File: | bolt/runtime/instr.cpp |
Warning: | line 666, column 10 Branch condition evaluates to a garbage value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- bolt/runtime/instr.cpp ---------------------------------------------===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does | ||||
10 | // not support linking modules with dependencies on one another into the final | ||||
11 | // binary (TODO?), which means this library has to be self-contained in a single | ||||
12 | // module. | ||||
13 | // | ||||
14 | // All extern declarations here need to be defined by BOLT itself. Those will be | ||||
15 | // undefined symbols that BOLT needs to resolve by emitting these symbols with | ||||
16 | // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible | ||||
17 | // for defining the symbols here and these two files have a tight coupling: one | ||||
18 | // working statically when you run BOLT and another during program runtime when | ||||
19 | // you run an instrumented binary. The main goal here is to output an fdata file | ||||
20 | // (BOLT profile) with the instrumentation counters inserted by the static pass. | ||||
21 | // Counters for indirect calls are an exception, as we can't know them | ||||
22 | // statically. These counters are created and managed here. To allow this, we | ||||
23 | // need a minimal framework for allocating memory dynamically. We provide this | ||||
24 | // with the BumpPtrAllocator class (not LLVM's, but our own version of it). | ||||
25 | // | ||||
26 | // Since this code is intended to be inserted into any executable, we decided to | ||||
27 | // make it standalone and do not depend on any external libraries (i.e. language | ||||
28 | // support libraries, such as glibc or stdc++). To allow this, we provide a few | ||||
29 | // light implementations of common OS interacting functionalities using direct | ||||
30 | // syscall wrappers. Our simple allocator doesn't manage deallocations that | ||||
31 | // fragment the memory space, so it's stack based. This is the minimal framework | ||||
32 | // provided here to allow processing instrumented counters and writing fdata. | ||||
33 | // | ||||
34 | // In the C++ idiom used here, we never use or rely on constructors or | ||||
35 | // destructors for global objects. That's because those need support from the | ||||
36 | // linker in initialization/finalization code, and we want to keep our linker | ||||
37 | // very simple. Similarly, we don't create any global objects that are zero | ||||
38 | // initialized, since those would need to go .bss, which our simple linker also | ||||
39 | // don't support (TODO?). | ||||
40 | // | ||||
41 | //===----------------------------------------------------------------------===// | ||||
42 | |||||
43 | #include "common.h" | ||||
44 | |||||
45 | // Enables a very verbose logging to stderr useful when debugging | ||||
46 | //#define ENABLE_DEBUG | ||||
47 | |||||
48 | #ifdef ENABLE_DEBUG | ||||
49 | #define DEBUG(X){} \ | ||||
50 | { X; } | ||||
51 | #else | ||||
52 | #define DEBUG(X){} \ | ||||
53 | {} | ||||
54 | #endif | ||||
55 | |||||
56 | #pragma GCC visibility push(hidden) | ||||
57 | |||||
58 | extern "C" { | ||||
59 | |||||
60 | #if defined(__APPLE__) | ||||
61 | extern uint64_t* _bolt_instr_locations_getter(); | ||||
62 | extern uint32_t _bolt_num_counters_getter(); | ||||
63 | |||||
64 | extern uint8_t* _bolt_instr_tables_getter(); | ||||
65 | extern uint32_t _bolt_instr_num_funcs_getter(); | ||||
66 | |||||
67 | #else | ||||
68 | |||||
69 | // Main counters inserted by instrumentation, incremented during runtime when | ||||
70 | // points of interest (locations) in the program are reached. Those are direct | ||||
71 | // calls and direct and indirect branches (local ones). There are also counters | ||||
72 | // for basic block execution if they are a spanning tree leaf and need to be | ||||
73 | // counted in order to infer the execution count of other edges of the CFG. | ||||
74 | extern uint64_t __bolt_instr_locations[]; | ||||
75 | extern uint32_t __bolt_num_counters; | ||||
76 | // Descriptions are serialized metadata about binary functions written by BOLT, | ||||
77 | // so we have a minimal understanding about the program structure. For a | ||||
78 | // reference on the exact format of this metadata, see *Description structs, | ||||
79 | // Location, IntrumentedNode and EntryNode. | ||||
80 | // Number of indirect call site descriptions | ||||
81 | extern uint32_t __bolt_instr_num_ind_calls; | ||||
82 | // Number of indirect call target descriptions | ||||
83 | extern uint32_t __bolt_instr_num_ind_targets; | ||||
84 | // Number of function descriptions | ||||
85 | extern uint32_t __bolt_instr_num_funcs; | ||||
86 | // Time to sleep across dumps (when we write the fdata profile to disk) | ||||
87 | extern uint32_t __bolt_instr_sleep_time; | ||||
88 | // Do not clear counters across dumps, rewrite file with the updated values | ||||
89 | extern bool __bolt_instr_no_counters_clear; | ||||
90 | // Wait until all forks of instrumented process will finish | ||||
91 | extern bool __bolt_instr_wait_forks; | ||||
92 | // Filename to dump data to | ||||
93 | extern char __bolt_instr_filename[]; | ||||
94 | // Instumented binary file path | ||||
95 | extern char __bolt_instr_binpath[]; | ||||
96 | // If true, append current PID to the fdata filename when creating it so | ||||
97 | // different invocations of the same program can be differentiated. | ||||
98 | extern bool __bolt_instr_use_pid; | ||||
99 | // Functions that will be used to instrument indirect calls. BOLT static pass | ||||
100 | // will identify indirect calls and modify them to load the address in these | ||||
101 | // trampolines and call this address instead. BOLT can't use direct calls to | ||||
102 | // our handlers because our addresses here are not known at analysis time. We | ||||
103 | // only support resolving dependencies from this file to the output of BOLT, | ||||
104 | // *not* the other way around. | ||||
105 | // TODO: We need better linking support to make that happen. | ||||
106 | extern void (*__bolt_ind_call_counter_func_pointer)(); | ||||
107 | extern void (*__bolt_ind_tailcall_counter_func_pointer)(); | ||||
108 | // Function pointers to init/fini trampoline routines in the binary, so we can | ||||
109 | // resume regular execution of these functions that we hooked | ||||
110 | extern void __bolt_start_trampoline(); | ||||
111 | extern void __bolt_fini_trampoline(); | ||||
112 | |||||
113 | #endif | ||||
114 | } | ||||
115 | |||||
116 | namespace { | ||||
117 | |||||
118 | /// A simple allocator that mmaps a fixed size region and manages this space | ||||
119 | /// in a stack fashion, meaning you always deallocate the last element that | ||||
120 | /// was allocated. In practice, we don't need to deallocate individual elements. | ||||
121 | /// We monotonically increase our usage and then deallocate everything once we | ||||
122 | /// are done processing something. | ||||
123 | class BumpPtrAllocator { | ||||
124 | /// This is written before each allocation and act as a canary to detect when | ||||
125 | /// a bug caused our program to cross allocation boundaries. | ||||
126 | struct EntryMetadata { | ||||
127 | uint64_t Magic; | ||||
128 | uint64_t AllocSize; | ||||
129 | }; | ||||
130 | |||||
131 | public: | ||||
132 | void *allocate(size_t Size) { | ||||
133 | Lock L(M); | ||||
134 | |||||
135 | if (StackBase == nullptr) { | ||||
136 | StackBase = reinterpret_cast<uint8_t *>( | ||||
137 | __mmap(0, MaxSize, PROT_READ0x1 | PROT_WRITE0x2, | ||||
138 | (Shared ? MAP_SHARED0x01 : MAP_PRIVATE0x02) | MAP_ANONYMOUS0x20, -1, 0)); | ||||
139 | assert(StackBase != MAP_FAILED((void *)-1), | ||||
140 | "BumpPtrAllocator: failed to mmap stack!"); | ||||
141 | StackSize = 0; | ||||
142 | } | ||||
143 | |||||
144 | Size = alignTo(Size + sizeof(EntryMetadata), 16); | ||||
145 | uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); | ||||
146 | auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); | ||||
147 | M->Magic = Magic; | ||||
148 | M->AllocSize = Size; | ||||
149 | StackSize += Size; | ||||
150 | assert(StackSize < MaxSize, "allocator ran out of memory"); | ||||
151 | return AllocAddress; | ||||
152 | } | ||||
153 | |||||
154 | #ifdef DEBUG | ||||
155 | /// Element-wise deallocation is only used for debugging to catch memory | ||||
156 | /// bugs by checking magic bytes. Ordinarily, we reset the allocator once | ||||
157 | /// we are done with it. Reset is done with clear(). There's no need | ||||
158 | /// to deallocate each element individually. | ||||
159 | void deallocate(void *Ptr) { | ||||
160 | Lock L(M); | ||||
161 | uint8_t MetadataOffset = sizeof(EntryMetadata); | ||||
162 | auto *M = reinterpret_cast<EntryMetadata *>( | ||||
163 | reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); | ||||
164 | const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; | ||||
165 | // Validate size | ||||
166 | if (Ptr != StackTop - M->AllocSize) { | ||||
167 | // Failed validation, check if it is a pointer returned by operator new [] | ||||
168 | MetadataOffset += | ||||
169 | sizeof(uint64_t); // Space for number of elements alloc'ed | ||||
170 | M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - | ||||
171 | MetadataOffset); | ||||
172 | // Ok, it failed both checks if this assertion fails. Stop the program, we | ||||
173 | // have a memory bug. | ||||
174 | assert(Ptr == StackTop - M->AllocSize, | ||||
175 | "must deallocate the last element alloc'ed"); | ||||
176 | } | ||||
177 | assert(M->Magic == Magic, "allocator magic is corrupt"); | ||||
178 | StackSize -= M->AllocSize; | ||||
179 | } | ||||
180 | #else | ||||
181 | void deallocate(void *) {} | ||||
182 | #endif | ||||
183 | |||||
184 | void clear() { | ||||
185 | Lock L(M); | ||||
186 | StackSize = 0; | ||||
187 | } | ||||
188 | |||||
189 | /// Set mmap reservation size (only relevant before first allocation) | ||||
190 | void setMaxSize(uint64_t Size) { MaxSize = Size; } | ||||
191 | |||||
192 | /// Set mmap reservation privacy (only relevant before first allocation) | ||||
193 | void setShared(bool S) { Shared = S; } | ||||
194 | |||||
195 | void destroy() { | ||||
196 | if (StackBase == nullptr) | ||||
197 | return; | ||||
198 | __munmap(StackBase, MaxSize); | ||||
199 | } | ||||
200 | |||||
201 | // Placement operator to construct allocator in possibly shared mmaped memory | ||||
202 | static void *operator new(size_t, void *Ptr) { return Ptr; }; | ||||
203 | |||||
204 | private: | ||||
205 | static constexpr uint64_t Magic = 0x1122334455667788ull; | ||||
206 | uint64_t MaxSize = 0xa00000; | ||||
207 | uint8_t *StackBase{nullptr}; | ||||
208 | uint64_t StackSize{0}; | ||||
209 | bool Shared{false}; | ||||
210 | Mutex M; | ||||
211 | }; | ||||
212 | |||||
213 | /// Used for allocating indirect call instrumentation counters. Initialized by | ||||
214 | /// __bolt_instr_setup, our initialization routine. | ||||
215 | BumpPtrAllocator *GlobalAlloc; | ||||
216 | |||||
217 | // Base address which we substract from recorded PC values when searching for | ||||
218 | // indirect call description entries. Needed because indCall descriptions are | ||||
219 | // mapped read-only and contain static addresses. Initialized in | ||||
220 | // __bolt_instr_setup. | ||||
221 | uint64_t TextBaseAddress = 0; | ||||
222 | |||||
223 | // Storage for GlobalAlloc which can be shared if not using | ||||
224 | // instrumentation-file-append-pid. | ||||
225 | void *GlobalMetadataStorage; | ||||
