File: | build/source/polly/lib/External/isl/isl_tab_lexopt_templ.c |
Warning: | line 167, column 9 5th function call argument is an uninitialized value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | ||||
2 | * Copyright 2008-2009 Katholieke Universiteit Leuven | ||||
3 | * Copyright 2010 INRIA Saclay | ||||
4 | * Copyright 2016-2017 Sven Verdoolaege | ||||
5 | * | ||||
6 | * Use of this software is governed by the MIT license | ||||
7 | * | ||||
8 | * Written by Sven Verdoolaege, K.U.Leuven, Departement | ||||
9 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium | ||||
10 | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, | ||||
11 | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France | ||||
12 | */ | ||||
13 | |||||
14 | #include <isl_ctx_private.h> | ||||
15 | #include "isl_map_private.h" | ||||
16 | #include <isl_seq.h> | ||||
17 | #include "isl_tab.h" | ||||
18 | #include "isl_sample.h" | ||||
19 | #include <isl_mat_private.h> | ||||
20 | #include <isl_vec_private.h> | ||||
21 | #include <isl_aff_private.h> | ||||
22 | #include <isl_constraint_private.h> | ||||
23 | #include <isl_options_private.h> | ||||
24 | #include <isl_config.h> | ||||
25 | |||||
26 | #include <bset_to_bmap.c> | ||||
27 | |||||
28 | /* | ||||
29 | * The implementation of parametric integer linear programming in this file | ||||
30 | * was inspired by the paper "Parametric Integer Programming" and the | ||||
31 | * report "Solving systems of affine (in)equalities" by Paul Feautrier | ||||
32 | * (and others). | ||||
33 | * | ||||
34 | * The strategy used for obtaining a feasible solution is different | ||||
35 | * from the one used in isl_tab.c. In particular, in isl_tab.c, | ||||
36 | * upon finding a constraint that is not yet satisfied, we pivot | ||||
37 | * in a row that increases the constant term of the row holding the | ||||
38 | * constraint, making sure the sample solution remains feasible | ||||
39 | * for all the constraints it already satisfied. | ||||
40 | * Here, we always pivot in the row holding the constraint, | ||||
41 | * choosing a column that induces the lexicographically smallest | ||||
42 | * increment to the sample solution. | ||||
43 | * | ||||
44 | * By starting out from a sample value that is lexicographically | ||||
45 | * smaller than any integer point in the problem space, the first | ||||
46 | * feasible integer sample point we find will also be the lexicographically | ||||
47 | * smallest. If all variables can be assumed to be non-negative, | ||||
48 | * then the initial sample value may be chosen equal to zero. | ||||
49 | * However, we will not make this assumption. Instead, we apply | ||||
50 | * the "big parameter" trick. Any variable x is then not directly | ||||
51 | * used in the tableau, but instead it is represented by another | ||||
52 | * variable x' = M + x, where M is an arbitrarily large (positive) | ||||
53 | * value. x' is therefore always non-negative, whatever the value of x. | ||||
54 | * Taking as initial sample value x' = 0 corresponds to x = -M, | ||||
55 | * which is always smaller than any possible value of x. | ||||
56 | * | ||||
57 | * The big parameter trick is used in the main tableau and | ||||
58 | * also in the context tableau if isl_context_lex is used. | ||||
59 | * In this case, each tableaus has its own big parameter. | ||||
60 | * Before doing any real work, we check if all the parameters | ||||
61 | * happen to be non-negative. If so, we drop the column corresponding | ||||
62 | * to M from the initial context tableau. | ||||
63 | * If isl_context_gbr is used, then the big parameter trick is only | ||||
64 | * used in the main tableau. | ||||
65 | */ | ||||
66 | |||||
67 | struct isl_context; | ||||
68 | struct isl_context_op { | ||||
69 | /* detect nonnegative parameters in context and mark them in tab */ | ||||
70 | struct isl_tab *(*detect_nonnegative_parameters)( | ||||
71 | struct isl_context *context, struct isl_tab *tab); | ||||
72 | /* return temporary reference to basic set representation of context */ | ||||
73 | struct isl_basic_setisl_basic_map *(*peek_basic_set)(struct isl_context *context); | ||||
74 | /* return temporary reference to tableau representation of context */ | ||||
75 | struct isl_tab *(*peek_tab)(struct isl_context *context); | ||||
76 | /* add equality; check is 1 if eq may not be valid; | ||||
77 | * update is 1 if we may want to call ineq_sign on context later. | ||||
78 | */ | ||||
79 | void (*add_eq)(struct isl_context *context, isl_int *eq, | ||||
80 | int check, int update); | ||||
81 | /* add inequality; check is 1 if ineq may not be valid; | ||||
82 | * update is 1 if we may want to call ineq_sign on context later. | ||||
83 | */ | ||||
84 | void (*add_ineq)(struct isl_context *context, isl_int *ineq, | ||||
85 | int check, int update); | ||||
86 | /* check sign of ineq based on previous information. | ||||
87 | * strict is 1 if saturation should be treated as a positive sign. | ||||
88 | */ | ||||
89 | enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context, | ||||
90 | isl_int *ineq, int strict); | ||||
91 | /* check if inequality maintains feasibility */ | ||||
92 | int (*test_ineq)(struct isl_context *context, isl_int *ineq); | ||||
93 | /* return index of a div that corresponds to "div" */ | ||||
94 | int (*get_div)(struct isl_context *context, struct isl_tab *tab, | ||||
95 | struct isl_vec *div); | ||||
96 | /* insert div "div" to context at "pos" and return non-negativity */ | ||||
97 | isl_bool (*insert_div)(struct isl_context *context, int pos, | ||||
98 | __isl_keep isl_vec *div); | ||||
99 | int (*detect_equalities)(struct isl_context *context, | ||||
100 | struct isl_tab *tab); | ||||
101 | /* return row index of "best" split */ | ||||
102 | int (*best_split)(struct isl_context *context, struct isl_tab *tab); | ||||
103 | /* check if context has already been determined to be empty */ | ||||
104 | int (*is_empty)(struct isl_context *context); | ||||
105 | /* check if context is still usable */ | ||||
106 | int (*is_ok)(struct isl_context *context); | ||||
107 | /* save a copy/snapshot of context */ | ||||
108 | void *(*save)(struct isl_context *context); | ||||
109 | /* restore saved context */ | ||||
110 | void (*restore)(struct isl_context *context, void *); | ||||
111 | /* discard saved context */ | ||||
112 | void (*discard)(void *); | ||||
113 | /* invalidate context */ | ||||
114 | void (*invalidate)(struct isl_context *context); | ||||
115 | /* free context */ | ||||
116 | __isl_null struct isl_context *(*free)(struct isl_context *context); | ||||
117 | }; | ||||
118 | |||||
119 | /* Shared parts of context representation. | ||||
120 | * | ||||
121 | * "n_unknown" is the number of final unknown integer divisions | ||||
122 | * in the input domain. | ||||
123 | */ | ||||
124 | struct isl_context { | ||||
125 | struct isl_context_op *op; | ||||
126 | int n_unknown; | ||||
127 | }; | ||||
128 | |||||
129 | struct isl_context_lex { | ||||
130 | struct isl_context context; | ||||
131 | struct isl_tab *tab; | ||||
132 | }; | ||||
133 | |||||
134 | /* A stack (linked list) of solutions of subtrees of the search space. | ||||
135 | * | ||||
136 | * "ma" describes the solution as a function of "dom". | ||||
137 | * In particular, the domain space of "ma" is equal to the space of "dom". | ||||
138 | * | ||||
139 | * If "ma" is NULL, then there is no solution on "dom". | ||||
140 | */ | ||||
141 | struct isl_partial_sol { | ||||
142 | int level; | ||||
143 | struct isl_basic_setisl_basic_map *dom; | ||||
144 | isl_multi_aff *ma; | ||||
145 | |||||
146 | struct isl_partial_sol *next; | ||||
147 | }; | ||||
148 | |||||
149 | struct isl_sol; | ||||
150 | struct isl_sol_callback { | ||||
151 | struct isl_tab_callback callback; | ||||
152 | struct isl_sol *sol; | ||||
153 | }; | ||||
154 | |||||
155 | /* isl_sol is an interface for constructing a solution to | ||||
156 | * a parametric integer linear programming problem. | ||||
157 | * Every time the algorithm reaches a state where a solution | ||||
158 | * can be read off from the tableau, the function "add" is called | ||||
159 | * on the isl_sol passed to find_solutions_main. In a state where | ||||
160 | * the tableau is empty, "add_empty" is called instead. | ||||
161 | * "free" is called to free the implementation specific fields, if any. | ||||
162 | * | ||||
163 | * "error" is set if some error has occurred. This flag invalidates | ||||
164 | * the remainder of the data structure. | ||||
165 | * If "rational" is set, then a rational optimization is being performed. | ||||
166 | * "level" is the current level in the tree with nodes for each | ||||
167 | * split in the context. | ||||
168 | * If "max" is set, then a maximization problem is being solved, rather than | ||||
169 | * a minimization problem, which means that the variables in the | ||||
170 | * tableau have value "M - x" rather than "M + x". | ||||
171 | * "n_out" is the number of output dimensions in the input. | ||||
172 | * "space" is the space in which the solution (and also the input) lives. | ||||
173 | * | ||||
174 | * The context tableau is owned by isl_sol and is updated incrementally. | ||||
175 | * | ||||
176 | * There are currently two implementations of this interface, | ||||
177 | * isl_sol_map, which simply collects the solutions in an isl_map | ||||
178 | * and (optionally) the parts of the context where there is no solution | ||||
179 | * in an isl_set, and | ||||
180 | * isl_sol_pma, which collects an isl_pw_multi_aff instead. | ||||
181 | */ | ||||
182 | struct isl_sol { | ||||
183 | int error; | ||||
184 | int rational; | ||||
185 | int level; | ||||
186 | int max; | ||||
187 | isl_size n_out; | ||||
188 | isl_space *space; | ||||
189 | struct isl_context *context; | ||||
190 | struct isl_partial_sol *partial; | ||||
191 | void (*add)(struct isl_sol *sol, | ||||
192 | __isl_take isl_basic_setisl_basic_map *dom, __isl_take isl_multi_aff *ma); | ||||
193 | void (*add_empty)(struct isl_sol *sol, struct isl_basic_setisl_basic_map *bset); | ||||
194 | void (*free)(struct isl_sol *sol); | ||||
195 | struct isl_sol_callback dec_level; | ||||
196 | }; | ||||
197 | |||||
198 | static void sol_free(struct isl_sol *sol) | ||||
199 | { | ||||
200 | struct isl_partial_sol *partial, *next; | ||||
201 | if (!sol) | ||||
202 | return; | ||||
203 | for (partial = sol->partial; partial; partial = next) { | ||||
204 | next = partial->next; | ||||
205 | isl_basic_set_free(partial->dom); | ||||
206 | isl_multi_aff_free(partial->ma); | ||||
207 | free(partial); | ||||
208 | } | ||||
209 | isl_space_free(sol->space); | ||||
210 | if (sol->context) | ||||
211 | sol->context->op->free(sol->context); | ||||
212 | sol->free(sol); | ||||
213 | free(sol); | ||||
214 | } | ||||
215 | |||||
216 | /* Push a partial solution represented by a domain and function "ma" | ||||
217 | * onto the stack of partial solutions. | ||||
218 | * If "ma" is NULL, then "dom" represents a part of the domain | ||||
219 | * with no solution. | ||||
220 | */ | ||||
221 | static void sol_push_sol(struct isl_sol *sol, | ||||
222 | __isl_take isl_basic_setisl_basic_map *dom, __isl_take isl_multi_aff *ma) | ||||
223 | { | ||||
224 | struct isl_partial_sol *partial; | ||||
225 | |||||
226 | if (sol->error || !dom) | ||||
227 | goto error; | ||||
228 | |||||
229 | partial = isl_alloc_type(dom->ctx, struct isl_partial_sol)((struct isl_partial_sol *)isl_malloc_or_die(dom->ctx, sizeof (struct isl_partial_sol))); | ||||
230 | if (!partial) | ||||
231 | goto error; | ||||
232 | |||||
233 | partial->level = sol->level; | ||||
234 | partial->dom = dom; | ||||
235 | partial->ma = ma; | ||||
236 | partial->next = sol->partial; | ||||
237 | |||||
238 | sol->partial = partial; | ||||
239 | |||||
240 | return; | ||||
241 | error: | ||||
242 | isl_basic_set_free(dom); | ||||
243 | isl_multi_aff_free(ma); | ||||
244 | sol->error = 1; | ||||
245 | } | ||||
246 | |||||
247 | /* Check that the final columns of "M", starting at "first", are zero. | ||||
248 | */ | ||||
249 | static isl_stat check_final_columns_are_zero(__isl_keep isl_mat *M, | ||||
250 | unsigned first) | ||||
251 | { | ||||
252 | int i; | ||||
253 | isl_size rows, cols; | ||||
254 | unsigned n; | ||||
255 | |||||
256 | rows = isl_mat_rows(M); | ||||
257 | cols = isl_mat_cols(M); | ||||
258 | if (rows < 0 || cols < 0) | ||||
259 | return isl_stat_error; | ||||
260 | n = cols - first; | ||||
261 | for (i = 0; i < rows; ++i) | ||||
262 | if (isl_seq_first_non_zero(M->row[i] + first, n) != -1) | ||||
263 | isl_die(isl_mat_get_ctx(M), isl_error_internal,do { isl_handle_error(isl_mat_get_ctx(M), isl_error_internal, "final columns should be zero", "polly/lib/External/isl/isl_tab_pip.c" , 265); return isl_stat_error; } while (0) | ||||
264 | "final columns should be zero",do { isl_handle_error(isl_mat_get_ctx(M), isl_error_internal, "final columns should be zero", "polly/lib/External/isl/isl_tab_pip.c" , 265); return isl_stat_error; } while (0) | ||||
265 | return isl_stat_error)do { isl_handle_error(isl_mat_get_ctx(M), isl_error_internal, "final columns should be zero", "polly/lib/External/isl/isl_tab_pip.c" , 265); return isl_stat_error; } while (0); | ||||
266 | return isl_stat_ok; | ||||
267 | } | ||||
268 | |||||
269 | /* Set the affine expressions in "ma" according to the rows in "M", which | ||||
270 | * are defined over the local space "ls". | ||||
271 | * The matrix "M" may have extra (zero) columns beyond the number | ||||
272 | * of variables in "ls". | ||||
273 | */ | ||||
274 | static __isl_give isl_multi_aff *set_from_affine_matrix( | ||||
275 | __isl_take isl_multi_aff *ma, __isl_take isl_local_space *ls, | ||||
276 | __isl_take isl_mat *M) | ||||
277 | { | ||||
278 | int i; | ||||
279 | isl_size dim; | ||||
280 | isl_aff *aff; | ||||
281 | |||||
282 | dim = isl_local_space_dim(ls, isl_dim_all); | ||||
283 | if (!ma || dim < 0 || !M) | ||||
