File: | build/source/polly/lib/External/isl/isl_sample.c |
Warning: | line 1332, column 2 Undefined or garbage value returned to caller |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * Copyright 2008-2009 Katholieke Universiteit Leuven | |||
3 | * | |||
4 | * Use of this software is governed by the MIT license | |||
5 | * | |||
6 | * Written by Sven Verdoolaege, K.U.Leuven, Departement | |||
7 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium | |||
8 | */ | |||
9 | ||||
10 | #include <isl_ctx_private.h> | |||
11 | #include <isl_map_private.h> | |||
12 | #include "isl_sample.h" | |||
13 | #include <isl/vec.h> | |||
14 | #include <isl/mat.h> | |||
15 | #include <isl_seq.h> | |||
16 | #include "isl_equalities.h" | |||
17 | #include "isl_tab.h" | |||
18 | #include "isl_basis_reduction.h" | |||
19 | #include <isl_factorization.h> | |||
20 | #include <isl_point_private.h> | |||
21 | #include <isl_options_private.h> | |||
22 | #include <isl_vec_private.h> | |||
23 | ||||
24 | #include <bset_from_bmap.c> | |||
25 | #include <set_to_map.c> | |||
26 | ||||
27 | static __isl_give isl_vec *isl_basic_set_sample_bounded( | |||
28 | __isl_take isl_basic_setisl_basic_map *bset); | |||
29 | ||||
30 | static __isl_give isl_vec *empty_sample(__isl_take isl_basic_setisl_basic_map *bset) | |||
31 | { | |||
32 | struct isl_vec *vec; | |||
33 | ||||
34 | vec = isl_vec_alloc(bset->ctx, 0); | |||
35 | isl_basic_set_free(bset); | |||
36 | return vec; | |||
37 | } | |||
38 | ||||
39 | /* Construct a zero sample of the same dimension as bset. | |||
40 | * As a special case, if bset is zero-dimensional, this | |||
41 | * function creates a zero-dimensional sample point. | |||
42 | */ | |||
43 | static __isl_give isl_vec *zero_sample(__isl_take isl_basic_setisl_basic_map *bset) | |||
44 | { | |||
45 | isl_size dim; | |||
46 | struct isl_vec *sample; | |||
47 | ||||
48 | dim = isl_basic_set_dim(bset, isl_dim_all); | |||
49 | if (dim < 0) | |||
50 | goto error; | |||
51 | sample = isl_vec_alloc(bset->ctx, 1 + dim); | |||
52 | if (sample) { | |||
53 | isl_int_set_si(sample->el[0], 1)isl_sioimath_set_si((sample->el[0]), 1); | |||
54 | isl_seq_clr(sample->el + 1, dim); | |||
55 | } | |||
56 | isl_basic_set_free(bset); | |||
57 | return sample; | |||
58 | error: | |||
59 | isl_basic_set_free(bset); | |||
60 | return NULL((void*)0); | |||
61 | } | |||
62 | ||||
63 | static __isl_give isl_vec *interval_sample(__isl_take isl_basic_setisl_basic_map *bset) | |||
64 | { | |||
65 | int i; | |||
66 | isl_int t; | |||
67 | struct isl_vec *sample; | |||
68 | ||||
69 | bset = isl_basic_set_simplify(bset); | |||
70 | if (!bset) | |||
71 | return NULL((void*)0); | |||
72 | if (isl_basic_set_plain_is_empty(bset)) | |||
73 | return empty_sample(bset); | |||
74 | if (bset->n_eq == 0 && bset->n_ineq == 0) | |||
75 | return zero_sample(bset); | |||
76 | ||||
77 | sample = isl_vec_alloc(bset->ctx, 2); | |||
78 | if (!sample) | |||
79 | goto error; | |||
80 | if (!bset) | |||
81 | return NULL((void*)0); | |||
82 | isl_int_set_si(sample->block.data[0], 1)isl_sioimath_set_si((sample->block.data[0]), 1); | |||
83 | ||||
84 | if (bset->n_eq > 0) { | |||
85 | isl_assert(bset->ctx, bset->n_eq == 1, goto error)do { if (bset->n_eq == 1) break; do { isl_handle_error(bset ->ctx, isl_error_unknown, "Assertion \"" "bset->n_eq == 1" "\" failed", "polly/lib/External/isl/isl_sample.c", 85); goto error; } while (0); } while (0); | |||
86 | isl_assert(bset->ctx, bset->n_ineq == 0, goto error)do { if (bset->n_ineq == 0) break; do { isl_handle_error(bset ->ctx, isl_error_unknown, "Assertion \"" "bset->n_ineq == 0" "\" failed", "polly/lib/External/isl/isl_sample.c", 86); goto error; } while (0); } while (0); | |||
87 | if (isl_int_is_one(bset->eq[0][1])(isl_sioimath_cmp_si(*(bset->eq[0][1]), 1) == 0)) | |||
88 | isl_int_neg(sample->el[1], bset->eq[0][0])isl_sioimath_neg((sample->el[1]), *(bset->eq[0][0])); | |||
89 | else { | |||
90 | isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),do { if ((isl_sioimath_cmp_si(*(bset->eq[0][1]), -1) == 0) ) break; do { isl_handle_error(bset->ctx, isl_error_unknown , "Assertion \"" "(isl_sioimath_cmp_si(*(bset->eq[0][1]), -1) == 0)" "\" failed", "polly/lib/External/isl/isl_sample.c", 91); goto error; } while (0); } while (0) | |||
91 | goto error)do { if ((isl_sioimath_cmp_si(*(bset->eq[0][1]), -1) == 0) ) break; do { isl_handle_error(bset->ctx, isl_error_unknown , "Assertion \"" "(isl_sioimath_cmp_si(*(bset->eq[0][1]), -1) == 0)" "\" failed", "polly/lib/External/isl/isl_sample.c", 91); goto error; } while (0); } while (0); | |||
92 | isl_int_set(sample->el[1], bset->eq[0][0])isl_sioimath_set((sample->el[1]), *(bset->eq[0][0])); | |||
93 | } | |||
94 | isl_basic_set_free(bset); | |||
95 | return sample; | |||
96 | } | |||
97 | ||||
98 | isl_int_init(t)isl_sioimath_init((t)); | |||
99 | if (isl_int_is_one(bset->ineq[0][1])(isl_sioimath_cmp_si(*(bset->ineq[0][1]), 1) == 0)) | |||
100 | isl_int_neg(sample->block.data[1], bset->ineq[0][0])isl_sioimath_neg((sample->block.data[1]), *(bset->ineq[ 0][0])); | |||
101 | else | |||
102 | isl_int_set(sample->block.data[1], bset->ineq[0][0])isl_sioimath_set((sample->block.data[1]), *(bset->ineq[ 0][0])); | |||
103 | for (i = 1; i < bset->n_ineq; ++i) { | |||
104 | isl_seq_inner_product(sample->block.data, | |||
105 | bset->ineq[i], 2, &t); | |||
106 | if (isl_int_is_neg(t)(isl_sioimath_sgn(*(t)) < 0)) | |||
107 | break; | |||
108 | } | |||
109 | isl_int_clear(t)isl_sioimath_clear((t)); | |||
110 | if (i < bset->n_ineq) { | |||
111 | isl_vec_free(sample); | |||
112 | return empty_sample(bset); | |||
113 | } | |||
114 | ||||
115 | isl_basic_set_free(bset); | |||
116 | return sample; | |||
117 | error: | |||
118 | isl_basic_set_free(bset); | |||
119 | isl_vec_free(sample); | |||
120 | return NULL((void*)0); | |||
121 | } | |||
122 | ||||
123 | /* Find a sample integer point, if any, in bset, which is known | |||
124 | * to have equalities. If bset contains no integer points, then | |||
125 | * return a zero-length vector. | |||
126 | * We simply remove the known equalities, compute a sample | |||
127 | * in the resulting bset, using the specified recurse function, | |||
128 | * and then transform the sample back to the original space. | |||
129 | */ | |||
130 | static __isl_give isl_vec *sample_eq(__isl_take isl_basic_setisl_basic_map *bset, | |||
131 | __isl_give isl_vec *(*recurse)(__isl_take isl_basic_setisl_basic_map *)) | |||
132 | { | |||
133 | struct isl_mat *T; | |||
134 | struct isl_vec *sample; | |||
135 | ||||
136 | if (!bset) | |||
137 | return NULL((void*)0); | |||
138 | ||||
139 | bset = isl_basic_set_remove_equalities(bset, &T, NULL((void*)0)); | |||
140 | sample = recurse(bset); | |||
141 | if (!sample || sample->size == 0) | |||
142 | isl_mat_free(T); | |||
143 | else | |||
144 | sample = isl_mat_vec_product(T, sample); | |||
145 | return sample; | |||
146 | } | |||
147 | ||||
148 | /* Return a matrix containing the equalities of the tableau | |||
149 | * in constraint form. The tableau is assumed to have | |||
150 | * an associated bset that has been kept up-to-date. | |||
151 | */ | |||
152 | static struct isl_mat *tab_equalities(struct isl_tab *tab) | |||
153 | { | |||
154 | int i, j; | |||
155 | int n_eq; | |||
156 | struct isl_mat *eq; | |||
157 | struct isl_basic_setisl_basic_map *bset; | |||
158 | ||||
159 | if (!tab) | |||
160 | return NULL((void*)0); | |||
161 | ||||
162 | bset = isl_tab_peek_bset(tab); | |||
163 | isl_assert(tab->mat->ctx, bset, return NULL)do { if (bset) break; do { isl_handle_error(tab->mat->ctx , isl_error_unknown, "Assertion \"" "bset" "\" failed", "polly/lib/External/isl/isl_sample.c" , 163); return ((void*)0); } while (0); } while (0); | |||