226 | |||||
227 | } // anonymous namespace | ||||
228 | |||||
229 | // User-defined placement new operators. We only use those (as opposed to | ||||
230 | // overriding the regular operator new) so we can keep our allocator in the | ||||
231 | // stack instead of in a data section (global). | ||||
232 | void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } | ||||
233 | void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { | ||||
234 | auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); | ||||
235 | memset(Ptr, C, Sz); | ||||
236 | return Ptr; | ||||
237 | } | ||||
238 | void *operator new[](size_t Sz, BumpPtrAllocator &A) { | ||||
239 | return A.allocate(Sz); | ||||
240 | } | ||||
241 | void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { | ||||
242 | auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); | ||||
243 | memset(Ptr, C, Sz); | ||||
244 | return Ptr; | ||||
245 | } | ||||
246 | // Only called during exception unwinding (useless). We must manually dealloc. | ||||
247 | // C++ language weirdness | ||||
248 | void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } | ||||
249 | |||||
250 | namespace { | ||||
251 | |||||
252 | // Disable instrumentation optimizations that sacrifice profile accuracy | ||||
253 | extern "C" bool __bolt_instr_conservative; | ||||
254 | |||||
255 | /// Basic key-val atom stored in our hash | ||||
256 | struct SimpleHashTableEntryBase { | ||||
257 | uint64_t Key; | ||||
258 | uint64_t Val; | ||||
259 | void dump(const char *Msg = nullptr) { | ||||
260 | // TODO: make some sort of formatting function | ||||
261 | // Currently we have to do it the ugly way because | ||||
262 | // we want every message to be printed atomically via a single call to | ||||
263 | // __write. If we use reportNumber() and others nultiple times, we'll get | ||||
264 | // garbage in mulithreaded environment | ||||
265 | char Buf[BufSize]; | ||||
266 | char *Ptr = Buf; | ||||
267 | Ptr = intToStr(Ptr, __getpid(), 10); | ||||
268 | *Ptr++ = ':'; | ||||
269 | *Ptr++ = ' '; | ||||
270 | if (Msg) | ||||
271 | Ptr = strCopy(Ptr, Msg, strLen(Msg)); | ||||
272 | *Ptr++ = '0'; | ||||
273 | *Ptr++ = 'x'; | ||||
274 | Ptr = intToStr(Ptr, (uint64_t)this, 16); | ||||
275 | *Ptr++ = ':'; | ||||
276 | *Ptr++ = ' '; | ||||
277 | Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1); | ||||
278 | Ptr = intToStr(Ptr, Key, 16); | ||||
279 | *Ptr++ = ','; | ||||
280 | *Ptr++ = ' '; | ||||
281 | *Ptr++ = '0'; | ||||
282 | *Ptr++ = 'x'; | ||||
283 | Ptr = intToStr(Ptr, Val, 16); | ||||
284 | *Ptr++ = ')'; | ||||
285 | *Ptr++ = '\n'; | ||||
286 | assert(Ptr - Buf < BufSize, "Buffer overflow!"); | ||||
287 | // print everything all at once for atomicity | ||||
288 | __write(2, Buf, Ptr - Buf); | ||||
289 | } | ||||
290 | }; | ||||
291 | |||||
292 | /// This hash table implementation starts by allocating a table of size | ||||
293 | /// InitialSize. When conflicts happen in this main table, it resolves | ||||
294 | /// them by chaining a new table of size IncSize. It never reallocs as our | ||||
295 | /// allocator doesn't support it. The key is intended to be function pointers. | ||||
296 | /// There's no clever hash function (it's just x mod size, size being prime). | ||||
297 | /// I never tuned the coefficientes in the modular equation (TODO) | ||||
298 | /// This is used for indirect calls (each call site has one of this, so it | ||||
299 | /// should have a small footprint) and for tallying call counts globally for | ||||
300 | /// each target to check if we missed the origin of some calls (this one is a | ||||
301 | /// large instantiation of this template, since it is global for all call sites) | ||||
302 | template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, | ||||
303 | uint32_t IncSize = 7> | ||||
304 | class SimpleHashTable { | ||||
305 | public: | ||||
306 | using MapEntry = T; | ||||
307 | |||||
308 | /// Increment by 1 the value of \p Key. If it is not in this table, it will be | ||||
309 | /// added to the table and its value set to 1. | ||||
310 | void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { | ||||
311 | if (!__bolt_instr_conservative) { | ||||
312 | TryLock L(M); | ||||
313 | if (!L.isLocked()) | ||||
314 | return; | ||||
315 | auto &E = getOrAllocEntry(Key, Alloc); | ||||
316 | ++E.Val; | ||||
317 | return; | ||||
318 | } | ||||
319 | Lock L(M); | ||||
320 | auto &E = getOrAllocEntry(Key, Alloc); | ||||
321 | ++E.Val; | ||||
322 | } | ||||
323 | |||||
324 | /// Basic member accessing interface. Here we pass the allocator explicitly to | ||||
325 | /// avoid storing a pointer to it as part of this table (remember there is one | ||||
326 | /// hash for each indirect call site, so we want to minimize our footprint). | ||||
327 | MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { | ||||
328 | if (!__bolt_instr_conservative) { | ||||
329 | TryLock L(M); | ||||
330 | if (!L.isLocked()) | ||||
331 | return NoEntry; | ||||
332 | return getOrAllocEntry(Key, Alloc); | ||||
333 | } | ||||
334 | Lock L(M); | ||||
335 | return getOrAllocEntry(Key, Alloc); | ||||
336 | } | ||||
337 | |||||
338 | /// Traverses all elements in the table | ||||
339 | template <typename... Args> | ||||
340 | void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { | ||||
341 | Lock L(M); | ||||
342 | if (!TableRoot) | ||||
343 | return; | ||||
344 | return forEachElement(Callback, InitialSize, TableRoot, args...); | ||||
345 | } | ||||
346 | |||||
347 | void resetCounters(); | ||||
348 | |||||
349 | private: | ||||
350 | constexpr static uint64_t VacantMarker = 0; | ||||
351 | constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; | ||||
352 | |||||
353 | MapEntry *TableRoot{nullptr}; | ||||
354 | MapEntry NoEntry; | ||||
355 | Mutex M; | ||||
356 | |||||
357 | template <typename... Args> | ||||
358 | void forEachElement(void (*Callback)(MapEntry &, Args...), | ||||
359 | uint32_t NumEntries, MapEntry *Entries, Args... args) { | ||||
360 | for (uint32_t I = 0; I < NumEntries; ++I) { | ||||
361 | MapEntry &Entry = Entries[I]; | ||||
362 | if (Entry.Key == VacantMarker) | ||||
363 | continue; | ||||
364 | if (Entry.Key & FollowUpTableMarker) { | ||||
365 | MapEntry *Next = | ||||
366 | reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker); | ||||
367 | assert(Next != Entries, "Circular reference!"); | ||||
368 | forEachElement(Callback, IncSize, Next, args...); | ||||
369 | continue; | ||||
370 | } | ||||
371 | Callback(Entry, args...); | ||||
372 | } | ||||
373 | } | ||||
374 | |||||
375 | MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { | ||||
376 | TableRoot = new (Alloc, 0) MapEntry[InitialSize]; | ||||
377 | MapEntry &Entry = TableRoot[Key % InitialSize]; | ||||
378 | Entry.Key = Key; | ||||
379 | // DEBUG(Entry.dump("Created root entry: ")); | ||||
380 | return Entry; | ||||
381 | } | ||||
382 | |||||
383 | MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, | ||||
384 | BumpPtrAllocator &Alloc, int CurLevel) { | ||||
385 | // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10)); | ||||
386 | const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; | ||||
387 | uint64_t Remainder = Selector / NumEntries; | ||||
388 | Selector = Selector % NumEntries; | ||||
389 | MapEntry &Entry = Entries[Selector]; | ||||
390 | |||||
391 | // A hit | ||||
392 | if (Entry.Key == Key) { | ||||
393 | // DEBUG(Entry.dump("Hit: ")); | ||||
394 | return Entry; | ||||
395 | } | ||||
396 | |||||
397 | // Vacant - add new entry | ||||
398 | if (Entry.Key == VacantMarker) { | ||||
399 | Entry.Key = Key; | ||||
400 | // DEBUG(Entry.dump("Adding new entry: ")); | ||||
401 | return Entry; | ||||
402 | } | ||||
403 | |||||
404 | // Defer to the next level | ||||
405 | if (Entry.Key & FollowUpTableMarker) { | ||||
406 | return getEntry( | ||||
407 | reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), | ||||
408 | Key, Remainder, Alloc, CurLevel + 1); | ||||
409 | } | ||||
410 | |||||
411 | // Conflict - create the next level | ||||
412 | // DEBUG(Entry.dump("Creating new level: ")); | ||||
413 | |||||
414 | MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; | ||||
415 | // DEBUG( | ||||
416 | // reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl), | ||||
417 | // 16)); | ||||
418 | uint64_t CurEntrySelector = Entry.Key / InitialSize; | ||||
419 | for (int I = 0; I < CurLevel; ++I) | ||||
420 | CurEntrySelector /= IncSize; | ||||
421 | CurEntrySelector = CurEntrySelector % IncSize; | ||||
422 | NextLevelTbl[CurEntrySelector] = Entry; | ||||
423 | Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; | ||||
424 | assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) != | ||||
425 | uint64_t(Entries), | ||||
426 | "circular reference created!\n"); | ||||
427 | // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: ")); | ||||
428 | // DEBUG(Entry.dump("Updated old entry: ")); | ||||
429 | return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); | ||||
430 | } | ||||
431 | |||||
432 | MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { | ||||
433 | if (TableRoot) { | ||||
434 | MapEntry &E = getEntry(TableRoot, Key, Key, Alloc, 0); | ||||
435 | assert(!(E.Key & FollowUpTableMarker), "Invalid entry!"); | ||||
436 | return E; | ||||
437 | } | ||||
438 | return firstAllocation(Key, Alloc); | ||||
439 | } | ||||
440 | }; | ||||
441 | |||||
442 | template <typename T> void resetIndCallCounter(T &Entry) { | ||||
443 | Entry.Val = 0; | ||||
444 | } | ||||
445 | |||||
446 | template <typename T, uint32_t X, uint32_t Y> | ||||
447 | void SimpleHashTable<T, X, Y>::resetCounters() { | ||||
448 | forEachElement(resetIndCallCounter); | ||||
449 | } | ||||
450 | |||||
451 | /// Represents a hash table mapping a function target address to its counter. | ||||
452 | using IndirectCallHashTable = SimpleHashTable<>; | ||||
453 | |||||
454 | /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the | ||||
455 | /// global array of all hash tables storing indirect call destinations happening | ||||
456 | /// during runtime, one table per call site. | ||||
457 | IndirectCallHashTable *GlobalIndCallCounters{ | ||||
458 | reinterpret_cast<IndirectCallHashTable *>(1)}; | ||||
459 | |||||
460 | /// Don't allow reentrancy in the fdata writing phase - only one thread writes | ||||
461 | /// it | ||||
462 | Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; | ||||
463 | |||||
464 | /// Store number of calls in additional to target address (Key) and frequency | ||||
465 | /// as perceived by the basic block counter (Val). | ||||
466 | struct CallFlowEntryBase : public SimpleHashTableEntryBase { | ||||
467 | uint64_t Calls; | ||||
468 | }; | ||||
469 | |||||
470 | using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; | ||||
471 | |||||
472 | /// This is a large table indexing all possible call targets (indirect and | ||||
473 | /// direct ones). The goal is to find mismatches between number of calls (for | ||||
474 | /// those calls we were able to track) and the entry basic block counter of the | ||||
475 | /// callee. In most cases, these two should be equal. If not, there are two | ||||
476 | /// possible scenarios here: | ||||
477 | /// | ||||
478 | /// * Entry BB has higher frequency than all known calls to this function. | ||||
479 | /// In this case, we have dynamic library code or any uninstrumented code | ||||
480 | /// calling this function. We will write the profile for these untracked | ||||
481 | /// calls as having source "0 [unknown] 0" in the fdata file. | ||||
482 | /// | ||||
