Bug Summary

File:build/source/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
Warning:line 4329, column 15
Division by zero

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name X86TargetTransformInfo.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16 -I lib/Target/X86 -I /build/source/llvm/lib/Target/X86 -I include -I /build/source/llvm/include -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1673003482 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-01-06-130334-16210-1 -x c++ /build/source/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
1//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements a TargetTransformInfo analysis pass specific to the
10/// X86 target machine. It uses the target's detailed information to provide
11/// more precise answers to certain TTI queries, while letting the target
12/// independent and default TTI implementations handle the rest.
13///
14//===----------------------------------------------------------------------===//
15/// About Cost Model numbers used below it's necessary to say the following:
16/// the numbers correspond to some "generic" X86 CPU instead of usage of a
17/// specific CPU model. Usually the numbers correspond to the CPU where the
18/// feature first appeared. For example, if we do Subtarget.hasSSE42() in
19/// the lookups below the cost is based on Nehalem as that was the first CPU
20/// to support that feature level and thus has most likely the worst case cost,
21/// although we may discard an outlying worst cost from one CPU (e.g. Atom).
22///
23/// Some examples of other technologies/CPUs:
24/// SSE 3 - Pentium4 / Athlon64
25/// SSE 4.1 - Penryn
26/// SSE 4.2 - Nehalem / Silvermont
27/// AVX - Sandy Bridge / Jaguar / Bulldozer
28/// AVX2 - Haswell / Ryzen
29/// AVX-512 - Xeon Phi / Skylake
30///
31/// And some examples of instruction target dependent costs (latency)
32/// divss sqrtss rsqrtss
33/// AMD K7 11-16 19 3
34/// Piledriver 9-24 13-15 5
35/// Jaguar 14 16 2
36/// Pentium II,III 18 30 2
37/// Nehalem 7-14 7-18 3
38/// Haswell 10-13 11 5
39///
40/// Interpreting the 4 TargetCostKind types:
41/// TCK_RecipThroughput and TCK_Latency should try to match the worst case
42/// values reported by the CPU scheduler models (and llvm-mca).
43/// TCK_CodeSize should match the instruction count (e.g. divss = 1), NOT the
44/// actual encoding size of the instruction.
45/// TCK_SizeAndLatency should match the worst case micro-op counts reported by
46/// by the CPU scheduler models (and llvm-mca), to ensure that they are
47/// compatible with the MicroOpBufferSize and LoopMicroOpBufferSize values which are
48/// often used as the cost thresholds where TCK_SizeAndLatency is requested.
49//===----------------------------------------------------------------------===//
50
51#include "X86TargetTransformInfo.h"
52#include "llvm/Analysis/TargetTransformInfo.h"
53#include "llvm/CodeGen/BasicTTIImpl.h"
54#include "llvm/CodeGen/CostTable.h"
55#include "llvm/CodeGen/TargetLowering.h"
56#include "llvm/IR/InstIterator.h"
57#include "llvm/IR/IntrinsicInst.h"
58#include "llvm/Support/Debug.h"
59#include <optional>
60
61using namespace llvm;
62
63#define DEBUG_TYPE"x86tti" "x86tti"
64
65//===----------------------------------------------------------------------===//
66//
67// X86 cost model.
68//
69//===----------------------------------------------------------------------===//
70
71// Helper struct to store/access costs for each cost kind.
72// TODO: Move this to allow other targets to use it?
73struct CostKindCosts {
74 unsigned RecipThroughputCost = ~0U;
75 unsigned LatencyCost = ~0U;
76 unsigned CodeSizeCost = ~0U;
77 unsigned SizeAndLatencyCost = ~0U;
78
79 std::optional<unsigned>
80 operator[](TargetTransformInfo::TargetCostKind Kind) const {
81 unsigned Cost = ~0U;
82 switch (Kind) {
83 case TargetTransformInfo::TCK_RecipThroughput:
84 Cost = RecipThroughputCost;
85 break;
86 case TargetTransformInfo::TCK_Latency:
87 Cost = LatencyCost;
88 break;
89 case TargetTransformInfo::TCK_CodeSize:
90 Cost = CodeSizeCost;
91 break;
92 case TargetTransformInfo::TCK_SizeAndLatency:
93 Cost = SizeAndLatencyCost;
94 break;
95 }
96 if (Cost == ~0U)
97 return std::nullopt;
98 return Cost;
99 }
100};
101using CostKindTblEntry = CostTblEntryT<CostKindCosts>;
102
103TargetTransformInfo::PopcntSupportKind
104X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
105 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2")(static_cast <bool> (isPowerOf2_32(TyWidth) && "Ty width must be power of 2"
) ? void (0) : __assert_fail ("isPowerOf2_32(TyWidth) && \"Ty width must be power of 2\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 105, __extension__
__PRETTY_FUNCTION__))
;
106 // TODO: Currently the __builtin_popcount() implementation using SSE3
107 // instructions is inefficient. Once the problem is fixed, we should
108 // call ST->hasSSE3() instead of ST->hasPOPCNT().
109 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
110}
111
112std::optional<unsigned> X86TTIImpl::getCacheSize(
113 TargetTransformInfo::CacheLevel Level) const {
114 switch (Level) {
115 case TargetTransformInfo::CacheLevel::L1D:
116 // - Penryn
117 // - Nehalem
118 // - Westmere
119 // - Sandy Bridge
120 // - Ivy Bridge
121 // - Haswell
122 // - Broadwell
123 // - Skylake
124 // - Kabylake
125 return 32 * 1024; // 32 KByte
126 case TargetTransformInfo::CacheLevel::L2D:
127 // - Penryn
128 // - Nehalem
129 // - Westmere
130 // - Sandy Bridge
131 // - Ivy Bridge
132 // - Haswell
133 // - Broadwell
134 // - Skylake
135 // - Kabylake
136 return 256 * 1024; // 256 KByte
137 }
138
139 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel")::llvm::llvm_unreachable_internal("Unknown TargetTransformInfo::CacheLevel"
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 139)
;
140}
141
142std::optional<unsigned> X86TTIImpl::getCacheAssociativity(
143 TargetTransformInfo::CacheLevel Level) const {
144 // - Penryn
145 // - Nehalem
146 // - Westmere
147 // - Sandy Bridge
148 // - Ivy Bridge
149 // - Haswell
150 // - Broadwell
151 // - Skylake
152 // - Kabylake
153 switch (Level) {
154 case TargetTransformInfo::CacheLevel::L1D:
155 [[fallthrough]];
156 case TargetTransformInfo::CacheLevel::L2D:
157 return 8;
158 }
159
160 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel")::llvm::llvm_unreachable_internal("Unknown TargetTransformInfo::CacheLevel"
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 160)
;
161}
162
163unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
164 bool Vector = (ClassID == 1);
165 if (Vector && !ST->hasSSE1())
166 return 0;
167
168 if (ST->is64Bit()) {
169 if (Vector && ST->hasAVX512())
170 return 32;
171 return 16;
172 }
173 return 8;
174}
175
176TypeSize
177X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
178 unsigned PreferVectorWidth = ST->getPreferVectorWidth();
179 switch (K) {
180 case TargetTransformInfo::RGK_Scalar:
181 return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
182 case TargetTransformInfo::RGK_FixedWidthVector:
183 if (ST->hasAVX512() && PreferVectorWidth >= 512)
184 return TypeSize::getFixed(512);
185 if (ST->hasAVX() && PreferVectorWidth >= 256)
186 return TypeSize::getFixed(256);
187 if (ST->hasSSE1() && PreferVectorWidth >= 128)
188 return TypeSize::getFixed(128);
189 return TypeSize::getFixed(0);
190 case TargetTransformInfo::RGK_ScalableVector:
191 return TypeSize::getScalable(0);
192 }
193
194 llvm_unreachable("Unsupported register kind")::llvm::llvm_unreachable_internal("Unsupported register kind"
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 194)
;
195}
196
197unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
198 return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
199 .getFixedSize();
200}
201
202unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
203 // If the loop will not be vectorized, don't interleave the loop.
204 // Let regular unroll to unroll the loop, which saves the overflow
205 // check and memory check cost.
206 if (VF == 1)
207 return 1;
208
209 if (ST->isAtom())
210 return 1;
211
212 // Sandybridge and Haswell have multiple execution ports and pipelined
213 // vector units.
214 if (ST->hasAVX())
215 return 4;
216
217 return 2;
218}
219
220InstructionCost X86TTIImpl::getArithmeticInstrCost(
221 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
222 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
223 ArrayRef<const Value *> Args,
224 const Instruction *CxtI) {
225
226 // vXi8 multiplications are always promoted to vXi16.
227 if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
228 Ty->getScalarSizeInBits() == 8) {
229 Type *WideVecTy =
230 VectorType::getExtendedElementVectorType(cast<VectorType>(Ty));
231 return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty,
232 TargetTransformInfo::CastContextHint::None,
233 CostKind) +
234 getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
235 TargetTransformInfo::CastContextHint::None,
236 CostKind) +
237 getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info);
238 }
239
240 // Legalize the type.
241 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
242
243 int ISD = TLI->InstructionOpcodeToISD(Opcode);
244 assert(ISD && "Invalid opcode")(static_cast <bool> (ISD && "Invalid opcode") ?
void (0) : __assert_fail ("ISD && \"Invalid opcode\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 244, __extension__
__PRETTY_FUNCTION__))
;
245
246 if (ISD == ISD::MUL && Args.size() == 2 && LT.second.isVector() &&
247 LT.second.getScalarType() == MVT::i32) {
248 // Check if the operands can be represented as a smaller datatype.
249 bool Op1Signed = false, Op2Signed = false;
250 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
251 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
252 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
253 bool SignedMode = Op1Signed || Op2Signed;
254
255 // If both are representable as i15 and at least one is constant,
256 // zero-extended, or sign-extended from vXi16 (or less pre-SSE41) then we
257 // can treat this as PMADDWD which has the same costs as a vXi16 multiply.
258 if (OpMinSize <= 15 && !ST->isPMADDWDSlow()) {
259 bool Op1Constant =
260 isa<ConstantDataVector>(Args[0]) || isa<ConstantVector>(Args[0]);
261 bool Op2Constant =
262 isa<ConstantDataVector>(Args[1]) || isa<ConstantVector>(Args[1]);
263 bool Op1Sext = isa<SExtInst>(Args[0]) &&
264 (Op1MinSize == 15 || (Op1MinSize < 15 && !ST->hasSSE41()));
265 bool Op2Sext = isa<SExtInst>(Args[1]) &&
266 (Op2MinSize == 15 || (Op2MinSize < 15 && !ST->hasSSE41()));
267
268 bool IsZeroExtended = !Op1Signed || !Op2Signed;
269 bool IsConstant = Op1Constant || Op2Constant;
270 bool IsSext = Op1Sext || Op2Sext;
271 if (IsConstant || IsZeroExtended || IsSext)
272 LT.second =
273 MVT::getVectorVT(MVT::i16, 2 * LT.second.getVectorNumElements());
274 }
275
276 // Check if the vXi32 operands can be shrunk into a smaller datatype.
277 // This should match the codegen from reduceVMULWidth.
278 // TODO: Make this generic (!ST->SSE41 || ST->isPMULLDSlow()).
279 if (ST->useSLMArithCosts() && LT.second == MVT::v4i32) {
280 if (OpMinSize <= 7)
281 return LT.first * 3; // pmullw/sext
282 if (!SignedMode && OpMinSize <= 8)
283 return LT.first * 3; // pmullw/zext
284 if (OpMinSize <= 15)
285 return LT.first * 5; // pmullw/pmulhw/pshuf
286 if (!SignedMode && OpMinSize <= 16)
287 return LT.first * 5; // pmullw/pmulhw/pshuf
288 }
289 }
290
291 // Vector multiply by pow2 will be simplified to shifts.
292 // Vector multiply by -pow2 will be simplified to shifts/negates.
293 if (ISD == ISD::MUL && Op2Info.isConstant() &&
294 (Op2Info.isPowerOf2() || Op2Info.isNegatedPowerOf2())) {
295 InstructionCost Cost =
296 getArithmeticInstrCost(Instruction::Shl, Ty, CostKind,
297 Op1Info.getNoProps(), Op2Info.getNoProps());
298 if (Op2Info.isNegatedPowerOf2())
299 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind);
300 return Cost;
301 }
302
303 // On X86, vector signed division by constants power-of-two are
304 // normally expanded to the sequence SRA + SRL + ADD + SRA.
305 // The OperandValue properties may not be the same as that of the previous
306 // operation; conservatively assume OP_None.
307 if ((ISD == ISD::SDIV || ISD == ISD::SREM) &&
308 Op2Info.isConstant() && Op2Info.isPowerOf2()) {
309 InstructionCost Cost =
310 2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
311 Op1Info.getNoProps(), Op2Info.getNoProps());
312 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
313 Op1Info.getNoProps(), Op2Info.getNoProps());
314 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
315 Op1Info.getNoProps(), Op2Info.getNoProps());
316
317 if (ISD == ISD::SREM) {
318 // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
319 Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info.getNoProps(),
320 Op2Info.getNoProps());
321 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info.getNoProps(),
322 Op2Info.getNoProps());
323 }
324
325 return Cost;
326 }
327
328 // Vector unsigned division/remainder will be simplified to shifts/masks.
329 if ((ISD == ISD::UDIV || ISD == ISD::UREM) &&
330 Op2Info.isConstant() && Op2Info.isPowerOf2()) {
331 if (ISD == ISD::UDIV)
332 return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
333 Op1Info.getNoProps(), Op2Info.getNoProps());
334 // UREM
335 return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
336 Op1Info.getNoProps(), Op2Info.getNoProps());
337 }
338
339 static const CostKindTblEntry AVX512BWUniformConstCostTable[] = {
340 { ISD::SHL, MVT::v16i8, { 1, 7, 2, 3 } }, // psllw + pand.
341 { ISD::SRL, MVT::v16i8, { 1, 7, 2, 3 } }, // psrlw + pand.
342 { ISD::SRA, MVT::v16i8, { 1, 8, 4, 5 } }, // psrlw, pand, pxor, psubb.
343 { ISD::SHL, MVT::v32i8, { 1, 8, 2, 3 } }, // psllw + pand.
344 { ISD::SRL, MVT::v32i8, { 1, 8, 2, 3 } }, // psrlw + pand.
345 { ISD::SRA, MVT::v32i8, { 1, 9, 4, 5 } }, // psrlw, pand, pxor, psubb.
346 { ISD::SHL, MVT::v64i8, { 1, 8, 2, 3 } }, // psllw + pand.
347 { ISD::SRL, MVT::v64i8, { 1, 8, 2, 3 } }, // psrlw + pand.
348 { ISD::SRA, MVT::v64i8, { 1, 9, 4, 6 } }, // psrlw, pand, pxor, psubb.
349
350 { ISD::SHL, MVT::v16i16, { 1, 1, 1, 1 } }, // psllw
351 { ISD::SRL, MVT::v16i16, { 1, 1, 1, 1 } }, // psrlw
352 { ISD::SRA, MVT::v16i16, { 1, 1, 1, 1 } }, // psrlw
353 { ISD::SHL, MVT::v32i16, { 1, 1, 1, 1 } }, // psllw
354 { ISD::SRL, MVT::v32i16, { 1, 1, 1, 1 } }, // psrlw
355 { ISD::SRA, MVT::v32i16, { 1, 1, 1, 1 } }, // psrlw
356 };
357
358 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasBWI())
359 if (const auto *Entry =
360 CostTableLookup(AVX512BWUniformConstCostTable, ISD, LT.second))
361 if (auto KindCost = Entry->Cost[CostKind])
362 return LT.first * *KindCost;
363
364 static const CostKindTblEntry AVX512UniformConstCostTable[] = {
365 { ISD::SHL, MVT::v64i8, { 2, 12, 5, 6 } }, // psllw + pand.
366 { ISD::SRL, MVT::v64i8, { 2, 12, 5, 6 } }, // psrlw + pand.
367 { ISD::SRA, MVT::v64i8, { 3, 10, 12, 12 } }, // psrlw, pand, pxor, psubb.
368
369 { ISD::SHL, MVT::v16i16, { 2, 7, 4, 4 } }, // psllw + split.
370 { ISD::SRL, MVT::v16i16, { 2, 7, 4, 4 } }, // psrlw + split.
371 { ISD::SRA, MVT::v16i16, { 2, 7, 4, 4 } }, // psraw + split.
372
373 { ISD::SHL, MVT::v8i32, { 1, 1, 1, 1 } }, // pslld
374 { ISD::SRL, MVT::v8i32, { 1, 1, 1, 1 } }, // psrld
375 { ISD::SRA, MVT::v8i32, { 1, 1, 1, 1 } }, // psrad
376 { ISD::SHL, MVT::v16i32, { 1, 1, 1, 1 } }, // pslld
377 { ISD::SRL, MVT::v16i32, { 1, 1, 1, 1 } }, // psrld
378 { ISD::SRA, MVT::v16i32, { 1, 1, 1, 1 } }, // psrad
379
380 { ISD::SRA, MVT::v2i64, { 1, 1, 1, 1 } }, // psraq
381 { ISD::SHL, MVT::v4i64, { 1, 1, 1, 1 } }, // psllq
382 { ISD::SRL, MVT::v4i64, { 1, 1, 1, 1 } }, // psrlq
383 { ISD::SRA, MVT::v4i64, { 1, 1, 1, 1 } }, // psraq
384 { ISD::SHL, MVT::v8i64, { 1, 1, 1, 1 } }, // psllq
385 { ISD::SRL, MVT::v8i64, { 1, 1, 1, 1 } }, // psrlq
386 { ISD::SRA, MVT::v8i64, { 1, 1, 1, 1 } }, // psraq
387
388 { ISD::SDIV, MVT::v16i32, { 6 } }, // pmuludq sequence
389 { ISD::SREM, MVT::v16i32, { 8 } }, // pmuludq+mul+sub sequence
390 { ISD::UDIV, MVT::v16i32, { 5 } }, // pmuludq sequence
391 { ISD::UREM, MVT::v16i32, { 7 } }, // pmuludq+mul+sub sequence
392 };
393
394 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX512())
395 if (const auto *Entry =
396 CostTableLookup(AVX512UniformConstCostTable, ISD, LT.second))
397 if (auto KindCost = Entry->Cost[CostKind])
398 return LT.first * *KindCost;
399
400 static const CostKindTblEntry AVX2UniformConstCostTable[] = {
401 { ISD::SHL, MVT::v16i8, { 1, 8, 2, 3 } }, // psllw + pand.
402 { ISD::SRL, MVT::v16i8, { 1, 8, 2, 3 } }, // psrlw + pand.
403 { ISD::SRA, MVT::v16i8, { 2, 10, 5, 6 } }, // psrlw, pand, pxor, psubb.
404 { ISD::SHL, MVT::v32i8, { 2, 8, 2, 4 } }, // psllw + pand.
405 { ISD::SRL, MVT::v32i8, { 2, 8, 2, 4 } }, // psrlw + pand.
406 { ISD::SRA, MVT::v32i8, { 3, 10, 5, 9 } }, // psrlw, pand, pxor, psubb.
407
408 { ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // psllw
409 { ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // psrlw
410 { ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // psraw
411 { ISD::SHL, MVT::v16i16,{ 2, 2, 1, 2 } }, // psllw
412 { ISD::SRL, MVT::v16i16,{ 2, 2, 1, 2 } }, // psrlw
413 { ISD::SRA, MVT::v16i16,{ 2, 2, 1, 2 } }, // psraw
414
415 { ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } }, // pslld
416 { ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } }, // psrld
417 { ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } }, // psrad
418 { ISD::SHL, MVT::v8i32, { 2, 2, 1, 2 } }, // pslld
419 { ISD::SRL, MVT::v8i32, { 2, 2, 1, 2 } }, // psrld
420 { ISD::SRA, MVT::v8i32, { 2, 2, 1, 2 } }, // psrad
421
422 { ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } }, // psllq
423 { ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } }, // psrlq
424 { ISD::SRA, MVT::v2i64, { 2, 3, 3, 3 } }, // psrad + shuffle.
425 { ISD::SHL, MVT::v4i64, { 2, 2, 1, 2 } }, // psllq
426 { ISD::SRL, MVT::v4i64, { 2, 2, 1, 2 } }, // psrlq
427 { ISD::SRA, MVT::v4i64, { 4, 4, 3, 6 } }, // psrad + shuffle + split.
428
429 { ISD::SDIV, MVT::v8i32, { 6 } }, // pmuludq sequence
430 { ISD::SREM, MVT::v8i32, { 8 } }, // pmuludq+mul+sub sequence
431 { ISD::UDIV, MVT::v8i32, { 5 } }, // pmuludq sequence
432 { ISD::UREM, MVT::v8i32, { 7 } }, // pmuludq+mul+sub sequence
433 };
434
435 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX2())
436 if (const auto *Entry =
437 CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second))
438 if (auto KindCost = Entry->Cost[CostKind])
439 return LT.first * *KindCost;
440
441 static const CostKindTblEntry AVXUniformConstCostTable[] = {
442 { ISD::SHL, MVT::v16i8, { 2, 7, 2, 3 } }, // psllw + pand.
443 { ISD::SRL, MVT::v16i8, { 2, 7, 2, 3 } }, // psrlw + pand.
444 { ISD::SRA, MVT::v16i8, { 3, 9, 5, 6 } }, // psrlw, pand, pxor, psubb.
445 { ISD::SHL, MVT::v32i8, { 4, 7, 7, 8 } }, // 2*(psllw + pand) + split.
446 { ISD::SRL, MVT::v32i8, { 4, 7, 7, 8 } }, // 2*(psrlw + pand) + split.
447 { ISD::SRA, MVT::v32i8, { 7, 7, 12, 13 } }, // 2*(psrlw, pand, pxor, psubb) + split.
448
449 { ISD::SHL, MVT::v8i16, { 1, 2, 1, 1 } }, // psllw.
450 { ISD::SRL, MVT::v8i16, { 1, 2, 1, 1 } }, // psrlw.
451 { ISD::SRA, MVT::v8i16, { 1, 2, 1, 1 } }, // psraw.
452 { ISD::SHL, MVT::v16i16,{ 3, 6, 4, 5 } }, // psllw + split.
453 { ISD::SRL, MVT::v16i16,{ 3, 6, 4, 5 } }, // psrlw + split.
454 { ISD::SRA, MVT::v16i16,{ 3, 6, 4, 5 } }, // psraw + split.
455
456 { ISD::SHL, MVT::v4i32, { 1, 2, 1, 1 } }, // pslld.
457 { ISD::SRL, MVT::v4i32, { 1, 2, 1, 1 } }, // psrld.
458 { ISD::SRA, MVT::v4i32, { 1, 2, 1, 1 } }, // psrad.
459 { ISD::SHL, MVT::v8i32, { 3, 6, 4, 5 } }, // pslld + split.
460 { ISD::SRL, MVT::v8i32, { 3, 6, 4, 5 } }, // psrld + split.
461 { ISD::SRA, MVT::v8i32, { 3, 6, 4, 5 } }, // psrad + split.
462
463 { ISD::SHL, MVT::v2i64, { 1, 2, 1, 1 } }, // psllq.
464 { ISD::SRL, MVT::v2i64, { 1, 2, 1, 1 } }, // psrlq.
465 { ISD::SRA, MVT::v2i64, { 2, 3, 3, 3 } }, // psrad + shuffle.
466 { ISD::SHL, MVT::v4i64, { 3, 6, 4, 5 } }, // 2 x psllq + split.
467 { ISD::SRL, MVT::v4i64, { 3, 6, 4, 5 } }, // 2 x psllq + split.
468 { ISD::SRA, MVT::v4i64, { 5, 7, 8, 9 } }, // 2 x psrad + shuffle + split.
469
470 { ISD::SDIV, MVT::v8i32, { 14 } }, // 2*pmuludq sequence + split.
471 { ISD::SREM, MVT::v8i32, { 18 } }, // 2*pmuludq+mul+sub sequence + split.
472 { ISD::UDIV, MVT::v8i32, { 12 } }, // 2*pmuludq sequence + split.
473 { ISD::UREM, MVT::v8i32, { 16 } }, // 2*pmuludq+mul+sub sequence + split.
474 };
475
476 // XOP has faster vXi8 shifts.
477 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX() &&
478 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
479 if (const auto *Entry =
480 CostTableLookup(AVXUniformConstCostTable, ISD, LT.second))
481 if (auto KindCost = Entry->Cost[CostKind])
482 return LT.first * *KindCost;
483
484 static const CostKindTblEntry SSE2UniformConstCostTable[] = {
485 { ISD::SHL, MVT::v16i8, { 1, 7, 2, 3 } }, // psllw + pand.
486 { ISD::SRL, MVT::v16i8, { 1, 7, 2, 3 } }, // psrlw + pand.
487 { ISD::SRA, MVT::v16i8, { 3, 9, 5, 6 } }, // psrlw, pand, pxor, psubb.
488
489 { ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // psllw.
490 { ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // psrlw.
491 { ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // psraw.
492
493 { ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } }, // pslld
494 { ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } }, // psrld.
495 { ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } }, // psrad.
496
497 { ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } }, // psllq.
498 { ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } }, // psrlq.
499 { ISD::SRA, MVT::v2i64, { 3, 5, 6, 6 } }, // 2 x psrad + shuffle.
500
501 { ISD::SDIV, MVT::v4i32, { 6 } }, // pmuludq sequence
502 { ISD::SREM, MVT::v4i32, { 8 } }, // pmuludq+mul+sub sequence
503 { ISD::UDIV, MVT::v4i32, { 5 } }, // pmuludq sequence
504 { ISD::UREM, MVT::v4i32, { 7 } }, // pmuludq+mul+sub sequence
505 };
506
507 // XOP has faster vXi8 shifts.
508 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasSSE2() &&
509 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
510 if (const auto *Entry =
511 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
512 if (auto KindCost = Entry->Cost[CostKind])
513 return LT.first * *KindCost;
514
515 static const CostKindTblEntry AVX512BWConstCostTable[] = {
516 { ISD::SDIV, MVT::v64i8, { 14 } }, // 2*ext+2*pmulhw sequence
517 { ISD::SREM, MVT::v64i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
518 { ISD::UDIV, MVT::v64i8, { 14 } }, // 2*ext+2*pmulhw sequence
519 { ISD::UREM, MVT::v64i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
520
521 { ISD::SDIV, MVT::v32i16, { 6 } }, // vpmulhw sequence
522 { ISD::SREM, MVT::v32i16, { 8 } }, // vpmulhw+mul+sub sequence
523 { ISD::UDIV, MVT::v32i16, { 6 } }, // vpmulhuw sequence
524 { ISD::UREM, MVT::v32i16, { 8 } }, // vpmulhuw+mul+sub sequence
525 };
526
527 if (Op2Info.isConstant() && ST->hasBWI())
528 if (const auto *Entry =
529 CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
530 if (auto KindCost = Entry->Cost[CostKind])
531 return LT.first * *KindCost;
532
533 static const CostKindTblEntry AVX512ConstCostTable[] = {
534 { ISD::SDIV, MVT::v64i8, { 28 } }, // 4*ext+4*pmulhw sequence
535 { ISD::SREM, MVT::v64i8, { 32 } }, // 4*ext+4*pmulhw+mul+sub sequence
536 { ISD::UDIV, MVT::v64i8, { 28 } }, // 4*ext+4*pmulhw sequence
537 { ISD::UREM, MVT::v64i8, { 32 } }, // 4*ext+4*pmulhw+mul+sub sequence
538
539 { ISD::SDIV, MVT::v32i16, { 12 } }, // 2*vpmulhw sequence
540 { ISD::SREM, MVT::v32i16, { 16 } }, // 2*vpmulhw+mul+sub sequence
541 { ISD::UDIV, MVT::v32i16, { 12 } }, // 2*vpmulhuw sequence
542 { ISD::UREM, MVT::v32i16, { 16 } }, // 2*vpmulhuw+mul+sub sequence
543
544 { ISD::SDIV, MVT::v16i32, { 15 } }, // vpmuldq sequence
545 { ISD::SREM, MVT::v16i32, { 17 } }, // vpmuldq+mul+sub sequence
546 { ISD::UDIV, MVT::v16i32, { 15 } }, // vpmuludq sequence
547 { ISD::UREM, MVT::v16i32, { 17 } }, // vpmuludq+mul+sub sequence
548 };
549
550 if (Op2Info.isConstant() && ST->hasAVX512())
551 if (const auto *Entry =
552 CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
553 if (auto KindCost = Entry->Cost[CostKind])
554 return LT.first * *KindCost;
555
556 static const CostKindTblEntry AVX2ConstCostTable[] = {
557 { ISD::SDIV, MVT::v32i8, { 14 } }, // 2*ext+2*pmulhw sequence
558 { ISD::SREM, MVT::v32i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
559 { ISD::UDIV, MVT::v32i8, { 14 } }, // 2*ext+2*pmulhw sequence
560 { ISD::UREM, MVT::v32i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
561
562 { ISD::SDIV, MVT::v16i16, { 6 } }, // vpmulhw sequence
563 { ISD::SREM, MVT::v16i16, { 8 } }, // vpmulhw+mul+sub sequence
564 { ISD::UDIV, MVT::v16i16, { 6 } }, // vpmulhuw sequence
565 { ISD::UREM, MVT::v16i16, { 8 } }, // vpmulhuw+mul+sub sequence
566
567 { ISD::SDIV, MVT::v8i32, { 15 } }, // vpmuldq sequence
568 { ISD::SREM, MVT::v8i32, { 19 } }, // vpmuldq+mul+sub sequence
569 { ISD::UDIV, MVT::v8i32, { 15 } }, // vpmuludq sequence
570 { ISD::UREM, MVT::v8i32, { 19 } }, // vpmuludq+mul+sub sequence
571 };
572
573 if (Op2Info.isConstant() && ST->hasAVX2())
574 if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
575 if (auto KindCost = Entry->Cost[CostKind])
576 return LT.first * *KindCost;
577
578 static const CostKindTblEntry AVXConstCostTable[] = {
579 { ISD::SDIV, MVT::v32i8, { 30 } }, // 4*ext+4*pmulhw sequence + split.
580 { ISD::SREM, MVT::v32i8, { 34 } }, // 4*ext+4*pmulhw+mul+sub sequence + split.
581 { ISD::UDIV, MVT::v32i8, { 30 } }, // 4*ext+4*pmulhw sequence + split.
582 { ISD::UREM, MVT::v32i8, { 34 } }, // 4*ext+4*pmulhw+mul+sub sequence + split.
583
584 { ISD::SDIV, MVT::v16i16, { 14 } }, // 2*pmulhw sequence + split.
585 { ISD::SREM, MVT::v16i16, { 18 } }, // 2*pmulhw+mul+sub sequence + split.
586 { ISD::UDIV, MVT::v16i16, { 14 } }, // 2*pmulhuw sequence + split.
587 { ISD::UREM, MVT::v16i16, { 18 } }, // 2*pmulhuw+mul+sub sequence + split.
588
589 { ISD::SDIV, MVT::v8i32, { 32 } }, // vpmuludq sequence
590 { ISD::SREM, MVT::v8i32, { 38 } }, // vpmuludq+mul+sub sequence
591 { ISD::UDIV, MVT::v8i32, { 32 } }, // 2*pmuludq sequence + split.
592 { ISD::UREM, MVT::v8i32, { 42 } }, // 2*pmuludq+mul+sub sequence + split.
593 };
594
595 if (Op2Info.isConstant() && ST->hasAVX())
596 if (const auto *Entry = CostTableLookup(AVXConstCostTable, ISD, LT.second))
597 if (auto KindCost = Entry->Cost[CostKind])
598 return LT.first * *KindCost;
599
600 static const CostKindTblEntry SSE41ConstCostTable[] = {
601 { ISD::SDIV, MVT::v4i32, { 15 } }, // vpmuludq sequence
602 { ISD::SREM, MVT::v4i32, { 20 } }, // vpmuludq+mul+sub sequence
603 };
604
605 if (Op2Info.isConstant() && ST->hasSSE41())
606 if (const auto *Entry =
607 CostTableLookup(SSE41ConstCostTable, ISD, LT.second))
608 if (auto KindCost = Entry->Cost[CostKind])
609 return LT.first * *KindCost;
610
611 static const CostKindTblEntry SSE2ConstCostTable[] = {
612 { ISD::SDIV, MVT::v16i8, { 14 } }, // 2*ext+2*pmulhw sequence
613 { ISD::SREM, MVT::v16i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
614 { ISD::UDIV, MVT::v16i8, { 14 } }, // 2*ext+2*pmulhw sequence
615 { ISD::UREM, MVT::v16i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
616
617 { ISD::SDIV, MVT::v8i16, { 6 } }, // pmulhw sequence
618 { ISD::SREM, MVT::v8i16, { 8 } }, // pmulhw+mul+sub sequence
619 { ISD::UDIV, MVT::v8i16, { 6 } }, // pmulhuw sequence
620 { ISD::UREM, MVT::v8i16, { 8 } }, // pmulhuw+mul+sub sequence
621
622 { ISD::SDIV, MVT::v4i32, { 19 } }, // pmuludq sequence
623 { ISD::SREM, MVT::v4i32, { 24 } }, // pmuludq+mul+sub sequence
624 { ISD::UDIV, MVT::v4i32, { 15 } }, // pmuludq sequence
625 { ISD::UREM, MVT::v4i32, { 20 } }, // pmuludq+mul+sub sequence
626 };
627
628 if (Op2Info.isConstant() && ST->hasSSE2())
629 if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
630 if (auto KindCost = Entry->Cost[CostKind])
631 return LT.first * *KindCost;
632
633 static const CostKindTblEntry AVX512BWUniformCostTable[] = {
634 { ISD::SHL, MVT::v16i8, { 3, 5, 5, 7 } }, // psllw + pand.
635 { ISD::SRL, MVT::v16i8, { 3,10, 5, 8 } }, // psrlw + pand.
636 { ISD::SRA, MVT::v16i8, { 4,12, 8,12 } }, // psrlw, pand, pxor, psubb.
637 { ISD::SHL, MVT::v32i8, { 4, 7, 6, 8 } }, // psllw + pand.
638 { ISD::SRL, MVT::v32i8, { 4, 8, 7, 9 } }, // psrlw + pand.
639 { ISD::SRA, MVT::v32i8, { 5,10,10,13 } }, // psrlw, pand, pxor, psubb.
640 { ISD::SHL, MVT::v64i8, { 4, 7, 6, 8 } }, // psllw + pand.
641 { ISD::SRL, MVT::v64i8, { 4, 8, 7,10 } }, // psrlw + pand.
642 { ISD::SRA, MVT::v64i8, { 5,10,10,15 } }, // psrlw, pand, pxor, psubb.
643
644 { ISD::SHL, MVT::v32i16, { 2, 4, 2, 3 } }, // psllw
645 { ISD::SRL, MVT::v32i16, { 2, 4, 2, 3 } }, // psrlw
646 { ISD::SRA, MVT::v32i16, { 2, 4, 2, 3 } }, // psrqw
647 };
648
649 if (ST->hasBWI() && Op2Info.isUniform())
650 if (const auto *Entry =
651 CostTableLookup(AVX512BWUniformCostTable, ISD, LT.second))
652 if (auto KindCost = Entry->Cost[CostKind])
653 return LT.first * *KindCost;
654
655 static const CostKindTblEntry AVX512UniformCostTable[] = {
656 { ISD::SHL, MVT::v32i16, { 5,10, 5, 7 } }, // psllw + split.
657 { ISD::SRL, MVT::v32i16, { 5,10, 5, 7 } }, // psrlw + split.
658 { ISD::SRA, MVT::v32i16, { 5,10, 5, 7 } }, // psraw + split.
659
660 { ISD::SHL, MVT::v16i32, { 2, 4, 2, 3 } }, // pslld
661 { ISD::SRL, MVT::v16i32, { 2, 4, 2, 3 } }, // psrld
662 { ISD::SRA, MVT::v16i32, { 2, 4, 2, 3 } }, // psrad
663
664 { ISD::SRA, MVT::v2i64, { 1, 2, 1, 2 } }, // psraq
665 { ISD::SHL, MVT::v4i64, { 1, 4, 1, 2 } }, // psllq
666 { ISD::SRL, MVT::v4i64, { 1, 4, 1, 2 } }, // psrlq
667 { ISD::SRA, MVT::v4i64, { 1, 4, 1, 2 } }, // psraq
668 { ISD::SHL, MVT::v8i64, { 1, 4, 1, 2 } }, // psllq
669 { ISD::SRL, MVT::v8i64, { 1, 4, 1, 2 } }, // psrlq
670 { ISD::SRA, MVT::v8i64, { 1, 4, 1, 2 } }, // psraq
671 };
672
673 if (ST->hasAVX512() && Op2Info.isUniform())
674 if (const auto *Entry =
675 CostTableLookup(AVX512UniformCostTable, ISD, LT.second))
676 if (auto KindCost = Entry->Cost[CostKind])
677 return LT.first * *KindCost;
678
679 static const CostKindTblEntry AVX2UniformCostTable[] = {
680 // Uniform splats are cheaper for the following instructions.
681 { ISD::SHL, MVT::v16i8, { 3, 5, 5, 7 } }, // psllw + pand.
682 { ISD::SRL, MVT::v16i8, { 3, 9, 5, 8 } }, // psrlw + pand.
683 { ISD::SRA, MVT::v16i8, { 4, 5, 9,13 } }, // psrlw, pand, pxor, psubb.
684 { ISD::SHL, MVT::v32i8, { 4, 7, 6, 8 } }, // psllw + pand.
685 { ISD::SRL, MVT::v32i8, { 4, 8, 7, 9 } }, // psrlw + pand.
686 { ISD::SRA, MVT::v32i8, { 6, 9,11,16 } }, // psrlw, pand, pxor, psubb.
687
688 { ISD::SHL, MVT::v8i16, { 1, 2, 1, 2 } }, // psllw.
689 { ISD::SRL, MVT::v8i16, { 1, 2, 1, 2 } }, // psrlw.
690 { ISD::SRA, MVT::v8i16, { 1, 2, 1, 2 } }, // psraw.
691 { ISD::SHL, MVT::v16i16, { 2, 4, 2, 3 } }, // psllw.
692 { ISD::SRL, MVT::v16i16, { 2, 4, 2, 3 } }, // psrlw.
693 { ISD::SRA, MVT::v16i16, { 2, 4, 2, 3 } }, // psraw.
694
695 { ISD::SHL, MVT::v4i32, { 1, 2, 1, 2 } }, // pslld
696 { ISD::SRL, MVT::v4i32, { 1, 2, 1, 2 } }, // psrld
697 { ISD::SRA, MVT::v4i32, { 1, 2, 1, 2 } }, // psrad
698 { ISD::SHL, MVT::v8i32, { 2, 4, 2, 3 } }, // pslld
699 { ISD::SRL, MVT::v8i32, { 2, 4, 2, 3 } }, // psrld
700 { ISD::SRA, MVT::v8i32, { 2, 4, 2, 3 } }, // psrad
701
702 { ISD::SHL, MVT::v2i64, { 1, 2, 1, 2 } }, // psllq
703 { ISD::SRL, MVT::v2i64, { 1, 2, 1, 2 } }, // psrlq
704 { ISD::SRA, MVT::v2i64, { 2, 4, 5, 7 } }, // 2 x psrad + shuffle.
705 { ISD::SHL, MVT::v4i64, { 2, 4, 1, 2 } }, // psllq
706 { ISD::SRL, MVT::v4i64, { 2, 4, 1, 2 } }, // psrlq
707 { ISD::SRA, MVT::v4i64, { 4, 6, 5, 9 } }, // 2 x psrad + shuffle.
708 };
709
710 if (ST->hasAVX2() && Op2Info.isUniform())
711 if (const auto *Entry =
712 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
713 if (auto KindCost = Entry->Cost[CostKind])
714 return LT.first * *KindCost;
715
716 static const CostKindTblEntry AVXUniformCostTable[] = {
717 { ISD::SHL, MVT::v16i8, { 4, 4, 6, 8 } }, // psllw + pand.
718 { ISD::SRL, MVT::v16i8, { 4, 8, 5, 8 } }, // psrlw + pand.
719 { ISD::SRA, MVT::v16i8, { 6, 6, 9,13 } }, // psrlw, pand, pxor, psubb.
720 { ISD::SHL, MVT::v32i8, { 7, 8,11,14 } }, // psllw + pand + split.
721 { ISD::SRL, MVT::v32i8, { 7, 9,10,14 } }, // psrlw + pand + split.
722 { ISD::SRA, MVT::v32i8, { 10,11,16,21 } }, // psrlw, pand, pxor, psubb + split.
723
724 { ISD::SHL, MVT::v8i16, { 1, 3, 1, 2 } }, // psllw.
725 { ISD::SRL, MVT::v8i16, { 1, 3, 1, 2 } }, // psrlw.
726 { ISD::SRA, MVT::v8i16, { 1, 3, 1, 2 } }, // psraw.
727 { ISD::SHL, MVT::v16i16, { 3, 7, 5, 7 } }, // psllw + split.
728 { ISD::SRL, MVT::v16i16, { 3, 7, 5, 7 } }, // psrlw + split.
729 { ISD::SRA, MVT::v16i16, { 3, 7, 5, 7 } }, // psraw + split.
730
731 { ISD::SHL, MVT::v4i32, { 1, 3, 1, 2 } }, // pslld.
732 { ISD::SRL, MVT::v4i32, { 1, 3, 1, 2 } }, // psrld.
733 { ISD::SRA, MVT::v4i32, { 1, 3, 1, 2 } }, // psrad.
734 { ISD::SHL, MVT::v8i32, { 3, 7, 5, 7 } }, // pslld + split.
735 { ISD::SRL, MVT::v8i32, { 3, 7, 5, 7 } }, // psrld + split.
736 { ISD::SRA, MVT::v8i32, { 3, 7, 5, 7 } }, // psrad + split.
737
738 { ISD::SHL, MVT::v2i64, { 1, 3, 1, 2 } }, // psllq.
739 { ISD::SRL, MVT::v2i64, { 1, 3, 1, 2 } }, // psrlq.
740 { ISD::SRA, MVT::v2i64, { 3, 4, 5, 7 } }, // 2 x psrad + shuffle.
741 { ISD::SHL, MVT::v4i64, { 3, 7, 4, 6 } }, // psllq + split.
742 { ISD::SRL, MVT::v4i64, { 3, 7, 4, 6 } }, // psrlq + split.
743 { ISD::SRA, MVT::v4i64, { 6, 7,10,13 } }, // 2 x (2 x psrad + shuffle) + split.
744 };
745
746 // XOP has faster vXi8 shifts.
747 if (ST->hasAVX() && Op2Info.isUniform() &&
748 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
749 if (const auto *Entry =
750 CostTableLookup(AVXUniformCostTable, ISD, LT.second))
751 if (auto KindCost = Entry->Cost[CostKind])
752 return LT.first * *KindCost;
753
754 static const CostKindTblEntry SSE2UniformCostTable[] = {
755 // Uniform splats are cheaper for the following instructions.