164 | ||||
165 | n_eq = tab->n_var - tab->n_col + tab->n_dead; | |||
166 | if (tab->empty || n_eq == 0) | |||
167 | return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var); | |||
168 | if (n_eq == tab->n_var) | |||
169 | return isl_mat_identity(tab->mat->ctx, tab->n_var); | |||
170 | ||||
171 | eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var); | |||
172 | if (!eq) | |||
173 | return NULL((void*)0); | |||
174 | for (i = 0, j = 0; i < tab->n_con; ++i) { | |||
175 | if (tab->con[i].is_row) | |||
176 | continue; | |||
177 | if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead) | |||
178 | continue; | |||
179 | if (i < bset->n_eq) | |||
180 | isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var); | |||
181 | else | |||
182 | isl_seq_cpy(eq->row[j], | |||
183 | bset->ineq[i - bset->n_eq] + 1, tab->n_var); | |||
184 | ++j; | |||
185 | } | |||
186 | isl_assert(bset->ctx, j == n_eq, goto error)do { if (j == n_eq) break; do { isl_handle_error(bset->ctx , isl_error_unknown, "Assertion \"" "j == n_eq" "\" failed", "polly/lib/External/isl/isl_sample.c" , 186); goto error; } while (0); } while (0); | |||
187 | return eq; | |||
188 | error: | |||
189 | isl_mat_free(eq); | |||
190 | return NULL((void*)0); | |||
191 | } | |||
192 | ||||
193 | /* Compute and return an initial basis for the bounded tableau "tab". | |||
194 | * | |||
195 | * If the tableau is either full-dimensional or zero-dimensional, | |||
196 | * the we simply return an identity matrix. | |||
197 | * Otherwise, we construct a basis whose first directions correspond | |||
198 | * to equalities. | |||
199 | */ | |||
200 | static struct isl_mat *initial_basis(struct isl_tab *tab) | |||
201 | { | |||
202 | int n_eq; | |||
203 | struct isl_mat *eq; | |||
204 | struct isl_mat *Q; | |||
205 | ||||
206 | tab->n_unbounded = 0; | |||
207 | tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead; | |||
208 | if (tab->empty || n_eq == 0 || n_eq == tab->n_var) | |||
209 | return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var); | |||
210 | ||||
211 | eq = tab_equalities(tab); | |||
212 | eq = isl_mat_left_hermite(eq, 0, NULL((void*)0), &Q); | |||
213 | if (!eq) | |||
214 | return NULL((void*)0); | |||
215 | isl_mat_free(eq); | |||
216 | ||||
217 | Q = isl_mat_lin_to_aff(Q); | |||
218 | return Q; | |||
219 | } | |||
220 | ||||
221 | /* Compute the minimum of the current ("level") basis row over "tab" | |||
222 | * and store the result in position "level" of "min". | |||
223 | * | |||
224 | * This function assumes that at least one more row and at least | |||
225 | * one more element in the constraint array are available in the tableau. | |||
226 | */ | |||
227 | static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab, | |||
228 | __isl_keep isl_vec *min, int level) | |||
229 | { | |||
230 | return isl_tab_min(tab, tab->basis->row[1 + level], | |||
231 | ctx->one, &min->el[level], NULL((void*)0), 0); | |||
232 | } | |||
233 | ||||
234 | /* Compute the maximum of the current ("level") basis row over "tab" | |||
235 | * and store the result in position "level" of "max". | |||
236 | * | |||
237 | * This function assumes that at least one more row and at least | |||
238 | * one more element in the constraint array are available in the tableau. | |||
239 | */ | |||
240 | static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab, | |||
241 | __isl_keep isl_vec *max, int level) | |||
242 | { | |||
243 | enum isl_lp_result res; | |||
244 | unsigned dim = tab->n_var; | |||
245 | ||||
246 | isl_seq_neg(tab->basis->row[1 + level] + 1, | |||
247 | tab->basis->row[1 + level] + 1, dim); | |||
248 | res = isl_tab_min(tab, tab->basis->row[1 + level], | |||
249 | ctx->one, &max->el[level], NULL((void*)0), 0); | |||
250 | isl_seq_neg(tab->basis->row[1 + level] + 1, | |||
251 | tab->basis->row[1 + level] + 1, dim); | |||
252 | isl_int_neg(max->el[level], max->el[level])isl_sioimath_neg((max->el[level]), *(max->el[level])); | |||
253 | ||||
254 | return res; | |||
255 | } | |||
256 | ||||
257 | /* Perform a greedy search for an integer point in the set represented | |||
258 | * by "tab", given that the minimal rational value (rounded up to the | |||
259 | * nearest integer) at "level" is smaller than the maximal rational | |||
260 | * value (rounded down to the nearest integer). | |||
261 | * | |||
262 | * Return 1 if we have found an integer point (if tab->n_unbounded > 0 | |||
263 | * then we may have only found integer values for the bounded dimensions | |||
264 | * and it is the responsibility of the caller to extend this solution | |||
265 | * to the unbounded dimensions). | |||
266 | * Return 0 if greedy search did not result in a solution. | |||
267 | * Return -1 if some error occurred. | |||
268 | * | |||
269 | * We assign a value half-way between the minimum and the maximum | |||
270 | * to the current dimension and check if the minimal value of the | |||
271 | * next dimension is still smaller than (or equal) to the maximal value. | |||
272 | * We continue this process until either | |||
273 | * - the minimal value (rounded up) is greater than the maximal value | |||
274 | * (rounded down). In this case, greedy search has failed. | |||
275 | * - we have exhausted all bounded dimensions, meaning that we have | |||
276 | * found a solution. | |||
277 | * - the sample value of the tableau is integral. | |||
278 | * - some error has occurred. | |||
279 | */ | |||
280 | static int greedy_search(isl_ctx *ctx, struct isl_tab *tab, | |||
281 | __isl_keep isl_vec *min, __isl_keep isl_vec *max, int level) | |||
282 | { | |||
283 | struct isl_tab_undo *snap; | |||
284 | enum isl_lp_result res; | |||
285 | ||||
286 | snap = isl_tab_snap(tab); | |||
287 | ||||
288 | do { | |||
289 | isl_int_add(tab->basis->row[1 + level][0],isl_sioimath_add((tab->basis->row[1 + level][0]), *(min ->el[level]), *(max->el[level])) | |||
290 | min->el[level], max->el[level])isl_sioimath_add((tab->basis->row[1 + level][0]), *(min ->el[level]), *(max->el[level])); | |||
291 | isl_int_fdiv_q_ui(tab->basis->row[1 + level][0],isl_sioimath_fdiv_q_ui((tab->basis->row[1 + level][0]), *(tab->basis->row[1 + level][0]), 2) | |||
292 | tab->basis->row[1 + level][0], 2)isl_sioimath_fdiv_q_ui((tab->basis->row[1 + level][0]), *(tab->basis->row[1 + level][0]), 2); | |||
293 | isl_int_neg(tab->basis->row[1 + level][0],isl_sioimath_neg((tab->basis->row[1 + level][0]), *(tab ->basis->row[1 + level][0])) | |||
294 | tab->basis->row[1 + level][0])isl_sioimath_neg((tab->basis->row[1 + level][0]), *(tab ->basis->row[1 + level][0])); | |||
295 | if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0) | |||
296 | return -1; | |||
297 | isl_int_set_si(tab->basis->row[1 + level][0], 0)isl_sioimath_set_si((tab->basis->row[1 + level][0]), 0); | |||
298 | ||||
299 | if (++level >= tab->n_var - tab->n_unbounded) | |||
300 | return 1; | |||
301 | if (isl_tab_sample_is_integer(tab)) | |||
302 | return 1; | |||
303 | ||||
304 | res = compute_min(ctx, tab, min, level); | |||
305 | if (res == isl_lp_error) | |||
306 | return -1; | |||
307 | if (res != isl_lp_ok) | |||
308 | isl_die(ctx, isl_error_internal,do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 310); return -1; } while (0) | |||
309 | "expecting bounded rational solution",do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 310); return -1; } while (0) | |||
310 | return -1)do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 310); return -1; } while (0); | |||
311 | res = compute_max(ctx, tab, max, level); | |||