483 | /// * Number of known calls is higher than the frequency of entry BB | ||||
484 | /// This only happens when there is no counter for the entry BB / callee | ||||
485 | /// function is not simple (in BOLT terms). We don't do anything special | ||||
486 | /// here and just ignore those (we still report all calls to the non-simple | ||||
487 | /// function, though). | ||||
488 | /// | ||||
489 | class CallFlowHashTable : public CallFlowHashTableBase { | ||||
490 | public: | ||||
491 | CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} | ||||
492 | |||||
493 | MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } | ||||
494 | |||||
495 | private: | ||||
496 | // Different than the hash table for indirect call targets, we do store the | ||||
497 | // allocator here since there is only one call flow hash and space overhead | ||||
498 | // is negligible. | ||||
499 | BumpPtrAllocator &Alloc; | ||||
500 | }; | ||||
501 | |||||
502 | /// | ||||
503 | /// Description metadata emitted by BOLT to describe the program - refer to | ||||
504 | /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() | ||||
505 | /// | ||||
506 | struct Location { | ||||
507 | uint32_t FunctionName; | ||||
508 | uint32_t Offset; | ||||
509 | }; | ||||
510 | |||||
511 | struct CallDescription { | ||||
512 | Location From; | ||||
513 | uint32_t FromNode; | ||||
514 | Location To; | ||||
515 | uint32_t Counter; | ||||
516 | uint64_t TargetAddress; | ||||
517 | }; | ||||
518 | |||||
519 | using IndCallDescription = Location; | ||||
520 | |||||
521 | struct IndCallTargetDescription { | ||||
522 | Location Loc; | ||||
523 | uint64_t Address; | ||||
524 | }; | ||||
525 | |||||
526 | struct EdgeDescription { | ||||
527 | Location From; | ||||
528 | uint32_t FromNode; | ||||
529 | Location To; | ||||
530 | uint32_t ToNode; | ||||
531 | uint32_t Counter; | ||||
532 | }; | ||||
533 | |||||
534 | struct InstrumentedNode { | ||||
535 | uint32_t Node; | ||||
536 | uint32_t Counter; | ||||
537 | }; | ||||
538 | |||||
539 | struct EntryNode { | ||||
540 | uint64_t Node; | ||||
541 | uint64_t Address; | ||||
542 | }; | ||||
543 | |||||
544 | struct FunctionDescription { | ||||
545 | uint32_t NumLeafNodes; | ||||
546 | const InstrumentedNode *LeafNodes; | ||||
547 | uint32_t NumEdges; | ||||
548 | const EdgeDescription *Edges; | ||||
549 | uint32_t NumCalls; | ||||
550 | const CallDescription *Calls; | ||||
551 | uint32_t NumEntryNodes; | ||||
552 | const EntryNode *EntryNodes; | ||||
553 | |||||
554 | /// Constructor will parse the serialized function metadata written by BOLT | ||||
555 | FunctionDescription(const uint8_t *FuncDesc); | ||||
556 | |||||
557 | uint64_t getSize() const { | ||||
558 | return 16 + NumLeafNodes * sizeof(InstrumentedNode) + | ||||
559 | NumEdges * sizeof(EdgeDescription) + | ||||
560 | NumCalls * sizeof(CallDescription) + | ||||
561 | NumEntryNodes * sizeof(EntryNode); | ||||
562 | } | ||||
563 | }; | ||||
564 | |||||
565 | /// The context is created when the fdata profile needs to be written to disk | ||||
566 | /// and we need to interpret our runtime counters. It contains pointers to the | ||||
567 | /// mmaped binary (only the BOLT written metadata section). Deserialization | ||||
568 | /// should be straightforward as most data is POD or an array of POD elements. | ||||
569 | /// This metadata is used to reconstruct function CFGs. | ||||
570 | struct ProfileWriterContext { | ||||
571 | IndCallDescription *IndCallDescriptions; | ||||
572 | IndCallTargetDescription *IndCallTargets; | ||||
573 | uint8_t *FuncDescriptions; | ||||
574 | char *Strings; // String table with function names used in this binary | ||||
575 | int FileDesc; // File descriptor for the file on disk backing this | ||||
576 | // information in memory via mmap | ||||
577 | void *MMapPtr; // The mmap ptr | ||||
578 | int MMapSize; // The mmap size | ||||
579 | |||||
580 | /// Hash table storing all possible call destinations to detect untracked | ||||
581 | /// calls and correctly report them as [unknown] in output fdata. | ||||
582 | CallFlowHashTable *CallFlowTable; | ||||
583 | |||||
584 | /// Lookup the sorted indirect call target vector to fetch function name and | ||||
585 | /// offset for an arbitrary function pointer. | ||||
586 | const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; | ||||
587 | }; | ||||
588 | |||||
589 | /// Perform a string comparison and returns zero if Str1 matches Str2. Compares | ||||
590 | /// at most Size characters. | ||||
591 | int compareStr(const char *Str1, const char *Str2, int Size) { | ||||
592 | while (*Str1 == *Str2) { | ||||
593 | if (*Str1 == '\0' || --Size == 0) | ||||
594 | return 0; | ||||
595 | ++Str1; | ||||
596 | ++Str2; | ||||
597 | } | ||||
598 | return 1; | ||||
599 | } | ||||
600 | |||||
601 | /// Output Location to the fdata file | ||||
602 | char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, | ||||
603 | const Location Loc, uint32_t BufSize) { | ||||
604 | // fdata location format: Type Name Offset | ||||
605 | // Type 1 - regular symbol | ||||
606 | OutBuf = strCopy(OutBuf, "1 "); | ||||
607 | const char *Str = Ctx.Strings + Loc.FunctionName; | ||||
608 | uint32_t Size = 25; | ||||
609 | while (*Str) { | ||||
610 | *OutBuf++ = *Str++; | ||||
611 | if (++Size >= BufSize) | ||||
612 | break; | ||||
613 | } | ||||
614 | assert(!*Str, "buffer overflow, function name too large"); | ||||
615 | *OutBuf++ = ' '; | ||||
616 | OutBuf = intToStr(OutBuf, Loc.Offset, 16); | ||||
617 | *OutBuf++ = ' '; | ||||
618 | return OutBuf; | ||||
619 | } | ||||
620 | |||||
621 | /// Read and deserialize a function description written by BOLT. \p FuncDesc | ||||
622 | /// points at the beginning of the function metadata structure in the file. | ||||
623 | /// See Instrumentation::emitTablesAsELFNote() | ||||
624 | FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { | ||||
625 | NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); | ||||
626 | DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)){}; | ||||
627 | LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); | ||||
628 | |||||
629 | NumEdges = *reinterpret_cast<const uint32_t *>( | ||||
630 | FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); | ||||
631 | DEBUG(reportNumber("NumEdges = ", NumEdges, 10)){}; | ||||
632 | Edges = reinterpret_cast<const EdgeDescription *>( | ||||
633 | FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); | ||||
634 | |||||
635 | NumCalls = *reinterpret_cast<const uint32_t *>( | ||||
636 | FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + | ||||
637 | NumEdges * sizeof(EdgeDescription)); | ||||
638 | DEBUG(reportNumber("NumCalls = ", NumCalls, 10)){}; | ||||
639 | Calls = reinterpret_cast<const CallDescription *>( | ||||
640 | FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + | ||||
641 | NumEdges * sizeof(EdgeDescription)); | ||||
642 | NumEntryNodes = *reinterpret_cast<const uint32_t *>( | ||||
643 | FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + | ||||
644 | NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); | ||||
645 | DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)){}; | ||||
646 | EntryNodes = reinterpret_cast<const EntryNode *>( | ||||
647 | FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + | ||||
648 | NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); | ||||
649 | } | ||||
650 | |||||
651 | /// Read and mmap descriptions written by BOLT from the executable's notes | ||||
652 | /// section | ||||
653 | #if defined(HAVE_ELF_H) and !defined(__APPLE__) | ||||
654 | |||||
655 | void *__attribute__((noinline)) __get_pc() { | ||||
656 | return __builtin_extract_return_addr(__builtin_return_address(0)); | ||||
657 | } | ||||
658 | |||||
659 | /// Get string with address and parse it to hex pair <StartAddress, EndAddress> | ||||
660 | bool parseAddressRange(const char *Str, uint64_t &StartAddress, | ||||
661 | uint64_t &EndAddress) { | ||||
662 | if (!Str
| ||||
663 | return false; | ||||
664 | // Parsed string format: <hex1>-<hex2> | ||||
665 | StartAddress = hexToLong(Str, '-'); | ||||
666 | while (*Str && *Str != '-') | ||||
| |||||
667 | ++Str; | ||||
668 | if (!*Str) | ||||
669 | return false; | ||||
670 | ++Str; // swallow '-' | ||||
671 | EndAddress = hexToLong(Str); | ||||
672 | return true; | ||||
673 | } | ||||
674 | |||||
675 | /// Get full path to the real binary by getting current virtual address | ||||
676 | /// and searching for the appropriate link in address range in | ||||
677 | /// /proc/self/map_files | ||||
678 | static char *getBinaryPath() { | ||||
679 | const uint32_t BufSize = 1024; | ||||
680 | const uint32_t NameMax = 4096; | ||||
681 | const char DirPath[] = "/proc/self/map_files/"; | ||||
682 | static char TargetPath[NameMax] = {}; | ||||
683 | char Buf[BufSize]; | ||||
684 | |||||
685 | if (__bolt_instr_binpath[0] != '\0') | ||||
686 | return __bolt_instr_binpath; | ||||
687 | |||||
688 | if (TargetPath[0] != '\0') | ||||
689 | return TargetPath; | ||||
690 | |||||
691 | unsigned long CurAddr = (unsigned long)__get_pc(); | ||||
692 | uint64_t FDdir = __open(DirPath, O_RDONLY0, | ||||
693 | /*mode=*/0666); | ||||
694 | assert(static_cast<int64_t>(FDdir) >= 0, | ||||
695 | "failed to open /proc/self/map_files"); | ||||
696 | |||||
697 | while (long Nread = __getdents64(FDdir, (struct dirent64 *)Buf, BufSize)) { | ||||
698 | assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); | ||||
699 | |||||
700 | struct dirent64 *d; | ||||
701 | for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { | ||||
702 | d = (struct dirent64 *)(Buf + Bpos); | ||||
703 | |||||
704 | uint64_t StartAddress, EndAddress; | ||||
705 | if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) | ||||
706 | continue; | ||||
707 | if (CurAddr < StartAddress || CurAddr > EndAddress) | ||||
708 | continue; | ||||
709 | char FindBuf[NameMax]; | ||||
710 | char *C = strCopy(FindBuf, DirPath, NameMax); | ||||
711 | C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); | ||||
712 | *C = '\0'; | ||||
713 | uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); | ||||
714 | assert(Ret != -1 && Ret != BufSize, "readlink error"); | ||||
715 | TargetPath[Ret] = '\0'; | ||||
716 | return TargetPath; | ||||
717 | } | ||||
718 | } | ||||
719 | return nullptr; | ||||
720 | } | ||||
721 | |||||
722 | ProfileWriterContext readDescriptions() { | ||||
723 | ProfileWriterContext Result; | ||||
724 | char *BinPath = getBinaryPath(); | ||||
725 | assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); | ||||
726 | |||||
727 | uint64_t FD = __open(BinPath, O_RDONLY0, | ||||
728 | /*mode=*/0666); | ||||
729 | assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); | ||||
730 | |||||
731 | Result.FileDesc = FD; | ||||
732 | |||||
733 | // mmap our binary to memory | ||||
734 | uint64_t Size = __lseek(FD, 0, SEEK_END2); | ||||
735 | uint8_t *BinContents = reinterpret_cast<uint8_t *>( | ||||
736 | __mmap(0, Size, PROT_READ0x1, MAP_PRIVATE0x02, FD, 0)); | ||||
737 | assert(BinContents != MAP_FAILED((void *)-1), "readDescriptions: Failed to mmap self!"); | ||||
738 | Result.MMapPtr = BinContents; | ||||
739 | Result.MMapSize = Size; | ||||
740 | Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); | ||||
741 | Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); | ||||
742 | Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( | ||||
743 | BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); | ||||
744 | |||||
745 | // Find .bolt.instr.tables with the data we need and set pointers to it | ||||
