, SubTy, i);
158 Cost += static_cast<T *>(this)->getVectorInstrCost(
159 Instruction::InsertElement, Ty, i + Index);
160 }
161 return Cost;
162 }
163
164 /// Local query method delegates up to T which *must* implement this!
165 const TargetSubtargetInfo *getST() const {
166 return static_cast<const T *>(this)->getST();
167 }
168
169 /// Local query method delegates up to T which *must* implement this!
170 const TargetLoweringBase *getTLI() const {
171 return static_cast<const T *>(this)->getTLI();
172 }
173
174 static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
175 switch (M) {
176 case TTI::MIM_Unindexed:
177 return ISD::UNINDEXED;
178 case TTI::MIM_PreInc:
179 return ISD::PRE_INC;
180 case TTI::MIM_PreDec:
181 return ISD::PRE_DEC;
182 case TTI::MIM_PostInc:
183 return ISD::POST_INC;
184 case TTI::MIM_PostDec:
185 return ISD::POST_DEC;
186 }
187 llvm_unreachable("Unexpected MemIndexedMode")::llvm::llvm_unreachable_internal("Unexpected MemIndexedMode"
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 187)
;
188 }
189
190protected:
191 explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
192 : BaseT(DL) {}
193 virtual ~BasicTTIImplBase() = default;
194
195 using TargetTransformInfoImplBase::DL;
196
197public:
198 /// \name Scalar TTI Implementations
199 /// @{
200 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
201 unsigned AddressSpace, unsigned Alignment,
202 bool *Fast) const {
203 EVT E = EVT::getIntegerVT(Context, BitWidth);
204 return getTLI()->allowsMisalignedMemoryAccesses(
205 E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
206 }
207
208 bool hasBranchDivergence() { return false; }
209
210 bool useGPUDivergenceAnalysis() { return false; }
211
212 bool isSourceOfDivergence(const Value *V) { return false; }
213
214 bool isAlwaysUniform(const Value *V) { return false; }
215
216 unsigned getFlatAddressSpace() {
217 // Return an invalid address space.
218 return -1;
219 }
220
221 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
222 Intrinsic::ID IID) const {
223 return false;
224 }
225
226 bool rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
227 Value *OldV, Value *NewV) const {
228 return false;
229 }
230
231 bool isLegalAddImmediate(int64_t imm) {
232 return getTLI()->isLegalAddImmediate(imm);
233 }
234
235 bool isLegalICmpImmediate(int64_t imm) {
236 return getTLI()->isLegalICmpImmediate(imm);
237 }
238
239 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
240 bool HasBaseReg, int64_t Scale,
241 unsigned AddrSpace, Instruction *I = nullptr) {
242 TargetLoweringBase::AddrMode AM;
243 AM.BaseGV = BaseGV;
244 AM.BaseOffs = BaseOffset;
245 AM.HasBaseReg = HasBaseReg;
246 AM.Scale = Scale;
247 return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
248 }
249
250 bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
251 const DataLayout &DL) const {
252 EVT VT = getTLI()->getValueType(DL, Ty);
253 return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
254 }
255
256 bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
257 const DataLayout &DL) const {
258 EVT VT = getTLI()->getValueType(DL, Ty);
259 return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
260 }
261
262 bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
263 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
264 }
265
266 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
267 bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
268 TargetLoweringBase::AddrMode AM;
269 AM.BaseGV = BaseGV;
270 AM.BaseOffs = BaseOffset;
271 AM.HasBaseReg = HasBaseReg;
272 AM.Scale = Scale;
273 return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
274 }
275
276 bool isTruncateFree(Type *Ty1, Type *Ty2) {
277 return getTLI()->isTruncateFree(Ty1, Ty2);
278 }
279
280 bool isProfitableToHoist(Instruction *I) {
281 return getTLI()->isProfitableToHoist(I);
282 }
283
284 bool useAA() const { return getST()->useAA(); }
285
286 bool isTypeLegal(Type *Ty) {
287 EVT VT = getTLI()->getValueType(DL, Ty);
288 return getTLI()->isTypeLegal(VT);
289 }
290
291 int getGEPCost(Type *PointeeType, const Value *Ptr,
292 ArrayRef<const Value *> Operands) {
293 return BaseT::getGEPCost(PointeeType, Ptr, Operands);
294 }
295
296 int getExtCost(const Instruction *I, const Value *Src) {
297 if (getTLI()->isExtFree(I))
298 return TargetTransformInfo::TCC_Free;
299
300 if (isa<ZExtInst>(I) || isa<SExtInst>(I))
301 if (const LoadInst *LI = dyn_cast<LoadInst>(Src))
302 if (getTLI()->isExtLoad(LI, I, DL))
303 return TargetTransformInfo::TCC_Free;
304
305 return TargetTransformInfo::TCC_Basic;
306 }
307
308 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
309 ArrayRef<const Value *> Arguments, const User *U) {
310 return BaseT::getIntrinsicCost(IID, RetTy, Arguments, U);
311 }
312
313 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
314 ArrayRef<Type *> ParamTys, const User *U) {
315 if (IID == Intrinsic::cttz) {
316 if (getTLI()->isCheapToSpeculateCttz())
317 return TargetTransformInfo::TCC_Basic;
318 return TargetTransformInfo::TCC_Expensive;
319 }
320
321 if (IID == Intrinsic::ctlz) {
322 if (getTLI()->isCheapToSpeculateCtlz())
323 return TargetTransformInfo::TCC_Basic;
324 return TargetTransformInfo::TCC_Expensive;
325 }
326
327 return BaseT::getIntrinsicCost(IID, RetTy, ParamTys, U);
328 }
329
330 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
331 unsigned &JumpTableSize,
332 ProfileSummaryInfo *PSI,
333 BlockFrequencyInfo *BFI) {
334 /// Try to find the estimated number of clusters. Note that the number of
335 /// clusters identified in this function could be different from the actual
336 /// numbers found in lowering. This function ignore switches that are
337 /// lowered with a mix of jump table / bit test / BTree. This function was
338 /// initially intended to be used when estimating the cost of switch in
339 /// inline cost heuristic, but it's a generic cost model to be used in other
340 /// places (e.g., in loop unrolling).
341 unsigned N = SI.getNumCases();
342 const TargetLoweringBase *TLI = getTLI();
343 const DataLayout &DL = this->getDataLayout();
344
345 JumpTableSize = 0;
346 bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
347
348 // Early exit if both a jump table and bit test are not allowed.
349 if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
350 return N;
351
352 APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
353 APInt MinCaseVal = MaxCaseVal;
354 for (auto CI : SI.cases()) {
355 const APInt &CaseVal = CI.getCaseValue()->getValue();
356 if (CaseVal.sgt(MaxCaseVal))
357 MaxCaseVal = CaseVal;
358 if (CaseVal.slt(MinCaseVal))
359 MinCaseVal = CaseVal;
360 }
361
362 // Check if suitable for a bit test
363 if (N <= DL.getIndexSizeInBits(0u)) {
364 SmallPtrSet<const BasicBlock *, 4> Dests;
365 for (auto I : SI.cases())
366 Dests.insert(I.getCaseSuccessor());
367
368 if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
369 DL))
370 return 1;
371 }
372
373 // Check if suitable for a jump table.
374 if (IsJTAllowed) {
375 if (N < 2 || N < TLI->getMinimumJumpTableEntries())
376 return N;
377 uint64_t Range =
378 (MaxCaseVal - MinCaseVal)
379 .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
380 // Check whether a range of clusters is dense enough for a jump table
381 if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) {
382 JumpTableSize = Range;
383 return 1;
384 }
385 }
386 return N;
387 }
388
389 bool shouldBuildLookupTables() {
390 const TargetLoweringBase *TLI = getTLI();
391 return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
392 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
393 }
394
395 bool haveFastSqrt(Type *Ty) {
396 const TargetLoweringBase *TLI = getTLI();
397 EVT VT = TLI->getValueType(DL, Ty);
398 return TLI->isTypeLegal(VT) &&
399 TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
400 }
401
402 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
403 return true;
404 }
405
406 unsigned getFPOpCost(Type *Ty) {
407 // Check whether FADD is available, as a proxy for floating-point in
408 // general.