312 | if (res == isl_lp_error) | |||
313 | return -1; | |||
314 | if (res != isl_lp_ok) | |||
315 | isl_die(ctx, isl_error_internal,do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 317); return -1; } while (0) | |||
316 | "expecting bounded rational solution",do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 317); return -1; } while (0) | |||
317 | return -1)do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 317); return -1; } while (0); | |||
318 | } while (isl_int_le(min->el[level], max->el[level])(isl_sioimath_cmp(*(min->el[level]), *(max->el[level])) <= 0)); | |||
319 | ||||
320 | if (isl_tab_rollback(tab, snap) < 0) | |||
321 | return -1; | |||
322 | ||||
323 | return 0; | |||
324 | } | |||
325 | ||||
326 | /* Given a tableau representing a set, find and return | |||
327 | * an integer point in the set, if there is any. | |||
328 | * | |||
329 | * We perform a depth first search | |||
330 | * for an integer point, by scanning all possible values in the range | |||
331 | * attained by a basis vector, where an initial basis may have been set | |||
332 | * by the calling function. Otherwise an initial basis that exploits | |||
333 | * the equalities in the tableau is created. | |||
334 | * tab->n_zero is currently ignored and is clobbered by this function. | |||
335 | * | |||
336 | * The tableau is allowed to have unbounded direction, but then | |||
337 | * the calling function needs to set an initial basis, with the | |||
338 | * unbounded directions last and with tab->n_unbounded set | |||
339 | * to the number of unbounded directions. | |||
340 | * Furthermore, the calling functions needs to add shifted copies | |||
341 | * of all constraints involving unbounded directions to ensure | |||
342 | * that any feasible rational value in these directions can be rounded | |||
343 | * up to yield a feasible integer value. | |||
344 | * In particular, let B define the given basis x' = B x | |||
345 | * and let T be the inverse of B, i.e., X = T x'. | |||
346 | * Let a x + c >= 0 be a constraint of the set represented by the tableau, | |||
347 | * or a T x' + c >= 0 in terms of the given basis. Assume that | |||
348 | * the bounded directions have an integer value, then we can safely | |||
349 | * round up the values for the unbounded directions if we make sure | |||
350 | * that x' not only satisfies the original constraint, but also | |||
351 | * the constraint "a T x' + c + s >= 0" with s the sum of all | |||
352 | * negative values in the last n_unbounded entries of "a T". | |||
353 | * The calling function therefore needs to add the constraint | |||
354 | * a x + c + s >= 0. The current function then scans the first | |||
355 | * directions for an integer value and once those have been found, | |||
356 | * it can compute "T ceil(B x)" to yield an integer point in the set. | |||
357 | * Note that during the search, the first rows of B may be changed | |||
358 | * by a basis reduction, but the last n_unbounded rows of B remain | |||
359 | * unaltered and are also not mixed into the first rows. | |||
360 | * | |||
361 | * The search is implemented iteratively. "level" identifies the current | |||
362 | * basis vector. "init" is true if we want the first value at the current | |||
363 | * level and false if we want the next value. | |||
364 | * | |||
365 | * At the start of each level, we first check if we can find a solution | |||
366 | * using greedy search. If not, we continue with the exhaustive search. | |||
367 | * | |||
368 | * The initial basis is the identity matrix. If the range in some direction | |||
369 | * contains more than one integer value, we perform basis reduction based | |||
370 | * on the value of ctx->opt->gbr | |||
371 | * - ISL_GBR_NEVER: never perform basis reduction | |||
372 | * - ISL_GBR_ONCE: only perform basis reduction the first | |||
373 | * time such a range is encountered | |||
374 | * - ISL_GBR_ALWAYS: always perform basis reduction when | |||
375 | * such a range is encountered | |||
376 | * | |||
377 | * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis | |||
378 | * reduction computation to return early. That is, as soon as it | |||
379 | * finds a reasonable first direction. | |||
380 | */ | |||
381 | __isl_give isl_vec *isl_tab_sample(struct isl_tab *tab) | |||
382 | { | |||
383 | unsigned dim; | |||
384 | unsigned gbr; | |||
385 | struct isl_ctx *ctx; | |||
386 | struct isl_vec *sample; | |||
387 | struct isl_vec *min; | |||
388 | struct isl_vec *max; | |||
389 | enum isl_lp_result res; | |||
390 | int level; | |||
391 | int init; | |||
392 | int reduced; | |||
393 | struct isl_tab_undo **snap; | |||
394 | ||||
395 | if (!tab) | |||
396 | return NULL((void*)0); | |||
397 | if (tab->empty) | |||
398 | return isl_vec_alloc(tab->mat->ctx, 0); | |||
399 | ||||
400 | if (!tab->basis) | |||
401 | tab->basis = initial_basis(tab); | |||
402 | if (!tab->basis) | |||
403 | return NULL((void*)0); | |||
404 | isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1,do { if (tab->basis->n_row == tab->n_var + 1) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown , "Assertion \"" "tab->basis->n_row == tab->n_var + 1" "\" failed", "polly/lib/External/isl/isl_sample.c", 405); return ((void*)0); } while (0); } while (0) | |||
405 | return NULL)do { if (tab->basis->n_row == tab->n_var + 1) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown , "Assertion \"" "tab->basis->n_row == tab->n_var + 1" "\" failed", "polly/lib/External/isl/isl_sample.c", 405); return ((void*)0); } while (0); } while (0); | |||
406 | isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1,do { if (tab->basis->n_col == tab->n_var + 1) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown , "Assertion \"" "tab->basis->n_col == tab->n_var + 1" "\" failed", "polly/lib/External/isl/isl_sample.c", 407); return ((void*)0); } while (0); } while (0) | |||
407 | return NULL)do { if (tab->basis->n_col == tab->n_var + 1) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown , "Assertion \"" "tab->basis->n_col == tab->n_var + 1" "\" failed", "polly/lib/External/isl/isl_sample.c", 407); return ((void*)0); } while (0); } while (0); | |||
408 | ||||
409 | ctx = tab->mat->ctx; | |||
410 | dim = tab->n_var; | |||
411 | gbr = ctx->opt->gbr; | |||
412 | ||||
413 | if (tab->n_unbounded == tab->n_var) { | |||
414 | sample = isl_tab_get_sample_value(tab); | |||
415 | sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample); | |||
416 | sample = isl_vec_ceil(sample); | |||
417 | sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis), | |||
418 | sample); | |||
419 | return sample; | |||
420 | } | |||
421 | ||||
422 | if (isl_tab_extend_cons(tab, dim + 1) < 0) | |||
423 | return NULL((void*)0); | |||
424 | ||||
425 | min = isl_vec_alloc(ctx, dim); | |||
426 | max = isl_vec_alloc(ctx, dim); | |||
427 | snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim)((struct isl_tab_undo * *)isl_malloc_or_die(ctx, (dim)*sizeof (struct isl_tab_undo *))); | |||
428 | ||||
429 | if (!min || !max || !snap) | |||
430 | goto error; | |||
431 | ||||
432 | level = 0; | |||
433 | init = 1; | |||
434 | reduced = 0; | |||
435 | ||||
436 | while (level >= 0) { | |||
437 | if (init) { | |||
438 | int choice; | |||
439 | ||||
440 | res = compute_min(ctx, tab, min, level); | |||
441 | if (res == isl_lp_error) | |||
442 | goto error; | |||
443 | if (res != isl_lp_ok) | |||
444 | isl_die(ctx, isl_error_internal,do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 446); goto error; } while (0) | |||
445 | "expecting bounded rational solution",do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 446); goto error; } while (0) | |||
