File: | build/source/polly/lib/External/isl/isl_affine_hull.c |
Warning: | line 513, column 6 Access to field 'sample' results in a dereference of a null pointer (loaded from variable 'bset') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * Copyright 2008-2009 Katholieke Universiteit Leuven | |||
3 | * Copyright 2010 INRIA Saclay | |||
4 | * Copyright 2012 Ecole Normale Superieure | |||
5 | * | |||
6 | * Use of this software is governed by the MIT license | |||
7 | * | |||
8 | * Written by Sven Verdoolaege, K.U.Leuven, Departement | |||
9 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium | |||
10 | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, | |||
11 | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France | |||
12 | * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France | |||
13 | */ | |||
14 | ||||
15 | #include <isl_ctx_private.h> | |||
16 | #include <isl_map_private.h> | |||
17 | #include <isl_seq.h> | |||
18 | #include <isl/set.h> | |||
19 | #include <isl/lp.h> | |||
20 | #include <isl/map.h> | |||
21 | #include "isl_equalities.h" | |||
22 | #include "isl_sample.h" | |||
23 | #include "isl_tab.h" | |||
24 | #include <isl_mat_private.h> | |||
25 | #include <isl_vec_private.h> | |||
26 | ||||
27 | #include <bset_to_bmap.c> | |||
28 | #include <bset_from_bmap.c> | |||
29 | #include <set_to_map.c> | |||
30 | #include <set_from_map.c> | |||
31 | ||||
32 | __isl_give isl_basic_map *isl_basic_map_implicit_equalities( | |||
33 | __isl_take isl_basic_map *bmap) | |||
34 | { | |||
35 | struct isl_tab *tab; | |||
36 | ||||
37 | if (!bmap) | |||
38 | return bmap; | |||
39 | ||||
40 | bmap = isl_basic_map_gauss(bmap, NULL((void*)0)); | |||
41 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)(!!(((bmap)->flags) & ((1 << 1))))) | |||
42 | return bmap; | |||
43 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT)(!!(((bmap)->flags) & ((1 << 2))))) | |||
44 | return bmap; | |||
45 | if (bmap->n_ineq <= 1) | |||
46 | return bmap; | |||
47 | ||||
48 | tab = isl_tab_from_basic_map(bmap, 0); | |||
49 | if (isl_tab_detect_implicit_equalities(tab) < 0) | |||
50 | goto error; | |||
51 | bmap = isl_basic_map_update_from_tab(bmap, tab); | |||
52 | isl_tab_free(tab); | |||
53 | bmap = isl_basic_map_gauss(bmap, NULL((void*)0)); | |||
54 | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT)(((bmap)->flags) |= ((1 << 2))); | |||
55 | return bmap; | |||
56 | error: | |||
57 | isl_tab_free(tab); | |||
58 | isl_basic_map_free(bmap); | |||
59 | return NULL((void*)0); | |||
60 | } | |||
61 | ||||
62 | __isl_give isl_basic_setisl_basic_map *isl_basic_set_implicit_equalities( | |||
63 | __isl_take isl_basic_setisl_basic_map *bset) | |||
64 | { | |||
65 | return bset_from_bmap( | |||
66 | isl_basic_map_implicit_equalities(bset_to_bmap(bset))); | |||
67 | } | |||
68 | ||||
69 | /* Make eq[row][col] of both bmaps equal so we can add the row | |||
70 | * add the column to the common matrix. | |||
71 | * Note that because of the echelon form, the columns of row row | |||
72 | * after column col are zero. | |||
73 | */ | |||
74 | static void set_common_multiple( | |||
75 | struct isl_basic_setisl_basic_map *bset1, struct isl_basic_setisl_basic_map *bset2, | |||
76 | unsigned row, unsigned col) | |||
77 | { | |||
78 | isl_int m, c; | |||
79 | ||||
80 | if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col])(isl_sioimath_cmp(*(bset1->eq[row][col]), *(bset2->eq[row ][col])) == 0)) | |||
81 | return; | |||
82 | ||||
83 | isl_int_init(c)isl_sioimath_init((c)); | |||
84 | isl_int_init(m)isl_sioimath_init((m)); | |||
85 | isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col])isl_sioimath_lcm((m), *(bset1->eq[row][col]), *(bset2-> eq[row][col])); | |||
86 | isl_int_divexact(c, m, bset1->eq[row][col])isl_sioimath_tdiv_q((c), *(m), *(bset1->eq[row][col])); | |||
87 | isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1); | |||
88 | isl_int_divexact(c, m, bset2->eq[row][col])isl_sioimath_tdiv_q((c), *(m), *(bset2->eq[row][col])); | |||
89 | isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1); | |||
90 | isl_int_clear(c)isl_sioimath_clear((c)); | |||
91 | isl_int_clear(m)isl_sioimath_clear((m)); | |||
92 | } | |||
93 | ||||
94 | /* Delete a given equality, moving all the following equalities one up. | |||
95 | */ | |||
96 | static void delete_row(__isl_keep isl_basic_setisl_basic_map *bset, unsigned row) | |||
97 | { | |||
98 | isl_int *t; | |||
99 | int r; | |||
100 | ||||
101 | t = bset->eq[row]; | |||
102 | bset->n_eq--; | |||
103 | for (r = row; r < bset->n_eq; ++r) | |||
104 | bset->eq[r] = bset->eq[r+1]; | |||
105 | bset->eq[bset->n_eq] = t; | |||
106 | } | |||
107 | ||||
108 | /* Make first row entries in column col of bset1 identical to | |||
109 | * those of bset2, using the fact that entry bset1->eq[row][col]=a | |||
110 | * is non-zero. Initially, these elements of bset1 are all zero. | |||
111 | * For each row i < row, we set | |||
112 | * A[i] = a * A[i] + B[i][col] * A[row] | |||
113 | * B[i] = a * B[i] | |||
114 | * so that | |||
115 | * A[i][col] = B[i][col] = a * old(B[i][col]) | |||
116 | */ | |||
117 | static isl_stat construct_column( | |||
118 | __isl_keep isl_basic_setisl_basic_map *bset1, __isl_keep isl_basic_setisl_basic_map *bset2, | |||
119 | unsigned row, unsigned col) | |||
120 | { | |||
121 | int r; | |||
122 | isl_int a; | |||
123 | isl_int b; | |||
124 | isl_size total; | |||
125 | ||||
126 | total = isl_basic_set_dim(bset1, isl_dim_set); | |||
127 | if (total < 0) | |||
128 | return isl_stat_error; | |||
129 | ||||
130 | isl_int_init(a)isl_sioimath_init((a)); | |||
131 | isl_int_init(b)isl_sioimath_init((b)); | |||
132 | for (r = 0; r < row; ++r) { | |||
133 | if (isl_int_is_zero(bset2->eq[r][col])(isl_sioimath_sgn(*(bset2->eq[r][col])) == 0)) | |||
134 | continue; | |||
135 | isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col])isl_sioimath_gcd((b), *(bset2->eq[r][col]), *(bset1->eq [row][col])); | |||
136 | isl_int_divexact(a, bset1->eq[row][col], b)isl_sioimath_tdiv_q((a), *(bset1->eq[row][col]), *(b)); | |||
137 | isl_int_divexact(b, bset2->eq[r][col], b)isl_sioimath_tdiv_q((b), *(bset2->eq[r][col]), *(b)); | |||
138 | isl_seq_combine(bset1->eq[r], a, bset1->eq[r], | |||
139 | b, bset1->eq[row], 1 + total); | |||
140 | isl_seq_scale(bset2->eq[r], bset2->eq[r], a, 1 + total); | |||
141 | } | |||
142 | isl_int_clear(a)isl_sioimath_clear((a)); | |||
143 | isl_int_clear(b)isl_sioimath_clear((b)); | |||
144 | delete_row(bset1, row); | |||
145 | ||||
146 | return isl_stat_ok; | |||
147 | } | |||
148 | ||||