409 const TargetLoweringBase *TLI = getTLI();
410 EVT VT = TLI->getValueType(DL, Ty);
411 if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
412 return TargetTransformInfo::TCC_Basic;
413 return TargetTransformInfo::TCC_Expensive;
414 }
415
416 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
417 const TargetLoweringBase *TLI = getTLI();
418 switch (Opcode) {
43
Control jumps to the 'default' case at line 419
419 default: break;
44
Execution continues on line 436
420 case Instruction::Trunc:
421 if (TLI->isTruncateFree(OpTy, Ty))
422 return TargetTransformInfo::TCC_Free;
423 return TargetTransformInfo::TCC_Basic;
424 case Instruction::ZExt:
425 if (TLI->isZExtFree(OpTy, Ty))
426 return TargetTransformInfo::TCC_Free;
427 return TargetTransformInfo::TCC_Basic;
428
429 case Instruction::AddrSpaceCast:
430 if (TLI->isFreeAddrSpaceCast(OpTy->getPointerAddressSpace(),
431 Ty->getPointerAddressSpace()))
432 return TargetTransformInfo::TCC_Free;
433 return TargetTransformInfo::TCC_Basic;
434 }
435
436 return BaseT::getOperationCost(Opcode, Ty, OpTy);
45
Passing null pointer value via 3rd parameter 'OpTy'
46
Calling 'TargetTransformInfoImplBase::getOperationCost'
437 }
438
439 unsigned getInliningThresholdMultiplier() { return 1; }
440
441 int getInlinerVectorBonusPercent() { return 150; }
442
443 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
444 TTI::UnrollingPreferences &UP) {
445 // This unrolling functionality is target independent, but to provide some
446 // motivation for its intended use, for x86:
447
448 // According to the Intel 64 and IA-32 Architectures Optimization Reference
449 // Manual, Intel Core models and later have a loop stream detector (and
450 // associated uop queue) that can benefit from partial unrolling.
451 // The relevant requirements are:
452 // - The loop must have no more than 4 (8 for Nehalem and later) branches
453 // taken, and none of them may be calls.
454 // - The loop can have no more than 18 (28 for Nehalem and later) uops.
455
456 // According to the Software Optimization Guide for AMD Family 15h
457 // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
458 // and loop buffer which can benefit from partial unrolling.
459 // The relevant requirements are:
460 // - The loop must have fewer than 16 branches
461 // - The loop must have less than 40 uops in all executed loop branches
462
463 // The number of taken branches in a loop is hard to estimate here, and
464 // benchmarking has revealed that it is better not to be conservative when
465 // estimating the branch count. As a result, we'll ignore the branch limits
466 // until someone finds a case where it matters in practice.
467
468 unsigned MaxOps;
469 const TargetSubtargetInfo *ST = getST();
470 if (PartialUnrollingThreshold.getNumOccurrences() > 0)
471 MaxOps = PartialUnrollingThreshold;
472 else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
473 MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
474 else
475 return;
476
477 // Scan the loop: don't unroll loops with calls.
478 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
479 ++I) {
480 BasicBlock *BB = *I;
481
482 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
483 if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
484 ImmutableCallSite CS(&*J);
485 if (const Function *F = CS.getCalledFunction()) {
486 if (!static_cast<T *>(this)->isLoweredToCall(F))
487 continue;
488 }
489
490 return;
491 }
492 }
493
494 // Enable runtime and partial unrolling up to the specified size.
495 // Enable using trip count upper bound to unroll loops.
496 UP.Partial = UP.Runtime = UP.UpperBound = true;
497 UP.PartialThreshold = MaxOps;
498
499 // Avoid unrolling when optimizing for size.
500 UP.OptSizeThreshold = 0;
501 UP.PartialOptSizeThreshold = 0;
502
503 // Set number of instructions optimized when "back edge"
504 // becomes "fall through" to default value of 2.
505 UP.BEInsns = 2;
506 }
507
508 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
509 AssumptionCache &AC,
510 TargetLibraryInfo *LibInfo,
511 HardwareLoopInfo &HWLoopInfo) {
512 return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
513 }
514
515 bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
516 AssumptionCache &AC, TargetLibraryInfo *TLI,
517 DominatorTree *DT,
518 const LoopAccessInfo *LAI) {
519 return BaseT::preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
520 }
521
522 int getInstructionLatency(const Instruction *I) {
523 if (isa<LoadInst>(I))
524 return getST()->getSchedModel().DefaultLoadLatency;
525
526 return BaseT::getInstructionLatency(I);
527 }
528
529 virtual Optional<unsigned>
530 getCacheSize(TargetTransformInfo::CacheLevel Level) const {
531 return Optional<unsigned>(
532 getST()->getCacheSize(static_cast<unsigned>(Level)));
533 }
534
535 virtual Optional<unsigned>
536 getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
537 Optional<unsigned> TargetResult =
538 getST()->getCacheAssociativity(static_cast<unsigned>(Level));
539
540 if (TargetResult)
541 return TargetResult;
542
543 return BaseT::getCacheAssociativity(Level);
544 }
545
546 virtual unsigned getCacheLineSize() const {
547 return getST()->getCacheLineSize();
548 }
549
550 virtual unsigned getPrefetchDistance() const {
551 return getST()->getPrefetchDistance();
552 }
553
554 virtual unsigned getMinPrefetchStride() const {
555 return getST()->getMinPrefetchStride();
556 }
557
558 virtual unsigned getMaxPrefetchIterationsAhead() const {
559 return getST()->getMaxPrefetchIterationsAhead();
560 }
561
562 /// @}
563
564 /// \name Vector TTI Implementations
565 /// @{
566
567 unsigned getRegisterBitWidth(bool Vector) const { return 32; }
568
569 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
570 /// are set if the result needs to be inserted and/or extracted from vectors.
571 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
572 assert(Ty->isVectorTy() && "Can only scalarize vectors")((Ty->isVectorTy() && "Can only scalarize vectors"
) ? static_cast<void> (0) : __assert_fail ("Ty->isVectorTy() && \"Can only scalarize vectors\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 572, __PRETTY_FUNCTION__))
;
573 unsigned Cost = 0;
574
575 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
576 if (Insert)
577 Cost += static_cast<T *>(this)
578 ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
579 if (Extract)
580 Cost += static_cast<T *>(this)
581 ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
582 }
583
584 return Cost;
585 }
586
587 /// Estimate the overhead of scalarizing an instructions unique
588 /// non-constant operands. The types of the arguments are ordinarily
589 /// scalar, in which case the costs are multiplied with VF.
590 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
591 unsigned VF) {
592 unsigned Cost = 0;
593 SmallPtrSet<const Value*, 4> UniqueOperands;
594 for (const Value *A : Args) {
595 if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
596 Type *VecTy = nullptr;
597 if (A->getType()->isVectorTy()) {
598 VecTy = A->getType();
599 // If A is a vector operand, VF should be 1 or correspond to A.
600 assert((VF == 1 || VF == VecTy->getVectorNumElements()) &&(((VF == 1 || VF == VecTy->getVectorNumElements()) &&
"Vector argument does not match VF") ? static_cast<void>
(0) : __assert_fail ("(VF == 1 || VF == VecTy->getVectorNumElements()) && \"Vector argument does not match VF\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 601, __PRETTY_FUNCTION__))
601 "Vector argument does not match VF")(((VF == 1 || VF == VecTy->getVectorNumElements()) &&
"Vector argument does not match VF") ? static_cast<void>
(0) : __assert_fail ("(VF == 1 || VF == VecTy->getVectorNumElements()) && \"Vector argument does not match VF\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 601, __PRETTY_FUNCTION__))
;
602 }
603 else
604 VecTy = VectorType::get(A->getType(), VF);
605
606 Cost += getScalarizationOverhead(VecTy, false, true);
607 }
608 }
609
610 return Cost;
611 }
612
613 unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) {
614 assert(VecTy->isVectorTy())((VecTy->isVectorTy()) ? static_cast<void> (0) : __assert_fail
("VecTy->isVectorTy()", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 614, __PRETTY_FUNCTION__))
;
615
616 unsigned Cost = 0;
617
618 Cost += getScalarizationOverhead(VecTy, true, false);
619 if (!Args.empty())
620 Cost += getOperandsScalarizationOverhead(Args,
621 VecTy->getVectorNumElements());
622 else
623 // When no information on arguments is provided, we add the cost
624 // associated with one argument as a heuristic.
