| File: | build/source/polly/lib/External/isl/isl_range.c |
| Warning: | line 428, column 2 Assigned value is garbage or undefined |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | #include <isl_ctx_private.h> | |||
| 2 | #include <isl/val.h> | |||
| 3 | #include <isl_constraint_private.h> | |||
| 4 | #include <isl/set.h> | |||
| 5 | #include <isl_polynomial_private.h> | |||
| 6 | #include <isl_morph.h> | |||
| 7 | #include <isl_range.h> | |||
| 8 | ||||
| 9 | struct range_data { | |||
| 10 | struct isl_bound *bound; | |||
| 11 | int *signs; | |||
| 12 | int sign; | |||
| 13 | int test_monotonicity; | |||
| 14 | int monotonicity; | |||
| 15 | int tight; | |||
| 16 | isl_qpolynomial *poly; | |||
| 17 | isl_pw_qpolynomial_fold *pwf; | |||
| 18 | isl_pw_qpolynomial_fold *pwf_tight; | |||
| 19 | }; | |||
| 20 | ||||
| 21 | static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, | |||
| 22 | __isl_take isl_qpolynomial *poly, struct range_data *data); | |||
| 23 | ||||
| 24 | /* Check whether the polynomial "poly" has sign "sign" over "bset", | |||
| 25 | * i.e., if sign == 1, check that the lower bound on the polynomial | |||
| 26 | * is non-negative and if sign == -1, check that the upper bound on | |||
| 27 | * the polynomial is non-positive. | |||
| 28 | */ | |||
| 29 | static isl_bool has_sign(__isl_keep isl_basic_set *bset, | |||
| 30 | __isl_keep isl_qpolynomial *poly, int sign, int *signs) | |||
| 31 | { | |||
| 32 | struct range_data data_m; | |||
| 33 | isl_size nparam; | |||
| 34 | isl_space *space; | |||
| 35 | isl_val *opt; | |||
| 36 | isl_bool r; | |||
| 37 | enum isl_fold type; | |||
| 38 | ||||
| 39 | nparam = isl_basic_set_dim(bset, isl_dim_param); | |||
| 40 | if (nparam < 0) | |||
| 41 | return isl_bool_error; | |||
| 42 | ||||
| 43 | bset = isl_basic_set_copy(bset); | |||
| 44 | poly = isl_qpolynomial_copy(poly); | |||
| 45 | ||||
| 46 | bset = isl_basic_set_move_dims(bset, isl_dim_set, 0, | |||
| 47 | isl_dim_param, 0, nparam); | |||
| 48 | poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0, | |||
| 49 | isl_dim_param, 0, nparam); | |||
| 50 | ||||
| 51 | space = isl_qpolynomial_get_space(poly); | |||
| 52 | space = isl_space_params(space); | |||
| 53 | space = isl_space_from_domain(space); | |||
| 54 | space = isl_space_add_dims(space, isl_dim_out, 1); | |||
| 55 | ||||
| 56 | data_m.test_monotonicity = 0; | |||
| 57 | data_m.signs = signs; | |||
| 58 | data_m.sign = -sign; | |||
| 59 | type = data_m.sign
| |||
| 60 | data_m.pwf = isl_pw_qpolynomial_fold_zero(space, type); | |||
| 61 | data_m.tight = 0; | |||
| 62 | data_m.pwf_tight = NULL((void*)0); | |||
| 63 | ||||
| 64 | if (propagate_on_domain(bset, poly, &data_m) < 0) | |||
| 65 | goto error; | |||
| 66 | ||||
| 67 | if (sign > 0) | |||
| 68 | opt = isl_pw_qpolynomial_fold_min(data_m.pwf); | |||
| 69 | else | |||
| 70 | opt = isl_pw_qpolynomial_fold_max(data_m.pwf); | |||
| 71 | ||||
| 72 | if (!opt) | |||
| 73 | r = isl_bool_error; | |||
| 74 | else if (isl_val_is_nan(opt) || | |||
| 75 | isl_val_is_infty(opt) || | |||
| 76 | isl_val_is_neginfty(opt)) | |||
| 77 | r = isl_bool_false; | |||
| 78 | else | |||
| 79 | r = isl_bool_ok(sign * isl_val_sgn(opt) >= 0); | |||
| 80 | ||||