149 | /* Make first row entries in column col of bset1 identical to | |||
150 | * those of bset2, using only these entries of the two matrices. | |||
151 | * Let t be the last row with different entries. | |||
152 | * For each row i < t, we set | |||
153 | * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t] | |||
154 | * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t] | |||
155 | * so that | |||
156 | * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col]) | |||
157 | */ | |||
158 | static isl_bool transform_column( | |||
159 | __isl_keep isl_basic_setisl_basic_map *bset1, __isl_keep isl_basic_setisl_basic_map *bset2, | |||
160 | unsigned row, unsigned col) | |||
161 | { | |||
162 | int i, t; | |||
163 | isl_int a, b, g; | |||
164 | isl_size total; | |||
165 | ||||
166 | for (t = row-1; t >= 0; --t) | |||
167 | if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col])(isl_sioimath_cmp(*(bset1->eq[t][col]), *(bset2->eq[t][ col])) != 0)) | |||
168 | break; | |||
169 | if (t < 0) | |||
170 | return isl_bool_false; | |||
171 | ||||
172 | total = isl_basic_set_dim(bset1, isl_dim_set); | |||
173 | if (total < 0) | |||
174 | return isl_bool_error; | |||
175 | isl_int_init(a)isl_sioimath_init((a)); | |||
176 | isl_int_init(b)isl_sioimath_init((b)); | |||
177 | isl_int_init(g)isl_sioimath_init((g)); | |||
178 | isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col])isl_sioimath_sub((b), *(bset1->eq[t][col]), *(bset2->eq [t][col])); | |||
179 | for (i = 0; i < t; ++i) { | |||
180 | isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col])isl_sioimath_sub((a), *(bset2->eq[i][col]), *(bset1->eq [i][col])); | |||
181 | isl_int_gcd(g, a, b)isl_sioimath_gcd((g), *(a), *(b)); | |||
182 | isl_int_divexact(a, a, g)isl_sioimath_tdiv_q((a), *(a), *(g)); | |||
183 | isl_int_divexact(g, b, g)isl_sioimath_tdiv_q((g), *(b), *(g)); | |||
184 | isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t], | |||
185 | 1 + total); | |||
186 | isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t], | |||
187 | 1 + total); | |||
188 | } | |||
189 | isl_int_clear(a)isl_sioimath_clear((a)); | |||
190 | isl_int_clear(b)isl_sioimath_clear((b)); | |||
191 | isl_int_clear(g)isl_sioimath_clear((g)); | |||
192 | delete_row(bset1, t); | |||
193 | delete_row(bset2, t); | |||
194 | return isl_bool_true; | |||
195 | } | |||
196 | ||||
197 | /* The implementation is based on Section 5.2 of Michael Karr, | |||
198 | * "Affine Relationships Among Variables of a Program", | |||
199 | * except that the echelon form we use starts from the last column | |||
200 | * and that we are dealing with integer coefficients. | |||
201 | */ | |||
202 | static __isl_give isl_basic_setisl_basic_map *affine_hull( | |||
203 | __isl_take isl_basic_setisl_basic_map *bset1, __isl_take isl_basic_setisl_basic_map *bset2) | |||
204 | { | |||
205 | isl_size dim; | |||
206 | unsigned total; | |||
207 | int col; | |||
208 | int row; | |||
209 | ||||
210 | dim = isl_basic_set_dim(bset1, isl_dim_set); | |||
211 | if (dim < 0 || !bset2) | |||
212 | goto error; | |||
213 | ||||
214 | total = 1 + dim; | |||
215 | ||||
216 | row = 0; | |||
217 | for (col = total-1; col >= 0; --col) { | |||
218 | int is_zero1 = row >= bset1->n_eq || | |||
219 | isl_int_is_zero(bset1->eq[row][col])(isl_sioimath_sgn(*(bset1->eq[row][col])) == 0); | |||
220 | int is_zero2 = row >= bset2->n_eq || | |||
221 | isl_int_is_zero(bset2->eq[row][col])(isl_sioimath_sgn(*(bset2->eq[row][col])) == 0); | |||
222 | if (!is_zero1 && !is_zero2) { | |||
223 | set_common_multiple(bset1, bset2, row, col); | |||
224 | ++row; | |||
225 | } else if (!is_zero1 && is_zero2) { | |||
226 | if (construct_column(bset1, bset2, row, col) < 0) | |||
227 | goto error; | |||
228 | } else if (is_zero1 && !is_zero2) { | |||
229 | if (construct_column(bset2, bset1, row, col) < 0) | |||
230 | goto error; | |||
231 | } else { | |||
232 | isl_bool transform; | |||
233 | ||||
234 | transform = transform_column(bset1, bset2, row, col); | |||
235 | if (transform < 0) | |||
236 | goto error; | |||
237 | if (transform) | |||
238 | --row; | |||
239 | } | |||
240 | } | |||
241 | isl_assert(bset1->ctx, row == bset1->n_eq, goto error)do { if (row == bset1->n_eq) break; do { isl_handle_error( bset1->ctx, isl_error_unknown, "Assertion \"" "row == bset1->n_eq" "\" failed", "polly/lib/External/isl/isl_affine_hull.c", 241 ); goto error; } while (0); } while (0); | |||
242 | isl_basic_set_free(bset2); | |||
243 | bset1 = isl_basic_set_normalize_constraints(bset1); | |||
244 | return bset1; | |||
245 | error: | |||
246 | isl_basic_set_free(bset1); | |||
247 | isl_basic_set_free(bset2); | |||
248 | return NULL((void*)0); | |||
249 | } | |||
250 | ||||
251 | /* Find an integer point in the set represented by "tab" | |||
252 | * that lies outside of the equality "eq" e(x) = 0. | |||
253 | * If "up" is true, look for a point satisfying e(x) - 1 >= 0. | |||
254 | * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1). | |||
255 | * The point, if found, is returned. | |||
256 | * If no point can be found, a zero-length vector is returned. | |||
257 | * | |||
258 | * Before solving an ILP problem, we first check if simply | |||
259 | * adding the normal of the constraint to one of the known | |||
260 | * integer points in the basic set represented by "tab" | |||
261 | * yields another point inside the basic set. | |||
262 | * | |||
263 | * The caller of this function ensures that the tableau is bounded or | |||
264 | * that tab->basis and tab->n_unbounded have been set appropriately. | |||
265 | */ | |||
266 | static __isl_give isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, | |||
267 | int up) | |||
268 | { | |||
269 | struct isl_ctx *ctx; | |||
270 | struct isl_vec *sample = NULL((void*)0); | |||
271 | struct isl_tab_undo *snap; | |||
272 | unsigned dim; | |||
273 | ||||
274 | if (!tab) | |||
275 | return NULL((void*)0); | |||
276 | ctx = tab->mat->ctx; | |||
277 | ||||
278 | dim = tab->n_var; | |||
279 | sample = isl_vec_alloc(ctx, 1 + dim); | |||
280 | if (!sample) | |||
281 | return NULL((void*)0); | |||
282 | isl_int_set_si(sample->el[0], 1)isl_sioimath_set_si((sample->el[0]), 1); | |||
283 | isl_seq_combine(sample->el + 1, | |||
284 | ctx->one, tab->bmap->sample->el + 1, | |||
285 | up ? ctx->one : ctx->negone, eq + 1, dim); | |||
286 | if (isl_basic_map_contains(tab->bmap, sample)) | |||
287 | return sample; | |||
288 | isl_vec_free(sample); | |||
289 | sample = NULL((void*)0); | |||
290 | ||||
291 | snap = isl_tab_snap(tab); | |||
292 | ||||
293 | if (!up) | |||
294 | isl_seq_neg(eq, eq, 1 + dim); | |||