446 | goto error)do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 446); goto error; } while (0); | |||
447 | if (isl_tab_sample_is_integer(tab)) | |||
448 | break; | |||
449 | res = compute_max(ctx, tab, max, level); | |||
450 | if (res == isl_lp_error) | |||
451 | goto error; | |||
452 | if (res != isl_lp_ok) | |||
453 | isl_die(ctx, isl_error_internal,do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 455); goto error; } while (0) | |||
454 | "expecting bounded rational solution",do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 455); goto error; } while (0) | |||
455 | goto error)do { isl_handle_error(ctx, isl_error_internal, "expecting bounded rational solution" , "polly/lib/External/isl/isl_sample.c", 455); goto error; } while (0); | |||
456 | if (isl_tab_sample_is_integer(tab)) | |||
457 | break; | |||
458 | choice = isl_int_lt(min->el[level], max->el[level])(isl_sioimath_cmp(*(min->el[level]), *(max->el[level])) < 0); | |||
459 | if (choice) { | |||
460 | int g; | |||
461 | g = greedy_search(ctx, tab, min, max, level); | |||
462 | if (g < 0) | |||
463 | goto error; | |||
464 | if (g) | |||
465 | break; | |||
466 | } | |||
467 | if (!reduced && choice && | |||
468 | ctx->opt->gbr != ISL_GBR_NEVER0) { | |||
469 | unsigned gbr_only_first; | |||
470 | if (ctx->opt->gbr == ISL_GBR_ONCE1) | |||
471 | ctx->opt->gbr = ISL_GBR_NEVER0; | |||
472 | tab->n_zero = level; | |||
473 | gbr_only_first = ctx->opt->gbr_only_first; | |||
474 | ctx->opt->gbr_only_first = | |||
475 | ctx->opt->gbr == ISL_GBR_ALWAYS2; | |||
476 | tab = isl_tab_compute_reduced_basis(tab); | |||
477 | ctx->opt->gbr_only_first = gbr_only_first; | |||
478 | if (!tab || !tab->basis) | |||
479 | goto error; | |||
480 | reduced = 1; | |||
481 | continue; | |||
482 | } | |||
483 | reduced = 0; | |||
484 | snap[level] = isl_tab_snap(tab); | |||
485 | } else | |||
486 | isl_int_add_ui(min->el[level], min->el[level], 1)isl_sioimath_add_ui((min->el[level]), *(min->el[level]) , 1); | |||
487 | ||||
488 | if (isl_int_gt(min->el[level], max->el[level])(isl_sioimath_cmp(*(min->el[level]), *(max->el[level])) > 0)) { | |||
489 | level--; | |||
490 | init = 0; | |||
491 | if (level >= 0) | |||
492 | if (isl_tab_rollback(tab, snap[level]) < 0) | |||
493 | goto error; | |||
494 | continue; | |||
495 | } | |||
496 | isl_int_neg(tab->basis->row[1 + level][0], min->el[level])isl_sioimath_neg((tab->basis->row[1 + level][0]), *(min ->el[level])); | |||
497 | if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0) | |||
498 | goto error; | |||
499 | isl_int_set_si(tab->basis->row[1 + level][0], 0)isl_sioimath_set_si((tab->basis->row[1 + level][0]), 0); | |||
500 | if (level + tab->n_unbounded < dim - 1) { | |||
501 | ++level; | |||
502 | init = 1; | |||
503 | continue; | |||
504 | } | |||
505 | break; | |||
506 | } | |||
507 | ||||
508 | if (level >= 0) { | |||
509 | sample = isl_tab_get_sample_value(tab); | |||
510 | if (!sample) | |||
511 | goto error; | |||
512 | if (tab->n_unbounded && !isl_int_is_one(sample->el[0])(isl_sioimath_cmp_si(*(sample->el[0]), 1) == 0)) { | |||
513 | sample = isl_mat_vec_product(isl_mat_copy(tab->basis), | |||
514 | sample); | |||
515 | sample = isl_vec_ceil(sample); | |||
516 | sample = isl_mat_vec_inverse_product( | |||
517 | isl_mat_copy(tab->basis), sample); | |||
518 | } | |||
519 | } else | |||
520 | sample = isl_vec_alloc(ctx, 0); | |||
521 | ||||
522 | ctx->opt->gbr = gbr; | |||
523 | isl_vec_free(min); | |||
524 | isl_vec_free(max); | |||
525 | free(snap); | |||
526 | return sample; | |||
527 | error: | |||
528 | ctx->opt->gbr = gbr; | |||
529 | isl_vec_free(min); | |||
530 | isl_vec_free(max); | |||
531 | free(snap); | |||
532 | return NULL((void*)0); | |||
533 | } | |||
534 | ||||
535 | static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_setisl_basic_map *bset); | |||
536 | ||||
537 | /* Internal data for factored_sample. | |||
538 | * "sample" collects the sample and may get reset to a zero-length vector | |||
539 | * signaling the absence of a sample vector. | |||
540 | * "pos" is the position of the contribution of the next factor. | |||
541 | */ | |||
542 | struct isl_factored_sample_data { | |||
543 | isl_vec *sample; | |||
544 | int pos; | |||
545 | }; | |||
546 | ||||
547 | /* isl_factorizer_every_factor_basic_set callback that extends | |||
548 | * the sample in data->sample with the contribution | |||
549 | * of the factor "bset". | |||
550 | * If "bset" turns out to be empty, then the product is empty too and | |||
551 | * no further factors need to be considered. | |||
552 | */ | |||
553 | static isl_bool factor_sample(__isl_keep isl_basic_setisl_basic_map *bset, void *user) | |||
554 | { | |||
555 | struct isl_factored_sample_data *data = user; | |||
556 | isl_vec *sample; | |||
557 | isl_size n; | |||
558 | ||||
559 | n = isl_basic_set_dim(bset, isl_dim_set); | |||
560 | if (n < 0) | |||
561 | return isl_bool_error; | |||
562 | ||||
563 | sample = sample_bounded(isl_basic_set_copy(bset)); | |||
564 | if (!sample) | |||
565 | return isl_bool_error; | |||
566 | if (sample->size == 0) { | |||
567 | isl_vec_free(data->sample); | |||
568 | data->sample = sample; | |||
569 | return isl_bool_false; | |||
570 | } | |||
571 | isl_seq_cpy(data->sample->el + data->pos, sample->el + 1, n); | |||
572 | isl_vec_free(sample); | |||
573 | data->pos += n; | |||
574 | ||||
575 | return isl_bool_true; | |||
576 | } | |||
577 | ||||
578 | /* Compute a sample point of the given basic set, based on the given, | |||
579 | * non-trivial factorization. | |||
580 | */ | |||
581 | static __isl_give isl_vec *factored_sample(__isl_take isl_basic_setisl_basic_map *bset, | |||
582 | __isl_take isl_factorizer *f) | |||
583 | { | |||
584 | struct isl_factored_sample_data data = { NULL((void*)0) }; | |||
585 | isl_ctx *ctx; | |||
586 | isl_size total; | |||
587 | isl_bool every; | |||
588 | ||||
589 | ctx = isl_basic_set_get_ctx(bset); | |||
590 | total = isl_basic_set_dim(bset, isl_dim_all); | |||
591 | if (!ctx || total < 0) | |||
592 | goto error; | |||
593 | ||||
594 | data.sample = isl_vec_alloc(ctx, 1 + total); | |||
595 | if (!data.sample) | |||
596 | goto error; | |||
597 | isl_int_set_si(data.sample->el[0], 1)isl_sioimath_set_si((data.sample->el[0]), 1); | |||
598 | data.pos = 1; | |||
599 | ||||
600 | every = isl_factorizer_every_factor_basic_set(f, &factor_sample, &data); | |||
601 | if (every < 0) { | |||
602 | data.sample = isl_vec_free(data.sample); | |||
603 | } else if (every) { | |||
604 | isl_morph *morph; | |||
605 | ||||
606 | morph = isl_morph_inverse(isl_morph_copy(f->morph)); | |||
607 | data.sample = isl_morph_vec(morph, data.sample); | |||
608 | } | |||
609 | ||||
610 | isl_basic_set_free(bset); | |||
611 | isl_factorizer_free(f); | |||
612 | return data.sample; | |||
613 | error: | |||
614 | isl_basic_set_free(bset); | |||
615 | isl_factorizer_free(f); | |||
616 | isl_vec_free(data.sample); | |||
617 | return NULL((void*)0); | |||
618 | } | |||
619 | ||||
620 | /* Given a basic set that is known to be bounded, find and return | |||
621 | * an integer point in the basic set, if there is any. | |||
622 | * | |||
623 | * After handling some trivial cases, we construct a tableau | |||
624 | * and then use isl_tab_sample to find a sample, passing it | |||
625 | * the identity matrix as initial basis. | |||
626 | */ | |||
627 | static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_setisl_basic_map *bset) | |||
628 | { | |||
629 | isl_size dim; | |||
630 | struct isl_vec *sample; | |||
631 | struct isl_tab *tab = NULL((void*)0); | |||
632 | isl_factorizer *f; | |||
633 | ||||