625 Cost += getScalarizationOverhead(VecTy, false, true);
626
627 return Cost;
628 }
629
630 unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
631
632 unsigned getArithmeticInstrCost(
633 unsigned Opcode, Type *Ty,
634 TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
635 TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
636 TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
637 TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
638 ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
639 const Instruction *CxtI = nullptr) {
640 // Check if any of the operands are vector operands.
641 const TargetLoweringBase *TLI = getTLI();
642 int ISD = TLI->InstructionOpcodeToISD(Opcode);
643 assert(ISD && "Invalid opcode")((ISD && "Invalid opcode") ? static_cast<void> (
0) : __assert_fail ("ISD && \"Invalid opcode\"", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 643, __PRETTY_FUNCTION__))
;
644
645 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
646
647 bool IsFloat = Ty->isFPOrFPVectorTy();
648 // Assume that floating point arithmetic operations cost twice as much as
649 // integer operations.
650 unsigned OpCost = (IsFloat ? 2 : 1);
651
652 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
653 // The operation is legal. Assume it costs 1.
654 // TODO: Once we have extract/insert subvector cost we need to use them.
655 return LT.first * OpCost;
656 }
657
658 if (!TLI->isOperationExpand(ISD, LT.second)) {
659 // If the operation is custom lowered, then assume that the code is twice
660 // as expensive.
661 return LT.first * 2 * OpCost;
662 }
663
664 // Else, assume that we need to scalarize this op.
665 // TODO: If one of the types get legalized by splitting, handle this
666 // similarly to what getCastInstrCost() does.
667 if (Ty->isVectorTy()) {
668 unsigned Num = Ty->getVectorNumElements();
669 unsigned Cost = static_cast<T *>(this)
670 ->getArithmeticInstrCost(Opcode, Ty->getScalarType());
671 // Return the cost of multiple scalar invocation plus the cost of
672 // inserting and extracting the values.
673 return getScalarizationOverhead(Ty, Args) + Num * Cost;
674 }
675
676 // We don't know anything about this scalar instruction.
677 return OpCost;
678 }
679
680 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
681 Type *SubTp) {
682 switch (Kind) {
683 case TTI::SK_Broadcast:
684 return getBroadcastShuffleOverhead(Tp);
685 case TTI::SK_Select:
686 case TTI::SK_Reverse:
687 case TTI::SK_Transpose:
688 case TTI::SK_PermuteSingleSrc:
689 case TTI::SK_PermuteTwoSrc:
690 return getPermuteShuffleOverhead(Tp);
691 case TTI::SK_ExtractSubvector:
692 return getExtractSubvectorOverhead(Tp, Index, SubTp);
693 case TTI::SK_InsertSubvector:
694 return getInsertSubvectorOverhead(Tp, Index, SubTp);
695 }
696 llvm_unreachable("Unknown TTI::ShuffleKind")::llvm::llvm_unreachable_internal("Unknown TTI::ShuffleKind",
"/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 696)
;
697 }
698
699 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
700 const Instruction *I = nullptr) {
701 const TargetLoweringBase *TLI = getTLI();
702 int ISD = TLI->InstructionOpcodeToISD(Opcode);
703 assert(ISD && "Invalid opcode")((ISD && "Invalid opcode") ? static_cast<void> (
0) : __assert_fail ("ISD && \"Invalid opcode\"", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 703, __PRETTY_FUNCTION__))
;
704 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
705 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
706
707 // Check for NOOP conversions.
708 if (SrcLT.first == DstLT.first &&
709 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
710
711 // Bitcast between types that are legalized to the same type are free.
712 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
713 return 0;
714 }
715
716 if (Opcode == Instruction::Trunc &&
717 TLI->isTruncateFree(SrcLT.second, DstLT.second))
718 return 0;
719
720 if (Opcode == Instruction::ZExt &&
721 TLI->isZExtFree(SrcLT.second, DstLT.second))
722 return 0;
723
724 if (Opcode == Instruction::AddrSpaceCast &&
725 TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
726 Dst->getPointerAddressSpace()))
727 return 0;
728
729 // If this is a zext/sext of a load, return 0 if the corresponding
730 // extending load exists on target.
731 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
732 I && isa<LoadInst>(I->getOperand(0))) {
733 EVT ExtVT = EVT::getEVT(Dst);
734 EVT LoadVT = EVT::getEVT(Src);
735 unsigned LType =
736 ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
737 if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
738 return 0;
739 }
740
741 // If the cast is marked as legal (or promote) then assume low cost.
742 if (SrcLT.first == DstLT.first &&
743 TLI->isOperationLegalOrPromote(ISD, DstLT.second))
744 return 1;
745
746 // Handle scalar conversions.
747 if (!Src->isVectorTy() && !Dst->isVectorTy()) {
748 // Scalar bitcasts are usually free.
749 if (Opcode == Instruction::BitCast)
750 return 0;
751
752 // Just check the op cost. If the operation is legal then assume it costs
753 // 1.
754 if (!TLI->isOperationExpand(ISD, DstLT.second))
755 return 1;
756
757 // Assume that illegal scalar instruction are expensive.
758 return 4;
759 }
760
761 // Check vector-to-vector casts.
762 if (Dst->isVectorTy() && Src->isVectorTy()) {
763 // If the cast is between same-sized registers, then the check is simple.
764 if (SrcLT.first == DstLT.first &&
765 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
766
767 // Assume that Zext is done using AND.
768 if (Opcode == Instruction::ZExt)
769 return 1;
770
771 // Assume that sext is done using SHL and SRA.
772 if (Opcode == Instruction::SExt)
773 return 2;
774
775 // Just check the op cost. If the operation is legal then assume it
776 // costs
777 // 1 and multiply by the type-legalization overhead.
778 if (!TLI->isOperationExpand(ISD, DstLT.second))
779 return SrcLT.first * 1;
780 }
781
782 // If we are legalizing by splitting, query the concrete TTI for the cost
783 // of casting the original vector twice. We also need to factor in the
784 // cost of the split itself. Count that as 1, to be consistent with
785 // TLI->getTypeLegalizationCost().
786 if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
787 TargetLowering::TypeSplitVector ||
788 TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
789 TargetLowering::TypeSplitVector) &&
790 Src->getVectorNumElements() > 1 && Dst->getVectorNumElements() > 1) {
791 Type *SplitDst = VectorType::get(Dst->getVectorElementType(),
792 Dst->getVectorNumElements() / 2);
793 Type *SplitSrc = VectorType::get(Src->getVectorElementType(),
794 Src->getVectorNumElements() / 2);
795 T *TTI = static_cast<T *>(this);
796 return TTI->getVectorSplitCost() +
797 (2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I));
798 }
799
800 // In other cases where the source or destination are illegal, assume
801 // the operation will get scalarized.
802 unsigned Num = Dst->getVectorNumElements();
803 unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
804 Opcode, Dst->getScalarType(), Src->getScalarType(), I);
805
806 // Return the cost of multiple scalar invocation plus the cost of
807 // inserting and extracting the values.
808 return getScalarizationOverhead(Dst, true, true) + Num * Cost;
809 }
810
811 // We already handled vector-to-vector and scalar-to-scalar conversions.
812 // This
813 // is where we handle bitcast between vectors and scalars. We need to assume
814 // that the conversion is scalarized in one way or another.
815 if (Opcode == Instruction::BitCast)
816 // Illegal bitcasts are done by storing and loading from a stack slot.
817 return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
818 : 0) +
819 (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
820 : 0);
821
822 llvm_unreachable("Unhandled cast")::llvm::llvm_unreachable_internal("Unhandled cast", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 822)
;
823 }
824
825 unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
826 VectorType *VecTy, unsigned Index) {
827 return static_cast<T *>(this)->getVectorInstrCost(
828 Instruction::ExtractElement, VecTy, Index) +
829 static_cast<T *>(this)->getCastInstrCost(Opcode, Dst,
830 VecTy->getElementType());
831 }
832
833 unsigned getCFInstrCost(unsigned Opcode) {
834 // Branches are assumed to be predicted.
