File: | bolt/runtime/instr.cpp |
Warning: | line 1090, column 27 Array access (from variable 'CallFreqs') results in a null pointer dereference |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- bolt/runtime/instr.cpp ---------------------------------------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // BOLT runtime instrumentation library for x86 Linux. Currently, BOLT does | |||
10 | // not support linking modules with dependencies on one another into the final | |||
11 | // binary (TODO?), which means this library has to be self-contained in a single | |||
12 | // module. | |||
13 | // | |||
14 | // All extern declarations here need to be defined by BOLT itself. Those will be | |||
15 | // undefined symbols that BOLT needs to resolve by emitting these symbols with | |||
16 | // MCStreamer. Currently, Passes/Instrumentation.cpp is the pass responsible | |||
17 | // for defining the symbols here and these two files have a tight coupling: one | |||
18 | // working statically when you run BOLT and another during program runtime when | |||
19 | // you run an instrumented binary. The main goal here is to output an fdata file | |||
20 | // (BOLT profile) with the instrumentation counters inserted by the static pass. | |||
21 | // Counters for indirect calls are an exception, as we can't know them | |||
22 | // statically. These counters are created and managed here. To allow this, we | |||
23 | // need a minimal framework for allocating memory dynamically. We provide this | |||
24 | // with the BumpPtrAllocator class (not LLVM's, but our own version of it). | |||
25 | // | |||
26 | // Since this code is intended to be inserted into any executable, we decided to | |||
27 | // make it standalone and do not depend on any external libraries (i.e. language | |||
28 | // support libraries, such as glibc or stdc++). To allow this, we provide a few | |||
29 | // light implementations of common OS interacting functionalities using direct | |||
30 | // syscall wrappers. Our simple allocator doesn't manage deallocations that | |||
31 | // fragment the memory space, so it's stack based. This is the minimal framework | |||
32 | // provided here to allow processing instrumented counters and writing fdata. | |||
33 | // | |||
34 | // In the C++ idiom used here, we never use or rely on constructors or | |||
35 | // destructors for global objects. That's because those need support from the | |||
36 | // linker in initialization/finalization code, and we want to keep our linker | |||
37 | // very simple. Similarly, we don't create any global objects that are zero | |||
38 | // initialized, since those would need to go .bss, which our simple linker also | |||
39 | // don't support (TODO?). | |||
40 | // | |||
41 | //===----------------------------------------------------------------------===// | |||
42 | ||||
43 | #include "common.h" | |||
44 | ||||
45 | // Enables a very verbose logging to stderr useful when debugging | |||
46 | //#define ENABLE_DEBUG | |||
47 | ||||
48 | #ifdef ENABLE_DEBUG | |||
49 | #define DEBUG(X){} \ | |||
50 | { X; } | |||
51 | #else | |||
52 | #define DEBUG(X){} \ | |||
53 | {} | |||
54 | #endif | |||
55 | ||||
56 | #pragma GCC visibility push(hidden) | |||
57 | ||||
58 | extern "C" { | |||
59 | ||||
60 | #if defined(__APPLE__) | |||
61 | extern uint64_t* _bolt_instr_locations_getter(); | |||
62 | extern uint32_t _bolt_num_counters_getter(); | |||
63 | ||||
64 | extern uint8_t* _bolt_instr_tables_getter(); | |||
65 | extern uint32_t _bolt_instr_num_funcs_getter(); | |||
66 | ||||
67 | #else | |||
68 | ||||
69 | // Main counters inserted by instrumentation, incremented during runtime when | |||
70 | // points of interest (locations) in the program are reached. Those are direct | |||
71 | // calls and direct and indirect branches (local ones). There are also counters | |||
72 | // for basic block execution if they are a spanning tree leaf and need to be | |||
73 | // counted in order to infer the execution count of other edges of the CFG. | |||
74 | extern uint64_t __bolt_instr_locations[]; | |||
75 | extern uint32_t __bolt_num_counters; | |||
76 | // Descriptions are serialized metadata about binary functions written by BOLT, | |||
77 | // so we have a minimal understanding about the program structure. For a | |||
78 | // reference on the exact format of this metadata, see *Description structs, | |||
79 | // Location, IntrumentedNode and EntryNode. | |||
80 | // Number of indirect call site descriptions | |||
81 | extern uint32_t __bolt_instr_num_ind_calls; | |||
82 | // Number of indirect call target descriptions | |||
83 | extern uint32_t __bolt_instr_num_ind_targets; | |||
84 | // Number of function descriptions | |||
85 | extern uint32_t __bolt_instr_num_funcs; | |||
86 | // Time to sleep across dumps (when we write the fdata profile to disk) | |||
87 | extern uint32_t __bolt_instr_sleep_time; | |||
88 | // Do not clear counters across dumps, rewrite file with the updated values | |||
89 | extern bool __bolt_instr_no_counters_clear; | |||
90 | // Wait until all forks of instrumented process will finish | |||
91 | extern bool __bolt_instr_wait_forks; | |||
92 | // Filename to dump data to | |||
93 | extern char __bolt_instr_filename[]; | |||
94 | // Instumented binary file path | |||
95 | extern char __bolt_instr_binpath[]; | |||
96 | // If true, append current PID to the fdata filename when creating it so | |||
97 | // different invocations of the same program can be differentiated. | |||
98 | extern bool __bolt_instr_use_pid; | |||
99 | // Functions that will be used to instrument indirect calls. BOLT static pass | |||
100 | // will identify indirect calls and modify them to load the address in these | |||
101 | // trampolines and call this address instead. BOLT can't use direct calls to | |||
102 | // our handlers because our addresses here are not known at analysis time. We | |||
103 | // only support resolving dependencies from this file to the output of BOLT, | |||
104 | // *not* the other way around. | |||
105 | // TODO: We need better linking support to make that happen. | |||
106 | extern void (*__bolt_ind_call_counter_func_pointer)(); | |||
107 | extern void (*__bolt_ind_tailcall_counter_func_pointer)(); | |||
108 | // Function pointers to init/fini trampoline routines in the binary, so we can | |||
109 | // resume regular execution of these functions that we hooked | |||
110 | extern void __bolt_start_trampoline(); | |||
111 | extern void __bolt_fini_trampoline(); | |||
112 | ||||
113 | #endif | |||
114 | } | |||
115 | ||||
116 | namespace { | |||
117 | ||||
118 | /// A simple allocator that mmaps a fixed size region and manages this space | |||
119 | /// in a stack fashion, meaning you always deallocate the last element that | |||
120 | /// was allocated. In practice, we don't need to deallocate individual elements. | |||
121 | /// We monotonically increase our usage and then deallocate everything once we | |||
122 | /// are done processing something. | |||
123 | class BumpPtrAllocator { | |||
124 | /// This is written before each allocation and act as a canary to detect when | |||
125 | /// a bug caused our program to cross allocation boundaries. | |||
126 | struct EntryMetadata { | |||
127 | uint64_t Magic; | |||
128 | uint64_t AllocSize; | |||
129 | }; | |||
130 | ||||
131 | public: | |||
132 | void *allocate(size_t Size) { | |||
133 | Lock L(M); | |||
134 | ||||
135 | if (StackBase == nullptr) { | |||
136 | StackBase = reinterpret_cast<uint8_t *>( | |||
137 | __mmap(0, MaxSize, PROT_READ0x1 | PROT_WRITE0x2, | |||
138 | (Shared ? MAP_SHARED0x01 : MAP_PRIVATE0x02) | MAP_ANONYMOUS0x20, -1, 0)); | |||
139 | assert(StackBase != MAP_FAILED((void *)-1), | |||
140 | "BumpPtrAllocator: failed to mmap stack!"); | |||
141 | StackSize = 0; | |||
142 | } | |||
143 | ||||
144 | Size = alignTo(Size + sizeof(EntryMetadata), 16); | |||
145 | uint8_t *AllocAddress = StackBase + StackSize + sizeof(EntryMetadata); | |||
146 | auto *M = reinterpret_cast<EntryMetadata *>(StackBase + StackSize); | |||
147 | M->Magic = Magic; | |||
148 | M->AllocSize = Size; | |||
149 | StackSize += Size; | |||
150 | assert(StackSize < MaxSize, "allocator ran out of memory"); | |||
151 | return AllocAddress; | |||
152 | } | |||
153 | ||||
154 | #ifdef DEBUG | |||
155 | /// Element-wise deallocation is only used for debugging to catch memory | |||
156 | /// bugs by checking magic bytes. Ordinarily, we reset the allocator once | |||
157 | /// we are done with it. Reset is done with clear(). There's no need | |||
158 | /// to deallocate each element individually. | |||
159 | void deallocate(void *Ptr) { | |||
160 | Lock L(M); | |||
161 | uint8_t MetadataOffset = sizeof(EntryMetadata); | |||
162 | auto *M = reinterpret_cast<EntryMetadata *>( | |||
163 | reinterpret_cast<uint8_t *>(Ptr) - MetadataOffset); | |||
164 | const uint8_t *StackTop = StackBase + StackSize + MetadataOffset; | |||
165 | // Validate size | |||
166 | if (Ptr != StackTop - M->AllocSize) { | |||
167 | // Failed validation, check if it is a pointer returned by operator new [] | |||
168 | MetadataOffset += | |||
169 | sizeof(uint64_t); // Space for number of elements alloc'ed | |||
170 | M = reinterpret_cast<EntryMetadata *>(reinterpret_cast<uint8_t *>(Ptr) - | |||
171 | MetadataOffset); | |||
172 | // Ok, it failed both checks if this assertion fails. Stop the program, we | |||
173 | // have a memory bug. | |||
174 | assert(Ptr == StackTop - M->AllocSize, | |||
175 | "must deallocate the last element alloc'ed"); | |||
176 | } | |||
177 | assert(M->Magic == Magic, "allocator magic is corrupt"); | |||
178 | StackSize -= M->AllocSize; | |||
179 | } | |||
180 | #else | |||
181 | void deallocate(void *) {} | |||
182 | #endif | |||
183 | ||||
184 | void clear() { | |||
185 | Lock L(M); | |||
186 | StackSize = 0; | |||
187 | } | |||
188 | ||||
189 | /// Set mmap reservation size (only relevant before first allocation) | |||
190 | void setMaxSize(uint64_t Size) { MaxSize = Size; } | |||
191 | ||||
192 | /// Set mmap reservation privacy (only relevant before first allocation) | |||
193 | void setShared(bool S) { Shared = S; } | |||
194 | ||||