634 | if (!bset) | |||
635 | return NULL((void*)0); | |||
636 | ||||
637 | if (isl_basic_set_plain_is_empty(bset)) | |||
638 | return empty_sample(bset); | |||
639 | ||||
640 | dim = isl_basic_set_dim(bset, isl_dim_all); | |||
641 | if (dim < 0) | |||
642 | bset = isl_basic_set_free(bset); | |||
643 | if (dim == 0) | |||
644 | return zero_sample(bset); | |||
645 | if (dim == 1) | |||
646 | return interval_sample(bset); | |||
647 | if (bset->n_eq > 0) | |||
648 | return sample_eq(bset, sample_bounded); | |||
649 | ||||
650 | f = isl_basic_set_factorizer(bset); | |||
651 | if (!f) | |||
652 | goto error; | |||
653 | if (f->n_group != 0) | |||
654 | return factored_sample(bset, f); | |||
655 | isl_factorizer_free(f); | |||
656 | ||||
657 | tab = isl_tab_from_basic_set(bset, 1); | |||
658 | if (tab && tab->empty) { | |||
659 | isl_tab_free(tab); | |||
660 | ISL_F_SET(bset, ISL_BASIC_SET_EMPTY)(((bset)->flags) |= ((1 << 1))); | |||
661 | sample = isl_vec_alloc(isl_basic_set_get_ctx(bset), 0); | |||
662 | isl_basic_set_free(bset); | |||
663 | return sample; | |||
664 | } | |||
665 | ||||
666 | if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT)(!!(((bset)->flags) & ((1 << 2))))) | |||
667 | if (isl_tab_detect_implicit_equalities(tab) < 0) | |||
668 | goto error; | |||
669 | ||||
670 | sample = isl_tab_sample(tab); | |||
671 | if (!sample) | |||
672 | goto error; | |||
673 | ||||
674 | if (sample->size > 0) { | |||
675 | isl_vec_free(bset->sample); | |||
676 | bset->sample = isl_vec_copy(sample); | |||
677 | } | |||
678 | ||||
679 | isl_basic_set_free(bset); | |||
680 | isl_tab_free(tab); | |||
681 | return sample; | |||
682 | error: | |||
683 | isl_basic_set_free(bset); | |||
684 | isl_tab_free(tab); | |||
685 | return NULL((void*)0); | |||
686 | } | |||
687 | ||||
688 | /* Given a basic set "bset" and a value "sample" for the first coordinates | |||
689 | * of bset, plug in these values and drop the corresponding coordinates. | |||
690 | * | |||
691 | * We do this by computing the preimage of the transformation | |||
692 | * | |||
693 | * [ 1 0 ] | |||
694 | * x = [ s 0 ] x' | |||
695 | * [ 0 I ] | |||
696 | * | |||
697 | * where [1 s] is the sample value and I is the identity matrix of the | |||
698 | * appropriate dimension. | |||
699 | */ | |||
700 | static __isl_give isl_basic_setisl_basic_map *plug_in(__isl_take isl_basic_setisl_basic_map *bset, | |||
701 | __isl_take isl_vec *sample) | |||
702 | { | |||
703 | int i; | |||
704 | isl_size total; | |||
705 | struct isl_mat *T; | |||
706 | ||||
707 | total = isl_basic_set_dim(bset, isl_dim_all); | |||
708 | if (total < 0 || !sample) | |||
709 | goto error; | |||
710 | ||||
711 | T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1)); | |||
712 | if (!T) | |||
713 | goto error; | |||
714 | ||||
715 | for (i = 0; i < sample->size; ++i) { | |||
716 | isl_int_set(T->row[i][0], sample->el[i])isl_sioimath_set((T->row[i][0]), *(sample->el[i])); | |||
717 | isl_seq_clr(T->row[i] + 1, T->n_col - 1); | |||
718 | } | |||
719 | for (i = 0; i < T->n_col - 1; ++i) { | |||
720 | isl_seq_clr(T->row[sample->size + i], T->n_col); | |||
721 | isl_int_set_si(T->row[sample->size + i][1 + i], 1)isl_sioimath_set_si((T->row[sample->size + i][1 + i]), 1 ); | |||
722 | } | |||
723 | isl_vec_free(sample); | |||
724 | ||||
725 | bset = isl_basic_set_preimage(bset, T); | |||
726 | return bset; | |||
727 | error: | |||
728 | isl_basic_set_free(bset); | |||
729 | isl_vec_free(sample); | |||
730 | return NULL((void*)0); | |||
731 | } | |||
732 | ||||
733 | /* Given a basic set "bset", return any (possibly non-integer) point | |||
734 | * in the basic set. | |||
735 | */ | |||
736 | static __isl_give isl_vec *rational_sample(__isl_take isl_basic_setisl_basic_map *bset) | |||
737 | { | |||
738 | struct isl_tab *tab; | |||
739 | struct isl_vec *sample; | |||
740 | ||||
741 | if (!bset) | |||
742 | return NULL((void*)0); | |||
743 | ||||
744 | tab = isl_tab_from_basic_set(bset, 0); | |||
745 | sample = isl_tab_get_sample_value(tab); | |||
746 | isl_tab_free(tab); | |||
747 | ||||
748 | isl_basic_set_free(bset); | |||
749 | ||||
750 | return sample; | |||
751 | } | |||
752 | ||||
753 | /* Given a linear cone "cone" and a rational point "vec", | |||
754 | * construct a polyhedron with shifted copies of the constraints in "cone", | |||
755 | * i.e., a polyhedron with "cone" as its recession cone, such that each | |||
756 | * point x in this polyhedron is such that the unit box positioned at x | |||
757 | * lies entirely inside the affine cone 'vec + cone'. | |||
758 | * Any rational point in this polyhedron may therefore be rounded up | |||
759 | * to yield an integer point that lies inside said affine cone. | |||
760 | * | |||
761 | * Denote the constraints of cone by "<a_i, x> >= 0" and the rational | |||
762 | * point "vec" by v/d. | |||
763 | * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given | |||
764 | * by <a_i, x> - b/d >= 0. | |||
765 | * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone. | |||
766 | * We prefer this polyhedron over the actual affine cone because it doesn't | |||
767 | * require a scaling of the constraints. | |||
768 | * If each of the vertices of the unit cube positioned at x lies inside | |||
769 | * this polyhedron, then the whole unit cube at x lies inside the affine cone. | |||
770 | * We therefore impose that x' = x + \sum e_i, for any selection of unit | |||
771 | * vectors lies inside the polyhedron, i.e., | |||
772 | * | |||
773 | * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0 | |||
774 | * | |||
775 | * The most stringent of these constraints is the one that selects | |||
776 | * all negative a_i, so the polyhedron we are looking for has constraints | |||
777 | * | |||
778 | * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0 | |||
779 | * | |||
780 | * Note that if cone were known to have only non-negative rays | |||
781 | * (which can be accomplished by a unimodular transformation), | |||
782 | * then we would only have to check the points x' = x + e_i | |||
783 | * and we only have to add the smallest negative a_i (if any) | |||
784 | * instead of the sum of all negative a_i. | |||
785 | */ | |||
786 | static __isl_give isl_basic_setisl_basic_map *shift_cone(__isl_take isl_basic_setisl_basic_map *cone, | |||
787 | __isl_take isl_vec *vec) | |||
788 | { | |||
789 | int i, j, k; | |||
790 | isl_size total; | |||
791 | ||||
792 | struct isl_basic_setisl_basic_map *shift = NULL((void*)0); | |||
793 | ||||
794 | total = isl_basic_set_dim(cone, isl_dim_all); | |||
795 | if (total < 0 || !vec) | |||
796 | goto error; | |||
797 | ||||
798 | isl_assert(cone->ctx, cone->n_eq == 0, goto error)do { if (cone->n_eq == 0) break; do { isl_handle_error(cone ->ctx, isl_error_unknown, "Assertion \"" "cone->n_eq == 0" "\" failed", "polly/lib/External/isl/isl_sample.c", 798); goto error; } while (0); } while (0); | |||
799 | ||||
800 | shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone), | |||
801 | 0, 0, cone->n_ineq); | |||
802 | ||||
803 | for (i = 0; i < cone->n_ineq; ++i) { | |||
804 | k = isl_basic_set_alloc_inequality(shift); | |||
805 | if (k < 0) | |||
806 | goto error; | |||
807 | isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total); | |||
808 | isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total, | |||
809 | &shift->ineq[k][0]); | |||
810 | isl_int_cdiv_q(shift->ineq[k][0],isl_sioimath_cdiv_q((shift->ineq[k][0]), *(shift->ineq[ k][0]), *(vec->el[0])) | |||
811 | shift->ineq[k][0], vec->el[0])isl_sioimath_cdiv_q((shift->ineq[k][0]), *(shift->ineq[ k][0]), *(vec->el[0])); | |||