| 81 | isl_val_free(opt); | |||
| 82 | ||||
| 83 | return r; | |||
| 84 | error: | |||
| 85 | isl_pw_qpolynomial_fold_free(data_m.pwf); | |||
| 86 | return isl_bool_error; | |||
| 87 | } | |||
| 88 | ||||
| 89 | /* Return 1 if poly is monotonically increasing in the last set variable, | |||
| 90 | * -1 if poly is monotonically decreasing in the last set variable, | |||
| 91 | * 0 if no conclusion, | |||
| 92 | * -2 on error. | |||
| 93 | * | |||
| 94 | * We simply check the sign of p(x+1)-p(x) | |||
| 95 | */ | |||
| 96 | static int monotonicity(__isl_keep isl_basic_set *bset, | |||
| 97 | __isl_keep isl_qpolynomial *poly, struct range_data *data) | |||
| 98 | { | |||
| 99 | isl_ctx *ctx; | |||
| 100 | isl_space *space; | |||
| 101 | isl_qpolynomial *sub = NULL((void*)0); | |||
| 102 | isl_qpolynomial *diff = NULL((void*)0); | |||
| 103 | int result = 0; | |||
| 104 | isl_bool s; | |||
| 105 | isl_size nvar; | |||
| 106 | ||||
| 107 | nvar = isl_basic_set_dim(bset, isl_dim_set); | |||
| 108 | if (nvar < 0) | |||
| 109 | return -2; | |||
| 110 | ||||
| 111 | ctx = isl_qpolynomial_get_ctx(poly); | |||
| 112 | space = isl_qpolynomial_get_domain_space(poly); | |||
| 113 | ||||
| 114 | sub = isl_qpolynomial_var_on_domain(isl_space_copy(space), | |||
| 115 | isl_dim_set, nvar - 1); | |||
| 116 | sub = isl_qpolynomial_add(sub, | |||
| 117 | isl_qpolynomial_rat_cst_on_domain(space, ctx->one, ctx->one)); | |||
| 118 | ||||
| 119 | diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly), | |||
| 120 | isl_dim_in, nvar - 1, 1, &sub); | |||
| 121 | diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly)); | |||
| 122 | ||||
| 123 | s = has_sign(bset, diff, 1, data->signs); | |||
| 124 | if (s < 0) | |||
| 125 | goto error; | |||
| 126 | if (s) | |||
| 127 | result = 1; | |||
| 128 | else { | |||
| 129 | s = has_sign(bset, diff, -1, data->signs); | |||
| 130 | if (s < 0) | |||
| 131 | goto error; | |||
| 132 | if (s) | |||
| 133 | result = -1; | |||
| 134 | } | |||
| 135 | ||||
| 136 | isl_qpolynomial_free(diff); | |||
| 137 | isl_qpolynomial_free(sub); | |||
| 138 | ||||
| 139 | return result; | |||
| 140 | error: | |||
| 141 | isl_qpolynomial_free(diff); | |||
| 142 | isl_qpolynomial_free(sub); | |||
| 143 | return -2; | |||
| 144 | } | |||
| 145 | ||||
| 146 | /* Return a positive ("sign" > 0) or negative ("sign" < 0) infinite polynomial | |||
| 147 | * with domain space "space". | |||
| 148 | */ | |||
| 149 | static __isl_give isl_qpolynomial *signed_infty(__isl_take isl_space *space, | |||
| 150 | int sign) | |||
| 151 | { | |||
| 152 | if (sign > 0) | |||
| 153 | return isl_qpolynomial_infty_on_domain(space); | |||
| 154 | else | |||
| 155 | return isl_qpolynomial_neginfty_on_domain(space); | |||
| 156 | } | |||
| 157 | ||||
| 158 | static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound, | |||
| 159 | __isl_take isl_space *space, unsigned pos, int sign) | |||
| 160 | { | |||
| 161 | if (!bound) | |||
| 162 | return signed_infty(space, sign); | |||
| 163 | isl_space_free(space); | |||
| 164 | return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos); | |||
| 165 | } | |||
| 166 | ||||
| 167 | static int bound_is_integer(__isl_keep isl_constraint *bound, unsigned pos) | |||