195 | void destroy() { | |||
196 | if (StackBase == nullptr) | |||
197 | return; | |||
198 | __munmap(StackBase, MaxSize); | |||
199 | } | |||
200 | ||||
201 | // Placement operator to construct allocator in possibly shared mmaped memory | |||
202 | static void *operator new(size_t, void *Ptr) { return Ptr; }; | |||
203 | ||||
204 | private: | |||
205 | static constexpr uint64_t Magic = 0x1122334455667788ull; | |||
206 | uint64_t MaxSize = 0xa00000; | |||
207 | uint8_t *StackBase{nullptr}; | |||
208 | uint64_t StackSize{0}; | |||
209 | bool Shared{false}; | |||
210 | Mutex M; | |||
211 | }; | |||
212 | ||||
213 | /// Used for allocating indirect call instrumentation counters. Initialized by | |||
214 | /// __bolt_instr_setup, our initialization routine. | |||
215 | BumpPtrAllocator *GlobalAlloc; | |||
216 | ||||
217 | // Base address which we substract from recorded PC values when searching for | |||
218 | // indirect call description entries. Needed because indCall descriptions are | |||
219 | // mapped read-only and contain static addresses. Initialized in | |||
220 | // __bolt_instr_setup. | |||
221 | uint64_t TextBaseAddress = 0; | |||
222 | ||||
223 | // Storage for GlobalAlloc which can be shared if not using | |||
224 | // instrumentation-file-append-pid. | |||
225 | void *GlobalMetadataStorage; | |||
226 | ||||
227 | } // anonymous namespace | |||
228 | ||||
229 | // User-defined placement new operators. We only use those (as opposed to | |||
230 | // overriding the regular operator new) so we can keep our allocator in the | |||
231 | // stack instead of in a data section (global). | |||
232 | void *operator new(size_t Sz, BumpPtrAllocator &A) { return A.allocate(Sz); } | |||
233 | void *operator new(size_t Sz, BumpPtrAllocator &A, char C) { | |||
234 | auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); | |||
235 | memset(Ptr, C, Sz); | |||
236 | return Ptr; | |||
237 | } | |||
238 | void *operator new[](size_t Sz, BumpPtrAllocator &A) { | |||
239 | return A.allocate(Sz); | |||
240 | } | |||
241 | void *operator new[](size_t Sz, BumpPtrAllocator &A, char C) { | |||
242 | auto *Ptr = reinterpret_cast<char *>(A.allocate(Sz)); | |||
243 | memset(Ptr, C, Sz); | |||
244 | return Ptr; | |||
245 | } | |||
246 | // Only called during exception unwinding (useless). We must manually dealloc. | |||
247 | // C++ language weirdness | |||
248 | void operator delete(void *Ptr, BumpPtrAllocator &A) { A.deallocate(Ptr); } | |||
249 | ||||
250 | namespace { | |||
251 | ||||
252 | // Disable instrumentation optimizations that sacrifice profile accuracy | |||
253 | extern "C" bool __bolt_instr_conservative; | |||
254 | ||||
255 | /// Basic key-val atom stored in our hash | |||
256 | struct SimpleHashTableEntryBase { | |||
257 | uint64_t Key; | |||
258 | uint64_t Val; | |||
259 | void dump(const char *Msg = nullptr) { | |||
260 | // TODO: make some sort of formatting function | |||
261 | // Currently we have to do it the ugly way because | |||
262 | // we want every message to be printed atomically via a single call to | |||
263 | // __write. If we use reportNumber() and others nultiple times, we'll get | |||
264 | // garbage in mulithreaded environment | |||
265 | char Buf[BufSize]; | |||
266 | char *Ptr = Buf; | |||
267 | Ptr = intToStr(Ptr, __getpid(), 10); | |||
268 | *Ptr++ = ':'; | |||
269 | *Ptr++ = ' '; | |||
270 | if (Msg) | |||
271 | Ptr = strCopy(Ptr, Msg, strLen(Msg)); | |||
272 | *Ptr++ = '0'; | |||
273 | *Ptr++ = 'x'; | |||
274 | Ptr = intToStr(Ptr, (uint64_t)this, 16); | |||
275 | *Ptr++ = ':'; | |||
276 | *Ptr++ = ' '; | |||
277 | Ptr = strCopy(Ptr, "MapEntry(0x", sizeof("MapEntry(0x") - 1); | |||
278 | Ptr = intToStr(Ptr, Key, 16); | |||
279 | *Ptr++ = ','; | |||
280 | *Ptr++ = ' '; | |||
281 | *Ptr++ = '0'; | |||
282 | *Ptr++ = 'x'; | |||
283 | Ptr = intToStr(Ptr, Val, 16); | |||
284 | *Ptr++ = ')'; | |||
285 | *Ptr++ = '\n'; | |||
286 | assert(Ptr - Buf < BufSize, "Buffer overflow!"); | |||
287 | // print everything all at once for atomicity | |||
288 | __write(2, Buf, Ptr - Buf); | |||
289 | } | |||
290 | }; | |||
291 | ||||
292 | /// This hash table implementation starts by allocating a table of size | |||
293 | /// InitialSize. When conflicts happen in this main table, it resolves | |||
294 | /// them by chaining a new table of size IncSize. It never reallocs as our | |||
295 | /// allocator doesn't support it. The key is intended to be function pointers. | |||
296 | /// There's no clever hash function (it's just x mod size, size being prime). | |||
297 | /// I never tuned the coefficientes in the modular equation (TODO) | |||
298 | /// This is used for indirect calls (each call site has one of this, so it | |||
299 | /// should have a small footprint) and for tallying call counts globally for | |||
300 | /// each target to check if we missed the origin of some calls (this one is a | |||
301 | /// large instantiation of this template, since it is global for all call sites) | |||
302 | template <typename T = SimpleHashTableEntryBase, uint32_t InitialSize = 7, | |||
303 | uint32_t IncSize = 7> | |||
304 | class SimpleHashTable { | |||
305 | public: | |||
306 | using MapEntry = T; | |||
307 | ||||
308 | /// Increment by 1 the value of \p Key. If it is not in this table, it will be | |||
309 | /// added to the table and its value set to 1. | |||
310 | void incrementVal(uint64_t Key, BumpPtrAllocator &Alloc) { | |||
311 | if (!__bolt_instr_conservative) { | |||
312 | TryLock L(M); | |||
313 | if (!L.isLocked()) | |||
314 | return; | |||
315 | auto &E = getOrAllocEntry(Key, Alloc); | |||
316 | ++E.Val; | |||
317 | return; | |||
318 | } | |||
319 | Lock L(M); | |||
320 | auto &E = getOrAllocEntry(Key, Alloc); | |||
321 | ++E.Val; | |||
322 | } | |||
323 | ||||
324 | /// Basic member accessing interface. Here we pass the allocator explicitly to | |||
325 | /// avoid storing a pointer to it as part of this table (remember there is one | |||
326 | /// hash for each indirect call site, so we want to minimize our footprint). | |||
327 | MapEntry &get(uint64_t Key, BumpPtrAllocator &Alloc) { | |||
328 | if (!__bolt_instr_conservative) { | |||
329 | TryLock L(M); | |||
330 | if (!L.isLocked()) | |||
331 | return NoEntry; | |||
332 | return getOrAllocEntry(Key, Alloc); | |||
333 | } | |||
334 | Lock L(M); | |||
335 | return getOrAllocEntry(Key, Alloc); | |||
336 | } | |||
337 | ||||
338 | /// Traverses all elements in the table | |||
339 | template <typename... Args> | |||
340 | void forEachElement(void (*Callback)(MapEntry &, Args...), Args... args) { | |||
341 | Lock L(M); | |||
342 | if (!TableRoot) | |||
343 | return; | |||
344 | return forEachElement(Callback, InitialSize, TableRoot, args...); | |||
345 | } | |||
346 | ||||
347 | void resetCounters(); | |||
348 | ||||
349 | private: | |||
350 | constexpr static uint64_t VacantMarker = 0; | |||
351 | constexpr static uint64_t FollowUpTableMarker = 0x8000000000000000ull; | |||
352 | ||||
353 | MapEntry *TableRoot{nullptr}; | |||
354 | MapEntry NoEntry; | |||
355 | Mutex M; | |||
356 | ||||
357 | template <typename... Args> | |||
358 | void forEachElement(void (*Callback)(MapEntry &, Args...), | |||
359 | uint32_t NumEntries, MapEntry *Entries, Args... args) { | |||
360 | for (uint32_t I = 0; I < NumEntries; ++I) { | |||
361 | MapEntry &Entry = Entries[I]; | |||
362 | if (Entry.Key == VacantMarker) | |||
363 | continue; | |||
364 | if (Entry.Key & FollowUpTableMarker) { | |||
365 | MapEntry *Next = | |||
366 | reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker); | |||
367 | assert(Next != Entries, "Circular reference!"); | |||
368 | forEachElement(Callback, IncSize, Next, args...); | |||
369 | continue; | |||
370 | } | |||
371 | Callback(Entry, args...); | |||
372 | } | |||
373 | } | |||
374 | ||||
375 | MapEntry &firstAllocation(uint64_t Key, BumpPtrAllocator &Alloc) { | |||
376 | TableRoot = new (Alloc, 0) MapEntry[InitialSize]; | |||
377 | MapEntry &Entry = TableRoot[Key % InitialSize]; | |||
378 | Entry.Key = Key; | |||
379 | // DEBUG(Entry.dump("Created root entry: ")); | |||
380 | return Entry; | |||
381 | } | |||
382 | ||||
383 | MapEntry &getEntry(MapEntry *Entries, uint64_t Key, uint64_t Selector, | |||
384 | BumpPtrAllocator &Alloc, int CurLevel) { | |||
385 | // DEBUG(reportNumber("getEntry called, level ", CurLevel, 10)); | |||
386 | const uint32_t NumEntries = CurLevel == 0 ? InitialSize : IncSize; | |||
387 | uint64_t Remainder = Selector / NumEntries; | |||
388 | Selector = Selector % NumEntries; | |||
389 | MapEntry &Entry = Entries[Selector]; | |||
390 | ||||
391 | // A hit | |||
392 | if (Entry.Key == Key) { | |||
393 | // DEBUG(Entry.dump("Hit: ")); | |||
394 | return Entry; | |||
395 | } | |||
396 | ||||
397 | // Vacant - add new entry | |||
398 | if (Entry.Key == VacantMarker) { | |||
399 | Entry.Key = Key; | |||
400 | // DEBUG(Entry.dump("Adding new entry: ")); | |||
401 | return Entry; | |||
402 | } | |||
403 | ||||
404 | // Defer to the next level | |||
405 | if (Entry.Key & FollowUpTableMarker) { | |||
406 | return getEntry( | |||
407 | reinterpret_cast<MapEntry *>(Entry.Key & ~FollowUpTableMarker), | |||
408 | Key, Remainder, Alloc, CurLevel + 1); | |||
409 | } | |||
410 | ||||
411 | // Conflict - create the next level | |||
412 | // DEBUG(Entry.dump("Creating new level: ")); | |||
413 | ||||
414 | MapEntry *NextLevelTbl = new (Alloc, 0) MapEntry[IncSize]; | |||
415 | // DEBUG( | |||
416 | // reportNumber("Newly allocated level: 0x", uint64_t(NextLevelTbl), | |||
417 | // 16)); | |||
418 | uint64_t CurEntrySelector = Entry.Key / InitialSize; | |||
419 | for (int I = 0; I < CurLevel; ++I) | |||
420 | CurEntrySelector /= IncSize; | |||
421 | CurEntrySelector = CurEntrySelector % IncSize; | |||
422 | NextLevelTbl[CurEntrySelector] = Entry; | |||
423 | Entry.Key = reinterpret_cast<uint64_t>(NextLevelTbl) | FollowUpTableMarker; | |||
424 | assert((NextLevelTbl[CurEntrySelector].Key & ~FollowUpTableMarker) != | |||
425 | uint64_t(Entries), | |||
426 | "circular reference created!\n"); | |||
427 | // DEBUG(NextLevelTbl[CurEntrySelector].dump("New level entry: ")); | |||
428 | // DEBUG(Entry.dump("Updated old entry: ")); | |||