812 | isl_int_neg(shift->ineq[k][0], shift->ineq[k][0])isl_sioimath_neg((shift->ineq[k][0]), *(shift->ineq[k][ 0])); | |||
813 | for (j = 0; j < total; ++j) { | |||
814 | if (isl_int_is_nonneg(shift->ineq[k][1 + j])(isl_sioimath_sgn(*(shift->ineq[k][1 + j])) >= 0)) | |||
815 | continue; | |||
816 | isl_int_add(shift->ineq[k][0],isl_sioimath_add((shift->ineq[k][0]), *(shift->ineq[k][ 0]), *(shift->ineq[k][1 + j])) | |||
817 | shift->ineq[k][0], shift->ineq[k][1 + j])isl_sioimath_add((shift->ineq[k][0]), *(shift->ineq[k][ 0]), *(shift->ineq[k][1 + j])); | |||
818 | } | |||
819 | } | |||
820 | ||||
821 | isl_basic_set_free(cone); | |||
822 | isl_vec_free(vec); | |||
823 | ||||
824 | return isl_basic_set_finalize(shift); | |||
825 | error: | |||
826 | isl_basic_set_free(shift); | |||
827 | isl_basic_set_free(cone); | |||
828 | isl_vec_free(vec); | |||
829 | return NULL((void*)0); | |||
830 | } | |||
831 | ||||
832 | /* Given a rational point vec in a (transformed) basic set, | |||
833 | * such that cone is the recession cone of the original basic set, | |||
834 | * "round up" the rational point to an integer point. | |||
835 | * | |||
836 | * We first check if the rational point just happens to be integer. | |||
837 | * If not, we transform the cone in the same way as the basic set, | |||
838 | * pick a point x in this cone shifted to the rational point such that | |||
839 | * the whole unit cube at x is also inside this affine cone. | |||
840 | * Then we simply round up the coordinates of x and return the | |||
841 | * resulting integer point. | |||
842 | */ | |||
843 | static __isl_give isl_vec *round_up_in_cone(__isl_take isl_vec *vec, | |||
844 | __isl_take isl_basic_setisl_basic_map *cone, __isl_take isl_mat *U) | |||
845 | { | |||
846 | isl_size total; | |||
847 | ||||
848 | if (!vec || !cone || !U) | |||
849 | goto error; | |||
850 | ||||
851 | isl_assert(vec->ctx, vec->size != 0, goto error)do { if (vec->size != 0) break; do { isl_handle_error(vec-> ctx, isl_error_unknown, "Assertion \"" "vec->size != 0" "\" failed" , "polly/lib/External/isl/isl_sample.c", 851); goto error; } while (0); } while (0); | |||
852 | if (isl_int_is_one(vec->el[0])(isl_sioimath_cmp_si(*(vec->el[0]), 1) == 0)) { | |||
853 | isl_mat_free(U); | |||
854 | isl_basic_set_free(cone); | |||
855 | return vec; | |||
856 | } | |||
857 | ||||
858 | total = isl_basic_set_dim(cone, isl_dim_all); | |||
859 | if (total < 0) | |||
860 | goto error; | |||
861 | cone = isl_basic_set_preimage(cone, U); | |||
862 | cone = isl_basic_set_remove_dims(cone, isl_dim_set, | |||
863 | 0, total - (vec->size - 1)); | |||
864 | ||||
865 | cone = shift_cone(cone, vec); | |||
866 | ||||
867 | vec = rational_sample(cone); | |||
868 | vec = isl_vec_ceil(vec); | |||
869 | return vec; | |||
870 | error: | |||
871 | isl_mat_free(U); | |||
872 | isl_vec_free(vec); | |||
873 | isl_basic_set_free(cone); | |||
874 | return NULL((void*)0); | |||
875 | } | |||
876 | ||||
877 | /* Concatenate two integer vectors, i.e., two vectors with denominator | |||
878 | * (stored in element 0) equal to 1. | |||
879 | */ | |||
880 | static __isl_give isl_vec *vec_concat(__isl_take isl_vec *vec1, | |||
881 | __isl_take isl_vec *vec2) | |||
882 | { | |||
883 | struct isl_vec *vec; | |||
884 | ||||
885 | if (!vec1 || !vec2) | |||
886 | goto error; | |||
887 | isl_assert(vec1->ctx, vec1->size > 0, goto error)do { if (vec1->size > 0) break; do { isl_handle_error(vec1 ->ctx, isl_error_unknown, "Assertion \"" "vec1->size > 0" "\" failed", "polly/lib/External/isl/isl_sample.c", 887); goto error; } while (0); } while (0); | |||
888 | isl_assert(vec2->ctx, vec2->size > 0, goto error)do { if (vec2->size > 0) break; do { isl_handle_error(vec2 ->ctx, isl_error_unknown, "Assertion \"" "vec2->size > 0" "\" failed", "polly/lib/External/isl/isl_sample.c", 888); goto error; } while (0); } while (0); | |||
889 | isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error)do { if ((isl_sioimath_cmp_si(*(vec1->el[0]), 1) == 0)) break ; do { isl_handle_error(vec1->ctx, isl_error_unknown, "Assertion \"" "(isl_sioimath_cmp_si(*(vec1->el[0]), 1) == 0)" "\" failed" , "polly/lib/External/isl/isl_sample.c", 889); goto error; } while (0); } while (0); | |||
890 | isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error)do { if ((isl_sioimath_cmp_si(*(vec2->el[0]), 1) == 0)) break ; do { isl_handle_error(vec2->ctx, isl_error_unknown, "Assertion \"" "(isl_sioimath_cmp_si(*(vec2->el[0]), 1) == 0)" "\" failed" , "polly/lib/External/isl/isl_sample.c", 890); goto error; } while (0); } while (0); | |||
891 | ||||
892 | vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1); | |||
893 | if (!vec) | |||
894 | goto error; | |||
895 | ||||
896 | isl_seq_cpy(vec->el, vec1->el, vec1->size); | |||
897 | isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1); | |||
898 | ||||
899 | isl_vec_free(vec1); | |||
900 | isl_vec_free(vec2); | |||
901 | ||||
902 | return vec; | |||
903 | error: | |||
904 | isl_vec_free(vec1); | |||
905 | isl_vec_free(vec2); | |||
906 | return NULL((void*)0); | |||
907 | } | |||
908 | ||||
909 | /* Give a basic set "bset" with recession cone "cone", compute and | |||
910 | * return an integer point in bset, if any. | |||
911 | * | |||
912 | * If the recession cone is full-dimensional, then we know that | |||
913 | * bset contains an infinite number of integer points and it is | |||
914 | * fairly easy to pick one of them. | |||
915 | * If the recession cone is not full-dimensional, then we first | |||
916 | * transform bset such that the bounded directions appear as | |||
917 | * the first dimensions of the transformed basic set. | |||
918 | * We do this by using a unimodular transformation that transforms | |||
919 | * the equalities in the recession cone to equalities on the first | |||
920 | * dimensions. | |||
921 | * | |||
922 | * The transformed set is then projected onto its bounded dimensions. | |||
923 | * Note that to compute this projection, we can simply drop all constraints | |||
924 | * involving any of the unbounded dimensions since these constraints | |||
925 | * cannot be combined to produce a constraint on the bounded dimensions. | |||
926 | * To see this, assume that there is such a combination of constraints | |||
927 | * that produces a constraint on the bounded dimensions. This means | |||
928 | * that some combination of the unbounded dimensions has both an upper | |||
929 | * bound and a lower bound in terms of the bounded dimensions, but then | |||
930 | * this combination would be a bounded direction too and would have been | |||
931 | * transformed into a bounded dimensions. | |||
932 | * | |||
933 | * We then compute a sample value in the bounded dimensions. | |||
934 | * If no such value can be found, then the original set did not contain | |||
935 | * any integer points and we are done. | |||
936 | * Otherwise, we plug in the value we found in the bounded dimensions, | |||
937 | * project out these bounded dimensions and end up with a set with | |||
938 | * a full-dimensional recession cone. | |||
939 | * A sample point in this set is computed by "rounding up" any | |||
940 | * rational point in the set. | |||
941 | * | |||
942 | * The sample points in the bounded and unbounded dimensions are | |||
943 | * then combined into a single sample point and transformed back | |||
944 | * to the original space. | |||
945 | */ | |||
946 | __isl_give isl_vec *isl_basic_set_sample_with_cone( | |||
947 | __isl_take isl_basic_setisl_basic_map *bset, __isl_take isl_basic_setisl_basic_map *cone) | |||
948 | { | |||
949 | isl_size total; | |||
950 | unsigned cone_dim; | |||
951 | struct isl_mat *M, *U; | |||