| 168 | { | |||
| 169 | isl_int c; | |||
| 170 | int is_int; | |||
| 171 | ||||
| 172 | if (!bound) | |||
| 173 | return 1; | |||
| 174 | ||||
| 175 | isl_int_init(c)isl_sioimath_init((c)); | |||
| 176 | isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c); | |||
| 177 | is_int = isl_int_is_one(c)(isl_sioimath_cmp_si(*(c), 1) == 0) || isl_int_is_negone(c)(isl_sioimath_cmp_si(*(c), -1) == 0); | |||
| 178 | isl_int_clear(c)isl_sioimath_clear((c)); | |||
| 179 | ||||
| 180 | return is_int; | |||
| 181 | } | |||
| 182 | ||||
| 183 | struct isl_fixed_sign_data { | |||
| 184 | int *signs; | |||
| 185 | int sign; | |||
| 186 | isl_qpolynomial *poly; | |||
| 187 | }; | |||
| 188 | ||||
| 189 | /* Add term "term" to data->poly if it has sign data->sign. | |||
| 190 | * The sign is determined based on the signs of the parameters | |||
| 191 | * and variables in data->signs. The integer divisions, if | |||
| 192 | * any, are assumed to be non-negative. | |||
| 193 | */ | |||
| 194 | static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user) | |||
| 195 | { | |||
| 196 | struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user; | |||
| 197 | isl_int n; | |||
| 198 | int i; | |||
| 199 | int sign; | |||
| 200 | isl_size nparam; | |||
| 201 | isl_size nvar; | |||
| 202 | isl_size exp; | |||
| 203 | ||||
| 204 | nparam = isl_term_dim(term, isl_dim_param); | |||
| 205 | nvar = isl_term_dim(term, isl_dim_set); | |||
| 206 | if (nparam < 0 || nvar < 0) | |||
| 207 | return isl_stat_error; | |||
| 208 | ||||
| 209 | isl_int_init(n)isl_sioimath_init((n)); | |||
| 210 | isl_term_get_num(term, &n); | |||
| 211 | sign = isl_int_sgn(n)isl_sioimath_sgn(*(n)); | |||
| 212 | isl_int_clear(n)isl_sioimath_clear((n)); | |||
| 213 | ||||
| 214 | for (i = 0; i < nparam; ++i) { | |||
| 215 | if (data->signs[i] > 0) | |||
| 216 | continue; | |||
| 217 | exp = isl_term_get_exp(term, isl_dim_param, i); | |||
| 218 | if (exp < 0) | |||
| 219 | return isl_stat_error; | |||
| 220 | if (exp % 2) | |||
| 221 | sign = -sign; | |||
| 222 | } | |||
| 223 | for (i = 0; i < nvar; ++i) { | |||
| 224 | if (data->signs[nparam + i] > 0) | |||
| 225 | continue; | |||
| 226 | exp = isl_term_get_exp(term, isl_dim_set, i); | |||
| 227 | if (exp < 0) | |||
| 228 | return isl_stat_error; | |||
| 229 | if (exp % 2) | |||
| 230 | sign = -sign; | |||
| 231 | } | |||
| 232 | ||||
| 233 | if (sign == data->sign) { | |||
| 234 | isl_qpolynomial *t = isl_qpolynomial_from_term(term); | |||
| 235 | ||||
| 236 | data->poly = isl_qpolynomial_add(data->poly, t); | |||
| 237 | } else | |||
| 238 | isl_term_free(term); | |||
| 239 | ||||
| 240 | return isl_stat_ok; | |||
| 241 | } | |||
| 242 | ||||
| 243 | /* Construct and return a polynomial that consists of the terms | |||
| 244 | * in "poly" that have sign "sign". The integer divisions, if | |||
| 245 | * any, are assumed to be non-negative. | |||
| 246 | */ | |||
| 247 | __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign( | |||
| 248 | __isl_keep isl_qpolynomial *poly, int *signs, int sign) | |||
| 249 | { | |||
| 250 | isl_space *space; | |||
| 251 | struct isl_fixed_sign_data data = { signs, sign }; | |||
| 252 | ||||