756 { ISD::SHL, MVT::v16i8, { 9, 10, 6, 9 } }, // psllw + pand.
757 { ISD::SRL, MVT::v16i8, { 9, 13, 5, 9 } }, // psrlw + pand.
758 { ISD::SRA, MVT::v16i8, { 11, 15, 9,13 } }, // pcmpgtb sequence.
759
760 { ISD::SHL, MVT::v8i16, { 2, 2, 1, 2 } }, // psllw.
761 { ISD::SRL, MVT::v8i16, { 2, 2, 1, 2 } }, // psrlw.
762 { ISD::SRA, MVT::v8i16, { 2, 2, 1, 2 } }, // psraw.
763
764 { ISD::SHL, MVT::v4i32, { 2, 2, 1, 2 } }, // pslld
765 { ISD::SRL, MVT::v4i32, { 2, 2, 1, 2 } }, // psrld.
766 { ISD::SRA, MVT::v4i32, { 2, 2, 1, 2 } }, // psrad.
767
768 { ISD::SHL, MVT::v2i64, { 2, 2, 1, 2 } }, // psllq.
769 { ISD::SRL, MVT::v2i64, { 2, 2, 1, 2 } }, // psrlq.
770 { ISD::SRA, MVT::v2i64, { 5, 9, 5, 7 } }, // 2*psrlq + xor + sub.
771 };
772
773 if (ST->hasSSE2() && Op2Info.isUniform() &&
774 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
775 if (const auto *Entry =
776 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
777 if (auto KindCost = Entry->Cost[CostKind])
778 return LT.first * *KindCost;
779
780 static const CostKindTblEntry AVX512DQCostTable[] = {
781 { ISD::MUL, MVT::v2i64, { 2, 15, 1, 3 } }, // pmullq
782 { ISD::MUL, MVT::v4i64, { 2, 15, 1, 3 } }, // pmullq
783 { ISD::MUL, MVT::v8i64, { 3, 15, 1, 3 } } // pmullq
784 };
785
786 // Look for AVX512DQ lowering tricks for custom cases.
787 if (ST->hasDQI())
788 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
789 if (auto KindCost = Entry->Cost[CostKind])
790 return LT.first * *KindCost;
791
792 static const CostKindTblEntry AVX512BWCostTable[] = {
793 { ISD::SHL, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsllvw/pack sequence.
794 { ISD::SRL, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsrlvw/pack sequence.
795 { ISD::SRA, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsravw/pack sequence.
796 { ISD::SHL, MVT::v32i8, { 4, 23,11,16 } }, // extend/vpsllvw/pack sequence.
797 { ISD::SRL, MVT::v32i8, { 4, 30,12,18 } }, // extend/vpsrlvw/pack sequence.
798 { ISD::SRA, MVT::v32i8, { 6, 13,24,30 } }, // extend/vpsravw/pack sequence.
799 { ISD::SHL, MVT::v64i8, { 6, 19,13,15 } }, // extend/vpsllvw/pack sequence.
800 { ISD::SRL, MVT::v64i8, { 7, 27,15,18 } }, // extend/vpsrlvw/pack sequence.
801 { ISD::SRA, MVT::v64i8, { 15, 15,30,30 } }, // extend/vpsravw/pack sequence.
802
803 { ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsllvw
804 { ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsrlvw
805 { ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsravw
806 { ISD::SHL, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsllvw
807 { ISD::SRL, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsrlvw
808 { ISD::SRA, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsravw
809 { ISD::SHL, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsllvw
810 { ISD::SRL, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsrlvw
811 { ISD::SRA, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsravw
812
813 { ISD::ADD, MVT::v64i8, { 1, 1, 1, 1 } }, // paddb
814 { ISD::ADD, MVT::v32i16, { 1, 1, 1, 1 } }, // paddw
815
816 { ISD::ADD, MVT::v32i8, { 1, 1, 1, 1 } }, // paddb
817 { ISD::ADD, MVT::v16i16, { 1, 1, 1, 1 } }, // paddw
818 { ISD::ADD, MVT::v8i32, { 1, 1, 1, 1 } }, // paddd
819 { ISD::ADD, MVT::v4i64, { 1, 1, 1, 1 } }, // paddq
820
821 { ISD::SUB, MVT::v64i8, { 1, 1, 1, 1 } }, // psubb
822 { ISD::SUB, MVT::v32i16, { 1, 1, 1, 1 } }, // psubw
823
824 { ISD::MUL, MVT::v32i16, { 1, 5, 1, 1 } }, // pmullw
825
826 { ISD::SUB, MVT::v32i8, { 1, 1, 1, 1 } }, // psubb
827 { ISD::SUB, MVT::v16i16, { 1, 1, 1, 1 } }, // psubw
828 { ISD::SUB, MVT::v8i32, { 1, 1, 1, 1 } }, // psubd
829 { ISD::SUB, MVT::v4i64, { 1, 1, 1, 1 } }, // psubq
830 };
831
832 // Look for AVX512BW lowering tricks for custom cases.
833 if (ST->hasBWI())
834 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
835 if (auto KindCost = Entry->Cost[CostKind])
836 return LT.first * *KindCost;
837
838 static const CostKindTblEntry AVX512CostTable[] = {
839 { ISD::SHL, MVT::v64i8, { 15, 19,27,33 } }, // vpblendv+split sequence.
840 { ISD::SRL, MVT::v64i8, { 15, 19,30,36 } }, // vpblendv+split sequence.
841 { ISD::SRA, MVT::v64i8, { 37, 37,51,63 } }, // vpblendv+split sequence.
842
843 { ISD::SHL, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsrlvd/pack sequence.
844 { ISD::SRL, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsrlvd/pack sequence.
845 { ISD::SRA, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsravd/pack sequence.
846
847 { ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } },
848 { ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } },
849 { ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } },
850 { ISD::SHL, MVT::v8i32, { 1, 1, 1, 1 } },
851 { ISD::SRL, MVT::v8i32, { 1, 1, 1, 1 } },
852 { ISD::SRA, MVT::v8i32, { 1, 1, 1, 1 } },
853 { ISD::SHL, MVT::v16i32, { 1, 1, 1, 1 } },
854 { ISD::SRL, MVT::v16i32, { 1, 1, 1, 1 } },
855 { ISD::SRA, MVT::v16i32, { 1, 1, 1, 1 } },
856
857 { ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } },
858 { ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } },
859 { ISD::SRA, MVT::v2i64, { 1, 1, 1, 1 } },
860 { ISD::SHL, MVT::v4i64, { 1, 1, 1, 1 } },
861 { ISD::SRL, MVT::v4i64, { 1, 1, 1, 1 } },
862 { ISD::SRA, MVT::v4i64, { 1, 1, 1, 1 } },
863 { ISD::SHL, MVT::v8i64, { 1, 1, 1, 1 } },
864 { ISD::SRL, MVT::v8i64, { 1, 1, 1, 1 } },
865 { ISD::SRA, MVT::v8i64, { 1, 1, 1, 1 } },
866
867 { ISD::ADD, MVT::v64i8, { 3, 7, 5, 5 } }, // 2*paddb + split
868 { ISD::ADD, MVT::v32i16, { 3, 7, 5, 5 } }, // 2*paddw + split
869
870 { ISD::SUB, MVT::v64i8, { 3, 7, 5, 5 } }, // 2*psubb + split
871 { ISD::SUB, MVT::v32i16, { 3, 7, 5, 5 } }, // 2*psubw + split
872
873 { ISD::AND, MVT::v32i8, { 1, 1, 1, 1 } },
874 { ISD::AND, MVT::v16i16, { 1, 1, 1, 1 } },
875 { ISD::AND, MVT::v8i32, { 1, 1, 1, 1 } },
876 { ISD::AND, MVT::v4i64, { 1, 1, 1, 1 } },
877
878 { ISD::OR, MVT::v32i8, { 1, 1, 1, 1 } },
879 { ISD::OR, MVT::v16i16, { 1, 1, 1, 1 } },
880 { ISD::OR, MVT::v8i32, { 1, 1, 1, 1 } },
881 { ISD::OR, MVT::v4i64, { 1, 1, 1, 1 } },
882
883 { ISD::XOR, MVT::v32i8, { 1, 1, 1, 1 } },
884 { ISD::XOR, MVT::v16i16, { 1, 1, 1, 1 } },
885 { ISD::XOR, MVT::v8i32, { 1, 1, 1, 1 } },
886 { ISD::XOR, MVT::v4i64, { 1, 1, 1, 1 } },
887
888 { ISD::MUL, MVT::v16i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
889 { ISD::MUL, MVT::v8i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
890 { ISD::MUL, MVT::v4i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
891 { ISD::MUL, MVT::v8i64, { 6, 9, 8, 8 } }, // 3*pmuludq/3*shift/2*add
892 { ISD::MUL, MVT::i64, { 1 } }, // Skylake from http://www.agner.org/
893
894 { ISD::FNEG, MVT::v8f64, { 1, 1, 1, 2 } }, // Skylake from http://www.agner.org/
895 { ISD::FADD, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
896 { ISD::FADD, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
897 { ISD::FSUB, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
898 { ISD::FSUB, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
899 { ISD::FMUL, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
900 { ISD::FMUL, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
901 { ISD::FMUL, MVT::v2f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
902 { ISD::FMUL, MVT::f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
903
904 { ISD::FDIV, MVT::f64, { 4, 14, 1, 1 } }, // Skylake from http://www.agner.org/
905 { ISD::FDIV, MVT::v2f64, { 4, 14, 1, 1 } }, // Skylake from http://www.agner.org/
906 { ISD::FDIV, MVT::v4f64, { 8, 14, 1, 1 } }, // Skylake from http://www.agner.org/
907 { ISD::FDIV, MVT::v8f64, { 16, 23, 1, 3 } }, // Skylake from http://www.agner.org/
908
909 { ISD::FNEG, MVT::v16f32, { 1, 1, 1, 2 } }, // Skylake from http://www.agner.org/
910 { ISD::FADD, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
911 { ISD::FADD, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
912 { ISD::FSUB, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
913 { ISD::FSUB, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
914 { ISD::FMUL, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
915 { ISD::FMUL, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
916 { ISD::FMUL, MVT::v4f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
917 { ISD::FMUL, MVT::f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
918
919 { ISD::FDIV, MVT::f32, { 3, 11, 1, 1 } }, // Skylake from http://www.agner.org/
920 { ISD::FDIV, MVT::v4f32, { 3, 11, 1, 1 } }, // Skylake from http://www.agner.org/
921 { ISD::FDIV, MVT::v8f32, { 5, 11, 1, 1 } }, // Skylake from http://www.agner.org/
922 { ISD::FDIV, MVT::v16f32, { 10, 18, 1, 3 } }, // Skylake from http://www.agner.org/
923 };
924
925 if (ST->hasAVX512())
926 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
927 if (auto KindCost = Entry->Cost[CostKind])
928 return LT.first * *KindCost;
929
930 static const CostKindTblEntry AVX2ShiftCostTable[] = {
931 // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
932 // customize them to detect the cases where shift amount is a scalar one.
933 { ISD::SHL, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsllvd (Haswell from agner.org)
934 { ISD::SRL, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsrlvd (Haswell from agner.org)
935 { ISD::SRA, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsravd (Haswell from agner.org)
936 { ISD::SHL, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsllvd (Haswell from agner.org)
937 { ISD::SRL, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsrlvd (Haswell from agner.org)
938 { ISD::SRA, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsravd (Haswell from agner.org)
939 { ISD::SHL, MVT::v2i64, { 2, 3, 1, 1 } }, // vpsllvq (Haswell from agner.org)
940 { ISD::SRL, MVT::v2i64, { 2, 3, 1, 1 } }, // vpsrlvq (Haswell from agner.org)
941 { ISD::SHL, MVT::v4i64, { 4, 4, 1, 2 } }, // vpsllvq (Haswell from agner.org)
942 { ISD::SRL, MVT::v4i64, { 4, 4, 1, 2 } }, // vpsrlvq (Haswell from agner.org)
943 };
944
945 if (ST->hasAVX512()) {
946 if (ISD == ISD::SHL && LT.second == MVT::v32i16 && Op2Info.isConstant())
947 // On AVX512, a packed v32i16 shift left by a constant build_vector
948 // is lowered into a vector multiply (vpmullw).
949 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
950 Op1Info.getNoProps(), Op2Info.getNoProps());
951 }
952
953 // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
954 if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
955 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
956 Op2Info.isConstant())
957 // On AVX2, a packed v16i16 shift left by a constant build_vector
958 // is lowered into a vector multiply (vpmullw).
959 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
960 Op1Info.getNoProps(), Op2Info.getNoProps());
961
962 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
963 if (auto KindCost = Entry->Cost[CostKind])
964 return LT.first * *KindCost;
965 }
966
967 static const CostKindTblEntry XOPShiftCostTable[] = {
968 // 128bit shifts take 1cy, but right shifts require negation beforehand.
969 { ISD::SHL, MVT::v16i8, { 1, 3, 1, 1 } },
970 { ISD::SRL, MVT::v16i8, { 2, 3, 1, 1 } },
971 { ISD::SRA, MVT::v16i8, { 2, 3, 1, 1 } },
972 { ISD::SHL, MVT::v8i16, { 1, 3, 1, 1 } },
973 { ISD::SRL, MVT::v8i16, { 2, 3, 1, 1 } },
974 { ISD::SRA, MVT::v8i16, { 2, 3, 1, 1 } },
975 { ISD::SHL, MVT::v4i32, { 1, 3, 1, 1 } },
976 { ISD::SRL, MVT::v4i32, { 2, 3, 1, 1 } },
977 { ISD::SRA, MVT::v4i32, { 2, 3, 1, 1 } },
978 { ISD::SHL, MVT::v2i64, { 1, 3, 1, 1 } },
979 { ISD::SRL, MVT::v2i64, { 2, 3, 1, 1 } },
980 { ISD::SRA, MVT::v2i64, { 2, 3, 1, 1 } },
981 // 256bit shifts require splitting if AVX2 didn't catch them above.
982 { ISD::SHL, MVT::v32i8, { 4, 7, 5, 6 } },
983 { ISD::SRL, MVT::v32i8, { 6, 7, 5, 6 } },
984 { ISD::SRA, MVT::v32i8, { 6, 7, 5, 6 } },
985 { ISD::SHL, MVT::v16i16, { 4, 7, 5, 6 } },
986 { ISD::SRL, MVT::v16i16, { 6, 7, 5, 6 } },
987 { ISD::SRA, MVT::v16i16, { 6, 7, 5, 6 } },
988 { ISD::SHL, MVT::v8i32, { 4, 7, 5, 6 } },
989 { ISD::SRL, MVT::v8i32, { 6, 7, 5, 6 } },
990 { ISD::SRA, MVT::v8i32, { 6, 7, 5, 6 } },
991 { ISD::SHL, MVT::v4i64, { 4, 7, 5, 6 } },
992 { ISD::SRL, MVT::v4i64, { 6, 7, 5, 6 } },
993 { ISD::SRA, MVT::v4i64, { 6, 7, 5, 6 } },
994 };
995
996 // Look for XOP lowering tricks.
997 if (ST->hasXOP()) {
998 // If the right shift is constant then we'll fold the negation so
999 // it's as cheap as a left shift.
1000 int ShiftISD = ISD;
1001 if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) && Op2Info.isConstant())
1002 ShiftISD = ISD::SHL;
1003 if (const auto *Entry =
1004 CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
1005 if (auto KindCost = Entry->Cost[CostKind])
1006 return LT.first * *KindCost;
1007 }
1008
1009 if (ISD == ISD::SHL && !Op2Info.isUniform() && Op2Info.isConstant()) {
1010 MVT VT = LT.second;
1011 // Vector shift left by non uniform constant can be lowered
1012 // into vector multiply.
1013 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
1014 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
1015 ISD = ISD::MUL;
1016 }
1017
1018 static const CostKindTblEntry GLMCostTable[] = {
1019 { ISD::FDIV, MVT::f32, { 18, 19, 1, 1 } }, // divss
1020 { ISD::FDIV, MVT::v4f32, { 35, 36, 1, 1 } }, // divps
1021 { ISD::FDIV, MVT::f64, { 33, 34, 1, 1 } }, // divsd
1022 { ISD::FDIV, MVT::v2f64, { 65, 66, 1, 1 } }, // divpd
1023 };
1024
1025 if (ST->useGLMDivSqrtCosts())
1026 if (const auto *Entry = CostTableLookup(GLMCostTable, ISD, LT.second))
1027 if (auto KindCost = Entry->Cost[CostKind])
1028 return LT.first * *KindCost;
1029
1030 static const CostKindTblEntry SLMCostTable[] = {
1031 { ISD::MUL, MVT::v4i32, { 11, 11, 1, 7 } }, // pmulld
1032 { ISD::MUL, MVT::v8i16, { 2, 5, 1, 1 } }, // pmullw
1033 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // mulsd
1034 { ISD::FMUL, MVT::f32, { 1, 4, 1, 1 } }, // mulss
1035 { ISD::FMUL, MVT::v2f64, { 4, 7, 1, 1 } }, // mulpd
1036 { ISD::FMUL, MVT::v4f32, { 2, 5, 1, 1 } }, // mulps
1037 { ISD::FDIV, MVT::f32, { 17, 19, 1, 1 } }, // divss
1038 { ISD::FDIV, MVT::v4f32, { 39, 39, 1, 6 } }, // divps
1039 { ISD::FDIV, MVT::f64, { 32, 34, 1, 1 } }, // divsd
1040 { ISD::FDIV, MVT::v2f64, { 69, 69, 1, 6 } }, // divpd
1041 { ISD::FADD, MVT::v2f64, { 2, 4, 1, 1 } }, // addpd
1042 { ISD::FSUB, MVT::v2f64, { 2, 4, 1, 1 } }, // subpd
1043 // v2i64/v4i64 mul is custom lowered as a series of long:
1044 // multiplies(3), shifts(3) and adds(2)
1045 // slm muldq version throughput is 2 and addq throughput 4
1046 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
1047 // 3X4 (addq throughput) = 17
1048 { ISD::MUL, MVT::v2i64, { 17, 22, 9, 9 } },
1049 // slm addq\subq throughput is 4
1050 { ISD::ADD, MVT::v2i64, { 4, 2, 1, 2 } },
1051 { ISD::SUB, MVT::v2i64, { 4, 2, 1, 2 } },
1052 };
1053
1054 if (ST->useSLMArithCosts())
1055 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD, LT.second))
1056 if (auto KindCost = Entry->Cost[CostKind])
1057 return LT.first * *KindCost;
1058
1059 static const CostKindTblEntry AVX2CostTable[] = {
1060 { ISD::SHL, MVT::v16i8, { 6, 21,11,16 } }, // vpblendvb sequence.
1061 { ISD::SHL, MVT::v32i8, { 6, 23,11,22 } }, // vpblendvb sequence.
1062 { ISD::SHL, MVT::v8i16, { 5, 18, 5,10 } }, // extend/vpsrlvd/pack sequence.
1063 { ISD::SHL, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsrlvd/pack sequence.
1064
1065 { ISD::SRL, MVT::v16i8, { 6, 27,12,18 } }, // vpblendvb sequence.
1066 { ISD::SRL, MVT::v32i8, { 8, 30,12,24 } }, // vpblendvb sequence.
1067 { ISD::SRL, MVT::v8i16, { 5, 11, 5,10 } }, // extend/vpsrlvd/pack sequence.
1068 { ISD::SRL, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsrlvd/pack sequence.
1069
1070 { ISD::SRA, MVT::v16i8, { 17, 17,24,30 } }, // vpblendvb sequence.
1071 { ISD::SRA, MVT::v32i8, { 18, 20,24,43 } }, // vpblendvb sequence.
1072 { ISD::SRA, MVT::v8i16, { 5, 11, 5,10 } }, // extend/vpsravd/pack sequence.
1073 { ISD::SRA, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsravd/pack sequence.
1074 { ISD::SRA, MVT::v2i64, { 4, 5, 5, 5 } }, // srl/xor/sub sequence.
1075 { ISD::SRA, MVT::v4i64, { 8, 8, 5, 9 } }, // srl/xor/sub sequence.
1076
1077 { ISD::SUB, MVT::v32i8, { 1, 1, 1, 2 } }, // psubb
1078 { ISD::ADD, MVT::v32i8, { 1, 1, 1, 2 } }, // paddb
1079 { ISD::SUB, MVT::v16i16, { 1, 1, 1, 2 } }, // psubw
1080 { ISD::ADD, MVT::v16i16, { 1, 1, 1, 2 } }, // paddw
1081 { ISD::SUB, MVT::v8i32, { 1, 1, 1, 2 } }, // psubd
1082 { ISD::ADD, MVT::v8i32, { 1, 1, 1, 2 } }, // paddd
1083 { ISD::SUB, MVT::v4i64, { 1, 1, 1, 2 } }, // psubq
1084 { ISD::ADD, MVT::v4i64, { 1, 1, 1, 2 } }, // paddq
1085
1086 { ISD::MUL, MVT::v16i16, { 2, 5, 1, 1 } }, // pmullw
1087 { ISD::MUL, MVT::v8i32, { 4, 10, 1, 2 } }, // pmulld
1088 { ISD::MUL, MVT::v4i32, { 2, 10, 1, 2 } }, // pmulld
1089 { ISD::MUL, MVT::v4i64, { 6, 10, 8,13 } }, // 3*pmuludq/3*shift/2*add
1090 { ISD::MUL, MVT::v2i64, { 6, 10, 8, 8 } }, // 3*pmuludq/3*shift/2*add
1091
1092 { ISD::FNEG, MVT::v4f64, { 1, 1, 1, 2 } }, // vxorpd
1093 { ISD::FNEG, MVT::v8f32, { 1, 1, 1, 2 } }, // vxorps
1094
1095 { ISD::FADD, MVT::f64, { 1, 4, 1, 1 } }, // vaddsd
1096 { ISD::FADD, MVT::f32, { 1, 4, 1, 1 } }, // vaddss
1097 { ISD::FADD, MVT::v2f64, { 1, 4, 1, 1 } }, // vaddpd
1098 { ISD::FADD, MVT::v4f32, { 1, 4, 1, 1 } }, // vaddps
1099 { ISD::FADD, MVT::v4f64, { 1, 4, 1, 2 } }, // vaddpd
1100 { ISD::FADD, MVT::v8f32, { 1, 4, 1, 2 } }, // vaddps
1101
1102 { ISD::FSUB, MVT::f64, { 1, 4, 1, 1 } }, // vsubsd
1103 { ISD::FSUB, MVT::f32, { 1, 4, 1, 1 } }, // vsubss
1104 { ISD::FSUB, MVT::v2f64, { 1, 4, 1, 1 } }, // vsubpd
1105 { ISD::FSUB, MVT::v4f32, { 1, 4, 1, 1 } }, // vsubps
1106 { ISD::FSUB, MVT::v4f64, { 1, 4, 1, 2 } }, // vsubpd
1107 { ISD::FSUB, MVT::v8f32, { 1, 4, 1, 2 } }, // vsubps
1108
1109 { ISD::FMUL, MVT::f64, { 1, 5, 1, 1 } }, // vmulsd
1110 { ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // vmulss
1111 { ISD::FMUL, MVT::v2f64, { 1, 5, 1, 1 } }, // vmulpd
1112 { ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // vmulps
1113 { ISD::FMUL, MVT::v4f64, { 1, 5, 1, 2 } }, // vmulpd
1114 { ISD::FMUL, MVT::v8f32, { 1, 5, 1, 2 } }, // vmulps
1115
1116 { ISD::FDIV, MVT::f32, { 7, 13, 1, 1 } }, // vdivss
1117 { ISD::FDIV, MVT::v4f32, { 7, 13, 1, 1 } }, // vdivps
1118 { ISD::FDIV, MVT::v8f32, { 14, 21, 1, 3 } }, // vdivps
1119 { ISD::FDIV, MVT::f64, { 14, 20, 1, 1 } }, // vdivsd
1120 { ISD::FDIV, MVT::v2f64, { 14, 20, 1, 1 } }, // vdivpd
1121 { ISD::FDIV, MVT::v4f64, { 28, 35, 1, 3 } }, // vdivpd
1122 };
1123
1124 // Look for AVX2 lowering tricks for custom cases.
1125 if (ST->hasAVX2())
1126 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
1127 if (auto KindCost = Entry->Cost[CostKind])
1128 return LT.first * *KindCost;
1129
1130 static const CostKindTblEntry AVX1CostTable[] = {
1131 // We don't have to scalarize unsupported ops. We can issue two half-sized
1132 // operations and we only need to extract the upper YMM half.
1133 // Two ops + 1 extract + 1 insert = 4.
1134 { ISD::MUL, MVT::v16i16, { 4, 8, 5, 6 } }, // pmullw + split
1135 { ISD::MUL, MVT::v8i32, { 5, 8, 5, 10 } }, // pmulld + split
1136 { ISD::MUL, MVT::v4i32, { 2, 5, 1, 3 } }, // pmulld
1137 { ISD::MUL, MVT::v4i64, { 12, 15, 19, 20 } },
1138
1139 { ISD::AND, MVT::v32i8, { 1, 1, 1, 2 } }, // vandps
1140 { ISD::AND, MVT::v16i16, { 1, 1, 1, 2 } }, // vandps
1141 { ISD::AND, MVT::v8i32, { 1, 1, 1, 2 } }, // vandps
1142 { ISD::AND, MVT::v4i64, { 1, 1, 1, 2 } }, // vandps
1143
1144 { ISD::OR, MVT::v32i8, { 1, 1, 1, 2 } }, // vorps
1145 { ISD::OR, MVT::v16i16, { 1, 1, 1, 2 } }, // vorps
1146 { ISD::OR, MVT::v8i32, { 1, 1, 1, 2 } }, // vorps
1147 { ISD::OR, MVT::v4i64, { 1, 1, 1, 2 } }, // vorps
1148
1149 { ISD::XOR, MVT::v32i8, { 1, 1, 1, 2 } }, // vxorps
1150 { ISD::XOR, MVT::v16i16, { 1, 1, 1, 2 } }, // vxorps
1151 { ISD::XOR, MVT::v8i32, { 1, 1, 1, 2 } }, // vxorps
1152 { ISD::XOR, MVT::v4i64, { 1, 1, 1, 2 } }, // vxorps
1153
1154 { ISD::SUB, MVT::v32i8, { 4, 2, 5, 6 } }, // psubb + split
1155 { ISD::ADD, MVT::v32i8, { 4, 2, 5, 6 } }, // paddb + split
1156 { ISD::SUB, MVT::v16i16, { 4, 2, 5, 6 } }, // psubw + split
1157 { ISD::ADD, MVT::v16i16, { 4, 2, 5, 6 } }, // paddw + split
1158 { ISD::SUB, MVT::v8i32, { 4, 2, 5, 6 } }, // psubd + split
1159 { ISD::ADD, MVT::v8i32, { 4, 2, 5, 6 } }, // paddd + split
1160 { ISD::SUB, MVT::v4i64, { 4, 2, 5, 6 } }, // psubq + split
1161 { ISD::ADD, MVT::v4i64, { 4, 2, 5, 6 } }, // paddq + split
1162 { ISD::SUB, MVT::v2i64, { 1, 1, 1, 1 } }, // psubq
1163 { ISD::ADD, MVT::v2i64, { 1, 1, 1, 1 } }, // paddq
1164
1165 { ISD::SHL, MVT::v16i8, { 10, 21,11,17 } }, // pblendvb sequence.
1166 { ISD::SHL, MVT::v32i8, { 22, 22,27,40 } }, // pblendvb sequence + split.
1167 { ISD::SHL, MVT::v8i16, { 6, 9,11,11 } }, // pblendvb sequence.
1168 { ISD::SHL, MVT::v16i16, { 13, 16,24,25 } }, // pblendvb sequence + split.
1169 { ISD::SHL, MVT::v4i32, { 3, 11, 4, 6 } }, // pslld/paddd/cvttps2dq/pmulld
1170 { ISD::SHL, MVT::v8i32, { 9, 11,12,17 } }, // pslld/paddd/cvttps2dq/pmulld + split
1171 { ISD::SHL, MVT::v2i64, { 2, 4, 4, 6 } }, // Shift each lane + blend.
1172 { ISD::SHL, MVT::v4i64, { 6, 7,11,15 } }, // Shift each lane + blend + split.
1173
1174 { ISD::SRL, MVT::v16i8, { 11, 27,12,18 } }, // pblendvb sequence.
1175 { ISD::SRL, MVT::v32i8, { 23, 23,30,43 } }, // pblendvb sequence + split.
1176 { ISD::SRL, MVT::v8i16, { 13, 16,14,22 } }, // pblendvb sequence.
1177 { ISD::SRL, MVT::v16i16, { 28, 30,31,48 } }, // pblendvb sequence + split.
1178 { ISD::SRL, MVT::v4i32, { 6, 7,12,16 } }, // Shift each lane + blend.
1179 { ISD::SRL, MVT::v8i32, { 14, 14,26,34 } }, // Shift each lane + blend + split.
1180 { ISD::SRL, MVT::v2i64, { 2, 4, 4, 6 } }, // Shift each lane + blend.
1181 { ISD::SRL, MVT::v4i64, { 6, 7,11,15 } }, // Shift each lane + blend + split.
1182
1183 { ISD::SRA, MVT::v16i8, { 21, 22,24,36 } }, // pblendvb sequence.
1184 { ISD::SRA, MVT::v32i8, { 44, 45,51,76 } }, // pblendvb sequence + split.
1185 { ISD::SRA, MVT::v8i16, { 13, 16,14,22 } }, // pblendvb sequence.
1186 { ISD::SRA, MVT::v16i16, { 28, 30,31,48 } }, // pblendvb sequence + split.
1187 { ISD::SRA, MVT::v4i32, { 6, 7,12,16 } }, // Shift each lane + blend.
1188 { ISD::SRA, MVT::v8i32, { 14, 14,26,34 } }, // Shift each lane + blend + split.
1189 { ISD::SRA, MVT::v2i64, { 5, 6,10,14 } }, // Shift each lane + blend.
1190 { ISD::SRA, MVT::v4i64, { 12, 12,22,30 } }, // Shift each lane + blend + split.
1191
1192 { ISD::FNEG, MVT::v4f64, { 2, 2, 1, 2 } }, // BTVER2 from http://www.agner.org/
1193 { ISD::FNEG, MVT::v8f32, { 2, 2, 1, 2 } }, // BTVER2 from http://www.agner.org/
1194
1195 { ISD::FADD, MVT::f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1196 { ISD::FADD, MVT::f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1197 { ISD::FADD, MVT::v2f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1198 { ISD::FADD, MVT::v4f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1199 { ISD::FADD, MVT::v4f64, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1200 { ISD::FADD, MVT::v8f32, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1201
1202 { ISD::FSUB, MVT::f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1203 { ISD::FSUB, MVT::f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1204 { ISD::FSUB, MVT::v2f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1205 { ISD::FSUB, MVT::v4f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1206 { ISD::FSUB, MVT::v4f64, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1207 { ISD::FSUB, MVT::v8f32, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1208
1209 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1210 { ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1211 { ISD::FMUL, MVT::v2f64, { 2, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1212 { ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1213 { ISD::FMUL, MVT::v4f64, { 4, 5, 1, 2 } }, // BTVER2 from http://www.agner.org/
1214 { ISD::FMUL, MVT::v8f32, { 2, 5, 1, 2 } }, // BTVER2 from http://www.agner.org/
1215
1216 { ISD::FDIV, MVT::f32, { 14, 14, 1, 1 } }, // SNB from http://www.agner.org/
1217 { ISD::FDIV, MVT::v4f32, { 14, 14, 1, 1 } }, // SNB from http://www.agner.org/
1218 { ISD::FDIV, MVT::v8f32, { 28, 29, 1, 3 } }, // SNB from http://www.agner.org/
1219 { ISD::FDIV, MVT::f64, { 22, 22, 1, 1 } }, // SNB from http://www.agner.org/
1220 { ISD::FDIV, MVT::v2f64, { 22, 22, 1, 1 } }, // SNB from http://www.agner.org/
1221 { ISD::FDIV, MVT::v4f64, { 44, 45, 1, 3 } }, // SNB from http://www.agner.org/
1222 };
1223
1224 if (ST->hasAVX())
1225 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
1226 if (auto KindCost = Entry->Cost[CostKind])
1227 return LT.first * *KindCost;
1228
1229 static const CostKindTblEntry SSE42CostTable[] = {
1230 { ISD::FADD, MVT::f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1231 { ISD::FADD, MVT::f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1232 { ISD::FADD, MVT::v2f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1233 { ISD::FADD, MVT::v4f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1234
1235 { ISD::FSUB, MVT::f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1236 { ISD::FSUB, MVT::f32 , { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1237 { ISD::FSUB, MVT::v2f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1238 { ISD::FSUB, MVT::v4f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1239
1240 { ISD::FMUL, MVT::f64, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1241 { ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1242 { ISD::FMUL, MVT::v2f64, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1243 { ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1244
1245 { ISD::FDIV, MVT::f32, { 14, 14, 1, 1 } }, // Nehalem from http://www.agner.org/
1246 { ISD::FDIV, MVT::v4f32, { 14, 14, 1, 1 } }, // Nehalem from http://www.agner.org/
1247 { ISD::FDIV, MVT::f64, { 22, 22, 1, 1 } }, // Nehalem from http://www.agner.org/
1248 { ISD::FDIV, MVT::v2f64, { 22, 22, 1, 1 } }, // Nehalem from http://www.agner.org/
1249
1250 { ISD::MUL, MVT::v2i64, { 6, 10,10,10 } } // 3*pmuludq/3*shift/2*add
1251 };
1252
1253 if (ST->hasSSE42())
1254 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
1255 if (auto KindCost = Entry->Cost[CostKind])
1256 return LT.first * *KindCost;
1257
1258 static const CostKindTblEntry SSE41CostTable[] = {
1259 { ISD::SHL, MVT::v16i8, { 15, 24,17,22 } }, // pblendvb sequence.
1260 { ISD::SHL, MVT::v8i16, { 11, 14,11,11 } }, // pblendvb sequence.
1261 { ISD::SHL, MVT::v4i32, { 14, 20, 4,10 } }, // pslld/paddd/cvttps2dq/pmulld
1262
1263 { ISD::SRL, MVT::v16i8, { 16, 27,18,24 } }, // pblendvb sequence.
1264 { ISD::SRL, MVT::v8i16, { 22, 26,23,27 } }, // pblendvb sequence.
1265 { ISD::SRL, MVT::v4i32, { 16, 17,15,19 } }, // Shift each lane + blend.
1266 { ISD::SRL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
1267
1268 { ISD::SRA, MVT::v16i8, { 38, 41,30,36 } }, // pblendvb sequence.
1269 { ISD::SRA, MVT::v8i16, { 22, 26,23,27 } }, // pblendvb sequence.
1270 { ISD::SRA, MVT::v4i32, { 16, 17,15,19 } }, // Shift each lane + blend.
1271 { ISD::SRA, MVT::v2i64, { 8, 17, 5, 7 } }, // splat+shuffle sequence.
1272
1273 { ISD::MUL, MVT::v4i32, { 2, 11, 1, 1 } } // pmulld (Nehalem from agner.org)
1274 };
1275
1276 if (ST->hasSSE41())
1277 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
1278 if (auto KindCost = Entry->Cost[CostKind])
1279 return LT.first * *KindCost;
1280
1281 static const CostKindTblEntry SSE2CostTable[] = {
1282 // We don't correctly identify costs of casts because they are marked as
1283 // custom.
1284 { ISD::SHL, MVT::v16i8, { 13, 21,26,28 } }, // cmpgtb sequence.
1285 { ISD::SHL, MVT::v8i16, { 24, 27,16,20 } }, // cmpgtw sequence.
1286 { ISD::SHL, MVT::v4i32, { 17, 19,10,12 } }, // pslld/paddd/cvttps2dq/pmuludq.
1287 { ISD::SHL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
1288
1289 { ISD::SRL, MVT::v16i8, { 14, 28,27,30 } }, // cmpgtb sequence.
1290 { ISD::SRL, MVT::v8i16, { 16, 19,31,31 } }, // cmpgtw sequence.
1291 { ISD::SRL, MVT::v4i32, { 12, 12,15,19 } }, // Shift each lane + blend.
1292 { ISD::SRL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
1293
1294 { ISD::SRA, MVT::v16i8, { 27, 30,54,54 } }, // unpacked cmpgtb sequence.
1295 { ISD::SRA, MVT::v8i16, { 16, 19,31,31 } }, // cmpgtw sequence.
1296 { ISD::SRA, MVT::v4i32, { 12, 12,15,19 } }, // Shift each lane + blend.
1297 { ISD::SRA, MVT::v2i64, { 8, 11,12,16 } }, // srl/xor/sub splat+shuffle sequence.
1298
1299 { ISD::AND, MVT::v16i8, { 1, 1, 1, 1 } }, // pand
1300 { ISD::AND, MVT::v8i16, { 1, 1, 1, 1 } }, // pand
1301 { ISD::AND, MVT::v4i32, { 1, 1, 1, 1 } }, // pand
1302 { ISD::AND, MVT::v2i64, { 1, 1, 1, 1 } }, // pand
1303
1304 { ISD::OR, MVT::v16i8, { 1, 1, 1, 1 } }, // por
1305 { ISD::OR, MVT::v8i16, { 1, 1, 1, 1 } }, // por
1306 { ISD::OR, MVT::v4i32, { 1, 1, 1, 1 } }, // por
1307 { ISD::OR, MVT::v2i64, { 1, 1, 1, 1 } }, // por
1308
1309 { ISD::XOR, MVT::v16i8, { 1, 1, 1, 1 } }, // pxor
1310 { ISD::XOR, MVT::v8i16, { 1, 1, 1, 1 } }, // pxor
1311 { ISD::XOR, MVT::v4i32, { 1, 1, 1, 1 } }, // pxor
1312 { ISD::XOR, MVT::v2i64, { 1, 1, 1, 1 } }, // pxor
1313
1314 { ISD::ADD, MVT::v2i64, { 1, 2, 1, 2 } }, // paddq
1315 { ISD::SUB, MVT::v2i64, { 1, 2, 1, 2 } }, // psubq
1316
1317 { ISD::MUL, MVT::v8i16, { 1, 5, 1, 1 } }, // pmullw
1318 { ISD::MUL, MVT::v4i32, { 6, 8, 7, 7 } }, // 3*pmuludq/4*shuffle
1319 { ISD::MUL, MVT::v2i64, { 8, 10, 8, 8 } }, // 3*pmuludq/3*shift/2*add
1320
1321 { ISD::FDIV, MVT::f32, { 23, 23, 1, 1 } }, // Pentium IV from http://www.agner.org/
1322 { ISD::FDIV, MVT::v4f32, { 39, 39, 1, 1 } }, // Pentium IV from http://www.agner.org/
1323 { ISD::FDIV, MVT::f64, { 38, 38, 1, 1 } }, // Pentium IV from http://www.agner.org/
1324 { ISD::FDIV, MVT::v2f64, { 69, 69, 1, 1 } }, // Pentium IV from http://www.agner.org/
1325
1326 { ISD::FNEG, MVT::f32, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1327 { ISD::FNEG, MVT::f64, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1328 { ISD::FNEG, MVT::v4f32, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1329 { ISD::FNEG, MVT::v2f64, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1330
1331 { ISD::FADD, MVT::f32, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1332 { ISD::FADD, MVT::f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1333 { ISD::FADD, MVT::v2f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1334
1335 { ISD::FSUB, MVT::f32, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1336 { ISD::FSUB, MVT::f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1337 { ISD::FSUB, MVT::v2f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1338
1339 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // Pentium IV from http://www.agner.org/
1340 { ISD::FMUL, MVT::v2f64, { 2, 5, 1, 1 } }, // Pentium IV from http://www.agner.org/
1341 };
1342
1343 if (ST->hasSSE2())
1344 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
1345 if (auto KindCost = Entry->Cost[CostKind])
1346 return LT.first * *KindCost;
1347
1348 static const CostKindTblEntry SSE1CostTable[] = {
1349 { ISD::FDIV, MVT::f32, { 17, 18, 1, 1 } }, // Pentium III from http://www.agner.org/
1350 { ISD::FDIV, MVT::v4f32, { 34, 48, 1, 1 } }, // Pentium III from http://www.agner.org/
1351
1352 { ISD::FNEG, MVT::f32, { 2, 2, 1, 2 } }, // Pentium III from http://www.agner.org/
1353 { ISD::FNEG, MVT::v4f32, { 2, 2, 1, 2 } }, // Pentium III from http://www.agner.org/
1354
1355 { ISD::FADD, MVT::f32, { 1, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1356 { ISD::FADD, MVT::v4f32, { 2, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1357
1358 { ISD::FSUB, MVT::f32, { 1, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1359 { ISD::FSUB, MVT::v4f32, { 2, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1360
1361 { ISD::FMUL, MVT::f32, { 2, 5, 1, 1 } }, // Pentium III from http://www.agner.org/
1362 { ISD::FMUL, MVT::v4f32, { 2, 5, 1, 1 } }, // Pentium III from http://www.agner.org/
1363 };
1364
1365 if (ST->hasSSE1())
1366 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
1367 if (auto KindCost = Entry->Cost[CostKind])
1368 return LT.first * *KindCost;
1369
1370 static const CostKindTblEntry X64CostTbl[] = { // 64-bit targets
1371 { ISD::ADD, MVT::i64, { 1 } }, // Core (Merom) from http://www.agner.org/
1372 { ISD::SUB, MVT::i64, { 1 } }, // Core (Merom) from http://www.agner.org/
1373 { ISD::MUL, MVT::i64, { 2 } }, // Nehalem from http://www.agner.org/
1374 };
1375
1376 if (ST->is64Bit())
1377 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
1378 if (auto KindCost = Entry->Cost[CostKind])
1379 return LT.first * *KindCost;
1380
1381 static const CostKindTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1382 { ISD::ADD, MVT::i8, { 1 } }, // Pentium III from http://www.agner.org/
1383 { ISD::ADD, MVT::i16, { 1 } }, // Pentium III from http://www.agner.org/
1384 { ISD::ADD, MVT::i32, { 1 } }, // Pentium III from http://www.agner.org/
1385
1386 { ISD::SUB, MVT::i8, { 1 } }, // Pentium III from http://www.agner.org/
1387 { ISD::SUB, MVT::i16, { 1 } }, // Pentium III from http://www.agner.org/
1388 { ISD::SUB, MVT::i32, { 1 } }, // Pentium III from http://www.agner.org/
1389
1390 { ISD::FNEG, MVT::f64, { 2, 2, 1, 3 } }, // (x87)
1391 { ISD::FADD, MVT::f64, { 2, 3, 1, 1 } }, // (x87)
1392 { ISD::FSUB, MVT::f64, { 2, 3, 1, 1 } }, // (x87)
1393 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // (x87)
1394 { ISD::FDIV, MVT::f64, { 38, 38, 1, 1 } }, // (x87)
1395 };
1396
1397 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
1398 if (auto KindCost = Entry->Cost[CostKind])
1399 return LT.first * *KindCost;
1400
1401 // It is not a good idea to vectorize division. We have to scalarize it and
1402 // in the process we will often end up having to spilling regular
1403 // registers. The overhead of division is going to dominate most kernels
1404 // anyways so try hard to prevent vectorization of division - it is
1405 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
1406 // to hide "20 cycles" for each lane.