835 return 0;
836 }
837
838 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
839 const Instruction *I) {
840 const TargetLoweringBase *TLI = getTLI();
841 int ISD = TLI->InstructionOpcodeToISD(Opcode);
842 assert(ISD && "Invalid opcode")((ISD && "Invalid opcode") ? static_cast<void> (
0) : __assert_fail ("ISD && \"Invalid opcode\"", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 842, __PRETTY_FUNCTION__))
;
843
844 // Selects on vectors are actually vector selects.
845 if (ISD == ISD::SELECT) {
846 assert(CondTy && "CondTy must exist")((CondTy && "CondTy must exist") ? static_cast<void
> (0) : __assert_fail ("CondTy && \"CondTy must exist\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 846, __PRETTY_FUNCTION__))
;
847 if (CondTy->isVectorTy())
848 ISD = ISD::VSELECT;
849 }
850 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
851
852 if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
853 !TLI->isOperationExpand(ISD, LT.second)) {
854 // The operation is legal. Assume it costs 1. Multiply
855 // by the type-legalization overhead.
856 return LT.first * 1;
857 }
858
859 // Otherwise, assume that the cast is scalarized.
860 // TODO: If one of the types get legalized by splitting, handle this
861 // similarly to what getCastInstrCost() does.
862 if (ValTy->isVectorTy()) {
863 unsigned Num = ValTy->getVectorNumElements();
864 if (CondTy)
865 CondTy = CondTy->getScalarType();
866 unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
867 Opcode, ValTy->getScalarType(), CondTy, I);
868
869 // Return the cost of multiple scalar invocation plus the cost of
870 // inserting and extracting the values.
871 return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
872 }
873
874 // Unknown scalar opcode.
875 return 1;
876 }
877
878 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
879 std::pair<unsigned, MVT> LT =
880 getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
881
882 return LT.first;
883 }
884
885 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
886 unsigned AddressSpace,
887 const Instruction *I = nullptr) {
888 assert(!Src->isVoidTy() && "Invalid type")((!Src->isVoidTy() && "Invalid type") ? static_cast
<void> (0) : __assert_fail ("!Src->isVoidTy() && \"Invalid type\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 888, __PRETTY_FUNCTION__))
;
889 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
890
891 // Assuming that all loads of legal types cost 1.
892 unsigned Cost = LT.first;
893
894 if (Src->isVectorTy() &&
895 Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
896 // This is a vector load that legalizes to a larger type than the vector
897 // itself. Unless the corresponding extending load or truncating store is
898 // legal, then this will scalarize.
899 TargetLowering::LegalizeAction LA = TargetLowering::Expand;
900 EVT MemVT = getTLI()->getValueType(DL, Src);
901 if (Opcode == Instruction::Store)
902 LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
903 else
904 LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
905
906 if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
907 // This is a vector load/store for some illegal type that is scalarized.
908 // We must account for the cost of building or decomposing the vector.
909 Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
910 Opcode == Instruction::Store);
911 }
912 }
913
914 return Cost;
915 }
916
917 unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
918 unsigned Factor,
919 ArrayRef<unsigned> Indices,
920 unsigned Alignment, unsigned AddressSpace,
921 bool UseMaskForCond = false,
922 bool UseMaskForGaps = false) {
923 VectorType *VT = dyn_cast<VectorType>(VecTy);
924 assert(VT && "Expect a vector type for interleaved memory op")((VT && "Expect a vector type for interleaved memory op"
) ? static_cast<void> (0) : __assert_fail ("VT && \"Expect a vector type for interleaved memory op\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 924, __PRETTY_FUNCTION__))
;
925
926 unsigned NumElts = VT->getNumElements();
927 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor")((Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"
) ? static_cast<void> (0) : __assert_fail ("Factor > 1 && NumElts % Factor == 0 && \"Invalid interleave factor\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 927, __PRETTY_FUNCTION__))
;
928
929 unsigned NumSubElts = NumElts / Factor;
930 VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts);
931
932 // Firstly, the cost of load/store operation.
933 unsigned Cost;
934 if (UseMaskForCond || UseMaskForGaps)
935 Cost = static_cast<T *>(this)->getMaskedMemoryOpCost(
936 Opcode, VecTy, Alignment, AddressSpace);
937 else
938 Cost = static_cast<T *>(this)->getMemoryOpCost(
939 Opcode, VecTy, MaybeAlign(Alignment), AddressSpace);
940
941 // Legalize the vector type, and get the legalized and unlegalized type
942 // sizes.
943 MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
944 unsigned VecTySize =
945 static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy);
946 unsigned VecTyLTSize = VecTyLT.getStoreSize();
947
948 // Return the ceiling of dividing A by B.
949 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
950
951 // Scale the cost of the memory operation by the fraction of legalized
952 // instructions that will actually be used. We shouldn't account for the
953 // cost of dead instructions since they will be removed.
954 //
955 // E.g., An interleaved load of factor 8:
956 // %vec = load <16 x i64>, <16 x i64>* %ptr
957 // %v0 = shufflevector %vec, undef, <0, 8>
958 //
959 // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
960 // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
961 // type). The other loads are unused.
962 //
963 // We only scale the cost of loads since interleaved store groups aren't
964 // allowed to have gaps.
965 if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
966 // The number of loads of a legal type it will take to represent a load
967 // of the unlegalized vector type.
968 unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
969
970 // The number of elements of the unlegalized type that correspond to a
971 // single legal instruction.
972 unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
973
974 // Determine which legal instructions will be used.
975 BitVector UsedInsts(NumLegalInsts, false);
976 for (unsigned Index : Indices)
977 for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
978 UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
979
980 // Scale the cost of the load by the fraction of legal instructions that
981 // will be used.
982 Cost *= UsedInsts.count() / NumLegalInsts;
983 }
984
985 // Then plus the cost of interleave operation.
986 if (Opcode == Instruction::Load) {
987 // The interleave cost is similar to extract sub vectors' elements
988 // from the wide vector, and insert them into sub vectors.
989 //
990 // E.g. An interleaved load of factor 2 (with one member of index 0):
991 // %vec = load <8 x i32>, <8 x i32>* %ptr
992 // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
993 // The cost is estimated as extract elements at 0, 2, 4, 6 from the
994 // <8 x i32> vector and insert them into a <4 x i32> vector.
995
996 assert(Indices.size() <= Factor &&((Indices.size() <= Factor && "Interleaved memory op has too many members"
) ? static_cast<void> (0) : __assert_fail ("Indices.size() <= Factor && \"Interleaved memory op has too many members\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 997, __PRETTY_FUNCTION__))
997 "Interleaved memory op has too many members")((Indices.size() <= Factor && "Interleaved memory op has too many members"
) ? static_cast<void> (0) : __assert_fail ("Indices.size() <= Factor && \"Interleaved memory op has too many members\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 997, __PRETTY_FUNCTION__))
;
998
999 for (unsigned Index : Indices) {
1000 assert(Index < Factor && "Invalid index for interleaved memory op")((Index < Factor && "Invalid index for interleaved memory op"
) ? static_cast<void> (0) : __assert_fail ("Index < Factor && \"Invalid index for interleaved memory op\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1000, __PRETTY_FUNCTION__))
;
1001
1002 // Extract elements from loaded vector for each sub vector.
1003 for (unsigned i = 0; i < NumSubElts; i++)
1004 Cost += static_cast<T *>(this)->getVectorInstrCost(
1005 Instruction::ExtractElement, VT, Index + i * Factor);
1006 }
1007
1008 unsigned InsSubCost = 0;
1009 for (unsigned i = 0; i < NumSubElts; i++)
1010 InsSubCost += static_cast<T *>(this)->getVectorInstrCost(
1011 Instruction::InsertElement, SubVT, i);
1012
1013 Cost += Indices.size() * InsSubCost;
1014 } else {
1015 // The interleave cost is extract all elements from sub vectors, and
1016 // insert them into the wide vector.
1017 //
1018 // E.g. An interleaved store of factor 2:
1019 // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
1020 // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
1021 // The cost is estimated as extract all elements from both <4 x i32>
1022 // vectors and insert into the <8 x i32> vector.