| 253 | space = isl_qpolynomial_get_domain_space(poly); | |||
| 254 | data.poly = isl_qpolynomial_zero_on_domain(space); | |||
| 255 | ||||
| 256 | if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0) | |||
| 257 | goto error; | |||
| 258 | ||||
| 259 | return data.poly; | |||
| 260 | error: | |||
| 261 | isl_qpolynomial_free(data.poly); | |||
| 262 | return NULL((void*)0); | |||
| 263 | } | |||
| 264 | ||||
| 265 | /* Helper function to add a guarded polynomial to either pwf_tight or pwf, | |||
| 266 | * depending on whether the result has been determined to be tight. | |||
| 267 | */ | |||
| 268 | static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset, | |||
| 269 | __isl_take isl_qpolynomial *poly, struct range_data *data) | |||
| 270 | { | |||
| 271 | enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max; | |||
| 272 | isl_set *set; | |||
| 273 | isl_qpolynomial_fold *fold; | |||
| 274 | isl_pw_qpolynomial_fold *pwf; | |||
| 275 | ||||
| 276 | bset = isl_basic_set_params(bset); | |||
| 277 | poly = isl_qpolynomial_project_domain_on_params(poly); | |||
| 278 | ||||
| 279 | fold = isl_qpolynomial_fold_alloc(type, poly); | |||
| 280 | set = isl_set_from_basic_set(bset); | |||
| 281 | pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold); | |||
| 282 | if (data->tight) | |||
| 283 | data->pwf_tight = isl_pw_qpolynomial_fold_fold( | |||
| 284 | data->pwf_tight, pwf); | |||
| 285 | else | |||
| 286 | data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf); | |||
| 287 | ||||
| 288 | return isl_stat_ok; | |||
| 289 | } | |||
| 290 | ||||
| 291 | /* Plug in "sub" for the variable at position "pos" in "poly". | |||
| 292 | * | |||
| 293 | * If "sub" is an infinite polynomial and if the variable actually | |||
| 294 | * appears in "poly", then calling isl_qpolynomial_substitute | |||
| 295 | * to perform the substitution may result in a NaN result. | |||
| 296 | * In such cases, return positive or negative infinity instead, | |||
| 297 | * depending on whether an upper bound or a lower bound is being computed, | |||
| 298 | * and mark the result as not being tight. | |||
| 299 | */ | |||
| 300 | static __isl_give isl_qpolynomial *plug_in_at_pos( | |||
| 301 | __isl_take isl_qpolynomial *poly, int pos, | |||
| 302 | __isl_take isl_qpolynomial *sub, struct range_data *data) | |||
| 303 | { | |||
| 304 | isl_bool involves, infty; | |||
| 305 | ||||
| 306 | involves = isl_qpolynomial_involves_dims(poly, isl_dim_in, pos, 1); | |||
| 307 | if (involves < 0) | |||
| 308 | goto error; | |||
| 309 | if (!involves) { | |||
| 310 | isl_qpolynomial_free(sub); | |||
| 311 | return poly; | |||
| 312 | } | |||
| 313 | ||||
| 314 | infty = isl_qpolynomial_is_infty(sub); | |||
| 315 | if (infty >= 0 && !infty) | |||
| 316 | infty = isl_qpolynomial_is_neginfty(sub); | |||
| 317 | if (infty < 0) | |||
| 318 | goto error; | |||
| 319 | if (infty) { | |||
| 320 | isl_space *space = isl_qpolynomial_get_domain_space(poly); | |||
| 321 | data->tight = 0; | |||
| 322 | isl_qpolynomial_free(poly); | |||
| 323 | isl_qpolynomial_free(sub); | |||
| 324 | return signed_infty(space, data->sign); | |||
| 325 | } | |||
| 326 | ||||
| 327 | poly = isl_qpolynomial_substitute(poly, isl_dim_in, pos, 1, &sub); | |||