284 | goto error; | ||||
285 | |||||
286 | if (check_final_columns_are_zero(M, 1 + dim) < 0) | ||||
287 | goto error; | ||||
288 | for (i = 1; i < M->n_row; ++i) { | ||||
289 | aff = isl_aff_alloc(isl_local_space_copy(ls)); | ||||
290 | if (aff) { | ||||
291 | isl_int_set(aff->v->el[0], M->row[0][0])isl_sioimath_set((aff->v->el[0]), *(M->row[0][0])); | ||||
292 | isl_seq_cpy(aff->v->el + 1, M->row[i], 1 + dim); | ||||
293 | } | ||||
294 | aff = isl_aff_normalize(aff); | ||||
295 | ma = isl_multi_aff_set_aff(ma, i - 1, aff); | ||||
296 | } | ||||
297 | isl_local_space_free(ls); | ||||
298 | isl_mat_free(M); | ||||
299 | |||||
300 | return ma; | ||||
301 | error: | ||||
302 | isl_local_space_free(ls); | ||||
303 | isl_mat_free(M); | ||||
304 | isl_multi_aff_free(ma); | ||||
305 | return NULL((void*)0); | ||||
306 | } | ||||
307 | |||||
308 | /* Push a partial solution represented by a domain and mapping M | ||||
309 | * onto the stack of partial solutions. | ||||
310 | * | ||||
311 | * The affine matrix "M" maps the dimensions of the context | ||||
312 | * to the output variables. Convert it into an isl_multi_aff and | ||||
313 | * then call sol_push_sol. | ||||
314 | * | ||||
315 | * Note that the description of the initial context may have involved | ||||
316 | * existentially quantified variables, in which case they also appear | ||||
317 | * in "dom". These need to be removed before creating the affine | ||||
318 | * expression because an affine expression cannot be defined in terms | ||||
319 | * of existentially quantified variables without a known representation. | ||||
320 | * Since newly added integer divisions are inserted before these | ||||
321 | * existentially quantified variables, they are still in the final | ||||
322 | * positions and the corresponding final columns of "M" are zero | ||||
323 | * because align_context_divs adds the existentially quantified | ||||
324 | * variables of the context to the main tableau without any constraints and | ||||
325 | * any equality constraints that are added later on can only serve | ||||
326 | * to eliminate these existentially quantified variables. | ||||
327 | */ | ||||
328 | static void sol_push_sol_mat(struct isl_sol *sol, | ||||
329 | __isl_take isl_basic_setisl_basic_map *dom, __isl_take isl_mat *M) | ||||
330 | { | ||||
331 | isl_local_space *ls; | ||||
332 | isl_multi_aff *ma; | ||||
333 | isl_size n_div; | ||||
334 | int n_known; | ||||
335 | |||||
336 | n_div = isl_basic_set_dim(dom, isl_dim_div); | ||||
337 | if (n_div < 0) | ||||
338 | goto error; | ||||
339 | n_known = n_div - sol->context->n_unknown; | ||||
340 | |||||
341 | ma = isl_multi_aff_alloc(isl_space_copy(sol->space)); | ||||
342 | ls = isl_basic_set_get_local_space(dom); | ||||
343 | ls = isl_local_space_drop_dims(ls, isl_dim_div, | ||||
344 | n_known, n_div - n_known); | ||||
345 | ma = set_from_affine_matrix(ma, ls, M); | ||||
346 | |||||
347 | if (!ma) | ||||
348 | dom = isl_basic_set_free(dom); | ||||
349 | sol_push_sol(sol, dom, ma); | ||||
350 | return; | ||||
351 | error: | ||||
352 | isl_basic_set_free(dom); | ||||
353 | isl_mat_free(M); | ||||
354 | sol_push_sol(sol, NULL((void*)0), NULL((void*)0)); | ||||
355 | } | ||||
356 | |||||
357 | /* Pop one partial solution from the partial solution stack and | ||||
358 | * pass it on to sol->add or sol->add_empty. | ||||
359 | */ | ||||
360 | static void sol_pop_one(struct isl_sol *sol) | ||||
361 | { | ||||
362 | struct isl_partial_sol *partial; | ||||
363 | |||||
364 | partial = sol->partial; | ||||
365 | sol->partial = partial->next; | ||||
366 | |||||
367 | if (partial->ma) | ||||
368 | sol->add(sol, partial->dom, partial->ma); | ||||
369 | else | ||||
370 | sol->add_empty(sol, partial->dom); | ||||
371 | free(partial); | ||||
372 | } | ||||
373 | |||||
374 | /* Return a fresh copy of the domain represented by the context tableau. | ||||
375 | */ | ||||
376 | static struct isl_basic_setisl_basic_map *sol_domain(struct isl_sol *sol) | ||||
377 | { | ||||
378 | struct isl_basic_setisl_basic_map *bset; | ||||
379 | |||||
380 | if (sol->error) | ||||
381 | return NULL((void*)0); | ||||
382 | |||||
383 | bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context)); | ||||
384 | bset = isl_basic_set_update_from_tab(bset, | ||||
385 | sol->context->op->peek_tab(sol->context)); | ||||
386 | |||||
387 | return bset; | ||||
388 | } | ||||
389 | |||||
390 | /* Check whether two partial solutions have the same affine expressions. | ||||
391 | */ | ||||
392 | static isl_bool same_solution(struct isl_partial_sol *s1, | ||||
393 | struct isl_partial_sol *s2) | ||||
394 | { | ||||
395 | if (!s1->ma != !s2->ma) | ||||
396 | return isl_bool_false; | ||||
397 | if (!s1->ma) | ||||
398 | return isl_bool_true; | ||||
399 | |||||
400 | return isl_multi_aff_plain_is_equal(s1->ma, s2->ma); | ||||
401 | } | ||||
402 | |||||
403 | /* Swap the initial two partial solutions in "sol". | ||||
404 | * | ||||
405 | * That is, go from | ||||
406 | * | ||||
407 | * sol->partial = p1; p1->next = p2; p2->next = p3 | ||||
408 | * | ||||
409 | * to | ||||
410 | * | ||||
411 | * sol->partial = p2; p2->next = p1; p1->next = p3 | ||||
412 | */ | ||||
413 | static void swap_initial(struct isl_sol *sol) | ||||
414 | { | ||||
415 | struct isl_partial_sol *partial; | ||||
416 | |||||
417 | partial = sol->partial; | ||||
418 | sol->partial = partial->next; | ||||
419 | partial->next = partial->next->next; | ||||
420 | sol->partial->next = partial; | ||||
421 | } | ||||
422 | |||||
423 | /* Combine the initial two partial solution of "sol" into | ||||
424 | * a partial solution with the current context domain of "sol" and | ||||
425 | * the function description of the second partial solution in the list. | ||||
426 | * The level of the new partial solution is set to the current level. | ||||
427 | * | ||||
428 | * That is, the first two partial solutions (D1,M1) and (D2,M2) are | ||||
429 | * replaced by (D,M2), where D is the domain of "sol", which is assumed | ||||
430 | * to be the union of D1 and D2, while M1 is assumed to be equal to M2 | ||||
431 | * (at least on D1). | ||||
432 | */ | ||||
433 | static isl_stat combine_initial_into_second(struct isl_sol *sol) | ||||
434 | { | ||||
435 | struct isl_partial_sol *partial; | ||||
436 | isl_basic_setisl_basic_map *bset; | ||||
437 | |||||
438 | partial = sol->partial; | ||||
439 | |||||
440 | bset = sol_domain(sol); | ||||
441 | isl_basic_set_free(partial->next->dom); | ||||
442 | partial->next->dom = bset; | ||||
443 | partial->next->level = sol->level; | ||||
444 | |||||
445 | if (!bset) | ||||
446 | return isl_stat_error; | ||||
447 | |||||
448 | sol->partial = partial->next; | ||||
449 | isl_basic_set_free(partial->dom); | ||||
450 | isl_multi_aff_free(partial->ma); | ||||
451 | free(partial); | ||||
452 | |||||
453 | return isl_stat_ok; | ||||
454 | } | ||||
455 | |||||
456 | /* Are "ma1" and "ma2" equal to each other on "dom"? | ||||
457 | * | ||||
458 | * Combine "ma1" and "ma2" with "dom" and check if the results are the same. | ||||
459 | * "dom" may have existentially quantified variables. Eliminate them first | ||||
460 | * as otherwise they would have to be eliminated twice, in a more complicated | ||||
461 | * context. | ||||
462 | */ | ||||
463 | static isl_bool equal_on_domain(__isl_keep isl_multi_aff *ma1, | ||||
464 | __isl_keep isl_multi_aff *ma2, __isl_keep isl_basic_setisl_basic_map *dom) | ||||
465 | { | ||||
466 | isl_setisl_map *set; | ||||
467 | isl_pw_multi_aff *pma1, *pma2; | ||||
468 | isl_bool equal; | ||||
469 | |||||
470 | set = isl_basic_set_compute_divs(isl_basic_set_copy(dom)); | ||||
471 | pma1 = isl_pw_multi_aff_alloc(isl_set_copy(set), | ||||
472 | isl_multi_aff_copy(ma1)); | ||||
473 | pma2 = isl_pw_multi_aff_alloc(set, isl_multi_aff_copy(ma2)); | ||||
474 | equal = isl_pw_multi_aff_is_equal(pma1, pma2); | ||||
475 | isl_pw_multi_aff_free(pma1); | ||||
476 | isl_pw_multi_aff_free(pma2); | ||||
477 | |||||
478 | return equal; | ||||
479 | } | ||||
480 | |||||
481 | /* The initial two partial solutions of "sol" are known to be at | ||||
482 | * the same level. | ||||
483 | * If they represent the same solution (on different parts of the domain), | ||||
484 | * then combine them into a single solution at the current level. | ||||
485 | * Otherwise, pop them both. | ||||
486 | * | ||||
487 | * Even if the two partial solution are not obviously the same, | ||||
488 | * one may still be a simplification of the other over its own domain. | ||||
489 | * Also check if the two sets of affine functions are equal when | ||||
490 | * restricted to one of the domains. If so, combine the two | ||||
491 | * using the set of affine functions on the other domain. | ||||
492 | * That is, for two partial solutions (D1,M1) and (D2,M2), | ||||
493 | * if M1 = M2 on D1, then the pair of partial solutions can | ||||
494 | * be replaced by (D1+D2,M2) and similarly when M1 = M2 on D2. | ||||
495 | */ | ||||
496 | static isl_stat combine_initial_if_equal(struct isl_sol *sol) | ||||
497 | { | ||||
498 | struct isl_partial_sol *partial; | ||||
499 | isl_bool same; | ||||
500 | |||||
501 | partial = sol->partial; | ||||
502 | |||||
503 | same = same_solution(partial, partial->next); | ||||
504 | if (same < 0) | ||||
505 | return isl_stat_error; | ||||
506 | if (same) | ||||
507 | return combine_initial_into_second(sol); | ||||
508 | if (partial->ma && partial->next->ma) { | ||||
509 | same = equal_on_domain(partial->ma, partial->next->ma, | ||||
510 | partial->dom); | ||||
511 | if (same < 0) | ||||
512 | return isl_stat_error; | ||||
513 | if (same) | ||||
514 | return combine_initial_into_second(sol); | ||||
515 | same = equal_on_domain(partial->ma, partial->next->ma, | ||||
516 | partial->next->dom); | ||||
517 | if (same) { | ||||
518 | swap_initial(sol); | ||||
519 | return combine_initial_into_second(sol); | ||||
520 | } | ||||
521 | } | ||||
522 | |||||
523 | sol_pop_one(sol); | ||||
524 | sol_pop_one(sol); | ||||
525 | |||||
526 | return isl_stat_ok; | ||||
527 | } | ||||
528 | |||||
529 | /* Pop all solutions from the partial solution stack that were pushed onto | ||||
530 | * the stack at levels that are deeper than the current level. | ||||
531 | * If the two topmost elements on the stack have the same level | ||||
532 | * and represent the same solution, then their domains are combined. | ||||
533 | * This combined domain is the same as the current context domain | ||||
534 | * as sol_pop is called each time we move back to a higher level. | ||||
535 | * If the outer level (0) has been reached, then all partial solutions | ||||
536 | * at the current level are also popped off. | ||||
537 | */ | ||||
538 | static void sol_pop(struct isl_sol *sol) | ||||
539 | { | ||||
540 | struct isl_partial_sol *partial; | ||||
541 | |||||
542 | if (sol->error) | ||||
543 | return; | ||||
544 | |||||
545 | partial = sol->partial; | ||||
546 | if (!partial) | ||||
547 | return; | ||||
548 | |||||
549 | if (partial->level == 0 && sol->level == 0) { | ||||
550 | for (partial = sol->partial; partial; partial = sol->partial) | ||||
551 | sol_pop_one(sol); | ||||
552 | return; | ||||
553 | } | ||||
554 | |||||
555 | if (partial->level <= sol->level) | ||||
556 | return; | ||||
557 | |||||
558 | if (partial->next && partial->next->level == partial->level) { | ||||
559 | if (combine_initial_if_equal(sol) < 0) | ||||
560 | goto error; | ||||
561 | } else | ||||
562 | sol_pop_one(sol); | ||||
563 | |||||
564 | if (sol->level == 0) { | ||||
565 | for (partial = sol->partial; partial; partial = sol->partial) | ||||
566 | sol_pop_one(sol); | ||||
567 | return; | ||||
568 | } | ||||
569 | |||||
570 | if (0) | ||||
571 | error: sol->error = 1; | ||||
572 | } | ||||
573 | |||||
574 | static void sol_dec_level(struct isl_sol *sol) | ||||
575 | { | ||||
576 | if (sol->error) | ||||
577 | return; | ||||
578 | |||||
579 | sol->level--; | ||||
580 | |||||
581 | sol_pop(sol); | ||||
582 | } | ||||
583 | |||||
584 | static isl_stat sol_dec_level_wrap(struct isl_tab_callback *cb) | ||||
585 | { | ||||
586 | struct isl_sol_callback *callback = (struct isl_sol_callback *)cb; | ||||
587 | |||||
588 | sol_dec_level(callback->sol); | ||||
589 | |||||
590 | return callback->sol->error ? isl_stat_error : isl_stat_ok; | ||||
591 | } | ||||
592 | |||||
593 | /* Move down to next level and push callback onto context tableau | ||||
594 | * to decrease the level again when it gets rolled back across | ||||
595 | * the current state. That is, dec_level will be called with | ||||
596 | * the context tableau in the same state as it is when inc_level | ||||
597 | * is called. | ||||
598 | */ | ||||
599 | static void sol_inc_level(struct isl_sol *sol) | ||||
600 | { | ||||
601 | struct isl_tab *tab; | ||||
602 | |||||
603 | if (sol->error) | ||||
604 | return; | ||||
605 | |||||
606 | sol->level++; | ||||
607 | tab = sol->context->op->peek_tab(sol->context); | ||||
608 | if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0) | ||||
609 | sol->error = 1; | ||||
610 | } | ||||
611 | |||||
612 | static void scale_rows(struct isl_mat *mat, isl_int m, int n_row) | ||||
613 | { | ||||
614 | int i; | ||||
615 | |||||
616 | if (isl_int_is_one(m)(isl_sioimath_cmp_si(*(m), 1) == 0)) | ||||
617 | return; | ||||
618 | |||||
619 | for (i = 0; i < n_row; ++i) | ||||
620 | isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col); | ||||
621 | } | ||||
622 | |||||
623 | /* Add the solution identified by the tableau and the context tableau. | ||||
624 | * | ||||
625 | * The layout of the variables is as follows. | ||||
626 | * tab->n_var is equal to the total number of variables in the input | ||||
627 | * map (including divs that were copied from the context) | ||||
628 | * + the number of extra divs constructed | ||||
629 | * Of these, the first tab->n_param and the last tab->n_div variables | ||||
630 | * correspond to the variables in the context, i.e., | ||||