952 | struct isl_vec *sample; | |||
953 | struct isl_vec *cone_sample; | |||
954 | struct isl_ctx *ctx; | |||
955 | struct isl_basic_setisl_basic_map *bounded; | |||
956 | ||||
957 | total = isl_basic_set_dim(cone, isl_dim_all); | |||
958 | if (!bset || total < 0) | |||
959 | goto error; | |||
960 | ||||
961 | ctx = isl_basic_set_get_ctx(bset); | |||
962 | cone_dim = total - cone->n_eq; | |||
963 | ||||
964 | M = isl_mat_sub_alloc6(ctx, cone->eq, 0, cone->n_eq, 1, total); | |||
965 | M = isl_mat_left_hermite(M, 0, &U, NULL((void*)0)); | |||
966 | if (!M) | |||
967 | goto error; | |||
968 | isl_mat_free(M); | |||
969 | ||||
970 | U = isl_mat_lin_to_aff(U); | |||
971 | bset = isl_basic_set_preimage(bset, isl_mat_copy(U)); | |||
972 | ||||
973 | bounded = isl_basic_set_copy(bset); | |||
974 | bounded = isl_basic_set_drop_constraints_involving(bounded, | |||
975 | total - cone_dim, cone_dim); | |||
976 | bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim); | |||
977 | sample = sample_bounded(bounded); | |||
978 | if (!sample || sample->size == 0) { | |||
979 | isl_basic_set_free(bset); | |||
980 | isl_basic_set_free(cone); | |||
981 | isl_mat_free(U); | |||
982 | return sample; | |||
983 | } | |||
984 | bset = plug_in(bset, isl_vec_copy(sample)); | |||
985 | cone_sample = rational_sample(bset); | |||
986 | cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U)); | |||
987 | sample = vec_concat(sample, cone_sample); | |||
988 | sample = isl_mat_vec_product(U, sample); | |||
989 | return sample; | |||
990 | error: | |||
991 | isl_basic_set_free(cone); | |||
992 | isl_basic_set_free(bset); | |||
993 | return NULL((void*)0); | |||
994 | } | |||
995 | ||||
996 | static void vec_sum_of_neg(__isl_keep isl_vec *v, isl_int *s) | |||
997 | { | |||
998 | int i; | |||
999 | ||||
1000 | isl_int_set_si(*s, 0)isl_sioimath_set_si((*s), 0); | |||
1001 | ||||
1002 | for (i = 0; i < v->size; ++i) | |||
1003 | if (isl_int_is_neg(v->el[i])(isl_sioimath_sgn(*(v->el[i])) < 0)) | |||
1004 | isl_int_add(*s, *s, v->el[i])isl_sioimath_add((*s), *(*s), *(v->el[i])); | |||
1005 | } | |||
1006 | ||||
1007 | /* Given a tableau "tab", a tableau "tab_cone" that corresponds | |||
1008 | * to the recession cone and the inverse of a new basis U = inv(B), | |||
1009 | * with the unbounded directions in B last, | |||
1010 | * add constraints to "tab" that ensure any rational value | |||
1011 | * in the unbounded directions can be rounded up to an integer value. | |||
1012 | * | |||
1013 | * The new basis is given by x' = B x, i.e., x = U x'. | |||
1014 | * For any rational value of the last tab->n_unbounded coordinates | |||
1015 | * in the update tableau, the value that is obtained by rounding | |||
1016 | * up this value should be contained in the original tableau. | |||
1017 | * For any constraint "a x + c >= 0", we therefore need to add | |||
1018 | * a constraint "a x + c + s >= 0", with s the sum of all negative | |||
1019 | * entries in the last elements of "a U". | |||
1020 | * | |||
1021 | * Since we are not interested in the first entries of any of the "a U", | |||
1022 | * we first drop the columns of U that correpond to bounded directions. | |||
1023 | */ | |||
1024 | static int tab_shift_cone(struct isl_tab *tab, | |||
1025 | struct isl_tab *tab_cone, struct isl_mat *U) | |||
1026 | { | |||
1027 | int i; | |||
1028 | isl_int v; | |||
1029 | struct isl_basic_setisl_basic_map *bset = NULL((void*)0); | |||
1030 | ||||
1031 | if (tab && tab->n_unbounded == 0) { | |||
1032 | isl_mat_free(U); | |||
1033 | return 0; | |||
1034 | } | |||
1035 | isl_int_init(v)isl_sioimath_init((v)); | |||
1036 | if (!tab || !tab_cone || !U) | |||
1037 | goto error; | |||
1038 | bset = isl_tab_peek_bset(tab_cone); | |||
1039 | U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded); | |||
1040 | for (i = 0; i < bset->n_ineq; ++i) { | |||
1041 | int ok; | |||
1042 | struct isl_vec *row = NULL((void*)0); | |||
1043 | if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i)) | |||
1044 | continue; | |||
1045 | row = isl_vec_alloc(bset->ctx, tab_cone->n_var); | |||
1046 | if (!row) | |||
1047 | goto error; | |||
1048 | isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var); | |||
1049 | row = isl_vec_mat_product(row, isl_mat_copy(U)); | |||
1050 | if (!row) | |||
1051 | goto error; | |||
1052 | vec_sum_of_neg(row, &v); | |||
1053 | isl_vec_free(row); | |||
1054 | if (isl_int_is_zero(v)(isl_sioimath_sgn(*(v)) == 0)) | |||
1055 | continue; | |||
1056 | if (isl_tab_extend_cons(tab, 1) < 0) | |||
1057 | goto error; | |||
1058 | isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v)isl_sioimath_add((bset->ineq[i][0]), *(bset->ineq[i][0] ), *(v)); | |||
1059 | ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0; | |||
1060 | isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v)isl_sioimath_sub((bset->ineq[i][0]), *(bset->ineq[i][0] ), *(v)); | |||
1061 | if (!ok) | |||
1062 | goto error; | |||
1063 | } | |||
1064 | ||||
1065 | isl_mat_free(U); | |||
1066 | isl_int_clear(v)isl_sioimath_clear((v)); | |||
1067 | return 0; | |||
1068 | error: | |||
1069 | isl_mat_free(U); | |||
1070 | isl_int_clear(v)isl_sioimath_clear((v)); | |||
1071 | return -1; | |||
1072 | } | |||
1073 | ||||
1074 | /* Compute and return an initial basis for the possibly | |||
1075 | * unbounded tableau "tab". "tab_cone" is a tableau | |||
1076 | * for the corresponding recession cone. | |||
1077 | * Additionally, add constraints to "tab" that ensure | |||
1078 | * that any rational value for the unbounded directions | |||
1079 | * can be rounded up to an integer value. | |||
1080 | * | |||
1081 | * If the tableau is bounded, i.e., if the recession cone | |||
1082 | * is zero-dimensional, then we just use inital_basis. | |||
1083 | * Otherwise, we construct a basis whose first directions | |||
1084 | * correspond to equalities, followed by bounded directions, | |||
1085 | * i.e., equalities in the recession cone. | |||
1086 | * The remaining directions are then unbounded. | |||
1087 | */ | |||
1088 | int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab, | |||
1089 | struct isl_tab *tab_cone) | |||
1090 | { | |||
1091 | struct isl_mat *eq; | |||
1092 | struct isl_mat *cone_eq; | |||
1093 | struct isl_mat *U, *Q; | |||
1094 | ||||
1095 | if (!tab || !tab_cone) | |||
1096 | return -1; | |||
1097 | ||||
1098 | if (tab_cone->n_col == tab_cone->n_dead) { | |||
1099 | tab->basis = initial_basis(tab); | |||
1100 | return tab->basis ? 0 : -1; | |||
1101 | } | |||
1102 | ||||
1103 | eq = tab_equalities(tab); | |||
1104 | if (!eq) | |||
1105 | return -1; | |||
1106 | tab->n_zero = eq->n_row; | |||
1107 | cone_eq = tab_equalities(tab_cone); | |||
1108 | eq = isl_mat_concat(eq, cone_eq); | |||
1109 | if (!eq) | |||
1110 | return -1; | |||
1111 | tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero); | |||
1112 | eq = isl_mat_left_hermite(eq, 0, &U, &Q); | |||
1113 | if (!eq) | |||
1114 | return -1; | |||
1115 | isl_mat_free(eq); | |||
1116 | tab->basis = isl_mat_lin_to_aff(Q); | |||
1117 | if (tab_shift_cone(tab, tab_cone, U) < 0) | |||
1118 | return -1; | |||
1119 | if (!tab->basis) | |||
1120 | return -1; | |||
1121 | return 0; | |||
1122 | } | |||
1123 | ||||
1124 | /* Compute and return a sample point in bset using generalized basis | |||
1125 | * reduction. We first check if the input set has a non-trivial | |||
1126 | * recession cone. If so, we perform some extra preprocessing in | |||
1127 | * sample_with_cone. Otherwise, we directly perform generalized basis | |||
1128 | * reduction. | |||
1129 | */ | |||