1023
1024 unsigned ExtSubCost = 0;
1025 for (unsigned i = 0; i < NumSubElts; i++)
1026 ExtSubCost += static_cast<T *>(this)->getVectorInstrCost(
1027 Instruction::ExtractElement, SubVT, i);
1028 Cost += ExtSubCost * Factor;
1029
1030 for (unsigned i = 0; i < NumElts; i++)
1031 Cost += static_cast<T *>(this)
1032 ->getVectorInstrCost(Instruction::InsertElement, VT, i);
1033 }
1034
1035 if (!UseMaskForCond)
1036 return Cost;
1037
1038 Type *I8Type = Type::getInt8Ty(VT->getContext());
1039 VectorType *MaskVT = VectorType::get(I8Type, NumElts);
1040 SubVT = VectorType::get(I8Type, NumSubElts);
1041
1042 // The Mask shuffling cost is extract all the elements of the Mask
1043 // and insert each of them Factor times into the wide vector:
1044 //
1045 // E.g. an interleaved group with factor 3:
1046 // %mask = icmp ult <8 x i32> %vec1, %vec2
1047 // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
1048 // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
1049 // The cost is estimated as extract all mask elements from the <8xi1> mask
1050 // vector and insert them factor times into the <24xi1> shuffled mask
1051 // vector.
1052 for (unsigned i = 0; i < NumSubElts; i++)
1053 Cost += static_cast<T *>(this)->getVectorInstrCost(
1054 Instruction::ExtractElement, SubVT, i);
1055
1056 for (unsigned i = 0; i < NumElts; i++)
1057 Cost += static_cast<T *>(this)->getVectorInstrCost(
1058 Instruction::InsertElement, MaskVT, i);
1059
1060 // The Gaps mask is invariant and created outside the loop, therefore the
1061 // cost of creating it is not accounted for here. However if we have both
1062 // a MaskForGaps and some other mask that guards the execution of the
1063 // memory access, we need to account for the cost of And-ing the two masks
1064 // inside the loop.
1065 if (UseMaskForGaps)
1066 Cost += static_cast<T *>(this)->getArithmeticInstrCost(
1067 BinaryOperator::And, MaskVT);
1068
1069 return Cost;
1070 }
1071
1072 /// Get intrinsic cost based on arguments.
1073 unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1074 ArrayRef<Value *> Args, FastMathFlags FMF,
1075 unsigned VF = 1) {
1076 unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1);
1077 assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type")(((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type"
) ? static_cast<void> (0) : __assert_fail ("(RetVF == 1 || VF == 1) && \"VF > 1 and RetVF is a vector type\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1077, __PRETTY_FUNCTION__))
;
1078 auto *ConcreteTTI = static_cast<T *>(this);
1079
1080 switch (IID) {
1081 default: {
1082 // Assume that we need to scalarize this intrinsic.
1083 SmallVector<Type *, 4> Types;
1084 for (Value *Op : Args) {
1085 Type *OpTy = Op->getType();
1086 assert(VF == 1 || !OpTy->isVectorTy())((VF == 1 || !OpTy->isVectorTy()) ? static_cast<void>
(0) : __assert_fail ("VF == 1 || !OpTy->isVectorTy()", "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1086, __PRETTY_FUNCTION__))
;
1087 Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF));
1088 }
1089
1090 if (VF > 1 && !RetTy->isVoidTy())
1091 RetTy = VectorType::get(RetTy, VF);
1092
1093 // Compute the scalarization overhead based on Args for a vector
1094 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
1095 // CostModel will pass a vector RetTy and VF is 1.
1096 unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
1097 if (RetVF > 1 || VF > 1) {
1098 ScalarizationCost = 0;
1099 if (!RetTy->isVoidTy())
1100 ScalarizationCost += getScalarizationOverhead(RetTy, true, false);
1101 ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
1102 }
1103
1104 return ConcreteTTI->getIntrinsicInstrCost(IID, RetTy, Types, FMF,
1105 ScalarizationCost);
1106 }
1107 case Intrinsic::masked_scatter: {
1108 assert(VF == 1 && "Can't vectorize types here.")((VF == 1 && "Can't vectorize types here.") ? static_cast
<void> (0) : __assert_fail ("VF == 1 && \"Can't vectorize types here.\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1108, __PRETTY_FUNCTION__))
;
1109 Value *Mask = Args[3];
1110 bool VarMask = !isa<Constant>(Mask);
1111 unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue();
1112 return ConcreteTTI->getGatherScatterOpCost(
1113 Instruction::Store, Args[0]->getType(), Args[1], VarMask, Alignment);
1114 }
1115 case Intrinsic::masked_gather: {
1116 assert(VF == 1 && "Can't vectorize types here.")((VF == 1 && "Can't vectorize types here.") ? static_cast
<void> (0) : __assert_fail ("VF == 1 && \"Can't vectorize types here.\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1116, __PRETTY_FUNCTION__))
;
1117 Value *Mask = Args[2];
1118 bool VarMask = !isa<Constant>(Mask);
1119 unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue();
1120 return ConcreteTTI->getGatherScatterOpCost(Instruction::Load, RetTy,
1121 Args[0], VarMask, Alignment);
1122 }
1123 case Intrinsic::experimental_vector_reduce_add:
1124 case Intrinsic::experimental_vector_reduce_mul:
1125 case Intrinsic::experimental_vector_reduce_and:
1126 case Intrinsic::experimental_vector_reduce_or:
1127 case Intrinsic::experimental_vector_reduce_xor:
1128 case Intrinsic::experimental_vector_reduce_v2_fadd:
1129 case Intrinsic::experimental_vector_reduce_v2_fmul:
1130 case Intrinsic::experimental_vector_reduce_smax:
1131 case Intrinsic::experimental_vector_reduce_smin:
1132 case Intrinsic::experimental_vector_reduce_fmax:
1133 case Intrinsic::experimental_vector_reduce_fmin:
1134 case Intrinsic::experimental_vector_reduce_umax:
1135 case Intrinsic::experimental_vector_reduce_umin:
1136 return getIntrinsicInstrCost(IID, RetTy, Args[0]->getType(), FMF);
1137 case Intrinsic::fshl:
1138 case Intrinsic::fshr: {
1139 Value *X = Args[0];
1140 Value *Y = Args[1];
1141 Value *Z = Args[2];
1142 TTI::OperandValueProperties OpPropsX, OpPropsY, OpPropsZ, OpPropsBW;
1143 TTI::OperandValueKind OpKindX = TTI::getOperandInfo(X, OpPropsX);
1144 TTI::OperandValueKind OpKindY = TTI::getOperandInfo(Y, OpPropsY);
1145 TTI::OperandValueKind OpKindZ = TTI::getOperandInfo(Z, OpPropsZ);
1146 TTI::OperandValueKind OpKindBW = TTI::OK_UniformConstantValue;
1147 OpPropsBW = isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
1148 : TTI::OP_None;
1149 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
1150 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
1151 unsigned Cost = 0;
1152 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Or, RetTy);
1153 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Sub, RetTy);
1154 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Shl, RetTy,
1155 OpKindX, OpKindZ, OpPropsX);
1156 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::LShr, RetTy,
1157 OpKindY, OpKindZ, OpPropsY);
1158 // Non-constant shift amounts requires a modulo.
1159 if (OpKindZ != TTI::OK_UniformConstantValue &&
1160 OpKindZ != TTI::OK_NonUniformConstantValue)
1161 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
1162 OpKindZ, OpKindBW, OpPropsZ,
1163 OpPropsBW);
1164 // For non-rotates (X != Y) we must add shift-by-zero handling costs.
1165 if (X != Y) {
1166 Type *CondTy = RetTy->getWithNewBitWidth(1);
1167 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy,
1168 CondTy, nullptr);
1169 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1170 CondTy, nullptr);
1171 }
1172 return Cost;
1173 }
1174 }
1175 }
1176
1177 /// Get intrinsic cost based on argument types.
1178 /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
1179 /// cost of scalarizing the arguments and the return value will be computed
1180 /// based on types.
1181 unsigned getIntrinsicInstrCost(
1182 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF,
1183 unsigned ScalarizationCostPassed = std::numeric_limits<unsigned>::max()) {
1184 auto *ConcreteTTI = static_cast<T *>(this);
1185
1186 SmallVector<unsigned, 2> ISDs;
1187 unsigned SingleCallCost = 10; // Library call cost. Make it expensive.