295 | isl_int_sub_ui(eq[0], eq[0], 1)isl_sioimath_sub_ui((eq[0]), *(eq[0]), 1); | |||
296 | ||||
297 | if (isl_tab_extend_cons(tab, 1) < 0) | |||
298 | goto error; | |||
299 | if (isl_tab_add_ineq(tab, eq) < 0) | |||
300 | goto error; | |||
301 | ||||
302 | sample = isl_tab_sample(tab); | |||
303 | ||||
304 | isl_int_add_ui(eq[0], eq[0], 1)isl_sioimath_add_ui((eq[0]), *(eq[0]), 1); | |||
305 | if (!up) | |||
306 | isl_seq_neg(eq, eq, 1 + dim); | |||
307 | ||||
308 | if (sample && isl_tab_rollback(tab, snap) < 0) | |||
309 | goto error; | |||
310 | ||||
311 | return sample; | |||
312 | error: | |||
313 | isl_vec_free(sample); | |||
314 | return NULL((void*)0); | |||
315 | } | |||
316 | ||||
317 | __isl_give isl_basic_setisl_basic_map *isl_basic_set_recession_cone( | |||
318 | __isl_take isl_basic_setisl_basic_map *bset) | |||
319 | { | |||
320 | int i; | |||
321 | isl_bool empty; | |||
322 | ||||
323 | empty = isl_basic_set_plain_is_empty(bset); | |||
324 | if (empty < 0) | |||
325 | return isl_basic_set_free(bset); | |||
326 | if (empty) | |||
327 | return bset; | |||
328 | ||||
329 | bset = isl_basic_set_cow(bset); | |||
330 | if (isl_basic_set_check_no_locals(bset) < 0) | |||
331 | return isl_basic_set_free(bset); | |||
332 | ||||
333 | for (i = 0; i < bset->n_eq; ++i) | |||
334 | isl_int_set_si(bset->eq[i][0], 0)isl_sioimath_set_si((bset->eq[i][0]), 0); | |||
335 | ||||
336 | for (i = 0; i < bset->n_ineq; ++i) | |||
337 | isl_int_set_si(bset->ineq[i][0], 0)isl_sioimath_set_si((bset->ineq[i][0]), 0); | |||
338 | ||||
339 | ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT)(((bset)->flags) &= ~((1 << 2))); | |||
340 | return isl_basic_set_implicit_equalities(bset); | |||
341 | } | |||
342 | ||||
343 | /* Move "sample" to a point that is one up (or down) from the original | |||
344 | * point in dimension "pos". | |||
345 | */ | |||
346 | static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up) | |||
347 | { | |||
348 | if (up) | |||
349 | isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1)isl_sioimath_add_ui((sample->el[1 + pos]), *(sample->el [1 + pos]), 1); | |||
350 | else | |||
351 | isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1)isl_sioimath_sub_ui((sample->el[1 + pos]), *(sample->el [1 + pos]), 1); | |||
352 | } | |||
353 | ||||
354 | /* Check if any points that are adjacent to "sample" also belong to "bset". | |||
355 | * If so, add them to "hull" and return the updated hull. | |||
356 | * | |||
357 | * Before checking whether and adjacent point belongs to "bset", we first | |||
358 | * check whether it already belongs to "hull" as this test is typically | |||
359 | * much cheaper. | |||
360 | */ | |||
361 | static __isl_give isl_basic_setisl_basic_map *add_adjacent_points( | |||
362 | __isl_take isl_basic_setisl_basic_map *hull, __isl_take isl_vec *sample, | |||
363 | __isl_keep isl_basic_setisl_basic_map *bset) | |||
364 | { | |||
365 | int i, up; | |||
366 | isl_size dim; | |||
367 | ||||
368 | dim = isl_basic_set_dim(hull, isl_dim_set); | |||
369 | if (!sample || dim < 0) | |||
370 | goto error; | |||
371 | ||||
372 | for (i = 0; i < dim; ++i) { | |||
373 | for (up = 0; up <= 1; ++up) { | |||
374 | int contains; | |||
375 | isl_basic_setisl_basic_map *point; | |||
376 | ||||
377 | adjacent_point(sample, i, up); | |||
378 | contains = isl_basic_set_contains(hull, sample); | |||
379 | if (contains < 0) | |||
380 | goto error; | |||
381 | if (contains) { | |||
382 | adjacent_point(sample, i, !up); | |||
383 | continue; | |||
384 | } | |||
385 | contains = isl_basic_set_contains(bset, sample); | |||
386 | if (contains < 0) | |||
387 | goto error; | |||
388 | if (contains) { | |||
389 | point = isl_basic_set_from_vec( | |||
390 | isl_vec_copy(sample)); | |||
391 | hull = affine_hull(hull, point); | |||
392 | } | |||
393 | adjacent_point(sample, i, !up); | |||
394 | if (contains) | |||
395 | break; | |||
396 | } | |||
397 | } | |||
398 | ||||
399 | isl_vec_free(sample); | |||
400 | ||||
401 | return hull; | |||
402 | error: | |||
403 | isl_vec_free(sample); | |||
404 | isl_basic_set_free(hull); | |||
405 | return NULL((void*)0); | |||
406 | } | |||
407 | ||||
408 | /* Extend an initial (under-)approximation of the affine hull of basic | |||
409 | * set represented by the tableau "tab" | |||
410 | * by looking for points that do not satisfy one of the equalities | |||
411 | * in the current approximation and adding them to that approximation | |||
412 | * until no such points can be found any more. | |||
413 | * | |||
414 | * The caller of this function ensures that "tab" is bounded or | |||
415 | * that tab->basis and tab->n_unbounded have been set appropriately. | |||
416 | * | |||
417 | * "bset" may be either NULL or the basic set represented by "tab". | |||
418 | * If "bset" is not NULL, we check for any point we find if any | |||
419 | * of its adjacent points also belong to "bset". | |||
420 | */ | |||
421 | static __isl_give isl_basic_setisl_basic_map *extend_affine_hull(struct isl_tab *tab, | |||
422 | __isl_take isl_basic_setisl_basic_map *hull, __isl_keep isl_basic_setisl_basic_map *bset) | |||
423 | { | |||
424 | int i, j; | |||
425 | unsigned dim; | |||
426 | ||||
427 | if (!tab || !hull) | |||
428 | goto error; | |||
429 | ||||
430 | dim = tab->n_var; | |||
431 | ||||
432 | if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0) | |||
433 | goto error; | |||
434 | ||||
435 | for (i = 0; i < dim; ++i) { | |||
436 | struct isl_vec *sample; | |||
437 | struct isl_basic_setisl_basic_map *point; | |||
438 | for (j = 0; j < hull->n_eq; ++j) { | |||
439 | sample = outside_point(tab, hull->eq[j], 1); | |||
440 | if (!sample) | |||
441 | goto error; | |||
442 | if (sample->size > 0) | |||
443 | break; | |||
444 | isl_vec_free(sample); | |||
445 | sample = outside_point(tab, hull->eq[j], 0); | |||
446 | if (!sample) | |||
447 | goto error; | |||
448 | if (sample->size > 0) | |||
449 | break; | |||
450 | isl_vec_free(sample); | |||
451 | ||||
452 | if (isl_tab_add_eq(tab, hull->eq[j]) < 0) | |||
453 | goto error; | |||
454 | } | |||
455 | if (j == hull->n_eq) | |||
456 | break; | |||
457 | if (tab->samples && | |||
458 | isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0) | |||
459 | hull = isl_basic_set_free(hull); | |||
460 | if (bset) | |||
461 | hull = add_adjacent_points(hull, isl_vec_copy(sample), | |||
462 | bset); | |||
463 | point = isl_basic_set_from_vec(sample); | |||
464 | hull = affine_hull(hull, point); | |||
465 | if (!hull) | |||
466 | return NULL((void*)0); | |||
467 | } | |||
468 | ||||
469 | return hull; | |||
470 | error: | |||