1407 if (CostKind == TTI::TCK_RecipThroughput && LT.second.isVector() &&
1408 (ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
1409 ISD == ISD::UREM)) {
1410 InstructionCost ScalarCost =
1411 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind,
1412 Op1Info.getNoProps(), Op2Info.getNoProps());
1413 return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
1414 }
1415
1416 // Handle some basic single instruction code size cases.
1417 if (CostKind == TTI::TCK_CodeSize) {
1418 switch (ISD) {
1419 case ISD::FADD:
1420 case ISD::FSUB:
1421 case ISD::FMUL:
1422 case ISD::FDIV:
1423 case ISD::FNEG:
1424 case ISD::AND:
1425 case ISD::OR:
1426 case ISD::XOR:
1427 return LT.first;
1428 break;
1429 }
1430 }
1431
1432 // Fallback to the default implementation.
1433 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
1434 Args, CxtI);
1435}
1436
1437InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1438 VectorType *BaseTp,
1439 ArrayRef<int> Mask,
1440 TTI::TargetCostKind CostKind,
1441 int Index, VectorType *SubTp,
1442 ArrayRef<const Value *> Args) {
1443 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
1444 // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
1445 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(BaseTp);
1446
1447 Kind = improveShuffleKindFromMask(Kind, Mask);
1448
1449 // Treat Transpose as 2-op shuffles - there's no difference in lowering.
1450 if (Kind == TTI::SK_Transpose)
1451 Kind = TTI::SK_PermuteTwoSrc;
1452
1453 // For Broadcasts we are splatting the first element from the first input
1454 // register, so only need to reference that input and all the output
1455 // registers are the same.
1456 if (Kind == TTI::SK_Broadcast)
1457 LT.first = 1;
1458
1459 // Subvector extractions are free if they start at the beginning of a
1460 // vector and cheap if the subvectors are aligned.
1461 if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
1462 int NumElts = LT.second.getVectorNumElements();
1463 if ((Index % NumElts) == 0)
1464 return 0;
1465 std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
1466 if (SubLT.second.isVector()) {
1467 int NumSubElts = SubLT.second.getVectorNumElements();
1468 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1469 return SubLT.first;
1470 // Handle some cases for widening legalization. For now we only handle
1471 // cases where the original subvector was naturally aligned and evenly
1472 // fit in its legalized subvector type.
1473 // FIXME: Remove some of the alignment restrictions.
1474 // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
1475 // vectors.
1476 int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
1477 if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1478 (NumSubElts % OrigSubElts) == 0 &&
1479 LT.second.getVectorElementType() ==
1480 SubLT.second.getVectorElementType() &&
1481 LT.second.getVectorElementType().getSizeInBits() ==
1482 BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1483 assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&(static_cast <bool> (NumElts >= NumSubElts &&
NumElts > OrigSubElts && "Unexpected number of elements!"
) ? void (0) : __assert_fail ("NumElts >= NumSubElts && NumElts > OrigSubElts && \"Unexpected number of elements!\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 1484, __extension__
__PRETTY_FUNCTION__))
1484 "Unexpected number of elements!")(static_cast <bool> (NumElts >= NumSubElts &&
NumElts > OrigSubElts && "Unexpected number of elements!"
) ? void (0) : __assert_fail ("NumElts >= NumSubElts && NumElts > OrigSubElts && \"Unexpected number of elements!\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 1484, __extension__
__PRETTY_FUNCTION__))
;
1485 auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1486 LT.second.getVectorNumElements());
1487 auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1488 SubLT.second.getVectorNumElements());
1489 int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1490 InstructionCost ExtractCost =
1491 getShuffleCost(TTI::SK_ExtractSubvector, VecTy, std::nullopt,
1492 CostKind, ExtractIndex, SubTy);
1493
1494 // If the original size is 32-bits or more, we can use pshufd. Otherwise
1495 // if we have SSSE3 we can use pshufb.
1496 if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1497 return ExtractCost + 1; // pshufd or pshufb
1498
1499 assert(SubTp->getPrimitiveSizeInBits() == 16 &&(static_cast <bool> (SubTp->getPrimitiveSizeInBits()
== 16 && "Unexpected vector size") ? void (0) : __assert_fail
("SubTp->getPrimitiveSizeInBits() == 16 && \"Unexpected vector size\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 1500, __extension__
__PRETTY_FUNCTION__))
1500 "Unexpected vector size")(static_cast <bool> (SubTp->getPrimitiveSizeInBits()
== 16 && "Unexpected vector size") ? void (0) : __assert_fail
("SubTp->getPrimitiveSizeInBits() == 16 && \"Unexpected vector size\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 1500, __extension__
__PRETTY_FUNCTION__))
;
1501
1502 return ExtractCost + 2; // worst case pshufhw + pshufd
1503 }
1504 }
1505 }
1506
1507 // Subvector insertions are cheap if the subvectors are aligned.
1508 // Note that in general, the insertion starting at the beginning of a vector
1509 // isn't free, because we need to preserve the rest of the wide vector.
1510 if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
1511 int NumElts = LT.second.getVectorNumElements();
1512 std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
1513 if (SubLT.second.isVector()) {
1514 int NumSubElts = SubLT.second.getVectorNumElements();
1515 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1516 return SubLT.first;
1517 }
1518
1519 // If the insertion isn't aligned, treat it like a 2-op shuffle.
1520 Kind = TTI::SK_PermuteTwoSrc;
1521 }
1522
1523 // Handle some common (illegal) sub-vector types as they are often very cheap
1524 // to shuffle even on targets without PSHUFB.
1525 EVT VT = TLI->getValueType(DL, BaseTp);
1526 if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1527 !ST->hasSSSE3()) {
1528 static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1529 {TTI::SK_Broadcast, MVT::v4i16, 1}, // pshuflw
1530 {TTI::SK_Broadcast, MVT::v2i16, 1}, // pshuflw
1531 {TTI::SK_Broadcast, MVT::v8i8, 2}, // punpck/pshuflw
1532 {TTI::SK_Broadcast, MVT::v4i8, 2}, // punpck/pshuflw
1533 {TTI::SK_Broadcast, MVT::v2i8, 1}, // punpck
1534
1535 {TTI::SK_Reverse, MVT::v4i16, 1}, // pshuflw
1536 {TTI::SK_Reverse, MVT::v2i16, 1}, // pshuflw
1537 {TTI::SK_Reverse, MVT::v4i8, 3}, // punpck/pshuflw/packus
1538 {TTI::SK_Reverse, MVT::v2i8, 1}, // punpck
1539
1540 {TTI::SK_Splice, MVT::v4i16, 2}, // punpck+psrldq
1541 {TTI::SK_Splice, MVT::v2i16, 2}, // punpck+psrldq
1542 {TTI::SK_Splice, MVT::v4i8, 2}, // punpck+psrldq
1543 {TTI::SK_Splice, MVT::v2i8, 2}, // punpck+psrldq
1544
1545 {TTI::SK_PermuteTwoSrc, MVT::v4i16, 2}, // punpck/pshuflw
1546 {TTI::SK_PermuteTwoSrc, MVT::v2i16, 2}, // punpck/pshuflw
1547 {TTI::SK_PermuteTwoSrc, MVT::v8i8, 7}, // punpck/pshuflw
1548 {TTI::SK_PermuteTwoSrc, MVT::v4i8, 4}, // punpck/pshuflw
1549 {TTI::SK_PermuteTwoSrc, MVT::v2i8, 2}, // punpck
1550
1551 {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1552 {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1553 {TTI::SK_PermuteSingleSrc, MVT::v8i8, 5}, // punpck/pshuflw
1554 {TTI::SK_PermuteSingleSrc, MVT::v4i8, 3}, // punpck/pshuflw
1555 {TTI::SK_PermuteSingleSrc, MVT::v2i8, 1}, // punpck
1556 };
1557
1558 if (ST->hasSSE2())
1559 if (const auto *Entry =
1560 CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1561 return Entry->Cost;
1562 }
1563
1564 // We are going to permute multiple sources and the result will be in multiple
1565 // destinations. Providing an accurate cost only for splits where the element
1566 // type remains the same.
1567 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1568 MVT LegalVT = LT.second;
1569 if (LegalVT.isVector() &&
1570 LegalVT.getVectorElementType().getSizeInBits() ==
1571 BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1572 LegalVT.getVectorNumElements() <
1573 cast<FixedVectorType>(BaseTp)->getNumElements()) {
1574
1575 unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1576 unsigned LegalVTSize = LegalVT.getStoreSize();
1577 // Number of source vectors after legalization:
1578 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1579 // Number of destination vectors after legalization:
1580 InstructionCost NumOfDests = LT.first;
1581
1582 auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1583 LegalVT.getVectorNumElements());
1584
1585 if (!Mask.empty() && NumOfDests.isValid()) {
1586 // Try to perform better estimation of the permutation.
1587 // 1. Split the source/destination vectors into real registers.
1588 // 2. Do the mask analysis to identify which real registers are
1589 // permuted. If more than 1 source registers are used for the
1590 // destination register building, the cost for this destination register
1591 // is (Number_of_source_register - 1) * Cost_PermuteTwoSrc. If only one
1592 // source register is used, build mask and calculate the cost as a cost
1593 // of PermuteSingleSrc.
1594 // Also, for the single register permute we try to identify if the
1595 // destination register is just a copy of the source register or the
1596 // copy of the previous destination register (the cost is
1597 // TTI::TCC_Basic). If the source register is just reused, the cost for
1598 // this operation is 0.
1599 unsigned E = *NumOfDests.getValue();
1600 unsigned NormalizedVF =
1601 LegalVT.getVectorNumElements() * std::max(NumOfSrcs, E);
1602 unsigned NumOfSrcRegs = NormalizedVF / LegalVT.getVectorNumElements();
1603 unsigned NumOfDestRegs = NormalizedVF / LegalVT.getVectorNumElements();
1604 SmallVector<int> NormalizedMask(NormalizedVF, UndefMaskElem);
1605 copy(Mask, NormalizedMask.begin());
1606 unsigned PrevSrcReg = 0;
1607 ArrayRef<int> PrevRegMask;
1608 InstructionCost Cost = 0;
1609 processShuffleMasks(
1610 NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfDestRegs, []() {},
1611 [this, SingleOpTy, CostKind, &PrevSrcReg, &PrevRegMask,
1612 &Cost](ArrayRef<int> RegMask, unsigned SrcReg, unsigned DestReg) {
1613 if (!ShuffleVectorInst::isIdentityMask(RegMask)) {
1614 // Check if the previous register can be just copied to the next
1615 // one.
1616 if (PrevRegMask.empty() || PrevSrcReg != SrcReg ||
1617 PrevRegMask != RegMask)
1618 Cost += getShuffleCost(TTI::SK_PermuteSingleSrc, SingleOpTy,
1619 RegMask, CostKind, 0, nullptr);
1620 else
1621 // Just a copy of previous destination register.
1622 Cost += TTI::TCC_Basic;
1623 return;
1624 }
1625 if (SrcReg != DestReg &&
1626 any_of(RegMask, [](int I) { return I != UndefMaskElem; })) {
1627 // Just a copy of the source register.
1628 Cost += TTI::TCC_Basic;
1629 }
1630 PrevSrcReg = SrcReg;
1631 PrevRegMask = RegMask;
1632 },
1633 [this, SingleOpTy, CostKind, &Cost](ArrayRef<int> RegMask,
1634 unsigned /*Unused*/,
1635 unsigned /*Unused*/) {
1636 Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, RegMask,
1637 CostKind, 0, nullptr);
1638 });
1639 return Cost;
1640 }
1641
1642 InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1643 return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1644 std::nullopt, CostKind, 0, nullptr);
1645 }
1646
1647 return BaseT::getShuffleCost(Kind, BaseTp, Mask, CostKind, Index, SubTp);
1648 }
1649
1650 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1651 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1652 // We assume that source and destination have the same vector type.
1653 InstructionCost NumOfDests = LT.first;
1654 InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1;
1655 LT.first = NumOfDests * NumOfShufflesPerDest;
1656 }
1657
1658 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1659 {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1660 {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1661
1662 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1663 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1664
1665 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1666 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1667 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2} // vpermt2b
1668 };
1669
1670 if (ST->hasVBMI())
1671 if (const auto *Entry =
1672 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1673 return LT.first * Entry->Cost;
1674
1675 static const CostTblEntry AVX512BWShuffleTbl[] = {
1676 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1677 {TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw
1678 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb
1679
1680 {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1681 {TTI::SK_Reverse, MVT::v32f16, 2}, // vpermw
1682 {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1683 {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2
1684
1685 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1686 {TTI::SK_PermuteSingleSrc, MVT::v32f16, 2}, // vpermw
1687 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1688 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 2}, // vpermw
1689 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16
1690
1691 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1692 {TTI::SK_PermuteTwoSrc, MVT::v32f16, 2}, // vpermt2w
1693 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1694 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2}, // vpermt2w
1695 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1696
1697 {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1698 {TTI::SK_Select, MVT::v64i8, 1}, // vblendmb
1699
1700 {TTI::SK_Splice, MVT::v32i16, 2}, // vshufi64x2 + palignr
1701 {TTI::SK_Splice, MVT::v32f16, 2}, // vshufi64x2 + palignr
1702 {TTI::SK_Splice, MVT::v64i8, 2}, // vshufi64x2 + palignr
1703 };
1704
1705 if (ST->hasBWI())
1706 if (const auto *Entry =
1707 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1708 return LT.first * Entry->Cost;
1709
1710 static const CostKindTblEntry AVX512ShuffleTbl[] = {
1711 {TTI::SK_Broadcast, MVT::v8f64, { 1, 1, 1, 1 } }, // vbroadcastsd
1712 {TTI::SK_Broadcast, MVT::v16f32, { 1, 1, 1, 1 } }, // vbroadcastss
1713 {TTI::SK_Broadcast, MVT::v8i64, { 1, 1, 1, 1 } }, // vpbroadcastq
1714 {TTI::SK_Broadcast, MVT::v16i32, { 1, 1, 1, 1 } }, // vpbroadcastd
1715 {TTI::SK_Broadcast, MVT::v32i16, { 1, 1, 1, 1 } }, // vpbroadcastw
1716 {TTI::SK_Broadcast, MVT::v32f16, { 1, 1, 1, 1 } }, // vpbroadcastw
1717 {TTI::SK_Broadcast, MVT::v64i8, { 1, 1, 1, 1 } }, // vpbroadcastb
1718
1719 {TTI::SK_Reverse, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermpd
1720 {TTI::SK_Reverse, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermps
1721 {TTI::SK_Reverse, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermq
1722 {TTI::SK_Reverse, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermd
1723 {TTI::SK_Reverse, MVT::v32i16, { 7, 7, 7, 7 } }, // per mca
1724 {TTI::SK_Reverse, MVT::v32f16, { 7, 7, 7, 7 } }, // per mca
1725 {TTI::SK_Reverse, MVT::v64i8, { 7, 7, 7, 7 } }, // per mca
1726
1727 {TTI::SK_Splice, MVT::v8f64, { 1, 1, 1, 1 } }, // vpalignd
1728 {TTI::SK_Splice, MVT::v4f64, { 1, 1, 1, 1 } }, // vpalignd
1729 {TTI::SK_Splice, MVT::v16f32, { 1, 1, 1, 1 } }, // vpalignd
1730 {TTI::SK_Splice, MVT::v8f32, { 1, 1, 1, 1 } }, // vpalignd
1731 {TTI::SK_Splice, MVT::v8i64, { 1, 1, 1, 1 } }, // vpalignd
1732 {TTI::SK_Splice, MVT::v4i64, { 1, 1, 1, 1 } }, // vpalignd
1733 {TTI::SK_Splice, MVT::v16i32, { 1, 1, 1, 1 } }, // vpalignd
1734 {TTI::SK_Splice, MVT::v8i32, { 1, 1, 1, 1 } }, // vpalignd
1735 {TTI::SK_Splice, MVT::v32i16, { 4, 4, 4, 4 } }, // split + palignr
1736 {TTI::SK_Splice, MVT::v32f16, { 4, 4, 4, 4 } }, // split + palignr
1737 {TTI::SK_Splice, MVT::v64i8, { 4, 4, 4, 4 } }, // split + palignr
1738
1739 {TTI::SK_PermuteSingleSrc, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermpd
1740 {TTI::SK_PermuteSingleSrc, MVT::v4f64, { 1, 3, 1, 1 } }, // vpermpd
1741 {TTI::SK_PermuteSingleSrc, MVT::v2f64, { 1, 3, 1, 1 } }, // vpermpd
1742 {TTI::SK_PermuteSingleSrc, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermps
1743 {TTI::SK_PermuteSingleSrc, MVT::v8f32, { 1, 3, 1, 1 } }, // vpermps
1744 {TTI::SK_PermuteSingleSrc, MVT::v4f32, { 1, 3, 1, 1 } }, // vpermps
1745 {TTI::SK_PermuteSingleSrc, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermq
1746 {TTI::SK_PermuteSingleSrc, MVT::v4i64, { 1, 3, 1, 1 } }, // vpermq
1747 {TTI::SK_PermuteSingleSrc, MVT::v2i64, { 1, 3, 1, 1 } }, // vpermq
1748 {TTI::SK_PermuteSingleSrc, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermd
1749 {TTI::SK_PermuteSingleSrc, MVT::v8i32, { 1, 3, 1, 1 } }, // vpermd
1750 {TTI::SK_PermuteSingleSrc, MVT::v4i32, { 1, 3, 1, 1 } }, // vpermd
1751 {TTI::SK_PermuteSingleSrc, MVT::v16i8, { 1, 3, 1, 1 } }, // pshufb
1752
1753 {TTI::SK_PermuteTwoSrc, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermt2pd
1754 {TTI::SK_PermuteTwoSrc, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermt2ps
1755 {TTI::SK_PermuteTwoSrc, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermt2q
1756 {TTI::SK_PermuteTwoSrc, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermt2d
1757 {TTI::SK_PermuteTwoSrc, MVT::v4f64, { 1, 3, 1, 1 } }, // vpermt2pd
1758 {TTI::SK_PermuteTwoSrc, MVT::v8f32, { 1, 3, 1, 1 } }, // vpermt2ps
1759 {TTI::SK_PermuteTwoSrc, MVT::v4i64, { 1, 3, 1, 1 } }, // vpermt2q
1760 {TTI::SK_PermuteTwoSrc, MVT::v8i32, { 1, 3, 1, 1 } }, // vpermt2d
1761 {TTI::SK_PermuteTwoSrc, MVT::v2f64, { 1, 3, 1, 1 } }, // vpermt2pd
1762 {TTI::SK_PermuteTwoSrc, MVT::v4f32, { 1, 3, 1, 1 } }, // vpermt2ps
1763 {TTI::SK_PermuteTwoSrc, MVT::v2i64, { 1, 3, 1, 1 } }, // vpermt2q
1764 {TTI::SK_PermuteTwoSrc, MVT::v4i32, { 1, 3, 1, 1 } }, // vpermt2d
1765
1766 // FIXME: This just applies the type legalization cost rules above
1767 // assuming these completely split.
1768 {TTI::SK_PermuteSingleSrc, MVT::v32i16, { 14, 14, 14, 14 } },
1769 {TTI::SK_PermuteSingleSrc, MVT::v32f16, { 14, 14, 14, 14 } },
1770 {TTI::SK_PermuteSingleSrc, MVT::v64i8, { 14, 14, 14, 14 } },
1771 {TTI::SK_PermuteTwoSrc, MVT::v32i16, { 42, 42, 42, 42 } },
1772 {TTI::SK_PermuteTwoSrc, MVT::v32f16, { 42, 42, 42, 42 } },
1773 {TTI::SK_PermuteTwoSrc, MVT::v64i8, { 42, 42, 42, 42 } },
1774
1775 {TTI::SK_Select, MVT::v32i16, { 1, 1, 1, 1 } }, // vpternlogq
1776 {TTI::SK_Select, MVT::v32f16, { 1, 1, 1, 1 } }, // vpternlogq
1777 {TTI::SK_Select, MVT::v64i8, { 1, 1, 1, 1 } }, // vpternlogq
1778 {TTI::SK_Select, MVT::v8f64, { 1, 1, 1, 1 } }, // vblendmpd
1779 {TTI::SK_Select, MVT::v16f32, { 1, 1, 1, 1 } }, // vblendmps
1780 {TTI::SK_Select, MVT::v8i64, { 1, 1, 1, 1 } }, // vblendmq
1781 {TTI::SK_Select, MVT::v16i32, { 1, 1, 1, 1 } }, // vblendmd
1782 };
1783
1784 if (ST->hasAVX512())
1785 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1786 if (auto KindCost = Entry->Cost[CostKind])
1787 return LT.first * *KindCost;
1788
1789 static const CostTblEntry AVX2ShuffleTbl[] = {
1790 {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd
1791 {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps
1792 {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq
1793 {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd
1794 {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1795 {TTI::SK_Broadcast, MVT::v16f16, 1}, // vpbroadcastw
1796 {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb
1797
1798 {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd
1799 {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps
1800 {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq
1801 {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd
1802 {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1803 {TTI::SK_Reverse, MVT::v16f16, 2}, // vperm2i128 + pshufb
1804 {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb
1805
1806 {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1807 {TTI::SK_Select, MVT::v16f16, 1}, // vpblendvb
1808 {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb
1809
1810 {TTI::SK_Splice, MVT::v8i32, 2}, // vperm2i128 + vpalignr
1811 {TTI::SK_Splice, MVT::v8f32, 2}, // vperm2i128 + vpalignr
1812 {TTI::SK_Splice, MVT::v16i16, 2}, // vperm2i128 + vpalignr
1813 {TTI::SK_Splice, MVT::v16f16, 2}, // vperm2i128 + vpalignr
1814 {TTI::SK_Splice, MVT::v32i8, 2}, // vperm2i128 + vpalignr
1815
1816 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
1817 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
1818 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
1819 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
1820 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1821 // + vpblendvb
1822 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 4}, // vperm2i128 + 2*vpshufb
1823 // + vpblendvb
1824 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb
1825 // + vpblendvb
1826
1827 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd
1828 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps
1829 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd
1830 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd
1831 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1832 // + vpblendvb
1833 {TTI::SK_PermuteTwoSrc, MVT::v16f16, 7}, // 2*vperm2i128 + 4*vpshufb
1834 // + vpblendvb
1835 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb
1836 // + vpblendvb
1837 };
1838
1839 if (ST->hasAVX2())
1840 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1841 return LT.first * Entry->Cost;
1842
1843 static const CostTblEntry XOPShuffleTbl[] = {
1844 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd
1845 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps
1846 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd
1847 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps
1848 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1849 // + vinsertf128
1850 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm
1851 // + vinsertf128
1852
1853 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1854 // + vinsertf128
1855 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm
1856 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm
1857 // + vinsertf128
1858 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm
1859 };
1860
1861 if (ST->hasXOP())
1862 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1863 return LT.first * Entry->Cost;
1864
1865 static const CostTblEntry AVX1ShuffleTbl[] = {
1866 {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
1867 {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps
1868 {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
1869 {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps
1870 {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1871 {TTI::SK_Broadcast, MVT::v16f16, 3}, // vpshuflw + vpshufd + vinsertf128
1872 {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128
1873
1874 {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
1875 {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps
1876 {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
1877 {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps
1878 {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1879 // + vinsertf128
1880 {TTI::SK_Reverse, MVT::v16f16, 4}, // vextractf128 + 2*pshufb
1881 // + vinsertf128
1882 {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb
1883 // + vinsertf128
1884
1885 {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd
1886 {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd
1887 {TTI::SK_Select, MVT::v8i32, 1}, // vblendps
1888 {TTI::SK_Select, MVT::v8f32, 1}, // vblendps
1889 {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1890 {TTI::SK_Select, MVT::v16f16, 3}, // vpand + vpandn + vpor
1891 {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor
1892
1893 {TTI::SK_Splice, MVT::v4i64, 2}, // vperm2f128 + shufpd
1894 {TTI::SK_Splice, MVT::v4f64, 2}, // vperm2f128 + shufpd
1895 {TTI::SK_Splice, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1896 {TTI::SK_Splice, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1897 {TTI::SK_Splice, MVT::v16i16, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
1898 {TTI::SK_Splice, MVT::v16f16, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
1899 {TTI::SK_Splice, MVT::v32i8, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
1900
1901 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd
1902 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd
1903 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1904 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1905 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1906 // + 2*por + vinsertf128
1907 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 8}, // vextractf128 + 4*pshufb
1908 // + 2*por + vinsertf128
1909 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb
1910 // + 2*por + vinsertf128
1911
1912 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd
1913 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd
1914 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1915 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1916 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1917 // + 4*por + vinsertf128
1918 {TTI::SK_PermuteTwoSrc, MVT::v16f16, 15}, // 2*vextractf128 + 8*pshufb
1919 // + 4*por + vinsertf128
1920 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb
1921 // + 4*por + vinsertf128
1922 };
1923
1924 if (ST->hasAVX())
1925 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1926 return LT.first * Entry->Cost;
1927
1928 static const CostTblEntry SSE41ShuffleTbl[] = {
1929 {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1930 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1931 {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1932 {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1933 {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1934 {TTI::SK_Select, MVT::v8f16, 1}, // pblendw
1935 {TTI::SK_Select, MVT::v16i8, 1} // pblendvb
1936 };
1937
1938 if (ST->hasSSE41())
1939 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1940 return LT.first * Entry->Cost;
1941
1942 static const CostTblEntry SSSE3ShuffleTbl[] = {
1943 {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1944 {TTI::SK_Broadcast, MVT::v8f16, 1}, // pshufb
1945 {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1946
1947 {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1948 {TTI::SK_Reverse, MVT::v8f16, 1}, // pshufb
1949 {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1950
1951 {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1952 {TTI::SK_Select, MVT::v8f16, 3}, // 2*pshufb + por
1953 {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1954
1955 {TTI::SK_Splice, MVT::v4i32, 1}, // palignr
1956 {TTI::SK_Splice, MVT::v4f32, 1}, // palignr
1957 {TTI::SK_Splice, MVT::v8i16, 1}, // palignr
1958 {TTI::SK_Splice, MVT::v8f16, 1}, // palignr
1959 {TTI::SK_Splice, MVT::v16i8, 1}, // palignr
1960
1961 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1962 {TTI::SK_PermuteSingleSrc, MVT::v8f16, 1}, // pshufb
1963 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1964
1965 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1966 {TTI::SK_PermuteTwoSrc, MVT::v8f16, 3}, // 2*pshufb + por
1967 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1968 };
1969
1970 if (ST->hasSSSE3())
1971 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1972 return LT.first * Entry->Cost;
1973
1974 static const CostTblEntry SSE2ShuffleTbl[] = {
1975 {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1976 {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1977 {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1978 {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1979 {TTI::SK_Broadcast, MVT::v8f16, 2}, // pshuflw + pshufd
1980 {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1981
1982 {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1983 {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1984 {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1985 {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1986 {TTI::SK_Reverse, MVT::v8f16, 3}, // pshuflw + pshufhw + pshufd
1987 {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1988 // + 2*pshufd + 2*unpck + packus
1989
1990 {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1991 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1992 {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1993 {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1994 {TTI::SK_Select, MVT::v8f16, 3}, // pand + pandn + por
1995 {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1996
1997 {TTI::SK_Splice, MVT::v2i64, 1}, // shufpd
1998 {TTI::SK_Splice, MVT::v2f64, 1}, // shufpd
1999 {TTI::SK_Splice, MVT::v4i32, 2}, // 2*{unpck,movsd,pshufd}
2000 {TTI::SK_Splice, MVT::v8i16, 3}, // psrldq + psrlldq + por
2001 {TTI::SK_Splice, MVT::v8f16, 3}, // psrldq + psrlldq + por
2002 {TTI::SK_Splice, MVT::v16i8, 3}, // psrldq + psrlldq + por
2003
2004 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
2005 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
2006 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
2007 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
2008 // + pshufd/unpck
2009 {TTI::SK_PermuteSingleSrc, MVT::v8f16, 5}, // 2*pshuflw + 2*pshufhw
2010 // + pshufd/unpck
2011 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
2012 // + 2*pshufd + 2*unpck + 2*packus
2013
2014 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
2015 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
2016 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
2017 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
2018 { TTI::SK_PermuteTwoSrc, MVT::v8f16, 8 }, // blend+permute
2019 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
2020 };
2021
2022 static const CostTblEntry SSE3BroadcastLoadTbl[] = {
2023 {TTI::SK_Broadcast, MVT::v2f64, 0}, // broadcast handled by movddup
2024 };
2025
2026 if (ST->hasSSE2()) {
2027 bool IsLoad =
2028 llvm::any_of(Args, [](const auto &V) { return isa<LoadInst>(V); });
2029 if (ST->hasSSE3() && IsLoad)
2030 if (const auto *Entry =
2031 CostTableLookup(SSE3BroadcastLoadTbl, Kind, LT.second)) {
2032 assert(isLegalBroadcastLoad(BaseTp->getElementType(),(static_cast <bool> (isLegalBroadcastLoad(BaseTp->getElementType
(), LT.second.getVectorElementCount()) && "Table entry missing from isLegalBroadcastLoad()"
) ? void (0) : __assert_fail ("isLegalBroadcastLoad(BaseTp->getElementType(), LT.second.getVectorElementCount()) && \"Table entry missing from isLegalBroadcastLoad()\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 2034, __extension__
__PRETTY_FUNCTION__))
2033 LT.second.getVectorElementCount()) &&(static_cast <bool> (isLegalBroadcastLoad(BaseTp->getElementType
(), LT.second.getVectorElementCount()) && "Table entry missing from isLegalBroadcastLoad()"
) ? void (0) : __assert_fail ("isLegalBroadcastLoad(BaseTp->getElementType(), LT.second.getVectorElementCount()) && \"Table entry missing from isLegalBroadcastLoad()\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 2034, __extension__
__PRETTY_FUNCTION__))
2034 "Table entry missing from isLegalBroadcastLoad()")(static_cast <bool> (isLegalBroadcastLoad(BaseTp->getElementType
(), LT.second.getVectorElementCount()) && "Table entry missing from isLegalBroadcastLoad()"
) ? void (0) : __assert_fail ("isLegalBroadcastLoad(BaseTp->getElementType(), LT.second.getVectorElementCount()) && \"Table entry missing from isLegalBroadcastLoad()\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 2034, __extension__
__PRETTY_FUNCTION__))
;
2035 return LT.first * Entry->Cost;
2036 }
2037
2038 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
2039 return LT.first * Entry->Cost;
2040 }
2041
2042 static const CostTblEntry SSE1ShuffleTbl[] = {
2043 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
2044 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
2045 { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps
2046 { TTI::SK_Splice, MVT::v4f32, 2 }, // 2*shufps
2047 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
2048 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
2049 };
2050
2051 if (ST->hasSSE1())
2052 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
2053 return LT.first * Entry->Cost;
2054
2055 return BaseT::getShuffleCost(Kind, BaseTp, Mask, CostKind, Index, SubTp);
2056}
2057
2058InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
2059 Type *Src,
2060 TTI::CastContextHint CCH,
2061 TTI::TargetCostKind CostKind,
2062 const Instruction *I) {
2063 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2064 assert(ISD && "Invalid opcode")(static_cast <bool> (ISD && "Invalid opcode") ?
void (0) : __assert_fail ("ISD && \"Invalid opcode\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 2064, __extension__
__PRETTY_FUNCTION__))
;
2065
2066 // TODO: Allow non-throughput costs that aren't binary.
2067 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
2068 if (CostKind != TTI::TCK_RecipThroughput)
2069 return Cost == 0 ? 0 : 1;
2070 return Cost;
2071 };
2072
2073 // The cost tables include both specific, custom (non-legal) src/dst type
2074 // conversions and generic, legalized types. We test for customs first, before
2075 // falling back to legalization.
2076 // FIXME: Need a better design of the cost table to handle non-simple types of
2077 // potential massive combinations (elem_num x src_type x dst_type).
2078 static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
2079 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
2080 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
2081
2082 // Mask sign extend has an instruction.
2083 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 },
2084 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v2i1, 1 },
2085 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 },
2086 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v2i1, 1 },
2087 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 },
2088 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v4i1, 1 },
2089 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 },
2090 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v4i1, 1 },
2091 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 },
2092 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v8i1, 1 },
2093 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
2094 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
2095 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
2096 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
2097 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
2098 { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 },
2099 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v64i1, 1 },
2100
2101 // Mask zero extend is a sext + shift.
2102 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 },
2103 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v2i1, 2 },
2104 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 },
2105 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v2i1, 2 },
2106 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 },
2107 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v4i1, 2 },
2108 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 },
2109 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v4i1, 2 },
2110 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 },
2111 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v8i1, 2 },
2112 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
2113 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
2114 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
2115 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
2116 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
2117 { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 },
2118 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v64i1, 2 },
2119
2120 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 },
2121 { ISD::TRUNCATE, MVT::v2i1, MVT::v16i8, 2 },
2122 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 },
2123 { ISD::TRUNCATE, MVT::v2i1, MVT::v8i16, 2 },
2124 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 },
2125 { ISD::TRUNCATE, MVT::v4i1, MVT::v16i8, 2 },
2126 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 },
2127 { ISD::TRUNCATE, MVT::v4i1, MVT::v8i16, 2 },
2128 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 },
2129 { ISD::TRUNCATE, MVT::v8i1, MVT::v16i8, 2 },
2130 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 },
2131 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 },
2132 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 },
2133 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 },
2134 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i16, 2 },
2135 { ISD::TRUNCATE, MVT::v64i1, MVT::v64i8, 2 },
2136 { ISD::TRUNCATE, MVT::v64i1, MVT::v32i16, 2 },
2137
2138 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 2 },
2139 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // widen to zmm
2140 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // vpmovwb
2141 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, // vpmovwb
2142 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, // vpmovwb
2143 };
2144
2145 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
2146 // Mask sign extend has an instruction.
2147 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 },
2148 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v2i1, 1 },
2149 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 },
2150 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 },
2151 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 },
2152 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i1, 1 },
2153 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 },
2154 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 },
2155
2156 // Mask zero extend is a sext + shift.
2157 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 },
2158 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v2i1, 2 },
2159 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 },
2160 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 },
2161 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 },
2162 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i1, 2 },
2163 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 },
2164 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
2165
2166 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 },
2167 { ISD::TRUNCATE, MVT::v2i1, MVT::v4i32, 2 },
2168 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 },
2169 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 },
2170 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
2171 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 },
2172 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 },
2173 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i64, 2 },
2174
2175 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
2176 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
2177
2178 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
2179 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
2180
2181 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
2182 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
2183
2184 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
2185 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
2186 };
2187
2188 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
2189 // 256-bit wide vectors.
2190
2191 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
2192 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
2193 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
2194 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
2195
2196 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd
2197 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd
2198 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd
2199 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 3 }, // sext+vpslld+vptestmd
2200 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq
2201 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq
2202 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq
2203 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 3 }, // sext+vpslld+vptestmd
2204 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // zmm vpslld+vptestmd
2205 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // zmm vpslld+vptestmd
2206 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // zmm vpslld+vptestmd
2207 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 }, // vpslld+vptestmd
2208 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // zmm vpsllq+vptestmq
2209 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // zmm vpsllq+vptestmq
2210 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 }, // vpsllq+vptestmq
2211 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 2 }, // vpmovdb
2212 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 2 }, // vpmovdb
2213 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 2 }, // vpmovdb
2214 { ISD::TRUNCATE, MVT::v32i8, MVT::v16i32, 2 }, // vpmovdb
2215 { ISD::TRUNCATE, MVT::v64i8, MVT::v16i32, 2 }, // vpmovdb
2216 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2 }, // vpmovdw
2217 { ISD::TRUNCATE, MVT::v32i16, MVT::v16i32, 2 }, // vpmovdw
2218 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 2 }, // vpmovqb
2219 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1 }, // vpshufb
2220 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 2 }, // vpmovqb
2221 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i64, 2 }, // vpmovqb
2222 { ISD::TRUNCATE, MVT::v32i8, MVT::v8i64, 2 }, // vpmovqb
2223 { ISD::TRUNCATE, MVT::v64i8, MVT::v8i64, 2 }, // vpmovqb
2224 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 2 }, // vpmovqw
2225 { ISD::TRUNCATE, MVT::v16i16, MVT::v8i64, 2 }, // vpmovqw
2226 { ISD::TRUNCATE, MVT::v32i16, MVT::v8i64, 2 }, // vpmovqw
2227 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, // vpmovqd
2228 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // zmm vpmovqd
2229 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
2230
2231 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, // extend to v16i32
2232 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 8 },
2233 { ISD::TRUNCATE, MVT::v64i8, MVT::v32i16, 8 },
2234
2235 // Sign extend is zmm vpternlogd+vptruncdb.
2236 // Zero extend is zmm broadcast load+vptruncdw.
2237 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 3 },
2238 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 4 },
2239 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 3 },
2240 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 4 },
2241 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 3 },
2242 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 4 },
2243 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 3 },
2244 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 4 },
2245
2246 // Sign extend is zmm vpternlogd+vptruncdw.
2247 // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
2248 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 3 },
2249 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 4 },
2250 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 3 },
2251 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 4 },
2252 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 3 },
2253 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 4 },
2254 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 3 },
2255 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
2256
2257 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // zmm vpternlogd
2258 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // zmm vpternlogd+psrld
2259 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // zmm vpternlogd
2260 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // zmm vpternlogd+psrld
2261 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // zmm vpternlogd
2262 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // zmm vpternlogd+psrld
2263 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // zmm vpternlogq
2264 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // zmm vpternlogq+psrlq
2265 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // zmm vpternlogq
2266 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // zmm vpternlogq+psrlq
2267
2268 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 }, // vpternlogd
2269 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, // vpternlogd+psrld
2270 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 }, // vpternlogq
2271 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 }, // vpternlogq+psrlq
2272
2273 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
2274 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
2275 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
2276 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
2277 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
2278 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
2279 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
2280 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
2281 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
2282 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
2283
2284 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
2285 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
2286
2287 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
2288 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
2289 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v16i8, 2 },
2290 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 1 },
2291 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
2292 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 1 },
2293 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
2294 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
2295
2296 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
2297 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
2298 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v16i8, 2 },
2299 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 1 },
2300 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
2301 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 1 },
2302 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
2303 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
2304 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
2305 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 },
2306
2307 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 2 },
2308 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f64, 7 },
2309 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f64,15 },
2310 { ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f32,11 },
2311 { ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f64,31 },
2312 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f64, 3 },
2313 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f64, 7 },
2314 { ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f32, 5 },
2315 { ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f64,15 },
2316 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 1 },
2317 { ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f64, 3 },
2318
2319 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 },
2320 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 3 },
2321 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 3 },
2322 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
2323 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 3 },
2324 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 3 },
2325 };
2326
2327 static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
2328 // Mask sign extend has an instruction.
2329 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 },
2330 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v2i1, 1 },
2331 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 },
2332 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v2i1, 1 },
2333 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 },
2334 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v4i1, 1 },
2335 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 },
2336 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v4i1, 1 },
2337 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 },
2338 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v8i1, 1 },
2339 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
2340 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
2341 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
2342 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
2343 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v32i1, 1 },
2344 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v64i1, 1 },
2345 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v64i1, 1 },
2346
2347 // Mask zero extend is a sext + shift.
2348 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 },
2349 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v2i1, 2 },
2350 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 },
2351 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v2i1, 2 },
2352 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 },
2353 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v4i1, 2 },
2354 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 },
2355 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v4i1, 2 },
2356 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 },
2357 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v8i1, 2 },
2358 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
2359 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
2360 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
2361 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
2362 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v32i1, 2 },
2363 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v64i1, 2 },
2364 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v64i1, 2 },
2365
2366 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 },
2367 { ISD::TRUNCATE, MVT::v2i1, MVT::v16i8, 2 },
2368 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 },
2369 { ISD::TRUNCATE, MVT::v2i1, MVT::v8i16, 2 },
2370 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 },
2371 { ISD::TRUNCATE, MVT::v4i1, MVT::v16i8, 2 },
2372 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 },
2373 { ISD::TRUNCATE, MVT::v4i1, MVT::v8i16, 2 },
2374 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 },
2375 { ISD::TRUNCATE, MVT::v8i1, MVT::v16i8, 2 },
2376 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 },
2377 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 },
2378 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 },
2379 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 },
2380 { ISD::TRUNCATE, MVT::v32i1, MVT::v16i16, 2 },
2381 { ISD::TRUNCATE, MVT::v64i1, MVT::v32i8, 2 },
2382 { ISD::TRUNCATE, MVT::v64i1, MVT::v16i16, 2 },
2383
2384 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 },
2385 };
2386
2387 static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
2388 // Mask sign extend has an instruction.
2389 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 },
2390 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v2i1, 1 },
2391 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 },
2392 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i1, 1 },
2393 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 },
2394 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i1, 1 },
2395 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i1, 1 },
2396 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 },
2397
2398 // Mask zero extend is a sext + shift.