746 | for (int I = 0; I < Hdr->e_shnum; ++I) { | ||||
747 | char *SecName = reinterpret_cast<char *>( | ||||
748 | BinContents + StringTblHeader->sh_offset + Shdr->sh_name); | ||||
749 | if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { | ||||
750 | Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + | ||||
751 | (I + 1) * Hdr->e_shentsize); | ||||
752 | continue; | ||||
753 | } | ||||
754 | // Actual contents of the ELF note start after offset 20 decimal: | ||||
755 | // Offset 0: Producer name size (4 bytes) | ||||
756 | // Offset 4: Contents size (4 bytes) | ||||
757 | // Offset 8: Note type (4 bytes) | ||||
758 | // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) | ||||
759 | // Offset 20: Contents | ||||
760 | uint32_t IndCallDescSize = | ||||
761 | *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); | ||||
762 | uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( | ||||
763 | BinContents + Shdr->sh_offset + 24 + IndCallDescSize); | ||||
764 | uint32_t FuncDescSize = | ||||
765 | *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + | ||||
766 | IndCallDescSize + IndCallTargetDescSize); | ||||
767 | Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( | ||||
768 | BinContents + Shdr->sh_offset + 24); | ||||
769 | Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( | ||||
770 | BinContents + Shdr->sh_offset + 28 + IndCallDescSize); | ||||
771 | Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + | ||||
772 | IndCallDescSize + IndCallTargetDescSize; | ||||
773 | Result.Strings = reinterpret_cast<char *>( | ||||
774 | BinContents + Shdr->sh_offset + 32 + IndCallDescSize + | ||||
775 | IndCallTargetDescSize + FuncDescSize); | ||||
776 | return Result; | ||||
777 | } | ||||
778 | const char ErrMsg[] = | ||||
779 | "BOLT instrumentation runtime error: could not find section " | ||||
780 | ".bolt.instr.tables\n"; | ||||
781 | reportError(ErrMsg, sizeof(ErrMsg)); | ||||
782 | return Result; | ||||
783 | } | ||||
784 | |||||
785 | #else | ||||
786 | |||||
787 | ProfileWriterContext readDescriptions() { | ||||
788 | ProfileWriterContext Result; | ||||
789 | uint8_t *Tables = _bolt_instr_tables_getter(); | ||||
790 | uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); | ||||
791 | uint32_t IndCallTargetDescSize = | ||||
792 | *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); | ||||
793 | uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( | ||||
794 | Tables + 8 + IndCallDescSize + IndCallTargetDescSize); | ||||
795 | Result.IndCallDescriptions = | ||||
796 | reinterpret_cast<IndCallDescription *>(Tables + 4); | ||||
797 | Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( | ||||
798 | Tables + 8 + IndCallDescSize); | ||||
799 | Result.FuncDescriptions = | ||||
800 | Tables + 12 + IndCallDescSize + IndCallTargetDescSize; | ||||
801 | Result.Strings = reinterpret_cast<char *>( | ||||
802 | Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); | ||||
803 | return Result; | ||||
804 | } | ||||
805 | |||||
806 | #endif | ||||
807 | |||||
808 | #if !defined(__APPLE__) | ||||
809 | /// Debug by printing overall metadata global numbers to check it is sane | ||||
810 | void printStats(const ProfileWriterContext &Ctx) { | ||||
811 | char StatMsg[BufSize]; | ||||
812 | char *StatPtr = StatMsg; | ||||
813 | StatPtr = | ||||
814 | strCopy(StatPtr, | ||||
815 | "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); | ||||
816 | StatPtr = intToStr(StatPtr, | ||||
817 | Ctx.FuncDescriptions - | ||||
818 | reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), | ||||
819 | 10); | ||||
820 | StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); | ||||
821 | StatPtr = intToStr( | ||||
822 | StatPtr, | ||||
823 | reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); | ||||
824 | StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); | ||||
825 | StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); | ||||
826 | StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); | ||||
827 | StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); | ||||
828 | StatPtr = strCopy(StatPtr, "\n"); | ||||
829 | __write(2, StatMsg, StatPtr - StatMsg); | ||||
830 | } | ||||
831 | #endif | ||||
832 | |||||
833 | |||||
834 | /// This is part of a simple CFG representation in memory, where we store | ||||
835 | /// a dynamically sized array of input and output edges per node, and store | ||||
836 | /// a dynamically sized array of nodes per graph. We also store the spanning | ||||
837 | /// tree edges for that CFG in a separate array of nodes in | ||||
838 | /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. | ||||
839 | struct Edge { | ||||
840 | uint32_t Node; // Index in nodes array regarding the destination of this edge | ||||
841 | uint32_t ID; // Edge index in an array comprising all edges of the graph | ||||
842 | }; | ||||
843 | |||||
844 | /// A regular graph node or a spanning tree node | ||||
845 | struct Node { | ||||
846 | uint32_t NumInEdges{0}; // Input edge count used to size InEdge | ||||
847 | uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges | ||||
848 | Edge *InEdges{nullptr}; // Created and managed by \p Graph | ||||
849 | Edge *OutEdges{nullptr}; // ditto | ||||
850 | }; | ||||
851 | |||||
852 | /// Main class for CFG representation in memory. Manages object creation and | ||||
853 | /// destruction, populates an array of CFG nodes as well as corresponding | ||||
854 | /// spanning tree nodes. | ||||
855 | struct Graph { | ||||
856 | uint32_t NumNodes; | ||||
857 | Node *CFGNodes; | ||||
858 | Node *SpanningTreeNodes; | ||||
859 | uint64_t *EdgeFreqs; | ||||
860 | uint64_t *CallFreqs; | ||||
861 | BumpPtrAllocator &Alloc; | ||||
862 | const FunctionDescription &D; | ||||
863 | |||||
864 | /// Reads a list of edges from function description \p D and builds | ||||
865 | /// the graph from it. Allocates several internal dynamic structures that are | ||||
866 | /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all | ||||
867 | /// spanning tree leaf nodes descriptions (their counters). They are the seed | ||||
868 | /// used to compute the rest of the missing edge counts in a bottom-up | ||||
869 | /// traversal of the spanning tree. | ||||
870 | Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, | ||||
871 | const uint64_t *Counters, ProfileWriterContext &Ctx); | ||||
872 | ~Graph(); | ||||
873 | void dump() const; | ||||
874 | |||||
875 | private: | ||||
876 | void computeEdgeFrequencies(const uint64_t *Counters, | ||||
877 | ProfileWriterContext &Ctx); | ||||
878 | void dumpEdgeFreqs() const; | ||||
879 | }; | ||||
880 | |||||
881 | Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, | ||||
882 | const uint64_t *Counters, ProfileWriterContext &Ctx) | ||||
883 | : Alloc(Alloc), D(D) { | ||||
884 | DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)){}; | ||||
885 | // First pass to determine number of nodes | ||||
886 | int32_t MaxNodes = -1; | ||||
887 | CallFreqs = nullptr; | ||||
888 | EdgeFreqs = nullptr; | ||||
889 | for (int I = 0; I < D.NumEdges; ++I) { | ||||
890 | if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) | ||||
891 | MaxNodes = D.Edges[I].FromNode; | ||||
892 | if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) | ||||
893 | MaxNodes = D.Edges[I].ToNode; | ||||
894 | } | ||||
895 | |||||
896 | for (int I = 0; I < D.NumLeafNodes; ++I) | ||||
897 | if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) | ||||
898 | MaxNodes = D.LeafNodes[I].Node; | ||||
899 | |||||
900 | for (int I = 0; I < D.NumCalls; ++I) | ||||
901 | if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) | ||||
902 | MaxNodes = D.Calls[I].FromNode; | ||||
903 | |||||
904 | // No nodes? Nothing to do | ||||
905 | if (MaxNodes < 0) { | ||||
906 | DEBUG(report("No nodes!\n")){}; | ||||
907 | CFGNodes = nullptr; | ||||
908 | SpanningTreeNodes = nullptr; | ||||
909 | NumNodes = 0; | ||||
910 | return; | ||||
911 | } | ||||
912 | ++MaxNodes; | ||||
913 | DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)){}; | ||||
914 | NumNodes = static_cast<uint32_t>(MaxNodes); | ||||
915 | |||||
916 | // Initial allocations | ||||
917 | CFGNodes = new (Alloc) Node[MaxNodes]; | ||||
918 | |||||
919 | DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)){}; | ||||
920 | SpanningTreeNodes = new (Alloc) Node[MaxNodes]; | ||||
921 | DEBUG(reportNumber("G->SpanningTreeNodes = 0x",{} | ||||
922 | (uint64_t)SpanningTreeNodes, 16)){}; | ||||
923 | |||||
924 | // Figure out how much to allocate to each vector (in/out edge sets) | ||||
925 | for (int I = 0; I < D.NumEdges; ++I) { | ||||
926 | CFGNodes[D.Edges[I].FromNode].NumOutEdges++; | ||||
927 | CFGNodes[D.Edges[I].ToNode].NumInEdges++; | ||||
928 | if (D.Edges[I].Counter != 0xffffffff) | ||||
929 | continue; | ||||
930 | |||||
931 | SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; | ||||
932 | SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; | ||||
933 | } | ||||
934 | |||||
935 | // Allocate in/out edge sets | ||||
936 | for (int I = 0; I < MaxNodes; ++I) { | ||||
937 | if (CFGNodes[I].NumInEdges > 0) | ||||
938 | CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; | ||||
939 | if (CFGNodes[I].NumOutEdges > 0) | ||||
940 | CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; | ||||
941 | if (SpanningTreeNodes[I].NumInEdges > 0) | ||||
942 | SpanningTreeNodes[I].InEdges = | ||||
943 | new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; | ||||
944 | if (SpanningTreeNodes[I].NumOutEdges > 0) | ||||
945 | SpanningTreeNodes[I].OutEdges = | ||||
946 | new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; | ||||
947 | CFGNodes[I].NumInEdges = 0; | ||||
948 | CFGNodes[I].NumOutEdges = 0; | ||||
949 | SpanningTreeNodes[I].NumInEdges = 0; | ||||
950 | SpanningTreeNodes[I].NumOutEdges = 0; | ||||
951 | } | ||||
952 | |||||
953 | // Fill in/out edge sets | ||||
954 | for (int I = 0; I < D.NumEdges; ++I) { | ||||
955 | const uint32_t Src = D.Edges[I].FromNode; | ||||
956 | const uint32_t Dst = D.Edges[I].ToNode; | ||||
957 | Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; | ||||
958 | E->Node = Dst; | ||||
959 | E->ID = I; | ||||
960 | |||||
961 | E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; | ||||
962 | E->Node = Src; | ||||
963 | E->ID = I; | ||||
964 | |||||
965 | if (D.Edges[I].Counter != 0xffffffff) | ||||
966 | continue; | ||||
967 | |||||
968 | E = &SpanningTreeNodes[Src] | ||||
969 | .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; | ||||
970 | E->Node = Dst; | ||||
971 | E->ID = I; | ||||
972 | |||||
973 | E = &SpanningTreeNodes[Dst] | ||||
974 | .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; | ||||
975 | E->Node = Src; | ||||
976 | E->ID = I; | ||||
977 | } | ||||
978 | |||||
979 | computeEdgeFrequencies(Counters, Ctx); | ||||
980 | } | ||||
981 | |||||
982 | Graph::~Graph() { | ||||
983 | if (CallFreqs) | ||||
984 | Alloc.deallocate(CallFreqs); | ||||
985 | if (EdgeFreqs) | ||||
986 | Alloc.deallocate(EdgeFreqs); | ||||
987 | for (int I = NumNodes - 1; I >= 0; --I) { | ||||
988 | if (SpanningTreeNodes[I].OutEdges) | ||||
989 | Alloc.deallocate(SpanningTreeNodes[I].OutEdges); | ||||
990 | if (SpanningTreeNodes[I].InEdges) | ||||
991 | Alloc.deallocate(SpanningTreeNodes[I].InEdges); | ||||
992 | if (CFGNodes[I].OutEdges) | ||||
993 | Alloc.deallocate(CFGNodes[I].OutEdges); | ||||
994 | if (CFGNodes[I].InEdges) | ||||
995 | Alloc.deallocate(CFGNodes[I].InEdges); | ||||
996 | } | ||||
997 | if (SpanningTreeNodes) | ||||
998 | Alloc.deallocate(SpanningTreeNodes); | ||||