471 | isl_basic_set_free(hull); | |||
472 | return NULL((void*)0); | |||
473 | } | |||
474 | ||||
475 | /* Construct an initial underapproximation of the hull of "bset" | |||
476 | * from "sample" and any of its adjacent points that also belong to "bset". | |||
477 | */ | |||
478 | static __isl_give isl_basic_setisl_basic_map *initialize_hull(__isl_keep isl_basic_setisl_basic_map *bset, | |||
479 | __isl_take isl_vec *sample) | |||
480 | { | |||
481 | isl_basic_setisl_basic_map *hull; | |||
482 | ||||
483 | hull = isl_basic_set_from_vec(isl_vec_copy(sample)); | |||
484 | hull = add_adjacent_points(hull, sample, bset); | |||
485 | ||||
486 | return hull; | |||
487 | } | |||
488 | ||||
489 | /* Look for all equalities satisfied by the integer points in bset, | |||
490 | * which is assumed to be bounded. | |||
491 | * | |||
492 | * The equalities are obtained by successively looking for | |||
493 | * a point that is affinely independent of the points found so far. | |||
494 | * In particular, for each equality satisfied by the points so far, | |||
495 | * we check if there is any point on a hyperplane parallel to the | |||
496 | * corresponding hyperplane shifted by at least one (in either direction). | |||
497 | */ | |||
498 | static __isl_give isl_basic_setisl_basic_map *uset_affine_hull_bounded( | |||
499 | __isl_take isl_basic_setisl_basic_map *bset) | |||
500 | { | |||
501 | struct isl_vec *sample = NULL((void*)0); | |||
502 | struct isl_basic_setisl_basic_map *hull; | |||
503 | struct isl_tab *tab = NULL((void*)0); | |||
504 | isl_size dim; | |||
505 | ||||
506 | if (isl_basic_set_plain_is_empty(bset)) | |||
507 | return bset; | |||
508 | ||||
509 | dim = isl_basic_set_dim(bset, isl_dim_set); | |||
510 | if (dim < 0) | |||
511 | return isl_basic_set_free(bset); | |||
512 | ||||
513 | if (bset->sample && bset->sample->size == 1 + dim) { | |||
| ||||
514 | int contains = isl_basic_set_contains(bset, bset->sample); | |||
515 | if (contains < 0) | |||
516 | goto error; | |||
517 | if (contains) { | |||
518 | if (dim == 0) | |||
519 | return bset; | |||
520 | sample = isl_vec_copy(bset->sample); | |||
521 | } else { | |||
522 | isl_vec_free(bset->sample); | |||
523 | bset->sample = NULL((void*)0); | |||
524 | } | |||
525 | } | |||
526 | ||||
527 | tab = isl_tab_from_basic_set(bset, 1); | |||
528 | if (!tab) | |||
529 | goto error; | |||
530 | if (tab->empty) { | |||
531 | isl_tab_free(tab); | |||
532 | isl_vec_free(sample); | |||
533 | return isl_basic_set_set_to_empty(bset); | |||
534 | } | |||
535 | ||||
536 | if (!sample) { | |||
537 | struct isl_tab_undo *snap; | |||
538 | snap = isl_tab_snap(tab); | |||
539 | sample = isl_tab_sample(tab); | |||
540 | if (isl_tab_rollback(tab, snap) < 0) | |||
541 | goto error; | |||
542 | isl_vec_free(tab->bmap->sample); | |||
543 | tab->bmap->sample = isl_vec_copy(sample); | |||
544 | } | |||
545 | ||||
546 | if (!sample) | |||
547 | goto error; | |||
548 | if (sample->size == 0) { | |||
549 | isl_tab_free(tab); | |||
550 | isl_vec_free(sample); | |||
551 | return isl_basic_set_set_to_empty(bset); | |||
552 | } | |||
553 | ||||
554 | hull = initialize_hull(bset, sample); | |||
555 | ||||
556 | hull = extend_affine_hull(tab, hull, bset); | |||
557 | isl_basic_set_free(bset); | |||
558 | isl_tab_free(tab); | |||
559 | ||||
560 | return hull; | |||
561 | error: | |||
562 | isl_vec_free(sample); | |||
563 | isl_tab_free(tab); | |||
564 | isl_basic_set_free(bset); | |||
565 | return NULL((void*)0); | |||
566 | } | |||
567 | ||||
568 | /* Given an unbounded tableau and an integer point satisfying the tableau, | |||
569 | * construct an initial affine hull containing the recession cone | |||
570 | * shifted to the given point. | |||
571 | * | |||
572 | * The unbounded directions are taken from the last rows of the basis, | |||
573 | * which is assumed to have been initialized appropriately. | |||
574 | */ | |||
575 | static __isl_give isl_basic_setisl_basic_map *initial_hull(struct isl_tab *tab, | |||
576 | __isl_take isl_vec *vec) | |||
577 | { | |||
578 | int i; | |||
579 | int k; | |||
580 | struct isl_basic_setisl_basic_map *bset = NULL((void*)0); | |||
581 | struct isl_ctx *ctx; | |||
582 | isl_size dim; | |||
583 | ||||
584 | if (!vec || !tab) | |||
585 | return NULL((void*)0); | |||
586 | ctx = vec->ctx; | |||
587 | isl_assert(ctx, vec->size != 0, goto error)do { if (vec->size != 0) break; do { isl_handle_error(ctx, isl_error_unknown, "Assertion \"" "vec->size != 0" "\" failed" , "polly/lib/External/isl/isl_affine_hull.c", 587); goto error ; } while (0); } while (0); | |||
588 | ||||
589 | bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0); | |||
590 | dim = isl_basic_set_dim(bset, isl_dim_set); | |||
591 | if (dim < 0) | |||
592 | goto error; | |||
593 | dim -= tab->n_unbounded; | |||
594 | for (i = 0; i < dim; ++i) { | |||
595 | k = isl_basic_set_alloc_equality(bset); | |||
596 | if (k < 0) | |||
597 | goto error; | |||
598 | isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1, | |||
599 | vec->size - 1); | |||
600 | isl_seq_inner_product(bset->eq[k] + 1, vec->el +1, | |||
601 | vec->size - 1, &bset->eq[k][0]); | |||
602 | isl_int_neg(bset->eq[k][0], bset->eq[k][0])isl_sioimath_neg((bset->eq[k][0]), *(bset->eq[k][0])); | |||
603 | } | |||
604 | bset->sample = vec; | |||
605 | bset = isl_basic_set_gauss(bset, NULL((void*)0)); | |||
606 | ||||
607 | return bset; | |||
608 | error: | |||
609 | isl_basic_set_free(bset); | |||
610 | isl_vec_free(vec); | |||
611 | return NULL((void*)0); | |||
612 | } | |||
613 | ||||
614 | /* Given a tableau of a set and a tableau of the corresponding | |||
615 | * recession cone, detect and add all equalities to the tableau. | |||
616 | * If the tableau is bounded, then we can simply keep the | |||
617 | * tableau in its state after the return from extend_affine_hull. | |||
618 | * However, if the tableau is unbounded, then | |||
619 | * isl_tab_set_initial_basis_with_cone will add some additional | |||
620 | * constraints to the tableau that have to be removed again. | |||
621 | * In this case, we therefore rollback to the state before | |||
622 | * any constraints were added and then add the equalities back in. | |||
623 | */ | |||
624 | struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab, | |||
625 | struct isl_tab *tab_cone) | |||
626 | { | |||
627 | int j; | |||
628 | struct isl_vec *sample; | |||
629 | struct isl_basic_setisl_basic_map *hull = NULL((void*)0); | |||
630 | struct isl_tab_undo *snap; | |||
631 | ||||
632 | if (!tab || !tab_cone) | |||
633 | goto error; | |||
634 | ||||