2399 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 },
2400 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v2i1, 2 },
2401 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 },
2402 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i1, 2 },
2403 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 },
2404 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i1, 2 },
2405 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i1, 2 },
2406 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 },
2407
2408 { ISD::TRUNCATE, MVT::v16i1, MVT::v4i64, 2 },
2409 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i32, 2 },
2410 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 },
2411 { ISD::TRUNCATE, MVT::v2i1, MVT::v4i32, 2 },
2412 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 },
2413 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 },
2414 { ISD::TRUNCATE, MVT::v8i1, MVT::v4i64, 2 },
2415 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
2416
2417 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
2418 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
2419 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
2420 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
2421
2422 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
2423 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
2424 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
2425 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
2426
2427 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v4f32, 1 },
2428 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
2429 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
2430 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
2431
2432 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v4f32, 1 },
2433 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
2434 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
2435 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
2436 };
2437
2438 static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
2439 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd
2440 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd
2441 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd
2442 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 8 }, // split+2*v8i8
2443 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq
2444 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq
2445 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq
2446 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 8 }, // split+2*v8i16
2447 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // vpslld+vptestmd
2448 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // vpslld+vptestmd
2449 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // vpslld+vptestmd
2450 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i32, 2 }, // vpslld+vptestmd
2451 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // vpsllq+vptestmq
2452 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // vpsllq+vptestmq
2453 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // vpmovqd
2454 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, // vpmovqb
2455 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, // vpmovqw
2456 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, // vpmovwb
2457
2458 // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
2459 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
2460 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 5 },
2461 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 6 },
2462 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 5 },
2463 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 6 },
2464 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 5 },
2465 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 6 },
2466 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 10 },
2467 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 12 },
2468
2469 // sign extend is vpcmpeq+maskedmove+vpmovdw
2470 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
2471 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 4 },
2472 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 5 },
2473 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 4 },
2474 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 5 },
2475 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 4 },
2476 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 5 },
2477 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
2478 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
2479
2480 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // vpternlogd
2481 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // vpternlogd+psrld
2482 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // vpternlogd
2483 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // vpternlogd+psrld
2484 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // vpternlogd
2485 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // vpternlogd+psrld
2486 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i1, 1 }, // vpternlogd
2487 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i1, 2 }, // vpternlogd+psrld
2488
2489 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // vpternlogq
2490 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // vpternlogq+psrlq
2491 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // vpternlogq
2492 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // vpternlogq+psrlq
2493
2494 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 1 },
2495 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 1 },
2496 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 1 },
2497 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 1 },
2498 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
2499 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
2500 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 1 },
2501 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 1 },
2502 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
2503 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
2504 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
2505 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
2506
2507 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
2508 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 1 },
2509 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
2510 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 1 },
2511
2512 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 1 },
2513 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 },
2514 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
2515 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 1 },
2516 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
2517 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 1 },
2518 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
2519 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2520 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
2521 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
2522 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
2523 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
2524 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 },
2525
2526 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, 2 },
2527 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 2 },
2528 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f32, 5 },
2529
2530 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 },
2531 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 },
2532 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
2533 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 1 },
2534 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 },
2535 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
2536 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 },
2537 };
2538
2539 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
2540 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
2541 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
2542 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
2543 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
2544 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
2545 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
2546
2547 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 2 },
2548 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 2 },
2549 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 2 },
2550 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 2 },
2551 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
2552 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
2553 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 2 },
2554 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 2 },
2555 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
2556 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
2557 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2558 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2559 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
2560 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
2561
2562 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
2563
2564 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 4 },
2565 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 4 },
2566 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, 1 },
2567 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 1 },
2568 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 1 },
2569 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, 4 },
2570 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, 4 },
2571 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 1 },
2572 { ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, 1 },
2573 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, 5 },
2574 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 },
2575 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
2576
2577 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
2578 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
2579
2580 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, 1 },
2581 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, 1 },
2582 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, 1 },
2583 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 3 },
2584
2585 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 3 },
2586 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 3 },
2587 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, 1 },
2588 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 3 },
2589 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
2590 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4 },
2591 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 3 },
2592 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, 4 },
2593
2594 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 2 },
2595 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 2 },
2596 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 2 },
2597 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
2598 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
2599 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
2600 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 3 },
2601
2602 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 2 },
2603 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 2 },
2604 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 2 },
2605 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
2606 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
2607 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
2608 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 2 },
2609 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
2610 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
2611 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 4 },
2612 };
2613
2614 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
2615 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
2616 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
2617 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
2618 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
2619 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
2620 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
2621
2622 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 3 },
2623 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 3 },
2624 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 3 },
2625 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 3 },
2626 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
2627 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
2628 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 3 },
2629 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 3 },
2630 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
2631 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
2632 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
2633 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
2634
2635 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 4 },
2636 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 5 },
2637 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 4 },
2638 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 9 },
2639 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i64, 11 },
2640
2641 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
2642 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
2643 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // and+extract+packuswb
2644 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, 5 },
2645 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
2646 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, 5 },
2647 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, 3 }, // and+extract+2*packusdw
2648 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
2649
2650 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
2651 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
2652 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
2653 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 4 },
2654 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v16i8, 2 },
2655 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2656 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v8i16, 2 },
2657 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
2658 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
2659 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 4 },
2660 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 5 },
2661 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 8 },
2662
2663 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
2664 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
2665 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
2666 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 4 },
2667 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v16i8, 2 },
2668 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2669 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v8i16, 2 },
2670 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 4 },
2671 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 4 },
2672 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
2673 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
2674 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
2675 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 10 },
2676 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 10 },
2677 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 18 },
2678 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
2679 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 10 },
2680
2681 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, 2 },
2682 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f64, 2 },
2683 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v8f32, 2 },
2684 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v4f64, 2 },
2685 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 2 },
2686 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f64, 2 },
2687 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, 2 },
2688 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v4f64, 2 },
2689 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, 2 },
2690 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, 2 },
2691 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 5 },
2692
2693 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v8f32, 2 },
2694 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f64, 2 },
2695 { ISD::FP_TO_UINT, MVT::v32i8, MVT::v8f32, 2 },
2696 { ISD::FP_TO_UINT, MVT::v32i8, MVT::v4f64, 2 },
2697 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 2 },
2698 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f64, 2 },
2699 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, 2 },
2700 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v4f64, 2 },
2701 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 3 },
2702 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
2703 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 6 },
2704 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 7 },
2705 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, 7 },
2706
2707 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
2708 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
2709 };
2710
2711 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
2712 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, 1 },
2713 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, 1 },
2714 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, 1 },
2715 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, 1 },
2716 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
2717 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
2718 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, 1 },
2719 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, 1 },
2720 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
2721 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
2722 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
2723 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
2724
2725 // These truncates end up widening elements.
2726 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 1 }, // PMOVXZBQ
2727 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 1 }, // PMOVXZWQ
2728 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 1 }, // PMOVXZBD
2729
2730 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 2 },
2731 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 2 },
2732 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 2 },
2733
2734 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 1 },
2735 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 1 },
2736 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 1 },
2737 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 1 },
2738 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 1 },
2739 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
2740 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 1 },
2741 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
2742 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2743 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 1 },
2744 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
2745
2746 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 1 },
2747 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 1 },
2748 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 4 },
2749 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 },
2750 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 1 },
2751 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
2752 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 1 },
2753 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
2754 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 3 },
2755 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 3 },
2756 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 2 },
2757 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 12 },
2758 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 22 },
2759 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 4 },
2760
2761 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 1 },
2762 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 1 },
2763 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 1 },
2764 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 1 },
2765 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, 2 },
2766 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, 2 },
2767 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, 1 },
2768 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, 1 },
2769 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
2770 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, 1 },
2771
2772 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 1 },
2773 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
2774 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 1 },
2775 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 },
2776 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, 2 },
2777 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, 2 },
2778 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, 1 },
2779 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, 1 },
2780 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 4 },
2781 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
2782 };
2783
2784 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
2785 // These are somewhat magic numbers justified by comparing the
2786 // output of llvm-mca for our various supported scheduler models
2787 // and basing it off the worst case scenario.
2788 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 3 },
2789 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 3 },
2790 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 3 },
2791 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 3 },
2792 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 3 },
2793 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 4 },
2794 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 3 },
2795 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 4 },
2796 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 3 },
2797 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4 },
2798 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 8 },
2799 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 8 },
2800
2801 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 3 },
2802 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 3 },
2803 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 8 },
2804 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 9 },
2805 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 4 },
2806 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 4 },
2807 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 4 },
2808 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 4 },
2809 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 7 },
2810 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 7 },
2811 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
2812 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 15 },
2813 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 18 },
2814
2815 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 4 },
2816 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 4 },
2817 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 4 },
2818 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 4 },
2819 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, 6 },
2820 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, 6 },
2821 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, 5 },
2822 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, 5 },
2823 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 4 },
2824 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, 4 },
2825
2826 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 4 },
2827 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
2828 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 4 },
2829 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 15 },
2830 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, 6 },
2831 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, 6 },
2832 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, 5 },
2833 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, 5 },
2834 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 8 },
2835 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 8 },
2836
2837 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, 4 },
2838 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, 4 },
2839 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, 2 },
2840 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, 3 },
2841 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
2842 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, 2 },
2843 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, 2 },
2844 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, 3 },
2845 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
2846 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, 2 },
2847 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
2848 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, 2 },
2849
2850 // These truncates are really widening elements.
2851 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 1 }, // PSHUFD
2852 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // PUNPCKLWD+DQ
2853 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // PUNPCKLBW+WD+PSHUFD
2854 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 1 }, // PUNPCKLWD
2855 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // PUNPCKLBW+WD
2856 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 1 }, // PUNPCKLBW
2857
2858 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, 2 }, // PAND+PACKUSWB
2859 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
2860 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 3 }, // PAND+2*PACKUSWB
2861 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
2862 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 },
2863 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 3 },
2864 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
2865 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32,10 },
2866 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB
2867 { ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW
2868 { ISD::TRUNCATE, MVT::v4i32, MVT::v2i64, 1 }, // PSHUFD
2869 };
2870
2871 // Attempt to map directly to (simple) MVT types to let us match custom entries.
2872 EVT SrcTy = TLI->getValueType(DL, Src);
2873 EVT DstTy = TLI->getValueType(DL, Dst);
2874
2875 // The function getSimpleVT only handles simple value types.
2876 if (SrcTy.isSimple() && DstTy.isSimple()) {
2877 MVT SimpleSrcTy = SrcTy.getSimpleVT();
2878 MVT SimpleDstTy = DstTy.getSimpleVT();
2879
2880 if (ST->useAVX512Regs()) {
2881 if (ST->hasBWI())
2882 if (const auto *Entry = ConvertCostTableLookup(
2883 AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2884 return AdjustCost(Entry->Cost);
2885
2886 if (ST->hasDQI())
2887 if (const auto *Entry = ConvertCostTableLookup(
2888 AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2889 return AdjustCost(Entry->Cost);
2890
2891 if (ST->hasAVX512())
2892 if (const auto *Entry = ConvertCostTableLookup(
2893 AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2894 return AdjustCost(Entry->Cost);
2895 }
2896
2897 if (ST->hasBWI())
2898 if (const auto *Entry = ConvertCostTableLookup(
2899 AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2900 return AdjustCost(Entry->Cost);
2901
2902 if (ST->hasDQI())
2903 if (const auto *Entry = ConvertCostTableLookup(
2904 AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2905 return AdjustCost(Entry->Cost);
2906
2907 if (ST->hasAVX512())
2908 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2909 SimpleDstTy, SimpleSrcTy))
2910 return AdjustCost(Entry->Cost);
2911
2912 if (ST->hasAVX2()) {
2913 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2914 SimpleDstTy, SimpleSrcTy))
2915 return AdjustCost(Entry->Cost);
2916 }
2917
2918 if (ST->hasAVX()) {
2919 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2920 SimpleDstTy, SimpleSrcTy))
2921 return AdjustCost(Entry->Cost);
2922 }
2923
2924 if (ST->hasSSE41()) {
2925 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2926 SimpleDstTy, SimpleSrcTy))
2927 return AdjustCost(Entry->Cost);
2928 }
2929
2930 if (ST->hasSSE2()) {
2931 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2932 SimpleDstTy, SimpleSrcTy))
2933 return AdjustCost(Entry->Cost);
2934 }
2935 }
2936
2937 // Fall back to legalized types.
2938 std::pair<InstructionCost, MVT> LTSrc = getTypeLegalizationCost(Src);
2939 std::pair<InstructionCost, MVT> LTDest = getTypeLegalizationCost(Dst);
2940
2941 // If we're truncating to the same legalized type - just assume its free.
2942 if (ISD == ISD::TRUNCATE && LTSrc.second == LTDest.second)
2943 return TTI::TCC_Free;
2944
2945 if (ST->useAVX512Regs()) {
2946 if (ST->hasBWI())
2947 if (const auto *Entry = ConvertCostTableLookup(
2948 AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second))
2949 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2950
2951 if (ST->hasDQI())
2952 if (const auto *Entry = ConvertCostTableLookup(
2953 AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second))
2954 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2955
2956 if (ST->hasAVX512())
2957 if (const auto *Entry = ConvertCostTableLookup(
2958 AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second))
2959 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2960 }
2961
2962 if (ST->hasBWI())
2963 if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2964 LTDest.second, LTSrc.second))
2965 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2966
2967 if (ST->hasDQI())
2968 if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2969 LTDest.second, LTSrc.second))
2970 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2971
2972 if (ST->hasAVX512())
2973 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2974 LTDest.second, LTSrc.second))
2975 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2976
2977 if (ST->hasAVX2())
2978 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2979 LTDest.second, LTSrc.second))
2980 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2981
2982 if (ST->hasAVX())
2983 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2984 LTDest.second, LTSrc.second))
2985 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2986
2987 if (ST->hasSSE41())
2988 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2989 LTDest.second, LTSrc.second))
2990 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2991
2992 if (ST->hasSSE2())
2993 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2994 LTDest.second, LTSrc.second))
2995 return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2996
2997 // Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for
2998 // sitofp.
2999 if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) &&
3000 1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) {
3001 Type *ExtSrc = Src->getWithNewBitWidth(32);
3002 unsigned ExtOpc =
3003 (ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt;
3004
3005 // For scalar loads the extend would be free.
3006 InstructionCost ExtCost = 0;
3007 if (!(Src->isIntegerTy() && I && isa<LoadInst>(I->getOperand(0))))
3008 ExtCost = getCastInstrCost(ExtOpc, ExtSrc, Src, CCH, CostKind);
3009
3010 return ExtCost + getCastInstrCost(Instruction::SIToFP, Dst, ExtSrc,
3011 TTI::CastContextHint::None, CostKind);
3012 }
3013
3014 // Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi
3015 // i32.
3016 if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) &&
3017 1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) {
3018 Type *TruncDst = Dst->getWithNewBitWidth(32);
3019 return getCastInstrCost(Instruction::FPToSI, TruncDst, Src, CCH, CostKind) +
3020 getCastInstrCost(Instruction::Trunc, Dst, TruncDst,
3021 TTI::CastContextHint::None, CostKind);
3022 }
3023
3024 return AdjustCost(
3025 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
3026}
3027
3028InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
3029 Type *CondTy,
3030 CmpInst::Predicate VecPred,
3031 TTI::TargetCostKind CostKind,
3032 const Instruction *I) {
3033 // Early out if this type isn't scalar/vector integer/float.
3034 if (!(ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy()))
3035 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
3036 I);
3037
3038 // Legalize the type.
3039 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
3040
3041 MVT MTy = LT.second;
3042
3043 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3044 assert(ISD && "Invalid opcode")(static_cast <bool> (ISD && "Invalid opcode") ?
void (0) : __assert_fail ("ISD && \"Invalid opcode\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 3044, __extension__
__PRETTY_FUNCTION__))
;
3045
3046 InstructionCost ExtraCost = 0;
3047 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
3048 // Some vector comparison predicates cost extra instructions.
3049 // TODO: Should we invert this and assume worst case cmp costs
3050 // and reduce for particular predicates?
3051 if (MTy.isVector() &&
3052 !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
3053 (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
3054 ST->hasBWI())) {
3055 // Fallback to I if a specific predicate wasn't specified.
3056 CmpInst::Predicate Pred = VecPred;
3057 if (I && (Pred == CmpInst::BAD_ICMP_PREDICATE ||
3058 Pred == CmpInst::BAD_FCMP_PREDICATE))
3059 Pred = cast<CmpInst>(I)->getPredicate();
3060
3061 switch (Pred) {
3062 case CmpInst::Predicate::ICMP_NE:
3063 // xor(cmpeq(x,y),-1)
3064 ExtraCost = 1;
3065 break;
3066 case CmpInst::Predicate::ICMP_SGE:
3067 case CmpInst::Predicate::ICMP_SLE:
3068 // xor(cmpgt(x,y),-1)
3069 ExtraCost = 1;
3070 break;
3071 case CmpInst::Predicate::ICMP_ULT:
3072 case CmpInst::Predicate::ICMP_UGT:
3073 // cmpgt(xor(x,signbit),xor(y,signbit))
3074 // xor(cmpeq(pmaxu(x,y),x),-1)
3075 ExtraCost = 2;
3076 break;
3077 case CmpInst::Predicate::ICMP_ULE:
3078 case CmpInst::Predicate::ICMP_UGE:
3079 if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
3080 (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
3081 // cmpeq(psubus(x,y),0)
3082 // cmpeq(pminu(x,y),x)
3083 ExtraCost = 1;
3084 } else {
3085 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
3086 ExtraCost = 3;
3087 }
3088 break;
3089 case CmpInst::Predicate::FCMP_ONE:
3090 case CmpInst::Predicate::FCMP_UEQ:
3091 // Without AVX we need to expand FCMP_ONE/FCMP_UEQ cases.
3092 // Use FCMP_UEQ expansion - FCMP_ONE should be the same.
3093 if (CondTy && !ST->hasAVX())
3094 return getCmpSelInstrCost(Opcode, ValTy, CondTy,
3095 CmpInst::Predicate::FCMP_UNO, CostKind) +
3096 getCmpSelInstrCost(Opcode, ValTy, CondTy,
3097 CmpInst::Predicate::FCMP_OEQ, CostKind) +
3098 getArithmeticInstrCost(Instruction::Or, CondTy, CostKind);
3099
3100 break;
3101 case CmpInst::Predicate::BAD_ICMP_PREDICATE:
3102 case CmpInst::Predicate::BAD_FCMP_PREDICATE:
3103 // Assume worst case scenario and add the maximum extra cost.
3104 ExtraCost = 3;
3105 break;
3106 default:
3107 break;
3108 }
3109 }
3110 }
3111
3112 static const CostKindTblEntry SLMCostTbl[] = {
3113 // slm pcmpeq/pcmpgt throughput is 2
3114 { ISD::SETCC, MVT::v2i64, { 2, 5, 1, 2 } },
3115 // slm pblendvb/blendvpd/blendvps throughput is 4
3116 { ISD::SELECT, MVT::v2f64, { 4, 4, 1, 3 } }, // vblendvpd
3117 { ISD::SELECT, MVT::v4f32, { 4, 4, 1, 3 } }, // vblendvps
3118 { ISD::SELECT, MVT::v2i64, { 4, 4, 1, 3 } }, // pblendvb
3119 { ISD::SELECT, MVT::v8i32, { 4, 4, 1, 3 } }, // pblendvb
3120 { ISD::SELECT, MVT::v8i16, { 4, 4, 1, 3 } }, // pblendvb
3121 { ISD::SELECT, MVT::v16i8, { 4, 4, 1, 3 } }, // pblendvb
3122 };
3123
3124 static const CostKindTblEntry AVX512BWCostTbl[] = {
3125 { ISD::SETCC, MVT::v32i16, { 1, 1, 1, 1 } },
3126 { ISD::SETCC, MVT::v16i16, { 1, 1, 1, 1 } },
3127 { ISD::SETCC, MVT::v64i8, { 1, 1, 1, 1 } },
3128 { ISD::SETCC, MVT::v32i8, { 1, 1, 1, 1 } },
3129
3130 { ISD::SELECT, MVT::v32i16, { 1, 1, 1, 1 } },
3131 { ISD::SELECT, MVT::v64i8, { 1, 1, 1, 1 } },
3132 };
3133
3134 static const CostKindTblEntry AVX512CostTbl[] = {
3135 { ISD::SETCC, MVT::v8f64, { 1, 4, 1, 1 } },
3136 { ISD::SETCC, MVT::v4f64, { 1, 4, 1, 1 } },
3137 { ISD::SETCC, MVT::v16f32, { 1, 4, 1, 1 } },
3138 { ISD::SETCC, MVT::v8f32, { 1, 4, 1, 1 } },
3139
3140 { ISD::SETCC, MVT::v8i64, { 1, 1, 1, 1 } },
3141 { ISD::SETCC, MVT::v4i64, { 1, 1, 1, 1 } },
3142 { ISD::SETCC, MVT::v2i64, { 1, 1, 1, 1 } },
3143 { ISD::SETCC, MVT::v16i32, { 1, 1, 1, 1 } },
3144 { ISD::SETCC, MVT::v8i32, { 1, 1, 1, 1 } },
3145 { ISD::SETCC, MVT::v32i16, { 3, 7, 5, 5 } },
3146 { ISD::SETCC, MVT::v64i8, { 3, 7, 5, 5 } },
3147
3148 { ISD::SELECT, MVT::v8i64, { 1, 1, 1, 1 } },
3149 { ISD::SELECT, MVT::v4i64, { 1, 1, 1, 1 } },
3150 { ISD::SELECT, MVT::v2i64, { 1, 1, 1, 1 } },
3151 { ISD::SELECT, MVT::v16i32, { 1, 1, 1, 1 } },
3152 { ISD::SELECT, MVT::v8i32, { 1, 1, 1, 1 } },
3153 { ISD::SELECT, MVT::v4i32, { 1, 1, 1, 1 } },
3154 { ISD::SELECT, MVT::v8f64, { 1, 1, 1, 1 } },
3155 { ISD::SELECT, MVT::v4f64, { 1, 1, 1, 1 } },
3156 { ISD::SELECT, MVT::v2f64, { 1, 1, 1, 1 } },
3157 { ISD::SELECT, MVT::f64, { 1, 1, 1, 1 } },
3158 { ISD::SELECT, MVT::v16f32, { 1, 1, 1, 1 } },
3159 { ISD::SELECT, MVT::v8f32 , { 1, 1, 1, 1 } },
3160 { ISD::SELECT, MVT::v4f32, { 1, 1, 1, 1 } },
3161 { ISD::SELECT, MVT::f32 , { 1, 1, 1, 1 } },
3162
3163 { ISD::SELECT, MVT::v32i16, { 2, 2, 4, 4 } },
3164 { ISD::SELECT, MVT::v16i16, { 1, 1, 1, 1 } },
3165 { ISD::SELECT, MVT::v8i16, { 1, 1, 1, 1 } },
3166 { ISD::SELECT, MVT::v64i8, { 2, 2, 4, 4 } },
3167 { ISD::SELECT, MVT::v32i8, { 1, 1, 1, 1 } },
3168 { ISD::SELECT, MVT::v16i8, { 1, 1, 1, 1 } },
3169 };
3170
3171 static const CostKindTblEntry AVX2CostTbl[] = {
3172 { ISD::SETCC, MVT::v4f64, { 1, 4, 1, 2 } },
3173 { ISD::SETCC, MVT::v2f64, { 1, 4, 1, 1 } },
3174 { ISD::SETCC, MVT::f64, { 1, 4, 1, 1 } },
3175 { ISD::SETCC, MVT::v8f32, { 1, 4, 1, 2 } },
3176 { ISD::SETCC, MVT::v4f32, { 1, 4, 1, 1 } },
3177 { ISD::SETCC, MVT::f32, { 1, 4, 1, 1 } },
3178
3179 { ISD::SETCC, MVT::v4i64, { 1, 1, 1, 2 } },
3180 { ISD::SETCC, MVT::v8i32, { 1, 1, 1, 2 } },
3181 { ISD::SETCC, MVT::v16i16, { 1, 1, 1, 2 } },
3182 { ISD::SETCC, MVT::v32i8, { 1, 1, 1, 2 } },
3183
3184 { ISD::SELECT, MVT::v4f64, { 2, 2, 1, 2 } }, // vblendvpd
3185 { ISD::SELECT, MVT::v8f32, { 2, 2, 1, 2 } }, // vblendvps
3186 { ISD::SELECT, MVT::v4i64, { 2, 2, 1, 2 } }, // pblendvb
3187 { ISD::SELECT, MVT::v8i32, { 2, 2, 1, 2 } }, // pblendvb
3188 { ISD::SELECT, MVT::v16i16, { 2, 2, 1, 2 } }, // pblendvb
3189 { ISD::SELECT, MVT::v32i8, { 2, 2, 1, 2 } }, // pblendvb
3190 };
3191
3192 static const CostKindTblEntry XOPCostTbl[] = {
3193 { ISD::SETCC, MVT::v4i64, { 4, 2, 5, 6 } },
3194 { ISD::SETCC, MVT::v2i64, { 1, 1, 1, 1 } },
3195 };
3196
3197 static const CostKindTblEntry AVX1CostTbl[] = {
3198 { ISD::SETCC, MVT::v4f64, { 2, 3, 1, 2 } },
3199 { ISD::SETCC, MVT::v2f64, { 1, 3, 1, 1 } },
3200 { ISD::SETCC, MVT::f64, { 1, 3, 1, 1 } },
3201 { ISD::SETCC, MVT::v8f32, { 2, 3, 1, 2 } },
3202 { ISD::SETCC, MVT::v4f32, { 1, 3, 1, 1 } },
3203 { ISD::SETCC, MVT::f32, { 1, 3, 1, 1 } },
3204
3205 // AVX1 does not support 8-wide integer compare.
3206 { ISD::SETCC, MVT::v4i64, { 4, 2, 5, 6 } },
3207 { ISD::SETCC, MVT::v8i32, { 4, 2, 5, 6 } },
3208 { ISD::SETCC, MVT::v16i16, { 4, 2, 5, 6 } },
3209 { ISD::SETCC, MVT::v32i8, { 4, 2, 5, 6 } },
3210
3211 { ISD::SELECT, MVT::v4f64, { 3, 3, 1, 2 } }, // vblendvpd
3212 { ISD::SELECT, MVT::v8f32, { 3, 3, 1, 2 } }, // vblendvps
3213 { ISD::SELECT, MVT::v4i64, { 3, 3, 1, 2 } }, // vblendvpd
3214 { ISD::SELECT, MVT::v8i32, { 3, 3, 1, 2 } }, // vblendvps
3215 { ISD::SELECT, MVT::v16i16, { 3, 3, 3, 3 } }, // vandps + vandnps + vorps
3216 { ISD::SELECT, MVT::v32i8, { 3, 3, 3, 3 } }, // vandps + vandnps + vorps
3217 };
3218
3219 static const CostKindTblEntry SSE42CostTbl[] = {
3220 { ISD::SETCC, MVT::v2i64, { 1, 2, 1, 2 } },
3221 };
3222
3223 static const CostKindTblEntry SSE41CostTbl[] = {
3224 { ISD::SETCC, MVT::v2f64, { 1, 5, 1, 1 } },
3225 { ISD::SETCC, MVT::v4f32, { 1, 5, 1, 1 } },
3226
3227 { ISD::SELECT, MVT::v2f64, { 2, 2, 1, 2 } }, // blendvpd
3228 { ISD::SELECT, MVT::f64, { 2, 2, 1, 2 } }, // blendvpd
3229 { ISD::SELECT, MVT::v4f32, { 2, 2, 1, 2 } }, // blendvps
3230 { ISD::SELECT, MVT::f32 , { 2, 2, 1, 2 } }, // blendvps
3231 { ISD::SELECT, MVT::v2i64, { 2, 2, 1, 2 } }, // pblendvb
3232 { ISD::SELECT, MVT::v4i32, { 2, 2, 1, 2 } }, // pblendvb
3233 { ISD::SELECT, MVT::v8i16, { 2, 2, 1, 2 } }, // pblendvb
3234 { ISD::SELECT, MVT::v16i8, { 2, 2, 1, 2 } }, // pblendvb
3235 };
3236
3237 static const CostKindTblEntry SSE2CostTbl[] = {
3238 { ISD::SETCC, MVT::v2f64, { 2, 5, 1, 1 } },
3239 { ISD::SETCC, MVT::f64, { 1, 5, 1, 1 } },
3240
3241 { ISD::SETCC, MVT::v2i64, { 5, 4, 5, 5 } }, // pcmpeqd/pcmpgtd expansion
3242 { ISD::SETCC, MVT::v4i32, { 1, 1, 1, 1 } },
3243 { ISD::SETCC, MVT::v8i16, { 1, 1, 1, 1 } },
3244 { ISD::SETCC, MVT::v16i8, { 1, 1, 1, 1 } },
3245
3246 { ISD::SELECT, MVT::v2f64, { 2, 2, 3, 3 } }, // andpd + andnpd + orpd
3247 { ISD::SELECT, MVT::f64, { 2, 2, 3, 3 } }, // andpd + andnpd + orpd
3248 { ISD::SELECT, MVT::v2i64, { 2, 2, 3, 3 } }, // pand + pandn + por
3249 { ISD::SELECT, MVT::v4i32, { 2, 2, 3, 3 } }, // pand + pandn + por
3250 { ISD::SELECT, MVT::v8i16, { 2, 2, 3, 3 } }, // pand + pandn + por
3251 { ISD::SELECT, MVT::v16i8, { 2, 2, 3, 3 } }, // pand + pandn + por
3252 };
3253
3254 static const CostKindTblEntry SSE1CostTbl[] = {
3255 { ISD::SETCC, MVT::v4f32, { 2, 5, 1, 1 } },
3256 { ISD::SETCC, MVT::f32, { 1, 5, 1, 1 } },
3257
3258 { ISD::SELECT, MVT::v4f32, { 2, 2, 3, 3 } }, // andps + andnps + orps
3259 { ISD::SELECT, MVT::f32, { 2, 2, 3, 3 } }, // andps + andnps + orps
3260 };
3261
3262 if (ST->useSLMArithCosts())
3263 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
3264 if (auto KindCost = Entry->Cost[CostKind])
3265 return LT.first * (ExtraCost + *KindCost);
3266
3267 if (ST->hasBWI())
3268 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3269 if (auto KindCost = Entry->Cost[CostKind])
3270 return LT.first * (ExtraCost + *KindCost);
3271
3272 if (ST->hasAVX512())
3273 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3274 if (auto KindCost = Entry->Cost[CostKind])
3275 return LT.first * (ExtraCost + *KindCost);
3276
3277 if (ST->hasAVX2())
3278 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3279 if (auto KindCost = Entry->Cost[CostKind])
3280 return LT.first * (ExtraCost + *KindCost);
3281
3282 if (ST->hasXOP())
3283 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3284 if (auto KindCost = Entry->Cost[CostKind])
3285 return LT.first * (ExtraCost + *KindCost);
3286
3287 if (ST->hasAVX())
3288 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3289 if (auto KindCost = Entry->Cost[CostKind])
3290 return LT.first * (ExtraCost + *KindCost);
3291
3292 if (ST->hasSSE42())
3293 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3294 if (auto KindCost = Entry->Cost[CostKind])
3295 return LT.first * (ExtraCost + *KindCost);
3296
3297 if (ST->hasSSE41())
3298 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3299 if (auto KindCost = Entry->Cost[CostKind])
3300 return LT.first * (ExtraCost + *KindCost);
3301
3302 if (ST->hasSSE2())
3303 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3304 if (auto KindCost = Entry->Cost[CostKind])
3305 return LT.first * (ExtraCost + *KindCost);
3306
3307 if (ST->hasSSE1())
3308 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3309 if (auto KindCost = Entry->Cost[CostKind])
3310 return LT.first * (ExtraCost + *KindCost);
3311
3312 // Assume a 3cy latency for fp select ops.
3313 if (CostKind == TTI::TCK_Latency && Opcode == Instruction::Select)
3314 if (ValTy->getScalarType()->isFloatingPointTy())
3315 return 3;
3316
3317 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
3318}
3319
3320unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
3321
3322InstructionCost
3323X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
3324 TTI::TargetCostKind CostKind) {
3325 // Costs should match the codegen from:
3326 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
3327 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
3328 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
3329 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
3330 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
3331
3332 // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
3333 // specialized in these tables yet.