999 | if (CFGNodes) | ||||
1000 | Alloc.deallocate(CFGNodes); | ||||
1001 | } | ||||
1002 | |||||
1003 | void Graph::dump() const { | ||||
1004 | reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); | ||||
1005 | report(" Full graph:\n"); | ||||
1006 | for (int I = 0; I < NumNodes; ++I) { | ||||
1007 | const Node *N = &CFGNodes[I]; | ||||
1008 | reportNumber(" Node #", I, 10); | ||||
1009 | reportNumber(" InEdges total ", N->NumInEdges, 10); | ||||
1010 | for (int J = 0; J < N->NumInEdges; ++J) | ||||
1011 | reportNumber(" ", N->InEdges[J].Node, 10); | ||||
1012 | reportNumber(" OutEdges total ", N->NumOutEdges, 10); | ||||
1013 | for (int J = 0; J < N->NumOutEdges; ++J) | ||||
1014 | reportNumber(" ", N->OutEdges[J].Node, 10); | ||||
1015 | report("\n"); | ||||
1016 | } | ||||
1017 | report(" Spanning tree:\n"); | ||||
1018 | for (int I = 0; I < NumNodes; ++I) { | ||||
1019 | const Node *N = &SpanningTreeNodes[I]; | ||||
1020 | reportNumber(" Node #", I, 10); | ||||
1021 | reportNumber(" InEdges total ", N->NumInEdges, 10); | ||||
1022 | for (int J = 0; J < N->NumInEdges; ++J) | ||||
1023 | reportNumber(" ", N->InEdges[J].Node, 10); | ||||
1024 | reportNumber(" OutEdges total ", N->NumOutEdges, 10); | ||||
1025 | for (int J = 0; J < N->NumOutEdges; ++J) | ||||
1026 | reportNumber(" ", N->OutEdges[J].Node, 10); | ||||
1027 | report("\n"); | ||||
1028 | } | ||||
1029 | } | ||||
1030 | |||||
1031 | void Graph::dumpEdgeFreqs() const { | ||||
1032 | reportNumber( | ||||
1033 | "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); | ||||
1034 | for (int I = 0; I < D.NumEdges; ++I) { | ||||
1035 | reportNumber("* Src: ", D.Edges[I].FromNode, 10); | ||||
1036 | reportNumber(" Dst: ", D.Edges[I].ToNode, 10); | ||||
1037 | reportNumber(" Cnt: ", EdgeFreqs[I], 10); | ||||
1038 | } | ||||
1039 | } | ||||
1040 | |||||
1041 | /// Auxiliary map structure for fast lookups of which calls map to each node of | ||||
1042 | /// the function CFG | ||||
1043 | struct NodeToCallsMap { | ||||
1044 | struct MapEntry { | ||||
1045 | uint32_t NumCalls; | ||||
1046 | uint32_t *Calls; | ||||
1047 | }; | ||||
1048 | MapEntry *Entries; | ||||
1049 | BumpPtrAllocator &Alloc; | ||||
1050 | const uint32_t NumNodes; | ||||
1051 | |||||
1052 | NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, | ||||
1053 | uint32_t NumNodes) | ||||
1054 | : Alloc(Alloc), NumNodes(NumNodes) { | ||||
1055 | Entries = new (Alloc, 0) MapEntry[NumNodes]; | ||||
1056 | for (int I = 0; I < D.NumCalls; ++I) { | ||||
1057 | DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)){}; | ||||
1058 | ++Entries[D.Calls[I].FromNode].NumCalls; | ||||
1059 | } | ||||
1060 | for (int I = 0; I < NumNodes; ++I) { | ||||
1061 | Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) | ||||
1062 | uint32_t[Entries[I].NumCalls] | ||||
1063 | : nullptr; | ||||
1064 | Entries[I].NumCalls = 0; | ||||
1065 | } | ||||
1066 | for (int I = 0; I < D.NumCalls; ++I) { | ||||
1067 | MapEntry &Entry = Entries[D.Calls[I].FromNode]; | ||||
1068 | Entry.Calls[Entry.NumCalls++] = I; | ||||
1069 | } | ||||
1070 | } | ||||
1071 | |||||
1072 | /// Set the frequency of all calls in node \p NodeID to Freq. However, if | ||||
1073 | /// the calls have their own counters and do not depend on the basic block | ||||
1074 | /// counter, this means they have landing pads and throw exceptions. In this | ||||
1075 | /// case, set their frequency with their counters and return the maximum | ||||
1076 | /// value observed in such counters. This will be used as the new frequency | ||||
1077 | /// at basic block entry. This is used to fix the CFG edge frequencies in the | ||||
1078 | /// presence of exceptions. | ||||
1079 | uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, | ||||
1080 | const FunctionDescription &D, | ||||
1081 | const uint64_t *Counters, | ||||
1082 | ProfileWriterContext &Ctx) const { | ||||
1083 | const MapEntry &Entry = Entries[NodeID]; | ||||
1084 | uint64_t MaxValue = 0ull; | ||||
1085 | for (int I = 0, E = Entry.NumCalls; I != E; ++I) { | ||||
1086 | const uint32_t CallID = Entry.Calls[I]; | ||||
1087 | DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)){}; | ||||
1088 | const CallDescription &CallDesc = D.Calls[CallID]; | ||||
1089 | if (CallDesc.Counter == 0xffffffff) { | ||||
1090 | CallFreqs[CallID] = Freq; | ||||
1091 | DEBUG(reportNumber(" with : ", Freq, 10)){}; | ||||
1092 | } else { | ||||
1093 | const uint64_t CounterVal = Counters[CallDesc.Counter]; | ||||
1094 | CallFreqs[CallID] = CounterVal; | ||||
1095 | MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; | ||||
1096 | DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)){}; | ||||
1097 | } | ||||
1098 | DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)){}; | ||||
1099 | if (CallFreqs[CallID] > 0) | ||||
1100 | Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += | ||||
1101 | CallFreqs[CallID]; | ||||
1102 | } | ||||
1103 | return MaxValue; | ||||
1104 | } | ||||
1105 | |||||
1106 | ~NodeToCallsMap() { | ||||
1107 | for (int I = NumNodes - 1; I >= 0; --I) | ||||
1108 | if (Entries[I].Calls) | ||||
1109 | Alloc.deallocate(Entries[I].Calls); | ||||
1110 | Alloc.deallocate(Entries); | ||||
1111 | } | ||||
1112 | }; | ||||
1113 | |||||
1114 | /// Fill an array with the frequency of each edge in the function represented | ||||
1115 | /// by G, as well as another array for each call. | ||||
1116 | void Graph::computeEdgeFrequencies(const uint64_t *Counters, | ||||
1117 | ProfileWriterContext &Ctx) { | ||||
1118 | if (NumNodes == 0) | ||||
1119 | return; | ||||
1120 | |||||
1121 | EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; | ||||
1122 | CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; | ||||
1123 | |||||
1124 | // Setup a lookup for calls present in each node (BB) | ||||
1125 | NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); | ||||
1126 | |||||
1127 | // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the | ||||
1128 | // spanning tree don't have explicit counters. We must infer their value using | ||||
1129 | // a linear combination of other counters (sum of counters of the outgoing | ||||
1130 | // edges minus sum of counters of the incoming edges). | ||||
1131 | uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; | ||||
1132 | uint32_t StackTop = 0; | ||||
1133 | enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; | ||||
1134 | Status *Visited = new (Alloc, 0) Status[NumNodes]; | ||||
1135 | uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; | ||||
1136 | uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; | ||||
1137 | |||||
1138 | // Setup a fast lookup for frequency of leaf nodes, which have special | ||||
1139 | // basic block frequency instrumentation (they are not edge profiled). | ||||
1140 | for (int I = 0; I < D.NumLeafNodes; ++I) { | ||||
1141 | LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; | ||||
1142 | DEBUG({{} | ||||
1143 | if (Counters[D.LeafNodes[I].Counter] > 0) {{} | ||||
1144 | reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10);{} | ||||
1145 | reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10);{} | ||||
1146 | }{} | ||||
1147 | }){}; | ||||
1148 | } | ||||
1149 | for (int I = 0; I < D.NumEntryNodes; ++I) { | ||||
1150 | EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; | ||||
1151 | DEBUG({{} | ||||
1152 | reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10);{} | ||||
1153 | reportNumber(" Address: ", D.EntryNodes[I].Address, 16);{} | ||||
1154 | }){}; | ||||
1155 | } | ||||
1156 | // Add all root nodes to the stack | ||||
1157 | for (int I = 0; I < NumNodes; ++I) | ||||
1158 | if (SpanningTreeNodes[I].NumInEdges == 0) | ||||
1159 | Stack[StackTop++] = I; | ||||
1160 | |||||
1161 | // Empty stack? | ||||
1162 | if (StackTop == 0) { | ||||
1163 | DEBUG(report("Empty stack!\n")){}; | ||||
1164 | Alloc.deallocate(EntryAddress); | ||||
1165 | Alloc.deallocate(LeafFrequency); | ||||
1166 | Alloc.deallocate(Visited); | ||||
1167 | Alloc.deallocate(Stack); | ||||
1168 | CallMap->~NodeToCallsMap(); | ||||
1169 | Alloc.deallocate(CallMap); | ||||
1170 | if (CallFreqs) | ||||
1171 | Alloc.deallocate(CallFreqs); | ||||
1172 | if (EdgeFreqs) | ||||
1173 | Alloc.deallocate(EdgeFreqs); | ||||
1174 | EdgeFreqs = nullptr; | ||||
1175 | CallFreqs = nullptr; | ||||
1176 | return; | ||||
1177 | } | ||||
1178 | // Add all known edge counts, will infer the rest | ||||
1179 | for (int I = 0; I < D.NumEdges; ++I) { | ||||
1180 | const uint32_t C = D.Edges[I].Counter; | ||||
1181 | if (C == 0xffffffff) // inferred counter - we will compute its value | ||||
1182 | continue; | ||||
1183 | EdgeFreqs[I] = Counters[C]; | ||||
1184 | } | ||||
1185 | |||||
1186 | while (StackTop > 0) { | ||||
1187 | const uint32_t Cur = Stack[--StackTop]; | ||||
1188 | DEBUG({{} | ||||
1189 | if (Visited[Cur] == S_VISITING){} | ||||
1190 | report("(visiting) ");{} | ||||
1191 | else{} | ||||
1192 | report("(new) ");{} | ||||
1193 | reportNumber("Cur: ", Cur, 10);{} | ||||
1194 | }){}; | ||||
1195 | |||||
1196 | // This shouldn't happen in a tree | ||||
1197 | assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); | ||||
1198 | if (Visited[Cur] == S_NEW) { | ||||
1199 | Visited[Cur] = S_VISITING; | ||||
1200 | Stack[StackTop++] = Cur; | ||||
1201 | assert(StackTop <= NumNodes, "stack grew too large"); | ||||
1202 | for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { | ||||
1203 | const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; | ||||
1204 | Stack[StackTop++] = Succ; | ||||
1205 | assert(StackTop <= NumNodes, "stack grew too large"); | ||||
1206 | } | ||||
1207 | continue; | ||||
1208 | } | ||||
1209 | Visited[Cur] = S_VISITED; | ||||
1210 | |||||
1211 | // Establish our node frequency based on outgoing edges, which should all be | ||||
1212 | // resolved by now. | ||||
1213 | int64_t CurNodeFreq = LeafFrequency[Cur]; | ||||
1214 | // Not a leaf? | ||||
1215 | if (!CurNodeFreq) { | ||||
1216 | for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { | ||||
1217 | const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; | ||||
1218 | CurNodeFreq += EdgeFreqs[SuccEdge]; | ||||
1219 | } | ||||
1220 | } | ||||
1221 | if (CurNodeFreq < 0) | ||||
1222 | CurNodeFreq = 0; | ||||
1223 | |||||
1224 | const uint64_t CallFreq = CallMap->visitAllCallsIn( | ||||
1225 | Cur, CurNodeFreq > 0 ? CurNodeFreq : 0, CallFreqs, D, Counters, Ctx); | ||||
1226 | |||||
1227 | // Exception handling affected our output flow? Fix with calls info | ||||
1228 | DEBUG({{} | ||||
1229 | if (CallFreq > CurNodeFreq){} | ||||
1230 | report("Bumping node frequency with call info\n");{} | ||||
1231 | }){}; | ||||
1232 | CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; | ||||
1233 | |||||
1234 | if (CurNodeFreq > 0) { | ||||
1235 | if (uint64_t Addr = EntryAddress[Cur]) { | ||||
1236 | DEBUG({} | ||||
1237 | reportNumber(" Setting flow at entry point address 0x", Addr, 16)){}; | ||||
1238 | DEBUG(reportNumber(" with: ", CurNodeFreq, 10)){}; | ||||
1239 | Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; | ||||
1240 | } | ||||
1241 | } | ||||
1242 | |||||
1243 | // No parent? Reached a tree root, limit to call frequency updating. | ||||
1244 | if (SpanningTreeNodes[Cur].NumInEdges == 0) | ||||
1245 | continue; | ||||
1246 | |||||
1247 | assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); | ||||
1248 | const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; | ||||
1249 | const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; | ||||
1250 | |||||