631 | * tab->n_param + tab->n_div = context_tab->n_var | ||||
632 | * tab->n_param is equal to the number of parameters and input | ||||
633 | * dimensions in the input map | ||||
634 | * tab->n_div is equal to the number of divs in the context | ||||
635 | * | ||||
636 | * If there is no solution, then call add_empty with a basic set | ||||
637 | * that corresponds to the context tableau. (If add_empty is NULL, | ||||
638 | * then do nothing). | ||||
639 | * | ||||
640 | * If there is a solution, then first construct a matrix that maps | ||||
641 | * all dimensions of the context to the output variables, i.e., | ||||
642 | * the output dimensions in the input map. | ||||
643 | * The divs in the input map (if any) that do not correspond to any | ||||
644 | * div in the context do not appear in the solution. | ||||
645 | * The algorithm will make sure that they have an integer value, | ||||
646 | * but these values themselves are of no interest. | ||||
647 | * We have to be careful not to drop or rearrange any divs in the | ||||
648 | * context because that would change the meaning of the matrix. | ||||
649 | * | ||||
650 | * To extract the value of the output variables, it should be noted | ||||
651 | * that we always use a big parameter M in the main tableau and so | ||||
652 | * the variable stored in this tableau is not an output variable x itself, but | ||||
653 | * x' = M + x (in case of minimization) | ||||
654 | * or | ||||
655 | * x' = M - x (in case of maximization) | ||||
656 | * If x' appears in a column, then its optimal value is zero, | ||||
657 | * which means that the optimal value of x is an unbounded number | ||||
658 | * (-M for minimization and M for maximization). | ||||
659 | * We currently assume that the output dimensions in the original map | ||||
660 | * are bounded, so this cannot occur. | ||||
661 | * Similarly, when x' appears in a row, then the coefficient of M in that | ||||
662 | * row is necessarily 1. | ||||
663 | * If the row in the tableau represents | ||||
664 | * d x' = c + d M + e(y) | ||||
665 | * then, in case of minimization, the corresponding row in the matrix | ||||
666 | * will be | ||||
667 | * a c + a e(y) | ||||
668 | * with a d = m, the (updated) common denominator of the matrix. | ||||
669 | * In case of maximization, the row will be | ||||
670 | * -a c - a e(y) | ||||
671 | */ | ||||
672 | static void sol_add(struct isl_sol *sol, struct isl_tab *tab) | ||||
673 | { | ||||
674 | struct isl_basic_setisl_basic_map *bset = NULL((void*)0); | ||||
675 | struct isl_mat *mat = NULL((void*)0); | ||||
676 | unsigned off; | ||||
677 | int row; | ||||
678 | isl_int m; | ||||
679 | |||||
680 | if (sol->error || !tab) | ||||
681 | goto error; | ||||
682 | |||||
683 | if (tab->empty && !sol->add_empty) | ||||
684 | return; | ||||
685 | if (sol->context->op->is_empty(sol->context)) | ||||
686 | return; | ||||
687 | |||||
688 | bset = sol_domain(sol); | ||||
689 | |||||
690 | if (tab->empty) { | ||||
691 | sol_push_sol(sol, bset, NULL((void*)0)); | ||||
692 | return; | ||||
693 | } | ||||
694 | |||||
695 | off = 2 + tab->M; | ||||
696 | |||||
697 | mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out, | ||||
698 | 1 + tab->n_param + tab->n_div); | ||||
699 | if (!mat) | ||||
700 | goto error; | ||||
701 | |||||
702 | isl_int_init(m)isl_sioimath_init((m)); | ||||
703 | |||||
704 | isl_seq_clr(mat->row[0] + 1, mat->n_col - 1); | ||||
705 | isl_int_set_si(mat->row[0][0], 1)isl_sioimath_set_si((mat->row[0][0]), 1); | ||||
706 | for (row = 0; row < sol->n_out; ++row) { | ||||
707 | int i = tab->n_param + row; | ||||
708 | int r, j; | ||||
709 | |||||
710 | isl_seq_clr(mat->row[1 + row], mat->n_col); | ||||
711 | if (!tab->var[i].is_row) { | ||||
712 | if (tab->M) | ||||
713 | isl_die(mat->ctx, isl_error_invalid,do { isl_handle_error(mat->ctx, isl_error_invalid, "unbounded optimum" , "polly/lib/External/isl/isl_tab_pip.c", 714); goto error2; } while (0) | ||||
714 | "unbounded optimum", goto error2)do { isl_handle_error(mat->ctx, isl_error_invalid, "unbounded optimum" , "polly/lib/External/isl/isl_tab_pip.c", 714); goto error2; } while (0); | ||||
715 | continue; | ||||
716 | } | ||||
717 | |||||
718 | r = tab->var[i].index; | ||||
719 | if (tab->M && | ||||
720 | isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0])(isl_sioimath_cmp(*(tab->mat->row[r][2]), *(tab->mat ->row[r][0])) != 0)) | ||||
721 | isl_die(mat->ctx, isl_error_invalid,do { isl_handle_error(mat->ctx, isl_error_invalid, "unbounded optimum" , "polly/lib/External/isl/isl_tab_pip.c", 722); goto error2; } while (0) | ||||
722 | "unbounded optimum", goto error2)do { isl_handle_error(mat->ctx, isl_error_invalid, "unbounded optimum" , "polly/lib/External/isl/isl_tab_pip.c", 722); goto error2; } while (0); | ||||
723 | isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0])isl_sioimath_gcd((m), *(mat->row[0][0]), *(tab->mat-> row[r][0])); | ||||
724 | isl_int_divexact(m, tab->mat->row[r][0], m)isl_sioimath_tdiv_q((m), *(tab->mat->row[r][0]), *(m)); | ||||
725 | scale_rows(mat, m, 1 + row); | ||||
726 | isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0])isl_sioimath_tdiv_q((m), *(mat->row[0][0]), *(tab->mat-> row[r][0])); | ||||
727 | isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1])isl_sioimath_mul((mat->row[1 + row][0]), *(m), *(tab->mat ->row[r][1])); | ||||
728 | for (j = 0; j < tab->n_param; ++j) { | ||||
729 | int col; | ||||
730 | if (tab->var[j].is_row) | ||||
731 | continue; | ||||
732 | col = tab->var[j].index; | ||||
733 | isl_int_mul(mat->row[1 + row][1 + j], m,isl_sioimath_mul((mat->row[1 + row][1 + j]), *(m), *(tab-> mat->row[r][off + col])) | ||||
734 | tab->mat->row[r][off + col])isl_sioimath_mul((mat->row[1 + row][1 + j]), *(m), *(tab-> mat->row[r][off + col])); | ||||
735 | } | ||||
736 | for (j = 0; j < tab->n_div; ++j) { | ||||
737 | int col; | ||||
738 | if (tab->var[tab->n_var - tab->n_div+j].is_row) | ||||
739 | continue; | ||||
740 | col = tab->var[tab->n_var - tab->n_div+j].index; | ||||
741 | isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,isl_sioimath_mul((mat->row[1 + row][1 + tab->n_param + j ]), *(m), *(tab->mat->row[r][off + col])) | ||||
742 | tab->mat->row[r][off + col])isl_sioimath_mul((mat->row[1 + row][1 + tab->n_param + j ]), *(m), *(tab->mat->row[r][off + col])); | ||||
743 | } | ||||
744 | if (sol->max) | ||||
745 | isl_seq_neg(mat->row[1 + row], mat->row[1 + row], | ||||
746 | mat->n_col); | ||||
747 | } | ||||
748 | |||||
749 | isl_int_clear(m)isl_sioimath_clear((m)); | ||||
750 | |||||
751 | sol_push_sol_mat(sol, bset, mat); | ||||
752 | return; | ||||
753 | error2: | ||||
754 | isl_int_clear(m)isl_sioimath_clear((m)); | ||||
755 | error: | ||||
756 | isl_basic_set_free(bset); | ||||
757 | isl_mat_free(mat); | ||||
758 | sol->error = 1; | ||||
759 | } | ||||
760 | |||||
761 | struct isl_sol_map { | ||||
762 | struct isl_sol sol; | ||||
763 | struct isl_map *map; | ||||
764 | struct isl_setisl_map *empty; | ||||
765 | }; | ||||
766 | |||||
767 | static void sol_map_free(struct isl_sol *sol) | ||||
768 | { | ||||
769 | struct isl_sol_map *sol_map = (struct isl_sol_map *) sol; | ||||
770 | isl_map_free(sol_map->map); | ||||
771 | isl_set_free(sol_map->empty); | ||||
772 | } | ||||
773 | |||||
774 | /* This function is called for parts of the context where there is | ||||
775 | * no solution, with "bset" corresponding to the context tableau. | ||||
776 | * Simply add the basic set to the set "empty". | ||||
777 | */ | ||||
778 | static void sol_map_add_empty(struct isl_sol_map *sol, | ||||
779 | struct isl_basic_setisl_basic_map *bset) | ||||
780 | { | ||||
781 | if (!bset || !sol->empty) | ||||
782 | goto error; | ||||
783 | |||||
784 | sol->empty = isl_set_grow(sol->empty, 1); | ||||
785 | bset = isl_basic_set_simplify(bset); | ||||
786 | bset = isl_basic_set_finalize(bset); | ||||
787 | sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset)); | ||||
788 | if (!sol->empty) | ||||
789 | goto error; | ||||
790 | isl_basic_set_free(bset); | ||||
791 | return; | ||||
792 | error: | ||||
793 | isl_basic_set_free(bset); | ||||
794 | sol->sol.error = 1; | ||||
795 | } | ||||
796 | |||||
797 | static void sol_map_add_empty_wrap(struct isl_sol *sol, | ||||
798 | struct isl_basic_setisl_basic_map *bset) | ||||
799 | { | ||||
800 | sol_map_add_empty((struct isl_sol_map *)sol, bset); | ||||
801 | } | ||||
802 | |||||
803 | /* Given a basic set "dom" that represents the context and a tuple of | ||||
804 | * affine expressions "ma" defined over this domain, construct a basic map | ||||
805 | * that expresses this function on the domain. | ||||
806 | */ | ||||
807 | static void sol_map_add(struct isl_sol_map *sol, | ||||
808 | __isl_take isl_basic_setisl_basic_map *dom, __isl_take isl_multi_aff *ma) | ||||
809 | { | ||||
810 | isl_basic_map *bmap; | ||||
811 | |||||
812 | if (sol->sol.error || !dom || !ma) | ||||
813 | goto error; | ||||
814 | |||||
815 | bmap = isl_basic_map_from_multi_aff2(ma, sol->sol.rational); | ||||
816 | bmap = isl_basic_map_intersect_domain(bmap, dom); | ||||
817 | sol->map = isl_map_grow(sol->map, 1); | ||||
818 | sol->map = isl_map_add_basic_map(sol->map, bmap); | ||||
819 | if (!sol->map) | ||||
820 | sol->sol.error = 1; | ||||
821 | return; | ||||
822 | error: | ||||
823 | isl_basic_set_free(dom); | ||||
824 | isl_multi_aff_free(ma); | ||||
825 | sol->sol.error = 1; | ||||
826 | } | ||||
827 | |||||
828 | static void sol_map_add_wrap(struct isl_sol *sol, | ||||
829 | __isl_take isl_basic_setisl_basic_map *dom, __isl_take isl_multi_aff *ma) | ||||
830 | { | ||||
831 | sol_map_add((struct isl_sol_map *)sol, dom, ma); | ||||
832 | } | ||||
833 | |||||
834 | |||||
835 | /* Store the "parametric constant" of row "row" of tableau "tab" in "line", | ||||
836 | * i.e., the constant term and the coefficients of all variables that | ||||
837 | * appear in the context tableau. | ||||
838 | * Note that the coefficient of the big parameter M is NOT copied. | ||||
839 | * The context tableau may not have a big parameter and even when it | ||||
840 | * does, it is a different big parameter. | ||||
841 | */ | ||||
842 | static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line) | ||||
843 | { | ||||
844 | int i; | ||||
845 | unsigned off = 2 + tab->M; | ||||
846 | |||||
847 | isl_int_set(line[0], tab->mat->row[row][1])isl_sioimath_set((line[0]), *(tab->mat->row[row][1])); | ||||
848 | for (i = 0; i < tab->n_param; ++i) { | ||||
849 | if (tab->var[i].is_row) | ||||
850 | isl_int_set_si(line[1 + i], 0)isl_sioimath_set_si((line[1 + i]), 0); | ||||
851 | else { | ||||
852 | int col = tab->var[i].index; | ||||
853 | isl_int_set(line[1 + i], tab->mat->row[row][off + col])isl_sioimath_set((line[1 + i]), *(tab->mat->row[row][off + col])); | ||||
854 | } | ||||
855 | } | ||||
856 | for (i = 0; i < tab->n_div; ++i) { | ||||
857 | if (tab->var[tab->n_var - tab->n_div + i].is_row) | ||||
858 | isl_int_set_si(line[1 + tab->n_param + i], 0)isl_sioimath_set_si((line[1 + tab->n_param + i]), 0); | ||||
859 | else { | ||||
860 | int col = tab->var[tab->n_var - tab->n_div + i].index; | ||||
861 | isl_int_set(line[1 + tab->n_param + i],isl_sioimath_set((line[1 + tab->n_param + i]), *(tab->mat ->row[row][off + col])) | ||||
862 | tab->mat->row[row][off + col])isl_sioimath_set((line[1 + tab->n_param + i]), *(tab->mat ->row[row][off + col])); | ||||
863 | } | ||||
864 | } | ||||
865 | } | ||||
866 | |||||
867 | /* Check if rows "row1" and "row2" have identical "parametric constants", | ||||
868 | * as explained above. | ||||
869 | * In this case, we also insist that the coefficients of the big parameter | ||||
870 | * be the same as the values of the constants will only be the same | ||||
871 | * if these coefficients are also the same. | ||||
872 | */ | ||||
873 | static int identical_parameter_line(struct isl_tab *tab, int row1, int row2) | ||||
874 | { | ||||
875 | int i; | ||||
876 | unsigned off = 2 + tab->M; | ||||
877 | |||||
878 | if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1])(isl_sioimath_cmp(*(tab->mat->row[row1][1]), *(tab-> mat->row[row2][1])) != 0)) | ||||
879 | return 0; | ||||
880 | |||||
881 | if (tab->M && isl_int_ne(tab->mat->row[row1][2],(isl_sioimath_cmp(*(tab->mat->row[row1][2]), *(tab-> mat->row[row2][2])) != 0) | ||||
882 | tab->mat->row[row2][2])(isl_sioimath_cmp(*(tab->mat->row[row1][2]), *(tab-> mat->row[row2][2])) != 0)) | ||||
883 | return 0; | ||||
884 | |||||
885 | for (i = 0; i < tab->n_param + tab->n_div; ++i) { | ||||
886 | int pos = i < tab->n_param ? i : | ||||
887 | tab->n_var - tab->n_div + i - tab->n_param; | ||||
888 | int col; | ||||
889 | |||||
890 | if (tab->var[pos].is_row) | ||||
891 | continue; | ||||
892 | col = tab->var[pos].index; | ||||
893 | if (isl_int_ne(tab->mat->row[row1][off + col],(isl_sioimath_cmp(*(tab->mat->row[row1][off + col]), *( tab->mat->row[row2][off + col])) != 0) | ||||
894 | tab->mat->row[row2][off + col])(isl_sioimath_cmp(*(tab->mat->row[row1][off + col]), *( tab->mat->row[row2][off + col])) != 0)) | ||||
895 | return 0; | ||||
896 | } | ||||
897 | return 1; | ||||
898 | } | ||||
899 | |||||
900 | /* Return an inequality that expresses that the "parametric constant" | ||||
901 | * should be non-negative. | ||||
902 | * This function is only called when the coefficient of the big parameter | ||||
903 | * is equal to zero. | ||||
904 | */ | ||||
905 | static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row) | ||||
906 | { | ||||
907 | struct isl_vec *ineq; | ||||
908 | |||||
909 | ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div); | ||||
910 | if (!ineq) | ||||
911 | return NULL((void*)0); | ||||
912 | |||||
913 | get_row_parameter_line(tab, row, ineq->el); | ||||
914 | if (ineq) | ||||
915 | ineq = isl_vec_normalize(ineq); | ||||
916 | |||||
917 | return ineq; | ||||
918 | } | ||||
919 | |||||
920 | /* Normalize a div expression of the form | ||||