3334 static const CostKindTblEntry AVX512VBMI2CostTbl[] = {
3335 { ISD::FSHL, MVT::v8i64, { 1, 1, 1, 1 } },
3336 { ISD::FSHL, MVT::v4i64, { 1, 1, 1, 1 } },
3337 { ISD::FSHL, MVT::v2i64, { 1, 1, 1, 1 } },
3338 { ISD::FSHL, MVT::v16i32, { 1, 1, 1, 1 } },
3339 { ISD::FSHL, MVT::v8i32, { 1, 1, 1, 1 } },
3340 { ISD::FSHL, MVT::v4i32, { 1, 1, 1, 1 } },
3341 { ISD::FSHL, MVT::v32i16, { 1, 1, 1, 1 } },
3342 { ISD::FSHL, MVT::v16i16, { 1, 1, 1, 1 } },
3343 { ISD::FSHL, MVT::v8i16, { 1, 1, 1, 1 } },
3344 { ISD::ROTL, MVT::v32i16, { 1, 1, 1, 1 } },
3345 { ISD::ROTL, MVT::v16i16, { 1, 1, 1, 1 } },
3346 { ISD::ROTL, MVT::v8i16, { 1, 1, 1, 1 } },
3347 { ISD::ROTR, MVT::v32i16, { 1, 1, 1, 1 } },
3348 { ISD::ROTR, MVT::v16i16, { 1, 1, 1, 1 } },
3349 { ISD::ROTR, MVT::v8i16, { 1, 1, 1, 1 } },
3350 };
3351 static const CostKindTblEntry AVX512BITALGCostTbl[] = {
3352 { ISD::CTPOP, MVT::v32i16, { 1, 1, 1, 1 } },
3353 { ISD::CTPOP, MVT::v64i8, { 1, 1, 1, 1 } },
3354 { ISD::CTPOP, MVT::v16i16, { 1, 1, 1, 1 } },
3355 { ISD::CTPOP, MVT::v32i8, { 1, 1, 1, 1 } },
3356 { ISD::CTPOP, MVT::v8i16, { 1, 1, 1, 1 } },
3357 { ISD::CTPOP, MVT::v16i8, { 1, 1, 1, 1 } },
3358 };
3359 static const CostKindTblEntry AVX512VPOPCNTDQCostTbl[] = {
3360 { ISD::CTPOP, MVT::v8i64, { 1, 1, 1, 1 } },
3361 { ISD::CTPOP, MVT::v16i32, { 1, 1, 1, 1 } },
3362 { ISD::CTPOP, MVT::v4i64, { 1, 1, 1, 1 } },
3363 { ISD::CTPOP, MVT::v8i32, { 1, 1, 1, 1 } },
3364 { ISD::CTPOP, MVT::v2i64, { 1, 1, 1, 1 } },
3365 { ISD::CTPOP, MVT::v4i32, { 1, 1, 1, 1 } },
3366 };
3367 static const CostKindTblEntry AVX512CDCostTbl[] = {
3368 { ISD::CTLZ, MVT::v8i64, { 1, 5, 1, 1 } },
3369 { ISD::CTLZ, MVT::v16i32, { 1, 5, 1, 1 } },
3370 { ISD::CTLZ, MVT::v32i16, { 18, 27, 23, 27 } },
3371 { ISD::CTLZ, MVT::v64i8, { 3, 16, 9, 11 } },
3372 { ISD::CTLZ, MVT::v4i64, { 1, 5, 1, 1 } },
3373 { ISD::CTLZ, MVT::v8i32, { 1, 5, 1, 1 } },
3374 { ISD::CTLZ, MVT::v16i16, { 8, 19, 11, 13 } },
3375 { ISD::CTLZ, MVT::v32i8, { 2, 11, 9, 10 } },
3376 { ISD::CTLZ, MVT::v2i64, { 1, 5, 1, 1 } },
3377 { ISD::CTLZ, MVT::v4i32, { 1, 5, 1, 1 } },
3378 { ISD::CTLZ, MVT::v8i16, { 3, 15, 4, 6 } },
3379 { ISD::CTLZ, MVT::v16i8, { 2, 10, 9, 10 } },
3380
3381 { ISD::CTTZ, MVT::v8i64, { 2, 8, 6, 7 } },
3382 { ISD::CTTZ, MVT::v16i32, { 2, 8, 6, 7 } },
3383 { ISD::CTTZ, MVT::v4i64, { 1, 8, 6, 6 } },
3384 { ISD::CTTZ, MVT::v8i32, { 1, 8, 6, 6 } },
3385 { ISD::CTTZ, MVT::v2i64, { 1, 8, 6, 6 } },
3386 { ISD::CTTZ, MVT::v4i32, { 1, 8, 6, 6 } },
3387 };
3388 static const CostKindTblEntry AVX512BWCostTbl[] = {
3389 { ISD::ABS, MVT::v32i16, { 1, 1, 1, 1 } },
3390 { ISD::ABS, MVT::v64i8, { 1, 1, 1, 1 } },
3391 { ISD::BITREVERSE, MVT::v8i64, { 3 } },
3392 { ISD::BITREVERSE, MVT::v16i32, { 3 } },
3393 { ISD::BITREVERSE, MVT::v32i16, { 3 } },
3394 { ISD::BITREVERSE, MVT::v64i8, { 2 } },
3395 { ISD::BSWAP, MVT::v8i64, { 1 } },
3396 { ISD::BSWAP, MVT::v16i32, { 1 } },
3397 { ISD::BSWAP, MVT::v32i16, { 1 } },
3398 { ISD::CTLZ, MVT::v8i64, { 8, 22, 23, 23 } },
3399 { ISD::CTLZ, MVT::v16i32, { 8, 23, 25, 25 } },
3400 { ISD::CTLZ, MVT::v32i16, { 4, 15, 15, 16 } },
3401 { ISD::CTLZ, MVT::v64i8, { 3, 12, 10, 9 } },
3402 { ISD::CTPOP, MVT::v2i64, { 3, 7, 10, 10 } },
3403 { ISD::CTPOP, MVT::v4i64, { 3, 7, 10, 10 } },
3404 { ISD::CTPOP, MVT::v8i64, { 3, 8, 10, 12 } },
3405 { ISD::CTPOP, MVT::v4i32, { 7, 11, 14, 14 } },
3406 { ISD::CTPOP, MVT::v8i32, { 7, 11, 14, 14 } },
3407 { ISD::CTPOP, MVT::v16i32, { 7, 12, 14, 16 } },
3408 { ISD::CTPOP, MVT::v8i16, { 2, 7, 11, 11 } },
3409 { ISD::CTPOP, MVT::v16i16, { 2, 7, 11, 11 } },
3410 { ISD::CTPOP, MVT::v32i16, { 3, 7, 11, 13 } },
3411 { ISD::CTPOP, MVT::v16i8, { 2, 4, 8, 8 } },
3412 { ISD::CTPOP, MVT::v32i8, { 2, 4, 8, 8 } },
3413 { ISD::CTPOP, MVT::v64i8, { 2, 5, 8, 10 } },
3414 { ISD::CTTZ, MVT::v8i16, { 3, 9, 14, 14 } },
3415 { ISD::CTTZ, MVT::v16i16, { 3, 9, 14, 14 } },
3416 { ISD::CTTZ, MVT::v32i16, { 3, 10, 14, 16 } },
3417 { ISD::CTTZ, MVT::v16i8, { 2, 6, 11, 11 } },
3418 { ISD::CTTZ, MVT::v32i8, { 2, 6, 11, 11 } },
3419 { ISD::CTTZ, MVT::v64i8, { 3, 7, 11, 13 } },
3420 { ISD::ROTL, MVT::v32i16, { 2, 8, 6, 8 } },
3421 { ISD::ROTL, MVT::v16i16, { 2, 8, 6, 7 } },
3422 { ISD::ROTL, MVT::v8i16, { 2, 7, 6, 7 } },
3423 { ISD::ROTL, MVT::v64i8, { 5, 6, 11, 12 } },
3424 { ISD::ROTL, MVT::v32i8, { 5, 15, 7, 10 } },
3425 { ISD::ROTL, MVT::v16i8, { 5, 15, 7, 10 } },
3426 { ISD::ROTR, MVT::v32i16, { 2, 8, 6, 8 } },
3427 { ISD::ROTR, MVT::v16i16, { 2, 8, 6, 7 } },
3428 { ISD::ROTR, MVT::v8i16, { 2, 7, 6, 7 } },
3429 { ISD::ROTR, MVT::v64i8, { 5, 6, 12, 14 } },
3430 { ISD::ROTR, MVT::v32i8, { 5, 14, 6, 9 } },
3431 { ISD::ROTR, MVT::v16i8, { 5, 14, 6, 9 } },
3432 { ISD::SADDSAT, MVT::v32i16, { 1 } },
3433 { ISD::SADDSAT, MVT::v64i8, { 1 } },
3434 { ISD::SMAX, MVT::v32i16, { 1, 1, 1, 1 } },
3435 { ISD::SMAX, MVT::v64i8, { 1, 1, 1, 1 } },
3436 { ISD::SMIN, MVT::v32i16, { 1, 1, 1, 1 } },
3437 { ISD::SMIN, MVT::v64i8, { 1, 1, 1, 1 } },
3438 { ISD::SSUBSAT, MVT::v32i16, { 1 } },
3439 { ISD::SSUBSAT, MVT::v64i8, { 1 } },
3440 { ISD::UADDSAT, MVT::v32i16, { 1 } },
3441 { ISD::UADDSAT, MVT::v64i8, { 1 } },
3442 { ISD::UMAX, MVT::v32i16, { 1, 1, 1, 1 } },
3443 { ISD::UMAX, MVT::v64i8, { 1, 1, 1, 1 } },
3444 { ISD::UMIN, MVT::v32i16, { 1, 1, 1, 1 } },
3445 { ISD::UMIN, MVT::v64i8, { 1, 1, 1, 1 } },
3446 { ISD::USUBSAT, MVT::v32i16, { 1 } },
3447 { ISD::USUBSAT, MVT::v64i8, { 1 } },
3448 };
3449 static const CostKindTblEntry AVX512CostTbl[] = {
3450 { ISD::ABS, MVT::v8i64, { 1, 1, 1, 1 } },
3451 { ISD::ABS, MVT::v4i64, { 1, 1, 1, 1 } },
3452 { ISD::ABS, MVT::v2i64, { 1, 1, 1, 1 } },
3453 { ISD::ABS, MVT::v16i32, { 1, 1, 1, 1 } },
3454 { ISD::ABS, MVT::v8i32, { 1, 1, 1, 1 } },
3455 { ISD::ABS, MVT::v32i16, { 2, 7, 4, 4 } },
3456 { ISD::ABS, MVT::v16i16, { 1, 1, 1, 1 } },
3457 { ISD::ABS, MVT::v64i8, { 2, 7, 4, 4 } },
3458 { ISD::ABS, MVT::v32i8, { 1, 1, 1, 1 } },
3459 { ISD::BITREVERSE, MVT::v8i64, { 36 } },
3460 { ISD::BITREVERSE, MVT::v16i32, { 24 } },
3461 { ISD::BITREVERSE, MVT::v32i16, { 10 } },
3462 { ISD::BITREVERSE, MVT::v64i8, { 10 } },
3463 { ISD::BSWAP, MVT::v8i64, { 4 } },
3464 { ISD::BSWAP, MVT::v16i32, { 4 } },
3465 { ISD::BSWAP, MVT::v32i16, { 4 } },
3466 { ISD::CTLZ, MVT::v8i64, { 10, 28, 32, 32 } },
3467 { ISD::CTLZ, MVT::v16i32, { 12, 30, 38, 38 } },
3468 { ISD::CTLZ, MVT::v32i16, { 8, 15, 29, 29 } },
3469 { ISD::CTLZ, MVT::v64i8, { 6, 11, 19, 19 } },
3470 { ISD::CTPOP, MVT::v8i64, { 16, 16, 19, 19 } },
3471 { ISD::CTPOP, MVT::v16i32, { 24, 19, 27, 27 } },
3472 { ISD::CTPOP, MVT::v32i16, { 18, 15, 22, 22 } },
3473 { ISD::CTPOP, MVT::v64i8, { 12, 11, 16, 16 } },
3474 { ISD::CTTZ, MVT::v8i64, { 2, 8, 6, 7 } },
3475 { ISD::CTTZ, MVT::v16i32, { 2, 8, 6, 7 } },
3476 { ISD::CTTZ, MVT::v32i16, { 7, 17, 27, 27 } },
3477 { ISD::CTTZ, MVT::v64i8, { 6, 13, 21, 21 } },
3478 { ISD::ROTL, MVT::v8i64, { 1, 1, 1, 1 } },
3479 { ISD::ROTL, MVT::v4i64, { 1, 1, 1, 1 } },
3480 { ISD::ROTL, MVT::v2i64, { 1, 1, 1, 1 } },
3481 { ISD::ROTL, MVT::v16i32, { 1, 1, 1, 1 } },
3482 { ISD::ROTL, MVT::v8i32, { 1, 1, 1, 1 } },
3483 { ISD::ROTL, MVT::v4i32, { 1, 1, 1, 1 } },
3484 { ISD::ROTR, MVT::v8i64, { 1, 1, 1, 1 } },
3485 { ISD::ROTR, MVT::v4i64, { 1, 1, 1, 1 } },
3486 { ISD::ROTR, MVT::v2i64, { 1, 1, 1, 1 } },
3487 { ISD::ROTR, MVT::v16i32, { 1, 1, 1, 1 } },
3488 { ISD::ROTR, MVT::v8i32, { 1, 1, 1, 1 } },
3489 { ISD::ROTR, MVT::v4i32, { 1, 1, 1, 1 } },
3490 { ISD::SMAX, MVT::v8i64, { 1, 3, 1, 1 } },
3491 { ISD::SMAX, MVT::v16i32, { 1, 1, 1, 1 } },
3492 { ISD::SMAX, MVT::v32i16, { 3, 7, 5, 5 } },
3493 { ISD::SMAX, MVT::v64i8, { 3, 7, 5, 5 } },
3494 { ISD::SMAX, MVT::v4i64, { 1, 3, 1, 1 } },
3495 { ISD::SMAX, MVT::v2i64, { 1, 3, 1, 1 } },
3496 { ISD::SMIN, MVT::v8i64, { 1, 3, 1, 1 } },
3497 { ISD::SMIN, MVT::v16i32, { 1, 1, 1, 1 } },
3498 { ISD::SMIN, MVT::v32i16, { 3, 7, 5, 5 } },
3499 { ISD::SMIN, MVT::v64i8, { 3, 7, 5, 5 } },
3500 { ISD::SMIN, MVT::v4i64, { 1, 3, 1, 1 } },
3501 { ISD::SMIN, MVT::v2i64, { 1, 3, 1, 1 } },
3502 { ISD::UMAX, MVT::v8i64, { 1, 3, 1, 1 } },
3503 { ISD::UMAX, MVT::v16i32, { 1, 1, 1, 1 } },
3504 { ISD::UMAX, MVT::v32i16, { 3, 7, 5, 5 } },
3505 { ISD::UMAX, MVT::v64i8, { 3, 7, 5, 5 } },
3506 { ISD::UMAX, MVT::v4i64, { 1, 3, 1, 1 } },
3507 { ISD::UMAX, MVT::v2i64, { 1, 3, 1, 1 } },
3508 { ISD::UMIN, MVT::v8i64, { 1, 3, 1, 1 } },
3509 { ISD::UMIN, MVT::v16i32, { 1, 1, 1, 1 } },
3510 { ISD::UMIN, MVT::v32i16, { 3, 7, 5, 5 } },
3511 { ISD::UMIN, MVT::v64i8, { 3, 7, 5, 5 } },
3512 { ISD::UMIN, MVT::v4i64, { 1, 3, 1, 1 } },
3513 { ISD::UMIN, MVT::v2i64, { 1, 3, 1, 1 } },
3514 { ISD::USUBSAT, MVT::v16i32, { 2 } }, // pmaxud + psubd
3515 { ISD::USUBSAT, MVT::v2i64, { 2 } }, // pmaxuq + psubq
3516 { ISD::USUBSAT, MVT::v4i64, { 2 } }, // pmaxuq + psubq
3517 { ISD::USUBSAT, MVT::v8i64, { 2 } }, // pmaxuq + psubq
3518 { ISD::UADDSAT, MVT::v16i32, { 3 } }, // not + pminud + paddd
3519 { ISD::UADDSAT, MVT::v2i64, { 3 } }, // not + pminuq + paddq
3520 { ISD::UADDSAT, MVT::v4i64, { 3 } }, // not + pminuq + paddq
3521 { ISD::UADDSAT, MVT::v8i64, { 3 } }, // not + pminuq + paddq
3522 { ISD::SADDSAT, MVT::v32i16, { 2 } },
3523 { ISD::SADDSAT, MVT::v64i8, { 2 } },
3524 { ISD::SSUBSAT, MVT::v32i16, { 2 } },
3525 { ISD::SSUBSAT, MVT::v64i8, { 2 } },
3526 { ISD::UADDSAT, MVT::v32i16, { 2 } },
3527 { ISD::UADDSAT, MVT::v64i8, { 2 } },
3528 { ISD::USUBSAT, MVT::v32i16, { 2 } },
3529 { ISD::USUBSAT, MVT::v64i8, { 2 } },
3530 { ISD::FMAXNUM, MVT::f32, { 2 } },
3531 { ISD::FMAXNUM, MVT::v4f32, { 2 } },
3532 { ISD::FMAXNUM, MVT::v8f32, { 2 } },
3533 { ISD::FMAXNUM, MVT::v16f32, { 2 } },
3534 { ISD::FMAXNUM, MVT::f64, { 2 } },
3535 { ISD::FMAXNUM, MVT::v2f64, { 2 } },
3536 { ISD::FMAXNUM, MVT::v4f64, { 2 } },
3537 { ISD::FMAXNUM, MVT::v8f64, { 2 } },
3538 { ISD::FSQRT, MVT::f32, { 3, 12, 1, 1 } }, // Skylake from http://www.agner.org/
3539 { ISD::FSQRT, MVT::v4f32, { 3, 12, 1, 1 } }, // Skylake from http://www.agner.org/
3540 { ISD::FSQRT, MVT::v8f32, { 6, 12, 1, 1 } }, // Skylake from http://www.agner.org/
3541 { ISD::FSQRT, MVT::v16f32, { 12, 20, 1, 3 } }, // Skylake from http://www.agner.org/
3542 { ISD::FSQRT, MVT::f64, { 6, 18, 1, 1 } }, // Skylake from http://www.agner.org/
3543 { ISD::FSQRT, MVT::v2f64, { 6, 18, 1, 1 } }, // Skylake from http://www.agner.org/
3544 { ISD::FSQRT, MVT::v4f64, { 12, 18, 1, 1 } }, // Skylake from http://www.agner.org/
3545 { ISD::FSQRT, MVT::v8f64, { 24, 32, 1, 3 } }, // Skylake from http://www.agner.org/
3546 };
3547 static const CostKindTblEntry XOPCostTbl[] = {
3548 { ISD::BITREVERSE, MVT::v4i64, { 4 } },
3549 { ISD::BITREVERSE, MVT::v8i32, { 4 } },
3550 { ISD::BITREVERSE, MVT::v16i16, { 4 } },
3551 { ISD::BITREVERSE, MVT::v32i8, { 4 } },
3552 { ISD::BITREVERSE, MVT::v2i64, { 1 } },
3553 { ISD::BITREVERSE, MVT::v4i32, { 1 } },
3554 { ISD::BITREVERSE, MVT::v8i16, { 1 } },
3555 { ISD::BITREVERSE, MVT::v16i8, { 1 } },
3556 { ISD::BITREVERSE, MVT::i64, { 3 } },
3557 { ISD::BITREVERSE, MVT::i32, { 3 } },
3558 { ISD::BITREVERSE, MVT::i16, { 3 } },
3559 { ISD::BITREVERSE, MVT::i8, { 3 } },
3560 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
3561 { ISD::ROTL, MVT::v4i64, { 4, 7, 5, 6 } },
3562 { ISD::ROTL, MVT::v8i32, { 4, 7, 5, 6 } },
3563 { ISD::ROTL, MVT::v16i16, { 4, 7, 5, 6 } },
3564 { ISD::ROTL, MVT::v32i8, { 4, 7, 5, 6 } },
3565 { ISD::ROTL, MVT::v2i64, { 1, 3, 1, 1 } },
3566 { ISD::ROTL, MVT::v4i32, { 1, 3, 1, 1 } },
3567 { ISD::ROTL, MVT::v8i16, { 1, 3, 1, 1 } },
3568 { ISD::ROTL, MVT::v16i8, { 1, 3, 1, 1 } },
3569 { ISD::ROTR, MVT::v4i64, { 4, 7, 8, 9 } },
3570 { ISD::ROTR, MVT::v8i32, { 4, 7, 8, 9 } },
3571 { ISD::ROTR, MVT::v16i16, { 4, 7, 8, 9 } },
3572 { ISD::ROTR, MVT::v32i8, { 4, 7, 8, 9 } },
3573 { ISD::ROTR, MVT::v2i64, { 1, 3, 3, 3 } },
3574 { ISD::ROTR, MVT::v4i32, { 1, 3, 3, 3 } },
3575 { ISD::ROTR, MVT::v8i16, { 1, 3, 3, 3 } },
3576 { ISD::ROTR, MVT::v16i8, { 1, 3, 3, 3 } }
3577 };
3578 static const CostKindTblEntry AVX2CostTbl[] = {
3579 { ISD::ABS, MVT::v2i64, { 2, 4, 3, 5 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3580 { ISD::ABS, MVT::v4i64, { 2, 4, 3, 5 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3581 { ISD::ABS, MVT::v4i32, { 1, 1, 1, 1 } },
3582 { ISD::ABS, MVT::v8i32, { 1, 1, 1, 2 } },
3583 { ISD::ABS, MVT::v8i16, { 1, 1, 1, 1 } },
3584 { ISD::ABS, MVT::v16i16, { 1, 1, 1, 2 } },
3585 { ISD::ABS, MVT::v16i8, { 1, 1, 1, 1 } },
3586 { ISD::ABS, MVT::v32i8, { 1, 1, 1, 2 } },
3587 { ISD::BITREVERSE, MVT::v2i64, { 3 } },
3588 { ISD::BITREVERSE, MVT::v4i64, { 3 } },
3589 { ISD::BITREVERSE, MVT::v4i32, { 3 } },
3590 { ISD::BITREVERSE, MVT::v8i32, { 3 } },
3591 { ISD::BITREVERSE, MVT::v8i16, { 3 } },
3592 { ISD::BITREVERSE, MVT::v16i16, { 3 } },
3593 { ISD::BITREVERSE, MVT::v16i8, { 3 } },
3594 { ISD::BITREVERSE, MVT::v32i8, { 3 } },
3595 { ISD::BSWAP, MVT::v4i64, { 1 } },
3596 { ISD::BSWAP, MVT::v8i32, { 1 } },
3597 { ISD::BSWAP, MVT::v16i16, { 1 } },
3598 { ISD::CTLZ, MVT::v2i64, { 7, 18, 24, 25 } },
3599 { ISD::CTLZ, MVT::v4i64, { 14, 18, 24, 44 } },
3600 { ISD::CTLZ, MVT::v4i32, { 5, 16, 19, 20 } },
3601 { ISD::CTLZ, MVT::v8i32, { 10, 16, 19, 34 } },
3602 { ISD::CTLZ, MVT::v8i16, { 4, 13, 14, 15 } },
3603 { ISD::CTLZ, MVT::v16i16, { 6, 14, 14, 24 } },
3604 { ISD::CTLZ, MVT::v16i8, { 3, 12, 9, 10 } },
3605 { ISD::CTLZ, MVT::v32i8, { 4, 12, 9, 14 } },
3606 { ISD::CTPOP, MVT::v2i64, { 3, 9, 10, 10 } },
3607 { ISD::CTPOP, MVT::v4i64, { 4, 9, 10, 14 } },
3608 { ISD::CTPOP, MVT::v4i32, { 7, 12, 14, 14 } },
3609 { ISD::CTPOP, MVT::v8i32, { 7, 12, 14, 18 } },
3610 { ISD::CTPOP, MVT::v8i16, { 3, 7, 11, 11 } },
3611 { ISD::CTPOP, MVT::v16i16, { 6, 8, 11, 18 } },
3612 { ISD::CTPOP, MVT::v16i8, { 2, 5, 8, 8 } },
3613 { ISD::CTPOP, MVT::v32i8, { 3, 5, 8, 12 } },
3614 { ISD::CTTZ, MVT::v2i64, { 4, 11, 13, 13 } },
3615 { ISD::CTTZ, MVT::v4i64, { 5, 11, 13, 20 } },
3616 { ISD::CTTZ, MVT::v4i32, { 7, 14, 17, 17 } },
3617 { ISD::CTTZ, MVT::v8i32, { 7, 15, 17, 24 } },
3618 { ISD::CTTZ, MVT::v8i16, { 4, 9, 14, 14 } },
3619 { ISD::CTTZ, MVT::v16i16, { 6, 9, 14, 24 } },
3620 { ISD::CTTZ, MVT::v16i8, { 3, 7, 11, 11 } },
3621 { ISD::CTTZ, MVT::v32i8, { 5, 7, 11, 18 } },
3622 { ISD::SADDSAT, MVT::v16i16, { 1 } },
3623 { ISD::SADDSAT, MVT::v32i8, { 1 } },
3624 { ISD::SMAX, MVT::v2i64, { 2, 7, 2, 3 } },
3625 { ISD::SMAX, MVT::v4i64, { 2, 7, 2, 3 } },
3626 { ISD::SMAX, MVT::v8i32, { 1, 1, 1, 2 } },
3627 { ISD::SMAX, MVT::v16i16, { 1, 1, 1, 2 } },
3628 { ISD::SMAX, MVT::v32i8, { 1, 1, 1, 2 } },
3629 { ISD::SMIN, MVT::v2i64, { 2, 7, 2, 3 } },
3630 { ISD::SMIN, MVT::v4i64, { 2, 7, 2, 3 } },
3631 { ISD::SMIN, MVT::v8i32, { 1, 1, 1, 2 } },
3632 { ISD::SMIN, MVT::v16i16, { 1, 1, 1, 2 } },
3633 { ISD::SMIN, MVT::v32i8, { 1, 1, 1, 2 } },
3634 { ISD::SSUBSAT, MVT::v16i16, { 1 } },
3635 { ISD::SSUBSAT, MVT::v32i8, { 1 } },
3636 { ISD::UADDSAT, MVT::v16i16, { 1 } },
3637 { ISD::UADDSAT, MVT::v32i8, { 1 } },
3638 { ISD::UADDSAT, MVT::v8i32, { 3 } }, // not + pminud + paddd
3639 { ISD::UMAX, MVT::v2i64, { 2, 8, 5, 6 } },
3640 { ISD::UMAX, MVT::v4i64, { 2, 8, 5, 8 } },
3641 { ISD::UMAX, MVT::v8i32, { 1, 1, 1, 2 } },
3642 { ISD::UMAX, MVT::v16i16, { 1, 1, 1, 2 } },
3643 { ISD::UMAX, MVT::v32i8, { 1, 1, 1, 2 } },
3644 { ISD::UMIN, MVT::v2i64, { 2, 8, 5, 6 } },
3645 { ISD::UMIN, MVT::v4i64, { 2, 8, 5, 8 } },
3646 { ISD::UMIN, MVT::v8i32, { 1, 1, 1, 2 } },
3647 { ISD::UMIN, MVT::v16i16, { 1, 1, 1, 2 } },
3648 { ISD::UMIN, MVT::v32i8, { 1, 1, 1, 2 } },
3649 { ISD::USUBSAT, MVT::v16i16, { 1 } },
3650 { ISD::USUBSAT, MVT::v32i8, { 1 } },
3651 { ISD::USUBSAT, MVT::v8i32, { 2 } }, // pmaxud + psubd
3652 { ISD::FMAXNUM, MVT::v8f32, { 3 } }, // MAXPS + CMPUNORDPS + BLENDVPS
3653 { ISD::FMAXNUM, MVT::v4f64, { 3 } }, // MAXPD + CMPUNORDPD + BLENDVPD
3654 { ISD::FSQRT, MVT::f32, { 7, 15, 1, 1 } }, // vsqrtss
3655 { ISD::FSQRT, MVT::v4f32, { 7, 15, 1, 1 } }, // vsqrtps
3656 { ISD::FSQRT, MVT::v8f32, { 14, 21, 1, 3 } }, // vsqrtps
3657 { ISD::FSQRT, MVT::f64, { 14, 21, 1, 1 } }, // vsqrtsd
3658 { ISD::FSQRT, MVT::v2f64, { 14, 21, 1, 1 } }, // vsqrtpd
3659 { ISD::FSQRT, MVT::v4f64, { 28, 35, 1, 3 } }, // vsqrtpd
3660 };
3661 static const CostKindTblEntry AVX1CostTbl[] = {
3662 { ISD::ABS, MVT::v4i64, { 6, 8, 6, 12 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3663 { ISD::ABS, MVT::v8i32, { 3, 6, 4, 5 } },
3664 { ISD::ABS, MVT::v16i16, { 3, 6, 4, 5 } },
3665 { ISD::ABS, MVT::v32i8, { 3, 6, 4, 5 } },
3666 { ISD::BITREVERSE, MVT::v4i64, { 12 } }, // 2 x 128-bit Op + extract/insert
3667 { ISD::BITREVERSE, MVT::v8i32, { 12 } }, // 2 x 128-bit Op + extract/insert
3668 { ISD::BITREVERSE, MVT::v16i16, { 12 } }, // 2 x 128-bit Op + extract/insert
3669 { ISD::BITREVERSE, MVT::v32i8, { 12 } }, // 2 x 128-bit Op + extract/insert
3670 { ISD::BSWAP, MVT::v4i64, { 4 } },
3671 { ISD::BSWAP, MVT::v8i32, { 4 } },
3672 { ISD::BSWAP, MVT::v16i16, { 4 } },
3673 { ISD::CTLZ, MVT::v4i64, { 29, 33, 49, 58 } }, // 2 x 128-bit Op + extract/insert
3674 { ISD::CTLZ, MVT::v2i64, { 14, 24, 24, 28 } },
3675 { ISD::CTLZ, MVT::v8i32, { 24, 28, 39, 48 } }, // 2 x 128-bit Op + extract/insert
3676 { ISD::CTLZ, MVT::v4i32, { 12, 20, 19, 23 } },
3677 { ISD::CTLZ, MVT::v16i16, { 19, 22, 29, 38 } }, // 2 x 128-bit Op + extract/insert
3678 { ISD::CTLZ, MVT::v8i16, { 9, 16, 14, 18 } },
3679 { ISD::CTLZ, MVT::v32i8, { 14, 15, 19, 28 } }, // 2 x 128-bit Op + extract/insert
3680 { ISD::CTLZ, MVT::v16i8, { 7, 12, 9, 13 } },
3681 { ISD::CTPOP, MVT::v4i64, { 14, 18, 19, 28 } }, // 2 x 128-bit Op + extract/insert
3682 { ISD::CTPOP, MVT::v2i64, { 7, 14, 10, 14 } },
3683 { ISD::CTPOP, MVT::v8i32, { 18, 24, 27, 36 } }, // 2 x 128-bit Op + extract/insert
3684 { ISD::CTPOP, MVT::v4i32, { 9, 20, 14, 18 } },
3685 { ISD::CTPOP, MVT::v16i16, { 16, 21, 22, 31 } }, // 2 x 128-bit Op + extract/insert
3686 { ISD::CTPOP, MVT::v8i16, { 8, 18, 11, 15 } },
3687 { ISD::CTPOP, MVT::v32i8, { 13, 15, 16, 25 } }, // 2 x 128-bit Op + extract/insert
3688 { ISD::CTPOP, MVT::v16i8, { 6, 12, 8, 12 } },
3689 { ISD::CTTZ, MVT::v4i64, { 17, 22, 24, 33 } }, // 2 x 128-bit Op + extract/insert
3690 { ISD::CTTZ, MVT::v2i64, { 9, 19, 13, 17 } },
3691 { ISD::CTTZ, MVT::v8i32, { 21, 27, 32, 41 } }, // 2 x 128-bit Op + extract/insert
3692 { ISD::CTTZ, MVT::v4i32, { 11, 24, 17, 21 } },
3693 { ISD::CTTZ, MVT::v16i16, { 18, 24, 27, 36 } }, // 2 x 128-bit Op + extract/insert
3694 { ISD::CTTZ, MVT::v8i16, { 9, 21, 14, 18 } },
3695 { ISD::CTTZ, MVT::v32i8, { 15, 18, 21, 30 } }, // 2 x 128-bit Op + extract/insert
3696 { ISD::CTTZ, MVT::v16i8, { 8, 16, 11, 15 } },
3697 { ISD::SADDSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
3698 { ISD::SADDSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
3699 { ISD::SMAX, MVT::v4i64, { 6, 9, 6, 12 } }, // 2 x 128-bit Op + extract/insert
3700 { ISD::SMAX, MVT::v2i64, { 3, 7, 2, 4 } },
3701 { ISD::SMAX, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3702 { ISD::SMAX, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3703 { ISD::SMAX, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3704 { ISD::SMIN, MVT::v4i64, { 6, 9, 6, 12 } }, // 2 x 128-bit Op + extract/insert
3705 { ISD::SMIN, MVT::v2i64, { 3, 7, 2, 3 } },
3706 { ISD::SMIN, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3707 { ISD::SMIN, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3708 { ISD::SMIN, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3709 { ISD::SSUBSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
3710 { ISD::SSUBSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
3711 { ISD::UADDSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
3712 { ISD::UADDSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
3713 { ISD::UADDSAT, MVT::v8i32, { 8 } }, // 2 x 128-bit Op + extract/insert
3714 { ISD::UMAX, MVT::v4i64, { 9, 10, 11, 17 } }, // 2 x 128-bit Op + extract/insert
3715 { ISD::UMAX, MVT::v2i64, { 4, 8, 5, 7 } },
3716 { ISD::UMAX, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3717 { ISD::UMAX, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3718 { ISD::UMAX, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3719 { ISD::UMIN, MVT::v4i64, { 9, 10, 11, 17 } }, // 2 x 128-bit Op + extract/insert
3720 { ISD::UMIN, MVT::v2i64, { 4, 8, 5, 7 } },
3721 { ISD::UMIN, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3722 { ISD::UMIN, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3723 { ISD::UMIN, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3724 { ISD::USUBSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
3725 { ISD::USUBSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
3726 { ISD::USUBSAT, MVT::v8i32, { 6 } }, // 2 x 128-bit Op + extract/insert
3727 { ISD::FMAXNUM, MVT::f32, { 3 } }, // MAXSS + CMPUNORDSS + BLENDVPS
3728 { ISD::FMAXNUM, MVT::v4f32, { 3 } }, // MAXPS + CMPUNORDPS + BLENDVPS
3729 { ISD::FMAXNUM, MVT::v8f32, { 5 } }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
3730 { ISD::FMAXNUM, MVT::f64, { 3 } }, // MAXSD + CMPUNORDSD + BLENDVPD
3731 { ISD::FMAXNUM, MVT::v2f64, { 3 } }, // MAXPD + CMPUNORDPD + BLENDVPD
3732 { ISD::FMAXNUM, MVT::v4f64, { 5 } }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
3733 { ISD::FSQRT, MVT::f32, { 21, 21, 1, 1 } }, // vsqrtss
3734 { ISD::FSQRT, MVT::v4f32, { 21, 21, 1, 1 } }, // vsqrtps
3735 { ISD::FSQRT, MVT::v8f32, { 42, 42, 1, 3 } }, // vsqrtps
3736 { ISD::FSQRT, MVT::f64, { 27, 27, 1, 1 } }, // vsqrtsd
3737 { ISD::FSQRT, MVT::v2f64, { 27, 27, 1, 1 } }, // vsqrtpd
3738 { ISD::FSQRT, MVT::v4f64, { 54, 54, 1, 3 } }, // vsqrtpd
3739 };
3740 static const CostKindTblEntry GLMCostTbl[] = {
3741 { ISD::FSQRT, MVT::f32, { 19, 20, 1, 1 } }, // sqrtss
3742 { ISD::FSQRT, MVT::v4f32, { 37, 41, 1, 5 } }, // sqrtps
3743 { ISD::FSQRT, MVT::f64, { 34, 35, 1, 1 } }, // sqrtsd
3744 { ISD::FSQRT, MVT::v2f64, { 67, 71, 1, 5 } }, // sqrtpd
3745 };
3746 static const CostKindTblEntry SLMCostTbl[] = {
3747 { ISD::FSQRT, MVT::f32, { 20, 20, 1, 1 } }, // sqrtss
3748 { ISD::FSQRT, MVT::v4f32, { 40, 41, 1, 5 } }, // sqrtps
3749 { ISD::FSQRT, MVT::f64, { 35, 35, 1, 1 } }, // sqrtsd
3750 { ISD::FSQRT, MVT::v2f64, { 70, 71, 1, 5 } }, // sqrtpd
3751 };
3752 static const CostKindTblEntry SSE42CostTbl[] = {
3753 { ISD::USUBSAT, MVT::v4i32, { 2 } }, // pmaxud + psubd
3754 { ISD::UADDSAT, MVT::v4i32, { 3 } }, // not + pminud + paddd
3755 { ISD::FSQRT, MVT::f32, { 18, 18, 1, 1 } }, // Nehalem from http://www.agner.org/
3756 { ISD::FSQRT, MVT::v4f32, { 18, 18, 1, 1 } }, // Nehalem from http://www.agner.org/
3757 };
3758 static const CostKindTblEntry SSE41CostTbl[] = {
3759 { ISD::ABS, MVT::v2i64, { 3, 4, 3, 5 } }, // BLENDVPD(X,PSUBQ(0,X),X)
3760 { ISD::SMAX, MVT::v2i64, { 3, 7, 2, 3 } },
3761 { ISD::SMAX, MVT::v4i32, { 1, 1, 1, 1 } },
3762 { ISD::SMAX, MVT::v16i8, { 1, 1, 1, 1 } },
3763 { ISD::SMIN, MVT::v2i64, { 3, 7, 2, 3 } },
3764 { ISD::SMIN, MVT::v4i32, { 1, 1, 1, 1 } },
3765 { ISD::SMIN, MVT::v16i8, { 1, 1, 1, 1 } },
3766 { ISD::UMAX, MVT::v2i64, { 2, 11, 6, 7 } },
3767 { ISD::UMAX, MVT::v4i32, { 1, 1, 1, 1 } },
3768 { ISD::UMAX, MVT::v8i16, { 1, 1, 1, 1 } },
3769 { ISD::UMIN, MVT::v2i64, { 2, 11, 6, 7 } },
3770 { ISD::UMIN, MVT::v4i32, { 1, 1, 1, 1 } },
3771 { ISD::UMIN, MVT::v8i16, { 1, 1, 1, 1 } },
3772 };
3773 static const CostKindTblEntry SSSE3CostTbl[] = {
3774 { ISD::ABS, MVT::v4i32, { 1, 2, 1, 1 } },
3775 { ISD::ABS, MVT::v8i16, { 1, 2, 1, 1 } },
3776 { ISD::ABS, MVT::v16i8, { 1, 2, 1, 1 } },
3777 { ISD::BITREVERSE, MVT::v2i64, { 5 } },
3778 { ISD::BITREVERSE, MVT::v4i32, { 5 } },
3779 { ISD::BITREVERSE, MVT::v8i16, { 5 } },
3780 { ISD::BITREVERSE, MVT::v16i8, { 5 } },
3781 { ISD::BSWAP, MVT::v2i64, { 1 } },
3782 { ISD::BSWAP, MVT::v4i32, { 1 } },
3783 { ISD::BSWAP, MVT::v8i16, { 1 } },
3784 { ISD::CTLZ, MVT::v2i64, { 18, 28, 28, 35 } },
3785 { ISD::CTLZ, MVT::v4i32, { 15, 20, 22, 28 } },
3786 { ISD::CTLZ, MVT::v8i16, { 13, 17, 16, 22 } },
3787 { ISD::CTLZ, MVT::v16i8, { 11, 15, 10, 16 } },
3788 { ISD::CTPOP, MVT::v2i64, { 13, 19, 12, 18 } },
3789 { ISD::CTPOP, MVT::v4i32, { 18, 24, 16, 22 } },
3790 { ISD::CTPOP, MVT::v8i16, { 13, 18, 14, 20 } },
3791 { ISD::CTPOP, MVT::v16i8, { 11, 12, 10, 16 } },
3792 { ISD::CTTZ, MVT::v2i64, { 13, 25, 15, 22 } },
3793 { ISD::CTTZ, MVT::v4i32, { 18, 26, 19, 25 } },
3794 { ISD::CTTZ, MVT::v8i16, { 13, 20, 17, 23 } },
3795 { ISD::CTTZ, MVT::v16i8, { 11, 16, 13, 19 } }
3796 };
3797 static const CostKindTblEntry SSE2CostTbl[] = {
3798 { ISD::ABS, MVT::v2i64, { 3, 6, 5, 5 } },
3799 { ISD::ABS, MVT::v4i32, { 1, 4, 4, 4 } },
3800 { ISD::ABS, MVT::v8i16, { 1, 2, 3, 3 } },
3801 { ISD::ABS, MVT::v16i8, { 1, 2, 3, 3 } },
3802 { ISD::BITREVERSE, MVT::v2i64, { 29 } },
3803 { ISD::BITREVERSE, MVT::v4i32, { 27 } },
3804 { ISD::BITREVERSE, MVT::v8i16, { 27 } },
3805 { ISD::BITREVERSE, MVT::v16i8, { 20 } },
3806 { ISD::BSWAP, MVT::v2i64, { 7 } },
3807 { ISD::BSWAP, MVT::v4i32, { 7 } },
3808 { ISD::BSWAP, MVT::v8i16, { 7 } },
3809 { ISD::CTLZ, MVT::v2i64, { 10, 45, 36, 38 } },
3810 { ISD::CTLZ, MVT::v4i32, { 10, 45, 38, 40 } },
3811 { ISD::CTLZ, MVT::v8i16, { 9, 38, 32, 34 } },
3812 { ISD::CTLZ, MVT::v16i8, { 8, 39, 29, 32 } },
3813 { ISD::CTPOP, MVT::v2i64, { 12, 26, 16, 18 } },
3814 { ISD::CTPOP, MVT::v4i32, { 15, 29, 21, 23 } },
3815 { ISD::CTPOP, MVT::v8i16, { 13, 25, 18, 20 } },
3816 { ISD::CTPOP, MVT::v16i8, { 10, 21, 14, 16 } },
3817 { ISD::CTTZ, MVT::v2i64, { 14, 28, 19, 21 } },
3818 { ISD::CTTZ, MVT::v4i32, { 18, 31, 24, 26 } },
3819 { ISD::CTTZ, MVT::v8i16, { 16, 27, 21, 23 } },
3820 { ISD::CTTZ, MVT::v16i8, { 13, 23, 17, 19 } },
3821 { ISD::SADDSAT, MVT::v8i16, { 1 } },
3822 { ISD::SADDSAT, MVT::v16i8, { 1 } },
3823 { ISD::SMAX, MVT::v2i64, { 4, 8, 15, 15 } },
3824 { ISD::SMAX, MVT::v4i32, { 2, 4, 5, 5 } },
3825 { ISD::SMAX, MVT::v8i16, { 1, 1, 1, 1 } },
3826 { ISD::SMAX, MVT::v16i8, { 2, 4, 5, 5 } },
3827 { ISD::SMIN, MVT::v2i64, { 4, 8, 15, 15 } },
3828 { ISD::SMIN, MVT::v4i32, { 2, 4, 5, 5 } },
3829 { ISD::SMIN, MVT::v8i16, { 1, 1, 1, 1 } },
3830 { ISD::SMIN, MVT::v16i8, { 2, 4, 5, 5 } },
3831 { ISD::SSUBSAT, MVT::v8i16, { 1 } },
3832 { ISD::SSUBSAT, MVT::v16i8, { 1 } },
3833 { ISD::UADDSAT, MVT::v8i16, { 1 } },
3834 { ISD::UADDSAT, MVT::v16i8, { 1 } },
3835 { ISD::UMAX, MVT::v2i64, { 4, 8, 15, 15 } },
3836 { ISD::UMAX, MVT::v4i32, { 2, 5, 8, 8 } },
3837 { ISD::UMAX, MVT::v8i16, { 1, 3, 3, 3 } },
3838 { ISD::UMAX, MVT::v16i8, { 1, 1, 1, 1 } },
3839 { ISD::UMIN, MVT::v2i64, { 4, 8, 15, 15 } },
3840 { ISD::UMIN, MVT::v4i32, { 2, 5, 8, 8 } },
3841 { ISD::UMIN, MVT::v8i16, { 1, 3, 3, 3 } },
3842 { ISD::UMIN, MVT::v16i8, { 1, 1, 1, 1 } },
3843 { ISD::USUBSAT, MVT::v8i16, { 1 } },
3844 { ISD::USUBSAT, MVT::v16i8, { 1 } },
3845 { ISD::FMAXNUM, MVT::f64, { 4 } },
3846 { ISD::FMAXNUM, MVT::v2f64, { 4 } },
3847 { ISD::FSQRT, MVT::f64, { 32, 32, 1, 1 } }, // Nehalem from http://www.agner.org/
3848 { ISD::FSQRT, MVT::v2f64, { 32, 32, 1, 1 } }, // Nehalem from http://www.agner.org/
3849 };
3850 static const CostKindTblEntry SSE1CostTbl[] = {
3851 { ISD::FMAXNUM, MVT::f32, { 4 } },
3852 { ISD::FMAXNUM, MVT::v4f32, { 4 } },
3853 { ISD::FSQRT, MVT::f32, { 28, 30, 1, 2 } }, // Pentium III from http://www.agner.org/
3854 { ISD::FSQRT, MVT::v4f32, { 56, 56, 1, 2 } }, // Pentium III from http://www.agner.org/
3855 };
3856 static const CostKindTblEntry BMI64CostTbl[] = { // 64-bit targets
3857 { ISD::CTTZ, MVT::i64, { 1 } },
3858 };
3859 static const CostKindTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
3860 { ISD::CTTZ, MVT::i32, { 1 } },
3861 { ISD::CTTZ, MVT::i16, { 1 } },
3862 { ISD::CTTZ, MVT::i8, { 1 } },
3863 };
3864 static const CostKindTblEntry LZCNT64CostTbl[] = { // 64-bit targets
3865 { ISD::CTLZ, MVT::i64, { 1 } },
3866 };
3867 static const CostKindTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
3868 { ISD::CTLZ, MVT::i32, { 1 } },
3869 { ISD::CTLZ, MVT::i16, { 2 } },
3870 { ISD::CTLZ, MVT::i8, { 2 } },
3871 };
3872 static const CostKindTblEntry POPCNT64CostTbl[] = { // 64-bit targets
3873 { ISD::CTPOP, MVT::i64, { 1, 1, 1, 1 } }, // popcnt
3874 };
3875 static const CostKindTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
3876 { ISD::CTPOP, MVT::i32, { 1, 1, 1, 1 } }, // popcnt
3877 { ISD::CTPOP, MVT::i16, { 1, 1, 2, 2 } }, // popcnt(zext())
3878 { ISD::CTPOP, MVT::i8, { 1, 1, 2, 2 } }, // popcnt(zext())
3879 };
3880 static const CostKindTblEntry X64CostTbl[] = { // 64-bit targets
3881 { ISD::ABS, MVT::i64, { 1, 2, 3, 4 } }, // SUB+CMOV
3882 { ISD::BITREVERSE, MVT::i64, { 14 } },
3883 { ISD::BSWAP, MVT::i64, { 1 } },
3884 { ISD::CTLZ, MVT::i64, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
3885 { ISD::CTLZ_ZERO_UNDEF, MVT::i64,{ 1, 1, 1, 1 } }, // BSR+XOR
3886 { ISD::CTTZ, MVT::i64, { 3 } }, // TEST+BSF+CMOV/BRANCH
3887 { ISD::CTTZ_ZERO_UNDEF, MVT::i64,{ 1, 1, 1, 1 } }, // BSR
3888 { ISD::CTPOP, MVT::i64, { 10, 6, 19, 19 } },
3889 { ISD::ROTL, MVT::i64, { 2, 3, 1, 3 } },
3890 { ISD::ROTR, MVT::i64, { 2, 3, 1, 3 } },
3891 { ISD::FSHL, MVT::i64, { 4, 4, 1, 4 } },
3892 { ISD::SMAX, MVT::i64, { 1, 3, 2, 3 } },
3893 { ISD::SMIN, MVT::i64, { 1, 3, 2, 3 } },
3894 { ISD::UMAX, MVT::i64, { 1, 3, 2, 3 } },
3895 { ISD::UMIN, MVT::i64, { 1, 3, 2, 3 } },
3896 { ISD::SADDO, MVT::i64, { 1 } },
3897 { ISD::UADDO, MVT::i64, { 1 } },
3898 { ISD::UMULO, MVT::i64, { 2 } }, // mulq + seto
3899 };
3900 static const CostKindTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3901 { ISD::ABS, MVT::i32, { 1, 2, 3, 4 } }, // SUB+XOR+SRA or SUB+CMOV
3902 { ISD::ABS, MVT::i16, { 2, 2, 3, 4 } }, // SUB+XOR+SRA or SUB+CMOV
3903 { ISD::ABS, MVT::i8, { 2, 4, 4, 4 } }, // SUB+XOR+SRA
3904 { ISD::BITREVERSE, MVT::i32, { 14 } },
3905 { ISD::BITREVERSE, MVT::i16, { 14 } },
3906 { ISD::BITREVERSE, MVT::i8, { 11 } },
3907 { ISD::BSWAP, MVT::i32, { 1 } },
3908 { ISD::BSWAP, MVT::i16, { 1 } }, // ROL
3909 { ISD::CTLZ, MVT::i32, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
3910 { ISD::CTLZ, MVT::i16, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
3911 { ISD::CTLZ, MVT::i8, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
3912 { ISD::CTLZ_ZERO_UNDEF, MVT::i32,{ 1, 1, 1, 1 } }, // BSR+XOR
3913 { ISD::CTLZ_ZERO_UNDEF, MVT::i16,{ 2, 2, 3, 3 } }, // BSR+XOR
3914 { ISD::CTLZ_ZERO_UNDEF, MVT::i8, { 2, 2, 3, 3 } }, // BSR+XOR
3915 { ISD::CTTZ, MVT::i32, { 3 } }, // TEST+BSF+CMOV/BRANCH
3916 { ISD::CTTZ, MVT::i16, { 3 } }, // TEST+BSF+CMOV/BRANCH
3917 { ISD::CTTZ, MVT::i8, { 3 } }, // TEST+BSF+CMOV/BRANCH
3918 { ISD::CTTZ_ZERO_UNDEF, MVT::i32,{ 1, 1, 1, 1 } }, // BSF
3919 { ISD::CTTZ_ZERO_UNDEF, MVT::i16,{ 2, 2, 1, 1 } }, // BSF
3920 { ISD::CTTZ_ZERO_UNDEF, MVT::i8, { 2, 2, 1, 1 } }, // BSF
3921 { ISD::CTPOP, MVT::i32, { 8, 7, 15, 15 } },
3922 { ISD::CTPOP, MVT::i16, { 9, 8, 17, 17 } },
3923 { ISD::CTPOP, MVT::i8, { 7, 6, 13, 13 } },
3924 { ISD::ROTL, MVT::i32, { 2, 3, 1, 3 } },
3925 { ISD::ROTL, MVT::i16, { 2, 3, 1, 3 } },
3926 { ISD::ROTL, MVT::i8, { 2, 3, 1, 3 } },
3927 { ISD::ROTR, MVT::i32, { 2, 3, 1, 3 } },
3928 { ISD::ROTR, MVT::i16, { 2, 3, 1, 3 } },
3929 { ISD::ROTR, MVT::i8, { 2, 3, 1, 3 } },
3930 { ISD::FSHL, MVT::i32, { 4, 4, 1, 4 } },
3931 { ISD::FSHL, MVT::i16, { 4, 4, 2, 5 } },
3932 { ISD::FSHL, MVT::i8, { 4, 4, 2, 5 } },
3933 { ISD::SMAX, MVT::i32, { 1, 2, 2, 3 } },
3934 { ISD::SMAX, MVT::i16, { 1, 4, 2, 4 } },
3935 { ISD::SMAX, MVT::i8, { 1, 4, 2, 4 } },
3936 { ISD::SMIN, MVT::i32, { 1, 2, 2, 3 } },
3937 { ISD::SMIN, MVT::i16, { 1, 4, 2, 4 } },
3938 { ISD::SMIN, MVT::i8, { 1, 4, 2, 4 } },
3939 { ISD::UMAX, MVT::i32, { 1, 2, 2, 3 } },
3940 { ISD::UMAX, MVT::i16, { 1, 4, 2, 4 } },
3941 { ISD::UMAX, MVT::i8, { 1, 4, 2, 4 } },
3942 { ISD::UMIN, MVT::i32, { 1, 2, 2, 3 } },
3943 { ISD::UMIN, MVT::i16, { 1, 4, 2, 4 } },
3944 { ISD::UMIN, MVT::i8, { 1, 4, 2, 4 } },
3945 { ISD::SADDO, MVT::i32, { 1 } },
3946 { ISD::SADDO, MVT::i16, { 1 } },
3947 { ISD::SADDO, MVT::i8, { 1 } },
3948 { ISD::UADDO, MVT::i32, { 1 } },
3949 { ISD::UADDO, MVT::i16, { 1 } },
3950 { ISD::UADDO, MVT::i8, { 1 } },
3951 { ISD::UMULO, MVT::i32, { 2 } }, // mul + seto
3952 { ISD::UMULO, MVT::i16, { 2 } },
3953 { ISD::UMULO, MVT::i8, { 2 } },
3954 };
3955
3956 Type *RetTy = ICA.getReturnType();
3957 Type *OpTy = RetTy;
3958 Intrinsic::ID IID = ICA.getID();
3959 unsigned ISD = ISD::DELETED_NODE;
3960 switch (IID) {
3961 default:
3962 break;
3963 case Intrinsic::abs:
3964 ISD = ISD::ABS;
3965 break;
3966 case Intrinsic::bitreverse:
3967 ISD = ISD::BITREVERSE;
3968 break;
3969 case Intrinsic::bswap:
3970 ISD = ISD::BSWAP;
3971 break;
3972 case Intrinsic::ctlz:
3973 ISD = ISD::CTLZ;
3974 break;
3975 case Intrinsic::ctpop:
3976 ISD = ISD::CTPOP;
3977 break;
3978 case Intrinsic::cttz:
3979 ISD = ISD::CTTZ;
3980 break;
3981 case Intrinsic::fshl:
3982 ISD = ISD::FSHL;
3983 if (!ICA.isTypeBasedOnly()) {
3984 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
3985 if (Args[0] == Args[1])
3986 ISD = ISD::ROTL;
3987 }
3988 break;
3989 case Intrinsic::fshr:
3990 // FSHR has same costs so don't duplicate.
3991 ISD = ISD::FSHL;
3992 if (!ICA.isTypeBasedOnly()) {
3993 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
3994 if (Args[0] == Args[1])
3995 ISD = ISD::ROTR;
3996 }
3997 break;
3998 case Intrinsic::maxnum:
3999 case Intrinsic::minnum:
4000 // FMINNUM has same costs so don't duplicate.