635 | snap = isl_tab_snap(tab); | |||
636 | ||||
637 | isl_mat_free(tab->basis); | |||
638 | tab->basis = NULL((void*)0); | |||
639 | ||||
640 | isl_assert(tab->mat->ctx, tab->bmap, goto error)do { if (tab->bmap) break; do { isl_handle_error(tab->mat ->ctx, isl_error_unknown, "Assertion \"" "tab->bmap" "\" failed" , "polly/lib/External/isl/isl_affine_hull.c", 640); goto error ; } while (0); } while (0); | |||
641 | isl_assert(tab->mat->ctx, tab->samples, goto error)do { if (tab->samples) break; do { isl_handle_error(tab-> mat->ctx, isl_error_unknown, "Assertion \"" "tab->samples" "\" failed", "polly/lib/External/isl/isl_affine_hull.c", 641 ); goto error; } while (0); } while (0); | |||
642 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error)do { if (tab->samples->n_col == 1 + tab->n_var) break ; do { isl_handle_error(tab->mat->ctx, isl_error_unknown , "Assertion \"" "tab->samples->n_col == 1 + tab->n_var" "\" failed", "polly/lib/External/isl/isl_affine_hull.c", 642 ); goto error; } while (0); } while (0); | |||
643 | isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error)do { if (tab->n_sample > tab->n_outside) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown, "Assertion \"" "tab->n_sample > tab->n_outside" "\" failed", "polly/lib/External/isl/isl_affine_hull.c" , 643); goto error; } while (0); } while (0); | |||
644 | ||||
645 | if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0) | |||
646 | goto error; | |||
647 | ||||
648 | sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); | |||
649 | if (!sample) | |||
650 | goto error; | |||
651 | ||||
652 | isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size); | |||
653 | ||||
654 | isl_vec_free(tab->bmap->sample); | |||
655 | tab->bmap->sample = isl_vec_copy(sample); | |||
656 | ||||
657 | if (tab->n_unbounded == 0) | |||
658 | hull = isl_basic_set_from_vec(isl_vec_copy(sample)); | |||
659 | else | |||
660 | hull = initial_hull(tab, isl_vec_copy(sample)); | |||
661 | ||||
662 | for (j = tab->n_outside + 1; j < tab->n_sample; ++j) { | |||
663 | isl_seq_cpy(sample->el, tab->samples->row[j], sample->size); | |||
664 | hull = affine_hull(hull, | |||
665 | isl_basic_set_from_vec(isl_vec_copy(sample))); | |||
666 | } | |||
667 | ||||
668 | isl_vec_free(sample); | |||
669 | ||||
670 | hull = extend_affine_hull(tab, hull, NULL((void*)0)); | |||
671 | if (!hull) | |||
672 | goto error; | |||
673 | ||||
674 | if (tab->n_unbounded == 0) { | |||
675 | isl_basic_set_free(hull); | |||
676 | return tab; | |||
677 | } | |||
678 | ||||
679 | if (isl_tab_rollback(tab, snap) < 0) | |||
680 | goto error; | |||
681 | ||||
682 | if (hull->n_eq > tab->n_zero) { | |||
683 | for (j = 0; j < hull->n_eq; ++j) { | |||
684 | isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var); | |||
685 | if (isl_tab_add_eq(tab, hull->eq[j]) < 0) | |||
686 | goto error; | |||
687 | } | |||
688 | } | |||
689 | ||||
690 | isl_basic_set_free(hull); | |||
691 | ||||
692 | return tab; | |||
693 | error: | |||
694 | isl_basic_set_free(hull); | |||
695 | isl_tab_free(tab); | |||
696 | return NULL((void*)0); | |||
697 | } | |||
698 | ||||
699 | /* Compute the affine hull of "bset", where "cone" is the recession cone | |||
700 | * of "bset". | |||
701 | * | |||
702 | * We first compute a unimodular transformation that puts the unbounded | |||
703 | * directions in the last dimensions. In particular, we take a transformation | |||
704 | * that maps all equalities to equalities (in HNF) on the first dimensions. | |||
705 | * Let x be the original dimensions and y the transformed, with y_1 bounded | |||
706 | * and y_2 unbounded. | |||
707 | * | |||
708 | * [ y_1 ] [ y_1 ] [ Q_1 ] | |||
709 | * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x | |||
710 | * | |||
711 | * Let's call the input basic set S. We compute S' = preimage(S, U) | |||
712 | * and drop the final dimensions including any constraints involving them. | |||
713 | * This results in set S''. | |||
714 | * Then we compute the affine hull A'' of S''. | |||
715 | * Let F y_1 >= g be the constraint system of A''. In the transformed | |||
716 | * space the y_2 are unbounded, so we can add them back without any constraints, | |||
717 | * resulting in | |||
718 | * | |||
719 | * [ y_1 ] | |||
720 | * [ F 0 ] [ y_2 ] >= g | |||
721 | * or | |||
722 | * [ Q_1 ] | |||
723 | * [ F 0 ] [ Q_2 ] x >= g | |||
724 | * or | |||
725 | * F Q_1 x >= g | |||
726 | * | |||
727 | * The affine hull in the original space is then obtained as | |||
728 | * A = preimage(A'', Q_1). | |||
729 | */ | |||
730 | static __isl_give isl_basic_setisl_basic_map *affine_hull_with_cone( | |||
731 | __isl_take isl_basic_setisl_basic_map *bset, __isl_take isl_basic_setisl_basic_map *cone) | |||
732 | { | |||
733 | isl_size total; | |||
734 | unsigned cone_dim; | |||
735 | struct isl_basic_setisl_basic_map *hull; | |||
736 | struct isl_mat *M, *U, *Q; | |||
737 | ||||
738 | total = isl_basic_set_dim(cone, isl_dim_all); | |||
739 | if (!bset || total < 0) | |||
| ||||
740 | goto error; | |||
741 | ||||
742 | cone_dim = total - cone->n_eq; | |||
743 | ||||
744 | M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total); | |||
745 | M = isl_mat_left_hermite(M, 0, &U, &Q); | |||
746 | if (!M) | |||
747 | goto error; | |||
748 | isl_mat_free(M); | |||
749 | ||||
750 | U = isl_mat_lin_to_aff(U); | |||
751 | bset = isl_basic_set_preimage(bset, isl_mat_copy(U)); | |||
752 | ||||
753 | bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim, | |||
754 | cone_dim); | |||
755 | bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim); | |||
756 | ||||
757 | Q = isl_mat_lin_to_aff(Q); | |||
758 | Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim); | |||
759 | ||||
760 | if (bset && bset->sample && bset->sample->size == 1 + total) | |||
761 | bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample); | |||
762 | ||||
763 | hull = uset_affine_hull_bounded(bset); | |||
764 | ||||
765 | if (!hull) { | |||
766 | isl_mat_free(Q); | |||
767 | isl_mat_free(U); | |||
768 | } else { | |||
769 | struct isl_vec *sample = isl_vec_copy(hull->sample); | |||
770 | U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim); | |||
771 | if (sample && sample->size > 0) | |||
772 | sample = isl_mat_vec_product(U, sample); | |||
773 | else | |||
774 | isl_mat_free(U); | |||
775 | hull = isl_basic_set_preimage(hull, Q); | |||
776 | if (hull) { | |||
777 | isl_vec_free(hull->sample); | |||
778 | hull->sample = sample; | |||
779 | } else | |||
780 | isl_vec_free(sample); | |||
781 | } | |||
782 | ||||
783 | isl_basic_set_free(cone); | |||
784 | ||||