1188 switch (IID) {
1189 default: {
1190 // Assume that we need to scalarize this intrinsic.
1191 unsigned ScalarizationCost = ScalarizationCostPassed;
1192 unsigned ScalarCalls = 1;
1193 Type *ScalarRetTy = RetTy;
1194 if (RetTy->isVectorTy()) {
1195 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1196 ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
1197 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
1198 ScalarRetTy = RetTy->getScalarType();
1199 }
1200 SmallVector<Type *, 4> ScalarTys;
1201 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1202 Type *Ty = Tys[i];
1203 if (Ty->isVectorTy()) {
1204 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1205 ScalarizationCost += getScalarizationOverhead(Ty, false, true);
1206 ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements());
1207 Ty = Ty->getScalarType();
1208 }
1209 ScalarTys.push_back(Ty);
1210 }
1211 if (ScalarCalls == 1)
1212 return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
1213
1214 unsigned ScalarCost =
1215 ConcreteTTI->getIntrinsicInstrCost(IID, ScalarRetTy, ScalarTys, FMF);
1216
1217 return ScalarCalls * ScalarCost + ScalarizationCost;
1218 }
1219 // Look for intrinsics that can be lowered directly or turned into a scalar
1220 // intrinsic call.
1221 case Intrinsic::sqrt:
1222 ISDs.push_back(ISD::FSQRT);
1223 break;
1224 case Intrinsic::sin:
1225 ISDs.push_back(ISD::FSIN);
1226 break;
1227 case Intrinsic::cos:
1228 ISDs.push_back(ISD::FCOS);
1229 break;
1230 case Intrinsic::exp:
1231 ISDs.push_back(ISD::FEXP);
1232 break;
1233 case Intrinsic::exp2:
1234 ISDs.push_back(ISD::FEXP2);
1235 break;
1236 case Intrinsic::log:
1237 ISDs.push_back(ISD::FLOG);
1238 break;
1239 case Intrinsic::log10:
1240 ISDs.push_back(ISD::FLOG10);
1241 break;
1242 case Intrinsic::log2:
1243 ISDs.push_back(ISD::FLOG2);
1244 break;
1245 case Intrinsic::fabs:
1246 ISDs.push_back(ISD::FABS);
1247 break;
1248 case Intrinsic::canonicalize:
1249 ISDs.push_back(ISD::FCANONICALIZE);
1250 break;
1251 case Intrinsic::minnum:
1252 ISDs.push_back(ISD::FMINNUM);
1253 if (FMF.noNaNs())
1254 ISDs.push_back(ISD::FMINIMUM);
1255 break;
1256 case Intrinsic::maxnum:
1257 ISDs.push_back(ISD::FMAXNUM);
1258 if (FMF.noNaNs())
1259 ISDs.push_back(ISD::FMAXIMUM);
1260 break;
1261 case Intrinsic::copysign:
1262 ISDs.push_back(ISD::FCOPYSIGN);
1263 break;
1264 case Intrinsic::floor:
1265 ISDs.push_back(ISD::FFLOOR);
1266 break;
1267 case Intrinsic::ceil:
1268 ISDs.push_back(ISD::FCEIL);
1269 break;
1270 case Intrinsic::trunc:
1271 ISDs.push_back(ISD::FTRUNC);
1272 break;
1273 case Intrinsic::nearbyint:
1274 ISDs.push_back(ISD::FNEARBYINT);
1275 break;
1276 case Intrinsic::rint:
1277 ISDs.push_back(ISD::FRINT);
1278 break;
1279 case Intrinsic::round:
1280 ISDs.push_back(ISD::FROUND);
1281 break;
1282 case Intrinsic::pow:
1283 ISDs.push_back(ISD::FPOW);
1284 break;
1285 case Intrinsic::fma:
1286 ISDs.push_back(ISD::FMA);
1287 break;
1288 case Intrinsic::fmuladd:
1289 ISDs.push_back(ISD::FMA);
1290 break;
1291 case Intrinsic::experimental_constrained_fmuladd:
1292 ISDs.push_back(ISD::STRICT_FMA);
1293 break;
1294 // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
1295 case Intrinsic::lifetime_start:
1296 case Intrinsic::lifetime_end:
1297 case Intrinsic::sideeffect:
1298 return 0;
1299 case Intrinsic::masked_store:
1300 return ConcreteTTI->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0,
1301 0);
1302 case Intrinsic::masked_load:
1303 return ConcreteTTI->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
1304 case Intrinsic::experimental_vector_reduce_add:
1305 return ConcreteTTI->getArithmeticReductionCost(Instruction::Add, Tys[0],
1306 /*IsPairwiseForm=*/false);
1307 case Intrinsic::experimental_vector_reduce_mul:
1308 return ConcreteTTI->getArithmeticReductionCost(Instruction::Mul, Tys[0],
1309 /*IsPairwiseForm=*/false);
1310 case Intrinsic::experimental_vector_reduce_and:
1311 return ConcreteTTI->getArithmeticReductionCost(Instruction::And, Tys[0],
1312 /*IsPairwiseForm=*/false);
1313 case Intrinsic::experimental_vector_reduce_or:
1314 return ConcreteTTI->getArithmeticReductionCost(Instruction::Or, Tys[0],
1315 /*IsPairwiseForm=*/false);
1316 case Intrinsic::experimental_vector_reduce_xor:
1317 return ConcreteTTI->getArithmeticReductionCost(Instruction::Xor, Tys[0],
1318 /*IsPairwiseForm=*/false);
1319 case Intrinsic::experimental_vector_reduce_v2_fadd:
1320 return ConcreteTTI->getArithmeticReductionCost(
1321 Instruction::FAdd, Tys[0],
1322 /*IsPairwiseForm=*/false); // FIXME: Add new flag for cost of strict
1323 // reductions.
1324 case Intrinsic::experimental_vector_reduce_v2_fmul:
1325 return ConcreteTTI->getArithmeticReductionCost(
1326 Instruction::FMul, Tys[0],
1327 /*IsPairwiseForm=*/false); // FIXME: Add new flag for cost of strict
1328 // reductions.