1251 | // Calculate parent edge freq. | ||||
1252 | int64_t ParentEdgeFreq = CurNodeFreq; | ||||
1253 | for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { | ||||
1254 | const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; | ||||
1255 | ParentEdgeFreq -= EdgeFreqs[PredEdge]; | ||||
1256 | } | ||||
1257 | |||||
1258 | // Sometimes the conservative CFG that BOLT builds will lead to incorrect | ||||
1259 | // flow computation. For example, in a BB that transitively calls the exit | ||||
1260 | // syscall, BOLT will add a fall-through successor even though it should not | ||||
1261 | // have any successors. So this block execution will likely be wrong. We | ||||
1262 | // tolerate this imperfection since this case should be quite infrequent. | ||||
1263 | if (ParentEdgeFreq < 0) { | ||||
1264 | DEBUG(dumpEdgeFreqs()){}; | ||||
1265 | DEBUG(report("WARNING: incorrect flow")){}; | ||||
1266 | ParentEdgeFreq = 0; | ||||
1267 | } | ||||
1268 | DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)){}; | ||||
1269 | DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)){}; | ||||
1270 | EdgeFreqs[ParentEdge] = ParentEdgeFreq; | ||||
1271 | } | ||||
1272 | |||||
1273 | Alloc.deallocate(EntryAddress); | ||||
1274 | Alloc.deallocate(LeafFrequency); | ||||
1275 | Alloc.deallocate(Visited); | ||||
1276 | Alloc.deallocate(Stack); | ||||
1277 | CallMap->~NodeToCallsMap(); | ||||
1278 | Alloc.deallocate(CallMap); | ||||
1279 | DEBUG(dumpEdgeFreqs()){}; | ||||
1280 | } | ||||
1281 | |||||
1282 | /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses | ||||
1283 | /// \p Alloc to allocate helper dynamic structures used to compute profile for | ||||
1284 | /// edges that we do not explicitly instrument. | ||||
1285 | const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, | ||||
1286 | const uint8_t *FuncDesc, | ||||
1287 | BumpPtrAllocator &Alloc) { | ||||
1288 | const FunctionDescription F(FuncDesc); | ||||
1289 | const uint8_t *next = FuncDesc + F.getSize(); | ||||
1290 | |||||
1291 | #if !defined(__APPLE__) | ||||
1292 | uint64_t *bolt_instr_locations = __bolt_instr_locations; | ||||
1293 | #else | ||||
1294 | uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); | ||||
1295 | #endif | ||||
1296 | |||||
1297 | // Skip funcs we know are cold | ||||
1298 | #ifndef ENABLE_DEBUG | ||||
1299 | uint64_t CountersFreq = 0; | ||||
1300 | for (int I = 0; I < F.NumLeafNodes; ++I) | ||||
1301 | CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; | ||||
1302 | |||||
1303 | if (CountersFreq == 0) { | ||||
1304 | for (int I = 0; I < F.NumEdges; ++I) { | ||||
1305 | const uint32_t C = F.Edges[I].Counter; | ||||
1306 | if (C == 0xffffffff) | ||||
1307 | continue; | ||||
1308 | CountersFreq += bolt_instr_locations[C]; | ||||
1309 | } | ||||
1310 | if (CountersFreq == 0) { | ||||
1311 | for (int I = 0; I < F.NumCalls; ++I) { | ||||
1312 | const uint32_t C = F.Calls[I].Counter; | ||||
1313 | if (C == 0xffffffff) | ||||
1314 | continue; | ||||
1315 | CountersFreq += bolt_instr_locations[C]; | ||||
1316 | } | ||||
1317 | if (CountersFreq == 0) | ||||
1318 | return next; | ||||
1319 | } | ||||
1320 | } | ||||
1321 | #endif | ||||
1322 | |||||
1323 | Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); | ||||
1324 | DEBUG(G->dump()){}; | ||||
1325 | |||||
1326 | if (!G->EdgeFreqs && !G->CallFreqs) { | ||||
1327 | G->~Graph(); | ||||
1328 | Alloc.deallocate(G); | ||||
1329 | return next; | ||||
1330 | } | ||||
1331 | |||||
1332 | for (int I = 0; I < F.NumEdges; ++I) { | ||||
1333 | const uint64_t Freq = G->EdgeFreqs[I]; | ||||
1334 | if (Freq == 0) | ||||
1335 | continue; | ||||
1336 | const EdgeDescription *Desc = &F.Edges[I]; | ||||
1337 | char LineBuf[BufSize]; | ||||
1338 | char *Ptr = LineBuf; | ||||
1339 | Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); | ||||
1340 | Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); | ||||
1341 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); | ||||
1342 | Ptr = intToStr(Ptr, Freq, 10); | ||||
1343 | *Ptr++ = '\n'; | ||||
1344 | __write(FD, LineBuf, Ptr - LineBuf); | ||||
1345 | } | ||||
1346 | |||||
1347 | for (int I = 0; I < F.NumCalls; ++I) { | ||||
1348 | const uint64_t Freq = G->CallFreqs[I]; | ||||
1349 | if (Freq == 0) | ||||
1350 | continue; | ||||
1351 | char LineBuf[BufSize]; | ||||
1352 | char *Ptr = LineBuf; | ||||
1353 | const CallDescription *Desc = &F.Calls[I]; | ||||
1354 | Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); | ||||
1355 | Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); | ||||
1356 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); | ||||
1357 | Ptr = intToStr(Ptr, Freq, 10); | ||||
1358 | *Ptr++ = '\n'; | ||||
1359 | __write(FD, LineBuf, Ptr - LineBuf); | ||||
1360 | } | ||||
1361 | |||||
1362 | G->~Graph(); | ||||
1363 | Alloc.deallocate(G); | ||||
1364 | return next; | ||||
1365 | } | ||||
1366 | |||||
1367 | #if !defined(__APPLE__) | ||||
1368 | const IndCallTargetDescription * | ||||
1369 | ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { | ||||
1370 | uint32_t B = 0; | ||||
1371 | uint32_t E = __bolt_instr_num_ind_targets; | ||||
1372 | if (E == 0) | ||||
1373 | return nullptr; | ||||
1374 | do { | ||||
1375 | uint32_t I = (E - B) / 2 + B; | ||||
1376 | if (IndCallTargets[I].Address == Target) | ||||
1377 | return &IndCallTargets[I]; | ||||
1378 | if (IndCallTargets[I].Address < Target) | ||||
1379 | B = I + 1; | ||||
1380 | else | ||||
1381 | E = I; | ||||
1382 | } while (B < E); | ||||
1383 | return nullptr; | ||||
1384 | } | ||||
1385 | |||||
1386 | /// Write a single indirect call <src, target> pair to the fdata file | ||||
1387 | void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, | ||||
1388 | int FD, int CallsiteID, | ||||
1389 | ProfileWriterContext *Ctx) { | ||||
1390 | if (Entry.Val == 0) | ||||
1391 | return; | ||||
1392 | DEBUG(reportNumber("Target func 0x", Entry.Key, 16)){}; | ||||
1393 | DEBUG(reportNumber("Target freq: ", Entry.Val, 10)){}; | ||||
1394 | const IndCallDescription *CallsiteDesc = | ||||
1395 | &Ctx->IndCallDescriptions[CallsiteID]; | ||||
1396 | const IndCallTargetDescription *TargetDesc = | ||||
1397 | Ctx->lookupIndCallTarget(Entry.Key - TextBaseAddress); | ||||
1398 | if (!TargetDesc) { | ||||
1399 | DEBUG(report("Failed to lookup indirect call target\n")){}; | ||||
1400 | char LineBuf[BufSize]; | ||||
1401 | char *Ptr = LineBuf; | ||||
1402 | Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); | ||||
1403 | Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); | ||||
1404 | Ptr = intToStr(Ptr, Entry.Val, 10); | ||||
1405 | *Ptr++ = '\n'; | ||||
1406 | __write(FD, LineBuf, Ptr - LineBuf); | ||||
1407 | return; | ||||
1408 | } | ||||
1409 | Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; | ||||
1410 | char LineBuf[BufSize]; | ||||
1411 | char *Ptr = LineBuf; | ||||
1412 | Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); | ||||
1413 | Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); | ||||
1414 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); | ||||
1415 | Ptr = intToStr(Ptr, Entry.Val, 10); | ||||
1416 | *Ptr++ = '\n'; | ||||
1417 | __write(FD, LineBuf, Ptr - LineBuf); | ||||
1418 | } | ||||
1419 | |||||
1420 | /// Write to \p FD all of the indirect call profiles. | ||||
1421 | void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { | ||||
1422 | for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { | ||||
1423 | DEBUG(reportNumber("IndCallsite #", I, 10)){}; | ||||
1424 | GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); | ||||
1425 | } | ||||
1426 | } | ||||
1427 | |||||
1428 | /// Check a single call flow for a callee versus all known callers. If there are | ||||
1429 | /// less callers than what the callee expects, write the difference with source | ||||
1430 | /// [unknown] in the profile. | ||||
1431 | void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, | ||||
1432 | ProfileWriterContext *Ctx) { | ||||
1433 | DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)){}; | ||||
1434 | DEBUG(reportNumber("Calls: ", Entry.Calls, 10)){}; | ||||
1435 | DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)){}; | ||||
1436 | DEBUG({{} | ||||
1437 | if (Entry.Calls > Entry.Val){} | ||||
1438 | report(" More calls than expected!\n");{} | ||||
1439 | }){}; | ||||
1440 | if (Entry.Val <= Entry.Calls) | ||||
1441 | return; | ||||
1442 | DEBUG(reportNumber({} | ||||
1443 | " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)){}; | ||||
1444 | const IndCallTargetDescription *TargetDesc = | ||||
1445 | Ctx->lookupIndCallTarget(Entry.Key); | ||||
1446 | if (!TargetDesc) { | ||||
1447 | // There is probably something wrong with this callee and this should be | ||||
1448 | // investigated, but I don't want to assert and lose all data collected. | ||||
1449 | DEBUG(report("WARNING: failed to look up call target!\n")){}; | ||||
1450 | return; | ||||
1451 | } | ||||
1452 | char LineBuf[BufSize]; | ||||
1453 | char *Ptr = LineBuf; | ||||
1454 | Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); | ||||
1455 | Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); | ||||
1456 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); | ||||
1457 | Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); | ||||
1458 | *Ptr++ = '\n'; | ||||
1459 | __write(FD, LineBuf, Ptr - LineBuf); | ||||
1460 | } | ||||
1461 | |||||
1462 | /// Open fdata file for writing and return a valid file descriptor, aborting | ||||
1463 | /// program upon failure. | ||||
1464 | int openProfile() { | ||||
1465 | // Build the profile name string by appending our PID | ||||
1466 | char Buf[BufSize]; | ||||
1467 | char *Ptr = Buf; | ||||
1468 | uint64_t PID = __getpid(); | ||||
1469 | Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); | ||||
1470 | if (__bolt_instr_use_pid) { | ||||
1471 | Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); | ||||
1472 | Ptr = intToStr(Ptr, PID, 10); | ||||
1473 | Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); | ||||
1474 | } | ||||
1475 | *Ptr++ = '\0'; | ||||
1476 | uint64_t FD = __open(Buf, O_WRONLY1 | O_TRUNC512 | O_CREAT64, | ||||
1477 | /*mode=*/0666); | ||||
1478 | if (static_cast<int64_t>(FD) < 0) { | ||||
1479 | report("Error while trying to open profile file for writing: "); | ||||
1480 | report(Buf); | ||||
1481 | reportNumber("\nFailed with error number: 0x", | ||||
1482 | 0 - static_cast<int64_t>(FD), 16); | ||||
1483 | __exit(1); | ||||
1484 | } | ||||
1485 | return FD; | ||||
1486 | } | ||||
1487 | |||||
1488 | #endif | ||||
1489 | |||||
1490 | } // anonymous namespace | ||||
1491 | |||||
1492 | #if !defined(__APPLE__) | ||||
1493 | |||||
1494 | /// Reset all counters in case you want to start profiling a new phase of your | ||||
1495 | /// program independently of prior phases. | ||||
1496 | /// The address of this function is printed by BOLT and this can be called by | ||||
1497 | /// any attached debugger during runtime. There is a useful oneliner for gdb: | ||||
1498 | /// | ||||
1499 | /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ | ||||
1500 | /// -ex 'set confirm off' -ex quit | ||||
1501 | /// | ||||
1502 | /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file | ||||
1503 | /// name. | ||||
1504 | extern "C" void __bolt_instr_clear_counters() { | ||||
1505 | memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, | ||||
1506 | __bolt_num_counters * 8); | ||||
1507 | for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) | ||||
1508 | GlobalIndCallCounters[I].resetCounters(); | ||||
1509 | } | ||||
1510 | |||||