785 | return hull; | |||
786 | error: | |||
787 | isl_basic_set_free(bset); | |||
788 | isl_basic_set_free(cone); | |||
789 | return NULL((void*)0); | |||
790 | } | |||
791 | ||||
792 | /* Look for all equalities satisfied by the integer points in bset, | |||
793 | * which is assumed not to have any explicit equalities. | |||
794 | * | |||
795 | * The equalities are obtained by successively looking for | |||
796 | * a point that is affinely independent of the points found so far. | |||
797 | * In particular, for each equality satisfied by the points so far, | |||
798 | * we check if there is any point on a hyperplane parallel to the | |||
799 | * corresponding hyperplane shifted by at least one (in either direction). | |||
800 | * | |||
801 | * Before looking for any outside points, we first compute the recession | |||
802 | * cone. The directions of this recession cone will always be part | |||
803 | * of the affine hull, so there is no need for looking for any points | |||
804 | * in these directions. | |||
805 | * In particular, if the recession cone is full-dimensional, then | |||
806 | * the affine hull is simply the whole universe. | |||
807 | */ | |||
808 | static __isl_give isl_basic_setisl_basic_map *uset_affine_hull( | |||
809 | __isl_take isl_basic_setisl_basic_map *bset) | |||
810 | { | |||
811 | struct isl_basic_setisl_basic_map *cone; | |||
812 | isl_size total; | |||
813 | ||||
814 | if (isl_basic_set_plain_is_empty(bset)) | |||
815 | return bset; | |||
816 | ||||
817 | cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset)); | |||
818 | if (!cone) | |||
819 | goto error; | |||
820 | if (cone->n_eq == 0) { | |||
821 | isl_space *space; | |||
822 | space = isl_basic_set_get_space(bset); | |||
823 | isl_basic_set_free(cone); | |||
824 | isl_basic_set_free(bset); | |||
825 | return isl_basic_set_universe(space); | |||
826 | } | |||
827 | ||||
828 | total = isl_basic_set_dim(cone, isl_dim_all); | |||
829 | if (total < 0) | |||
830 | bset = isl_basic_set_free(bset); | |||
831 | if (cone->n_eq < total) | |||
832 | return affine_hull_with_cone(bset, cone); | |||
833 | ||||
834 | isl_basic_set_free(cone); | |||
835 | return uset_affine_hull_bounded(bset); | |||
836 | error: | |||
837 | isl_basic_set_free(bset); | |||
838 | return NULL((void*)0); | |||
839 | } | |||
840 | ||||
841 | /* Look for all equalities satisfied by the integer points in bmap | |||
842 | * that are independent of the equalities already explicitly available | |||
843 | * in bmap. | |||
844 | * | |||
845 | * We first remove all equalities already explicitly available, | |||
846 | * then look for additional equalities in the reduced space | |||
847 | * and then transform the result to the original space. | |||
848 | * The original equalities are _not_ added to this set. This is | |||
849 | * the responsibility of the calling function. | |||
850 | * The resulting basic set has all meaning about the dimensions removed. | |||
851 | * In particular, dimensions that correspond to existential variables | |||
852 | * in bmap and that are found to be fixed are not removed. | |||
853 | */ | |||
854 | static __isl_give isl_basic_setisl_basic_map *equalities_in_underlying_set( | |||
855 | __isl_take isl_basic_map *bmap) | |||
856 | { | |||
857 | struct isl_mat *T1 = NULL((void*)0); | |||
858 | struct isl_mat *T2 = NULL((void*)0); | |||
859 | struct isl_basic_setisl_basic_map *bset = NULL((void*)0); | |||
860 | struct isl_basic_setisl_basic_map *hull = NULL((void*)0); | |||
861 | ||||
862 | bset = isl_basic_map_underlying_set(bmap); | |||
863 | if (!bset) | |||
864 | return NULL((void*)0); | |||
865 | if (bset->n_eq) | |||
866 | bset = isl_basic_set_remove_equalities(bset, &T1, &T2); | |||
867 | if (!bset) | |||
868 | goto error; | |||
869 | ||||
870 | hull = uset_affine_hull(bset); | |||
871 | if (!T2) | |||
872 | return hull; | |||
873 | ||||
874 | if (!hull) { | |||
875 | isl_mat_free(T1); | |||
876 | isl_mat_free(T2); | |||
877 | } else { | |||
878 | struct isl_vec *sample = isl_vec_copy(hull->sample); | |||
879 | if (sample && sample->size > 0) | |||
880 | sample = isl_mat_vec_product(T1, sample); | |||
881 | else | |||
882 | isl_mat_free(T1); | |||
883 | hull = isl_basic_set_preimage(hull, T2); | |||
884 | if (hull) { | |||
885 | isl_vec_free(hull->sample); | |||
886 | hull->sample = sample; | |||
887 | } else | |||
888 | isl_vec_free(sample); | |||
889 | } | |||
890 | ||||
891 | return hull; | |||
892 | error: | |||
893 | isl_mat_free(T1); | |||
894 | isl_mat_free(T2); | |||
895 | isl_basic_set_free(bset); | |||
896 | isl_basic_set_free(hull); | |||
897 | return NULL((void*)0); | |||
898 | } | |||
899 | ||||
900 | /* Detect and make explicit all equalities satisfied by the (integer) | |||
901 | * points in bmap. | |||
902 | */ | |||
903 | __isl_give isl_basic_map *isl_basic_map_detect_equalities( | |||
904 | __isl_take isl_basic_map *bmap) | |||
905 | { | |||
906 | int i, j; | |||
907 | isl_size total; | |||
908 | struct isl_basic_setisl_basic_map *hull = NULL((void*)0); | |||
909 | ||||
910 | if (!bmap) | |||
911 | return NULL((void*)0); | |||
912 | if (bmap->n_ineq == 0) | |||
913 | return bmap; | |||
914 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)(!!(((bmap)->flags) & ((1 << 1))))) | |||
915 | return bmap; | |||
916 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES)(!!(((bmap)->flags) & ((1 << 7))))) | |||
917 | return bmap; | |||
918 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)(!!(((bmap)->flags) & ((1 << 4))))) | |||
919 | return isl_basic_map_implicit_equalities(bmap); | |||
920 | ||||
921 | hull = equalities_in_underlying_set(isl_basic_map_copy(bmap)); | |||
922 | if (!hull) | |||
923 | goto error; | |||
924 | if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)(!!(((hull)->flags) & ((1 << 1))))) { | |||
925 | isl_basic_set_free(hull); | |||
926 | return isl_basic_map_set_to_empty(bmap); | |||
927 | } | |||
928 | bmap = isl_basic_map_extend(bmap, 0, hull->n_eq, 0); | |||
929 | total = isl_basic_set_dim(hull, isl_dim_all); | |||
930 | if (total < 0) | |||
931 | goto error; | |||
932 | for (i = 0; i < hull->n_eq; ++i) { | |||
933 | j = isl_basic_map_alloc_equality(bmap); | |||
934 | if (j < 0) | |||
935 | goto error; | |||
936 | isl_seq_cpy(bmap->eq[j], hull->eq[i], 1 + total); | |||
937 | } | |||
938 | isl_vec_free(bmap->sample); | |||
939 | bmap->sample = isl_vec_copy(hull->sample); | |||
940 | isl_basic_set_free(hull); | |||
941 | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES)(((bmap)->flags) |= ((1 << 2) | (1 << 7))); | |||
942 | bmap = isl_basic_map_simplify(bmap); | |||