429 | return getEntry(NextLevelTbl, Key, Remainder, Alloc, CurLevel + 1); | |||
430 | } | |||
431 | ||||
432 | MapEntry &getOrAllocEntry(uint64_t Key, BumpPtrAllocator &Alloc) { | |||
433 | if (TableRoot) { | |||
434 | MapEntry &E = getEntry(TableRoot, Key, Key, Alloc, 0); | |||
435 | assert(!(E.Key & FollowUpTableMarker), "Invalid entry!"); | |||
436 | return E; | |||
437 | } | |||
438 | return firstAllocation(Key, Alloc); | |||
439 | } | |||
440 | }; | |||
441 | ||||
442 | template <typename T> void resetIndCallCounter(T &Entry) { | |||
443 | Entry.Val = 0; | |||
444 | } | |||
445 | ||||
446 | template <typename T, uint32_t X, uint32_t Y> | |||
447 | void SimpleHashTable<T, X, Y>::resetCounters() { | |||
448 | forEachElement(resetIndCallCounter); | |||
449 | } | |||
450 | ||||
451 | /// Represents a hash table mapping a function target address to its counter. | |||
452 | using IndirectCallHashTable = SimpleHashTable<>; | |||
453 | ||||
454 | /// Initialize with number 1 instead of 0 so we don't go into .bss. This is the | |||
455 | /// global array of all hash tables storing indirect call destinations happening | |||
456 | /// during runtime, one table per call site. | |||
457 | IndirectCallHashTable *GlobalIndCallCounters{ | |||
458 | reinterpret_cast<IndirectCallHashTable *>(1)}; | |||
459 | ||||
460 | /// Don't allow reentrancy in the fdata writing phase - only one thread writes | |||
461 | /// it | |||
462 | Mutex *GlobalWriteProfileMutex{reinterpret_cast<Mutex *>(1)}; | |||
463 | ||||
464 | /// Store number of calls in additional to target address (Key) and frequency | |||
465 | /// as perceived by the basic block counter (Val). | |||
466 | struct CallFlowEntryBase : public SimpleHashTableEntryBase { | |||
467 | uint64_t Calls; | |||
468 | }; | |||
469 | ||||
470 | using CallFlowHashTableBase = SimpleHashTable<CallFlowEntryBase, 11939, 233>; | |||
471 | ||||
472 | /// This is a large table indexing all possible call targets (indirect and | |||
473 | /// direct ones). The goal is to find mismatches between number of calls (for | |||
474 | /// those calls we were able to track) and the entry basic block counter of the | |||
475 | /// callee. In most cases, these two should be equal. If not, there are two | |||
476 | /// possible scenarios here: | |||
477 | /// | |||
478 | /// * Entry BB has higher frequency than all known calls to this function. | |||
479 | /// In this case, we have dynamic library code or any uninstrumented code | |||
480 | /// calling this function. We will write the profile for these untracked | |||
481 | /// calls as having source "0 [unknown] 0" in the fdata file. | |||
482 | /// | |||
483 | /// * Number of known calls is higher than the frequency of entry BB | |||
484 | /// This only happens when there is no counter for the entry BB / callee | |||
485 | /// function is not simple (in BOLT terms). We don't do anything special | |||
486 | /// here and just ignore those (we still report all calls to the non-simple | |||
487 | /// function, though). | |||
488 | /// | |||
489 | class CallFlowHashTable : public CallFlowHashTableBase { | |||
490 | public: | |||
491 | CallFlowHashTable(BumpPtrAllocator &Alloc) : Alloc(Alloc) {} | |||
492 | ||||
493 | MapEntry &get(uint64_t Key) { return CallFlowHashTableBase::get(Key, Alloc); } | |||
494 | ||||
495 | private: | |||
496 | // Different than the hash table for indirect call targets, we do store the | |||
497 | // allocator here since there is only one call flow hash and space overhead | |||
498 | // is negligible. | |||
499 | BumpPtrAllocator &Alloc; | |||
500 | }; | |||
501 | ||||
502 | /// | |||
503 | /// Description metadata emitted by BOLT to describe the program - refer to | |||
504 | /// Passes/Instrumentation.cpp - Instrumentation::emitTablesAsELFNote() | |||
505 | /// | |||
506 | struct Location { | |||
507 | uint32_t FunctionName; | |||
508 | uint32_t Offset; | |||
509 | }; | |||
510 | ||||
511 | struct CallDescription { | |||
512 | Location From; | |||
513 | uint32_t FromNode; | |||
514 | Location To; | |||
515 | uint32_t Counter; | |||
516 | uint64_t TargetAddress; | |||
517 | }; | |||
518 | ||||
519 | using IndCallDescription = Location; | |||
520 | ||||
521 | struct IndCallTargetDescription { | |||
522 | Location Loc; | |||
523 | uint64_t Address; | |||
524 | }; | |||
525 | ||||
526 | struct EdgeDescription { | |||
527 | Location From; | |||
528 | uint32_t FromNode; | |||
529 | Location To; | |||
530 | uint32_t ToNode; | |||
531 | uint32_t Counter; | |||
532 | }; | |||
533 | ||||
534 | struct InstrumentedNode { | |||
535 | uint32_t Node; | |||
536 | uint32_t Counter; | |||
537 | }; | |||
538 | ||||
539 | struct EntryNode { | |||
540 | uint64_t Node; | |||
541 | uint64_t Address; | |||
542 | }; | |||
543 | ||||
544 | struct FunctionDescription { | |||
545 | uint32_t NumLeafNodes; | |||
546 | const InstrumentedNode *LeafNodes; | |||
547 | uint32_t NumEdges; | |||
548 | const EdgeDescription *Edges; | |||
549 | uint32_t NumCalls; | |||
550 | const CallDescription *Calls; | |||
551 | uint32_t NumEntryNodes; | |||
552 | const EntryNode *EntryNodes; | |||
553 | ||||
554 | /// Constructor will parse the serialized function metadata written by BOLT | |||
555 | FunctionDescription(const uint8_t *FuncDesc); | |||
556 | ||||
557 | uint64_t getSize() const { | |||
558 | return 16 + NumLeafNodes * sizeof(InstrumentedNode) + | |||
559 | NumEdges * sizeof(EdgeDescription) + | |||
560 | NumCalls * sizeof(CallDescription) + | |||
561 | NumEntryNodes * sizeof(EntryNode); | |||
562 | } | |||
563 | }; | |||
564 | ||||
565 | /// The context is created when the fdata profile needs to be written to disk | |||
566 | /// and we need to interpret our runtime counters. It contains pointers to the | |||
567 | /// mmaped binary (only the BOLT written metadata section). Deserialization | |||
568 | /// should be straightforward as most data is POD or an array of POD elements. | |||
569 | /// This metadata is used to reconstruct function CFGs. | |||
570 | struct ProfileWriterContext { | |||
571 | IndCallDescription *IndCallDescriptions; | |||
572 | IndCallTargetDescription *IndCallTargets; | |||
573 | uint8_t *FuncDescriptions; | |||
574 | char *Strings; // String table with function names used in this binary | |||
575 | int FileDesc; // File descriptor for the file on disk backing this | |||
576 | // information in memory via mmap | |||
577 | void *MMapPtr; // The mmap ptr | |||
578 | int MMapSize; // The mmap size | |||
579 | ||||
580 | /// Hash table storing all possible call destinations to detect untracked | |||
581 | /// calls and correctly report them as [unknown] in output fdata. | |||
582 | CallFlowHashTable *CallFlowTable; | |||
583 | ||||
584 | /// Lookup the sorted indirect call target vector to fetch function name and | |||
585 | /// offset for an arbitrary function pointer. | |||
586 | const IndCallTargetDescription *lookupIndCallTarget(uint64_t Target) const; | |||
587 | }; | |||
588 | ||||
589 | /// Perform a string comparison and returns zero if Str1 matches Str2. Compares | |||
590 | /// at most Size characters. | |||
591 | int compareStr(const char *Str1, const char *Str2, int Size) { | |||
592 | while (*Str1 == *Str2) { | |||
593 | if (*Str1 == '\0' || --Size == 0) | |||
594 | return 0; | |||
595 | ++Str1; | |||
596 | ++Str2; | |||
597 | } | |||
598 | return 1; | |||
599 | } | |||
600 | ||||
601 | /// Output Location to the fdata file | |||
602 | char *serializeLoc(const ProfileWriterContext &Ctx, char *OutBuf, | |||
603 | const Location Loc, uint32_t BufSize) { | |||
604 | // fdata location format: Type Name Offset | |||
605 | // Type 1 - regular symbol | |||
606 | OutBuf = strCopy(OutBuf, "1 "); | |||
607 | const char *Str = Ctx.Strings + Loc.FunctionName; | |||
608 | uint32_t Size = 25; | |||
609 | while (*Str) { | |||
610 | *OutBuf++ = *Str++; | |||
611 | if (++Size >= BufSize) | |||
612 | break; | |||
613 | } | |||
614 | assert(!*Str, "buffer overflow, function name too large"); | |||
615 | *OutBuf++ = ' '; | |||
616 | OutBuf = intToStr(OutBuf, Loc.Offset, 16); | |||
617 | *OutBuf++ = ' '; | |||
618 | return OutBuf; | |||
619 | } | |||
620 | ||||
621 | /// Read and deserialize a function description written by BOLT. \p FuncDesc | |||
622 | /// points at the beginning of the function metadata structure in the file. | |||
623 | /// See Instrumentation::emitTablesAsELFNote() | |||
624 | FunctionDescription::FunctionDescription(const uint8_t *FuncDesc) { | |||
625 | NumLeafNodes = *reinterpret_cast<const uint32_t *>(FuncDesc); | |||
626 | DEBUG(reportNumber("NumLeafNodes = ", NumLeafNodes, 10)){}; | |||
627 | LeafNodes = reinterpret_cast<const InstrumentedNode *>(FuncDesc + 4); | |||
628 | ||||
629 | NumEdges = *reinterpret_cast<const uint32_t *>( | |||
630 | FuncDesc + 4 + NumLeafNodes * sizeof(InstrumentedNode)); | |||
631 | DEBUG(reportNumber("NumEdges = ", NumEdges, 10)){}; | |||
632 | Edges = reinterpret_cast<const EdgeDescription *>( | |||
633 | FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode)); | |||
634 | ||||
635 | NumCalls = *reinterpret_cast<const uint32_t *>( | |||
636 | FuncDesc + 8 + NumLeafNodes * sizeof(InstrumentedNode) + | |||
637 | NumEdges * sizeof(EdgeDescription)); | |||
638 | DEBUG(reportNumber("NumCalls = ", NumCalls, 10)){}; | |||
639 | Calls = reinterpret_cast<const CallDescription *>( | |||
640 | FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + | |||
641 | NumEdges * sizeof(EdgeDescription)); | |||
642 | NumEntryNodes = *reinterpret_cast<const uint32_t *>( | |||
643 | FuncDesc + 12 + NumLeafNodes * sizeof(InstrumentedNode) + | |||
644 | NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); | |||
645 | DEBUG(reportNumber("NumEntryNodes = ", NumEntryNodes, 10)){}; | |||
646 | EntryNodes = reinterpret_cast<const EntryNode *>( | |||
647 | FuncDesc + 16 + NumLeafNodes * sizeof(InstrumentedNode) + | |||
648 | NumEdges * sizeof(EdgeDescription) + NumCalls * sizeof(CallDescription)); | |||
649 | } | |||
650 | ||||
651 | /// Read and mmap descriptions written by BOLT from the executable's notes | |||
652 | /// section | |||
653 | #if defined(HAVE_ELF_H) and !defined(__APPLE__) | |||
654 | ||||