4001 ISD = ISD::FMAXNUM;
4002 break;
4003 case Intrinsic::sadd_sat:
4004 ISD = ISD::SADDSAT;
4005 break;
4006 case Intrinsic::smax:
4007 ISD = ISD::SMAX;
4008 break;
4009 case Intrinsic::smin:
4010 ISD = ISD::SMIN;
4011 break;
4012 case Intrinsic::ssub_sat:
4013 ISD = ISD::SSUBSAT;
4014 break;
4015 case Intrinsic::uadd_sat:
4016 ISD = ISD::UADDSAT;
4017 break;
4018 case Intrinsic::umax:
4019 ISD = ISD::UMAX;
4020 break;
4021 case Intrinsic::umin:
4022 ISD = ISD::UMIN;
4023 break;
4024 case Intrinsic::usub_sat:
4025 ISD = ISD::USUBSAT;
4026 break;
4027 case Intrinsic::sqrt:
4028 ISD = ISD::FSQRT;
4029 break;
4030 case Intrinsic::sadd_with_overflow:
4031 case Intrinsic::ssub_with_overflow:
4032 // SSUBO has same costs so don't duplicate.
4033 ISD = ISD::SADDO;
4034 OpTy = RetTy->getContainedType(0);
4035 break;
4036 case Intrinsic::uadd_with_overflow:
4037 case Intrinsic::usub_with_overflow:
4038 // USUBO has same costs so don't duplicate.
4039 ISD = ISD::UADDO;
4040 OpTy = RetTy->getContainedType(0);
4041 break;
4042 case Intrinsic::umul_with_overflow:
4043 case Intrinsic::smul_with_overflow:
4044 // SMULO has same costs so don't duplicate.
4045 ISD = ISD::UMULO;
4046 OpTy = RetTy->getContainedType(0);
4047 break;
4048 }
4049
4050 if (ISD != ISD::DELETED_NODE) {
4051 // Legalize the type.
4052 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(OpTy);
4053 MVT MTy = LT.second;
4054
4055 // Attempt to lookup cost.
4056 if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
4057 MTy.isVector()) {
4058 // With PSHUFB the code is very similar for all types. If we have integer
4059 // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
4060 // we also need a PSHUFB.
4061 unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
4062
4063 // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
4064 // instructions. We also need an extract and an insert.
4065 if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
4066 (ST->hasBWI() && MTy.is512BitVector())))
4067 Cost = Cost * 2 + 2;
4068
4069 return LT.first * Cost;
4070 }
4071
4072 // Without BMI/LZCNT see if we're only looking for a *_ZERO_UNDEF cost.
4073 if (((ISD == ISD::CTTZ && !ST->hasBMI()) ||
4074 (ISD == ISD::CTLZ && !ST->hasLZCNT())) &&
4075 !MTy.isVector() && !ICA.isTypeBasedOnly()) {
4076 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
4077 if (auto *Cst = dyn_cast<ConstantInt>(Args[1]))
4078 if (Cst->isAllOnesValue())
4079 ISD = ISD == ISD::CTTZ ? ISD::CTTZ_ZERO_UNDEF : ISD::CTLZ_ZERO_UNDEF;
4080 }
4081
4082 // FSQRT is a single instruction.
4083 if (ISD == ISD::FSQRT && CostKind == TTI::TCK_CodeSize)
4084 return LT.first;
4085
4086 auto adjustTableCost = [](int ISD, unsigned Cost,
4087 InstructionCost LegalizationCost,
4088 FastMathFlags FMF) {
4089 // If there are no NANs to deal with, then these are reduced to a
4090 // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
4091 // assume is used in the non-fast case.
4092 if (ISD == ISD::FMAXNUM || ISD == ISD::FMINNUM) {
4093 if (FMF.noNaNs())
4094 return LegalizationCost * 1;
4095 }
4096 return LegalizationCost * (int)Cost;
4097 };
4098
4099 if (ST->useGLMDivSqrtCosts())
4100 if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
4101 if (auto KindCost = Entry->Cost[CostKind])
4102 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4103 ICA.getFlags());
4104
4105 if (ST->useSLMArithCosts())
4106 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
4107 if (auto KindCost = Entry->Cost[CostKind])
4108 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4109 ICA.getFlags());
4110
4111 if (ST->hasVBMI2())
4112 if (const auto *Entry = CostTableLookup(AVX512VBMI2CostTbl, ISD, MTy))
4113 if (auto KindCost = Entry->Cost[CostKind])
4114 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4115 ICA.getFlags());
4116
4117 if (ST->hasBITALG())
4118 if (const auto *Entry = CostTableLookup(AVX512BITALGCostTbl, ISD, MTy))
4119 if (auto KindCost = Entry->Cost[CostKind])
4120 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4121 ICA.getFlags());
4122
4123 if (ST->hasVPOPCNTDQ())
4124 if (const auto *Entry = CostTableLookup(AVX512VPOPCNTDQCostTbl, ISD, MTy))
4125 if (auto KindCost = Entry->Cost[CostKind])
4126 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4127 ICA.getFlags());
4128
4129 if (ST->hasCDI())
4130 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
4131 if (auto KindCost = Entry->Cost[CostKind])
4132 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4133 ICA.getFlags());
4134
4135 if (ST->hasBWI())
4136 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
4137 if (auto KindCost = Entry->Cost[CostKind])
4138 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4139 ICA.getFlags());
4140
4141 if (ST->hasAVX512())
4142 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
4143 if (auto KindCost = Entry->Cost[CostKind])
4144 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4145 ICA.getFlags());
4146
4147 if (ST->hasXOP())
4148 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
4149 if (auto KindCost = Entry->Cost[CostKind])
4150 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4151 ICA.getFlags());
4152
4153 if (ST->hasAVX2())
4154 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
4155 if (auto KindCost = Entry->Cost[CostKind])
4156 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4157 ICA.getFlags());
4158
4159 if (ST->hasAVX())
4160 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
4161 if (auto KindCost = Entry->Cost[CostKind])
4162 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4163 ICA.getFlags());
4164
4165 if (ST->hasSSE42())
4166 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
4167 if (auto KindCost = Entry->Cost[CostKind])
4168 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4169 ICA.getFlags());
4170
4171 if (ST->hasSSE41())
4172 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
4173 if (auto KindCost = Entry->Cost[CostKind])
4174 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4175 ICA.getFlags());
4176
4177 if (ST->hasSSSE3())
4178 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
4179 if (auto KindCost = Entry->Cost[CostKind])
4180 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4181 ICA.getFlags());
4182
4183 if (ST->hasSSE2())
4184 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
4185 if (auto KindCost = Entry->Cost[CostKind])
4186 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4187 ICA.getFlags());
4188
4189 if (ST->hasSSE1())
4190 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
4191 if (auto KindCost = Entry->Cost[CostKind])
4192 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4193 ICA.getFlags());
4194
4195 if (ST->hasBMI()) {
4196 if (ST->is64Bit())
4197 if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
4198 if (auto KindCost = Entry->Cost[CostKind])
4199 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4200 ICA.getFlags());
4201
4202 if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
4203 if (auto KindCost = Entry->Cost[CostKind])
4204 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4205 ICA.getFlags());
4206 }
4207
4208 if (ST->hasLZCNT()) {
4209 if (ST->is64Bit())
4210 if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
4211 if (auto KindCost = Entry->Cost[CostKind])
4212 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4213 ICA.getFlags());
4214
4215 if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
4216 if (auto KindCost = Entry->Cost[CostKind])
4217 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4218 ICA.getFlags());
4219 }
4220
4221 if (ST->hasPOPCNT()) {
4222 if (ST->is64Bit())
4223 if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
4224 if (auto KindCost = Entry->Cost[CostKind])
4225 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4226 ICA.getFlags());
4227
4228 if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
4229 if (auto KindCost = Entry->Cost[CostKind])
4230 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4231 ICA.getFlags());
4232 }
4233
4234 if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
4235 if (const Instruction *II = ICA.getInst()) {
4236 if (II->hasOneUse() && isa<StoreInst>(II->user_back()))
4237 return TTI::TCC_Free;
4238 if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) {
4239 if (LI->hasOneUse())
4240 return TTI::TCC_Free;
4241 }
4242 }
4243 }
4244
4245 if (ST->is64Bit())
4246 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
4247 if (auto KindCost = Entry->Cost[CostKind])
4248 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4249 ICA.getFlags());
4250
4251 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
4252 if (auto KindCost = Entry->Cost[CostKind])
4253 return adjustTableCost(Entry->ISD, *KindCost, LT.first, ICA.getFlags());
4254 }
4255
4256 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
4257}
4258
4259InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
4260 unsigned Index) {
4261 static const CostTblEntry SLMCostTbl[] = {
4262 { ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 },
4263 { ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 },
4264 { ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 },
4265 { ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 }
4266 };
4267
4268 assert(Val->isVectorTy() && "This must be a vector type")(static_cast <bool> (Val->isVectorTy() && "This must be a vector type"
) ? void (0) : __assert_fail ("Val->isVectorTy() && \"This must be a vector type\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4268, __extension__
__PRETTY_FUNCTION__))
;
16
'?' condition is true
4269 Type *ScalarType = Val->getScalarType();
4270 InstructionCost RegisterFileMoveCost = 0;
4271 TTI::TargetCostKind CostKind = TTI::TargetCostKind::TCK_RecipThroughput;
4272
4273 // Non-immediate extraction/insertion can be handled as a sequence of
4274 // aliased loads+stores via the stack.
4275 if (Index == -1U && (Opcode == Instruction::ExtractElement ||
4276 Opcode == Instruction::InsertElement)) {
4277 // TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns:
4278 // inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0.
4279
4280 // TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling.
4281 assert(isa<FixedVectorType>(Val) && "Fixed vector type expected")(static_cast <bool> (isa<FixedVectorType>(Val) &&
"Fixed vector type expected") ? void (0) : __assert_fail ("isa<FixedVectorType>(Val) && \"Fixed vector type expected\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4281, __extension__
__PRETTY_FUNCTION__))
;
4282 Align VecAlign = DL.getPrefTypeAlign(Val);
4283 Align SclAlign = DL.getPrefTypeAlign(ScalarType);
4284
4285 // Extract - store vector to stack, load scalar.
4286 if (Opcode == Instruction::ExtractElement) {
4287 return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0, CostKind) +
4288 getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
4289 CostKind);
4290 }
4291 // Insert - store vector to stack, store scalar, load vector.
4292 if (Opcode == Instruction::InsertElement) {
4293 return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0, CostKind) +
4294 getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
4295 CostKind) +
4296 getMemoryOpCost(Instruction::Load, Val, VecAlign, 0, CostKind);
4297 }
4298 }
4299
4300 if (Index != -1U && (Opcode
16.1
'Opcode' is equal to ExtractElement
== Instruction::ExtractElement ||
4301 Opcode == Instruction::InsertElement)) {
4302 // Extraction of vXi1 elements are now efficiently handled by MOVMSK.
4303 if (Opcode
16.2
'Opcode' is equal to ExtractElement
== Instruction::ExtractElement &&
4304 ScalarType->getScalarSizeInBits() == 1 &&
17
Assuming the condition is false
4305 cast<FixedVectorType>(Val)->getNumElements() > 1)
4306 return 1;
4307
4308 // Legalize the type.
4309 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
4310
4311 // This type is legalized to a scalar type.
4312 if (!LT.second.isVector())
18
Taking false branch
4313 return 0;
4314
4315 // The type may be split. Normalize the index to the new type.
4316 unsigned SizeInBits = LT.second.getSizeInBits();
4317 unsigned NumElts = LT.second.getVectorNumElements();
4318 unsigned SubNumElts = NumElts;
4319 Index = Index % NumElts;
4320
4321 // For >128-bit vectors, we need to extract higher 128-bit subvectors.
4322 // For inserts, we also need to insert the subvector back.
4323 if (SizeInBits > 128) {
19
Assuming 'SizeInBits' is > 128
4324 assert((SizeInBits % 128) == 0 && "Illegal vector")(static_cast <bool> ((SizeInBits % 128) == 0 &&
"Illegal vector") ? void (0) : __assert_fail ("(SizeInBits % 128) == 0 && \"Illegal vector\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4324, __extension__
__PRETTY_FUNCTION__))
;
20
Taking true branch
21
Assuming the condition is true
22
'?' condition is true
4325 unsigned NumSubVecs = SizeInBits / 128;
4326 SubNumElts = NumElts / NumSubVecs;
23
Value assigned to 'SubNumElts'
4327 if (SubNumElts <= Index) {
24
Assuming 'SubNumElts' is <= 'Index'
25
Taking true branch
4328 RegisterFileMoveCost += (Opcode
25.1
'Opcode' is not equal to InsertElement
== Instruction::InsertElement ? 2 : 1);
26
'?' condition is false
4329 Index %= SubNumElts;
27
Division by zero
4330 }
4331 }
4332
4333 if (Index == 0) {
4334 // Floating point scalars are already located in index #0.
4335 // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
4336 // true for all.
4337 if (ScalarType->isFloatingPointTy())
4338 return RegisterFileMoveCost;
4339
4340 // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
4341 if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
4342 return 1 + RegisterFileMoveCost;
4343 }
4344
4345 int ISD = TLI->InstructionOpcodeToISD(Opcode);
4346 assert(ISD && "Unexpected vector opcode")(static_cast <bool> (ISD && "Unexpected vector opcode"
) ? void (0) : __assert_fail ("ISD && \"Unexpected vector opcode\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4346, __extension__
__PRETTY_FUNCTION__))
;
4347 MVT MScalarTy = LT.second.getScalarType();
4348 if (ST->useSLMArithCosts())
4349 if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
4350 return Entry->Cost + RegisterFileMoveCost;
4351
4352 // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
4353 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
4354 (MScalarTy.isInteger() && ST->hasSSE41()))
4355 return 1 + RegisterFileMoveCost;
4356
4357 // Assume insertps is relatively cheap on all targets.
4358 if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
4359 Opcode == Instruction::InsertElement)
4360 return 1 + RegisterFileMoveCost;
4361
4362 // For extractions we just need to shuffle the element to index 0, which
4363 // should be very cheap (assume cost = 1). For insertions we need to shuffle
4364 // the elements to its destination. In both cases we must handle the
4365 // subvector move(s).
4366 // If the vector type is already less than 128-bits then don't reduce it.
4367 // TODO: Under what circumstances should we shuffle using the full width?
4368 InstructionCost ShuffleCost = 1;
4369 if (Opcode == Instruction::InsertElement) {
4370 auto *SubTy = cast<VectorType>(Val);
4371 EVT VT = TLI->getValueType(DL, Val);
4372 if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
4373 SubTy = FixedVectorType::get(ScalarType, SubNumElts);
4374 ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, std::nullopt,
4375 CostKind, 0, SubTy);
4376 }
4377 int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
4378 return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
4379 }
4380
4381 // Add to the base cost if we know that the extracted element of a vector is
4382 // destined to be moved to and used in the integer register file.
4383 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
4384 RegisterFileMoveCost += 1;
4385
4386 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
4387}
4388
4389InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
4390 const APInt &DemandedElts,
4391 bool Insert,
4392 bool Extract) {
4393 assert(DemandedElts.getBitWidth() ==(static_cast <bool> (DemandedElts.getBitWidth() == cast
<FixedVectorType>(Ty)->getNumElements() && "Vector size mismatch"
) ? void (0) : __assert_fail ("DemandedElts.getBitWidth() == cast<FixedVectorType>(Ty)->getNumElements() && \"Vector size mismatch\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4395, __extension__
__PRETTY_FUNCTION__))
4394 cast<FixedVectorType>(Ty)->getNumElements() &&(static_cast <bool> (DemandedElts.getBitWidth() == cast
<FixedVectorType>(Ty)->getNumElements() && "Vector size mismatch"
) ? void (0) : __assert_fail ("DemandedElts.getBitWidth() == cast<FixedVectorType>(Ty)->getNumElements() && \"Vector size mismatch\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4395, __extension__
__PRETTY_FUNCTION__))
4395 "Vector size mismatch")(static_cast <bool> (DemandedElts.getBitWidth() == cast
<FixedVectorType>(Ty)->getNumElements() && "Vector size mismatch"
) ? void (0) : __assert_fail ("DemandedElts.getBitWidth() == cast<FixedVectorType>(Ty)->getNumElements() && \"Vector size mismatch\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4395, __extension__
__PRETTY_FUNCTION__))
;
4396
4397 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
4398 MVT MScalarTy = LT.second.getScalarType();
4399 unsigned LegalVectorBitWidth = LT.second.getSizeInBits();
4400 TTI::TargetCostKind CostKind = TTI::TargetCostKind::TCK_RecipThroughput;
4401 InstructionCost Cost = 0;
4402
4403 constexpr unsigned LaneBitWidth = 128;
4404 assert((LegalVectorBitWidth < LaneBitWidth ||(static_cast <bool> ((LegalVectorBitWidth < LaneBitWidth
|| (LegalVectorBitWidth % LaneBitWidth) == 0) && "Illegal vector"
) ? void (0) : __assert_fail ("(LegalVectorBitWidth < LaneBitWidth || (LegalVectorBitWidth % LaneBitWidth) == 0) && \"Illegal vector\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4406, __extension__
__PRETTY_FUNCTION__))
4405 (LegalVectorBitWidth % LaneBitWidth) == 0) &&(static_cast <bool> ((LegalVectorBitWidth < LaneBitWidth
|| (LegalVectorBitWidth % LaneBitWidth) == 0) && "Illegal vector"
) ? void (0) : __assert_fail ("(LegalVectorBitWidth < LaneBitWidth || (LegalVectorBitWidth % LaneBitWidth) == 0) && \"Illegal vector\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4406, __extension__
__PRETTY_FUNCTION__))
4406 "Illegal vector")(static_cast <bool> ((LegalVectorBitWidth < LaneBitWidth
|| (LegalVectorBitWidth % LaneBitWidth) == 0) && "Illegal vector"
) ? void (0) : __assert_fail ("(LegalVectorBitWidth < LaneBitWidth || (LegalVectorBitWidth % LaneBitWidth) == 0) && \"Illegal vector\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4406, __extension__
__PRETTY_FUNCTION__))
;
4407
4408 const int NumLegalVectors = *LT.first.getValue();
4409 assert(NumLegalVectors >= 0 && "Negative cost!")(static_cast <bool> (NumLegalVectors >= 0 &&
"Negative cost!") ? void (0) : __assert_fail ("NumLegalVectors >= 0 && \"Negative cost!\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4409, __extension__
__PRETTY_FUNCTION__))
;
4410
4411 // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
4412 // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
4413 if (Insert) {
4414 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
4415 (MScalarTy.isInteger() && ST->hasSSE41()) ||
4416 (MScalarTy == MVT::f32 && ST->hasSSE41())) {
4417 // For types we can insert directly, insertion into 128-bit sub vectors is
4418 // cheap, followed by a cheap chain of concatenations.
4419 if (LegalVectorBitWidth <= LaneBitWidth) {
4420 Cost +=
4421 BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
4422 } else {
4423 // In each 128-lane, if at least one index is demanded but not all
4424 // indices are demanded and this 128-lane is not the first 128-lane of
4425 // the legalized-vector, then this 128-lane needs a extracti128; If in
4426 // each 128-lane, there is at least one demanded index, this 128-lane
4427 // needs a inserti128.
4428
4429 // The following cases will help you build a better understanding:
4430 // Assume we insert several elements into a v8i32 vector in avx2,
4431 // Case#1: inserting into 1th index needs vpinsrd + inserti128.
4432 // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
4433 // inserti128.
4434 // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
4435 assert((LegalVectorBitWidth % LaneBitWidth) == 0 && "Illegal vector")(static_cast <bool> ((LegalVectorBitWidth % LaneBitWidth
) == 0 && "Illegal vector") ? void (0) : __assert_fail
("(LegalVectorBitWidth % LaneBitWidth) == 0 && \"Illegal vector\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4435, __extension__
__PRETTY_FUNCTION__))
;
4436 unsigned NumLegalLanes = LegalVectorBitWidth / LaneBitWidth;
4437 unsigned NumLanesTotal = NumLegalLanes * NumLegalVectors;
4438 unsigned NumLegalElts =
4439 LT.second.getVectorNumElements() * NumLegalVectors;
4440 assert(NumLegalElts >= DemandedElts.getBitWidth() &&(static_cast <bool> (NumLegalElts >= DemandedElts.getBitWidth
() && "Vector has been legalized to smaller element count"
) ? void (0) : __assert_fail ("NumLegalElts >= DemandedElts.getBitWidth() && \"Vector has been legalized to smaller element count\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4441, __extension__
__PRETTY_FUNCTION__))
4441 "Vector has been legalized to smaller element count")(static_cast <bool> (NumLegalElts >= DemandedElts.getBitWidth
() && "Vector has been legalized to smaller element count"
) ? void (0) : __assert_fail ("NumLegalElts >= DemandedElts.getBitWidth() && \"Vector has been legalized to smaller element count\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4441, __extension__
__PRETTY_FUNCTION__))
;
4442 assert((NumLegalElts % NumLanesTotal) == 0 &&(static_cast <bool> ((NumLegalElts % NumLanesTotal) == 0
&& "Unexpected elts per lane") ? void (0) : __assert_fail
("(NumLegalElts % NumLanesTotal) == 0 && \"Unexpected elts per lane\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4443, __extension__
__PRETTY_FUNCTION__))
4443 "Unexpected elts per lane")(static_cast <bool> ((NumLegalElts % NumLanesTotal) == 0
&& "Unexpected elts per lane") ? void (0) : __assert_fail
("(NumLegalElts % NumLanesTotal) == 0 && \"Unexpected elts per lane\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4443, __extension__
__PRETTY_FUNCTION__))
;
4444 unsigned NumEltsPerLane = NumLegalElts / NumLanesTotal;
4445
4446 APInt WidenedDemandedElts = DemandedElts.zext(NumLegalElts);
4447 auto *LaneTy =
4448 FixedVectorType::get(Ty->getElementType(), NumEltsPerLane);
4449
4450 for (unsigned I = 0; I != NumLanesTotal; ++I) {
4451 APInt LaneEltMask = WidenedDemandedElts.extractBits(
4452 NumEltsPerLane, NumEltsPerLane * I);
4453 if (LaneEltMask.isNullValue())
4454 continue;
4455 // FIXME: we don't need to extract if all non-demanded elements
4456 // are legalization-inserted padding.
4457 if (!LaneEltMask.isAllOnes())
4458 Cost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
4459 CostKind, I * NumEltsPerLane, LaneTy);
4460 Cost += BaseT::getScalarizationOverhead(LaneTy, LaneEltMask, Insert,
4461 false);
4462 }
4463
4464 APInt AffectedLanes =
4465 APIntOps::ScaleBitMask(WidenedDemandedElts, NumLanesTotal);
4466 APInt FullyAffectedLegalVectors = APIntOps::ScaleBitMask(
4467 AffectedLanes, NumLegalVectors, /*MatchAllBits=*/true);
4468 for (int LegalVec = 0; LegalVec != NumLegalVectors; ++LegalVec) {
4469 for (unsigned Lane = 0; Lane != NumLegalLanes; ++Lane) {
4470 unsigned I = NumLegalLanes * LegalVec + Lane;
4471 // No need to insert unaffected lane; or lane 0 of each legal vector
4472 // iff ALL lanes of that vector were affected and will be inserted.
4473 if (!AffectedLanes[I] ||
4474 (Lane == 0 && FullyAffectedLegalVectors[LegalVec]))
4475 continue;
4476 Cost += getShuffleCost(TTI::SK_InsertSubvector, Ty, std::nullopt,
4477 CostKind, I * NumEltsPerLane, LaneTy);
4478 }
4479 }
4480 }
4481 } else if (LT.second.isVector()) {
4482 // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
4483 // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
4484 // series of UNPCK followed by CONCAT_VECTORS - all of these can be
4485 // considered cheap.
4486 if (Ty->isIntOrIntVectorTy())
4487 Cost += DemandedElts.countPopulation();
4488
4489 // Get the smaller of the legalized or original pow2-extended number of
4490 // vector elements, which represents the number of unpacks we'll end up
4491 // performing.
4492 unsigned NumElts = LT.second.getVectorNumElements();
4493 unsigned Pow2Elts =
4494 PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
4495 Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
4496 }
4497 }
4498
4499 if (Extract) {
4500 // vXi1 can be efficiently extracted with MOVMSK.
4501 // TODO: AVX512 predicate mask handling.
4502 // NOTE: This doesn't work well for roundtrip scalarization.
4503 if (!Insert && Ty->getScalarSizeInBits() == 1 && !ST->hasAVX512()) {
4504 unsigned NumElts = cast<FixedVectorType>(Ty)->getNumElements();
4505 unsigned MaxElts = ST->hasAVX2() ? 32 : 16;
4506 unsigned MOVMSKCost = (NumElts + MaxElts - 1) / MaxElts;
4507 return MOVMSKCost;
4508 }
4509
4510 if (LT.second.isVector()) {
4511 unsigned NumLegalElts =
4512 LT.second.getVectorNumElements() * NumLegalVectors;
4513 assert(NumLegalElts >= DemandedElts.getBitWidth() &&(static_cast <bool> (NumLegalElts >= DemandedElts.getBitWidth
() && "Vector has been legalized to smaller element count"
) ? void (0) : __assert_fail ("NumLegalElts >= DemandedElts.getBitWidth() && \"Vector has been legalized to smaller element count\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4514, __extension__
__PRETTY_FUNCTION__))
4514 "Vector has been legalized to smaller element count")(static_cast <bool> (NumLegalElts >= DemandedElts.getBitWidth
() && "Vector has been legalized to smaller element count"
) ? void (0) : __assert_fail ("NumLegalElts >= DemandedElts.getBitWidth() && \"Vector has been legalized to smaller element count\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4514, __extension__
__PRETTY_FUNCTION__))
;
4515
4516 // If we're extracting elements from a 128-bit subvector lane,
4517 // we only need to extract each lane once, not for every element.
4518 if (LegalVectorBitWidth > LaneBitWidth) {
4519 unsigned NumLegalLanes = LegalVectorBitWidth / LaneBitWidth;
4520 unsigned NumLanesTotal = NumLegalLanes * NumLegalVectors;
4521 assert((NumLegalElts % NumLanesTotal) == 0 &&(static_cast <bool> ((NumLegalElts % NumLanesTotal) == 0
&& "Unexpected elts per lane") ? void (0) : __assert_fail
("(NumLegalElts % NumLanesTotal) == 0 && \"Unexpected elts per lane\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4522, __extension__
__PRETTY_FUNCTION__))
4522 "Unexpected elts per lane")(static_cast <bool> ((NumLegalElts % NumLanesTotal) == 0
&& "Unexpected elts per lane") ? void (0) : __assert_fail
("(NumLegalElts % NumLanesTotal) == 0 && \"Unexpected elts per lane\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4522, __extension__
__PRETTY_FUNCTION__))
;
4523 unsigned NumEltsPerLane = NumLegalElts / NumLanesTotal;
4524
4525 // Add cost for each demanded 128-bit subvector extraction.
4526 // Luckily this is a lot easier than for insertion.
4527 APInt WidenedDemandedElts = DemandedElts.zext(NumLegalElts);
4528 auto *LaneTy =
4529 FixedVectorType::get(Ty->getElementType(), NumEltsPerLane);
4530
4531 for (unsigned I = 0; I != NumLanesTotal; ++I) {
4532 APInt LaneEltMask = WidenedDemandedElts.extractBits(
4533 NumEltsPerLane, I * NumEltsPerLane);
4534 if (LaneEltMask.isNullValue())
4535 continue;
4536 Cost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
4537 CostKind, I * NumEltsPerLane, LaneTy);
4538 Cost += BaseT::getScalarizationOverhead(LaneTy, LaneEltMask, false,
4539 Extract);
4540 }
4541
4542 return Cost;
4543 }
4544 }
4545
4546 // Fallback to default extraction.
4547 Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
4548 }
4549
4550 return Cost;
4551}
4552
4553InstructionCost
4554X86TTIImpl::getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
4555 int VF, const APInt &DemandedDstElts,
4556 TTI::TargetCostKind CostKind) {
4557 const unsigned EltTyBits = DL.getTypeSizeInBits(EltTy);
4558 // We don't differentiate element types here, only element bit width.
4559 EltTy = IntegerType::getIntNTy(EltTy->getContext(), EltTyBits);
4560
4561 auto bailout = [&]() {
4562 return BaseT::getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
4563 DemandedDstElts, CostKind);
4564 };
4565
4566 // For now, only deal with AVX512 cases.
4567 if (!ST->hasAVX512())
4568 return bailout();
4569
4570 // Do we have a native shuffle for this element type, or should we promote?
4571 unsigned PromEltTyBits = EltTyBits;
4572 switch (EltTyBits) {
4573 case 32:
4574 case 64:
4575 break; // AVX512F.
4576 case 16:
4577 if (!ST->hasBWI())
4578 PromEltTyBits = 32; // promote to i32, AVX512F.
4579 break; // AVX512BW
4580 case 8:
4581 if (!ST->hasVBMI())
4582 PromEltTyBits = 32; // promote to i32, AVX512F.
4583 break; // AVX512VBMI
4584 case 1:
4585 // There is no support for shuffling i1 elements. We *must* promote.
4586 if (ST->hasBWI()) {
4587 if (ST->hasVBMI())
4588 PromEltTyBits = 8; // promote to i8, AVX512VBMI.
4589 else
4590 PromEltTyBits = 16; // promote to i16, AVX512BW.
4591 break;
4592 }
4593 PromEltTyBits = 32; // promote to i32, AVX512F.
4594 break;
4595 default:
4596 return bailout();
4597 }
4598 auto *PromEltTy = IntegerType::getIntNTy(EltTy->getContext(), PromEltTyBits);
4599
4600 auto *SrcVecTy = FixedVectorType::get(EltTy, VF);
4601 auto *PromSrcVecTy = FixedVectorType::get(PromEltTy, VF);
4602
4603 int NumDstElements = VF * ReplicationFactor;
4604 auto *PromDstVecTy = FixedVectorType::get(PromEltTy, NumDstElements);
4605 auto *DstVecTy = FixedVectorType::get(EltTy, NumDstElements);
4606
4607 // Legalize the types.
4608 MVT LegalSrcVecTy = getTypeLegalizationCost(SrcVecTy).second;
4609 MVT LegalPromSrcVecTy = getTypeLegalizationCost(PromSrcVecTy).second;
4610 MVT LegalPromDstVecTy = getTypeLegalizationCost(PromDstVecTy).second;
4611 MVT LegalDstVecTy = getTypeLegalizationCost(DstVecTy).second;
4612 // They should have legalized into vector types.
4613 if (!LegalSrcVecTy.isVector() || !LegalPromSrcVecTy.isVector() ||
4614 !LegalPromDstVecTy.isVector() || !LegalDstVecTy.isVector())
4615 return bailout();
4616
4617 if (PromEltTyBits != EltTyBits) {
4618 // If we have to perform the shuffle with wider elt type than our data type,
4619 // then we will first need to anyext (we don't care about the new bits)
4620 // the source elements, and then truncate Dst elements.
4621 InstructionCost PromotionCost;
4622 PromotionCost += getCastInstrCost(
4623 Instruction::SExt, /*Dst=*/PromSrcVecTy, /*Src=*/SrcVecTy,
4624 TargetTransformInfo::CastContextHint::None, CostKind);
4625 PromotionCost +=
4626 getCastInstrCost(Instruction::Trunc, /*Dst=*/DstVecTy,
4627 /*Src=*/PromDstVecTy,
4628 TargetTransformInfo::CastContextHint::None, CostKind);
4629 return PromotionCost + getReplicationShuffleCost(PromEltTy,
4630 ReplicationFactor, VF,
4631 DemandedDstElts, CostKind);
4632 }
4633
4634 assert(LegalSrcVecTy.getScalarSizeInBits() == EltTyBits &&(static_cast <bool> (LegalSrcVecTy.getScalarSizeInBits(
) == EltTyBits && LegalSrcVecTy.getScalarType() == LegalDstVecTy
.getScalarType() && "We expect that the legalization doesn't affect the element width, "
"doesn't coalesce/split elements.") ? void (0) : __assert_fail
("LegalSrcVecTy.getScalarSizeInBits() == EltTyBits && LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() && \"We expect that the legalization doesn't affect the element width, \" \"doesn't coalesce/split elements.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4637, __extension__
__PRETTY_FUNCTION__))
4635 LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() &&(static_cast <bool> (LegalSrcVecTy.getScalarSizeInBits(
) == EltTyBits && LegalSrcVecTy.getScalarType() == LegalDstVecTy
.getScalarType() && "We expect that the legalization doesn't affect the element width, "
"doesn't coalesce/split elements.") ? void (0) : __assert_fail
("LegalSrcVecTy.getScalarSizeInBits() == EltTyBits && LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() && \"We expect that the legalization doesn't affect the element width, \" \"doesn't coalesce/split elements.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4637, __extension__
__PRETTY_FUNCTION__))
4636 "We expect that the legalization doesn't affect the element width, "(static_cast <bool> (LegalSrcVecTy.getScalarSizeInBits(
) == EltTyBits && LegalSrcVecTy.getScalarType() == LegalDstVecTy
.getScalarType() && "We expect that the legalization doesn't affect the element width, "
"doesn't coalesce/split elements.") ? void (0) : __assert_fail
("LegalSrcVecTy.getScalarSizeInBits() == EltTyBits && LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() && \"We expect that the legalization doesn't affect the element width, \" \"doesn't coalesce/split elements.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4637, __extension__
__PRETTY_FUNCTION__))
4637 "doesn't coalesce/split elements.")(static_cast <bool> (LegalSrcVecTy.getScalarSizeInBits(
) == EltTyBits && LegalSrcVecTy.getScalarType() == LegalDstVecTy
.getScalarType() && "We expect that the legalization doesn't affect the element width, "
"doesn't coalesce/split elements.") ? void (0) : __assert_fail
("LegalSrcVecTy.getScalarSizeInBits() == EltTyBits && LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() && \"We expect that the legalization doesn't affect the element width, \" \"doesn't coalesce/split elements.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4637, __extension__
__PRETTY_FUNCTION__))
;
4638
4639 unsigned NumEltsPerDstVec = LegalDstVecTy.getVectorNumElements();
4640 unsigned NumDstVectors =
4641 divideCeil(DstVecTy->getNumElements(), NumEltsPerDstVec);
4642
4643 auto *SingleDstVecTy = FixedVectorType::get(EltTy, NumEltsPerDstVec);
4644
4645 // Not all the produced Dst elements may be demanded. In our case,
4646 // given that a single Dst vector is formed by a single shuffle,
4647 // if all elements that will form a single Dst vector aren't demanded,
4648 // then we won't need to do that shuffle, so adjust the cost accordingly.
4649 APInt DemandedDstVectors = APIntOps::ScaleBitMask(
4650 DemandedDstElts.zext(NumDstVectors * NumEltsPerDstVec), NumDstVectors);
4651 unsigned NumDstVectorsDemanded = DemandedDstVectors.countPopulation();
4652
4653 InstructionCost SingleShuffleCost = getShuffleCost(
4654 TTI::SK_PermuteSingleSrc, SingleDstVecTy, /*Mask=*/std::nullopt, CostKind,
4655 /*Index=*/0, /*SubTp=*/nullptr);
4656 return NumDstVectorsDemanded * SingleShuffleCost;
4657}
4658
4659InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
4660 MaybeAlign Alignment,
4661 unsigned AddressSpace,
4662 TTI::TargetCostKind CostKind,
4663 TTI::OperandValueInfo OpInfo,
4664 const Instruction *I) {
4665 // TODO: Handle other cost kinds.
4666 if (CostKind != TTI::TCK_RecipThroughput) {
4667 if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
4668 // Store instruction with index and scale costs 2 Uops.
4669 // Check the preceding GEP to identify non-const indices.
4670 if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
4671 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
4672 return TTI::TCC_Basic * 2;
4673 }
4674 }
4675 return TTI::TCC_Basic;
4676 }
4677
4678 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&(static_cast <bool> ((Opcode == Instruction::Load || Opcode
== Instruction::Store) && "Invalid Opcode") ? void (
0) : __assert_fail ("(Opcode == Instruction::Load || Opcode == Instruction::Store) && \"Invalid Opcode\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4679, __extension__
__PRETTY_FUNCTION__))
4679 "Invalid Opcode")(static_cast <bool> ((Opcode == Instruction::Load || Opcode
== Instruction::Store) && "Invalid Opcode") ? void (
0) : __assert_fail ("(Opcode == Instruction::Load || Opcode == Instruction::Store) && \"Invalid Opcode\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4679, __extension__
__PRETTY_FUNCTION__))
;
4680 // Type legalization can't handle structs
4681 if (TLI->getValueType(DL, Src, true) == MVT::Other)
4682 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
4683 CostKind);
4684
4685 // Legalize the type.
4686 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
4687
4688 auto *VTy = dyn_cast<FixedVectorType>(Src);
4689
4690 InstructionCost Cost = 0;
4691
4692 // Add a cost for constant load to vector.
4693 if (Opcode == Instruction::Store && OpInfo.isConstant())
4694 Cost += getMemoryOpCost(Instruction::Load, Src, DL.getABITypeAlign(Src),
4695 /*AddressSpace=*/0, CostKind);
4696
4697 // Handle the simple case of non-vectors.
4698 // NOTE: this assumes that legalization never creates vector from scalars!
4699 if (!VTy || !LT.second.isVector()) {
4700 // Each load/store unit costs 1.
4701 return (LT.second.isFloatingPoint() ? Cost : 0) + LT.first * 1;
4702 }
4703
4704 bool IsLoad = Opcode == Instruction::Load;
4705
4706 Type *EltTy = VTy->getElementType();
4707
4708 const int EltTyBits = DL.getTypeSizeInBits(EltTy);
4709
4710 // Source of truth: how many elements were there in the original IR vector?
4711 const unsigned SrcNumElt = VTy->getNumElements();
4712
4713 // How far have we gotten?
4714 int NumEltRemaining = SrcNumElt;
4715 // Note that we intentionally capture by-reference, NumEltRemaining changes.
4716 auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
4717
4718 const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8);
4719
4720 // Note that even if we can store 64 bits of an XMM, we still operate on XMM.
4721 const unsigned XMMBits = 128;
4722 if (XMMBits % EltTyBits != 0)
4723 // Vector size must be a multiple of the element size. I.e. no padding.
4724 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
4725 CostKind);
4726 const int NumEltPerXMM = XMMBits / EltTyBits;
4727
4728 auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM);
4729
4730 for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
4731 NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
4732 // How many elements would a single op deal with at once?
4733 if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
4734 // Vector size must be a multiple of the element size. I.e. no padding.
4735 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
4736 CostKind);
4737 int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
4738
4739 assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?")(static_cast <bool> (CurrOpSizeBytes > 0 && CurrNumEltPerOp
> 0 && "How'd we get here?") ? void (0) : __assert_fail
("CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && \"How'd we get here?\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4739, __extension__
__PRETTY_FUNCTION__))
;
4740 assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||(static_cast <bool> ((((NumEltRemaining * EltTyBits) <
(2 * 8 * CurrOpSizeBytes)) || (CurrOpSizeBytes == MaxLegalOpSizeBytes
)) && "Unless we haven't halved the op size yet, " "we have less than two op's sized units of work left."
) ? void (0) : __assert_fail ("(((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) || (CurrOpSizeBytes == MaxLegalOpSizeBytes)) && \"Unless we haven't halved the op size yet, \" \"we have less than two op's sized units of work left.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4743, __extension__
__PRETTY_FUNCTION__))
4741 (CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&(static_cast <bool> ((((NumEltRemaining * EltTyBits) <
(2 * 8 * CurrOpSizeBytes)) || (CurrOpSizeBytes == MaxLegalOpSizeBytes
)) && "Unless we haven't halved the op size yet, " "we have less than two op's sized units of work left."
) ? void (0) : __assert_fail ("(((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) || (CurrOpSizeBytes == MaxLegalOpSizeBytes)) && \"Unless we haven't halved the op size yet, \" \"we have less than two op's sized units of work left.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4743, __extension__
__PRETTY_FUNCTION__))
4742 "Unless we haven't halved the op size yet, "(static_cast <bool> ((((NumEltRemaining * EltTyBits) <
(2 * 8 * CurrOpSizeBytes)) || (CurrOpSizeBytes == MaxLegalOpSizeBytes
)) && "Unless we haven't halved the op size yet, " "we have less than two op's sized units of work left."
) ? void (0) : __assert_fail ("(((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) || (CurrOpSizeBytes == MaxLegalOpSizeBytes)) && \"Unless we haven't halved the op size yet, \" \"we have less than two op's sized units of work left.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4743, __extension__
__PRETTY_FUNCTION__))
4743 "we have less than two op's sized units of work left.")(static_cast <bool> ((((NumEltRemaining * EltTyBits) <
(2 * 8 * CurrOpSizeBytes)) || (CurrOpSizeBytes == MaxLegalOpSizeBytes
)) && "Unless we haven't halved the op size yet, " "we have less than two op's sized units of work left."
) ? void (0) : __assert_fail ("(((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) || (CurrOpSizeBytes == MaxLegalOpSizeBytes)) && \"Unless we haven't halved the op size yet, \" \"we have less than two op's sized units of work left.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4743, __extension__
__PRETTY_FUNCTION__))
;
4744
4745 auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
4746 ? FixedVectorType::get(EltTy, CurrNumEltPerOp)
4747 : XMMVecTy;
4748
4749 assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&(static_cast <bool> (CurrVecTy->getNumElements() % CurrNumEltPerOp
== 0 && "After halving sizes, the vector elt count is no longer a multiple "
"of number of elements per operation?") ? void (0) : __assert_fail
("CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 && \"After halving sizes, the vector elt count is no longer a multiple \" \"of number of elements per operation?\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4751, __extension__
__PRETTY_FUNCTION__))
4750 "After halving sizes, the vector elt count is no longer a multiple "(static_cast <bool> (CurrVecTy->getNumElements() % CurrNumEltPerOp
== 0 && "After halving sizes, the vector elt count is no longer a multiple "
"of number of elements per operation?") ? void (0) : __assert_fail
("CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 && \"After halving sizes, the vector elt count is no longer a multiple \" \"of number of elements per operation?\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4751, __extension__
__PRETTY_FUNCTION__))
4751 "of number of elements per operation?")(static_cast <bool> (CurrVecTy->getNumElements() % CurrNumEltPerOp
== 0 && "After halving sizes, the vector elt count is no longer a multiple "
"of number of elements per operation?") ? void (0) : __assert_fail
("CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 && \"After halving sizes, the vector elt count is no longer a multiple \" \"of number of elements per operation?\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4751, __extension__
__PRETTY_FUNCTION__))
;
4752 auto *CoalescedVecTy =
4753 CurrNumEltPerOp == 1
4754 ? CurrVecTy
4755 : FixedVectorType::get(
4756 IntegerType::get(Src->getContext(),
4757 EltTyBits * CurrNumEltPerOp),
4758 CurrVecTy->getNumElements() / CurrNumEltPerOp);
4759 assert(DL.getTypeSizeInBits(CoalescedVecTy) ==(static_cast <bool> (DL.getTypeSizeInBits(CoalescedVecTy
) == DL.getTypeSizeInBits(CurrVecTy) && "coalesciing elements doesn't change vector width."