943 | return isl_basic_map_finalize(bmap); | |||
944 | error: | |||
945 | isl_basic_set_free(hull); | |||
946 | isl_basic_map_free(bmap); | |||
947 | return NULL((void*)0); | |||
948 | } | |||
949 | ||||
950 | __isl_give isl_basic_setisl_basic_map *isl_basic_set_detect_equalities( | |||
951 | __isl_take isl_basic_setisl_basic_map *bset) | |||
952 | { | |||
953 | return bset_from_bmap( | |||
954 | isl_basic_map_detect_equalities(bset_to_bmap(bset))); | |||
955 | } | |||
956 | ||||
957 | __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map) | |||
958 | { | |||
959 | return isl_map_inline_foreach_basic_map(map, | |||
960 | &isl_basic_map_detect_equalities); | |||
961 | } | |||
962 | ||||
963 | __isl_give isl_setisl_map *isl_set_detect_equalities(__isl_take isl_setisl_map *set) | |||
964 | { | |||
965 | return set_from_map(isl_map_detect_equalities(set_to_map(set))); | |||
966 | } | |||
967 | ||||
968 | /* Return the superset of "bmap" described by the equalities | |||
969 | * satisfied by "bmap" that are already known. | |||
970 | */ | |||
971 | __isl_give isl_basic_map *isl_basic_map_plain_affine_hull( | |||
972 | __isl_take isl_basic_map *bmap) | |||
973 | { | |||
974 | bmap = isl_basic_map_cow(bmap); | |||
975 | if (bmap) | |||
976 | isl_basic_map_free_inequality(bmap, bmap->n_ineq); | |||
977 | bmap = isl_basic_map_finalize(bmap); | |||
978 | return bmap; | |||
979 | } | |||
980 | ||||
981 | /* Return the superset of "bset" described by the equalities | |||
982 | * satisfied by "bset" that are already known. | |||
983 | */ | |||
984 | __isl_give isl_basic_setisl_basic_map *isl_basic_set_plain_affine_hull( | |||
985 | __isl_take isl_basic_setisl_basic_map *bset) | |||
986 | { | |||
987 | return isl_basic_map_plain_affine_hull(bset); | |||
988 | } | |||
989 | ||||
990 | /* After computing the rational affine hull (by detecting the implicit | |||
991 | * equalities), we compute the additional equalities satisfied by | |||
992 | * the integer points (if any) and add the original equalities back in. | |||
993 | */ | |||
994 | __isl_give isl_basic_map *isl_basic_map_affine_hull( | |||
995 | __isl_take isl_basic_map *bmap) | |||
996 | { | |||
997 | bmap = isl_basic_map_detect_equalities(bmap); | |||
998 | bmap = isl_basic_map_plain_affine_hull(bmap); | |||
999 | return bmap; | |||
1000 | } | |||
1001 | ||||
1002 | __isl_give isl_basic_setisl_basic_map *isl_basic_set_affine_hull( | |||
1003 | __isl_take isl_basic_setisl_basic_map *bset) | |||
1004 | { | |||
1005 | return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset))); | |||
1006 | } | |||
1007 | ||||
1008 | /* Given a rational affine matrix "M", add stride constraints to "bmap" | |||
1009 | * that ensure that | |||
1010 | * | |||
1011 | * M(x) | |||
1012 | * | |||
1013 | * is an integer vector. The variables x include all the variables | |||
1014 | * of "bmap" except the unknown divs. | |||
1015 | * | |||
1016 | * If d is the common denominator of M, then we need to impose that | |||
1017 | * | |||
1018 | * d M(x) = 0 mod d | |||
1019 | * | |||
1020 | * or | |||
1021 | * | |||
1022 | * exists alpha : d M(x) = d alpha | |||
1023 | * | |||
1024 | * This function is similar to add_strides in isl_morph.c | |||
1025 | */ | |||
1026 | static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap, | |||
1027 | __isl_keep isl_mat *M, int n_known) | |||
1028 | { | |||
1029 | int i, div, k; | |||
1030 | isl_int gcd; | |||
1031 | ||||
1032 | if (isl_int_is_one(M->row[0][0])(isl_sioimath_cmp_si(*(M->row[0][0]), 1) == 0)) | |||
1033 | return bmap; | |||
1034 | ||||
1035 | bmap = isl_basic_map_extend(bmap, M->n_row - 1, M->n_row - 1, 0); | |||
1036 | ||||
1037 | isl_int_init(gcd)isl_sioimath_init((gcd)); | |||
1038 | for (i = 1; i < M->n_row; ++i) { | |||
1039 | isl_seq_gcd(M->row[i], M->n_col, &gcd); | |||
1040 | if (isl_int_is_divisible_by(gcd, M->row[0][0])isl_sioimath_is_divisible_by(*(gcd), *(M->row[0][0]))) | |||
1041 | continue; | |||
1042 | div = isl_basic_map_alloc_div(bmap); | |||
1043 | if (div < 0) | |||
1044 | goto error; | |||
1045 | isl_int_set_si(bmap->div[div][0], 0)isl_sioimath_set_si((bmap->div[div][0]), 0); | |||
1046 | k = isl_basic_map_alloc_equality(bmap); | |||
1047 | if (k < 0) | |||
1048 | goto error; | |||
1049 | isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col); | |||
1050 | isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known); | |||
1051 | isl_int_set(bmap->eq[k][M->n_col - n_known + div],isl_sioimath_set((bmap->eq[k][M->n_col - n_known + div] ), *(M->row[0][0])) | |||
1052 | M->row[0][0])isl_sioimath_set((bmap->eq[k][M->n_col - n_known + div] ), *(M->row[0][0])); | |||
1053 | } | |||
1054 | isl_int_clear(gcd)isl_sioimath_clear((gcd)); | |||
1055 | ||||
1056 | return bmap; | |||
1057 | error: | |||
1058 | isl_int_clear(gcd)isl_sioimath_clear((gcd)); | |||
1059 | isl_basic_map_free(bmap); | |||
1060 | return NULL((void*)0); | |||
1061 | } | |||
1062 | ||||
1063 | /* If there are any equalities that involve (multiple) unknown divs, | |||
1064 | * then extract the stride information encoded by those equalities | |||
1065 | * and make it explicitly available in "bmap". | |||
1066 | * | |||
1067 | * We first sort the divs so that the unknown divs appear last and | |||
1068 | * then we count how many equalities involve these divs. | |||
1069 | * | |||
1070 | * Let these equalities be of the form | |||
1071 | * | |||
1072 | * A(x) + B y = 0 | |||
1073 | * | |||
1074 | * where y represents the unknown divs and x the remaining variables. | |||
1075 | * Let [H 0] be the Hermite Normal Form of B, i.e., | |||
1076 | * | |||
1077 | * B = [H 0] Q | |||
1078 | * | |||
1079 | * Then x is a solution of the equalities iff | |||
1080 | * | |||
1081 | * H^-1 A(x) (= - [I 0] Q y) | |||
1082 | * | |||
1083 | * is an integer vector. Let d be the common denominator of H^-1. | |||
1084 | * We impose | |||
1085 | * | |||
1086 | * d H^-1 A(x) = d alpha | |||
1087 | * | |||
1088 | * in add_strides, with alpha fresh existentially quantified variables. | |||
1089 | */ | |||
1090 | static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit( | |||
1091 | __isl_take isl_basic_map *bmap) | |||
1092 | { | |||
1093 | isl_bool known; | |||
1094 | int n_known; | |||
1095 | int n, n_col; | |||
1096 | isl_size v_div; | |||
1097 | isl_ctx *ctx; | |||
1098 | isl_mat *A, *B, *M; | |||
1099 | ||||
1100 | known = isl_basic_map_divs_known(bmap); | |||
1101 | if (known < 0) | |||
1102 | return isl_basic_map_free(bmap); | |||
1103 | if (known) | |||
1104 | return bmap; | |||
1105 | bmap = isl_basic_map_sort_divs(bmap); | |||