| 328 | isl_qpolynomial_free(sub); | |||
| 329 | ||||
| 330 | return poly; | |||
| 331 | error: | |||
| 332 | isl_qpolynomial_free(poly); | |||
| 333 | isl_qpolynomial_free(sub); | |||
| 334 | return NULL((void*)0); | |||
| 335 | } | |||
| 336 | ||||
| 337 | /* Given a lower and upper bound on the final variable and constraints | |||
| 338 | * on the remaining variables where these bounds are active, | |||
| 339 | * eliminate the variable from data->poly based on these bounds. | |||
| 340 | * If the polynomial has been determined to be monotonic | |||
| 341 | * in the variable, then simply plug in the appropriate bound. | |||
| 342 | * If the current polynomial is tight and if this bound is integer, | |||
| 343 | * then the result is still tight. In all other cases, the results | |||
| 344 | * may not be tight. | |||
| 345 | * Otherwise, plug in the largest bound (in absolute value) in | |||
| 346 | * the positive terms (if an upper bound is wanted) or the negative terms | |||
| 347 | * (if a lower bounded is wanted) and the other bound in the other terms. | |||
| 348 | * | |||
| 349 | * If all variables have been eliminated, then record the result. | |||
| 350 | * Ohterwise, recurse on the next variable. | |||
| 351 | */ | |||
| 352 | static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower, | |||
| 353 | __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, | |||
| 354 | void *user) | |||
| 355 | { | |||
| 356 | struct range_data *data = (struct range_data *)user; | |||
| 357 | int save_tight = data->tight; | |||
| 358 | isl_qpolynomial *poly; | |||
| 359 | isl_stat r; | |||
| 360 | isl_size nvar, nparam; | |||
| 361 | ||||
| 362 | nvar = isl_basic_set_dim(bset, isl_dim_set); | |||
| 363 | nparam = isl_basic_set_dim(bset, isl_dim_param); | |||
| 364 | if (nvar < 0 || nparam < 0) | |||
| 365 | goto error; | |||
| 366 | ||||
| 367 | if (data->monotonicity) { | |||
| 368 | isl_qpolynomial *sub; | |||
| 369 | isl_space *space = isl_qpolynomial_get_domain_space(data->poly); | |||
| 370 | if (data->monotonicity * data->sign > 0) { | |||
| 371 | if (data->tight) | |||
| 372 | data->tight = bound_is_integer(upper, nvar); | |||
| 373 | sub = bound2poly(upper, space, nvar, 1); | |||
| 374 | isl_constraint_free(lower); | |||
| 375 | } else { | |||
| 376 | if (data->tight) | |||
| 377 | data->tight = bound_is_integer(lower, nvar); | |||
| 378 | sub = bound2poly(lower, space, nvar, -1); | |||
| 379 | isl_constraint_free(upper); | |||
| 380 | } | |||
| 381 | poly = isl_qpolynomial_copy(data->poly); | |||
| 382 | poly = plug_in_at_pos(poly, nvar, sub, data); | |||
| 383 | poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); | |||
| 384 | } else { | |||
| 385 | isl_qpolynomial *l, *u; | |||
| 386 | isl_qpolynomial *pos, *neg; | |||
| 387 | isl_space *space = isl_qpolynomial_get_domain_space(data->poly); | |||
| 388 | int sign = data->sign * data->signs[nparam + nvar]; | |||
| 389 | ||||
| 390 | data->tight = 0; | |||
| 391 | ||||
| 392 | u = bound2poly(upper, isl_space_copy(space), nvar, 1); | |||
| 393 | l = bound2poly(lower, space, nvar, -1); | |||
| 394 | ||||
| 395 | pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign); | |||