655 | void *__attribute__((noinline)) __get_pc() { | |||
656 | return __builtin_extract_return_addr(__builtin_return_address(0)); | |||
657 | } | |||
658 | ||||
659 | /// Get string with address and parse it to hex pair <StartAddress, EndAddress> | |||
660 | bool parseAddressRange(const char *Str, uint64_t &StartAddress, | |||
661 | uint64_t &EndAddress) { | |||
662 | if (!Str) | |||
663 | return false; | |||
664 | // Parsed string format: <hex1>-<hex2> | |||
665 | StartAddress = hexToLong(Str, '-'); | |||
666 | while (*Str && *Str != '-') | |||
667 | ++Str; | |||
668 | if (!*Str) | |||
669 | return false; | |||
670 | ++Str; // swallow '-' | |||
671 | EndAddress = hexToLong(Str); | |||
672 | return true; | |||
673 | } | |||
674 | ||||
675 | /// Get full path to the real binary by getting current virtual address | |||
676 | /// and searching for the appropriate link in address range in | |||
677 | /// /proc/self/map_files | |||
678 | static char *getBinaryPath() { | |||
679 | const uint32_t BufSize = 1024; | |||
680 | const uint32_t NameMax = 4096; | |||
681 | const char DirPath[] = "/proc/self/map_files/"; | |||
682 | static char TargetPath[NameMax] = {}; | |||
683 | char Buf[BufSize]; | |||
684 | ||||
685 | if (__bolt_instr_binpath[0] != '\0') | |||
686 | return __bolt_instr_binpath; | |||
687 | ||||
688 | if (TargetPath[0] != '\0') | |||
689 | return TargetPath; | |||
690 | ||||
691 | unsigned long CurAddr = (unsigned long)__get_pc(); | |||
692 | uint64_t FDdir = __open(DirPath, O_RDONLY0, | |||
693 | /*mode=*/0666); | |||
694 | assert(static_cast<int64_t>(FDdir) >= 0, | |||
695 | "failed to open /proc/self/map_files"); | |||
696 | ||||
697 | while (long Nread = __getdents64(FDdir, (struct dirent64 *)Buf, BufSize)) { | |||
698 | assert(static_cast<int64_t>(Nread) != -1, "failed to get folder entries"); | |||
699 | ||||
700 | struct dirent64 *d; | |||
701 | for (long Bpos = 0; Bpos < Nread; Bpos += d->d_reclen) { | |||
702 | d = (struct dirent64 *)(Buf + Bpos); | |||
703 | ||||
704 | uint64_t StartAddress, EndAddress; | |||
705 | if (!parseAddressRange(d->d_name, StartAddress, EndAddress)) | |||
706 | continue; | |||
707 | if (CurAddr < StartAddress || CurAddr > EndAddress) | |||
708 | continue; | |||
709 | char FindBuf[NameMax]; | |||
710 | char *C = strCopy(FindBuf, DirPath, NameMax); | |||
711 | C = strCopy(C, d->d_name, NameMax - (C - FindBuf)); | |||
712 | *C = '\0'; | |||
713 | uint32_t Ret = __readlink(FindBuf, TargetPath, sizeof(TargetPath)); | |||
714 | assert(Ret != -1 && Ret != BufSize, "readlink error"); | |||
715 | TargetPath[Ret] = '\0'; | |||
716 | return TargetPath; | |||
717 | } | |||
718 | } | |||
719 | return nullptr; | |||
720 | } | |||
721 | ||||
722 | ProfileWriterContext readDescriptions() { | |||
723 | ProfileWriterContext Result; | |||
724 | char *BinPath = getBinaryPath(); | |||
725 | assert(BinPath && BinPath[0] != '\0', "failed to find binary path"); | |||
726 | ||||
727 | uint64_t FD = __open(BinPath, O_RDONLY0, | |||
728 | /*mode=*/0666); | |||
729 | assert(static_cast<int64_t>(FD) >= 0, "failed to open binary path"); | |||
730 | ||||
731 | Result.FileDesc = FD; | |||
732 | ||||
733 | // mmap our binary to memory | |||
734 | uint64_t Size = __lseek(FD, 0, SEEK_END2); | |||
735 | uint8_t *BinContents = reinterpret_cast<uint8_t *>( | |||
736 | __mmap(0, Size, PROT_READ0x1, MAP_PRIVATE0x02, FD, 0)); | |||
737 | assert(BinContents != MAP_FAILED((void *)-1), "readDescriptions: Failed to mmap self!"); | |||
738 | Result.MMapPtr = BinContents; | |||
739 | Result.MMapSize = Size; | |||
740 | Elf64_Ehdr *Hdr = reinterpret_cast<Elf64_Ehdr *>(BinContents); | |||
741 | Elf64_Shdr *Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff); | |||
742 | Elf64_Shdr *StringTblHeader = reinterpret_cast<Elf64_Shdr *>( | |||
743 | BinContents + Hdr->e_shoff + Hdr->e_shstrndx * Hdr->e_shentsize); | |||
744 | ||||
745 | // Find .bolt.instr.tables with the data we need and set pointers to it | |||
746 | for (int I = 0; I < Hdr->e_shnum; ++I) { | |||
747 | char *SecName = reinterpret_cast<char *>( | |||
748 | BinContents + StringTblHeader->sh_offset + Shdr->sh_name); | |||
749 | if (compareStr(SecName, ".bolt.instr.tables", 64) != 0) { | |||
750 | Shdr = reinterpret_cast<Elf64_Shdr *>(BinContents + Hdr->e_shoff + | |||
751 | (I + 1) * Hdr->e_shentsize); | |||
752 | continue; | |||
753 | } | |||
754 | // Actual contents of the ELF note start after offset 20 decimal: | |||
755 | // Offset 0: Producer name size (4 bytes) | |||
756 | // Offset 4: Contents size (4 bytes) | |||
757 | // Offset 8: Note type (4 bytes) | |||
758 | // Offset 12: Producer name (BOLT\0) (5 bytes + align to 4-byte boundary) | |||
759 | // Offset 20: Contents | |||
760 | uint32_t IndCallDescSize = | |||
761 | *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 20); | |||
762 | uint32_t IndCallTargetDescSize = *reinterpret_cast<uint32_t *>( | |||
763 | BinContents + Shdr->sh_offset + 24 + IndCallDescSize); | |||
764 | uint32_t FuncDescSize = | |||
765 | *reinterpret_cast<uint32_t *>(BinContents + Shdr->sh_offset + 28 + | |||
766 | IndCallDescSize + IndCallTargetDescSize); | |||
767 | Result.IndCallDescriptions = reinterpret_cast<IndCallDescription *>( | |||
768 | BinContents + Shdr->sh_offset + 24); | |||
769 | Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( | |||
770 | BinContents + Shdr->sh_offset + 28 + IndCallDescSize); | |||
771 | Result.FuncDescriptions = BinContents + Shdr->sh_offset + 32 + | |||
772 | IndCallDescSize + IndCallTargetDescSize; | |||
773 | Result.Strings = reinterpret_cast<char *>( | |||
774 | BinContents + Shdr->sh_offset + 32 + IndCallDescSize + | |||
775 | IndCallTargetDescSize + FuncDescSize); | |||
776 | return Result; | |||
777 | } | |||
778 | const char ErrMsg[] = | |||
779 | "BOLT instrumentation runtime error: could not find section " | |||
780 | ".bolt.instr.tables\n"; | |||
781 | reportError(ErrMsg, sizeof(ErrMsg)); | |||
782 | return Result; | |||
783 | } | |||
784 | ||||
785 | #else | |||
786 | ||||
787 | ProfileWriterContext readDescriptions() { | |||
788 | ProfileWriterContext Result; | |||
789 | uint8_t *Tables = _bolt_instr_tables_getter(); | |||
790 | uint32_t IndCallDescSize = *reinterpret_cast<uint32_t *>(Tables); | |||
791 | uint32_t IndCallTargetDescSize = | |||
792 | *reinterpret_cast<uint32_t *>(Tables + 4 + IndCallDescSize); | |||
793 | uint32_t FuncDescSize = *reinterpret_cast<uint32_t *>( | |||
794 | Tables + 8 + IndCallDescSize + IndCallTargetDescSize); | |||
795 | Result.IndCallDescriptions = | |||
796 | reinterpret_cast<IndCallDescription *>(Tables + 4); | |||
797 | Result.IndCallTargets = reinterpret_cast<IndCallTargetDescription *>( | |||
798 | Tables + 8 + IndCallDescSize); | |||
799 | Result.FuncDescriptions = | |||
800 | Tables + 12 + IndCallDescSize + IndCallTargetDescSize; | |||
801 | Result.Strings = reinterpret_cast<char *>( | |||
802 | Tables + 12 + IndCallDescSize + IndCallTargetDescSize + FuncDescSize); | |||
803 | return Result; | |||
804 | } | |||
805 | ||||
806 | #endif | |||
807 | ||||
808 | #if !defined(__APPLE__) | |||
809 | /// Debug by printing overall metadata global numbers to check it is sane | |||
810 | void printStats(const ProfileWriterContext &Ctx) { | |||
811 | char StatMsg[BufSize]; | |||
812 | char *StatPtr = StatMsg; | |||
813 | StatPtr = | |||
814 | strCopy(StatPtr, | |||
815 | "\nBOLT INSTRUMENTATION RUNTIME STATISTICS\n\nIndCallDescSize: "); | |||
816 | StatPtr = intToStr(StatPtr, | |||
817 | Ctx.FuncDescriptions - | |||
818 | reinterpret_cast<uint8_t *>(Ctx.IndCallDescriptions), | |||
819 | 10); | |||
820 | StatPtr = strCopy(StatPtr, "\nFuncDescSize: "); | |||
821 | StatPtr = intToStr( | |||
822 | StatPtr, | |||
823 | reinterpret_cast<uint8_t *>(Ctx.Strings) - Ctx.FuncDescriptions, 10); | |||
824 | StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_ind_calls: "); | |||
825 | StatPtr = intToStr(StatPtr, __bolt_instr_num_ind_calls, 10); | |||
826 | StatPtr = strCopy(StatPtr, "\n__bolt_instr_num_funcs: "); | |||
827 | StatPtr = intToStr(StatPtr, __bolt_instr_num_funcs, 10); | |||
828 | StatPtr = strCopy(StatPtr, "\n"); | |||
829 | __write(2, StatMsg, StatPtr - StatMsg); | |||
830 | } | |||
831 | #endif | |||
832 | ||||
833 | ||||
834 | /// This is part of a simple CFG representation in memory, where we store | |||
835 | /// a dynamically sized array of input and output edges per node, and store | |||
836 | /// a dynamically sized array of nodes per graph. We also store the spanning | |||
837 | /// tree edges for that CFG in a separate array of nodes in | |||
838 | /// \p SpanningTreeNodes, while the regular nodes live in \p CFGNodes. | |||
839 | struct Edge { | |||
840 | uint32_t Node; // Index in nodes array regarding the destination of this edge | |||
841 | uint32_t ID; // Edge index in an array comprising all edges of the graph | |||
842 | }; | |||
843 | ||||
844 | /// A regular graph node or a spanning tree node | |||
845 | struct Node { | |||
846 | uint32_t NumInEdges{0}; // Input edge count used to size InEdge | |||
847 | uint32_t NumOutEdges{0}; // Output edge count used to size OutEdges | |||
848 | Edge *InEdges{nullptr}; // Created and managed by \p Graph | |||
849 | Edge *OutEdges{nullptr}; // ditto | |||
850 | }; | |||
851 | ||||
852 | /// Main class for CFG representation in memory. Manages object creation and | |||
853 | /// destruction, populates an array of CFG nodes as well as corresponding | |||
854 | /// spanning tree nodes. | |||
855 | struct Graph { | |||
856 | uint32_t NumNodes; | |||
857 | Node *CFGNodes; | |||
858 | Node *SpanningTreeNodes; | |||
859 | uint64_t *EdgeFreqs; | |||
860 | uint64_t *CallFreqs; | |||
861 | BumpPtrAllocator &Alloc; | |||
862 | const FunctionDescription &D; | |||
863 | ||||
864 | /// Reads a list of edges from function description \p D and builds | |||
865 | /// the graph from it. Allocates several internal dynamic structures that are | |||
866 | /// later destroyed by ~Graph() and uses \p Alloc. D.LeafNodes contain all | |||
867 | /// spanning tree leaf nodes descriptions (their counters). They are the seed | |||
868 | /// used to compute the rest of the missing edge counts in a bottom-up | |||