921 | * | ||||
922 | * [(g*f(x) + c)/(g * m)] | ||||
923 | * | ||||
924 | * with c the constant term and f(x) the remaining coefficients, to | ||||
925 | * | ||||
926 | * [(f(x) + [c/g])/m] | ||||
927 | */ | ||||
928 | static void normalize_div(__isl_keep isl_vec *div) | ||||
929 | { | ||||
930 | isl_ctx *ctx = isl_vec_get_ctx(div); | ||||
931 | int len = div->size - 2; | ||||
932 | |||||
933 | isl_seq_gcd(div->el + 2, len, &ctx->normalize_gcd); | ||||
934 | isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, div->el[0])isl_sioimath_gcd((ctx->normalize_gcd), *(ctx->normalize_gcd ), *(div->el[0])); | ||||
935 | |||||
936 | if (isl_int_is_one(ctx->normalize_gcd)(isl_sioimath_cmp_si(*(ctx->normalize_gcd), 1) == 0)) | ||||
937 | return; | ||||
938 | |||||
939 | isl_int_divexact(div->el[0], div->el[0], ctx->normalize_gcd)isl_sioimath_tdiv_q((div->el[0]), *(div->el[0]), *(ctx-> normalize_gcd)); | ||||
940 | isl_int_fdiv_q(div->el[1], div->el[1], ctx->normalize_gcd)isl_sioimath_fdiv_q((div->el[1]), *(div->el[1]), *(ctx-> normalize_gcd)); | ||||
941 | isl_seq_scale_down(div->el + 2, div->el + 2, ctx->normalize_gcd, len); | ||||
942 | } | ||||
943 | |||||
944 | /* Return an integer division for use in a parametric cut based | ||||
945 | * on the given row. | ||||
946 | * In particular, let the parametric constant of the row be | ||||
947 | * | ||||
948 | * \sum_i a_i y_i | ||||
949 | * | ||||
950 | * where y_0 = 1, but none of the y_i corresponds to the big parameter M. | ||||
951 | * The div returned is equal to | ||||
952 | * | ||||
953 | * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d) | ||||
954 | */ | ||||
955 | static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row) | ||||
956 | { | ||||
957 | struct isl_vec *div; | ||||
958 | |||||
959 | div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div); | ||||
960 | if (!div) | ||||
961 | return NULL((void*)0); | ||||
962 | |||||
963 | isl_int_set(div->el[0], tab->mat->row[row][0])isl_sioimath_set((div->el[0]), *(tab->mat->row[row][ 0])); | ||||
964 | get_row_parameter_line(tab, row, div->el + 1); | ||||
965 | isl_seq_neg(div->el + 1, div->el + 1, div->size - 1); | ||||
966 | normalize_div(div); | ||||
967 | isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1); | ||||
968 | |||||
969 | return div; | ||||
970 | } | ||||
971 | |||||
972 | /* Return an integer division for use in transferring an integrality constraint | ||||
973 | * to the context. | ||||
974 | * In particular, let the parametric constant of the row be | ||||
975 | * | ||||
976 | * \sum_i a_i y_i | ||||
977 | * | ||||
978 | * where y_0 = 1, but none of the y_i corresponds to the big parameter M. | ||||
979 | * The the returned div is equal to | ||||
980 | * | ||||
981 | * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d) | ||||
982 | */ | ||||
983 | static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row) | ||||
984 | { | ||||
985 | struct isl_vec *div; | ||||
986 | |||||
987 | div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div); | ||||
988 | if (!div) | ||||
989 | return NULL((void*)0); | ||||
990 | |||||
991 | isl_int_set(div->el[0], tab->mat->row[row][0])isl_sioimath_set((div->el[0]), *(tab->mat->row[row][ 0])); | ||||
992 | get_row_parameter_line(tab, row, div->el + 1); | ||||
993 | normalize_div(div); | ||||
994 | isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1); | ||||
995 | |||||
996 | return div; | ||||
997 | } | ||||
998 | |||||
999 | /* Construct and return an inequality that expresses an upper bound | ||||
1000 | * on the given div. | ||||
1001 | * In particular, if the div is given by | ||||
1002 | * | ||||
1003 | * d = floor(e/m) | ||||
1004 | * | ||||
1005 | * then the inequality expresses | ||||
1006 | * | ||||
1007 | * m d <= e | ||||
1008 | */ | ||||
1009 | static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_setisl_basic_map *bset, | ||||
1010 | unsigned div) | ||||
1011 | { | ||||
1012 | isl_size total; | ||||
1013 | unsigned div_pos; | ||||
1014 | struct isl_vec *ineq; | ||||
1015 | |||||
1016 | total = isl_basic_set_dim(bset, isl_dim_all); | ||||
1017 | if (total < 0) | ||||
1018 | return NULL((void*)0); | ||||
1019 | |||||
1020 | div_pos = 1 + total - bset->n_div + div; | ||||
1021 | |||||
1022 | ineq = isl_vec_alloc(bset->ctx, 1 + total); | ||||
1023 | if (!ineq) | ||||
1024 | return NULL((void*)0); | ||||
1025 | |||||
1026 | isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total); | ||||
1027 | isl_int_neg(ineq->el[div_pos], bset->div[div][0])isl_sioimath_neg((ineq->el[div_pos]), *(bset->div[div][ 0])); | ||||
1028 | return ineq; | ||||
1029 | } | ||||
1030 | |||||
1031 | /* Given a row in the tableau and a div that was created | ||||
1032 | * using get_row_split_div and that has been constrained to equality, i.e., | ||||
1033 | * | ||||
1034 | * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i | ||||
1035 | * | ||||
1036 | * replace the expression "\sum_i {a_i} y_i" in the row by d, | ||||
1037 | * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d. | ||||
1038 | * The coefficients of the non-parameters in the tableau have been | ||||
1039 | * verified to be integral. We can therefore simply replace coefficient b | ||||
1040 | * by floor(b). For the coefficients of the parameters we have | ||||
1041 | * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have | ||||
1042 | * floor(b) = b. | ||||
1043 | */ | ||||
1044 | static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div) | ||||
1045 | { | ||||
1046 | isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1, | ||||
1047 | tab->mat->row[row][0], 1 + tab->M + tab->n_col); | ||||
1048 | |||||
1049 | isl_int_set_si(tab->mat->row[row][0], 1)isl_sioimath_set_si((tab->mat->row[row][0]), 1); | ||||
1050 | |||||
1051 | if (tab->var[tab->n_var - tab->n_div + div].is_row) { | ||||
1052 | int drow = tab->var[tab->n_var - tab->n_div + div].index; | ||||
1053 | |||||
1054 | isl_assert(tab->mat->ctx,do { if ((isl_sioimath_cmp_si(*(tab->mat->row[drow][0]) , 1) == 0)) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown, "Assertion \"" "(isl_sioimath_cmp_si(*(tab->mat->row[drow][0]), 1) == 0)" "\" failed", "polly/lib/External/isl/isl_tab_pip.c", 1055); goto error; } while (0); } while (0) | ||||
1055 | isl_int_is_one(tab->mat->row[drow][0]), goto error)do { if ((isl_sioimath_cmp_si(*(tab->mat->row[drow][0]) , 1) == 0)) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown, "Assertion \"" "(isl_sioimath_cmp_si(*(tab->mat->row[drow][0]), 1) == 0)" "\" failed", "polly/lib/External/isl/isl_tab_pip.c", 1055); goto error; } while (0); } while (0); | ||||
1056 | isl_seq_combine(tab->mat->row[row] + 1, | ||||
1057 | tab->mat->ctx->one, tab->mat->row[row] + 1, | ||||
1058 | tab->mat->ctx->one, tab->mat->row[drow] + 1, | ||||
1059 | 1 + tab->M + tab->n_col); | ||||
1060 | } else { | ||||
1061 | int dcol = tab->var[tab->n_var - tab->n_div + div].index; | ||||
1062 | |||||
1063 | isl_int_add_ui(tab->mat->row[row][2 + tab->M + dcol],isl_sioimath_add_ui((tab->mat->row[row][2 + tab->M + dcol]), *(tab->mat->row[row][2 + tab->M + dcol]), 1 ) | ||||
1064 | tab->mat->row[row][2 + tab->M + dcol], 1)isl_sioimath_add_ui((tab->mat->row[row][2 + tab->M + dcol]), *(tab->mat->row[row][2 + tab->M + dcol]), 1 ); | ||||
1065 | } | ||||
1066 | |||||
1067 | return tab; | ||||
1068 | error: | ||||
1069 | isl_tab_free(tab); | ||||
1070 | return NULL((void*)0); | ||||
1071 | } | ||||
1072 | |||||
1073 | /* Check if the (parametric) constant of the given row is obviously | ||||
1074 | * negative, meaning that we don't need to consult the context tableau. | ||||
1075 | * If there is a big parameter and its coefficient is non-zero, | ||||
1076 | * then this coefficient determines the outcome. | ||||
1077 | * Otherwise, we check whether the constant is negative and | ||||
1078 | * all non-zero coefficients of parameters are negative and | ||||
1079 | * belong to non-negative parameters. | ||||
1080 | */ | ||||
1081 | static int is_obviously_neg(struct isl_tab *tab, int row) | ||||
1082 | { | ||||
1083 | int i; | ||||
1084 | int col; | ||||
1085 | unsigned off = 2 + tab->M; | ||||
1086 | |||||
1087 | if (tab->M) { | ||||
1088 | if (isl_int_is_pos(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) > 0)) | ||||
1089 | return 0; | ||||
1090 | if (isl_int_is_neg(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) < 0)) | ||||
1091 | return 1; | ||||
1092 | } | ||||
1093 | |||||
1094 | if (isl_int_is_nonneg(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) >= 0)) | ||||
1095 | return 0; | ||||
1096 | for (i = 0; i < tab->n_param; ++i) { | ||||
1097 | /* Eliminated parameter */ | ||||
1098 | if (tab->var[i].is_row) | ||||
1099 | continue; | ||||
1100 | col = tab->var[i].index; | ||||
1101 | if (isl_int_is_zero(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) == 0 )) | ||||
1102 | continue; | ||||
1103 | if (!tab->var[i].is_nonneg) | ||||
1104 | return 0; | ||||
1105 | if (isl_int_is_pos(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) > 0)) | ||||
1106 | return 0; | ||||
1107 | } | ||||
1108 | for (i = 0; i < tab->n_div; ++i) { | ||||
1109 | if (tab->var[tab->n_var - tab->n_div + i].is_row) | ||||
1110 | continue; | ||||
1111 | col = tab->var[tab->n_var - tab->n_div + i].index; | ||||
1112 | if (isl_int_is_zero(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) == 0 )) | ||||
1113 | continue; | ||||
1114 | if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg) | ||||
1115 | return 0; | ||||
1116 | if (isl_int_is_pos(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) > 0)) | ||||
1117 | return 0; | ||||
1118 | } | ||||
1119 | return 1; | ||||
1120 | } | ||||
1121 | |||||
1122 | /* Check if the (parametric) constant of the given row is obviously | ||||
1123 | * non-negative, meaning that we don't need to consult the context tableau. | ||||
1124 | * If there is a big parameter and its coefficient is non-zero, | ||||
1125 | * then this coefficient determines the outcome. | ||||
1126 | * Otherwise, we check whether the constant is non-negative and | ||||
1127 | * all non-zero coefficients of parameters are positive and | ||||
1128 | * belong to non-negative parameters. | ||||
1129 | */ | ||||
1130 | static int is_obviously_nonneg(struct isl_tab *tab, int row) | ||||
1131 | { | ||||
1132 | int i; | ||||
1133 | int col; | ||||
1134 | unsigned off = 2 + tab->M; | ||||
1135 | |||||
1136 | if (tab->M) { | ||||
1137 | if (isl_int_is_pos(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) > 0)) | ||||
1138 | return 1; | ||||
1139 | if (isl_int_is_neg(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) < 0)) | ||||
1140 | return 0; | ||||
1141 | } | ||||
1142 | |||||
1143 | if (isl_int_is_neg(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) < 0)) | ||||
1144 | return 0; | ||||
1145 | for (i = 0; i < tab->n_param; ++i) { | ||||
1146 | /* Eliminated parameter */ | ||||
1147 | if (tab->var[i].is_row) | ||||
1148 | continue; | ||||
1149 | col = tab->var[i].index; | ||||
1150 | if (isl_int_is_zero(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) == 0 )) | ||||
1151 | continue; | ||||
1152 | if (!tab->var[i].is_nonneg) | ||||
1153 | return 0; | ||||
1154 | if (isl_int_is_neg(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) < 0)) | ||||
1155 | return 0; | ||||
1156 | } | ||||
1157 | for (i = 0; i < tab->n_div; ++i) { | ||||
1158 | if (tab->var[tab->n_var - tab->n_div + i].is_row) | ||||
1159 | continue; | ||||
1160 | col = tab->var[tab->n_var - tab->n_div + i].index; | ||||
1161 | if (isl_int_is_zero(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) == 0 )) | ||||
1162 | continue; | ||||
1163 | if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg) | ||||
1164 | return 0; | ||||
1165 | if (isl_int_is_neg(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) < 0)) | ||||
1166 | return 0; | ||||
1167 | } | ||||
1168 | return 1; | ||||
1169 | } | ||||
1170 | |||||
1171 | /* Given a row r and two columns, return the column that would | ||||
1172 | * lead to the lexicographically smallest increment in the sample | ||||
1173 | * solution when leaving the basis in favor of the row. | ||||
1174 | * Pivoting with column c will increment the sample value by a non-negative | ||||
1175 | * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c | ||||
1176 | * corresponding to the non-parametric variables. | ||||
1177 | * If variable v appears in a column c_v, then a_{v,c} = 1 iff c = c_v, | ||||
1178 | * with all other entries in this virtual row equal to zero. | ||||
1179 | * If variable v appears in a row, then a_{v,c} is the element in column c | ||||
1180 | * of that row. | ||||
1181 | * | ||||
1182 | * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}. | ||||
1183 | * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e., | ||||
1184 | * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal | ||||
1185 | * increment. Otherwise, it's c2. | ||||
1186 | */ | ||||
1187 | static int lexmin_col_pair(struct isl_tab *tab, | ||||
1188 | int row, int col1, int col2, isl_int tmp) | ||||
1189 | { | ||||
1190 | int i; | ||||
1191 | isl_int *tr; | ||||
1192 | |||||
1193 | tr = tab->mat->row[row] + 2 + tab->M; | ||||
1194 | |||||
1195 | for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { | ||||
1196 | int s1, s2; | ||||
1197 | isl_int *r; | ||||
1198 | |||||
1199 | if (!tab->var[i].is_row) { | ||||
1200 | if (tab->var[i].index == col1) | ||||
1201 | return col2; | ||||
1202 | if (tab->var[i].index == col2) | ||||
1203 | return col1; | ||||
1204 | continue; | ||||
1205 | } | ||||
1206 | |||||
1207 | if (tab->var[i].index == row) | ||||
1208 | continue; | ||||
1209 | |||||
1210 | r = tab->mat->row[tab->var[i].index] + 2 + tab->M; | ||||
1211 | s1 = isl_int_sgn(r[col1])isl_sioimath_sgn(*(r[col1])); | ||||
1212 | s2 = isl_int_sgn(r[col2])isl_sioimath_sgn(*(r[col2])); | ||||
1213 | if (s1 == 0 && s2 == 0) | ||||
1214 | continue; | ||||