1511 | /// This is the entry point for profile writing. | ||||
1512 | /// There are three ways of getting here: | ||||
1513 | /// | ||||
1514 | /// * Program execution ended, finalization methods are running and BOLT | ||||
1515 | /// hooked into FINI from your binary dynamic section; | ||||
1516 | /// * You used the sleep timer option and during initialization we forked | ||||
1517 | /// a separate process that will call this function periodically; | ||||
1518 | /// * BOLT prints this function address so you can attach a debugger and | ||||
1519 | /// call this function directly to get your profile written to disk | ||||
1520 | /// on demand. | ||||
1521 | /// | ||||
1522 | extern "C" void __attribute((force_align_arg_pointer)) | ||||
1523 | __bolt_instr_data_dump(int FD) { | ||||
1524 | // Already dumping | ||||
1525 | if (!GlobalWriteProfileMutex->acquire()) | ||||
1526 | return; | ||||
1527 | |||||
1528 | int ret = __lseek(FD, 0, SEEK_SET0); | ||||
1529 | assert(ret == 0, "Failed to lseek!"); | ||||
1530 | ret = __ftruncate(FD, 0); | ||||
1531 | assert(ret == 0, "Failed to ftruncate!"); | ||||
1532 | BumpPtrAllocator HashAlloc; | ||||
1533 | HashAlloc.setMaxSize(0x6400000); | ||||
1534 | ProfileWriterContext Ctx = readDescriptions(); | ||||
1535 | Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); | ||||
1536 | |||||
1537 | DEBUG(printStats(Ctx)){}; | ||||
1538 | |||||
1539 | BumpPtrAllocator Alloc; | ||||
1540 | Alloc.setMaxSize(0x6400000); | ||||
1541 | const uint8_t *FuncDesc = Ctx.FuncDescriptions; | ||||
1542 | for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { | ||||
1543 | FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); | ||||
1544 | Alloc.clear(); | ||||
1545 | DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)){}; | ||||
1546 | } | ||||
1547 | assert(FuncDesc == (void *)Ctx.Strings, | ||||
1548 | "FuncDesc ptr must be equal to stringtable"); | ||||
1549 | |||||
1550 | writeIndirectCallProfile(FD, Ctx); | ||||
1551 | Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); | ||||
1552 | |||||
1553 | __fsync(FD); | ||||
1554 | __munmap(Ctx.MMapPtr, Ctx.MMapSize); | ||||
1555 | __close(Ctx.FileDesc); | ||||
1556 | HashAlloc.destroy(); | ||||
1557 | GlobalWriteProfileMutex->release(); | ||||
1558 | DEBUG(report("Finished writing profile.\n")){}; | ||||
1559 | } | ||||
1560 | |||||
1561 | /// Event loop for our child process spawned during setup to dump profile data | ||||
1562 | /// at user-specified intervals | ||||
1563 | void watchProcess() { | ||||
1564 | timespec ts, rem; | ||||
1565 | uint64_t Ellapsed = 0ull; | ||||
1566 | int FD = openProfile(); | ||||
1567 | uint64_t ppid; | ||||
1568 | if (__bolt_instr_wait_forks) { | ||||
1569 | // Store parent pgid | ||||
1570 | ppid = -__getpgid(0); | ||||
1571 | // And leave parent process group | ||||
1572 | __setpgid(0, 0); | ||||
1573 | } else { | ||||
1574 | // Store parent pid | ||||
1575 | ppid = __getppid(); | ||||
1576 | if (ppid == 1) { | ||||
1577 | // Parent already dead | ||||
1578 | __bolt_instr_data_dump(FD); | ||||
1579 | goto out; | ||||
1580 | } | ||||
1581 | } | ||||
1582 | |||||
1583 | ts.tv_sec = 1; | ||||
1584 | ts.tv_nsec = 0; | ||||
1585 | while (1) { | ||||
1586 | __nanosleep(&ts, &rem); | ||||
1587 | // This means our parent process or all its forks are dead, | ||||
1588 | // so no need for us to keep dumping. | ||||
1589 | if (__kill(ppid, 0) < 0) { | ||||
1590 | if (__bolt_instr_no_counters_clear) | ||||
1591 | __bolt_instr_data_dump(FD); | ||||
1592 | break; | ||||
1593 | } | ||||
1594 | |||||
1595 | if (++Ellapsed < __bolt_instr_sleep_time) | ||||
1596 | continue; | ||||
1597 | |||||
1598 | Ellapsed = 0; | ||||
1599 | __bolt_instr_data_dump(FD); | ||||
1600 | if (__bolt_instr_no_counters_clear == false) | ||||
1601 | __bolt_instr_clear_counters(); | ||||
1602 | } | ||||
1603 | |||||
1604 | out:; | ||||
1605 | DEBUG(report("My parent process is dead, bye!\n")){}; | ||||
1606 | __close(FD); | ||||
1607 | __exit(0); | ||||
1608 | } | ||||
1609 | |||||
1610 | extern "C" void __bolt_instr_indirect_call(); | ||||
1611 | extern "C" void __bolt_instr_indirect_tailcall(); | ||||
1612 | |||||
1613 | /// Initialization code | ||||
1614 | extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { | ||||
1615 | __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; | ||||
1616 | __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; | ||||
1617 | TextBaseAddress = getTextBaseAddress(); | ||||
1618 | |||||
1619 | const uint64_t CountersStart = | ||||
1620 | reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); | ||||
1621 | const uint64_t CountersEnd = alignTo( | ||||
1622 | reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), | ||||
1623 | 0x1000); | ||||
1624 | DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)){}; | ||||
1625 | DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)){}; | ||||
1626 | assert(CountersEnd > CountersStart, "no counters"); | ||||
1627 | |||||
1628 | const bool Shared = !__bolt_instr_use_pid; | ||||
1629 | const uint64_t MapPrivateOrShared = Shared ? MAP_SHARED0x01 : MAP_PRIVATE0x02; | ||||
1630 | |||||
1631 | void *Ret = | ||||
1632 | __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ0x1 | PROT_WRITE0x2, | ||||
1633 | MAP_ANONYMOUS0x20 | MapPrivateOrShared | MAP_FIXED0x10, -1, 0); | ||||
1634 | assert(Ret != MAP_FAILED((void *)-1), "__bolt_instr_setup: Failed to mmap counters!"); | ||||
1635 | |||||
1636 | GlobalMetadataStorage = __mmap(0, 4096, PROT_READ0x1 | PROT_WRITE0x2, | ||||
1637 | MapPrivateOrShared | MAP_ANONYMOUS0x20, -1, 0); | ||||
1638 | assert(GlobalMetadataStorage != MAP_FAILED((void *)-1), | ||||
1639 | "__bolt_instr_setup: failed to mmap page for metadata!"); | ||||
1640 | |||||
1641 | GlobalAlloc = new (GlobalMetadataStorage) BumpPtrAllocator; | ||||
1642 | // Conservatively reserve 100MiB | ||||
1643 | GlobalAlloc->setMaxSize(0x6400000); | ||||
1644 | GlobalAlloc->setShared(Shared); | ||||
1645 | GlobalWriteProfileMutex = new (*GlobalAlloc, 0) Mutex(); | ||||
1646 | if (__bolt_instr_num_ind_calls > 0) | ||||
1647 | GlobalIndCallCounters = | ||||
1648 | new (*GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; | ||||
1649 | |||||
1650 | if (__bolt_instr_sleep_time != 0) { | ||||
1651 | // Separate instrumented process to the own process group | ||||
1652 | if (__bolt_instr_wait_forks) | ||||
1653 | __setpgid(0, 0); | ||||
1654 | |||||
1655 | if (long PID = __fork()) | ||||
1656 | return; | ||||
1657 | watchProcess(); | ||||
1658 | } | ||||
1659 | } | ||||
1660 | |||||
1661 | extern "C" __attribute((force_align_arg_pointer)) void | ||||
1662 | instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { | ||||
1663 | GlobalIndCallCounters[IndCallID].incrementVal(Target, *GlobalAlloc); | ||||
1664 | } | ||||
1665 | |||||
1666 | /// We receive as in-stack arguments the identifier of the indirect call site | ||||
1667 | /// as well as the target address for the call | ||||
1668 | extern "C" __attribute((naked)) void __bolt_instr_indirect_call() | ||||
1669 | { | ||||
1670 | #if defined(__aarch64__) | ||||
1671 | // clang-format off | ||||
1672 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | ||||
1673 | "ldp x0, x1, [sp, #288]\n" | ||||
1674 | "bl instrumentIndirectCall\n" | ||||
1675 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | ||||
1676 | "ret\n" | ||||
1677 | :::); | ||||
1678 | // clang-format on | ||||
1679 | #else | ||||
1680 | // clang-format off | ||||
1681 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | ||||
1682 | "mov 0xa0(%%rsp), %%rdi\n" | ||||
1683 | "mov 0x98(%%rsp), %%rsi\n" | ||||
1684 | "call instrumentIndirectCall\n" | ||||
1685 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | ||||
1686 | "ret\n" | ||||
1687 | :::); | ||||
1688 | // clang-format on | ||||
1689 | #endif | ||||
1690 | } | ||||
1691 | |||||
1692 | extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() | ||||
1693 | { | ||||
1694 | #if defined(__aarch64__) | ||||
1695 | // clang-format off | ||||
1696 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | ||||
1697 | "ldp x0, x1, [sp, #288]\n" | ||||
1698 | "bl instrumentIndirectCall\n" | ||||
1699 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | ||||
1700 | "ret\n" | ||||
1701 | :::); | ||||
1702 | // clang-format on | ||||
1703 | #else | ||||
1704 | // clang-format off | ||||
1705 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | ||||
1706 | "mov 0x98(%%rsp), %%rdi\n" | ||||
1707 | "mov 0x90(%%rsp), %%rsi\n" | ||||
1708 | "call instrumentIndirectCall\n" | ||||
1709 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | ||||
1710 | "ret\n" | ||||
1711 | :::); | ||||
1712 | // clang-format on | ||||
1713 | #endif | ||||
1714 | } | ||||
1715 | |||||
1716 | /// This is hooking ELF's entry, it needs to save all machine state. | ||||
1717 | extern "C" __attribute((naked)) void __bolt_instr_start() | ||||
1718 | { | ||||
1719 | #if defined(__aarch64__) | ||||
1720 | // clang-format off | ||||
1721 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | ||||
1722 | "bl __bolt_instr_setup\n" | ||||
1723 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | ||||
1724 | "adrp x16, __bolt_start_trampoline\n" | ||||
1725 | "add x16, x16, #:lo12:__bolt_start_trampoline\n" | ||||
1726 | "br x16\n" | ||||
1727 | :::); | ||||
1728 | // clang-format on | ||||
1729 | #else | ||||
1730 | // clang-format off | ||||
1731 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | ||||
1732 | "call __bolt_instr_setup\n" | ||||
1733 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | ||||
1734 | "jmp __bolt_start_trampoline\n" | ||||
1735 | :::); | ||||
1736 | // clang-format on | ||||
1737 | #endif | ||||
1738 | } | ||||
1739 | |||||
1740 | /// This is hooking into ELF's DT_FINI | ||||
1741 | extern "C" void __bolt_instr_fini() { | ||||
1742 | #if defined(__aarch64__) | ||||
1743 | // clang-format off | ||||
1744 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | ||||
1745 | "adrp x16, __bolt_fini_trampoline\n" | ||||
1746 | "add x16, x16, #:lo12:__bolt_fini_trampoline\n" | ||||
1747 | "blr x16\n" | ||||
1748 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | ||||
1749 | :::); | ||||
1750 | // clang-format on | ||||
1751 | #else | ||||
1752 | __asm__ __volatile__("call __bolt_fini_trampoline\n" :::); | ||||
1753 | #endif | ||||
1754 | if (__bolt_instr_sleep_time == 0) { | ||||
| |||||
1755 | int FD = openProfile(); | ||||
1756 | __bolt_instr_data_dump(FD); | ||||
1757 | __close(FD); | ||||
1758 | } | ||||
1759 | DEBUG(report("Finished.\n")){}; | ||||
1760 | } | ||||
1761 | |||||
1762 | #endif | ||||
1763 | |||||
1764 | #if defined(__APPLE__) | ||||
1765 | |||||
1766 | extern "C" void __bolt_instr_data_dump() { | ||||
1767 | ProfileWriterContext Ctx = readDescriptions(); | ||||
1768 | |||||
1769 | int FD = 2; | ||||
1770 | BumpPtrAllocator Alloc; | ||||
1771 | const uint8_t *FuncDesc = Ctx.FuncDescriptions; | ||||
1772 | uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); | ||||
1773 | |||||
1774 | for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { | ||||
1775 | FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); | ||||
1776 | Alloc.clear(); | ||||
1777 | DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)){}; | ||||
1778 | } | ||||
1779 | assert(FuncDesc == (void *)Ctx.Strings, | ||||
1780 | "FuncDesc ptr must be equal to stringtable"); | ||||
1781 | } | ||||
1782 | |||||
1783 | // On OSX/iOS the final symbol name of an extern "C" function/variable contains | ||||
1784 | // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. | ||||