1130 | static __isl_give isl_vec *gbr_sample(__isl_take isl_basic_setisl_basic_map *bset) | |||
1131 | { | |||
1132 | isl_size dim; | |||
1133 | struct isl_basic_setisl_basic_map *cone; | |||
1134 | ||||
1135 | dim = isl_basic_set_dim(bset, isl_dim_all); | |||
1136 | if (dim < 0) | |||
1137 | goto error; | |||
1138 | ||||
1139 | cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset)); | |||
1140 | if (!cone) | |||
1141 | goto error; | |||
1142 | ||||
1143 | if (cone->n_eq < dim) | |||
1144 | return isl_basic_set_sample_with_cone(bset, cone); | |||
1145 | ||||
1146 | isl_basic_set_free(cone); | |||
1147 | return sample_bounded(bset); | |||
1148 | error: | |||
1149 | isl_basic_set_free(bset); | |||
1150 | return NULL((void*)0); | |||
1151 | } | |||
1152 | ||||
1153 | static __isl_give isl_vec *basic_set_sample(__isl_take isl_basic_setisl_basic_map *bset, | |||
1154 | int bounded) | |||
1155 | { | |||
1156 | isl_size dim; | |||
1157 | if (!bset) | |||
1158 | return NULL((void*)0); | |||
1159 | ||||
1160 | if (isl_basic_set_plain_is_empty(bset)) | |||
1161 | return empty_sample(bset); | |||
1162 | ||||
1163 | dim = isl_basic_set_dim(bset, isl_dim_set); | |||
1164 | if (dim < 0 || | |||
1165 | isl_basic_set_check_no_params(bset) < 0 || | |||
1166 | isl_basic_set_check_no_locals(bset) < 0) | |||
1167 | goto error; | |||
1168 | ||||
1169 | if (bset->sample && bset->sample->size == 1 + dim) { | |||
1170 | int contains = isl_basic_set_contains(bset, bset->sample); | |||
1171 | if (contains < 0) | |||
1172 | goto error; | |||
1173 | if (contains) { | |||
1174 | struct isl_vec *sample = isl_vec_copy(bset->sample); | |||
1175 | isl_basic_set_free(bset); | |||
1176 | return sample; | |||
1177 | } | |||
1178 | } | |||
1179 | isl_vec_free(bset->sample); | |||
1180 | bset->sample = NULL((void*)0); | |||
1181 | ||||
1182 | if (bset->n_eq > 0) | |||
1183 | return sample_eq(bset, bounded ? isl_basic_set_sample_bounded | |||
1184 | : isl_basic_set_sample_vec); | |||
1185 | if (dim == 0) | |||
1186 | return zero_sample(bset); | |||
1187 | if (dim == 1) | |||
1188 | return interval_sample(bset); | |||
1189 | ||||
1190 | return bounded ? sample_bounded(bset) : gbr_sample(bset); | |||
1191 | error: | |||
1192 | isl_basic_set_free(bset); | |||
1193 | return NULL((void*)0); | |||
1194 | } | |||
1195 | ||||
1196 | __isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_setisl_basic_map *bset) | |||
1197 | { | |||
1198 | return basic_set_sample(bset, 0); | |||
1199 | } | |||
1200 | ||||
1201 | /* Compute an integer sample in "bset", where the caller guarantees | |||
1202 | * that "bset" is bounded. | |||
1203 | */ | |||
1204 | __isl_give isl_vec *isl_basic_set_sample_bounded(__isl_take isl_basic_setisl_basic_map *bset) | |||
1205 | { | |||
1206 | return basic_set_sample(bset, 1); | |||
1207 | } | |||
1208 | ||||
1209 | __isl_give isl_basic_setisl_basic_map *isl_basic_set_from_vec(__isl_take isl_vec *vec) | |||
1210 | { | |||
1211 | int i; | |||
1212 | int k; | |||
1213 | struct isl_basic_setisl_basic_map *bset = NULL((void*)0); | |||
1214 | struct isl_ctx *ctx; | |||
1215 | isl_size dim; | |||
1216 | ||||
1217 | if (!vec) | |||
1218 | return NULL((void*)0); | |||
1219 | ctx = vec->ctx; | |||
1220 | isl_assert(ctx, vec->size != 0, goto error)do { if (vec->size != 0) break; do { isl_handle_error(ctx, isl_error_unknown, "Assertion \"" "vec->size != 0" "\" failed" , "polly/lib/External/isl/isl_sample.c", 1220); goto error; } while (0); } while (0); | |||
1221 | ||||
1222 | bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0); | |||
1223 | dim = isl_basic_set_dim(bset, isl_dim_set); | |||
1224 | if (dim < 0) | |||
1225 | goto error; | |||
1226 | for (i = dim - 1; i >= 0; --i) { | |||
1227 | k = isl_basic_set_alloc_equality(bset); | |||
1228 | if (k < 0) | |||
1229 | goto error; | |||
1230 | isl_seq_clr(bset->eq[k], 1 + dim); | |||
1231 | isl_int_neg(bset->eq[k][0], vec->el[1 + i])isl_sioimath_neg((bset->eq[k][0]), *(vec->el[1 + i])); | |||
1232 | isl_int_set(bset->eq[k][1 + i], vec->el[0])isl_sioimath_set((bset->eq[k][1 + i]), *(vec->el[0])); | |||
1233 | } | |||
1234 | bset->sample = vec; | |||
1235 | ||||
1236 | return bset; | |||
1237 | error: | |||
1238 | isl_basic_set_free(bset); | |||
1239 | isl_vec_free(vec); | |||
1240 | return NULL((void*)0); | |||
1241 | } | |||
1242 | ||||
1243 | __isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap) | |||
1244 | { | |||
1245 | struct isl_basic_setisl_basic_map *bset; | |||
1246 | struct isl_vec *sample_vec; | |||
1247 | ||||
1248 | bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap)); | |||
1249 | sample_vec = isl_basic_set_sample_vec(bset); | |||
1250 | if (!sample_vec) | |||
1251 | goto error; | |||
1252 | if (sample_vec->size == 0) { | |||
1253 | isl_vec_free(sample_vec); | |||
1254 | return isl_basic_map_set_to_empty(bmap); | |||
1255 | } | |||
1256 | isl_vec_free(bmap->sample); | |||
1257 | bmap->sample = isl_vec_copy(sample_vec); | |||
1258 | bset = isl_basic_set_from_vec(sample_vec); | |||
1259 | return isl_basic_map_overlying_set(bset, bmap); | |||
1260 | error: | |||
1261 | isl_basic_map_free(bmap); | |||
1262 | return NULL((void*)0); | |||
1263 | } | |||
1264 | ||||
1265 | __isl_give isl_basic_setisl_basic_map *isl_basic_set_sample(__isl_take isl_basic_setisl_basic_map *bset) | |||
1266 | { | |||
1267 | return isl_basic_map_sample(bset); | |||
1268 | } | |||
1269 | ||||
1270 | __isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map) | |||
1271 | { | |||
1272 | int i; | |||
1273 | isl_basic_map *sample = NULL((void*)0); | |||
1274 | ||||
1275 | if (!map) | |||
1276 | goto error; | |||
1277 | ||||
1278 | for (i = 0; i < map->n; ++i) { | |||
1279 | sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i])); | |||
1280 | if (!sample) | |||
1281 | goto error; | |||
1282 | if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY)(!!(((sample)->flags) & ((1 << 1))))) | |||
1283 | break; | |||
1284 | isl_basic_map_free(sample); | |||
1285 | } | |||
1286 | if (i == map->n) | |||
1287 | sample = isl_basic_map_empty(isl_map_get_space(map)); | |||
1288 | isl_map_free(map); | |||
1289 | return sample; | |||
1290 | error: | |||
1291 | isl_map_free(map); | |||
1292 | return NULL((void*)0); | |||
1293 | } | |||
1294 | ||||
1295 | __isl_give isl_basic_setisl_basic_map *isl_set_sample(__isl_take isl_setisl_map *set) | |||
1296 | { | |||
1297 | return bset_from_bmap(isl_map_sample(set_to_map(set))); | |||
1298 | } | |||
1299 | ||||
1300 | __isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_setisl_basic_map *bset) | |||
1301 | { | |||
1302 | isl_vec *vec; | |||
1303 | isl_space *space; | |||
1304 | ||||
1305 | space = isl_basic_set_get_space(bset); | |||
1306 | bset = isl_basic_set_underlying_set(bset); | |||
1307 | vec = isl_basic_set_sample_vec(bset); | |||
1308 | ||||
1309 | return isl_point_alloc(space, vec); | |||
1310 | } | |||
1311 | ||||
1312 | __isl_give isl_point *isl_set_sample_point(__isl_take isl_setisl_map *set) | |||
1313 | { | |||
1314 | int i; | |||
1315 | isl_point *pnt; | |||
| ||||
1316 | ||||
1317 | if (!set) | |||
1318 | return NULL((void*)0); | |||
1319 | ||||
1320 | for (i = 0; i < set->n; ++i) { | |||
1321 | pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i])); | |||
1322 | if (!pnt) | |||
1323 | goto error; | |||
1324 | if (!isl_point_is_void(pnt)) | |||
1325 | break; | |||
1326 | isl_point_free(pnt); | |||
1327 | } | |||
1328 | if (i == set->n) | |||
1329 | pnt = isl_point_void(isl_set_get_space(set)); | |||
1330 | ||||
1331 | isl_set_free(set); | |||
1332 | return pnt; | |||
| ||||
1333 | error: | |||
1334 | isl_set_free(set); | |||
1335 | return NULL((void*)0); | |||
1336 | } |