1215 | if (s1 < s2) | ||||
1216 | return col1; | ||||
1217 | if (s2 < s1) | ||||
1218 | return col2; | ||||
1219 | |||||
1220 | isl_int_mul(tmp, r[col2], tr[col1])isl_sioimath_mul((tmp), *(r[col2]), *(tr[col1])); | ||||
1221 | isl_int_submul(tmp, r[col1], tr[col2])isl_sioimath_submul((tmp), *(r[col1]), *(tr[col2])); | ||||
1222 | if (isl_int_is_pos(tmp)(isl_sioimath_sgn(*(tmp)) > 0)) | ||||
1223 | return col1; | ||||
1224 | if (isl_int_is_neg(tmp)(isl_sioimath_sgn(*(tmp)) < 0)) | ||||
1225 | return col2; | ||||
1226 | } | ||||
1227 | return -1; | ||||
1228 | } | ||||
1229 | |||||
1230 | /* Does the index into the tab->var or tab->con array "index" | ||||
1231 | * correspond to a variable in the context tableau? | ||||
1232 | * In particular, it needs to be an index into the tab->var array and | ||||
1233 | * it needs to refer to either one of the first tab->n_param variables or | ||||
1234 | * one of the last tab->n_div variables. | ||||
1235 | */ | ||||
1236 | static int is_parameter_var(struct isl_tab *tab, int index) | ||||
1237 | { | ||||
1238 | if (index < 0) | ||||
1239 | return 0; | ||||
1240 | if (index < tab->n_param) | ||||
1241 | return 1; | ||||
1242 | if (index >= tab->n_var - tab->n_div) | ||||
1243 | return 1; | ||||
1244 | return 0; | ||||
1245 | } | ||||
1246 | |||||
1247 | /* Does column "col" of "tab" refer to a variable in the context tableau? | ||||
1248 | */ | ||||
1249 | static int col_is_parameter_var(struct isl_tab *tab, int col) | ||||
1250 | { | ||||
1251 | return is_parameter_var(tab, tab->col_var[col]); | ||||
1252 | } | ||||
1253 | |||||
1254 | /* Does row "row" of "tab" refer to a variable in the context tableau? | ||||
1255 | */ | ||||
1256 | static int row_is_parameter_var(struct isl_tab *tab, int row) | ||||
1257 | { | ||||
1258 | return is_parameter_var(tab, tab->row_var[row]); | ||||
1259 | } | ||||
1260 | |||||
1261 | /* Given a row in the tableau, find and return the column that would | ||||
1262 | * result in the lexicographically smallest, but positive, increment | ||||
1263 | * in the sample point. | ||||
1264 | * If there is no such column, then return tab->n_col. | ||||
1265 | * If anything goes wrong, return -1. | ||||
1266 | */ | ||||
1267 | static int lexmin_pivot_col(struct isl_tab *tab, int row) | ||||
1268 | { | ||||
1269 | int j; | ||||
1270 | int col = tab->n_col; | ||||
1271 | isl_int *tr; | ||||
1272 | isl_int tmp; | ||||
1273 | |||||
1274 | tr = tab->mat->row[row] + 2 + tab->M; | ||||
1275 | |||||
1276 | isl_int_init(tmp)isl_sioimath_init((tmp)); | ||||
1277 | |||||
1278 | for (j = tab->n_dead; j < tab->n_col; ++j) { | ||||
1279 | if (col_is_parameter_var(tab, j)) | ||||
1280 | continue; | ||||
1281 | |||||
1282 | if (!isl_int_is_pos(tr[j])(isl_sioimath_sgn(*(tr[j])) > 0)) | ||||
1283 | continue; | ||||
1284 | |||||
1285 | if (col == tab->n_col) | ||||
1286 | col = j; | ||||
1287 | else | ||||
1288 | col = lexmin_col_pair(tab, row, col, j, tmp); | ||||
1289 | isl_assert(tab->mat->ctx, col >= 0, goto error)do { if (col >= 0) break; do { isl_handle_error(tab->mat ->ctx, isl_error_unknown, "Assertion \"" "col >= 0" "\" failed" , "polly/lib/External/isl/isl_tab_pip.c", 1289); goto error; } while (0); } while (0); | ||||
1290 | } | ||||
1291 | |||||
1292 | isl_int_clear(tmp)isl_sioimath_clear((tmp)); | ||||
1293 | return col; | ||||
1294 | error: | ||||
1295 | isl_int_clear(tmp)isl_sioimath_clear((tmp)); | ||||
1296 | return -1; | ||||
1297 | } | ||||
1298 | |||||
1299 | /* Return the first known violated constraint, i.e., a non-negative | ||||
1300 | * constraint that currently has an either obviously negative value | ||||
1301 | * or a previously determined to be negative value. | ||||
1302 | * | ||||
1303 | * If any constraint has a negative coefficient for the big parameter, | ||||
1304 | * if any, then we return one of these first. | ||||
1305 | */ | ||||
1306 | static int first_neg(struct isl_tab *tab) | ||||
1307 | { | ||||
1308 | int row; | ||||
1309 | |||||
1310 | if (tab->M) | ||||
1311 | for (row = tab->n_redundant; row < tab->n_row; ++row) { | ||||
1312 | if (!isl_tab_var_from_row(tab, row)->is_nonneg) | ||||
1313 | continue; | ||||
1314 | if (!isl_int_is_neg(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) < 0)) | ||||
1315 | continue; | ||||
1316 | if (tab->row_sign) | ||||
1317 | tab->row_sign[row] = isl_tab_row_neg; | ||||
1318 | return row; | ||||
1319 | } | ||||
1320 | for (row = tab->n_redundant; row < tab->n_row; ++row) { | ||||
1321 | if (!isl_tab_var_from_row(tab, row)->is_nonneg) | ||||
1322 | continue; | ||||
1323 | if (tab->row_sign) { | ||||
1324 | if (tab->row_sign[row] == 0 && | ||||
1325 | is_obviously_neg(tab, row)) | ||||
1326 | tab->row_sign[row] = isl_tab_row_neg; | ||||
1327 | if (tab->row_sign[row] != isl_tab_row_neg) | ||||
1328 | continue; | ||||
1329 | } else if (!is_obviously_neg(tab, row)) | ||||
1330 | continue; | ||||
1331 | return row; | ||||
1332 | } | ||||
1333 | return -1; | ||||
1334 | } | ||||
1335 | |||||
1336 | /* Check whether the invariant that all columns are lexico-positive | ||||
1337 | * is satisfied. This function is not called from the current code | ||||
1338 | * but is useful during debugging. | ||||
1339 | */ | ||||
1340 | static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused)); | ||||
1341 | static void check_lexpos(struct isl_tab *tab) | ||||
1342 | { | ||||
1343 | unsigned off = 2 + tab->M; | ||||
1344 | int col; | ||||
1345 | int var; | ||||
1346 | int row; | ||||
1347 | |||||
1348 | for (col = tab->n_dead; col < tab->n_col; ++col) { | ||||
1349 | if (col_is_parameter_var(tab, col)) | ||||
1350 | continue; | ||||
1351 | for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) { | ||||
1352 | if (!tab->var[var].is_row) { | ||||
1353 | if (tab->var[var].index == col) | ||||
1354 | break; | ||||
1355 | else | ||||
1356 | continue; | ||||
1357 | } | ||||
1358 | row = tab->var[var].index; | ||||
1359 | if (isl_int_is_zero(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) == 0 )) | ||||
1360 | continue; | ||||
1361 | if (isl_int_is_pos(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) > 0)) | ||||
1362 | break; | ||||
1363 | fprintf(stderr, "lexneg column %d (row %d)\n",__fprintf_chk (stderr, 2 - 1, "lexneg column %d (row %d)\n", col , row) | ||||
1364 | col, row)__fprintf_chk (stderr, 2 - 1, "lexneg column %d (row %d)\n", col , row); | ||||
1365 | } | ||||
1366 | if (var >= tab->n_var - tab->n_div) | ||||
1367 | fprintf(stderr, "zero column %d\n", col)__fprintf_chk (stderr, 2 - 1, "zero column %d\n", col); | ||||
1368 | } | ||||
1369 | } | ||||
1370 | |||||
1371 | /* Report to the caller that the given constraint is part of an encountered | ||||
1372 | * conflict. | ||||
1373 | */ | ||||
1374 | static int report_conflicting_constraint(struct isl_tab *tab, int con) | ||||
1375 | { | ||||
1376 | return tab->conflict(con, tab->conflict_user); | ||||
1377 | } | ||||
1378 | |||||
1379 | /* Given a conflicting row in the tableau, report all constraints | ||||
1380 | * involved in the row to the caller. That is, the row itself | ||||
1381 | * (if it represents a constraint) and all constraint columns with | ||||
1382 | * non-zero (and therefore negative) coefficients. | ||||
1383 | */ | ||||
1384 | static int report_conflict(struct isl_tab *tab, int row) | ||||
1385 | { | ||||
1386 | int j; | ||||
1387 | isl_int *tr; | ||||
1388 | |||||
1389 | if (!tab->conflict) | ||||
1390 | return 0; | ||||
1391 | |||||
1392 | if (tab->row_var[row] < 0 && | ||||
1393 | report_conflicting_constraint(tab, ~tab->row_var[row]) < 0) | ||||
1394 | return -1; | ||||
1395 | |||||
1396 | tr = tab->mat->row[row] + 2 + tab->M; | ||||
1397 | |||||
1398 | for (j = tab->n_dead; j < tab->n_col; ++j) { | ||||
1399 | if (col_is_parameter_var(tab, j)) | ||||
1400 | continue; | ||||
1401 | |||||
1402 | if (!isl_int_is_neg(tr[j])(isl_sioimath_sgn(*(tr[j])) < 0)) | ||||
1403 | continue; | ||||
1404 | |||||
1405 | if (tab->col_var[j] < 0 && | ||||
1406 | report_conflicting_constraint(tab, ~tab->col_var[j]) < 0) | ||||
1407 | return -1; | ||||
1408 | } | ||||
1409 | |||||
1410 | return 0; | ||||
1411 | } | ||||
1412 | |||||
1413 | /* Resolve all known or obviously violated constraints through pivoting. | ||||
1414 | * In particular, as long as we can find any violated constraint, we | ||||
1415 | * look for a pivoting column that would result in the lexicographically | ||||
1416 | * smallest increment in the sample point. If there is no such column | ||||
1417 | * then the tableau is infeasible. | ||||
1418 | */ | ||||
1419 | static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED__attribute__((__warn_unused_result__)); | ||||
1420 | static int restore_lexmin(struct isl_tab *tab) | ||||
1421 | { | ||||
1422 | int row, col; | ||||
1423 | |||||
1424 | if (!tab) | ||||
1425 | return -1; | ||||
1426 | if (tab->empty) | ||||
1427 | return 0; | ||||
1428 | while ((row = first_neg(tab)) != -1) { | ||||
1429 | col = lexmin_pivot_col(tab, row); | ||||
1430 | if (col >= tab->n_col) { | ||||
1431 | if (report_conflict(tab, row) < 0) | ||||
1432 | return -1; | ||||
1433 | if (isl_tab_mark_empty(tab) < 0) | ||||
1434 | return -1; | ||||
1435 | return 0; | ||||
1436 | } | ||||
1437 | if (col < 0) | ||||
1438 | return -1; | ||||
1439 | if (isl_tab_pivot(tab, row, col) < 0) | ||||
1440 | return -1; | ||||
1441 | } | ||||
1442 | return 0; | ||||
1443 | } | ||||
1444 | |||||
1445 | /* Given a row that represents an equality, look for an appropriate | ||||
1446 | * pivoting column. | ||||
1447 | * In particular, if there are any non-zero coefficients among | ||||
1448 | * the non-parameter variables, then we take the last of these | ||||
1449 | * variables. Eliminating this variable in terms of the other | ||||
1450 | * variables and/or parameters does not influence the property | ||||
1451 | * that all column in the initial tableau are lexicographically | ||||
1452 | * positive. The row corresponding to the eliminated variable | ||||
1453 | * will only have non-zero entries below the diagonal of the | ||||
1454 | * initial tableau. That is, we transform | ||||
1455 | * | ||||
1456 | * I I | ||||
1457 | * 1 into a | ||||
1458 | * I I | ||||
1459 | * | ||||
1460 | * If there is no such non-parameter variable, then we are dealing with | ||||
1461 | * pure parameter equality and we pick any parameter with coefficient 1 or -1 | ||||
1462 | * for elimination. This will ensure that the eliminated parameter | ||||
1463 | * always has an integer value whenever all the other parameters are integral. | ||||
1464 | * If there is no such parameter then we return -1. | ||||
1465 | */ | ||||
1466 | static int last_var_col_or_int_par_col(struct isl_tab *tab, int row) | ||||
1467 | { | ||||
1468 | unsigned off = 2 + tab->M; | ||||
1469 | int i; | ||||
1470 | |||||
1471 | for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) { | ||||
1472 | int col; | ||||
1473 | if (tab->var[i].is_row) | ||||
1474 | continue; | ||||
1475 | col = tab->var[i].index; | ||||
1476 | if (col <= tab->n_dead) | ||||
1477 | continue; | ||||
1478 | if (!isl_int_is_zero(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) == 0 )) | ||||
1479 | return col; | ||||
1480 | } | ||||
1481 | for (i = tab->n_dead; i < tab->n_col; ++i) { | ||||
1482 | if (isl_int_is_one(tab->mat->row[row][off + i])(isl_sioimath_cmp_si(*(tab->mat->row[row][off + i]), 1) == 0)) | ||||
1483 | return i; | ||||
1484 | if (isl_int_is_negone(tab->mat->row[row][off + i])(isl_sioimath_cmp_si(*(tab->mat->row[row][off + i]), -1 ) == 0)) | ||||
1485 | return i; | ||||
1486 | } | ||||
1487 | return -1; | ||||
1488 | } | ||||
1489 | |||||
1490 | /* Add an equality that is known to be valid to the tableau. | ||||
1491 | * We first check if we can eliminate a variable or a parameter. | ||||
1492 | * If not, we add the equality as two inequalities. | ||||
1493 | * In this case, the equality was a pure parameter equality and there | ||||
1494 | * is no need to resolve any constraint violations. | ||||
1495 | * | ||||
1496 | * This function assumes that at least two more rows and at least | ||||
1497 | * two more elements in the constraint array are available in the tableau. | ||||
1498 | */ | ||||
1499 | static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq) | ||||
1500 | { | ||||
1501 | int i; | ||||
1502 | int r; | ||||
1503 | |||||
1504 | if (!tab) | ||||
1505 | return NULL((void*)0); | ||||
1506 | r = isl_tab_add_row(tab, eq); | ||||
1507 | if (r < 0) | ||||
1508 | goto error; | ||||
1509 | |||||
1510 | r = tab->con[r].index; | ||||
1511 | i = last_var_col_or_int_par_col(tab, r); | ||||
1512 | if (i < 0) { | ||||
1513 | tab->con[r].is_nonneg = 1; | ||||
1514 | if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) | ||||
1515 | goto error; | ||||
1516 | isl_seq_neg(eq, eq, 1 + tab->n_var); | ||||
1517 | r = isl_tab_add_row(tab, eq); | ||||
1518 | if (r < 0) | ||||
1519 | goto error; | ||||
1520 | tab->con[r].is_nonneg = 1; | ||||
1521 | if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) | ||||
1522 | goto error; | ||||
1523 | } else { | ||||
1524 | if (isl_tab_pivot(tab, r, i) < 0) | ||||
1525 | goto error; | ||||
1526 | if (isl_tab_kill_col(tab, i) < 0) | ||||
1527 | goto error; | ||||
1528 | tab->n_eq++; | ||||
1529 | } | ||||
1530 | |||||
1531 | return tab; | ||||
1532 | error: | ||||
1533 | isl_tab_free(tab); | ||||
1534 | return NULL((void*)0); | ||||
1535 | } | ||||
1536 | |||||
1537 | /* Check if the given row is a pure constant. | ||||
1538 | */ | ||||
1539 | static int is_constant(struct isl_tab *tab, int row) | ||||
1540 | { | ||||
1541 | unsigned off = 2 + tab->M; | ||||
1542 | |||||
1543 | return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, | ||||
1544 | tab->n_col - tab->n_dead) == -1; | ||||
1545 | } | ||||
1546 | |||||
1547 | /* Is the given row a parametric constant? | ||||
1548 | * That is, does it only involve variables that also appear in the context? | ||||