1785 | extern "C" | ||||
1786 | __attribute__((section("__TEXT,__setup"))) | ||||
1787 | __attribute__((force_align_arg_pointer)) | ||||
1788 | void _bolt_instr_setup() { | ||||
1789 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" :::); | ||||
1790 | |||||
1791 | report("Hello!\n"); | ||||
1792 | |||||
1793 | __asm__ __volatile__(RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" :::); | ||||
1794 | } | ||||
1795 | |||||
1796 | extern "C" | ||||
1797 | __attribute__((section("__TEXT,__fini"))) | ||||
1798 | __attribute__((force_align_arg_pointer)) | ||||
1799 | void _bolt_instr_fini() { | ||||
1800 | report("Bye!\n"); | ||||
1801 | __bolt_instr_data_dump(); | ||||
1802 | } | ||||
1803 | |||||
1804 | #endif |
1 | #ifndef LLVM_TOOLS_LLVM_BOLT_SYS_X86_64 |
2 | #define LLVM_TOOLS_LLVM_BOLT_SYS_X86_64 |
3 | |
4 | // Save all registers while keeping 16B stack alignment |
5 | #define SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" \ |
6 | "push %%rax\n" \ |
7 | "push %%rbx\n" \ |
8 | "push %%rcx\n" \ |
9 | "push %%rdx\n" \ |
10 | "push %%rdi\n" \ |
11 | "push %%rsi\n" \ |
12 | "push %%rbp\n" \ |
13 | "push %%r8\n" \ |
14 | "push %%r9\n" \ |
15 | "push %%r10\n" \ |
16 | "push %%r11\n" \ |
17 | "push %%r12\n" \ |
18 | "push %%r13\n" \ |
19 | "push %%r14\n" \ |
20 | "push %%r15\n" \ |
21 | "sub $8, %%rsp\n" |
22 | // Mirrors SAVE_ALL |
23 | #define RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" \ |
24 | "add $8, %%rsp\n" \ |
25 | "pop %%r15\n" \ |
26 | "pop %%r14\n" \ |
27 | "pop %%r13\n" \ |
28 | "pop %%r12\n" \ |
29 | "pop %%r11\n" \ |
30 | "pop %%r10\n" \ |
31 | "pop %%r9\n" \ |
32 | "pop %%r8\n" \ |
33 | "pop %%rbp\n" \ |
34 | "pop %%rsi\n" \ |
35 | "pop %%rdi\n" \ |
36 | "pop %%rdx\n" \ |
37 | "pop %%rcx\n" \ |
38 | "pop %%rbx\n" \ |
39 | "pop %%rax\n" |
40 | |
41 | namespace { |
42 | |
43 | // Get the difference between runtime addrress of .text section and |
44 | // static address in section header table. Can be extracted from arbitrary |
45 | // pc value recorded at runtime to get the corresponding static address, which |
46 | // in turn can be used to search for indirect call description. Needed because |
47 | // indirect call descriptions are read-only non-relocatable data. |
48 | uint64_t getTextBaseAddress() { |
49 | uint64_t DynAddr; |
50 | uint64_t StaticAddr; |
51 | __asm__ volatile("leaq __hot_end(%%rip), %0\n\t" |
52 | "movabsq $__hot_end, %1\n\t" |
53 | : "=r"(DynAddr), "=r"(StaticAddr)); |
54 | return DynAddr - StaticAddr; |
55 | } |
56 | |
57 | #define _STRINGIFY(x)"x" #x |
58 | #define STRINGIFY(x)"x" _STRINGIFY(x)"x" |
59 | |
60 | uint64_t __read(uint64_t fd, const void *buf, uint64_t count) { |
61 | uint64_t ret; |
62 | #if defined(__APPLE__) |
63 | #define READ_SYSCALL0 0x2000003 |
64 | #else |
65 | #define READ_SYSCALL0 0 |
66 | #endif |
67 | __asm__ __volatile__("movq $" STRINGIFY(READ_SYSCALL)"0" ", %%rax\n" |
68 | "syscall\n" |
69 | : "=a"(ret) |
70 | : "D"(fd), "S"(buf), "d"(count) |
71 | : "cc", "rcx", "r11", "memory"); |
72 | return ret; |
73 | } |
74 | |
75 | uint64_t __write(uint64_t fd, const void *buf, uint64_t count) { |
76 | uint64_t ret; |
77 | #if defined(__APPLE__) |
78 | #define WRITE_SYSCALL1 0x2000004 |
79 | #else |
80 | #define WRITE_SYSCALL1 1 |
81 | #endif |
82 | __asm__ __volatile__("movq $" STRINGIFY(WRITE_SYSCALL)"1" ", %%rax\n" |
83 | "syscall\n" |
84 | : "=a"(ret) |
85 | : "D"(fd), "S"(buf), "d"(count) |
86 | : "cc", "rcx", "r11", "memory"); |
87 | return ret; |
88 | } |
89 | |
90 | void *__mmap(uint64_t addr, uint64_t size, uint64_t prot, uint64_t flags, |
91 | uint64_t fd, uint64_t offset) { |
92 | #if defined(__APPLE__) |
93 | #define MMAP_SYSCALL9 0x20000c5 |
94 | #else |
95 | #define MMAP_SYSCALL9 9 |
96 | #endif |
97 | void *ret; |
98 | register uint64_t r8 asm("r8") = fd; |
99 | register uint64_t r9 asm("r9") = offset; |
100 | register uint64_t r10 asm("r10") = flags; |
101 | __asm__ __volatile__("movq $" STRINGIFY(MMAP_SYSCALL)"9" ", %%rax\n" |
102 | "syscall\n" |
103 | : "=a"(ret) |
104 | : "D"(addr), "S"(size), "d"(prot), "r"(r10), "r"(r8), |
105 | "r"(r9) |
106 | : "cc", "rcx", "r11", "memory"); |
107 | return ret; |
108 | } |
109 | |
110 | uint64_t __munmap(void *addr, uint64_t size) { |
111 | #if defined(__APPLE__) |
112 | #define MUNMAP_SYSCALL11 0x2000049 |
113 | #else |
114 | #define MUNMAP_SYSCALL11 11 |
115 | #endif |
116 | uint64_t ret; |
117 | __asm__ __volatile__("movq $" STRINGIFY(MUNMAP_SYSCALL)"11" ", %%rax\n" |
118 | "syscall\n" |
119 | : "=a"(ret) |
120 | : "D"(addr), "S"(size) |
121 | : "cc", "rcx", "r11", "memory"); |
122 | return ret; |
123 | } |
124 | |
125 | uint64_t __sigprocmask(int how, const void *set, void *oldset) { |
126 | #if defined(__APPLE__) |
127 | #define SIGPROCMASK_SYSCALL14 0x2000030 |
128 | #else |
129 | #define SIGPROCMASK_SYSCALL14 14 |
130 | #endif |
131 | uint64_t ret; |
132 | register long r10 asm("r10") = sizeof(uint64_t); |
133 | __asm__ __volatile__("movq $" STRINGIFY(SIGPROCMASK_SYSCALL)"14" ", %%rax\n" |
134 | "syscall\n" |
135 | : "=a"(ret) |
136 | : "D"(how), "S"(set), "d"(oldset), "r"(r10) |
137 | : "cc", "rcx", "r11", "memory"); |
138 | return ret; |
139 | } |
140 | |
141 | uint64_t __getpid() { |
142 | uint64_t ret; |
143 | #if defined(__APPLE__) |
144 | #define GETPID_SYSCALL39 20 |
145 | #else |
146 | #define GETPID_SYSCALL39 39 |
147 | #endif |
148 | __asm__ __volatile__("movq $" STRINGIFY(GETPID_SYSCALL)"39" ", %%rax\n" |
149 | "syscall\n" |
150 | : "=a"(ret) |
151 | : |
152 | : "cc", "rcx", "r11", "memory"); |
153 | return ret; |
154 | } |
155 | |
156 | uint64_t __exit(uint64_t code) { |
157 | #if defined(__APPLE__) |
158 | #define EXIT_SYSCALL231 0x2000001 |
159 | #else |
160 | #define EXIT_SYSCALL231 231 |
161 | #endif |
162 | uint64_t ret; |
163 | __asm__ __volatile__("movq $" STRINGIFY(EXIT_SYSCALL)"231" ", %%rax\n" |
164 | "syscall\n" |
165 | : "=a"(ret) |
166 | : "D"(code) |
167 | : "cc", "rcx", "r11", "memory"); |
168 | return ret; |
169 | } |
170 | |
171 | #if !defined(__APPLE__) |
172 | // We use a stack-allocated buffer for string manipulation in many pieces of |
173 | // this code, including the code that prints each line of the fdata file. This |
174 | // buffer needs to accomodate large function names, but shouldn't be arbitrarily |
175 | // large (dynamically allocated) for simplicity of our memory space usage. |
176 | |
177 | // Declare some syscall wrappers we use throughout this code to avoid linking |
178 | // against system libc. |
179 | uint64_t __open(const char *pathname, uint64_t flags, uint64_t mode) { |
180 | uint64_t ret; |
181 | __asm__ __volatile__("movq $2, %%rax\n" |
182 | "syscall" |
183 | : "=a"(ret) |
184 | : "D"(pathname), "S"(flags), "d"(mode) |
185 | : "cc", "rcx", "r11", "memory"); |
186 | return ret; |
187 | } |
188 | |
189 | long __getdents64(unsigned int fd, dirent64 *dirp, size_t count) { |
190 | long ret; |
191 | __asm__ __volatile__("movq $217, %%rax\n" |
192 | "syscall" |
193 | : "=a"(ret) |
194 | : "D"(fd), "S"(dirp), "d"(count) |
195 | : "cc", "rcx", "r11", "memory"); |
196 | return ret; |
197 | } |
198 | |
199 | uint64_t __readlink(const char *pathname, char *buf, size_t bufsize) { |
200 | uint64_t ret; |
201 | __asm__ __volatile__("movq $89, %%rax\n" |
202 | "syscall" |
203 | : "=a"(ret) |
204 | : "D"(pathname), "S"(buf), "d"(bufsize) |
205 | : "cc", "rcx", "r11", "memory"); |
206 | return ret; |
207 | } |
208 | |
209 | uint64_t __lseek(uint64_t fd, uint64_t pos, uint64_t whence) { |
210 | uint64_t ret; |
211 | __asm__ __volatile__("movq $8, %%rax\n" |
212 | "syscall\n" |
213 | : "=a"(ret) |
214 | : "D"(fd), "S"(pos), "d"(whence) |
215 | : "cc", "rcx", "r11", "memory"); |
216 | return ret; |
217 | } |
218 | |
219 | int __ftruncate(uint64_t fd, uint64_t length) { |
220 | int ret; |
221 | __asm__ __volatile__("movq $77, %%rax\n" |
222 | "syscall\n" |
223 | : "=a"(ret) |
224 | : "D"(fd), "S"(length) |
225 | : "cc", "rcx", "r11", "memory"); |
226 | return ret; |
227 | } |
228 | |
229 | int __close(uint64_t fd) { |
230 | uint64_t ret; |
231 | __asm__ __volatile__("movq $3, %%rax\n" |
232 | "syscall\n" |
233 | : "=a"(ret) |
234 | : "D"(fd) |
235 | : "cc", "rcx", "r11", "memory"); |
236 | return ret; |
237 | } |
238 | |
239 | int __madvise(void *addr, size_t length, int advice) { |
240 | int ret; |
241 | __asm__ __volatile__("movq $28, %%rax\n" |
242 | "syscall\n" |
243 | : "=a"(ret) |
244 | : "D"(addr), "S"(length), "d"(advice) |
245 | : "cc", "rcx", "r11", "memory"); |
246 | return ret; |
247 | } |
248 | |
249 | int __uname(struct UtsNameTy *Buf) { |
250 | int Ret; |
251 | __asm__ __volatile__("movq $63, %%rax\n" |
252 | "syscall\n" |
253 | : "=a"(Ret) |
254 | : "D"(Buf) |
255 | : "cc", "rcx", "r11", "memory"); |
256 | return Ret; |
257 | } |
258 | |
259 | uint64_t __nanosleep(const timespec *req, timespec *rem) { |
260 | uint64_t ret; |
261 | __asm__ __volatile__("movq $35, %%rax\n" |
262 | "syscall\n" |
263 | : "=a"(ret) |
264 | : "D"(req), "S"(rem) |
265 | : "cc", "rcx", "r11", "memory"); |
266 | return ret; |
267 | } |
268 | |
269 | int64_t __fork() { |
270 | uint64_t ret; |
271 | __asm__ __volatile__("movq $57, %%rax\n" |
272 | "syscall\n" |
273 | : "=a"(ret) |
274 | : |
275 | : "cc", "rcx", "r11", "memory"); |
276 | return ret; |
277 | } |
278 | |
279 | int __mprotect(void *addr, size_t len, int prot) { |
280 | int ret; |
281 | __asm__ __volatile__("movq $10, %%rax\n" |
282 | "syscall\n" |
283 | : "=a"(ret) |
284 | : "D"(addr), "S"(len), "d"(prot) |
285 | : "cc", "rcx", "r11", "memory"); |
286 | return ret; |
287 | } |
288 | |
289 | uint64_t __getppid() { |
290 | uint64_t ret; |
291 | __asm__ __volatile__("movq $110, %%rax\n" |
292 | "syscall\n" |
293 | : "=a"(ret) |
294 | : |
295 | : "cc", "rcx", "r11", "memory"); |
296 | return ret; |
297 | } |
298 | |
299 | int __setpgid(uint64_t pid, uint64_t pgid) { |
300 | int ret; |
301 | __asm__ __volatile__("movq $109, %%rax\n" |
302 | "syscall\n" |
303 | : "=a"(ret) |
304 | : "D"(pid), "S"(pgid) |
305 | : "cc", "rcx", "r11", "memory"); |
306 | return ret; |
307 | } |
308 | |
309 | uint64_t __getpgid(uint64_t pid) { |
310 | uint64_t ret; |
311 | __asm__ __volatile__("movq $121, %%rax\n" |
312 | "syscall\n" |
313 | : "=a"(ret) |
314 | : "D"(pid) |
315 | : "cc", "rcx", "r11", "memory"); |
316 | return ret; |
317 | } |
318 | |
319 | int __kill(uint64_t pid, int sig) { |
320 | int ret; |
321 | __asm__ __volatile__("movq $62, %%rax\n" |
322 | "syscall\n" |
323 | : "=a"(ret) |
324 | : "D"(pid), "S"(sig) |
325 | : "cc", "rcx", "r11", "memory"); |
326 | return ret; |
327 | } |
328 | |
329 | int __fsync(int fd) { |
330 | int ret; |
331 | __asm__ __volatile__("movq $74, %%rax\n" |
332 | "syscall\n" |
333 | : "=a"(ret) |
334 | : "D"(fd) |
335 | : "cc", "rcx", "r11", "memory"); |
336 | return ret; |
337 | } |
338 | |
339 | // %rdi %rsi %rdx %r10 %r8 |
340 | // sys_prctl int option unsigned unsigned unsigned unsigned |
341 | // long arg2 long arg3 long arg4 long arg5 |
342 | int __prctl(int Option, unsigned long Arg2, unsigned long Arg3, |
343 | unsigned long Arg4, unsigned long Arg5) { |
344 | int Ret; |
345 | register long rdx asm("rdx") = Arg3; |
346 | register long r8 asm("r8") = Arg5; |
347 | register long r10 asm("r10") = Arg4; |
348 | __asm__ __volatile__("movq $157, %%rax\n" |
349 | "syscall\n" |
350 | : "=a"(Ret) |
351 | : "D"(Option), "S"(Arg2), "d"(rdx), "r"(r10), "r"(r8) |
352 | :); |
353 | return Ret; |
354 | } |
355 | |
356 | #endif |
357 | |
358 | } // anonymous namespace |
359 | |
360 | #endif |