869 | /// traversal of the spanning tree. | |||
870 | Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, | |||
871 | const uint64_t *Counters, ProfileWriterContext &Ctx); | |||
872 | ~Graph(); | |||
873 | void dump() const; | |||
874 | ||||
875 | private: | |||
876 | void computeEdgeFrequencies(const uint64_t *Counters, | |||
877 | ProfileWriterContext &Ctx); | |||
878 | void dumpEdgeFreqs() const; | |||
879 | }; | |||
880 | ||||
881 | Graph::Graph(BumpPtrAllocator &Alloc, const FunctionDescription &D, | |||
882 | const uint64_t *Counters, ProfileWriterContext &Ctx) | |||
883 | : Alloc(Alloc), D(D) { | |||
884 | DEBUG(reportNumber("G = 0x", (uint64_t)this, 16)){}; | |||
885 | // First pass to determine number of nodes | |||
886 | int32_t MaxNodes = -1; | |||
887 | CallFreqs = nullptr; | |||
888 | EdgeFreqs = nullptr; | |||
889 | for (int I = 0; I < D.NumEdges; ++I) { | |||
890 | if (static_cast<int32_t>(D.Edges[I].FromNode) > MaxNodes) | |||
891 | MaxNodes = D.Edges[I].FromNode; | |||
892 | if (static_cast<int32_t>(D.Edges[I].ToNode) > MaxNodes) | |||
893 | MaxNodes = D.Edges[I].ToNode; | |||
894 | } | |||
895 | ||||
896 | for (int I = 0; I < D.NumLeafNodes; ++I) | |||
897 | if (static_cast<int32_t>(D.LeafNodes[I].Node) > MaxNodes) | |||
898 | MaxNodes = D.LeafNodes[I].Node; | |||
899 | ||||
900 | for (int I = 0; I < D.NumCalls; ++I) | |||
901 | if (static_cast<int32_t>(D.Calls[I].FromNode) > MaxNodes) | |||
902 | MaxNodes = D.Calls[I].FromNode; | |||
903 | ||||
904 | // No nodes? Nothing to do | |||
905 | if (MaxNodes < 0) { | |||
906 | DEBUG(report("No nodes!\n")){}; | |||
907 | CFGNodes = nullptr; | |||
908 | SpanningTreeNodes = nullptr; | |||
909 | NumNodes = 0; | |||
910 | return; | |||
911 | } | |||
912 | ++MaxNodes; | |||
913 | DEBUG(reportNumber("NumNodes = ", MaxNodes, 10)){}; | |||
914 | NumNodes = static_cast<uint32_t>(MaxNodes); | |||
915 | ||||
916 | // Initial allocations | |||
917 | CFGNodes = new (Alloc) Node[MaxNodes]; | |||
918 | ||||
919 | DEBUG(reportNumber("G->CFGNodes = 0x", (uint64_t)CFGNodes, 16)){}; | |||
920 | SpanningTreeNodes = new (Alloc) Node[MaxNodes]; | |||
921 | DEBUG(reportNumber("G->SpanningTreeNodes = 0x",{} | |||
922 | (uint64_t)SpanningTreeNodes, 16)){}; | |||
923 | ||||
924 | // Figure out how much to allocate to each vector (in/out edge sets) | |||
925 | for (int I = 0; I < D.NumEdges; ++I) { | |||
926 | CFGNodes[D.Edges[I].FromNode].NumOutEdges++; | |||
927 | CFGNodes[D.Edges[I].ToNode].NumInEdges++; | |||
928 | if (D.Edges[I].Counter != 0xffffffff) | |||
929 | continue; | |||
930 | ||||
931 | SpanningTreeNodes[D.Edges[I].FromNode].NumOutEdges++; | |||
932 | SpanningTreeNodes[D.Edges[I].ToNode].NumInEdges++; | |||
933 | } | |||
934 | ||||
935 | // Allocate in/out edge sets | |||
936 | for (int I = 0; I < MaxNodes; ++I) { | |||
937 | if (CFGNodes[I].NumInEdges > 0) | |||
938 | CFGNodes[I].InEdges = new (Alloc) Edge[CFGNodes[I].NumInEdges]; | |||
939 | if (CFGNodes[I].NumOutEdges > 0) | |||
940 | CFGNodes[I].OutEdges = new (Alloc) Edge[CFGNodes[I].NumOutEdges]; | |||
941 | if (SpanningTreeNodes[I].NumInEdges > 0) | |||
942 | SpanningTreeNodes[I].InEdges = | |||
943 | new (Alloc) Edge[SpanningTreeNodes[I].NumInEdges]; | |||
944 | if (SpanningTreeNodes[I].NumOutEdges > 0) | |||
945 | SpanningTreeNodes[I].OutEdges = | |||
946 | new (Alloc) Edge[SpanningTreeNodes[I].NumOutEdges]; | |||
947 | CFGNodes[I].NumInEdges = 0; | |||
948 | CFGNodes[I].NumOutEdges = 0; | |||
949 | SpanningTreeNodes[I].NumInEdges = 0; | |||
950 | SpanningTreeNodes[I].NumOutEdges = 0; | |||
951 | } | |||
952 | ||||
953 | // Fill in/out edge sets | |||
954 | for (int I = 0; I < D.NumEdges; ++I) { | |||
955 | const uint32_t Src = D.Edges[I].FromNode; | |||
956 | const uint32_t Dst = D.Edges[I].ToNode; | |||
957 | Edge *E = &CFGNodes[Src].OutEdges[CFGNodes[Src].NumOutEdges++]; | |||
958 | E->Node = Dst; | |||
959 | E->ID = I; | |||
960 | ||||
961 | E = &CFGNodes[Dst].InEdges[CFGNodes[Dst].NumInEdges++]; | |||
962 | E->Node = Src; | |||
963 | E->ID = I; | |||
964 | ||||
965 | if (D.Edges[I].Counter != 0xffffffff) | |||
966 | continue; | |||
967 | ||||
968 | E = &SpanningTreeNodes[Src] | |||
969 | .OutEdges[SpanningTreeNodes[Src].NumOutEdges++]; | |||
970 | E->Node = Dst; | |||
971 | E->ID = I; | |||
972 | ||||
973 | E = &SpanningTreeNodes[Dst] | |||
974 | .InEdges[SpanningTreeNodes[Dst].NumInEdges++]; | |||
975 | E->Node = Src; | |||
976 | E->ID = I; | |||
977 | } | |||
978 | ||||
979 | computeEdgeFrequencies(Counters, Ctx); | |||
980 | } | |||
981 | ||||
982 | Graph::~Graph() { | |||
983 | if (CallFreqs) | |||
984 | Alloc.deallocate(CallFreqs); | |||
985 | if (EdgeFreqs) | |||
986 | Alloc.deallocate(EdgeFreqs); | |||
987 | for (int I = NumNodes - 1; I >= 0; --I) { | |||
988 | if (SpanningTreeNodes[I].OutEdges) | |||
989 | Alloc.deallocate(SpanningTreeNodes[I].OutEdges); | |||
990 | if (SpanningTreeNodes[I].InEdges) | |||
991 | Alloc.deallocate(SpanningTreeNodes[I].InEdges); | |||
992 | if (CFGNodes[I].OutEdges) | |||
993 | Alloc.deallocate(CFGNodes[I].OutEdges); | |||
994 | if (CFGNodes[I].InEdges) | |||
995 | Alloc.deallocate(CFGNodes[I].InEdges); | |||
996 | } | |||
997 | if (SpanningTreeNodes) | |||
998 | Alloc.deallocate(SpanningTreeNodes); | |||
999 | if (CFGNodes) | |||
1000 | Alloc.deallocate(CFGNodes); | |||
1001 | } | |||
1002 | ||||
1003 | void Graph::dump() const { | |||
1004 | reportNumber("Dumping graph with number of nodes: ", NumNodes, 10); | |||
1005 | report(" Full graph:\n"); | |||
1006 | for (int I = 0; I < NumNodes; ++I) { | |||
1007 | const Node *N = &CFGNodes[I]; | |||
1008 | reportNumber(" Node #", I, 10); | |||
1009 | reportNumber(" InEdges total ", N->NumInEdges, 10); | |||
1010 | for (int J = 0; J < N->NumInEdges; ++J) | |||
1011 | reportNumber(" ", N->InEdges[J].Node, 10); | |||
1012 | reportNumber(" OutEdges total ", N->NumOutEdges, 10); | |||
1013 | for (int J = 0; J < N->NumOutEdges; ++J) | |||
1014 | reportNumber(" ", N->OutEdges[J].Node, 10); | |||
1015 | report("\n"); | |||
1016 | } | |||
1017 | report(" Spanning tree:\n"); | |||
1018 | for (int I = 0; I < NumNodes; ++I) { | |||
1019 | const Node *N = &SpanningTreeNodes[I]; | |||
1020 | reportNumber(" Node #", I, 10); | |||
1021 | reportNumber(" InEdges total ", N->NumInEdges, 10); | |||
1022 | for (int J = 0; J < N->NumInEdges; ++J) | |||
1023 | reportNumber(" ", N->InEdges[J].Node, 10); | |||
1024 | reportNumber(" OutEdges total ", N->NumOutEdges, 10); | |||
1025 | for (int J = 0; J < N->NumOutEdges; ++J) | |||
1026 | reportNumber(" ", N->OutEdges[J].Node, 10); | |||
1027 | report("\n"); | |||
1028 | } | |||
1029 | } | |||
1030 | ||||
1031 | void Graph::dumpEdgeFreqs() const { | |||
1032 | reportNumber( | |||
1033 | "Dumping edge frequencies for graph with num edges: ", D.NumEdges, 10); | |||
1034 | for (int I = 0; I < D.NumEdges; ++I) { | |||
1035 | reportNumber("* Src: ", D.Edges[I].FromNode, 10); | |||
1036 | reportNumber(" Dst: ", D.Edges[I].ToNode, 10); | |||
1037 | reportNumber(" Cnt: ", EdgeFreqs[I], 10); | |||
1038 | } | |||
1039 | } | |||
1040 | ||||
1041 | /// Auxiliary map structure for fast lookups of which calls map to each node of | |||
1042 | /// the function CFG | |||
1043 | struct NodeToCallsMap { | |||
1044 | struct MapEntry { | |||
1045 | uint32_t NumCalls; | |||
1046 | uint32_t *Calls; | |||
1047 | }; | |||
1048 | MapEntry *Entries; | |||
1049 | BumpPtrAllocator &Alloc; | |||
1050 | const uint32_t NumNodes; | |||
1051 | ||||
1052 | NodeToCallsMap(BumpPtrAllocator &Alloc, const FunctionDescription &D, | |||
1053 | uint32_t NumNodes) | |||
1054 | : Alloc(Alloc), NumNodes(NumNodes) { | |||
1055 | Entries = new (Alloc, 0) MapEntry[NumNodes]; | |||
1056 | for (int I = 0; I < D.NumCalls; ++I) { | |||
1057 | DEBUG(reportNumber("Registering call in node ", D.Calls[I].FromNode, 10)){}; | |||
1058 | ++Entries[D.Calls[I].FromNode].NumCalls; | |||
1059 | } | |||
1060 | for (int I = 0; I < NumNodes; ++I) { | |||
1061 | Entries[I].Calls = Entries[I].NumCalls ? new (Alloc) | |||
1062 | uint32_t[Entries[I].NumCalls] | |||
1063 | : nullptr; | |||
1064 | Entries[I].NumCalls = 0; | |||
1065 | } | |||
1066 | for (int I = 0; I < D.NumCalls; ++I) { | |||
1067 | MapEntry &Entry = Entries[D.Calls[I].FromNode]; | |||
1068 | Entry.Calls[Entry.NumCalls++] = I; | |||
1069 | } | |||
1070 | } | |||
1071 | ||||
1072 | /// Set the frequency of all calls in node \p NodeID to Freq. However, if | |||
1073 | /// the calls have their own counters and do not depend on the basic block | |||
1074 | /// counter, this means they have landing pads and throw exceptions. In this | |||
1075 | /// case, set their frequency with their counters and return the maximum | |||
1076 | /// value observed in such counters. This will be used as the new frequency | |||
1077 | /// at basic block entry. This is used to fix the CFG edge frequencies in the | |||
1078 | /// presence of exceptions. | |||
1079 | uint64_t visitAllCallsIn(uint32_t NodeID, uint64_t Freq, uint64_t *CallFreqs, | |||
1080 | const FunctionDescription &D, | |||
1081 | const uint64_t *Counters, | |||
1082 | ProfileWriterContext &Ctx) const { | |||
1083 | const MapEntry &Entry = Entries[NodeID]; | |||
1084 | uint64_t MaxValue = 0ull; | |||
1085 | for (int I = 0, E = Entry.NumCalls; I != E; ++I) { | |||
1086 | const uint32_t CallID = Entry.Calls[I]; | |||
1087 | DEBUG(reportNumber(" Setting freq for call ID: ", CallID, 10)){}; | |||
1088 | const CallDescription &CallDesc = D.Calls[CallID]; | |||
1089 | if (CallDesc.Counter == 0xffffffff) { | |||
1090 | CallFreqs[CallID] = Freq; | |||
| ||||
1091 | DEBUG(reportNumber(" with : ", Freq, 10)){}; | |||
1092 | } else { | |||
1093 | const uint64_t CounterVal = Counters[CallDesc.Counter]; | |||
1094 | CallFreqs[CallID] = CounterVal; | |||
1095 | MaxValue = CounterVal > MaxValue ? CounterVal : MaxValue; | |||
1096 | DEBUG(reportNumber(" with (private counter) : ", CounterVal, 10)){}; | |||
1097 | } | |||
1098 | DEBUG(reportNumber(" Address: 0x", CallDesc.TargetAddress, 16)){}; | |||
1099 | if (CallFreqs[CallID] > 0) | |||
1100 | Ctx.CallFlowTable->get(CallDesc.TargetAddress).Calls += | |||
1101 | CallFreqs[CallID]; | |||
1102 | } | |||