1549 | */ | ||||
1550 | static int is_parametric_constant(struct isl_tab *tab, int row) | ||||
1551 | { | ||||
1552 | unsigned off = 2 + tab->M; | ||||
1553 | int col; | ||||
1554 | |||||
1555 | for (col = tab->n_dead; col < tab->n_col; ++col) { | ||||
1556 | if (col_is_parameter_var(tab, col)) | ||||
1557 | continue; | ||||
1558 | if (isl_int_is_zero(tab->mat->row[row][off + col])(isl_sioimath_sgn(*(tab->mat->row[row][off + col])) == 0 )) | ||||
1559 | continue; | ||||
1560 | return 0; | ||||
1561 | } | ||||
1562 | |||||
1563 | return 1; | ||||
1564 | } | ||||
1565 | |||||
1566 | /* Add an equality that may or may not be valid to the tableau. | ||||
1567 | * If the resulting row is a pure constant, then it must be zero. | ||||
1568 | * Otherwise, the resulting tableau is empty. | ||||
1569 | * | ||||
1570 | * If the row is not a pure constant, then we add two inequalities, | ||||
1571 | * each time checking that they can be satisfied. | ||||
1572 | * In the end we try to use one of the two constraints to eliminate | ||||
1573 | * a column. | ||||
1574 | * | ||||
1575 | * This function assumes that at least two more rows and at least | ||||
1576 | * two more elements in the constraint array are available in the tableau. | ||||
1577 | */ | ||||
1578 | static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED__attribute__((__warn_unused_result__)); | ||||
1579 | static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) | ||||
1580 | { | ||||
1581 | int r1, r2; | ||||
1582 | int row; | ||||
1583 | struct isl_tab_undo *snap; | ||||
1584 | |||||
1585 | if (!tab) | ||||
1586 | return -1; | ||||
1587 | snap = isl_tab_snap(tab); | ||||
1588 | r1 = isl_tab_add_row(tab, eq); | ||||
1589 | if (r1 < 0) | ||||
1590 | return -1; | ||||
1591 | tab->con[r1].is_nonneg = 1; | ||||
1592 | if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0) | ||||
1593 | return -1; | ||||
1594 | |||||
1595 | row = tab->con[r1].index; | ||||
1596 | if (is_constant(tab, row)) { | ||||
1597 | if (!isl_int_is_zero(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) == 0) || | ||||
1598 | (tab->M && !isl_int_is_zero(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) == 0))) { | ||||
1599 | if (isl_tab_mark_empty(tab) < 0) | ||||
1600 | return -1; | ||||
1601 | return 0; | ||||
1602 | } | ||||
1603 | if (isl_tab_rollback(tab, snap) < 0) | ||||
1604 | return -1; | ||||
1605 | return 0; | ||||
1606 | } | ||||
1607 | |||||
1608 | if (restore_lexmin(tab) < 0) | ||||
1609 | return -1; | ||||
1610 | if (tab->empty) | ||||
1611 | return 0; | ||||
1612 | |||||
1613 | isl_seq_neg(eq, eq, 1 + tab->n_var); | ||||
1614 | |||||
1615 | r2 = isl_tab_add_row(tab, eq); | ||||
1616 | if (r2 < 0) | ||||
1617 | return -1; | ||||
1618 | tab->con[r2].is_nonneg = 1; | ||||
1619 | if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0) | ||||
1620 | return -1; | ||||
1621 | |||||
1622 | if (restore_lexmin(tab) < 0) | ||||
1623 | return -1; | ||||
1624 | if (tab->empty) | ||||
1625 | return 0; | ||||
1626 | |||||
1627 | if (!tab->con[r1].is_row) { | ||||
1628 | if (isl_tab_kill_col(tab, tab->con[r1].index) < 0) | ||||
1629 | return -1; | ||||
1630 | } else if (!tab->con[r2].is_row) { | ||||
1631 | if (isl_tab_kill_col(tab, tab->con[r2].index) < 0) | ||||
1632 | return -1; | ||||
1633 | } | ||||
1634 | |||||
1635 | if (tab->bmap) { | ||||
1636 | tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq); | ||||
1637 | if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) | ||||
1638 | return -1; | ||||
1639 | isl_seq_neg(eq, eq, 1 + tab->n_var); | ||||
1640 | tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq); | ||||
1641 | isl_seq_neg(eq, eq, 1 + tab->n_var); | ||||
1642 | if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) | ||||
1643 | return -1; | ||||
1644 | if (!tab->bmap) | ||||
1645 | return -1; | ||||
1646 | } | ||||
1647 | |||||
1648 | return 0; | ||||
1649 | } | ||||
1650 | |||||
1651 | /* Add an inequality to the tableau, resolving violations using | ||||
1652 | * restore_lexmin. | ||||
1653 | * | ||||
1654 | * This function assumes that at least one more row and at least | ||||
1655 | * one more element in the constraint array are available in the tableau. | ||||
1656 | */ | ||||
1657 | static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq) | ||||
1658 | { | ||||
1659 | int r; | ||||
1660 | |||||
1661 | if (!tab) | ||||
1662 | return NULL((void*)0); | ||||
1663 | if (tab->bmap) { | ||||
1664 | tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq); | ||||
1665 | if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) | ||||
1666 | goto error; | ||||
1667 | if (!tab->bmap) | ||||
1668 | goto error; | ||||
1669 | } | ||||
1670 | r = isl_tab_add_row(tab, ineq); | ||||
1671 | if (r < 0) | ||||
1672 | goto error; | ||||
1673 | tab->con[r].is_nonneg = 1; | ||||
1674 | if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) | ||||
1675 | goto error; | ||||
1676 | if (isl_tab_row_is_redundant(tab, tab->con[r].index)) { | ||||
1677 | if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0) | ||||
1678 | goto error; | ||||
1679 | return tab; | ||||
1680 | } | ||||
1681 | |||||
1682 | if (restore_lexmin(tab) < 0) | ||||
1683 | goto error; | ||||
1684 | if (!tab->empty && tab->con[r].is_row && | ||||
1685 | isl_tab_row_is_redundant(tab, tab->con[r].index)) | ||||
1686 | if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0) | ||||
1687 | goto error; | ||||
1688 | return tab; | ||||
1689 | error: | ||||
1690 | isl_tab_free(tab); | ||||
1691 | return NULL((void*)0); | ||||
1692 | } | ||||
1693 | |||||
1694 | /* Check if the coefficients of the parameters are all integral. | ||||
1695 | */ | ||||
1696 | static int integer_parameter(struct isl_tab *tab, int row) | ||||
1697 | { | ||||
1698 | int i; | ||||
1699 | int col; | ||||
1700 | unsigned off = 2 + tab->M; | ||||
1701 | |||||
1702 | for (i = 0; i < tab->n_param; ++i) { | ||||
1703 | /* Eliminated parameter */ | ||||
1704 | if (tab->var[i].is_row) | ||||
1705 | continue; | ||||
1706 | col = tab->var[i].index; | ||||
1707 | if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],isl_sioimath_is_divisible_by(*(tab->mat->row[row][off + col]), *(tab->mat->row[row][0])) | ||||
1708 | tab->mat->row[row][0])isl_sioimath_is_divisible_by(*(tab->mat->row[row][off + col]), *(tab->mat->row[row][0]))) | ||||
1709 | return 0; | ||||
1710 | } | ||||
1711 | for (i = 0; i < tab->n_div; ++i) { | ||||
1712 | if (tab->var[tab->n_var - tab->n_div + i].is_row) | ||||
1713 | continue; | ||||
1714 | col = tab->var[tab->n_var - tab->n_div + i].index; | ||||
1715 | if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],isl_sioimath_is_divisible_by(*(tab->mat->row[row][off + col]), *(tab->mat->row[row][0])) | ||||
1716 | tab->mat->row[row][0])isl_sioimath_is_divisible_by(*(tab->mat->row[row][off + col]), *(tab->mat->row[row][0]))) | ||||
1717 | return 0; | ||||
1718 | } | ||||
1719 | return 1; | ||||
1720 | } | ||||
1721 | |||||
1722 | /* Check if the coefficients of the non-parameter variables are all integral. | ||||
1723 | */ | ||||
1724 | static int integer_variable(struct isl_tab *tab, int row) | ||||
1725 | { | ||||
1726 | int i; | ||||
1727 | unsigned off = 2 + tab->M; | ||||
1728 | |||||
1729 | for (i = tab->n_dead; i < tab->n_col; ++i) { | ||||
1730 | if (col_is_parameter_var(tab, i)) | ||||
1731 | continue; | ||||
1732 | if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],isl_sioimath_is_divisible_by(*(tab->mat->row[row][off + i]), *(tab->mat->row[row][0])) | ||||
1733 | tab->mat->row[row][0])isl_sioimath_is_divisible_by(*(tab->mat->row[row][off + i]), *(tab->mat->row[row][0]))) | ||||
1734 | return 0; | ||||
1735 | } | ||||
1736 | return 1; | ||||
1737 | } | ||||
1738 | |||||
1739 | /* Check if the constant term is integral. | ||||
1740 | */ | ||||
1741 | static int integer_constant(struct isl_tab *tab, int row) | ||||
1742 | { | ||||
1743 | return isl_int_is_divisible_by(tab->mat->row[row][1],isl_sioimath_is_divisible_by(*(tab->mat->row[row][1]), * (tab->mat->row[row][0])) | ||||
1744 | tab->mat->row[row][0])isl_sioimath_is_divisible_by(*(tab->mat->row[row][1]), * (tab->mat->row[row][0])); | ||||
1745 | } | ||||
1746 | |||||
1747 | #define I_CST1 << 0 1 << 0 | ||||
1748 | #define I_PAR1 << 1 1 << 1 | ||||
1749 | #define I_VAR1 << 2 1 << 2 | ||||
1750 | |||||
1751 | /* Check for next (non-parameter) variable after "var" (first if var == -1) | ||||
1752 | * that is non-integer and therefore requires a cut and return | ||||
1753 | * the index of the variable. | ||||
1754 | * For parametric tableaus, there are three parts in a row, | ||||
1755 | * the constant, the coefficients of the parameters and the rest. | ||||
1756 | * For each part, we check whether the coefficients in that part | ||||
1757 | * are all integral and if so, set the corresponding flag in *f. | ||||
1758 | * If the constant and the parameter part are integral, then the | ||||
1759 | * current sample value is integral and no cut is required | ||||
1760 | * (irrespective of whether the variable part is integral). | ||||
1761 | */ | ||||
1762 | static int next_non_integer_var(struct isl_tab *tab, int var, int *f) | ||||
1763 | { | ||||
1764 | var = var < 0 ? tab->n_param : var + 1; | ||||
1765 | |||||
1766 | for (; var < tab->n_var - tab->n_div; ++var) { | ||||
1767 | int flags = 0; | ||||
1768 | int row; | ||||
1769 | if (!tab->var[var].is_row) | ||||
1770 | continue; | ||||
1771 | row = tab->var[var].index; | ||||
1772 | if (integer_constant(tab, row)) | ||||
1773 | ISL_FL_SET(flags, I_CST)((flags) |= (1 << 0)); | ||||
1774 | if (integer_parameter(tab, row)) | ||||
1775 | ISL_FL_SET(flags, I_PAR)((flags) |= (1 << 1)); | ||||
1776 | if (ISL_FL_ISSET(flags, I_CST)(!!((flags) & (1 << 0))) && ISL_FL_ISSET(flags, I_PAR)(!!((flags) & (1 << 1)))) | ||||
1777 | continue; | ||||
1778 | if (integer_variable(tab, row)) | ||||
1779 | ISL_FL_SET(flags, I_VAR)((flags) |= (1 << 2)); | ||||
1780 | *f = flags; | ||||
1781 | return var; | ||||
1782 | } | ||||
1783 | return -1; | ||||
1784 | } | ||||
1785 | |||||
1786 | /* Check for first (non-parameter) variable that is non-integer and | ||||
1787 | * therefore requires a cut and return the corresponding row. | ||||
1788 | * For parametric tableaus, there are three parts in a row, | ||||
1789 | * the constant, the coefficients of the parameters and the rest. | ||||
1790 | * For each part, we check whether the coefficients in that part | ||||
1791 | * are all integral and if so, set the corresponding flag in *f. | ||||
1792 | * If the constant and the parameter part are integral, then the | ||||
1793 | * current sample value is integral and no cut is required | ||||
1794 | * (irrespective of whether the variable part is integral). | ||||
1795 | */ | ||||
1796 | static int first_non_integer_row(struct isl_tab *tab, int *f) | ||||
1797 | { | ||||
1798 | int var = next_non_integer_var(tab, -1, f); | ||||
1799 | |||||
1800 | return var < 0 ? -1 : tab->var[var].index; | ||||
1801 | } | ||||
1802 | |||||
1803 | /* Add a (non-parametric) cut to cut away the non-integral sample | ||||
1804 | * value of the given row. | ||||
1805 | * | ||||
1806 | * If the row is given by | ||||
1807 | * | ||||
1808 | * m r = f + \sum_i a_i y_i | ||||
1809 | * | ||||
1810 | * then the cut is | ||||
1811 | * | ||||
1812 | * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0 | ||||
1813 | * | ||||
1814 | * The big parameter, if any, is ignored, since it is assumed to be big | ||||
1815 | * enough to be divisible by any integer. | ||||
1816 | * If the tableau is actually a parametric tableau, then this function | ||||
1817 | * is only called when all coefficients of the parameters are integral. | ||||
1818 | * The cut therefore has zero coefficients for the parameters. | ||||
1819 | * | ||||
1820 | * The current value is known to be negative, so row_sign, if it | ||||
1821 | * exists, is set accordingly. | ||||
1822 | * | ||||
1823 | * Return the row of the cut or -1. | ||||
1824 | */ | ||||
1825 | static int add_cut(struct isl_tab *tab, int row) | ||||
1826 | { | ||||
1827 | int i; | ||||
1828 | int r; | ||||
1829 | isl_int *r_row; | ||||
1830 | unsigned off = 2 + tab->M; | ||||
1831 | |||||
1832 | if (isl_tab_extend_cons(tab, 1) < 0) | ||||
1833 | return -1; | ||||
1834 | r = isl_tab_allocate_con(tab); | ||||
1835 | if (r < 0) | ||||
1836 | return -1; | ||||
1837 | |||||
1838 | r_row = tab->mat->row[tab->con[r].index]; | ||||
1839 | isl_int_set(r_row[0], tab->mat->row[row][0])isl_sioimath_set((r_row[0]), *(tab->mat->row[row][0])); | ||||
1840 | isl_int_neg(r_row[1], tab->mat->row[row][1])isl_sioimath_neg((r_row[1]), *(tab->mat->row[row][1])); | ||||
1841 | isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0])isl_sioimath_fdiv_r((r_row[1]), *(r_row[1]), *(tab->mat-> row[row][0])); | ||||
1842 | isl_int_neg(r_row[1], r_row[1])isl_sioimath_neg((r_row[1]), *(r_row[1])); | ||||
1843 | if (tab->M) | ||||
1844 | isl_int_set_si(r_row[2], 0)isl_sioimath_set_si((r_row[2]), 0); | ||||
1845 | for (i = 0; i < tab->n_col; ++i) | ||||
1846 | isl_int_fdiv_r(r_row[off + i],isl_sioimath_fdiv_r((r_row[off + i]), *(tab->mat->row[row ][off + i]), *(tab->mat->row[row][0])) | ||||
1847 | tab->mat->row[row][off + i], tab->mat->row[row][0])isl_sioimath_fdiv_r((r_row[off + i]), *(tab->mat->row[row ][off + i]), *(tab->mat->row[row][0])); | ||||
1848 | |||||
1849 | tab->con[r].is_nonneg = 1; | ||||
1850 | if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) | ||||
1851 | return -1; | ||||
1852 | if (tab->row_sign) | ||||
1853 | tab->row_sign[tab->con[r].index] = isl_tab_row_neg; | ||||
1854 | |||||
1855 | return tab->con[r].index; | ||||
1856 | } | ||||
1857 | |||||
1858 | #define CUT_ALL1 1 | ||||
1859 | #define CUT_ONE0 0 | ||||
1860 | |||||
1861 | /* Given a non-parametric tableau, add cuts until an integer | ||||
1862 | * sample point is obtained or until the tableau is determined | ||||
1863 | * to be integer infeasible. | ||||