| 396 | neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign); | |||
| 397 | ||||
| 398 | pos = plug_in_at_pos(pos, nvar, u, data); | |||
| 399 | neg = plug_in_at_pos(neg, nvar, l, data); | |||
| 400 | ||||
| 401 | poly = isl_qpolynomial_add(pos, neg); | |||
| 402 | poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); | |||
| 403 | } | |||
| 404 | ||||
| 405 | if (nvar == 0) | |||
| 406 | r = add_guarded_poly(bset, poly, data); | |||
| 407 | else | |||
| 408 | r = propagate_on_domain(bset, poly, data); | |||
| 409 | ||||
| 410 | data->tight = save_tight; | |||
| 411 | ||||
| 412 | return r; | |||
| 413 | error: | |||
| 414 | isl_constraint_free(lower); | |||
| 415 | isl_constraint_free(upper); | |||
| 416 | isl_basic_set_free(bset); | |||
| 417 | return isl_stat_error; | |||
| 418 | } | |||
| 419 | ||||
| 420 | /* Recursively perform range propagation on the polynomial "poly" | |||
| 421 | * defined over the basic set "bset" and collect the results in "data". | |||
| 422 | */ | |||
| 423 | static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, | |||
| 424 | __isl_take isl_qpolynomial *poly, struct range_data *data) | |||
| 425 | { | |||
| 426 | isl_bool is_cst; | |||
| 427 | isl_ctx *ctx; | |||
| 428 | isl_qpolynomial *save_poly = data->poly; | |||
| ||||
| 429 | int save_monotonicity = data->monotonicity; | |||
| 430 | isl_size d; | |||
| 431 | ||||
| 432 | d = isl_basic_set_dim(bset, isl_dim_set); | |||
| 433 | is_cst = isl_qpolynomial_is_cst(poly, NULL((void*)0), NULL((void*)0)); | |||
| 434 | if (d < 0 || is_cst < 0) | |||
| 435 | goto error; | |||
| 436 | ||||
| 437 | ctx = isl_basic_set_get_ctx(bset); | |||
| 438 | isl_assert(ctx, d >= 1, goto error)do { if (d >= 1) break; do { isl_handle_error(ctx, isl_error_unknown , "Assertion \"" "d >= 1" "\" failed", "polly/lib/External/isl/isl_range.c" , 438); goto error; } while (0); } while (0); | |||
| 439 | ||||
| 440 | if (is_cst) { | |||
| 441 | bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d); | |||
| 442 | poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d); | |||
| 443 | return add_guarded_poly(bset, poly, data); | |||
| 444 | } | |||
| 445 | ||||
| 446 | if (data->test_monotonicity) | |||
| 447 | data->monotonicity = monotonicity(bset, poly, data); | |||
| 448 | else | |||
| 449 | data->monotonicity = 0; | |||
| 450 | if (data->monotonicity < -1) | |||
| 451 | goto error; | |||
| 452 | ||||
| 453 | data->poly = poly; | |||
| 454 | if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1, | |||
| 455 | &propagate_on_bound_pair, data) < 0) | |||
| 456 | goto error; | |||
| 457 | ||||
| 458 | isl_basic_set_free(bset); | |||
| 459 | isl_qpolynomial_free(poly); | |||
| 460 | data->monotonicity = save_monotonicity; | |||
| 461 | data->poly = save_poly; | |||
| 462 | ||||
| 463 | return isl_stat_ok; | |||
| 464 | error: | |||
| 465 | isl_basic_set_free(bset); | |||
| 466 | isl_qpolynomial_free(poly); | |||
| 467 | data->monotonicity = save_monotonicity; | |||
| 468 | data->poly = save_poly; | |||
| 469 | return isl_stat_error; | |||
| 470 | } | |||
| 471 | ||||
| 472 | static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset, | |||
| 473 | void *user) | |||
| 474 | { | |||
| 475 | struct range_data *data = (struct range_data *)user; | |||