1329 case Intrinsic::experimental_vector_reduce_smax:
1330 case Intrinsic::experimental_vector_reduce_smin:
1331 case Intrinsic::experimental_vector_reduce_fmax:
1332 case Intrinsic::experimental_vector_reduce_fmin:
1333 return ConcreteTTI->getMinMaxReductionCost(
1334 Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
1335 /*IsUnsigned=*/true);
1336 case Intrinsic::experimental_vector_reduce_umax:
1337 case Intrinsic::experimental_vector_reduce_umin:
1338 return ConcreteTTI->getMinMaxReductionCost(
1339 Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
1340 /*IsUnsigned=*/false);
1341 case Intrinsic::sadd_sat:
1342 case Intrinsic::ssub_sat: {
1343 Type *CondTy = RetTy->getWithNewBitWidth(1);
1344
1345 Type *OpTy = StructType::create({RetTy, CondTy});
1346 Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
1347 ? Intrinsic::sadd_with_overflow
1348 : Intrinsic::ssub_with_overflow;
1349
1350 // SatMax -> Overflow && SumDiff < 0
1351 // SatMin -> Overflow && SumDiff >= 0
1352 unsigned Cost = 0;
1353 Cost += ConcreteTTI->getIntrinsicInstrCost(
1354 OverflowOp, OpTy, {RetTy, RetTy}, FMF, ScalarizationCostPassed);
1355 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy,
1356 CondTy, nullptr);
1357 Cost += 2 * ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1358 CondTy, nullptr);
1359 return Cost;
1360 }
1361 case Intrinsic::uadd_sat:
1362 case Intrinsic::usub_sat: {
1363 Type *CondTy = RetTy->getWithNewBitWidth(1);
1364
1365 Type *OpTy = StructType::create({RetTy, CondTy});
1366 Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
1367 ? Intrinsic::uadd_with_overflow
1368 : Intrinsic::usub_with_overflow;
1369
1370 unsigned Cost = 0;
1371 Cost += ConcreteTTI->getIntrinsicInstrCost(
1372 OverflowOp, OpTy, {RetTy, RetTy}, FMF, ScalarizationCostPassed);
1373 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1374 CondTy, nullptr);
1375 return Cost;
1376 }
1377 case Intrinsic::smul_fix:
1378 case Intrinsic::umul_fix: {
1379 unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
1380 Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize);
1381
1382 unsigned ExtOp =
1383 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
1384
1385 unsigned Cost = 0;
1386 Cost += 2 * ConcreteTTI->getCastInstrCost(ExtOp, ExtTy, RetTy);
1387 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Mul, ExtTy);
1388 Cost +=
1389 2 * ConcreteTTI->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy);
1390 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::LShr, RetTy,
1391 TTI::OK_AnyValue,
1392 TTI::OK_UniformConstantValue);
1393 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Shl, RetTy,
1394 TTI::OK_AnyValue,
1395 TTI::OK_UniformConstantValue);
1396 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Or, RetTy);
1397 return Cost;
1398 }
1399 case Intrinsic::sadd_with_overflow:
1400 case Intrinsic::ssub_with_overflow: {
1401 Type *SumTy = RetTy->getContainedType(0);
1402 Type *OverflowTy = RetTy->getContainedType(1);
1403 unsigned Opcode = IID == Intrinsic::sadd_with_overflow
1404 ? BinaryOperator::Add
1405 : BinaryOperator::Sub;
1406
1407 // LHSSign -> LHS >= 0
1408 // RHSSign -> RHS >= 0
1409 // SumSign -> Sum >= 0
1410 //
1411 // Add:
1412 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
1413 // Sub:
1414 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
1415 unsigned Cost = 0;
1416 Cost += ConcreteTTI->getArithmeticInstrCost(Opcode, SumTy);
1417 Cost += 3 * ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
1418 OverflowTy, nullptr);
1419 Cost += 2 * ConcreteTTI->getCmpSelInstrCost(
1420 BinaryOperator::ICmp, OverflowTy, OverflowTy, nullptr);
1421 Cost +=
1422 ConcreteTTI->getArithmeticInstrCost(BinaryOperator::And, OverflowTy);
1423 return Cost;
1424 }
1425 case Intrinsic::uadd_with_overflow:
1426 case Intrinsic::usub_with_overflow: {
1427 Type *SumTy = RetTy->getContainedType(0);
1428 Type *OverflowTy = RetTy->getContainedType(1);
1429 unsigned Opcode = IID == Intrinsic::uadd_with_overflow
1430 ? BinaryOperator::Add
1431 : BinaryOperator::Sub;
1432
1433 unsigned Cost = 0;
1434 Cost += ConcreteTTI->getArithmeticInstrCost(Opcode, SumTy);
1435 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
1436 OverflowTy, nullptr);
1437 return Cost;
1438 }
1439 case Intrinsic::smul_with_overflow:
1440 case Intrinsic::umul_with_overflow: {
1441 Type *MulTy = RetTy->getContainedType(0);
1442 Type *OverflowTy = RetTy->getContainedType(1);
1443 unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
1444 Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize);
1445
1446 unsigned ExtOp =
1447 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
1448
1449 unsigned Cost = 0;
1450 Cost += 2 * ConcreteTTI->getCastInstrCost(ExtOp, ExtTy, MulTy);
1451 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Mul, ExtTy);
1452 Cost +=
1453 2 * ConcreteTTI->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy);
1454 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::LShr, MulTy,
1455 TTI::OK_AnyValue,
1456 TTI::OK_UniformConstantValue);
1457
1458 if (IID == Intrinsic::smul_with_overflow)
1459 Cost += ConcreteTTI->getArithmeticInstrCost(
1460 Instruction::AShr, MulTy, TTI::OK_AnyValue,
1461 TTI::OK_UniformConstantValue);
1462
1463 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, MulTy,
1464 OverflowTy, nullptr);
1465 return Cost;
1466 }
1467 case Intrinsic::ctpop:
1468 ISDs.push_back(ISD::CTPOP);
1469 // In case of legalization use TCC_Expensive. This is cheaper than a
1470 // library call but still not a cheap instruction.
1471 SingleCallCost = TargetTransformInfo::TCC_Expensive;
1472 break;
1473 // FIXME: ctlz, cttz, ...
1474 case Intrinsic::bswap:
1475 ISDs.push_back(ISD::BSWAP);
1476 break;
1477 case Intrinsic::bitreverse:
1478 ISDs.push_back(ISD::BITREVERSE);
1479 break;
1480 }
1481
1482 const TargetLoweringBase *TLI = getTLI();
1483 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1484
1485 SmallVector<unsigned, 2> LegalCost;
1486 SmallVector<unsigned, 2> CustomCost;
1487 for (unsigned ISD : ISDs) {
1488 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
1489 if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
1490 TLI->isFAbsFree(LT.second)) {
1491 return 0;
1492 }
1493
1494 // The operation is legal. Assume it costs 1.
1495 // If the type is split to multiple registers, assume that there is some
1496 // overhead to this.
1497 // TODO: Once we have extract/insert subvector cost we need to use them.
1498 if (LT.first > 1)
1499 LegalCost.push_back(LT.first * 2);
1500 else
1501 LegalCost.push_back(LT.first * 1);
1502 } else if (!TLI->isOperationExpand(ISD, LT.second)) {
1503 // If the operation is custom lowered then assume
1504 // that the code is twice as expensive.
1505 CustomCost.push_back(LT.first * 2);
1506 }
1507 }
1508
1509 auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
1510 if (MinLegalCostI != LegalCost.end())
1511 return *MinLegalCostI;
1512
1513 auto MinCustomCostI =
1514 std::min_element(CustomCost.begin(), CustomCost.end());
1515 if (MinCustomCostI != CustomCost.end())
1516 return *MinCustomCostI;
1517
1518 // If we can't lower fmuladd into an FMA estimate the cost as a floating
1519 // point mul followed by an add.
1520 if (IID == Intrinsic::fmuladd)
1521 return ConcreteTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
1522 ConcreteTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
1523 if (IID == Intrinsic::experimental_constrained_fmuladd)
1524 return ConcreteTTI->getIntrinsicCost(
1525 Intrinsic::experimental_constrained_fmul, RetTy, Tys,
1526 nullptr) +
1527 ConcreteTTI->getIntrinsicCost(
1528 Intrinsic::experimental_constrained_fadd, RetTy, Tys, nullptr);
1529
1530 // Else, assume that we need to scalarize this intrinsic. For math builtins
1531 // this will emit a costly libcall, adding call overhead and spills. Make it
1532 // very expensive.
1533 if (RetTy->isVectorTy()) {
1534 unsigned ScalarizationCost =
1535 ((ScalarizationCostPassed != std::numeric_limits<unsigned>::max())
1536 ? ScalarizationCostPassed
1537 : getScalarizationOverhead(RetTy, true, false));
1538 unsigned ScalarCalls = RetTy->getVectorNumElements();
1539 SmallVector<Type *, 4> ScalarTys;
1540 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1541 Type *Ty = Tys[i];
1542 if (Ty->isVectorTy())
1543 Ty = Ty->getScalarType();
1544 ScalarTys.push_back(Ty);
1545 }
1546 unsigned ScalarCost = ConcreteTTI->getIntrinsicInstrCost(
1547 IID, RetTy->getScalarType(), ScalarTys, FMF);
1548 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1549 if (Tys[i]->isVectorTy()) {
1550 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1551 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
1552 ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements());
1553 }
1554 }
1555
1556 return ScalarCalls * ScalarCost + ScalarizationCost;
1557 }
1558
1559 // This is going to be turned into a library call, make it expensive.
1560 return SingleCallCost;
1561 }
1562
1563 /// Compute a cost of the given call instruction.
1564 ///
1565 /// Compute the cost of calling function F with return type RetTy and
1566 /// argument types Tys. F might be nullptr, in this case the cost of an
1567 /// arbitrary call with the specified signature will be returned.
1568 /// This is used, for instance, when we estimate call of a vector
1569 /// counterpart of the given function.
1570 /// \param F Called function, might be nullptr.
1571 /// \param RetTy Return value types.
1572 /// \param Tys Argument types.
1573 /// \returns The cost of Call instruction.
1574 unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
1575 return 10;
1576 }
1577
1578 unsigned getNumberOfParts(Type *Tp) {
1579 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
1580 return LT.first;
1581 }
1582
1583 unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
1584 const SCEV *) {
1585 return 0;
1586 }
1587
1588 /// Try to calculate arithmetic and shuffle op costs for reduction operations.