1103 | return MaxValue; | |||
1104 | } | |||
1105 | ||||
1106 | ~NodeToCallsMap() { | |||
1107 | for (int I = NumNodes - 1; I >= 0; --I) | |||
1108 | if (Entries[I].Calls) | |||
1109 | Alloc.deallocate(Entries[I].Calls); | |||
1110 | Alloc.deallocate(Entries); | |||
1111 | } | |||
1112 | }; | |||
1113 | ||||
1114 | /// Fill an array with the frequency of each edge in the function represented | |||
1115 | /// by G, as well as another array for each call. | |||
1116 | void Graph::computeEdgeFrequencies(const uint64_t *Counters, | |||
1117 | ProfileWriterContext &Ctx) { | |||
1118 | if (NumNodes == 0) | |||
| ||||
1119 | return; | |||
1120 | ||||
1121 | EdgeFreqs = D.NumEdges ? new (Alloc, 0) uint64_t [D.NumEdges] : nullptr; | |||
1122 | CallFreqs = D.NumCalls ? new (Alloc, 0) uint64_t [D.NumCalls] : nullptr; | |||
1123 | ||||
1124 | // Setup a lookup for calls present in each node (BB) | |||
1125 | NodeToCallsMap *CallMap = new (Alloc) NodeToCallsMap(Alloc, D, NumNodes); | |||
1126 | ||||
1127 | // Perform a bottom-up, BFS traversal of the spanning tree in G. Edges in the | |||
1128 | // spanning tree don't have explicit counters. We must infer their value using | |||
1129 | // a linear combination of other counters (sum of counters of the outgoing | |||
1130 | // edges minus sum of counters of the incoming edges). | |||
1131 | uint32_t *Stack = new (Alloc) uint32_t [NumNodes]; | |||
1132 | uint32_t StackTop = 0; | |||
1133 | enum Status : uint8_t { S_NEW = 0, S_VISITING, S_VISITED }; | |||
1134 | Status *Visited = new (Alloc, 0) Status[NumNodes]; | |||
1135 | uint64_t *LeafFrequency = new (Alloc, 0) uint64_t[NumNodes]; | |||
1136 | uint64_t *EntryAddress = new (Alloc, 0) uint64_t[NumNodes]; | |||
1137 | ||||
1138 | // Setup a fast lookup for frequency of leaf nodes, which have special | |||
1139 | // basic block frequency instrumentation (they are not edge profiled). | |||
1140 | for (int I = 0; I < D.NumLeafNodes; ++I) { | |||
1141 | LeafFrequency[D.LeafNodes[I].Node] = Counters[D.LeafNodes[I].Counter]; | |||
1142 | DEBUG({{} | |||
1143 | if (Counters[D.LeafNodes[I].Counter] > 0) {{} | |||
1144 | reportNumber("Leaf Node# ", D.LeafNodes[I].Node, 10);{} | |||
1145 | reportNumber(" Counter: ", Counters[D.LeafNodes[I].Counter], 10);{} | |||
1146 | }{} | |||
1147 | }){}; | |||
1148 | } | |||
1149 | for (int I = 0; I < D.NumEntryNodes; ++I) { | |||
1150 | EntryAddress[D.EntryNodes[I].Node] = D.EntryNodes[I].Address; | |||
1151 | DEBUG({{} | |||
1152 | reportNumber("Entry Node# ", D.EntryNodes[I].Node, 10);{} | |||
1153 | reportNumber(" Address: ", D.EntryNodes[I].Address, 16);{} | |||
1154 | }){}; | |||
1155 | } | |||
1156 | // Add all root nodes to the stack | |||
1157 | for (int I = 0; I
| |||
1158 | if (SpanningTreeNodes[I].NumInEdges == 0) | |||
1159 | Stack[StackTop++] = I; | |||
1160 | ||||
1161 | // Empty stack? | |||
1162 | if (StackTop
| |||
1163 | DEBUG(report("Empty stack!\n")){}; | |||
1164 | Alloc.deallocate(EntryAddress); | |||
1165 | Alloc.deallocate(LeafFrequency); | |||
1166 | Alloc.deallocate(Visited); | |||
1167 | Alloc.deallocate(Stack); | |||
1168 | CallMap->~NodeToCallsMap(); | |||
1169 | Alloc.deallocate(CallMap); | |||
1170 | if (CallFreqs) | |||
1171 | Alloc.deallocate(CallFreqs); | |||
1172 | if (EdgeFreqs) | |||
1173 | Alloc.deallocate(EdgeFreqs); | |||
1174 | EdgeFreqs = nullptr; | |||
1175 | CallFreqs = nullptr; | |||
1176 | return; | |||
1177 | } | |||
1178 | // Add all known edge counts, will infer the rest | |||
1179 | for (int I = 0; I < D.NumEdges; ++I) { | |||
1180 | const uint32_t C = D.Edges[I].Counter; | |||
1181 | if (C == 0xffffffff) // inferred counter - we will compute its value | |||
1182 | continue; | |||
1183 | EdgeFreqs[I] = Counters[C]; | |||
1184 | } | |||
1185 | ||||
1186 | while (StackTop > 0) { | |||
1187 | const uint32_t Cur = Stack[--StackTop]; | |||
1188 | DEBUG({{} | |||
1189 | if (Visited[Cur] == S_VISITING){} | |||
1190 | report("(visiting) ");{} | |||
1191 | else{} | |||
1192 | report("(new) ");{} | |||
1193 | reportNumber("Cur: ", Cur, 10);{} | |||
1194 | }){}; | |||
1195 | ||||
1196 | // This shouldn't happen in a tree | |||
1197 | assert(Visited[Cur] != S_VISITED, "should not have visited nodes in stack"); | |||
1198 | if (Visited[Cur] == S_NEW) { | |||
1199 | Visited[Cur] = S_VISITING; | |||
1200 | Stack[StackTop++] = Cur; | |||
1201 | assert(StackTop <= NumNodes, "stack grew too large"); | |||
1202 | for (int I = 0, E = SpanningTreeNodes[Cur].NumOutEdges; I < E; ++I) { | |||
1203 | const uint32_t Succ = SpanningTreeNodes[Cur].OutEdges[I].Node; | |||
1204 | Stack[StackTop++] = Succ; | |||
1205 | assert(StackTop <= NumNodes, "stack grew too large"); | |||
1206 | } | |||
1207 | continue; | |||
1208 | } | |||
1209 | Visited[Cur] = S_VISITED; | |||
1210 | ||||
1211 | // Establish our node frequency based on outgoing edges, which should all be | |||
1212 | // resolved by now. | |||
1213 | int64_t CurNodeFreq = LeafFrequency[Cur]; | |||
1214 | // Not a leaf? | |||
1215 | if (!CurNodeFreq) { | |||
1216 | for (int I = 0, E = CFGNodes[Cur].NumOutEdges; I != E; ++I) { | |||
1217 | const uint32_t SuccEdge = CFGNodes[Cur].OutEdges[I].ID; | |||
1218 | CurNodeFreq += EdgeFreqs[SuccEdge]; | |||
1219 | } | |||
1220 | } | |||
1221 | if (CurNodeFreq
| |||
1222 | CurNodeFreq = 0; | |||
1223 | ||||
1224 | const uint64_t CallFreq = CallMap->visitAllCallsIn( | |||
1225 | Cur, CurNodeFreq
| |||
1226 | ||||
1227 | // Exception handling affected our output flow? Fix with calls info | |||
1228 | DEBUG({{} | |||
1229 | if (CallFreq > CurNodeFreq){} | |||
1230 | report("Bumping node frequency with call info\n");{} | |||
1231 | }){}; | |||
1232 | CurNodeFreq = CallFreq > CurNodeFreq ? CallFreq : CurNodeFreq; | |||
1233 | ||||
1234 | if (CurNodeFreq > 0) { | |||
1235 | if (uint64_t Addr = EntryAddress[Cur]) { | |||
1236 | DEBUG({} | |||
1237 | reportNumber(" Setting flow at entry point address 0x", Addr, 16)){}; | |||
1238 | DEBUG(reportNumber(" with: ", CurNodeFreq, 10)){}; | |||
1239 | Ctx.CallFlowTable->get(Addr).Val = CurNodeFreq; | |||
1240 | } | |||
1241 | } | |||
1242 | ||||
1243 | // No parent? Reached a tree root, limit to call frequency updating. | |||
1244 | if (SpanningTreeNodes[Cur].NumInEdges == 0) | |||
1245 | continue; | |||
1246 | ||||
1247 | assert(SpanningTreeNodes[Cur].NumInEdges == 1, "must have 1 parent"); | |||
1248 | const uint32_t Parent = SpanningTreeNodes[Cur].InEdges[0].Node; | |||
1249 | const uint32_t ParentEdge = SpanningTreeNodes[Cur].InEdges[0].ID; | |||
1250 | ||||
1251 | // Calculate parent edge freq. | |||
1252 | int64_t ParentEdgeFreq = CurNodeFreq; | |||
1253 | for (int I = 0, E = CFGNodes[Cur].NumInEdges; I != E; ++I) { | |||
1254 | const uint32_t PredEdge = CFGNodes[Cur].InEdges[I].ID; | |||
1255 | ParentEdgeFreq -= EdgeFreqs[PredEdge]; | |||
1256 | } | |||
1257 | ||||
1258 | // Sometimes the conservative CFG that BOLT builds will lead to incorrect | |||
1259 | // flow computation. For example, in a BB that transitively calls the exit | |||
1260 | // syscall, BOLT will add a fall-through successor even though it should not | |||
1261 | // have any successors. So this block execution will likely be wrong. We | |||
1262 | // tolerate this imperfection since this case should be quite infrequent. | |||
1263 | if (ParentEdgeFreq < 0) { | |||
1264 | DEBUG(dumpEdgeFreqs()){}; | |||
1265 | DEBUG(report("WARNING: incorrect flow")){}; | |||
1266 | ParentEdgeFreq = 0; | |||
1267 | } | |||
1268 | DEBUG(reportNumber(" Setting freq for ParentEdge: ", ParentEdge, 10)){}; | |||
1269 | DEBUG(reportNumber(" with ParentEdgeFreq: ", ParentEdgeFreq, 10)){}; | |||
1270 | EdgeFreqs[ParentEdge] = ParentEdgeFreq; | |||
1271 | } | |||
1272 | ||||
1273 | Alloc.deallocate(EntryAddress); | |||
1274 | Alloc.deallocate(LeafFrequency); | |||
1275 | Alloc.deallocate(Visited); | |||
1276 | Alloc.deallocate(Stack); | |||
1277 | CallMap->~NodeToCallsMap(); | |||
1278 | Alloc.deallocate(CallMap); | |||
1279 | DEBUG(dumpEdgeFreqs()){}; | |||
1280 | } | |||
1281 | ||||
1282 | /// Write to \p FD all of the edge profiles for function \p FuncDesc. Uses | |||
1283 | /// \p Alloc to allocate helper dynamic structures used to compute profile for | |||
1284 | /// edges that we do not explicitly instrument. | |||
1285 | const uint8_t *writeFunctionProfile(int FD, ProfileWriterContext &Ctx, | |||
1286 | const uint8_t *FuncDesc, | |||
1287 | BumpPtrAllocator &Alloc) { | |||
1288 | const FunctionDescription F(FuncDesc); | |||
1289 | const uint8_t *next = FuncDesc + F.getSize(); | |||
1290 | ||||
1291 | #if !defined(__APPLE__) | |||
1292 | uint64_t *bolt_instr_locations = __bolt_instr_locations; | |||
1293 | #else | |||
1294 | uint64_t *bolt_instr_locations = _bolt_instr_locations_getter(); | |||
1295 | #endif | |||
1296 | ||||
1297 | // Skip funcs we know are cold | |||
1298 | #ifndef ENABLE_DEBUG | |||
1299 | uint64_t CountersFreq = 0; | |||
1300 | for (int I = 0; I < F.NumLeafNodes; ++I) | |||
1301 | CountersFreq += bolt_instr_locations[F.LeafNodes[I].Counter]; | |||
1302 | ||||
1303 | if (CountersFreq == 0) { | |||
1304 | for (int I = 0; I < F.NumEdges; ++I) { | |||
1305 | const uint32_t C = F.Edges[I].Counter; | |||
1306 | if (C == 0xffffffff) | |||
1307 | continue; | |||
1308 | CountersFreq += bolt_instr_locations[C]; | |||
1309 | } | |||
1310 | if (CountersFreq == 0) { | |||
1311 | for (int I = 0; I < F.NumCalls; ++I) { | |||
1312 | const uint32_t C = F.Calls[I].Counter; | |||
1313 | if (C == 0xffffffff) | |||
1314 | continue; | |||
1315 | CountersFreq += bolt_instr_locations[C]; | |||
1316 | } | |||
1317 | if (CountersFreq == 0) | |||
1318 | return next; | |||
1319 | } | |||
1320 | } | |||
1321 | #endif | |||
1322 | ||||
1323 | Graph *G = new (Alloc) Graph(Alloc, F, bolt_instr_locations, Ctx); | |||
1324 | DEBUG(G->dump()){}; | |||
1325 | ||||
1326 | if (!G->EdgeFreqs && !G->CallFreqs) { | |||
1327 | G->~Graph(); | |||
1328 | Alloc.deallocate(G); | |||
1329 | return next; | |||
1330 | } | |||
1331 | ||||
1332 | for (int I = 0; I < F.NumEdges; ++I) { | |||
1333 | const uint64_t Freq = G->EdgeFreqs[I]; | |||
1334 | if (Freq == 0) | |||
1335 | continue; | |||
1336 | const EdgeDescription *Desc = &F.Edges[I]; | |||