) ? void (0) : __assert_fail ("DL.getTypeSizeInBits(CoalescedVecTy) == DL.getTypeSizeInBits(CurrVecTy) && \"coalesciing elements doesn't change vector width.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4761, __extension__
__PRETTY_FUNCTION__))
4760 DL.getTypeSizeInBits(CurrVecTy) &&(static_cast <bool> (DL.getTypeSizeInBits(CoalescedVecTy
) == DL.getTypeSizeInBits(CurrVecTy) && "coalesciing elements doesn't change vector width."
) ? void (0) : __assert_fail ("DL.getTypeSizeInBits(CoalescedVecTy) == DL.getTypeSizeInBits(CurrVecTy) && \"coalesciing elements doesn't change vector width.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4761, __extension__
__PRETTY_FUNCTION__))
4761 "coalesciing elements doesn't change vector width.")(static_cast <bool> (DL.getTypeSizeInBits(CoalescedVecTy
) == DL.getTypeSizeInBits(CurrVecTy) && "coalesciing elements doesn't change vector width."
) ? void (0) : __assert_fail ("DL.getTypeSizeInBits(CoalescedVecTy) == DL.getTypeSizeInBits(CurrVecTy) && \"coalesciing elements doesn't change vector width.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4761, __extension__
__PRETTY_FUNCTION__))
;
4762
4763 while (NumEltRemaining > 0) {
4764 assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?")(static_cast <bool> (SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?"
) ? void (0) : __assert_fail ("SubVecEltsLeft >= 0 && \"Subreg element count overconsumtion?\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4764, __extension__
__PRETTY_FUNCTION__))
;
4765
4766 // Can we use this vector size, as per the remaining element count?
4767 // Iff the vector is naturally aligned, we can do a wide load regardless.
4768 if (NumEltRemaining < CurrNumEltPerOp &&
4769 (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
4770 CurrOpSizeBytes != 1)
4771 break; // Try smalled vector size.
4772
4773 bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
4774
4775 // If we have fully processed the previous reg, we need to replenish it.
4776 if (SubVecEltsLeft == 0) {
4777 SubVecEltsLeft += CurrVecTy->getNumElements();
4778 // And that's free only for the 0'th subvector of a legalized vector.
4779 if (!Is0thSubVec)
4780 Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
4781 : TTI::ShuffleKind::SK_ExtractSubvector,
4782 VTy, std::nullopt, CostKind, NumEltDone(),
4783 CurrVecTy);
4784 }
4785
4786 // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
4787 // for smaller widths (32/16/8) we have to insert/extract them separately.
4788 // Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
4789 // but let's pretend that it is also true for 16/8 bit wide ops...)
4790 if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
4791 int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
4792 assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "")(static_cast <bool> (NumEltDoneInCurrXMM % CurrNumEltPerOp
== 0 && "") ? void (0) : __assert_fail ("NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && \"\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4792, __extension__
__PRETTY_FUNCTION__))
;
4793 int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
4794 APInt DemandedElts =
4795 APInt::getBitsSet(CoalescedVecTy->getNumElements(),
4796 CoalescedVecEltIdx, CoalescedVecEltIdx + 1);
4797 assert(DemandedElts.countPopulation() == 1 && "Inserting single value")(static_cast <bool> (DemandedElts.countPopulation() == 1
&& "Inserting single value") ? void (0) : __assert_fail
("DemandedElts.countPopulation() == 1 && \"Inserting single value\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4797, __extension__
__PRETTY_FUNCTION__))
;
4798 Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad,
4799 !IsLoad);
4800 }
4801
4802 // This isn't exactly right. We're using slow unaligned 32-byte accesses
4803 // as a proxy for a double-pumped AVX memory interface such as on
4804 // Sandybridge.
4805 if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
4806 Cost += 2;
4807 else
4808 Cost += 1;
4809
4810 SubVecEltsLeft -= CurrNumEltPerOp;
4811 NumEltRemaining -= CurrNumEltPerOp;
4812 Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes);
4813 }
4814 }
4815
4816 assert(NumEltRemaining <= 0 && "Should have processed all the elements.")(static_cast <bool> (NumEltRemaining <= 0 &&
"Should have processed all the elements.") ? void (0) : __assert_fail
("NumEltRemaining <= 0 && \"Should have processed all the elements.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4816, __extension__
__PRETTY_FUNCTION__))
;
4817
4818 return Cost;
4819}
4820
4821InstructionCost
4822X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
4823 unsigned AddressSpace,
4824 TTI::TargetCostKind CostKind) {
4825 bool IsLoad = (Instruction::Load == Opcode);
4826 bool IsStore = (Instruction::Store == Opcode);
4827
4828 auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
4829 if (!SrcVTy)
4830 // To calculate scalar take the regular cost, without mask
4831 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
4832
4833 unsigned NumElem = SrcVTy->getNumElements();
4834 auto *MaskTy =
4835 FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
4836 if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
4837 (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) {
4838 // Scalarization
4839 APInt DemandedElts = APInt::getAllOnes(NumElem);
4840 InstructionCost MaskSplitCost =
4841 getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4842 InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4843 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
4844 CmpInst::BAD_ICMP_PREDICATE, CostKind);
4845 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4846 InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
4847 InstructionCost ValueSplitCost =
4848 getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
4849 InstructionCost MemopCost =
4850 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4851 Alignment, AddressSpace, CostKind);
4852 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
4853 }
4854
4855 // Legalize the type.
4856 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);
4857 auto VT = TLI->getValueType(DL, SrcVTy);
4858 InstructionCost Cost = 0;
4859 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
4860 LT.second.getVectorNumElements() == NumElem)
4861 // Promotion requires extend/truncate for data and a shuffle for mask.
4862 Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, std::nullopt,
4863 CostKind, 0, nullptr) +
4864 getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, std::nullopt,
4865 CostKind, 0, nullptr);
4866
4867 else if (LT.first * LT.second.getVectorNumElements() > NumElem) {
4868 auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
4869 LT.second.getVectorNumElements());
4870 // Expanding requires fill mask with zeroes
4871 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, std::nullopt,
4872 CostKind, 0, MaskTy);
4873 }
4874
4875 // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
4876 if (!ST->hasAVX512())
4877 return Cost + LT.first * (IsLoad ? 2 : 8);
4878
4879 // AVX-512 masked load/store is cheaper
4880 return Cost + LT.first;
4881}
4882
4883InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
4884 ScalarEvolution *SE,
4885 const SCEV *Ptr) {
4886 // Address computations in vectorized code with non-consecutive addresses will
4887 // likely result in more instructions compared to scalar code where the
4888 // computation can more often be merged into the index mode. The resulting
4889 // extra micro-ops can significantly decrease throughput.
4890 const unsigned NumVectorInstToHideOverhead = 10;
4891
4892 // Cost modeling of Strided Access Computation is hidden by the indexing
4893 // modes of X86 regardless of the stride value. We dont believe that there
4894 // is a difference between constant strided access in gerenal and constant
4895 // strided value which is less than or equal to 64.
4896 // Even in the case of (loop invariant) stride whose value is not known at
4897 // compile time, the address computation will not incur more than one extra
4898 // ADD instruction.
4899 if (Ty->isVectorTy() && SE && !ST->hasAVX2()) {
4900 // TODO: AVX2 is the current cut-off because we don't have correct
4901 // interleaving costs for prior ISA's.
4902 if (!BaseT::isStridedAccess(Ptr))
4903 return NumVectorInstToHideOverhead;
4904 if (!BaseT::getConstantStrideStep(SE, Ptr))
4905 return 1;
4906 }
4907
4908 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
4909}
4910
4911InstructionCost
4912X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
4913 std::optional<FastMathFlags> FMF,
4914 TTI::TargetCostKind CostKind) {
4915 if (TTI::requiresOrderedReduction(FMF))
4916 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
4917
4918 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4919 // and make it as the cost.
4920
4921 static const CostTblEntry SLMCostTblNoPairWise[] = {
4922 { ISD::FADD, MVT::v2f64, 3 },
4923 { ISD::ADD, MVT::v2i64, 5 },
4924 };
4925
4926 static const CostTblEntry SSE2CostTblNoPairWise[] = {
4927 { ISD::FADD, MVT::v2f64, 2 },
4928 { ISD::FADD, MVT::v2f32, 2 },
4929 { ISD::FADD, MVT::v4f32, 4 },
4930 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
4931 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32
4932 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
4933 { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3".
4934 { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3".
4935 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
4936 { ISD::ADD, MVT::v2i8, 2 },
4937 { ISD::ADD, MVT::v4i8, 2 },
4938 { ISD::ADD, MVT::v8i8, 2 },
4939 { ISD::ADD, MVT::v16i8, 3 },
4940 };
4941
4942 static const CostTblEntry AVX1CostTblNoPairWise[] = {
4943 { ISD::FADD, MVT::v4f64, 3 },
4944 { ISD::FADD, MVT::v4f32, 3 },
4945 { ISD::FADD, MVT::v8f32, 4 },
4946 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
4947 { ISD::ADD, MVT::v4i64, 3 },
4948 { ISD::ADD, MVT::v8i32, 5 },
4949 { ISD::ADD, MVT::v16i16, 5 },
4950 { ISD::ADD, MVT::v32i8, 4 },
4951 };
4952
4953 int ISD = TLI->InstructionOpcodeToISD(Opcode);
4954 assert(ISD && "Invalid opcode")(static_cast <bool> (ISD && "Invalid opcode") ?
void (0) : __assert_fail ("ISD && \"Invalid opcode\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 4954, __extension__
__PRETTY_FUNCTION__))
;
4955
4956 // Before legalizing the type, give a chance to look up illegal narrow types
4957 // in the table.
4958 // FIXME: Is there a better way to do this?
4959 EVT VT = TLI->getValueType(DL, ValTy);
4960 if (VT.isSimple()) {
4961 MVT MTy = VT.getSimpleVT();
4962 if (ST->useSLMArithCosts())
4963 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
4964 return Entry->Cost;
4965
4966 if (ST->hasAVX())
4967 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4968 return Entry->Cost;
4969
4970 if (ST->hasSSE2())
4971 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4972 return Entry->Cost;
4973 }
4974
4975 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
4976
4977 MVT MTy = LT.second;
4978
4979 auto *ValVTy = cast<FixedVectorType>(ValTy);
4980
4981 // Special case: vXi8 mul reductions are performed as vXi16.
4982 if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
4983 auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
4984 auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
4985 return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
4986 TargetTransformInfo::CastContextHint::None,
4987 CostKind) +
4988 getArithmeticReductionCost(Opcode, WideVecTy, FMF, CostKind);
4989 }
4990
4991 InstructionCost ArithmeticCost = 0;
4992 if (LT.first != 1 && MTy.isVector() &&
4993 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4994 // Type needs to be split. We need LT.first - 1 arithmetic ops.
4995 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
4996 MTy.getVectorNumElements());
4997 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
4998 ArithmeticCost *= LT.first - 1;
4999 }
5000
5001 if (ST->useSLMArithCosts())
5002 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
5003 return ArithmeticCost + Entry->Cost;
5004
5005 if (ST->hasAVX())
5006 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
5007 return ArithmeticCost + Entry->Cost;
5008
5009 if (ST->hasSSE2())
5010 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
5011 return ArithmeticCost + Entry->Cost;
5012
5013 // FIXME: These assume a naive kshift+binop lowering, which is probably
5014 // conservative in most cases.
5015 static const CostTblEntry AVX512BoolReduction[] = {
5016 { ISD::AND, MVT::v2i1, 3 },
5017 { ISD::AND, MVT::v4i1, 5 },
5018 { ISD::AND, MVT::v8i1, 7 },
5019 { ISD::AND, MVT::v16i1, 9 },
5020 { ISD::AND, MVT::v32i1, 11 },
5021 { ISD::AND, MVT::v64i1, 13 },
5022 { ISD::OR, MVT::v2i1, 3 },
5023 { ISD::OR, MVT::v4i1, 5 },
5024 { ISD::OR, MVT::v8i1, 7 },
5025 { ISD::OR, MVT::v16i1, 9 },
5026 { ISD::OR, MVT::v32i1, 11 },
5027 { ISD::OR, MVT::v64i1, 13 },
5028 };
5029
5030 static const CostTblEntry AVX2BoolReduction[] = {
5031 { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp
5032 { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp
5033 { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp
5034 { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp
5035 };
5036
5037 static const CostTblEntry AVX1BoolReduction[] = {
5038 { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp
5039 { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp
5040 { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
5041 { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
5042 { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp
5043 { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp
5044 { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
5045 { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
5046 };
5047
5048 static const CostTblEntry SSE2BoolReduction[] = {
5049 { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp
5050 { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp
5051 { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp
5052 { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp
5053 { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp
5054 { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp
5055 { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp
5056 { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp
5057 };
5058
5059 // Handle bool allof/anyof patterns.
5060 if (ValVTy->getElementType()->isIntegerTy(1)) {
5061 InstructionCost ArithmeticCost = 0;
5062 if (LT.first != 1 && MTy.isVector() &&
5063 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5064 // Type needs to be split. We need LT.first - 1 arithmetic ops.
5065 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
5066 MTy.getVectorNumElements());
5067 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
5068 ArithmeticCost *= LT.first - 1;
5069 }
5070
5071 if (ST->hasAVX512())
5072 if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
5073 return ArithmeticCost + Entry->Cost;
5074 if (ST->hasAVX2())
5075 if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
5076 return ArithmeticCost + Entry->Cost;
5077 if (ST->hasAVX())
5078 if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
5079 return ArithmeticCost + Entry->Cost;
5080 if (ST->hasSSE2())
5081 if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
5082 return ArithmeticCost + Entry->Cost;
5083
5084 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
5085 }
5086
5087 unsigned NumVecElts = ValVTy->getNumElements();
5088 unsigned ScalarSize = ValVTy->getScalarSizeInBits();
5089
5090 // Special case power of 2 reductions where the scalar type isn't changed
5091 // by type legalization.
5092 if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
5093 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
5094
5095 InstructionCost ReductionCost = 0;
5096
5097 auto *Ty = ValVTy;
5098 if (LT.first != 1 && MTy.isVector() &&
5099 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5100 // Type needs to be split. We need LT.first - 1 arithmetic ops.
5101 Ty = FixedVectorType::get(ValVTy->getElementType(),
5102 MTy.getVectorNumElements());
5103 ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
5104 ReductionCost *= LT.first - 1;
5105 NumVecElts = MTy.getVectorNumElements();
5106 }
5107
5108 // Now handle reduction with the legal type, taking into account size changes
5109 // at each level.
5110 while (NumVecElts > 1) {
5111 // Determine the size of the remaining vector we need to reduce.
5112 unsigned Size = NumVecElts * ScalarSize;
5113 NumVecElts /= 2;
5114 // If we're reducing from 256/512 bits, use an extract_subvector.
5115 if (Size > 128) {
5116 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
5117 ReductionCost +=
5118 getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt, CostKind,
5119 NumVecElts, SubTy);
5120 Ty = SubTy;
5121 } else if (Size == 128) {
5122 // Reducing from 128 bits is a permute of v2f64/v2i64.
5123 FixedVectorType *ShufTy;
5124 if (ValVTy->isFloatingPointTy())
5125 ShufTy =
5126 FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
5127 else
5128 ShufTy =
5129 FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
5130 ReductionCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy,
5131 std::nullopt, CostKind, 0, nullptr);
5132 } else if (Size == 64) {
5133 // Reducing from 64 bits is a shuffle of v4f32/v4i32.
5134 FixedVectorType *ShufTy;
5135 if (ValVTy->isFloatingPointTy())
5136 ShufTy =
5137 FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
5138 else
5139 ShufTy =
5140 FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
5141 ReductionCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy,
5142 std::nullopt, CostKind, 0, nullptr);
5143 } else {
5144 // Reducing from smaller size is a shift by immediate.
5145 auto *ShiftTy = FixedVectorType::get(
5146 Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
5147 ReductionCost += getArithmeticInstrCost(
5148 Instruction::LShr, ShiftTy, CostKind,
5149 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
5150 {TargetTransformInfo::OK_UniformConstantValue, TargetTransformInfo::OP_None});
5151 }
5152
5153 // Add the arithmetic op for this level.
5154 ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
5155 }
5156
5157 // Add the final extract element to the cost.
5158 return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
5159}
5160
5161InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy,
5162 bool IsUnsigned) {
5163 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
5164
5165 MVT MTy = LT.second;
5166
5167 int ISD;
5168 if (Ty->isIntOrIntVectorTy()) {
5169 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
5170 } else {
5171 assert(Ty->isFPOrFPVectorTy() &&(static_cast <bool> (Ty->isFPOrFPVectorTy() &&
"Expected float point or integer vector type.") ? void (0) :
__assert_fail ("Ty->isFPOrFPVectorTy() && \"Expected float point or integer vector type.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 5172, __extension__
__PRETTY_FUNCTION__))
5172 "Expected float point or integer vector type.")(static_cast <bool> (Ty->isFPOrFPVectorTy() &&
"Expected float point or integer vector type.") ? void (0) :
__assert_fail ("Ty->isFPOrFPVectorTy() && \"Expected float point or integer vector type.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 5172, __extension__
__PRETTY_FUNCTION__))
;
5173 ISD = ISD::FMINNUM;
5174 }
5175
5176 static const CostTblEntry SSE1CostTbl[] = {
5177 {ISD::FMINNUM, MVT::v4f32, 1},
5178 };
5179
5180 static const CostTblEntry SSE2CostTbl[] = {
5181 {ISD::FMINNUM, MVT::v2f64, 1},
5182 {ISD::SMIN, MVT::v8i16, 1},
5183 {ISD::UMIN, MVT::v16i8, 1},
5184 };
5185
5186 static const CostTblEntry SSE41CostTbl[] = {
5187 {ISD::SMIN, MVT::v4i32, 1},
5188 {ISD::UMIN, MVT::v4i32, 1},
5189 {ISD::UMIN, MVT::v8i16, 1},
5190 {ISD::SMIN, MVT::v16i8, 1},
5191 };
5192
5193 static const CostTblEntry SSE42CostTbl[] = {
5194 {ISD::UMIN, MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
5195 };
5196
5197 static const CostTblEntry AVX1CostTbl[] = {
5198 {ISD::FMINNUM, MVT::v8f32, 1},
5199 {ISD::FMINNUM, MVT::v4f64, 1},
5200 {ISD::SMIN, MVT::v8i32, 3},
5201 {ISD::UMIN, MVT::v8i32, 3},
5202 {ISD::SMIN, MVT::v16i16, 3},
5203 {ISD::UMIN, MVT::v16i16, 3},
5204 {ISD::SMIN, MVT::v32i8, 3},
5205 {ISD::UMIN, MVT::v32i8, 3},
5206 };
5207
5208 static const CostTblEntry AVX2CostTbl[] = {
5209 {ISD::SMIN, MVT::v8i32, 1},
5210 {ISD::UMIN, MVT::v8i32, 1},
5211 {ISD::SMIN, MVT::v16i16, 1},
5212 {ISD::UMIN, MVT::v16i16, 1},
5213 {ISD::SMIN, MVT::v32i8, 1},
5214 {ISD::UMIN, MVT::v32i8, 1},
5215 };
5216
5217 static const CostTblEntry AVX512CostTbl[] = {
5218 {ISD::FMINNUM, MVT::v16f32, 1},
5219 {ISD::FMINNUM, MVT::v8f64, 1},
5220 {ISD::SMIN, MVT::v2i64, 1},
5221 {ISD::UMIN, MVT::v2i64, 1},
5222 {ISD::SMIN, MVT::v4i64, 1},
5223 {ISD::UMIN, MVT::v4i64, 1},
5224 {ISD::SMIN, MVT::v8i64, 1},
5225 {ISD::UMIN, MVT::v8i64, 1},
5226 {ISD::SMIN, MVT::v16i32, 1},
5227 {ISD::UMIN, MVT::v16i32, 1},
5228 };
5229
5230 static const CostTblEntry AVX512BWCostTbl[] = {
5231 {ISD::SMIN, MVT::v32i16, 1},
5232 {ISD::UMIN, MVT::v32i16, 1},
5233 {ISD::SMIN, MVT::v64i8, 1},
5234 {ISD::UMIN, MVT::v64i8, 1},
5235 };
5236
5237 // If we have a native MIN/MAX instruction for this type, use it.
5238 if (ST->hasBWI())
5239 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
5240 return LT.first * Entry->Cost;
5241
5242 if (ST->hasAVX512())
5243 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
5244 return LT.first * Entry->Cost;
5245
5246 if (ST->hasAVX2())
5247 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
5248 return LT.first * Entry->Cost;
5249
5250 if (ST->hasAVX())
5251 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
5252 return LT.first * Entry->Cost;
5253
5254 if (ST->hasSSE42())
5255 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
5256 return LT.first * Entry->Cost;
5257
5258 if (ST->hasSSE41())
5259 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
5260 return LT.first * Entry->Cost;
5261
5262 if (ST->hasSSE2())
5263 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
5264 return LT.first * Entry->Cost;
5265
5266 if (ST->hasSSE1())
5267 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
5268 return LT.first * Entry->Cost;
5269
5270 unsigned CmpOpcode;
5271 if (Ty->isFPOrFPVectorTy()) {
5272 CmpOpcode = Instruction::FCmp;
5273 } else {
5274 assert(Ty->isIntOrIntVectorTy() &&(static_cast <bool> (Ty->isIntOrIntVectorTy() &&
"expecting floating point or integer type for min/max reduction"
) ? void (0) : __assert_fail ("Ty->isIntOrIntVectorTy() && \"expecting floating point or integer type for min/max reduction\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 5275, __extension__
__PRETTY_FUNCTION__))
5275 "expecting floating point or integer type for min/max reduction")(static_cast <bool> (Ty->isIntOrIntVectorTy() &&
"expecting floating point or integer type for min/max reduction"
) ? void (0) : __assert_fail ("Ty->isIntOrIntVectorTy() && \"expecting floating point or integer type for min/max reduction\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 5275, __extension__
__PRETTY_FUNCTION__))
;
5276 CmpOpcode = Instruction::ICmp;
5277 }
5278
5279 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5280 // Otherwise fall back to cmp+select.
5281 InstructionCost Result =
5282 getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
5283 CostKind) +
5284 getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
5285 CmpInst::BAD_ICMP_PREDICATE, CostKind);
5286 return Result;
5287}
5288
5289InstructionCost
5290X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
5291 bool IsUnsigned,
5292 TTI::TargetCostKind CostKind) {
5293 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
5294
5295 MVT MTy = LT.second;
5296
5297 int ISD;
5298 if (ValTy->isIntOrIntVectorTy()) {
5299 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
1
Taking true branch
2
Assuming 'IsUnsigned' is false
3
'?' condition is false
5300 } else {
5301 assert(ValTy->isFPOrFPVectorTy() &&(static_cast <bool> (ValTy->isFPOrFPVectorTy() &&
"Expected float point or integer vector type.") ? void (0) :
__assert_fail ("ValTy->isFPOrFPVectorTy() && \"Expected float point or integer vector type.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 5302, __extension__
__PRETTY_FUNCTION__))
5302 "Expected float point or integer vector type.")(static_cast <bool> (ValTy->isFPOrFPVectorTy() &&
"Expected float point or integer vector type.") ? void (0) :
__assert_fail ("ValTy->isFPOrFPVectorTy() && \"Expected float point or integer vector type.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 5302, __extension__
__PRETTY_FUNCTION__))
;
5303 ISD = ISD::FMINNUM;
5304 }
5305
5306 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
5307 // and make it as the cost.
5308
5309 static const CostTblEntry SSE2CostTblNoPairWise[] = {
5310 {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
5311 {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
5312 {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
5313 };
5314
5315 static const CostTblEntry SSE41CostTblNoPairWise[] = {
5316 {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
5317 {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
5318 {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
5319 {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
5320 {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
5321 {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
5322 {ISD::SMIN, MVT::v2i8, 3}, // pminsb
5323 {ISD::SMIN, MVT::v4i8, 5}, // pminsb
5324 {ISD::SMIN, MVT::v8i8, 7}, // pminsb
5325 {ISD::SMIN, MVT::v16i8, 6},
5326 {ISD::UMIN, MVT::v2i8, 3}, // same as sse2
5327 {ISD::UMIN, MVT::v4i8, 5}, // same as sse2
5328 {ISD::UMIN, MVT::v8i8, 7}, // same as sse2
5329 {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
5330 };
5331
5332 static const CostTblEntry AVX1CostTblNoPairWise[] = {
5333 {ISD::SMIN, MVT::v16i16, 6},
5334 {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
5335 {ISD::SMIN, MVT::v32i8, 8},
5336 {ISD::UMIN, MVT::v32i8, 8},
5337 };
5338
5339 static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
5340 {ISD::SMIN, MVT::v32i16, 8},
5341 {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
5342 {ISD::SMIN, MVT::v64i8, 10},
5343 {ISD::UMIN, MVT::v64i8, 10},
5344 };
5345
5346 // Before legalizing the type, give a chance to look up illegal narrow types
5347 // in the table.
5348 // FIXME: Is there a better way to do this?
5349 EVT VT = TLI->getValueType(DL, ValTy);
5350 if (VT.isSimple()) {
4
Taking false branch
5351 MVT MTy = VT.getSimpleVT();
5352 if (ST->hasBWI())
5353 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
5354 return Entry->Cost;
5355
5356 if (ST->hasAVX())
5357 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
5358 return Entry->Cost;
5359
5360 if (ST->hasSSE41())
5361 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
5362 return Entry->Cost;
5363
5364 if (ST->hasSSE2())
5365 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
5366 return Entry->Cost;
5367 }
5368
5369 auto *ValVTy = cast<FixedVectorType>(ValTy);
5
'ValTy' is a 'CastReturnType'
5370 unsigned NumVecElts = ValVTy->getNumElements();
5371
5372 auto *Ty = ValVTy;
5373 InstructionCost MinMaxCost = 0;
5374 if (LT.first != 1 && MTy.isVector() &&
5375 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5376 // Type needs to be split. We need LT.first - 1 operations ops.
5377 Ty = FixedVectorType::get(ValVTy->getElementType(),
5378 MTy.getVectorNumElements());
5379 auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
5380 MTy.getVectorNumElements());
5381 MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
5382 MinMaxCost *= LT.first - 1;
5383 NumVecElts = MTy.getVectorNumElements();
5384 }
5385
5386 if (ST->hasBWI())
6
Assuming the condition is false
7
Taking false branch
5387 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
5388 return MinMaxCost + Entry->Cost;
5389
5390 if (ST->hasAVX())
8
Taking false branch
5391 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
5392 return MinMaxCost + Entry->Cost;
5393
5394 if (ST->hasSSE41())
9
Taking false branch
5395 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
5396 return MinMaxCost + Entry->Cost;
5397
5398 if (ST->hasSSE2())
10
Taking false branch
5399 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
5400 return MinMaxCost + Entry->Cost;
5401
5402 unsigned ScalarSize = ValTy->getScalarSizeInBits();
5403
5404 // Special case power of 2 reductions where the scalar type isn't changed
5405 // by type legalization.
5406 if (!isPowerOf2_32(ValVTy->getNumElements()) ||
12
Taking false branch
5407 ScalarSize != MTy.getScalarSizeInBits())
11
Assuming the condition is false
5408 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsUnsigned, CostKind);
5409
5410 // Now handle reduction with the legal type, taking into account size changes
5411 // at each level.
5412 while (NumVecElts > 1) {
13
Assuming 'NumVecElts' is <= 1
14
Loop condition is false. Execution continues on line 5458
5413 // Determine the size of the remaining vector we need to reduce.
5414 unsigned Size = NumVecElts * ScalarSize;
5415 NumVecElts /= 2;
5416 // If we're reducing from 256/512 bits, use an extract_subvector.
5417 if (Size > 128) {
5418 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
5419 MinMaxCost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
5420 CostKind, NumVecElts, SubTy);
5421 Ty = SubTy;
5422 } else if (Size == 128) {
5423 // Reducing from 128 bits is a permute of v2f64/v2i64.
5424 VectorType *ShufTy;
5425 if (ValTy->isFloatingPointTy())
5426 ShufTy =
5427 FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
5428 else
5429 ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
5430 MinMaxCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy,
5431 std::nullopt, CostKind, 0, nullptr);
5432 } else if (Size == 64) {
5433 // Reducing from 64 bits is a shuffle of v4f32/v4i32.
5434 FixedVectorType *ShufTy;
5435 if (ValTy->isFloatingPointTy())
5436 ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
5437 else
5438 ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
5439 MinMaxCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy,
5440 std::nullopt, CostKind, 0, nullptr);
5441 } else {
5442 // Reducing from smaller size is a shift by immediate.
5443 auto *ShiftTy = FixedVectorType::get(
5444 Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
5445 MinMaxCost += getArithmeticInstrCost(
5446 Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
5447 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
5448 {TargetTransformInfo::OK_UniformConstantValue, TargetTransformInfo::OP_None});
5449 }
5450
5451 // Add the arithmetic op for this level.
5452 auto *SubCondTy =
5453 FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
5454 MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
5455 }
5456
5457 // Add the final extract element to the cost.
5458 return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
15
Calling 'X86TTIImpl::getVectorInstrCost'
5459}
5460
5461/// Calculate the cost of materializing a 64-bit value. This helper
5462/// method might only calculate a fraction of a larger immediate. Therefore it
5463/// is valid to return a cost of ZERO.
5464InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
5465 if (Val == 0)
5466 return TTI::TCC_Free;
5467
5468 if (isInt<32>(Val))
5469 return TTI::TCC_Basic;
5470
5471 return 2 * TTI::TCC_Basic;
5472}
5473
5474InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
5475 TTI::TargetCostKind CostKind) {
5476 assert(Ty->isIntegerTy())(static_cast <bool> (Ty->isIntegerTy()) ? void (0) :
__assert_fail ("Ty->isIntegerTy()", "llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 5476, __extension__ __PRETTY_FUNCTION__))
;
5477
5478 unsigned BitSize = Ty->getPrimitiveSizeInBits();
5479 if (BitSize == 0)
5480 return ~0U;
5481
5482 // Never hoist constants larger than 128bit, because this might lead to
5483 // incorrect code generation or assertions in codegen.
5484 // Fixme: Create a cost model for types larger than i128 once the codegen
5485 // issues have been fixed.
5486 if (BitSize > 128)
5487 return TTI::TCC_Free;
5488
5489 if (Imm == 0)
5490 return TTI::TCC_Free;
5491
5492 // Sign-extend all constants to a multiple of 64-bit.
5493 APInt ImmVal = Imm;
5494 if (BitSize % 64 != 0)
5495 ImmVal = Imm.sext(alignTo(BitSize, 64));
5496
5497 // Split the constant into 64-bit chunks and calculate the cost for each
5498 // chunk.
5499 InstructionCost Cost = 0;
5500 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
5501 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
5502 int64_t Val = Tmp.getSExtValue();
5503 Cost += getIntImmCost(Val);
5504 }
5505 // We need at least one instruction to materialize the constant.
5506 return std::max<InstructionCost>(1, Cost);
5507}
5508
5509InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
5510 const APInt &Imm, Type *Ty,
5511 TTI::TargetCostKind CostKind,
5512 Instruction *Inst) {
5513 assert(Ty->isIntegerTy())(static_cast <bool> (Ty->isIntegerTy()) ? void (0) :
__assert_fail ("Ty->isIntegerTy()", "llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 5513, __extension__ __PRETTY_FUNCTION__))
;
5514
5515 unsigned BitSize = Ty->getPrimitiveSizeInBits();
5516 // There is no cost model for constants with a bit size of 0. Return TCC_Free
5517 // here, so that constant hoisting will ignore this constant.
5518 if (BitSize == 0)
5519 return TTI::TCC_Free;
5520
5521 unsigned ImmIdx = ~0U;
5522 switch (Opcode) {
5523 default:
5524 return TTI::TCC_Free;
5525 case Instruction::GetElementPtr:
5526 // Always hoist the base address of a GetElementPtr. This prevents the
5527 // creation of new constants for every base constant that gets constant
5528 // folded with the offset.
5529 if (Idx == 0)
5530 return 2 * TTI::TCC_Basic;
5531 return TTI::TCC_Free;
5532 case Instruction::Store:
5533 ImmIdx = 0;
5534 break;
5535 case Instruction::ICmp:
5536 // This is an imperfect hack to prevent constant hoisting of
5537 // compares that might be trying to check if a 64-bit value fits in
5538 // 32-bits. The backend can optimize these cases using a right shift by 32.
5539 // Ideally we would check the compare predicate here. There also other
5540 // similar immediates the backend can use shifts for.
5541 if (Idx == 1 && Imm.getBitWidth() == 64) {
5542 uint64_t ImmVal = Imm.getZExtValue();
5543 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
5544 return TTI::TCC_Free;
5545 }
5546 ImmIdx = 1;
5547 break;
5548 case Instruction::And:
5549 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
5550 // by using a 32-bit operation with implicit zero extension. Detect such
5551 // immediates here as the normal path expects bit 31 to be sign extended.
5552 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.isIntN(32))
5553 return TTI::TCC_Free;
5554 ImmIdx = 1;
5555 break;
5556 case Instruction::Add:
5557 case Instruction::Sub:
5558 // For add/sub, we can use the opposite instruction for INT32_MIN.
5559 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
5560 return TTI::TCC_Free;
5561 ImmIdx = 1;
5562 break;
5563 case Instruction::UDiv:
5564 case Instruction::SDiv:
5565 case Instruction::URem:
5566 case Instruction::SRem:
5567 // Division by constant is typically expanded later into a different
5568 // instruction sequence. This completely changes the constants.
5569 // Report them as "free" to stop ConstantHoist from marking them as opaque.
5570 return TTI::TCC_Free;
5571 case Instruction::Mul:
5572 case Instruction::Or:
5573 case Instruction::Xor:
5574 ImmIdx = 1;
5575 break;
5576 // Always return TCC_Free for the shift value of a shift instruction.
5577 case Instruction::Shl:
5578 case Instruction::LShr:
5579 case Instruction::AShr:
5580 if (Idx == 1)
5581 return TTI::TCC_Free;
5582 break;
5583 case Instruction::Trunc:
5584 case Instruction::ZExt:
5585 case Instruction::SExt:
5586 case Instruction::IntToPtr:
5587 case Instruction::PtrToInt:
5588 case Instruction::BitCast:
5589 case Instruction::PHI:
5590 case Instruction::Call:
5591 case Instruction::Select:
5592 case Instruction::Ret:
5593 case Instruction::Load:
5594 break;
5595 }
5596
5597 if (Idx == ImmIdx) {
5598 int NumConstants = divideCeil(BitSize, 64);
5599 InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
5600 return (Cost <= NumConstants * TTI::TCC_Basic)
5601 ? static_cast<int>(TTI::TCC_Free)
5602 : Cost;
5603 }
5604
5605 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
5606}
5607
5608InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
5609 const APInt &Imm, Type *Ty,
5610 TTI::TargetCostKind CostKind) {
5611 assert(Ty->isIntegerTy())(static_cast <bool> (Ty->isIntegerTy()) ? void (0) :
__assert_fail ("Ty->isIntegerTy()", "llvm/lib/Target/X86/X86TargetTransformInfo.cpp"
, 5611, __extension__ __PRETTY_FUNCTION__))
;
5612
5613 unsigned BitSize = Ty->getPrimitiveSizeInBits();
5614 // There is no cost model for constants with a bit size of 0. Return TCC_Free
5615 // here, so that constant hoisting will ignore this constant.
5616 if (BitSize == 0)
5617 return TTI::TCC_Free;
5618
5619 switch (IID) {
5620 default:
5621 return TTI::TCC_Free;
5622 case Intrinsic::sadd_with_overflow:
5623 case Intrinsic::uadd_with_overflow:
5624 case Intrinsic::ssub_with_overflow:
5625 case Intrinsic::usub_with_overflow:
5626 case Intrinsic::smul_with_overflow:
5627 case Intrinsic::umul_with_overflow:
5628 if ((Idx == 1) && Imm.getBitWidth() <= 64 && Imm.isSignedIntN(32))
5629 return TTI::TCC_Free;
5630 break;
5631 case Intrinsic::experimental_stackmap:
5632 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && Imm.isSignedIntN(64)))
5633 return TTI::TCC_Free;
5634 break;
5635 case Intrinsic::experimental_patchpoint_void:
5636 case Intrinsic::experimental_patchpoint_i64:
5637 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && Imm.isSignedIntN(64)))
5638 return TTI::TCC_Free;
5639 break;
5640 }
5641 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
5642}
5643
5644InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
5645 TTI::TargetCostKind CostKind,
5646 const Instruction *I) {
5647 if (CostKind != TTI::TCK_RecipThroughput)
5648 return Opcode == Instruction::PHI ? 0 : 1;
5649 // Branches are assumed to be predicted.
5650 return 0;
5651}
5652
5653int X86TTIImpl::getGatherOverhead() const {
5654 // Some CPUs have more overhead for gather. The specified overhead is relative
5655 // to the Load operation. "2" is the number provided by Intel architects. This
5656 // parameter is used for cost estimation of Gather Op and comparison with
5657 // other alternatives.
5658 // TODO: Remove the explicit hasAVX512()?, That would mean we would only
5659 // enable gather with a -march.
5660 if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
5661 return 2;
5662
5663 return 1024;
5664}
5665
5666int X86TTIImpl::getScatterOverhead() const {
5667 if (ST->hasAVX512())
5668 return 2;
5669
5670 return 1024;
5671}
5672
5673// Return an average cost of Gather / Scatter instruction, maybe improved later.
5674// FIXME: Add TargetCostKind support.
5675InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy,
5676 const Value *Ptr, Align Alignment,
5677 unsigned AddressSpace) {
5678
5679 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost")(static_cast <bool> (isa<VectorType>(SrcVTy) &&
"Unexpected type in getGSVectorCost") ? void (0) : __assert_fail
("isa<VectorType>(SrcVTy) && \"Unexpected type in getGSVectorCost\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 5679, __extension__
__PRETTY_FUNCTION__))
;
5680 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
5681
5682 // Try to reduce index size from 64 bit (default for GEP)
5683 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
5684 // operation will use 16 x 64 indices which do not fit in a zmm and needs
5685 // to split. Also check that the base pointer is the same for all lanes,
5686 // and that there's at most one variable index.
5687 auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
5688 unsigned IndexSize = DL.getPointerSizeInBits();
5689 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
5690 if (IndexSize < 64 || !GEP)
5691 return IndexSize;
5692
5693 unsigned NumOfVarIndices = 0;
5694 const Value *Ptrs = GEP->getPointerOperand();
5695 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
5696 return IndexSize;
5697 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
5698 if (isa<Constant>(GEP->getOperand(i)))
5699 continue;
5700 Type *IndxTy = GEP->getOperand(i)->getType();
5701 if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
5702 IndxTy = IndexVTy->getElementType();
5703 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
5704 !isa<SExtInst>(GEP->getOperand(i))) ||
5705 ++NumOfVarIndices > 1)
5706 return IndexSize; // 64
5707 }
5708 return (unsigned)32;
5709 };
5710
5711 // Trying to reduce IndexSize to 32 bits for vector 16.
5712 // By default the IndexSize is equal to pointer size.
5713 unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
5714 ? getIndexSizeInBits(Ptr, DL)
5715 : DL.getPointerSizeInBits();
5716
5717 auto *IndexVTy = FixedVectorType::get(
5718 IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
5719 std::pair<InstructionCost, MVT> IdxsLT = getTypeLegalizationCost(IndexVTy);
5720 std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(SrcVTy);
5721 InstructionCost::CostType SplitFactor =
5722 *std::max(IdxsLT.first, SrcLT.first).getValue();
5723 if (SplitFactor > 1) {
5724 // Handle splitting of vector of pointers
5725 auto *SplitSrcTy =
5726 FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
5727 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
5728 AddressSpace);
5729 }
5730
5731 // The gather / scatter cost is given by Intel architects. It is a rough
5732 // number since we are looking at one instruction in a time.
5733 const int GSOverhead = (Opcode == Instruction::Load)
5734 ? getGatherOverhead()
5735 : getScatterOverhead();
5736 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
5737 MaybeAlign(Alignment), AddressSpace,
5738 TTI::TCK_RecipThroughput);
5739}
5740
5741/// Return the cost of full scalarization of gather / scatter operation.
5742///
5743/// Opcode - Load or Store instruction.
5744/// SrcVTy - The type of the data vector that should be gathered or scattered.
5745/// VariableMask - The mask is non-constant at compile time.
5746/// Alignment - Alignment for one element.
5747/// AddressSpace - pointer[s] address space.
5748///
5749/// FIXME: Add TargetCostKind support.
5750InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
5751 bool VariableMask, Align Alignment,
5752 unsigned AddressSpace) {
5753 Type *ScalarTy = SrcVTy->getScalarType();
5754 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
5755 APInt DemandedElts = APInt::getAllOnes(VF);
5756 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5757
5758 InstructionCost MaskUnpackCost = 0;
5759 if (VariableMask) {
5760 auto *MaskTy =
5761 FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
5762 MaskUnpackCost = getScalarizationOverhead(
5763 MaskTy, DemandedElts, /*Insert=*/false, /*Extract=*/true);
5764 InstructionCost ScalarCompareCost = getCmpSelInstrCost(
5765 Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
5766 CmpInst::BAD_ICMP_PREDICATE, CostKind);
5767 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
5768 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
5769 }
5770
5771 InstructionCost AddressUnpackCost = getScalarizationOverhead(
5772 FixedVectorType::get(ScalarTy->getPointerTo(), VF), DemandedElts,
5773 /*Insert=*/false, /*Extract=*/true);
5774
5775 // The cost of the scalar loads/stores.
5776 InstructionCost MemoryOpCost =
5777 VF * getMemoryOpCost(Opcode, ScalarTy, MaybeAlign(Alignment),
5778 AddressSpace, CostKind);
5779
5780 // The cost of forming the vector from loaded scalars/
5781 // scalarizing the vector to perform scalar stores.