1589 /// We're assuming that reduction operation are performing the following way:
1590 /// 1. Non-pairwise reduction
1591 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1592 /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
1593 /// \----------------v-------------/ \----------v------------/
1594 /// n/2 elements n/2 elements
1595 /// %red1 = op <n x t> %val, <n x t> val1
1596 /// After this operation we have a vector %red1 where only the first n/2
1597 /// elements are meaningful, the second n/2 elements are undefined and can be
1598 /// dropped. All other operations are actually working with the vector of
1599 /// length n/2, not n, though the real vector length is still n.
1600 /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
1601 /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
1602 /// \----------------v-------------/ \----------v------------/
1603 /// n/4 elements 3*n/4 elements
1604 /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
1605 /// length n/2, the resulting vector has length n/4 etc.
1606 /// 2. Pairwise reduction:
1607 /// Everything is the same except for an additional shuffle operation which
1608 /// is used to produce operands for pairwise kind of reductions.
1609 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1610 /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
1611 /// \-------------v----------/ \----------v------------/
1612 /// n/2 elements n/2 elements
1613 /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
1614 /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
1615 /// \-------------v----------/ \----------v------------/
1616 /// n/2 elements n/2 elements
1617 /// %red1 = op <n x t> %val1, <n x t> val2
1618 /// Again, the operation is performed on <n x t> vector, but the resulting
1619 /// vector %red1 is <n/2 x t> vector.
1620 ///
1621 /// The cost model should take into account that the actual length of the
1622 /// vector is reduced on each iteration.
1623 unsigned getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1624 bool IsPairwise) {
1625 assert(Ty->isVectorTy() && "Expect a vector type")((Ty->isVectorTy() && "Expect a vector type") ? static_cast
<void> (0) : __assert_fail ("Ty->isVectorTy() && \"Expect a vector type\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1625, __PRETTY_FUNCTION__))
;
1626 Type *ScalarTy = Ty->getVectorElementType();
1627 unsigned NumVecElts = Ty->getVectorNumElements();
1628 unsigned NumReduxLevels = Log2_32(NumVecElts);
1629 unsigned ArithCost = 0;
1630 unsigned ShuffleCost = 0;
1631 auto *ConcreteTTI = static_cast<T *>(this);
1632 std::pair<unsigned, MVT> LT =
1633 ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
1634 unsigned LongVectorCount = 0;
1635 unsigned MVTLen =
1636 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
1637 while (NumVecElts > MVTLen) {
1638 NumVecElts /= 2;
1639 Type *SubTy = VectorType::get(ScalarTy, NumVecElts);
1640 // Assume the pairwise shuffles add a cost.
1641 ShuffleCost += (IsPairwise + 1) *
1642 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
1643 NumVecElts, SubTy);
1644 ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, SubTy);
1645 Ty = SubTy;
1646 ++LongVectorCount;
1647 }
1648
1649 NumReduxLevels -= LongVectorCount;
1650
1651 // The minimal length of the vector is limited by the real length of vector
1652 // operations performed on the current platform. That's why several final
1653 // reduction operations are performed on the vectors with the same
1654 // architecture-dependent length.
1655
1656 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1657 // reductions need two shuffles on every level, but the last one. On that
1658 // level one of the shuffles is <0, u, u, ...> which is identity.
1659 unsigned NumShuffles = NumReduxLevels;
1660 if (IsPairwise && NumReduxLevels >= 1)
1661 NumShuffles += NumReduxLevels - 1;
1662 ShuffleCost += NumShuffles *
1663 ConcreteTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
1664 0, Ty);
1665 ArithCost += NumReduxLevels *
1666 ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
1667 return ShuffleCost + ArithCost +
1668 ConcreteTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
1669 }
1670
1671 /// Try to calculate op costs for min/max reduction operations.
1672 /// \param CondTy Conditional type for the Select instruction.
1673 unsigned getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwise,
1674 bool) {
1675 assert(Ty->isVectorTy() && "Expect a vector type")((Ty->isVectorTy() && "Expect a vector type") ? static_cast
<void> (0) : __assert_fail ("Ty->isVectorTy() && \"Expect a vector type\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1675, __PRETTY_FUNCTION__))
;
1676 Type *ScalarTy = Ty->getVectorElementType();
1677 Type *ScalarCondTy = CondTy->getVectorElementType();
1678 unsigned NumVecElts = Ty->getVectorNumElements();
1679 unsigned NumReduxLevels = Log2_32(NumVecElts);
1680 unsigned CmpOpcode;
1681 if (Ty->isFPOrFPVectorTy()) {
1682 CmpOpcode = Instruction::FCmp;
1683 } else {
1684 assert(Ty->isIntOrIntVectorTy() &&((Ty->isIntOrIntVectorTy() && "expecting floating point or integer type for min/max reduction"
) ? static_cast<void> (0) : __assert_fail ("Ty->isIntOrIntVectorTy() && \"expecting floating point or integer type for min/max reduction\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1685, __PRETTY_FUNCTION__))
1685 "expecting floating point or integer type for min/max reduction")((Ty->isIntOrIntVectorTy() && "expecting floating point or integer type for min/max reduction"
) ? static_cast<void> (0) : __assert_fail ("Ty->isIntOrIntVectorTy() && \"expecting floating point or integer type for min/max reduction\""
, "/build/llvm-toolchain-snapshot-11~++20200226111113+80d7e473e0b/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1685, __PRETTY_FUNCTION__))
;
1686 CmpOpcode = Instruction::ICmp;
1687 }
1688 unsigned MinMaxCost = 0;
1689 unsigned ShuffleCost = 0;
1690 auto *ConcreteTTI = static_cast<T *>(this);
1691 std::pair<unsigned, MVT> LT =
1692 ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
1693 unsigned LongVectorCount = 0;
1694 unsigned MVTLen =
1695 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
1696 while (NumVecElts > MVTLen) {
1697 NumVecElts /= 2;
1698 Type *SubTy = VectorType::get(ScalarTy, NumVecElts);
1699 CondTy = VectorType::get(ScalarCondTy, NumVecElts);
1700
1701 // Assume the pairwise shuffles add a cost.
1702 ShuffleCost += (IsPairwise + 1) *
1703 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
1704 NumVecElts, SubTy);
1705 MinMaxCost +=
1706 ConcreteTTI->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy, nullptr) +
1707 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
1708 nullptr);
1709 Ty = SubTy;
1710 ++LongVectorCount;
1711 }
1712
1713 NumReduxLevels -= LongVectorCount;
1714
1715 // The minimal length of the vector is limited by the real length of vector
1716 // operations performed on the current platform. That's why several final
1717 // reduction opertions are perfomed on the vectors with the same
1718 // architecture-dependent length.
1719
1720 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1721 // reductions need two shuffles on every level, but the last one. On that
1722 // level one of the shuffles is <0, u, u, ...> which is identity.
1723 unsigned NumShuffles = NumReduxLevels;
1724 if (IsPairwise && NumReduxLevels >= 1)
1725 NumShuffles += NumReduxLevels - 1;
1726 ShuffleCost += NumShuffles *
1727 ConcreteTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
1728 0, Ty);
1729 MinMaxCost +=
1730 NumReduxLevels *
1731 (ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) +
1732 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
1733 nullptr));
1734 // The last min/max should be in vector registers and we counted it above.
1735 // So just need a single extractelement.
1736 return ShuffleCost + MinMaxCost +
1737 ConcreteTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
1738 }
1739
1740 unsigned getVectorSplitCost() { return 1; }
1741
1742 /// @}
1743};
1744
1745/// Concrete BasicTTIImpl that can be used if no further customization
1746/// is needed.
1747class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
1748 using BaseT = BasicTTIImplBase<BasicTTIImpl>;
1749
1750 friend class BasicTTIImplBase<BasicTTIImpl>;
1751
1752 const TargetSubtargetInfo *ST;
1753 const TargetLoweringBase *TLI;
1754
1755 const TargetSubtargetInfo *getST() const { return ST; }
1756 const TargetLoweringBase *getTLI() const { return TLI; }
1757
1758public:
1759 explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
1760};
1761
1762} // end namespace llvm
1763
1764#endif // LLVM_CODEGEN_BASICTTIIMPL_H