1106 | bmap = isl_basic_map_gauss(bmap, NULL((void*)0)); | |||
1107 | if (!bmap) | |||
1108 | return NULL((void*)0); | |||
1109 | ||||
1110 | for (n_known = 0; n_known < bmap->n_div; ++n_known) | |||
1111 | if (isl_int_is_zero(bmap->div[n_known][0])(isl_sioimath_sgn(*(bmap->div[n_known][0])) == 0)) | |||
1112 | break; | |||
1113 | v_div = isl_basic_map_var_offset(bmap, isl_dim_div); | |||
1114 | if (v_div < 0) | |||
1115 | return isl_basic_map_free(bmap); | |||
1116 | for (n = 0; n < bmap->n_eq; ++n) | |||
1117 | if (isl_seq_first_non_zero(bmap->eq[n] + 1 + v_div + n_known, | |||
1118 | bmap->n_div - n_known) == -1) | |||
1119 | break; | |||
1120 | if (n == 0) | |||
1121 | return bmap; | |||
1122 | ctx = isl_basic_map_get_ctx(bmap); | |||
1123 | B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + v_div + n_known); | |||
1124 | n_col = bmap->n_div - n_known; | |||
1125 | A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + v_div + n_known, n_col); | |||
1126 | A = isl_mat_left_hermite(A, 0, NULL((void*)0), NULL((void*)0)); | |||
1127 | A = isl_mat_drop_cols(A, n, n_col - n); | |||
1128 | A = isl_mat_lin_to_aff(A); | |||
1129 | A = isl_mat_right_inverse(A); | |||
1130 | B = isl_mat_insert_zero_rows(B, 0, 1); | |||
1131 | B = isl_mat_set_element_si(B, 0, 0, 1); | |||
1132 | M = isl_mat_product(A, B); | |||
1133 | if (!M) | |||
1134 | return isl_basic_map_free(bmap); | |||
1135 | bmap = add_strides(bmap, M, n_known); | |||
1136 | bmap = isl_basic_map_gauss(bmap, NULL((void*)0)); | |||
1137 | isl_mat_free(M); | |||
1138 | ||||
1139 | return bmap; | |||
1140 | } | |||
1141 | ||||
1142 | /* Compute the affine hull of each basic map in "map" separately | |||
1143 | * and make all stride information explicit so that we can remove | |||
1144 | * all unknown divs without losing this information. | |||
1145 | * The result is also guaranteed to be gaussed. | |||
1146 | * | |||
1147 | * In simple cases where a div is determined by an equality, | |||
1148 | * calling isl_basic_map_gauss is enough to make the stride information | |||
1149 | * explicit, as it will derive an explicit representation for the div | |||
1150 | * from the equality. If, however, the stride information | |||
1151 | * is encoded through multiple unknown divs then we need to make | |||
1152 | * some extra effort in isl_basic_map_make_strides_explicit. | |||
1153 | */ | |||
1154 | static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map) | |||
1155 | { | |||
1156 | int i; | |||
1157 | ||||
1158 | map = isl_map_cow(map); | |||
1159 | if (!map) | |||
1160 | return NULL((void*)0); | |||
1161 | ||||
1162 | for (i = 0; i < map->n; ++i) { | |||
1163 | map->p[i] = isl_basic_map_affine_hull(map->p[i]); | |||
1164 | map->p[i] = isl_basic_map_gauss(map->p[i], NULL((void*)0)); | |||
1165 | map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]); | |||
1166 | if (!map->p[i]) | |||
1167 | return isl_map_free(map); | |||
1168 | } | |||
1169 | ||||
1170 | return map; | |||
1171 | } | |||
1172 | ||||
1173 | static __isl_give isl_setisl_map *isl_set_local_affine_hull(__isl_take isl_setisl_map *set) | |||
1174 | { | |||
1175 | return isl_map_local_affine_hull(set); | |||
1176 | } | |||
1177 | ||||
1178 | /* Return an empty basic map living in the same space as "map". | |||
1179 | */ | |||
1180 | static __isl_give isl_basic_map *replace_map_by_empty_basic_map( | |||
1181 | __isl_take isl_map *map) | |||
1182 | { | |||
1183 | isl_space *space; | |||
1184 | ||||
1185 | space = isl_map_get_space(map); | |||
1186 | isl_map_free(map); | |||
1187 | return isl_basic_map_empty(space); | |||
1188 | } | |||
1189 | ||||
1190 | /* Compute the affine hull of "map". | |||
1191 | * | |||
1192 | * We first compute the affine hull of each basic map separately. | |||
1193 | * Then we align the divs and recompute the affine hulls of the basic | |||
1194 | * maps since some of them may now have extra divs. | |||
1195 | * In order to avoid performing parametric integer programming to | |||
1196 | * compute explicit expressions for the divs, possible leading to | |||
1197 | * an explosion in the number of basic maps, we first drop all unknown | |||
1198 | * divs before aligning the divs. Note that isl_map_local_affine_hull tries | |||
1199 | * to make sure that all stride information is explicitly available | |||
1200 | * in terms of known divs. This involves calling isl_basic_set_gauss, | |||
1201 | * which is also needed because affine_hull assumes its input has been gaussed, | |||
1202 | * while isl_map_affine_hull may be called on input that has not been gaussed, | |||
1203 | * in particular from initial_facet_constraint. | |||
1204 | * Similarly, align_divs may reorder some divs so that we need to | |||
1205 | * gauss the result again. | |||
1206 | * Finally, we combine the individual affine hulls into a single | |||
1207 | * affine hull. | |||
1208 | */ | |||
1209 | __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map) | |||
1210 | { | |||
1211 | struct isl_basic_map *model = NULL((void*)0); | |||
1212 | struct isl_basic_map *hull = NULL((void*)0); | |||
1213 | struct isl_setisl_map *set; | |||
1214 | isl_basic_setisl_basic_map *bset; | |||
1215 | ||||
1216 | map = isl_map_detect_equalities(map); | |||
1217 | map = isl_map_local_affine_hull(map); | |||
1218 | map = isl_map_remove_empty_parts(map); | |||
1219 | map = isl_map_remove_unknown_divs(map); | |||
1220 | map = isl_map_align_divs_internal(map); | |||
1221 | ||||
1222 | if (!map) | |||
1223 | return NULL((void*)0); | |||
1224 | ||||
1225 | if (map->n == 0) | |||
1226 | return replace_map_by_empty_basic_map(map); | |||
1227 | ||||
1228 | model = isl_basic_map_copy(map->p[0]); | |||
1229 | set = isl_map_underlying_set(map); | |||
1230 | set = isl_set_cow(set); | |||
1231 | set = isl_set_local_affine_hull(set); | |||
1232 | if (!set) | |||
1233 | goto error; | |||
1234 | ||||
1235 | while (set->n > 1) | |||
1236 | set->p[0] = affine_hull(set->p[0], set->p[--set->n]); | |||
1237 | ||||
1238 | bset = isl_basic_set_copy(set->p[0]); | |||
1239 | hull = isl_basic_map_overlying_set(bset, model); | |||
1240 | isl_set_free(set); | |||
1241 | hull = isl_basic_map_simplify(hull); | |||
1242 | return isl_basic_map_finalize(hull); | |||
1243 | error: | |||
1244 | isl_basic_map_free(model); | |||
1245 | isl_set_free(set); | |||
1246 | return NULL((void*)0); | |||
1247 | } | |||
1248 | ||||
1249 | __isl_give isl_basic_setisl_basic_map *isl_set_affine_hull(__isl_take isl_setisl_map *set) | |||
1250 | { | |||
1251 | return bset_from_bmap(isl_map_affine_hull(set_to_map(set))); | |||
1252 | } |