1864 | * As long as there is any non-integer value in the sample point, | ||||
1865 | * we add appropriate cuts, if possible, for each of these | ||||
1866 | * non-integer values and then resolve the violated | ||||
1867 | * cut constraints using restore_lexmin. | ||||
1868 | * If one of the corresponding rows is equal to an integral | ||||
1869 | * combination of variables/constraints plus a non-integral constant, | ||||
1870 | * then there is no way to obtain an integer point and we return | ||||
1871 | * a tableau that is marked empty. | ||||
1872 | * The parameter cutting_strategy controls the strategy used when adding cuts | ||||
1873 | * to remove non-integer points. CUT_ALL adds all possible cuts | ||||
1874 | * before continuing the search. CUT_ONE adds only one cut at a time. | ||||
1875 | */ | ||||
1876 | static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab, | ||||
1877 | int cutting_strategy) | ||||
1878 | { | ||||
1879 | int var; | ||||
1880 | int row; | ||||
1881 | int flags; | ||||
1882 | |||||
1883 | if (!tab) | ||||
1884 | return NULL((void*)0); | ||||
1885 | if (tab->empty) | ||||
1886 | return tab; | ||||
1887 | |||||
1888 | while ((var = next_non_integer_var(tab, -1, &flags)) != -1) { | ||||
1889 | do { | ||||
1890 | if (ISL_FL_ISSET(flags, I_VAR)(!!((flags) & (1 << 2)))) { | ||||
1891 | if (isl_tab_mark_empty(tab) < 0) | ||||
1892 | goto error; | ||||
1893 | return tab; | ||||
1894 | } | ||||
1895 | row = tab->var[var].index; | ||||
1896 | row = add_cut(tab, row); | ||||
1897 | if (row < 0) | ||||
1898 | goto error; | ||||
1899 | if (cutting_strategy == CUT_ONE0) | ||||
1900 | break; | ||||
1901 | } while ((var = next_non_integer_var(tab, var, &flags)) != -1); | ||||
1902 | if (restore_lexmin(tab) < 0) | ||||
1903 | goto error; | ||||
1904 | if (tab->empty) | ||||
1905 | break; | ||||
1906 | } | ||||
1907 | return tab; | ||||
1908 | error: | ||||
1909 | isl_tab_free(tab); | ||||
1910 | return NULL((void*)0); | ||||
1911 | } | ||||
1912 | |||||
1913 | /* Check whether all the currently active samples also satisfy the inequality | ||||
1914 | * "ineq" (treated as an equality if eq is set). | ||||
1915 | * Remove those samples that do not. | ||||
1916 | */ | ||||
1917 | static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq) | ||||
1918 | { | ||||
1919 | int i; | ||||
1920 | isl_int v; | ||||
1921 | |||||
1922 | if (!tab) | ||||
1923 | return NULL((void*)0); | ||||
1924 | |||||
1925 | isl_assert(tab->mat->ctx, tab->bmap, goto error)do { if (tab->bmap) break; do { isl_handle_error(tab->mat ->ctx, isl_error_unknown, "Assertion \"" "tab->bmap" "\" failed" , "polly/lib/External/isl/isl_tab_pip.c", 1925); goto error; } while (0); } while (0); | ||||
1926 | isl_assert(tab->mat->ctx, tab->samples, goto error)do { if (tab->samples) break; do { isl_handle_error(tab-> mat->ctx, isl_error_unknown, "Assertion \"" "tab->samples" "\" failed", "polly/lib/External/isl/isl_tab_pip.c", 1926); goto error; } while (0); } while (0); | ||||
1927 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error)do { if (tab->samples->n_col == 1 + tab->n_var) break ; do { isl_handle_error(tab->mat->ctx, isl_error_unknown , "Assertion \"" "tab->samples->n_col == 1 + tab->n_var" "\" failed", "polly/lib/External/isl/isl_tab_pip.c", 1927); goto error; } while (0); } while (0); | ||||
1928 | |||||
1929 | isl_int_init(v)isl_sioimath_init((v)); | ||||
1930 | for (i = tab->n_outside; i < tab->n_sample; ++i) { | ||||
1931 | int sgn; | ||||
1932 | isl_seq_inner_product(ineq, tab->samples->row[i], | ||||
1933 | 1 + tab->n_var, &v); | ||||
1934 | sgn = isl_int_sgn(v)isl_sioimath_sgn(*(v)); | ||||
1935 | if (eq ? (sgn == 0) : (sgn >= 0)) | ||||
1936 | continue; | ||||
1937 | tab = isl_tab_drop_sample(tab, i); | ||||
1938 | if (!tab) | ||||
1939 | break; | ||||
1940 | } | ||||
1941 | isl_int_clear(v)isl_sioimath_clear((v)); | ||||
1942 | |||||
1943 | return tab; | ||||
1944 | error: | ||||
1945 | isl_tab_free(tab); | ||||
1946 | return NULL((void*)0); | ||||
1947 | } | ||||
1948 | |||||
1949 | /* Check whether the sample value of the tableau is finite, | ||||
1950 | * i.e., either the tableau does not use a big parameter, or | ||||
1951 | * all values of the variables are equal to the big parameter plus | ||||
1952 | * some constant. This constant is the actual sample value. | ||||
1953 | */ | ||||
1954 | static int sample_is_finite(struct isl_tab *tab) | ||||
1955 | { | ||||
1956 | int i; | ||||
1957 | |||||
1958 | if (!tab->M) | ||||
1959 | return 1; | ||||
1960 | |||||
1961 | for (i = 0; i < tab->n_var; ++i) { | ||||
1962 | int row; | ||||
1963 | if (!tab->var[i].is_row) | ||||
1964 | return 0; | ||||
1965 | row = tab->var[i].index; | ||||
1966 | if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2])(isl_sioimath_cmp(*(tab->mat->row[row][0]), *(tab->mat ->row[row][2])) != 0)) | ||||
1967 | return 0; | ||||
1968 | } | ||||
1969 | return 1; | ||||
1970 | } | ||||
1971 | |||||
1972 | /* Check if the context tableau of sol has any integer points. | ||||
1973 | * Leave tab in empty state if no integer point can be found. | ||||
1974 | * If an integer point can be found and if moreover it is finite, | ||||
1975 | * then it is added to the list of sample values. | ||||
1976 | * | ||||
1977 | * This function is only called when none of the currently active sample | ||||
1978 | * values satisfies the most recently added constraint. | ||||
1979 | */ | ||||
1980 | static struct isl_tab *check_integer_feasible(struct isl_tab *tab) | ||||
1981 | { | ||||
1982 | struct isl_tab_undo *snap; | ||||
1983 | |||||
1984 | if (!tab) | ||||
1985 | return NULL((void*)0); | ||||
1986 | |||||
1987 | snap = isl_tab_snap(tab); | ||||
1988 | if (isl_tab_push_basis(tab) < 0) | ||||
1989 | goto error; | ||||
1990 | |||||
1991 | tab = cut_to_integer_lexmin(tab, CUT_ALL1); | ||||
1992 | if (!tab) | ||||
1993 | goto error; | ||||
1994 | |||||
1995 | if (!tab->empty && sample_is_finite(tab)) { | ||||
1996 | struct isl_vec *sample; | ||||
1997 | |||||
1998 | sample = isl_tab_get_sample_value(tab); | ||||
1999 | |||||
2000 | if (isl_tab_add_sample(tab, sample) < 0) | ||||
2001 | goto error; | ||||
2002 | } | ||||
2003 | |||||
2004 | if (!tab->empty && isl_tab_rollback(tab, snap) < 0) | ||||
2005 | goto error; | ||||
2006 | |||||
2007 | return tab; | ||||
2008 | error: | ||||
2009 | isl_tab_free(tab); | ||||
2010 | return NULL((void*)0); | ||||
2011 | } | ||||
2012 | |||||
2013 | /* Check if any of the currently active sample values satisfies | ||||
2014 | * the inequality "ineq" (an equality if eq is set). | ||||
2015 | */ | ||||
2016 | static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq) | ||||
2017 | { | ||||
2018 | int i; | ||||
2019 | isl_int v; | ||||
2020 | |||||
2021 | if (!tab) | ||||
2022 | return -1; | ||||
2023 | |||||
2024 | isl_assert(tab->mat->ctx, tab->bmap, return -1)do { if (tab->bmap) break; do { isl_handle_error(tab->mat ->ctx, isl_error_unknown, "Assertion \"" "tab->bmap" "\" failed" , "polly/lib/External/isl/isl_tab_pip.c", 2024); return -1; } while (0); } while (0); | ||||
2025 | isl_assert(tab->mat->ctx, tab->samples, return -1)do { if (tab->samples) break; do { isl_handle_error(tab-> mat->ctx, isl_error_unknown, "Assertion \"" "tab->samples" "\" failed", "polly/lib/External/isl/isl_tab_pip.c", 2025); return -1; } while (0); } while (0); | ||||
2026 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1)do { if (tab->samples->n_col == 1 + tab->n_var) break ; do { isl_handle_error(tab->mat->ctx, isl_error_unknown , "Assertion \"" "tab->samples->n_col == 1 + tab->n_var" "\" failed", "polly/lib/External/isl/isl_tab_pip.c", 2026); return -1; } while (0); } while (0); | ||||
2027 | |||||
2028 | isl_int_init(v)isl_sioimath_init((v)); | ||||
2029 | for (i = tab->n_outside; i < tab->n_sample; ++i) { | ||||
2030 | int sgn; | ||||
2031 | isl_seq_inner_product(ineq, tab->samples->row[i], | ||||
2032 | 1 + tab->n_var, &v); | ||||
2033 | sgn = isl_int_sgn(v)isl_sioimath_sgn(*(v)); | ||||
2034 | if (eq ? (sgn == 0) : (sgn >= 0)) | ||||
2035 | break; | ||||
2036 | } | ||||
2037 | isl_int_clear(v)isl_sioimath_clear((v)); | ||||
2038 | |||||
2039 | return i < tab->n_sample; | ||||
2040 | } | ||||
2041 | |||||
2042 | /* Insert a div specified by "div" to the tableau "tab" at position "pos" and | ||||
2043 | * return isl_bool_true if the div is obviously non-negative. | ||||
2044 | */ | ||||
2045 | static isl_bool context_tab_insert_div(struct isl_tab *tab, int pos, | ||||
2046 | __isl_keep isl_vec *div, | ||||
2047 | isl_stat (*add_ineq)(void *user, isl_int *), void *user) | ||||
2048 | { | ||||
2049 | int i; | ||||
2050 | int r; | ||||
2051 | struct isl_mat *samples; | ||||
2052 | int nonneg; | ||||
2053 | |||||
2054 | r = isl_tab_insert_div(tab, pos, div, add_ineq, user); | ||||
2055 | if (r < 0) | ||||
2056 | return isl_bool_error; | ||||
2057 | nonneg = tab->var[r].is_nonneg; | ||||
2058 | tab->var[r].frozen = 1; | ||||
2059 | |||||
2060 | samples = isl_mat_extend(tab->samples, | ||||
2061 | tab->n_sample, 1 + tab->n_var); | ||||
2062 | tab->samples = samples; | ||||
2063 | if (!samples) | ||||
2064 | return isl_bool_error; | ||||
2065 | for (i = tab->n_outside; i < samples->n_row; ++i) { | ||||
2066 | isl_seq_inner_product(div->el + 1, samples->row[i], | ||||
2067 | div->size - 1, &samples->row[i][samples->n_col - 1]); | ||||
2068 | isl_int_fdiv_q(samples->row[i][samples->n_col - 1],isl_sioimath_fdiv_q((samples->row[i][samples->n_col - 1 ]), *(samples->row[i][samples->n_col - 1]), *(div->el [0])) | ||||
2069 | samples->row[i][samples->n_col - 1], div->el[0])isl_sioimath_fdiv_q((samples->row[i][samples->n_col - 1 ]), *(samples->row[i][samples->n_col - 1]), *(div->el [0])); | ||||
2070 | } | ||||
2071 | tab->samples = isl_mat_move_cols(tab->samples, 1 + pos, | ||||
2072 | 1 + tab->n_var - 1, 1); | ||||
2073 | if (!tab->samples) | ||||
2074 | return isl_bool_error; | ||||
2075 | |||||
2076 | return isl_bool_ok(nonneg); | ||||
2077 | } | ||||
2078 | |||||
2079 | /* Add a div specified by "div" to both the main tableau and | ||||
2080 | * the context tableau. In case of the main tableau, we only | ||||
2081 | * need to add an extra div. In the context tableau, we also | ||||
2082 | * need to express the meaning of the div. | ||||
2083 | * Return the index of the div or -1 if anything went wrong. | ||||
2084 | * | ||||
2085 | * The new integer division is added before any unknown integer | ||||
2086 | * divisions in the context to ensure that it does not get | ||||
2087 | * equated to some linear combination involving unknown integer | ||||
2088 | * divisions. | ||||
2089 | */ | ||||
2090 | static int add_div(struct isl_tab *tab, struct isl_context *context, | ||||
2091 | __isl_keep isl_vec *div) | ||||
2092 | { | ||||
2093 | int r; | ||||
2094 | int pos; | ||||
2095 | isl_bool nonneg; | ||||
2096 | struct isl_tab *context_tab = context->op->peek_tab(context); | ||||
2097 | |||||
2098 | if (!tab || !context_tab) | ||||
2099 | goto error; | ||||
2100 | |||||
2101 | pos = context_tab->n_var - context->n_unknown; | ||||
2102 | if ((nonneg = context->op->insert_div(context, pos, div)) < 0) | ||||
2103 | goto error; | ||||
2104 | |||||
2105 | if (!context->op->is_ok(context)) | ||||
2106 | goto error; | ||||
2107 | |||||
2108 | pos = tab->n_var - context->n_unknown; | ||||
2109 | if (isl_tab_extend_vars(tab, 1) < 0) | ||||
2110 | goto error; | ||||
2111 | r = isl_tab_insert_var(tab, pos); | ||||
2112 | if (r < 0) | ||||
2113 | goto error; | ||||
2114 | if (nonneg) | ||||
2115 | tab->var[r].is_nonneg = 1; | ||||
2116 | tab->var[r].frozen = 1; | ||||
2117 | tab->n_div++; | ||||
2118 | |||||
2119 | return tab->n_div - 1 - context->n_unknown; | ||||
2120 | error: | ||||
2121 | context->op->invalidate(context); | ||||
2122 | return -1; | ||||
2123 | } | ||||
2124 | |||||
2125 | /* Return the position of the integer division that is equal to div/denom | ||||
2126 | * if there is one. Otherwise, return a position beyond the integer divisions. | ||||
2127 | */ | ||||
2128 | static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom) | ||||
2129 | { | ||||
2130 | int i; | ||||
2131 | isl_size total = isl_basic_map_dim(tab->bmap, isl_dim_all); | ||||
2132 | isl_size n_div; | ||||
2133 | |||||
2134 | n_div = isl_basic_map_dim(tab->bmap, isl_dim_div); | ||||
2135 | if (total < 0 || n_div < 0) | ||||
2136 | return -1; | ||||
2137 | for (i = 0; i < n_div; ++i) { | ||||
2138 | if (isl_int_ne(tab->bmap->div[i][0], denom)(isl_sioimath_cmp(*(tab->bmap->div[i][0]), *(denom)) != 0)) | ||||
2139 | continue; | ||||
2140 | if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total)) | ||||
2141 | continue; | ||||
2142 | return i; | ||||
2143 | } | ||||
2144 | return n_div; | ||||
2145 | } | ||||
2146 | |||||
2147 | /* Return the index of a div that corresponds to "div". | ||||
2148 | * We first check if we already have such a div and if not, we create one. | ||||
2149 | */ | ||||
2150 | static int get_div(struct isl_tab *tab, struct isl_context *context, | ||||
2151 | struct isl_vec *div) | ||||
2152 | { | ||||
2153 | int d; | ||||
2154 | struct isl_tab *context_tab = context->op->peek_tab(context); | ||||
2155 | unsigned n_div; | ||||
2156 | |||||
2157 | if (!context_tab) | ||||
2158 | return -1; | ||||
2159 | |||||
2160 | n_div = isl_basic_map_dim(context_tab->bmap, isl_dim_div); | ||||
2161 | d = find_div(context_tab, div->el + 1, div->el[0]); | ||||
2162 | if (d < 0) | ||||
2163 | return -1; | ||||
2164 | if (d < n_div) | ||||
2165 | return d; | ||||
2166 | |||||
2167 | return add_div(tab, context, div); | ||||
2168 | } | ||||
2169 | |||||
2170 | /* Add a parametric cut to cut away the non-integral sample value | ||||
2171 | * of the given row. | ||||
2172 | * Let a_i be the coefficients of the constant term and the parameters | ||||
2173 | * and let b_i be the coefficients of the variables or constraints | ||||