1337 | char LineBuf[BufSize]; | |||
1338 | char *Ptr = LineBuf; | |||
1339 | Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); | |||
1340 | Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); | |||
1341 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 22); | |||
1342 | Ptr = intToStr(Ptr, Freq, 10); | |||
1343 | *Ptr++ = '\n'; | |||
1344 | __write(FD, LineBuf, Ptr - LineBuf); | |||
1345 | } | |||
1346 | ||||
1347 | for (int I = 0; I < F.NumCalls; ++I) { | |||
1348 | const uint64_t Freq = G->CallFreqs[I]; | |||
1349 | if (Freq == 0) | |||
1350 | continue; | |||
1351 | char LineBuf[BufSize]; | |||
1352 | char *Ptr = LineBuf; | |||
1353 | const CallDescription *Desc = &F.Calls[I]; | |||
1354 | Ptr = serializeLoc(Ctx, Ptr, Desc->From, BufSize); | |||
1355 | Ptr = serializeLoc(Ctx, Ptr, Desc->To, BufSize - (Ptr - LineBuf)); | |||
1356 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); | |||
1357 | Ptr = intToStr(Ptr, Freq, 10); | |||
1358 | *Ptr++ = '\n'; | |||
1359 | __write(FD, LineBuf, Ptr - LineBuf); | |||
1360 | } | |||
1361 | ||||
1362 | G->~Graph(); | |||
1363 | Alloc.deallocate(G); | |||
1364 | return next; | |||
1365 | } | |||
1366 | ||||
1367 | #if !defined(__APPLE__) | |||
1368 | const IndCallTargetDescription * | |||
1369 | ProfileWriterContext::lookupIndCallTarget(uint64_t Target) const { | |||
1370 | uint32_t B = 0; | |||
1371 | uint32_t E = __bolt_instr_num_ind_targets; | |||
1372 | if (E == 0) | |||
1373 | return nullptr; | |||
1374 | do { | |||
1375 | uint32_t I = (E - B) / 2 + B; | |||
1376 | if (IndCallTargets[I].Address == Target) | |||
1377 | return &IndCallTargets[I]; | |||
1378 | if (IndCallTargets[I].Address < Target) | |||
1379 | B = I + 1; | |||
1380 | else | |||
1381 | E = I; | |||
1382 | } while (B < E); | |||
1383 | return nullptr; | |||
1384 | } | |||
1385 | ||||
1386 | /// Write a single indirect call <src, target> pair to the fdata file | |||
1387 | void visitIndCallCounter(IndirectCallHashTable::MapEntry &Entry, | |||
1388 | int FD, int CallsiteID, | |||
1389 | ProfileWriterContext *Ctx) { | |||
1390 | if (Entry.Val == 0) | |||
1391 | return; | |||
1392 | DEBUG(reportNumber("Target func 0x", Entry.Key, 16)){}; | |||
1393 | DEBUG(reportNumber("Target freq: ", Entry.Val, 10)){}; | |||
1394 | const IndCallDescription *CallsiteDesc = | |||
1395 | &Ctx->IndCallDescriptions[CallsiteID]; | |||
1396 | const IndCallTargetDescription *TargetDesc = | |||
1397 | Ctx->lookupIndCallTarget(Entry.Key - TextBaseAddress); | |||
1398 | if (!TargetDesc) { | |||
1399 | DEBUG(report("Failed to lookup indirect call target\n")){}; | |||
1400 | char LineBuf[BufSize]; | |||
1401 | char *Ptr = LineBuf; | |||
1402 | Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); | |||
1403 | Ptr = strCopy(Ptr, "0 [unknown] 0 0 ", BufSize - (Ptr - LineBuf) - 40); | |||
1404 | Ptr = intToStr(Ptr, Entry.Val, 10); | |||
1405 | *Ptr++ = '\n'; | |||
1406 | __write(FD, LineBuf, Ptr - LineBuf); | |||
1407 | return; | |||
1408 | } | |||
1409 | Ctx->CallFlowTable->get(TargetDesc->Address).Calls += Entry.Val; | |||
1410 | char LineBuf[BufSize]; | |||
1411 | char *Ptr = LineBuf; | |||
1412 | Ptr = serializeLoc(*Ctx, Ptr, *CallsiteDesc, BufSize); | |||
1413 | Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); | |||
1414 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); | |||
1415 | Ptr = intToStr(Ptr, Entry.Val, 10); | |||
1416 | *Ptr++ = '\n'; | |||
1417 | __write(FD, LineBuf, Ptr - LineBuf); | |||
1418 | } | |||
1419 | ||||
1420 | /// Write to \p FD all of the indirect call profiles. | |||
1421 | void writeIndirectCallProfile(int FD, ProfileWriterContext &Ctx) { | |||
1422 | for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) { | |||
1423 | DEBUG(reportNumber("IndCallsite #", I, 10)){}; | |||
1424 | GlobalIndCallCounters[I].forEachElement(visitIndCallCounter, FD, I, &Ctx); | |||
1425 | } | |||
1426 | } | |||
1427 | ||||
1428 | /// Check a single call flow for a callee versus all known callers. If there are | |||
1429 | /// less callers than what the callee expects, write the difference with source | |||
1430 | /// [unknown] in the profile. | |||
1431 | void visitCallFlowEntry(CallFlowHashTable::MapEntry &Entry, int FD, | |||
1432 | ProfileWriterContext *Ctx) { | |||
1433 | DEBUG(reportNumber("Call flow entry address: 0x", Entry.Key, 16)){}; | |||
1434 | DEBUG(reportNumber("Calls: ", Entry.Calls, 10)){}; | |||
1435 | DEBUG(reportNumber("Reported entry frequency: ", Entry.Val, 10)){}; | |||
1436 | DEBUG({{} | |||
1437 | if (Entry.Calls > Entry.Val){} | |||
1438 | report(" More calls than expected!\n");{} | |||
1439 | }){}; | |||
1440 | if (Entry.Val <= Entry.Calls) | |||
1441 | return; | |||
1442 | DEBUG(reportNumber({} | |||
1443 | " Balancing calls with traffic: ", Entry.Val - Entry.Calls, 10)){}; | |||
1444 | const IndCallTargetDescription *TargetDesc = | |||
1445 | Ctx->lookupIndCallTarget(Entry.Key); | |||
1446 | if (!TargetDesc) { | |||
1447 | // There is probably something wrong with this callee and this should be | |||
1448 | // investigated, but I don't want to assert and lose all data collected. | |||
1449 | DEBUG(report("WARNING: failed to look up call target!\n")){}; | |||
1450 | return; | |||
1451 | } | |||
1452 | char LineBuf[BufSize]; | |||
1453 | char *Ptr = LineBuf; | |||
1454 | Ptr = strCopy(Ptr, "0 [unknown] 0 ", BufSize); | |||
1455 | Ptr = serializeLoc(*Ctx, Ptr, TargetDesc->Loc, BufSize - (Ptr - LineBuf)); | |||
1456 | Ptr = strCopy(Ptr, "0 ", BufSize - (Ptr - LineBuf) - 25); | |||
1457 | Ptr = intToStr(Ptr, Entry.Val - Entry.Calls, 10); | |||
1458 | *Ptr++ = '\n'; | |||
1459 | __write(FD, LineBuf, Ptr - LineBuf); | |||
1460 | } | |||
1461 | ||||
1462 | /// Open fdata file for writing and return a valid file descriptor, aborting | |||
1463 | /// program upon failure. | |||
1464 | int openProfile() { | |||
1465 | // Build the profile name string by appending our PID | |||
1466 | char Buf[BufSize]; | |||
1467 | char *Ptr = Buf; | |||
1468 | uint64_t PID = __getpid(); | |||
1469 | Ptr = strCopy(Buf, __bolt_instr_filename, BufSize); | |||
1470 | if (__bolt_instr_use_pid) { | |||
1471 | Ptr = strCopy(Ptr, ".", BufSize - (Ptr - Buf + 1)); | |||
1472 | Ptr = intToStr(Ptr, PID, 10); | |||
1473 | Ptr = strCopy(Ptr, ".fdata", BufSize - (Ptr - Buf + 1)); | |||
1474 | } | |||
1475 | *Ptr++ = '\0'; | |||
1476 | uint64_t FD = __open(Buf, O_WRONLY1 | O_TRUNC512 | O_CREAT64, | |||
1477 | /*mode=*/0666); | |||
1478 | if (static_cast<int64_t>(FD) < 0) { | |||
1479 | report("Error while trying to open profile file for writing: "); | |||
1480 | report(Buf); | |||
1481 | reportNumber("\nFailed with error number: 0x", | |||
1482 | 0 - static_cast<int64_t>(FD), 16); | |||
1483 | __exit(1); | |||
1484 | } | |||
1485 | return FD; | |||
1486 | } | |||
1487 | ||||
1488 | #endif | |||
1489 | ||||
1490 | } // anonymous namespace | |||
1491 | ||||
1492 | #if !defined(__APPLE__) | |||
1493 | ||||
1494 | /// Reset all counters in case you want to start profiling a new phase of your | |||
1495 | /// program independently of prior phases. | |||
1496 | /// The address of this function is printed by BOLT and this can be called by | |||
1497 | /// any attached debugger during runtime. There is a useful oneliner for gdb: | |||
1498 | /// | |||
1499 | /// gdb -p $(pgrep -xo PROCESSNAME) -ex 'p ((void(*)())0xdeadbeef)()' \ | |||
1500 | /// -ex 'set confirm off' -ex quit | |||
1501 | /// | |||
1502 | /// Where 0xdeadbeef is this function address and PROCESSNAME your binary file | |||
1503 | /// name. | |||
1504 | extern "C" void __bolt_instr_clear_counters() { | |||
1505 | memset(reinterpret_cast<char *>(__bolt_instr_locations), 0, | |||
1506 | __bolt_num_counters * 8); | |||
1507 | for (int I = 0; I < __bolt_instr_num_ind_calls; ++I) | |||
1508 | GlobalIndCallCounters[I].resetCounters(); | |||
1509 | } | |||
1510 | ||||
1511 | /// This is the entry point for profile writing. | |||
1512 | /// There are three ways of getting here: | |||
1513 | /// | |||
1514 | /// * Program execution ended, finalization methods are running and BOLT | |||
1515 | /// hooked into FINI from your binary dynamic section; | |||
1516 | /// * You used the sleep timer option and during initialization we forked | |||
1517 | /// a separate process that will call this function periodically; | |||
1518 | /// * BOLT prints this function address so you can attach a debugger and | |||
1519 | /// call this function directly to get your profile written to disk | |||
1520 | /// on demand. | |||
1521 | /// | |||
1522 | extern "C" void __attribute((force_align_arg_pointer)) | |||
1523 | __bolt_instr_data_dump(int FD) { | |||
1524 | // Already dumping | |||
1525 | if (!GlobalWriteProfileMutex->acquire()) | |||
1526 | return; | |||
1527 | ||||
1528 | int ret = __lseek(FD, 0, SEEK_SET0); | |||
1529 | assert(ret == 0, "Failed to lseek!"); | |||
1530 | ret = __ftruncate(FD, 0); | |||
1531 | assert(ret == 0, "Failed to ftruncate!"); | |||
1532 | BumpPtrAllocator HashAlloc; | |||
1533 | HashAlloc.setMaxSize(0x6400000); | |||
1534 | ProfileWriterContext Ctx = readDescriptions(); | |||
1535 | Ctx.CallFlowTable = new (HashAlloc, 0) CallFlowHashTable(HashAlloc); | |||
1536 | ||||
1537 | DEBUG(printStats(Ctx)){}; | |||
1538 | ||||
1539 | BumpPtrAllocator Alloc; | |||
1540 | Alloc.setMaxSize(0x6400000); | |||
1541 | const uint8_t *FuncDesc = Ctx.FuncDescriptions; | |||
1542 | for (int I = 0, E = __bolt_instr_num_funcs; I < E; ++I) { | |||
1543 | FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); | |||
1544 | Alloc.clear(); | |||
1545 | DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)){}; | |||
1546 | } | |||
1547 | assert(FuncDesc == (void *)Ctx.Strings, | |||
1548 | "FuncDesc ptr must be equal to stringtable"); | |||
1549 | ||||
1550 | writeIndirectCallProfile(FD, Ctx); | |||
1551 | Ctx.CallFlowTable->forEachElement(visitCallFlowEntry, FD, &Ctx); | |||
1552 | ||||
1553 | __fsync(FD); | |||
1554 | __munmap(Ctx.MMapPtr, Ctx.MMapSize); | |||
1555 | __close(Ctx.FileDesc); | |||
1556 | HashAlloc.destroy(); | |||
1557 | GlobalWriteProfileMutex->release(); | |||
1558 | DEBUG(report("Finished writing profile.\n")){}; | |||
1559 | } | |||