5782 InstructionCost InsertExtractCost =
5783 getScalarizationOverhead(cast<FixedVectorType>(SrcVTy), DemandedElts,
5784 /*Insert=*/Opcode == Instruction::Load,
5785 /*Extract=*/Opcode == Instruction::Store);
5786
5787 return AddressUnpackCost + MemoryOpCost + MaskUnpackCost + InsertExtractCost;
5788}
5789
5790/// Calculate the cost of Gather / Scatter operation
5791InstructionCost X86TTIImpl::getGatherScatterOpCost(
5792 unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
5793 Align Alignment, TTI::TargetCostKind CostKind,
5794 const Instruction *I = nullptr) {
5795 if (CostKind != TTI::TCK_RecipThroughput) {
5796 if ((Opcode == Instruction::Load &&
5797 isLegalMaskedGather(SrcVTy, Align(Alignment)) &&
5798 !forceScalarizeMaskedGather(cast<VectorType>(SrcVTy),
5799 Align(Alignment))) ||
5800 (Opcode == Instruction::Store &&
5801 isLegalMaskedScatter(SrcVTy, Align(Alignment)) &&
5802 !forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy),
5803 Align(Alignment))))
5804 return 1;
5805 return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
5806 Alignment, CostKind, I);
5807 }
5808
5809 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter")(static_cast <bool> (SrcVTy->isVectorTy() &&
"Unexpected data type for Gather/Scatter") ? void (0) : __assert_fail
("SrcVTy->isVectorTy() && \"Unexpected data type for Gather/Scatter\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 5809, __extension__
__PRETTY_FUNCTION__))
;
5810 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
5811 if (!PtrTy && Ptr->getType()->isVectorTy())
5812 PtrTy = dyn_cast<PointerType>(
5813 cast<VectorType>(Ptr->getType())->getElementType());
5814 assert(PtrTy && "Unexpected type for Ptr argument")(static_cast <bool> (PtrTy && "Unexpected type for Ptr argument"
) ? void (0) : __assert_fail ("PtrTy && \"Unexpected type for Ptr argument\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 5814, __extension__
__PRETTY_FUNCTION__))
;
5815 unsigned AddressSpace = PtrTy->getAddressSpace();
5816
5817 if ((Opcode == Instruction::Load &&
5818 (!isLegalMaskedGather(SrcVTy, Align(Alignment)) ||
5819 forceScalarizeMaskedGather(cast<VectorType>(SrcVTy),
5820 Align(Alignment)))) ||
5821 (Opcode == Instruction::Store &&
5822 (!isLegalMaskedScatter(SrcVTy, Align(Alignment)) ||
5823 forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy),
5824 Align(Alignment)))))
5825 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
5826 AddressSpace);
5827
5828 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
5829}
5830
5831bool X86TTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
5832 const TargetTransformInfo::LSRCost &C2) {
5833 // X86 specific here are "instruction number 1st priority".
5834 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
5835 C1.NumIVMuls, C1.NumBaseAdds,
5836 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
5837 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
5838 C2.NumIVMuls, C2.NumBaseAdds,
5839 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
5840}
5841
5842bool X86TTIImpl::canMacroFuseCmp() {
5843 return ST->hasMacroFusion() || ST->hasBranchFusion();
5844}
5845
5846bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
5847 if (!ST->hasAVX())
5848 return false;
5849
5850 // The backend can't handle a single element vector.
5851 if (isa<VectorType>(DataTy) &&
5852 cast<FixedVectorType>(DataTy)->getNumElements() == 1)
5853 return false;
5854 Type *ScalarTy = DataTy->getScalarType();
5855
5856 if (ScalarTy->isPointerTy())
5857 return true;
5858
5859 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5860 return true;
5861
5862 if (ScalarTy->isHalfTy() && ST->hasBWI())
5863 return true;
5864
5865 if (!ScalarTy->isIntegerTy())
5866 return false;
5867
5868 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5869 return IntWidth == 32 || IntWidth == 64 ||
5870 ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
5871}
5872
5873bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
5874 return isLegalMaskedLoad(DataType, Alignment);
5875}
5876
5877bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
5878 unsigned DataSize = DL.getTypeStoreSize(DataType);
5879 // The only supported nontemporal loads are for aligned vectors of 16 or 32
5880 // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2
5881 // (the equivalent stores only require AVX).
5882 if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
5883 return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2();
5884
5885 return false;
5886}
5887
5888bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
5889 unsigned DataSize = DL.getTypeStoreSize(DataType);
5890
5891 // SSE4A supports nontemporal stores of float and double at arbitrary
5892 // alignment.
5893 if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
5894 return true;
5895
5896 // Besides the SSE4A subtarget exception above, only aligned stores are
5897 // available nontemporaly on any other subtarget. And only stores with a size
5898 // of 4..32 bytes (powers of 2, only) are permitted.
5899 if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
5900 !isPowerOf2_32(DataSize))
5901 return false;
5902
5903 // 32-byte vector nontemporal stores are supported by AVX (the equivalent
5904 // loads require AVX2).
5905 if (DataSize == 32)
5906 return ST->hasAVX();
5907 if (DataSize == 16)
5908 return ST->hasSSE1();
5909 return true;
5910}
5911
5912bool X86TTIImpl::isLegalBroadcastLoad(Type *ElementTy,
5913 ElementCount NumElements) const {
5914 // movddup
5915 return ST->hasSSE3() && !NumElements.isScalable() &&
5916 NumElements.getFixedValue() == 2 &&
5917 ElementTy == Type::getDoubleTy(ElementTy->getContext());
5918}
5919
5920bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
5921 if (!isa<VectorType>(DataTy))
5922 return false;
5923
5924 if (!ST->hasAVX512())
5925 return false;
5926
5927 // The backend can't handle a single element vector.
5928 if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
5929 return false;
5930
5931 Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
5932
5933 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5934 return true;
5935
5936 if (!ScalarTy->isIntegerTy())
5937 return false;
5938
5939 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5940 return IntWidth == 32 || IntWidth == 64 ||
5941 ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
5942}
5943
5944bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
5945 return isLegalMaskedExpandLoad(DataTy);
5946}
5947
5948bool X86TTIImpl::supportsGather() const {
5949 // Some CPUs have better gather performance than others.
5950 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
5951 // enable gather with a -march.
5952 return ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2());
5953}
5954
5955bool X86TTIImpl::forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) {
5956 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
5957 // Vector-4 of gather/scatter instruction does not exist on KNL. We can extend
5958 // it to 8 elements, but zeroing upper bits of the mask vector will add more
5959 // instructions. Right now we give the scalar cost of vector-4 for KNL. TODO:
5960 // Check, maybe the gather/scatter instruction is better in the VariableMask
5961 // case.
5962 unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements();
5963 return NumElts == 1 ||
5964 (ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX())));
5965}
5966
5967bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
5968 if (!supportsGather())
5969 return false;
5970 Type *ScalarTy = DataTy->getScalarType();
5971 if (ScalarTy->isPointerTy())
5972 return true;
5973
5974 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5975 return true;
5976
5977 if (!ScalarTy->isIntegerTy())
5978 return false;
5979
5980 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5981 return IntWidth == 32 || IntWidth == 64;
5982}
5983
5984bool X86TTIImpl::isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
5985 unsigned Opcode1,
5986 const SmallBitVector &OpcodeMask) const {
5987 // ADDSUBPS 4xf32 SSE3
5988 // VADDSUBPS 4xf32 AVX
5989 // VADDSUBPS 8xf32 AVX2
5990 // ADDSUBPD 2xf64 SSE3
5991 // VADDSUBPD 2xf64 AVX
5992 // VADDSUBPD 4xf64 AVX2
5993
5994 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
5995 assert(OpcodeMask.size() == NumElements && "Mask and VecTy are incompatible")(static_cast <bool> (OpcodeMask.size() == NumElements &&
"Mask and VecTy are incompatible") ? void (0) : __assert_fail
("OpcodeMask.size() == NumElements && \"Mask and VecTy are incompatible\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 5995, __extension__
__PRETTY_FUNCTION__))
;
5996 if (!isPowerOf2_32(NumElements))
5997 return false;
5998 // Check the opcode pattern. We apply the mask on the opcode arguments and
5999 // then check if it is what we expect.
6000 for (int Lane : seq<int>(0, NumElements)) {
6001 unsigned Opc = OpcodeMask.test(Lane) ? Opcode1 : Opcode0;
6002 // We expect FSub for even lanes and FAdd for odd lanes.
6003 if (Lane % 2 == 0 && Opc != Instruction::FSub)
6004 return false;
6005 if (Lane % 2 == 1 && Opc != Instruction::FAdd)
6006 return false;
6007 }
6008 // Now check that the pattern is supported by the target ISA.
6009 Type *ElemTy = cast<VectorType>(VecTy)->getElementType();
6010 if (ElemTy->isFloatTy())
6011 return ST->hasSSE3() && NumElements % 4 == 0;
6012 if (ElemTy->isDoubleTy())
6013 return ST->hasSSE3() && NumElements % 2 == 0;
6014 return false;
6015}
6016
6017bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
6018 // AVX2 doesn't support scatter
6019 if (!ST->hasAVX512())
6020 return false;
6021 return isLegalMaskedGather(DataType, Alignment);
6022}
6023
6024bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
6025 EVT VT = TLI->getValueType(DL, DataType);
6026 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
6027}
6028
6029bool X86TTIImpl::isExpensiveToSpeculativelyExecute(const Instruction* I) {
6030 // FDIV is always expensive, even if it has a very low uop count.
6031 // TODO: Still necessary for recent CPUs with low latency/throughput fdiv?
6032 if (I->getOpcode() == Instruction::FDiv)
6033 return true;
6034
6035 return BaseT::isExpensiveToSpeculativelyExecute(I);
6036}
6037
6038bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
6039 return false;
6040}
6041
6042bool X86TTIImpl::areInlineCompatible(const Function *Caller,
6043 const Function *Callee) const {
6044 const TargetMachine &TM = getTLI()->getTargetMachine();
6045
6046 // Work this as a subsetting of subtarget features.
6047 const FeatureBitset &CallerBits =
6048 TM.getSubtargetImpl(*Caller)->getFeatureBits();
6049 const FeatureBitset &CalleeBits =
6050 TM.getSubtargetImpl(*Callee)->getFeatureBits();
6051
6052 // Check whether features are the same (apart from the ignore list).
6053 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
6054 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
6055 if (RealCallerBits == RealCalleeBits)
6056 return true;
6057
6058 // If the features are a subset, we need to additionally check for calls
6059 // that may become ABI-incompatible as a result of inlining.
6060 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
6061 return false;
6062
6063 for (const Instruction &I : instructions(Callee)) {
6064 if (const auto *CB = dyn_cast<CallBase>(&I)) {
6065 SmallVector<Type *, 8> Types;
6066 for (Value *Arg : CB->args())
6067 Types.push_back(Arg->getType());
6068 if (!CB->getType()->isVoidTy())
6069 Types.push_back(CB->getType());
6070
6071 // Simple types are always ABI compatible.
6072 auto IsSimpleTy = [](Type *Ty) {
6073 return !Ty->isVectorTy() && !Ty->isAggregateType();
6074 };
6075 if (all_of(Types, IsSimpleTy))
6076 continue;
6077
6078 if (Function *NestedCallee = CB->getCalledFunction()) {
6079 // Assume that intrinsics are always ABI compatible.
6080 if (NestedCallee->isIntrinsic())
6081 continue;
6082
6083 // Do a precise compatibility check.
6084 if (!areTypesABICompatible(Caller, NestedCallee, Types))
6085 return false;
6086 } else {
6087 // We don't know the target features of the callee,
6088 // assume it is incompatible.
6089 return false;
6090 }
6091 }
6092 }
6093 return true;
6094}
6095
6096bool X86TTIImpl::areTypesABICompatible(const Function *Caller,
6097 const Function *Callee,
6098 const ArrayRef<Type *> &Types) const {
6099 if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
6100 return false;
6101
6102 // If we get here, we know the target features match. If one function
6103 // considers 512-bit vectors legal and the other does not, consider them
6104 // incompatible.
6105 const TargetMachine &TM = getTLI()->getTargetMachine();
6106
6107 if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
6108 TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
6109 return true;
6110
6111 // Consider the arguments compatible if they aren't vectors or aggregates.
6112 // FIXME: Look at the size of vectors.
6113 // FIXME: Look at the element types of aggregates to see if there are vectors.
6114 return llvm::none_of(Types,
6115 [](Type *T) { return T->isVectorTy() || T->isAggregateType(); });
6116}
6117
6118X86TTIImpl::TTI::MemCmpExpansionOptions
6119X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
6120 TTI::MemCmpExpansionOptions Options;
6121 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
6122 Options.NumLoadsPerBlock = 2;
6123 // All GPR and vector loads can be unaligned.
6124 Options.AllowOverlappingLoads = true;
6125 if (IsZeroCmp) {
6126 // Only enable vector loads for equality comparison. Right now the vector
6127 // version is not as fast for three way compare (see #33329).
6128 const unsigned PreferredWidth = ST->getPreferVectorWidth();
6129 if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
6130 if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
6131 if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
6132 }
6133 if (ST->is64Bit()) {
6134 Options.LoadSizes.push_back(8);
6135 }
6136 Options.LoadSizes.push_back(4);
6137 Options.LoadSizes.push_back(2);
6138 Options.LoadSizes.push_back(1);
6139 return Options;
6140}
6141
6142bool X86TTIImpl::prefersVectorizedAddressing() const {
6143 return supportsGather();
6144}
6145
6146bool X86TTIImpl::supportsEfficientVectorElementLoadStore() const {
6147 return false;
6148}
6149
6150bool X86TTIImpl::enableInterleavedAccessVectorization() {
6151 // TODO: We expect this to be beneficial regardless of arch,
6152 // but there are currently some unexplained performance artifacts on Atom.
6153 // As a temporary solution, disable on Atom.
6154 return !(ST->isAtom());
6155}
6156
6157// Get estimation for interleaved load/store operations and strided load.
6158// \p Indices contains indices for strided load.
6159// \p Factor - the factor of interleaving.
6160// AVX-512 provides 3-src shuffles that significantly reduces the cost.
6161InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
6162 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
6163 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
6164 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
6165 // VecTy for interleave memop is <VF*Factor x Elt>.
6166 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
6167 // VecTy = <12 x i32>.
6168
6169 // Calculate the number of memory operations (NumOfMemOps), required
6170 // for load/store the VecTy.
6171 MVT LegalVT = getTypeLegalizationCost(VecTy).second;
6172 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
6173 unsigned LegalVTSize = LegalVT.getStoreSize();
6174 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
6175
6176 // Get the cost of one memory operation.
6177 auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
6178 LegalVT.getVectorNumElements());
6179 InstructionCost MemOpCost;
6180 bool UseMaskedMemOp = UseMaskForCond || UseMaskForGaps;
6181 if (UseMaskedMemOp)
6182 MemOpCost = getMaskedMemoryOpCost(Opcode, SingleMemOpTy, Alignment,
6183 AddressSpace, CostKind);
6184 else
6185 MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy, MaybeAlign(Alignment),
6186 AddressSpace, CostKind);
6187
6188 unsigned VF = VecTy->getNumElements() / Factor;
6189 MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
6190
6191 InstructionCost MaskCost;
6192 if (UseMaskedMemOp) {
6193 APInt DemandedLoadStoreElts = APInt::getZero(VecTy->getNumElements());
6194 for (unsigned Index : Indices) {
6195 assert(Index < Factor && "Invalid index for interleaved memory op")(static_cast <bool> (Index < Factor && "Invalid index for interleaved memory op"
) ? void (0) : __assert_fail ("Index < Factor && \"Invalid index for interleaved memory op\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 6195, __extension__
__PRETTY_FUNCTION__))
;
6196 for (unsigned Elm = 0; Elm < VF; Elm++)
6197 DemandedLoadStoreElts.setBit(Index + Elm * Factor);
6198 }
6199
6200 Type *I1Type = Type::getInt1Ty(VecTy->getContext());
6201
6202 MaskCost = getReplicationShuffleCost(
6203 I1Type, Factor, VF,
6204 UseMaskForGaps ? DemandedLoadStoreElts
6205 : APInt::getAllOnes(VecTy->getNumElements()),
6206 CostKind);
6207
6208 // The Gaps mask is invariant and created outside the loop, therefore the
6209 // cost of creating it is not accounted for here. However if we have both
6210 // a MaskForGaps and some other mask that guards the execution of the
6211 // memory access, we need to account for the cost of And-ing the two masks
6212 // inside the loop.
6213 if (UseMaskForGaps) {
6214 auto *MaskVT = FixedVectorType::get(I1Type, VecTy->getNumElements());
6215 MaskCost += getArithmeticInstrCost(BinaryOperator::And, MaskVT, CostKind);
6216 }
6217 }
6218
6219 if (Opcode == Instruction::Load) {
6220 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
6221 // contain the cost of the optimized shuffle sequence that the
6222 // X86InterleavedAccess pass will generate.
6223 // The cost of loads and stores are computed separately from the table.
6224
6225 // X86InterleavedAccess support only the following interleaved-access group.
6226 static const CostTblEntry AVX512InterleavedLoadTbl[] = {
6227 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
6228 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
6229 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
6230 };
6231
6232 if (const auto *Entry =
6233 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
6234 return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
6235 //If an entry does not exist, fallback to the default implementation.
6236
6237 // Kind of shuffle depends on number of loaded values.
6238 // If we load the entire data in one register, we can use a 1-src shuffle.
6239 // Otherwise, we'll merge 2 sources in each operation.
6240 TTI::ShuffleKind ShuffleKind =
6241 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
6242
6243 InstructionCost ShuffleCost = getShuffleCost(
6244 ShuffleKind, SingleMemOpTy, std::nullopt, CostKind, 0, nullptr);
6245
6246 unsigned NumOfLoadsInInterleaveGrp =
6247 Indices.size() ? Indices.size() : Factor;
6248 auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
6249 VecTy->getNumElements() / Factor);
6250 InstructionCost NumOfResults =
6251 getTypeLegalizationCost(ResultTy).first * NumOfLoadsInInterleaveGrp;
6252
6253 // About a half of the loads may be folded in shuffles when we have only
6254 // one result. If we have more than one result, or the loads are masked,
6255 // we do not fold loads at all.
6256 unsigned NumOfUnfoldedLoads =
6257 UseMaskedMemOp || NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
6258
6259 // Get a number of shuffle operations per result.
6260 unsigned NumOfShufflesPerResult =
6261 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
6262
6263 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
6264 // When we have more than one destination, we need additional instructions
6265 // to keep sources.
6266 InstructionCost NumOfMoves = 0;
6267 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
6268 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
6269
6270 InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
6271 MaskCost + NumOfUnfoldedLoads * MemOpCost +
6272 NumOfMoves;
6273
6274 return Cost;
6275 }
6276
6277 // Store.
6278 assert(Opcode == Instruction::Store &&(static_cast <bool> (Opcode == Instruction::Store &&
"Expected Store Instruction at this point") ? void (0) : __assert_fail
("Opcode == Instruction::Store && \"Expected Store Instruction at this point\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 6279, __extension__
__PRETTY_FUNCTION__))
6279 "Expected Store Instruction at this point")(static_cast <bool> (Opcode == Instruction::Store &&
"Expected Store Instruction at this point") ? void (0) : __assert_fail
("Opcode == Instruction::Store && \"Expected Store Instruction at this point\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 6279, __extension__
__PRETTY_FUNCTION__))
;
6280 // X86InterleavedAccess support only the following interleaved-access group.
6281 static const CostTblEntry AVX512InterleavedStoreTbl[] = {
6282 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
6283 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
6284 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
6285
6286 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
6287 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store)
6288 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
6289 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store)
6290 };
6291
6292 if (const auto *Entry =
6293 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
6294 return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
6295 //If an entry does not exist, fallback to the default implementation.
6296
6297 // There is no strided stores meanwhile. And store can't be folded in
6298 // shuffle.
6299 unsigned NumOfSources = Factor; // The number of values to be merged.
6300 InstructionCost ShuffleCost = getShuffleCost(
6301 TTI::SK_PermuteTwoSrc, SingleMemOpTy, std::nullopt, CostKind, 0, nullptr);
6302 unsigned NumOfShufflesPerStore = NumOfSources - 1;
6303
6304 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
6305 // We need additional instructions to keep sources.
6306 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
6307 InstructionCost Cost =
6308 MaskCost +
6309 NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
6310 NumOfMoves;
6311 return Cost;
6312}
6313
6314InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
6315 unsigned Opcode, Type *BaseTy, unsigned Factor, ArrayRef<unsigned> Indices,
6316 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
6317 bool UseMaskForCond, bool UseMaskForGaps) {
6318 auto *VecTy = cast<FixedVectorType>(BaseTy);
6319
6320 auto isSupportedOnAVX512 = [&](Type *VecTy, bool HasBW) {
6321 Type *EltTy = cast<VectorType>(VecTy)->getElementType();
6322 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
6323 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
6324 return true;
6325 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8) || EltTy->isHalfTy())
6326 return HasBW;
6327 return false;
6328 };
6329 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
6330 return getInterleavedMemoryOpCostAVX512(
6331 Opcode, VecTy, Factor, Indices, Alignment,
6332 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
6333
6334 if (UseMaskForCond || UseMaskForGaps)
6335 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6336 Alignment, AddressSpace, CostKind,
6337 UseMaskForCond, UseMaskForGaps);
6338
6339 // Get estimation for interleaved load/store operations for SSE-AVX2.
6340 // As opposed to AVX-512, SSE-AVX2 do not have generic shuffles that allow
6341 // computing the cost using a generic formula as a function of generic
6342 // shuffles. We therefore use a lookup table instead, filled according to
6343 // the instruction sequences that codegen currently generates.
6344
6345 // VecTy for interleave memop is <VF*Factor x Elt>.
6346 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
6347 // VecTy = <12 x i32>.
6348 MVT LegalVT = getTypeLegalizationCost(VecTy).second;
6349
6350 // This function can be called with VecTy=<6xi128>, Factor=3, in which case
6351 // the VF=2, while v2i128 is an unsupported MVT vector type
6352 // (see MachineValueType.h::getVectorVT()).
6353 if (!LegalVT.isVector())
6354 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6355 Alignment, AddressSpace, CostKind);
6356
6357 unsigned VF = VecTy->getNumElements() / Factor;
6358 Type *ScalarTy = VecTy->getElementType();
6359 // Deduplicate entries, model floats/pointers as appropriately-sized integers.
6360 if (!ScalarTy->isIntegerTy())
6361 ScalarTy =
6362 Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy));
6363
6364 // Get the cost of all the memory operations.
6365 // FIXME: discount dead loads.
6366 InstructionCost MemOpCosts = getMemoryOpCost(
6367 Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind);
6368
6369 auto *VT = FixedVectorType::get(ScalarTy, VF);
6370 EVT ETy = TLI->getValueType(DL, VT);
6371 if (!ETy.isSimple())
6372 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6373 Alignment, AddressSpace, CostKind);
6374
6375 // TODO: Complete for other data-types and strides.
6376 // Each combination of Stride, element bit width and VF results in a different
6377 // sequence; The cost tables are therefore accessed with:
6378 // Factor (stride) and VectorType=VFxiN.
6379 // The Cost accounts only for the shuffle sequence;
6380 // The cost of the loads/stores is accounted for separately.
6381 //
6382 static const CostTblEntry AVX2InterleavedLoadTbl[] = {
6383 {2, MVT::v2i8, 2}, // (load 4i8 and) deinterleave into 2 x 2i8
6384 {2, MVT::v4i8, 2}, // (load 8i8 and) deinterleave into 2 x 4i8
6385 {2, MVT::v8i8, 2}, // (load 16i8 and) deinterleave into 2 x 8i8
6386 {2, MVT::v16i8, 4}, // (load 32i8 and) deinterleave into 2 x 16i8
6387 {2, MVT::v32i8, 6}, // (load 64i8 and) deinterleave into 2 x 32i8
6388
6389 {2, MVT::v8i16, 6}, // (load 16i16 and) deinterleave into 2 x 8i16
6390 {2, MVT::v16i16, 9}, // (load 32i16 and) deinterleave into 2 x 16i16
6391 {2, MVT::v32i16, 18}, // (load 64i16 and) deinterleave into 2 x 32i16
6392
6393 {2, MVT::v8i32, 4}, // (load 16i32 and) deinterleave into 2 x 8i32
6394 {2, MVT::v16i32, 8}, // (load 32i32 and) deinterleave into 2 x 16i32
6395 {2, MVT::v32i32, 16}, // (load 64i32 and) deinterleave into 2 x 32i32
6396
6397 {2, MVT::v4i64, 4}, // (load 8i64 and) deinterleave into 2 x 4i64
6398 {2, MVT::v8i64, 8}, // (load 16i64 and) deinterleave into 2 x 8i64
6399 {2, MVT::v16i64, 16}, // (load 32i64 and) deinterleave into 2 x 16i64
6400 {2, MVT::v32i64, 32}, // (load 64i64 and) deinterleave into 2 x 32i64
6401
6402 {3, MVT::v2i8, 3}, // (load 6i8 and) deinterleave into 3 x 2i8
6403 {3, MVT::v4i8, 3}, // (load 12i8 and) deinterleave into 3 x 4i8
6404 {3, MVT::v8i8, 6}, // (load 24i8 and) deinterleave into 3 x 8i8
6405 {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
6406 {3, MVT::v32i8, 14}, // (load 96i8 and) deinterleave into 3 x 32i8
6407
6408 {3, MVT::v2i16, 5}, // (load 6i16 and) deinterleave into 3 x 2i16
6409 {3, MVT::v4i16, 7}, // (load 12i16 and) deinterleave into 3 x 4i16
6410 {3, MVT::v8i16, 9}, // (load 24i16 and) deinterleave into 3 x 8i16
6411 {3, MVT::v16i16, 28}, // (load 48i16 and) deinterleave into 3 x 16i16
6412 {3, MVT::v32i16, 56}, // (load 96i16 and) deinterleave into 3 x 32i16
6413
6414 {3, MVT::v2i32, 3}, // (load 6i32 and) deinterleave into 3 x 2i32
6415 {3, MVT::v4i32, 3}, // (load 12i32 and) deinterleave into 3 x 4i32
6416 {3, MVT::v8i32, 7}, // (load 24i32 and) deinterleave into 3 x 8i32
6417 {3, MVT::v16i32, 14}, // (load 48i32 and) deinterleave into 3 x 16i32
6418 {3, MVT::v32i32, 32}, // (load 96i32 and) deinterleave into 3 x 32i32
6419
6420 {3, MVT::v2i64, 1}, // (load 6i64 and) deinterleave into 3 x 2i64
6421 {3, MVT::v4i64, 5}, // (load 12i64 and) deinterleave into 3 x 4i64
6422 {3, MVT::v8i64, 10}, // (load 24i64 and) deinterleave into 3 x 8i64
6423 {3, MVT::v16i64, 20}, // (load 48i64 and) deinterleave into 3 x 16i64
6424
6425 {4, MVT::v2i8, 4}, // (load 8i8 and) deinterleave into 4 x 2i8
6426 {4, MVT::v4i8, 4}, // (load 16i8 and) deinterleave into 4 x 4i8
6427 {4, MVT::v8i8, 12}, // (load 32i8 and) deinterleave into 4 x 8i8
6428 {4, MVT::v16i8, 24}, // (load 64i8 and) deinterleave into 4 x 16i8
6429 {4, MVT::v32i8, 56}, // (load 128i8 and) deinterleave into 4 x 32i8
6430
6431 {4, MVT::v2i16, 6}, // (load 8i16 and) deinterleave into 4 x 2i16
6432 {4, MVT::v4i16, 17}, // (load 16i16 and) deinterleave into 4 x 4i16
6433 {4, MVT::v8i16, 33}, // (load 32i16 and) deinterleave into 4 x 8i16
6434 {4, MVT::v16i16, 75}, // (load 64i16 and) deinterleave into 4 x 16i16
6435 {4, MVT::v32i16, 150}, // (load 128i16 and) deinterleave into 4 x 32i16
6436
6437 {4, MVT::v2i32, 4}, // (load 8i32 and) deinterleave into 4 x 2i32
6438 {4, MVT::v4i32, 8}, // (load 16i32 and) deinterleave into 4 x 4i32
6439 {4, MVT::v8i32, 16}, // (load 32i32 and) deinterleave into 4 x 8i32
6440 {4, MVT::v16i32, 32}, // (load 64i32 and) deinterleave into 4 x 16i32
6441 {4, MVT::v32i32, 68}, // (load 128i32 and) deinterleave into 4 x 32i32
6442
6443 {4, MVT::v2i64, 6}, // (load 8i64 and) deinterleave into 4 x 2i64
6444 {4, MVT::v4i64, 8}, // (load 16i64 and) deinterleave into 4 x 4i64
6445 {4, MVT::v8i64, 20}, // (load 32i64 and) deinterleave into 4 x 8i64
6446 {4, MVT::v16i64, 40}, // (load 64i64 and) deinterleave into 4 x 16i64
6447
6448 {6, MVT::v2i8, 6}, // (load 12i8 and) deinterleave into 6 x 2i8
6449 {6, MVT::v4i8, 14}, // (load 24i8 and) deinterleave into 6 x 4i8
6450 {6, MVT::v8i8, 18}, // (load 48i8 and) deinterleave into 6 x 8i8
6451 {6, MVT::v16i8, 43}, // (load 96i8 and) deinterleave into 6 x 16i8
6452 {6, MVT::v32i8, 82}, // (load 192i8 and) deinterleave into 6 x 32i8
6453
6454 {6, MVT::v2i16, 13}, // (load 12i16 and) deinterleave into 6 x 2i16
6455 {6, MVT::v4i16, 9}, // (load 24i16 and) deinterleave into 6 x 4i16
6456 {6, MVT::v8i16, 39}, // (load 48i16 and) deinterleave into 6 x 8i16
6457 {6, MVT::v16i16, 106}, // (load 96i16 and) deinterleave into 6 x 16i16
6458 {6, MVT::v32i16, 212}, // (load 192i16 and) deinterleave into 6 x 32i16
6459
6460 {6, MVT::v2i32, 6}, // (load 12i32 and) deinterleave into 6 x 2i32
6461 {6, MVT::v4i32, 15}, // (load 24i32 and) deinterleave into 6 x 4i32
6462 {6, MVT::v8i32, 31}, // (load 48i32 and) deinterleave into 6 x 8i32
6463 {6, MVT::v16i32, 64}, // (load 96i32 and) deinterleave into 6 x 16i32
6464
6465 {6, MVT::v2i64, 6}, // (load 12i64 and) deinterleave into 6 x 2i64
6466 {6, MVT::v4i64, 18}, // (load 24i64 and) deinterleave into 6 x 4i64
6467 {6, MVT::v8i64, 36}, // (load 48i64 and) deinterleave into 6 x 8i64
6468
6469 {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
6470 };
6471
6472 static const CostTblEntry SSSE3InterleavedLoadTbl[] = {
6473 {2, MVT::v4i16, 2}, // (load 8i16 and) deinterleave into 2 x 4i16
6474 };
6475
6476 static const CostTblEntry SSE2InterleavedLoadTbl[] = {
6477 {2, MVT::v2i16, 2}, // (load 4i16 and) deinterleave into 2 x 2i16
6478 {2, MVT::v4i16, 7}, // (load 8i16 and) deinterleave into 2 x 4i16
6479
6480 {2, MVT::v2i32, 2}, // (load 4i32 and) deinterleave into 2 x 2i32
6481 {2, MVT::v4i32, 2}, // (load 8i32 and) deinterleave into 2 x 4i32
6482
6483 {2, MVT::v2i64, 2}, // (load 4i64 and) deinterleave into 2 x 2i64
6484 };
6485
6486 static const CostTblEntry AVX2InterleavedStoreTbl[] = {
6487 {2, MVT::v16i8, 3}, // interleave 2 x 16i8 into 32i8 (and store)
6488 {2, MVT::v32i8, 4}, // interleave 2 x 32i8 into 64i8 (and store)
6489
6490 {2, MVT::v8i16, 3}, // interleave 2 x 8i16 into 16i16 (and store)
6491 {2, MVT::v16i16, 4}, // interleave 2 x 16i16 into 32i16 (and store)
6492 {2, MVT::v32i16, 8}, // interleave 2 x 32i16 into 64i16 (and store)
6493
6494 {2, MVT::v4i32, 2}, // interleave 2 x 4i32 into 8i32 (and store)
6495 {2, MVT::v8i32, 4}, // interleave 2 x 8i32 into 16i32 (and store)
6496 {2, MVT::v16i32, 8}, // interleave 2 x 16i32 into 32i32 (and store)
6497 {2, MVT::v32i32, 16}, // interleave 2 x 32i32 into 64i32 (and store)
6498
6499 {2, MVT::v2i64, 2}, // interleave 2 x 2i64 into 4i64 (and store)
6500 {2, MVT::v4i64, 4}, // interleave 2 x 4i64 into 8i64 (and store)
6501 {2, MVT::v8i64, 8}, // interleave 2 x 8i64 into 16i64 (and store)
6502 {2, MVT::v16i64, 16}, // interleave 2 x 16i64 into 32i64 (and store)
6503 {2, MVT::v32i64, 32}, // interleave 2 x 32i64 into 64i64 (and store)
6504
6505 {3, MVT::v2i8, 4}, // interleave 3 x 2i8 into 6i8 (and store)
6506 {3, MVT::v4i8, 4}, // interleave 3 x 4i8 into 12i8 (and store)
6507 {3, MVT::v8i8, 6}, // interleave 3 x 8i8 into 24i8 (and store)
6508 {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
6509 {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
6510
6511 {3, MVT::v2i16, 4}, // interleave 3 x 2i16 into 6i16 (and store)
6512 {3, MVT::v4i16, 6}, // interleave 3 x 4i16 into 12i16 (and store)
6513 {3, MVT::v8i16, 12}, // interleave 3 x 8i16 into 24i16 (and store)
6514 {3, MVT::v16i16, 27}, // interleave 3 x 16i16 into 48i16 (and store)
6515 {3, MVT::v32i16, 54}, // interleave 3 x 32i16 into 96i16 (and store)
6516
6517 {3, MVT::v2i32, 4}, // interleave 3 x 2i32 into 6i32 (and store)
6518 {3, MVT::v4i32, 5}, // interleave 3 x 4i32 into 12i32 (and store)
6519 {3, MVT::v8i32, 11}, // interleave 3 x 8i32 into 24i32 (and store)
6520 {3, MVT::v16i32, 22}, // interleave 3 x 16i32 into 48i32 (and store)
6521 {3, MVT::v32i32, 48}, // interleave 3 x 32i32 into 96i32 (and store)
6522
6523 {3, MVT::v2i64, 4}, // interleave 3 x 2i64 into 6i64 (and store)
6524 {3, MVT::v4i64, 6}, // interleave 3 x 4i64 into 12i64 (and store)
6525 {3, MVT::v8i64, 12}, // interleave 3 x 8i64 into 24i64 (and store)
6526 {3, MVT::v16i64, 24}, // interleave 3 x 16i64 into 48i64 (and store)
6527
6528 {4, MVT::v2i8, 4}, // interleave 4 x 2i8 into 8i8 (and store)
6529 {4, MVT::v4i8, 4}, // interleave 4 x 4i8 into 16i8 (and store)
6530 {4, MVT::v8i8, 4}, // interleave 4 x 8i8 into 32i8 (and store)
6531 {4, MVT::v16i8, 8}, // interleave 4 x 16i8 into 64i8 (and store)
6532 {4, MVT::v32i8, 12}, // interleave 4 x 32i8 into 128i8 (and store)
6533
6534 {4, MVT::v2i16, 2}, // interleave 4 x 2i16 into 8i16 (and store)
6535 {4, MVT::v4i16, 6}, // interleave 4 x 4i16 into 16i16 (and store)
6536 {4, MVT::v8i16, 10}, // interleave 4 x 8i16 into 32i16 (and store)
6537 {4, MVT::v16i16, 32}, // interleave 4 x 16i16 into 64i16 (and store)
6538 {4, MVT::v32i16, 64}, // interleave 4 x 32i16 into 128i16 (and store)
6539
6540 {4, MVT::v2i32, 5}, // interleave 4 x 2i32 into 8i32 (and store)
6541 {4, MVT::v4i32, 6}, // interleave 4 x 4i32 into 16i32 (and store)
6542 {4, MVT::v8i32, 16}, // interleave 4 x 8i32 into 32i32 (and store)
6543 {4, MVT::v16i32, 32}, // interleave 4 x 16i32 into 64i32 (and store)
6544 {4, MVT::v32i32, 64}, // interleave 4 x 32i32 into 128i32 (and store)
6545
6546 {4, MVT::v2i64, 6}, // interleave 4 x 2i64 into 8i64 (and store)
6547 {4, MVT::v4i64, 8}, // interleave 4 x 4i64 into 16i64 (and store)
6548 {4, MVT::v8i64, 20}, // interleave 4 x 8i64 into 32i64 (and store)
6549 {4, MVT::v16i64, 40}, // interleave 4 x 16i64 into 64i64 (and store)
6550
6551 {6, MVT::v2i8, 7}, // interleave 6 x 2i8 into 12i8 (and store)
6552 {6, MVT::v4i8, 9}, // interleave 6 x 4i8 into 24i8 (and store)
6553 {6, MVT::v8i8, 16}, // interleave 6 x 8i8 into 48i8 (and store)
6554 {6, MVT::v16i8, 27}, // interleave 6 x 16i8 into 96i8 (and store)
6555 {6, MVT::v32i8, 90}, // interleave 6 x 32i8 into 192i8 (and store)
6556
6557 {6, MVT::v2i16, 10}, // interleave 6 x 2i16 into 12i16 (and store)
6558 {6, MVT::v4i16, 15}, // interleave 6 x 4i16 into 24i16 (and store)
6559 {6, MVT::v8i16, 21}, // interleave 6 x 8i16 into 48i16 (and store)
6560 {6, MVT::v16i16, 58}, // interleave 6 x 16i16 into 96i16 (and store)
6561 {6, MVT::v32i16, 90}, // interleave 6 x 32i16 into 192i16 (and store)
6562
6563 {6, MVT::v2i32, 9}, // interleave 6 x 2i32 into 12i32 (and store)
6564 {6, MVT::v4i32, 12}, // interleave 6 x 4i32 into 24i32 (and store)
6565 {6, MVT::v8i32, 33}, // interleave 6 x 8i32 into 48i32 (and store)
6566 {6, MVT::v16i32, 66}, // interleave 6 x 16i32 into 96i32 (and store)
6567
6568 {6, MVT::v2i64, 8}, // interleave 6 x 2i64 into 12i64 (and store)
6569 {6, MVT::v4i64, 15}, // interleave 6 x 4i64 into 24i64 (and store)
6570 {6, MVT::v8i64, 30}, // interleave 6 x 8i64 into 48i64 (and store)
6571 };
6572
6573 static const CostTblEntry SSE2InterleavedStoreTbl[] = {
6574 {2, MVT::v2i8, 1}, // interleave 2 x 2i8 into 4i8 (and store)
6575 {2, MVT::v4i8, 1}, // interleave 2 x 4i8 into 8i8 (and store)
6576 {2, MVT::v8i8, 1}, // interleave 2 x 8i8 into 16i8 (and store)
6577
6578 {2, MVT::v2i16, 1}, // interleave 2 x 2i16 into 4i16 (and store)
6579 {2, MVT::v4i16, 1}, // interleave 2 x 4i16 into 8i16 (and store)
6580
6581 {2, MVT::v2i32, 1}, // interleave 2 x 2i32 into 4i32 (and store)
6582 };
6583
6584 if (Opcode == Instruction::Load) {
6585 auto GetDiscountedCost = [Factor, NumMembers = Indices.size(),
6586 MemOpCosts](const CostTblEntry *Entry) {
6587 // NOTE: this is just an approximation!
6588 // It can over/under -estimate the cost!
6589 return MemOpCosts + divideCeil(NumMembers * Entry->Cost, Factor);
6590 };
6591
6592 if (ST->hasAVX2())
6593 if (const auto *Entry = CostTableLookup(AVX2InterleavedLoadTbl, Factor,
6594 ETy.getSimpleVT()))
6595 return GetDiscountedCost(Entry);
6596
6597 if (ST->hasSSSE3())
6598 if (const auto *Entry = CostTableLookup(SSSE3InterleavedLoadTbl, Factor,
6599 ETy.getSimpleVT()))
6600 return GetDiscountedCost(Entry);
6601
6602 if (ST->hasSSE2())
6603 if (const auto *Entry = CostTableLookup(SSE2InterleavedLoadTbl, Factor,
6604 ETy.getSimpleVT()))
6605 return GetDiscountedCost(Entry);
6606 } else {
6607 assert(Opcode == Instruction::Store &&(static_cast <bool> (Opcode == Instruction::Store &&
"Expected Store Instruction at this point") ? void (0) : __assert_fail
("Opcode == Instruction::Store && \"Expected Store Instruction at this point\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 6608, __extension__
__PRETTY_FUNCTION__))
6608 "Expected Store Instruction at this point")(static_cast <bool> (Opcode == Instruction::Store &&
"Expected Store Instruction at this point") ? void (0) : __assert_fail
("Opcode == Instruction::Store && \"Expected Store Instruction at this point\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 6608, __extension__
__PRETTY_FUNCTION__))
;
6609 assert((!Indices.size() || Indices.size() == Factor) &&(static_cast <bool> ((!Indices.size() || Indices.size()
== Factor) && "Interleaved store only supports fully-interleaved groups."
) ? void (0) : __assert_fail ("(!Indices.size() || Indices.size() == Factor) && \"Interleaved store only supports fully-interleaved groups.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 6610, __extension__
__PRETTY_FUNCTION__))
6610 "Interleaved store only supports fully-interleaved groups.")(static_cast <bool> ((!Indices.size() || Indices.size()
== Factor) && "Interleaved store only supports fully-interleaved groups."
) ? void (0) : __assert_fail ("(!Indices.size() || Indices.size() == Factor) && \"Interleaved store only supports fully-interleaved groups.\""
, "llvm/lib/Target/X86/X86TargetTransformInfo.cpp", 6610, __extension__
__PRETTY_FUNCTION__))
;
6611 if (ST->hasAVX2())
6612 if (const auto *Entry = CostTableLookup(AVX2InterleavedStoreTbl, Factor,
6613 ETy.getSimpleVT()))
6614 return MemOpCosts + Entry->Cost;
6615
6616 if (ST->hasSSE2())
6617 if (const auto *Entry = CostTableLookup(SSE2InterleavedStoreTbl, Factor,
6618 ETy.getSimpleVT()))
6619 return MemOpCosts + Entry->Cost;
6620 }
6621
6622 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6623 Alignment, AddressSpace, CostKind,
6624 UseMaskForCond, UseMaskForGaps);
6625}
6626
6627InstructionCost X86TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
6628 int64_t BaseOffset,
6629 bool HasBaseReg, int64_t Scale,
6630 unsigned AddrSpace) const {
6631 // Scaling factors are not free at all.
6632 // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
6633 // will take 2 allocations in the out of order engine instead of 1
6634 // for plain addressing mode, i.e. inst (reg1).
6635 // E.g.,
6636 // vaddps (%rsi,%rdx), %ymm0, %ymm1
6637 // Requires two allocations (one for the load, one for the computation)
6638 // whereas:
6639 // vaddps (%rsi), %ymm0, %ymm1
6640 // Requires just 1 allocation, i.e., freeing allocations for other operations
6641 // and having less micro operations to execute.
6642 //
6643 // For some X86 architectures, this is even worse because for instance for
6644 // stores, the complex addressing mode forces the instruction to use the
6645 // "load" ports instead of the dedicated "store" port.
6646 // E.g., on Haswell:
6647 // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
6648 // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
6649 TargetLoweringBase::AddrMode AM;
6650 AM.BaseGV = BaseGV;
6651 AM.BaseOffs = BaseOffset;
6652 AM.HasBaseReg = HasBaseReg;
6653 AM.Scale = Scale;
6654 if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
6655 // Scale represents reg2 * scale, thus account for 1
6656 // as soon as we use a second register.
6657 return AM.Scale != 0;
6658 return -1;
6659}