| 476 | isl_ctx *ctx; | |||
| 477 | isl_size nparam = isl_basic_set_dim(bset, isl_dim_param); | |||
| 478 | isl_size dim = isl_basic_set_dim(bset, isl_dim_set); | |||
| 479 | isl_size total = isl_basic_set_dim(bset, isl_dim_all); | |||
| 480 | isl_stat r; | |||
| 481 | ||||
| 482 | data->signs = NULL((void*)0); | |||
| 483 | ||||
| 484 | if (nparam < 0 || dim < 0 || total < 0) | |||
| ||||
| 485 | goto error; | |||
| 486 | ||||
| 487 | ctx = isl_basic_set_get_ctx(bset); | |||
| 488 | data->signs = isl_alloc_array(ctx, int, total)((int *)isl_malloc_or_die(ctx, (total)*sizeof(int))); | |||
| 489 | ||||
| 490 | if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim, | |||
| 491 | data->signs + nparam) < 0) | |||
| 492 | goto error; | |||
| 493 | if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam, | |||
| 494 | data->signs) < 0) | |||
| 495 | goto error; | |||
| 496 | ||||
| 497 | r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data); | |||
| 498 | ||||
| 499 | free(data->signs); | |||
| 500 | ||||
| 501 | return r; | |||
| 502 | error: | |||
| 503 | free(data->signs); | |||
| 504 | isl_basic_set_free(bset); | |||
| 505 | return isl_stat_error; | |||
| 506 | } | |||
| 507 | ||||
| 508 | static isl_stat qpolynomial_bound_on_domain_range( | |||
| 509 | __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, | |||
| 510 | struct range_data *data) | |||
| 511 | { | |||
| 512 | isl_size nparam = isl_basic_set_dim(bset, isl_dim_param); | |||
| 513 | isl_size nvar = isl_basic_set_dim(bset, isl_dim_set); | |||
| 514 | isl_set *set = NULL((void*)0); | |||
| 515 | ||||
| 516 | if (nparam < 0 || nvar < 0) | |||
| 517 | goto error; | |||
| 518 | ||||
| 519 | if (nvar == 0) | |||
| 520 | return add_guarded_poly(bset, poly, data); | |||
| 521 | ||||
| 522 | set = isl_set_from_basic_set(bset); | |||
| 523 | set = isl_set_split_dims(set, isl_dim_param, 0, nparam); | |||
| 524 | set = isl_set_split_dims(set, isl_dim_set, 0, nvar); | |||
| 525 | ||||
| 526 | data->poly = poly; | |||
| 527 | ||||
| 528 | data->test_monotonicity = 1; | |||
| 529 | if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0) | |||
| 530 | goto error; | |||
| 531 | ||||
| 532 | isl_set_free(set); | |||
| 533 | isl_qpolynomial_free(poly); | |||
| 534 | ||||
| 535 | return isl_stat_ok; | |||
| 536 | error: | |||
| 537 | isl_set_free(set); | |||
| 538 | isl_qpolynomial_free(poly); | |||
| 539 | return isl_stat_error; | |||
| 540 | } | |||
| 541 | ||||
| 542 | isl_stat isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, | |||
| 543 | __isl_take isl_qpolynomial *poly, struct isl_bound *bound) | |||
| 544 | { | |||
| 545 | struct range_data data; | |||
| 546 | isl_stat r; | |||
| 547 | ||||
| 548 | data.pwf = bound->pwf; | |||
| 549 | data.pwf_tight = bound->pwf_tight; | |||
| 550 | data.tight = bound->check_tight; | |||
| 551 | if (bound->type == isl_fold_min) | |||
| 552 | data.sign = -1; | |||
| 553 | else | |||
| 554 | data.sign = 1; | |||
| 555 | ||||
| 556 | r = qpolynomial_bound_on_domain_range(bset, poly, &data); | |||
| 557 | ||||
| 558 | bound->pwf = data.pwf; | |||
| 559 | bound->pwf_tight = data.pwf_tight; | |||
| 560 | ||||
| 561 | return r; | |||
| 562 | } |