1560 | ||||
1561 | /// Event loop for our child process spawned during setup to dump profile data | |||
1562 | /// at user-specified intervals | |||
1563 | void watchProcess() { | |||
1564 | timespec ts, rem; | |||
1565 | uint64_t Ellapsed = 0ull; | |||
1566 | int FD = openProfile(); | |||
1567 | uint64_t ppid; | |||
1568 | if (__bolt_instr_wait_forks) { | |||
1569 | // Store parent pgid | |||
1570 | ppid = -__getpgid(0); | |||
1571 | // And leave parent process group | |||
1572 | __setpgid(0, 0); | |||
1573 | } else { | |||
1574 | // Store parent pid | |||
1575 | ppid = __getppid(); | |||
1576 | if (ppid == 1) { | |||
1577 | // Parent already dead | |||
1578 | __bolt_instr_data_dump(FD); | |||
1579 | goto out; | |||
1580 | } | |||
1581 | } | |||
1582 | ||||
1583 | ts.tv_sec = 1; | |||
1584 | ts.tv_nsec = 0; | |||
1585 | while (1) { | |||
1586 | __nanosleep(&ts, &rem); | |||
1587 | // This means our parent process or all its forks are dead, | |||
1588 | // so no need for us to keep dumping. | |||
1589 | if (__kill(ppid, 0) < 0) { | |||
1590 | if (__bolt_instr_no_counters_clear) | |||
1591 | __bolt_instr_data_dump(FD); | |||
1592 | break; | |||
1593 | } | |||
1594 | ||||
1595 | if (++Ellapsed < __bolt_instr_sleep_time) | |||
1596 | continue; | |||
1597 | ||||
1598 | Ellapsed = 0; | |||
1599 | __bolt_instr_data_dump(FD); | |||
1600 | if (__bolt_instr_no_counters_clear == false) | |||
1601 | __bolt_instr_clear_counters(); | |||
1602 | } | |||
1603 | ||||
1604 | out:; | |||
1605 | DEBUG(report("My parent process is dead, bye!\n")){}; | |||
1606 | __close(FD); | |||
1607 | __exit(0); | |||
1608 | } | |||
1609 | ||||
1610 | extern "C" void __bolt_instr_indirect_call(); | |||
1611 | extern "C" void __bolt_instr_indirect_tailcall(); | |||
1612 | ||||
1613 | /// Initialization code | |||
1614 | extern "C" void __attribute((force_align_arg_pointer)) __bolt_instr_setup() { | |||
1615 | __bolt_ind_call_counter_func_pointer = __bolt_instr_indirect_call; | |||
1616 | __bolt_ind_tailcall_counter_func_pointer = __bolt_instr_indirect_tailcall; | |||
1617 | TextBaseAddress = getTextBaseAddress(); | |||
1618 | ||||
1619 | const uint64_t CountersStart = | |||
1620 | reinterpret_cast<uint64_t>(&__bolt_instr_locations[0]); | |||
1621 | const uint64_t CountersEnd = alignTo( | |||
1622 | reinterpret_cast<uint64_t>(&__bolt_instr_locations[__bolt_num_counters]), | |||
1623 | 0x1000); | |||
1624 | DEBUG(reportNumber("replace mmap start: ", CountersStart, 16)){}; | |||
1625 | DEBUG(reportNumber("replace mmap stop: ", CountersEnd, 16)){}; | |||
1626 | assert(CountersEnd > CountersStart, "no counters"); | |||
1627 | ||||
1628 | const bool Shared = !__bolt_instr_use_pid; | |||
1629 | const uint64_t MapPrivateOrShared = Shared ? MAP_SHARED0x01 : MAP_PRIVATE0x02; | |||
1630 | ||||
1631 | void *Ret = | |||
1632 | __mmap(CountersStart, CountersEnd - CountersStart, PROT_READ0x1 | PROT_WRITE0x2, | |||
1633 | MAP_ANONYMOUS0x20 | MapPrivateOrShared | MAP_FIXED0x10, -1, 0); | |||
1634 | assert(Ret != MAP_FAILED((void *)-1), "__bolt_instr_setup: Failed to mmap counters!"); | |||
1635 | ||||
1636 | GlobalMetadataStorage = __mmap(0, 4096, PROT_READ0x1 | PROT_WRITE0x2, | |||
1637 | MapPrivateOrShared | MAP_ANONYMOUS0x20, -1, 0); | |||
1638 | assert(GlobalMetadataStorage != MAP_FAILED((void *)-1), | |||
1639 | "__bolt_instr_setup: failed to mmap page for metadata!"); | |||
1640 | ||||
1641 | GlobalAlloc = new (GlobalMetadataStorage) BumpPtrAllocator; | |||
1642 | // Conservatively reserve 100MiB | |||
1643 | GlobalAlloc->setMaxSize(0x6400000); | |||
1644 | GlobalAlloc->setShared(Shared); | |||
1645 | GlobalWriteProfileMutex = new (*GlobalAlloc, 0) Mutex(); | |||
1646 | if (__bolt_instr_num_ind_calls > 0) | |||
1647 | GlobalIndCallCounters = | |||
1648 | new (*GlobalAlloc, 0) IndirectCallHashTable[__bolt_instr_num_ind_calls]; | |||
1649 | ||||
1650 | if (__bolt_instr_sleep_time != 0) { | |||
1651 | // Separate instrumented process to the own process group | |||
1652 | if (__bolt_instr_wait_forks) | |||
1653 | __setpgid(0, 0); | |||
1654 | ||||
1655 | if (long PID = __fork()) | |||
1656 | return; | |||
1657 | watchProcess(); | |||
1658 | } | |||
1659 | } | |||
1660 | ||||
1661 | extern "C" __attribute((force_align_arg_pointer)) void | |||
1662 | instrumentIndirectCall(uint64_t Target, uint64_t IndCallID) { | |||
1663 | GlobalIndCallCounters[IndCallID].incrementVal(Target, *GlobalAlloc); | |||
1664 | } | |||
1665 | ||||
1666 | /// We receive as in-stack arguments the identifier of the indirect call site | |||
1667 | /// as well as the target address for the call | |||
1668 | extern "C" __attribute((naked)) void __bolt_instr_indirect_call() | |||
1669 | { | |||
1670 | #if defined(__aarch64__) | |||
1671 | // clang-format off | |||
1672 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
1673 | "ldp x0, x1, [sp, #288]\n" | |||
1674 | "bl instrumentIndirectCall\n" | |||
1675 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
1676 | "ret\n" | |||
1677 | :::); | |||
1678 | // clang-format on | |||
1679 | #else | |||
1680 | // clang-format off | |||
1681 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
1682 | "mov 0xa0(%%rsp), %%rdi\n" | |||
1683 | "mov 0x98(%%rsp), %%rsi\n" | |||
1684 | "call instrumentIndirectCall\n" | |||
1685 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
1686 | "ret\n" | |||
1687 | :::); | |||
1688 | // clang-format on | |||
1689 | #endif | |||
1690 | } | |||
1691 | ||||
1692 | extern "C" __attribute((naked)) void __bolt_instr_indirect_tailcall() | |||
1693 | { | |||
1694 | #if defined(__aarch64__) | |||
1695 | // clang-format off | |||
1696 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
1697 | "ldp x0, x1, [sp, #288]\n" | |||
1698 | "bl instrumentIndirectCall\n" | |||
1699 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
1700 | "ret\n" | |||
1701 | :::); | |||
1702 | // clang-format on | |||
1703 | #else | |||
1704 | // clang-format off | |||
1705 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
1706 | "mov 0x98(%%rsp), %%rdi\n" | |||
1707 | "mov 0x90(%%rsp), %%rsi\n" | |||
1708 | "call instrumentIndirectCall\n" | |||
1709 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
1710 | "ret\n" | |||
1711 | :::); | |||
1712 | // clang-format on | |||
1713 | #endif | |||
1714 | } | |||
1715 | ||||
1716 | /// This is hooking ELF's entry, it needs to save all machine state. | |||
1717 | extern "C" __attribute((naked)) void __bolt_instr_start() | |||
1718 | { | |||
1719 | #if defined(__aarch64__) | |||
1720 | // clang-format off | |||
1721 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
1722 | "bl __bolt_instr_setup\n" | |||
1723 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
1724 | "adrp x16, __bolt_start_trampoline\n" | |||
1725 | "add x16, x16, #:lo12:__bolt_start_trampoline\n" | |||
1726 | "br x16\n" | |||
1727 | :::); | |||
1728 | // clang-format on | |||
1729 | #else | |||
1730 | // clang-format off | |||
1731 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
1732 | "call __bolt_instr_setup\n" | |||
1733 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
1734 | "jmp __bolt_start_trampoline\n" | |||
1735 | :::); | |||
1736 | // clang-format on | |||
1737 | #endif | |||
1738 | } | |||
1739 | ||||
1740 | /// This is hooking into ELF's DT_FINI | |||
1741 | extern "C" void __bolt_instr_fini() { | |||
1742 | #if defined(__aarch64__) | |||
1743 | // clang-format off | |||
1744 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" | |||
1745 | "adrp x16, __bolt_fini_trampoline\n" | |||
1746 | "add x16, x16, #:lo12:__bolt_fini_trampoline\n" | |||
1747 | "blr x16\n" | |||
1748 | RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" | |||
1749 | :::); | |||
1750 | // clang-format on | |||
1751 | #else | |||
1752 | __asm__ __volatile__("call __bolt_fini_trampoline\n" :::); | |||
1753 | #endif | |||
1754 | if (__bolt_instr_sleep_time == 0) { | |||
1755 | int FD = openProfile(); | |||
1756 | __bolt_instr_data_dump(FD); | |||
1757 | __close(FD); | |||
1758 | } | |||
1759 | DEBUG(report("Finished.\n")){}; | |||
1760 | } | |||
1761 | ||||
1762 | #endif | |||
1763 | ||||
1764 | #if defined(__APPLE__) | |||
1765 | ||||
1766 | extern "C" void __bolt_instr_data_dump() { | |||
1767 | ProfileWriterContext Ctx = readDescriptions(); | |||
1768 | ||||
1769 | int FD = 2; | |||
1770 | BumpPtrAllocator Alloc; | |||
1771 | const uint8_t *FuncDesc = Ctx.FuncDescriptions; | |||
1772 | uint32_t bolt_instr_num_funcs = _bolt_instr_num_funcs_getter(); | |||
1773 | ||||
1774 | for (int I = 0, E = bolt_instr_num_funcs; I < E; ++I) { | |||
1775 | FuncDesc = writeFunctionProfile(FD, Ctx, FuncDesc, Alloc); | |||
1776 | Alloc.clear(); | |||
1777 | DEBUG(reportNumber("FuncDesc now: ", (uint64_t)FuncDesc, 16)){}; | |||
1778 | } | |||
1779 | assert(FuncDesc == (void *)Ctx.Strings, | |||
1780 | "FuncDesc ptr must be equal to stringtable"); | |||
1781 | } | |||
1782 | ||||
1783 | // On OSX/iOS the final symbol name of an extern "C" function/variable contains | |||
1784 | // one extra leading underscore: _bolt_instr_setup -> __bolt_instr_setup. | |||
1785 | extern "C" | |||
1786 | __attribute__((section("__TEXT,__setup"))) | |||
1787 | __attribute__((force_align_arg_pointer)) | |||
1788 | void _bolt_instr_setup() { | |||
1789 | __asm__ __volatile__(SAVE_ALL"push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rdi\n" "push %%rsi\n" "push %%rbp\n" "push %%r8\n" "push %%r9\n" "push %%r10\n" "push %%r11\n" "push %%r12\n" "push %%r13\n" "push %%r14\n" "push %%r15\n" "sub $8, %%rsp\n" :::); | |||
1790 | ||||
1791 | report("Hello!\n"); | |||
1792 | ||||
1793 | __asm__ __volatile__(RESTORE_ALL"add $8, %%rsp\n" "pop %%r15\n" "pop %%r14\n" "pop %%r13\n" "pop %%r12\n" "pop %%r11\n" "pop %%r10\n" "pop %%r9\n" "pop %%r8\n" "pop %%rbp\n" "pop %%rsi\n" "pop %%rdi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" :::); | |||
1794 | } | |||
1795 | ||||
1796 | extern "C" | |||
1797 | __attribute__((section("__TEXT,__fini"))) | |||
1798 | __attribute__((force_align_arg_pointer)) | |||
1799 | void _bolt_instr_fini() { | |||
1800 | report("Bye!\n"); | |||
1801 | __bolt_instr_data_dump(); | |||
1802 | } | |||
1803 | ||||
1804 | #endif |