2174 | * in basis of the tableau. | ||||
2175 | * Let q be the div q = floor(\sum_i {-a_i} y_i). | ||||
2176 | * | ||||
2177 | * The cut is expressed as | ||||
2178 | * | ||||
2179 | * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0 | ||||
2180 | * | ||||
2181 | * If q did not already exist in the context tableau, then it is added first. | ||||
2182 | * If q is in a column of the main tableau then the "+ q" can be accomplished | ||||
2183 | * by setting the corresponding entry to the denominator of the constraint. | ||||
2184 | * If q happens to be in a row of the main tableau, then the corresponding | ||||
2185 | * row needs to be added instead (taking care of the denominators). | ||||
2186 | * Note that this is very unlikely, but perhaps not entirely impossible. | ||||
2187 | * | ||||
2188 | * The current value of the cut is known to be negative (or at least | ||||
2189 | * non-positive), so row_sign is set accordingly. | ||||
2190 | * | ||||
2191 | * Return the row of the cut or -1. | ||||
2192 | */ | ||||
2193 | static int add_parametric_cut(struct isl_tab *tab, int row, | ||||
2194 | struct isl_context *context) | ||||
2195 | { | ||||
2196 | struct isl_vec *div; | ||||
2197 | int d; | ||||
2198 | int i; | ||||
2199 | int r; | ||||
2200 | isl_int *r_row; | ||||
2201 | int col; | ||||
2202 | int n; | ||||
2203 | unsigned off = 2 + tab->M; | ||||
2204 | |||||
2205 | if (!context) | ||||
2206 | return -1; | ||||
2207 | |||||
2208 | div = get_row_parameter_div(tab, row); | ||||
2209 | if (!div) | ||||
2210 | return -1; | ||||
2211 | |||||
2212 | n = tab->n_div - context->n_unknown; | ||||
2213 | d = context->op->get_div(context, tab, div); | ||||
2214 | isl_vec_free(div); | ||||
2215 | if (d < 0) | ||||
2216 | return -1; | ||||
2217 | |||||
2218 | if (isl_tab_extend_cons(tab, 1) < 0) | ||||
2219 | return -1; | ||||
2220 | r = isl_tab_allocate_con(tab); | ||||
2221 | if (r < 0) | ||||
2222 | return -1; | ||||
2223 | |||||
2224 | r_row = tab->mat->row[tab->con[r].index]; | ||||
2225 | isl_int_set(r_row[0], tab->mat->row[row][0])isl_sioimath_set((r_row[0]), *(tab->mat->row[row][0])); | ||||
2226 | isl_int_neg(r_row[1], tab->mat->row[row][1])isl_sioimath_neg((r_row[1]), *(tab->mat->row[row][1])); | ||||
2227 | isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0])isl_sioimath_fdiv_r((r_row[1]), *(r_row[1]), *(tab->mat-> row[row][0])); | ||||
2228 | isl_int_neg(r_row[1], r_row[1])isl_sioimath_neg((r_row[1]), *(r_row[1])); | ||||
2229 | if (tab->M) | ||||
2230 | isl_int_set_si(r_row[2], 0)isl_sioimath_set_si((r_row[2]), 0); | ||||
2231 | for (i = 0; i < tab->n_param; ++i) { | ||||
2232 | if (tab->var[i].is_row) | ||||
2233 | continue; | ||||
2234 | col = tab->var[i].index; | ||||
2235 | isl_int_neg(r_row[off + col], tab->mat->row[row][off + col])isl_sioimath_neg((r_row[off + col]), *(tab->mat->row[row ][off + col])); | ||||
2236 | isl_int_fdiv_r(r_row[off + col], r_row[off + col],isl_sioimath_fdiv_r((r_row[off + col]), *(r_row[off + col]), * (tab->mat->row[row][0])) | ||||
2237 | tab->mat->row[row][0])isl_sioimath_fdiv_r((r_row[off + col]), *(r_row[off + col]), * (tab->mat->row[row][0])); | ||||
2238 | isl_int_neg(r_row[off + col], r_row[off + col])isl_sioimath_neg((r_row[off + col]), *(r_row[off + col])); | ||||
2239 | } | ||||
2240 | for (i = 0; i < tab->n_div; ++i) { | ||||
2241 | if (tab->var[tab->n_var - tab->n_div + i].is_row) | ||||
2242 | continue; | ||||
2243 | col = tab->var[tab->n_var - tab->n_div + i].index; | ||||
2244 | isl_int_neg(r_row[off + col], tab->mat->row[row][off + col])isl_sioimath_neg((r_row[off + col]), *(tab->mat->row[row ][off + col])); | ||||
2245 | isl_int_fdiv_r(r_row[off + col], r_row[off + col],isl_sioimath_fdiv_r((r_row[off + col]), *(r_row[off + col]), * (tab->mat->row[row][0])) | ||||
2246 | tab->mat->row[row][0])isl_sioimath_fdiv_r((r_row[off + col]), *(r_row[off + col]), * (tab->mat->row[row][0])); | ||||
2247 | isl_int_neg(r_row[off + col], r_row[off + col])isl_sioimath_neg((r_row[off + col]), *(r_row[off + col])); | ||||
2248 | } | ||||
2249 | for (i = 0; i < tab->n_col; ++i) { | ||||
2250 | if (tab->col_var[i] >= 0 && | ||||
2251 | (tab->col_var[i] < tab->n_param || | ||||
2252 | tab->col_var[i] >= tab->n_var - tab->n_div)) | ||||
2253 | continue; | ||||
2254 | isl_int_fdiv_r(r_row[off + i],isl_sioimath_fdiv_r((r_row[off + i]), *(tab->mat->row[row ][off + i]), *(tab->mat->row[row][0])) | ||||
2255 | tab->mat->row[row][off + i], tab->mat->row[row][0])isl_sioimath_fdiv_r((r_row[off + i]), *(tab->mat->row[row ][off + i]), *(tab->mat->row[row][0])); | ||||
2256 | } | ||||
2257 | if (tab->var[tab->n_var - tab->n_div + d].is_row) { | ||||
2258 | isl_int gcd; | ||||
2259 | int d_row = tab->var[tab->n_var - tab->n_div + d].index; | ||||
2260 | isl_int_init(gcd)isl_sioimath_init((gcd)); | ||||
2261 | isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0])isl_sioimath_gcd((gcd), *(tab->mat->row[d_row][0]), *(r_row [0])); | ||||
2262 | isl_int_divexact(r_row[0], r_row[0], gcd)isl_sioimath_tdiv_q((r_row[0]), *(r_row[0]), *(gcd)); | ||||
2263 | isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd)isl_sioimath_tdiv_q((gcd), *(tab->mat->row[d_row][0]), * (gcd)); | ||||
2264 | isl_seq_combine(r_row + 1, gcd, r_row + 1, | ||||
2265 | r_row[0], tab->mat->row[d_row] + 1, | ||||
2266 | off - 1 + tab->n_col); | ||||
2267 | isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0])isl_sioimath_mul((r_row[0]), *(r_row[0]), *(tab->mat->row [d_row][0])); | ||||
2268 | isl_int_clear(gcd)isl_sioimath_clear((gcd)); | ||||
2269 | } else { | ||||
2270 | col = tab->var[tab->n_var - tab->n_div + d].index; | ||||
2271 | isl_int_set(r_row[off + col], tab->mat->row[row][0])isl_sioimath_set((r_row[off + col]), *(tab->mat->row[row ][0])); | ||||
2272 | } | ||||
2273 | |||||
2274 | tab->con[r].is_nonneg = 1; | ||||
2275 | if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) | ||||
2276 | return -1; | ||||
2277 | if (tab->row_sign) | ||||
2278 | tab->row_sign[tab->con[r].index] = isl_tab_row_neg; | ||||
2279 | |||||
2280 | row = tab->con[r].index; | ||||
2281 | |||||
2282 | if (d >= n && context->op->detect_equalities(context, tab) < 0) | ||||
2283 | return -1; | ||||
2284 | |||||
2285 | return row; | ||||
2286 | } | ||||
2287 | |||||
2288 | /* Construct a tableau for bmap that can be used for computing | ||||
2289 | * the lexicographic minimum (or maximum) of bmap. | ||||
2290 | * If not NULL, then dom is the domain where the minimum | ||||
2291 | * should be computed. In this case, we set up a parametric | ||||
2292 | * tableau with row signs (initialized to "unknown"). | ||||
2293 | * If M is set, then the tableau will use a big parameter. | ||||
2294 | * If max is set, then a maximum should be computed instead of a minimum. | ||||
2295 | * This means that for each variable x, the tableau will contain the variable | ||||
2296 | * x' = M - x, rather than x' = M + x. This in turn means that the coefficient | ||||
2297 | * of the variables in all constraints are negated prior to adding them | ||||
2298 | * to the tableau. | ||||
2299 | */ | ||||
2300 | static __isl_give struct isl_tab *tab_for_lexmin(__isl_keep isl_basic_map *bmap, | ||||
2301 | __isl_keep isl_basic_setisl_basic_map *dom, unsigned M, int max) | ||||
2302 | { | ||||
2303 | int i; | ||||
2304 | struct isl_tab *tab; | ||||
2305 | unsigned n_var; | ||||
2306 | unsigned o_var; | ||||
2307 | isl_size total; | ||||
2308 | |||||
2309 | total = isl_basic_map_dim(bmap, isl_dim_all); | ||||
2310 | if (total < 0) | ||||
2311 | return NULL((void*)0); | ||||
2312 | tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1, | ||||
2313 | total, M); | ||||
2314 | if (!tab) | ||||
2315 | return NULL((void*)0); | ||||
2316 | |||||
2317 | tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)(!!(((bmap)->flags) & ((1 << 4)))); | ||||
2318 | if (dom) { | ||||
2319 | isl_size dom_total; | ||||
2320 | dom_total = isl_basic_set_dim(dom, isl_dim_all); | ||||
2321 | if (dom_total < 0) | ||||
2322 | goto error; | ||||
2323 | tab->n_param = dom_total - dom->n_div; | ||||
2324 | tab->n_div = dom->n_div; | ||||
2325 | tab->row_sign = isl_calloc_array(bmap->ctx,((enum isl_tab_row_sign *)isl_calloc_or_die(bmap->ctx, tab ->mat->n_row, sizeof(enum isl_tab_row_sign))) | ||||
2326 | enum isl_tab_row_sign, tab->mat->n_row)((enum isl_tab_row_sign *)isl_calloc_or_die(bmap->ctx, tab ->mat->n_row, sizeof(enum isl_tab_row_sign))); | ||||
2327 | if (tab->mat->n_row && !tab->row_sign) | ||||
2328 | goto error; | ||||
2329 | } | ||||
2330 | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)(!!(((bmap)->flags) & ((1 << 1))))) { | ||||
2331 | if (isl_tab_mark_empty(tab) < 0) | ||||
2332 | goto error; | ||||
2333 | return tab; | ||||
2334 | } | ||||
2335 | |||||
2336 | for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { | ||||
2337 | tab->var[i].is_nonneg = 1; | ||||
2338 | tab->var[i].frozen = 1; | ||||
2339 | } | ||||
2340 | o_var = 1 + tab->n_param; | ||||
2341 | n_var = tab->n_var - tab->n_param - tab->n_div; | ||||
2342 | for (i = 0; i < bmap->n_eq; ++i) { | ||||
2343 | if (max) | ||||
2344 | isl_seq_neg(bmap->eq[i] + o_var, | ||||
2345 | bmap->eq[i] + o_var, n_var); | ||||
2346 | tab = add_lexmin_valid_eq(tab, bmap->eq[i]); | ||||
2347 | if (max) | ||||
2348 | isl_seq_neg(bmap->eq[i] + o_var, | ||||
2349 | bmap->eq[i] + o_var, n_var); | ||||
2350 | if (!tab || tab->empty) | ||||
2351 | return tab; | ||||
2352 | } | ||||
2353 | if (bmap->n_eq && restore_lexmin(tab) < 0) | ||||
2354 | goto error; | ||||
2355 | for (i = 0; i < bmap->n_ineq; ++i) { | ||||
2356 | if (max) | ||||
2357 | isl_seq_neg(bmap->ineq[i] + o_var, | ||||
2358 | bmap->ineq[i] + o_var, n_var); | ||||
2359 | tab = add_lexmin_ineq(tab, bmap->ineq[i]); | ||||
2360 | if (max) | ||||
2361 | isl_seq_neg(bmap->ineq[i] + o_var, | ||||
2362 | bmap->ineq[i] + o_var, n_var); | ||||
2363 | if (!tab || tab->empty) | ||||
2364 | return tab; | ||||
2365 | } | ||||
2366 | return tab; | ||||
2367 | error: | ||||
2368 | isl_tab_free(tab); | ||||
2369 | return NULL((void*)0); | ||||
2370 | } | ||||
2371 | |||||
2372 | /* Given a main tableau where more than one row requires a split, | ||||
2373 | * determine and return the "best" row to split on. | ||||
2374 | * | ||||
2375 | * If any of the rows requiring a split only involves | ||||
2376 | * variables that also appear in the context tableau, | ||||
2377 | * then the negative part is guaranteed not to have a solution. | ||||
2378 | * It is therefore best to split on any of these rows first. | ||||
2379 | * | ||||
2380 | * Otherwise, | ||||
2381 | * given two rows in the main tableau, if the inequality corresponding | ||||
2382 | * to the first row is redundant with respect to that of the second row | ||||
2383 | * in the current tableau, then it is better to split on the second row, | ||||
2384 | * since in the positive part, both rows will be positive. | ||||
2385 | * (In the negative part a pivot will have to be performed and just about | ||||
2386 | * anything can happen to the sign of the other row.) | ||||
2387 | * | ||||
2388 | * As a simple heuristic, we therefore select the row that makes the most | ||||
2389 | * of the other rows redundant. | ||||
2390 | * | ||||
2391 | * Perhaps it would also be useful to look at the number of constraints | ||||
2392 | * that conflict with any given constraint. | ||||
2393 | * | ||||
2394 | * best is the best row so far (-1 when we have not found any row yet). | ||||
2395 | * best_r is the number of other rows made redundant by row best. | ||||
2396 | * When best is still -1, bset_r is meaningless, but it is initialized | ||||
2397 | * to some arbitrary value (0) anyway. Without this redundant initialization | ||||
2398 | * valgrind may warn about uninitialized memory accesses when isl | ||||
2399 | * is compiled with some versions of gcc. | ||||
2400 | */ | ||||
2401 | static int best_split(struct isl_tab *tab, struct isl_tab *context_tab) | ||||
2402 | { | ||||
2403 | struct isl_tab_undo *snap; | ||||
2404 | int split; | ||||
2405 | int row; | ||||
2406 | int best = -1; | ||||
2407 | int best_r = 0; | ||||
2408 | |||||
2409 | if (isl_tab_extend_cons(context_tab, 2) < 0) | ||||
2410 | return -1; | ||||
2411 | |||||
2412 | snap = isl_tab_snap(context_tab); | ||||
2413 | |||||
2414 | for (split = tab->n_redundant; split < tab->n_row; ++split) { | ||||
2415 | struct isl_tab_undo *snap2; | ||||
2416 | struct isl_vec *ineq = NULL((void*)0); | ||||
2417 | int r = 0; | ||||
2418 | int ok; | ||||
2419 | |||||
2420 | if (!isl_tab_var_from_row(tab, split)->is_nonneg) | ||||
2421 | continue; | ||||
2422 | if (tab->row_sign[split] != isl_tab_row_any) | ||||
2423 | continue; | ||||
2424 | |||||
2425 | if (is_parametric_constant(tab, split)) | ||||
2426 | return split; | ||||
2427 | |||||
2428 | ineq = get_row_parameter_ineq(tab, split); | ||||
2429 | if (!ineq) | ||||
2430 | return -1; | ||||
2431 | ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0; | ||||
2432 | isl_vec_free(ineq); | ||||
2433 | if (!ok) | ||||
2434 | return -1; | ||||
2435 | |||||
2436 | snap2 = isl_tab_snap(context_tab); | ||||
2437 | |||||
2438 | for (row = tab->n_redundant; row < tab->n_row; ++row) { | ||||
2439 | struct isl_tab_var *var; | ||||
2440 | |||||
2441 | if (row == split) | ||||
2442 | continue; | ||||
2443 | if (!isl_tab_var_from_row(tab, row)->is_nonneg) | ||||
2444 | continue; | ||||
2445 | if (tab->row_sign[row] != isl_tab_row_any) | ||||
2446 | continue; | ||||
2447 | |||||
2448 | ineq = get_row_parameter_ineq(tab, row); | ||||
2449 | if (!ineq) | ||||
2450 | return -1; | ||||
2451 | ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0; | ||||
2452 | isl_vec_free(ineq); | ||||
2453 | if (!ok) | ||||
2454 | return -1; | ||||
2455 | var = &context_tab->con[context_tab->n_con - 1]; | ||||
2456 | if (!context_tab->empty && | ||||
2457 | !isl_tab_min_at_most_neg_one(context_tab, var)) | ||||
2458 | r++; | ||||
2459 | if (isl_tab_rollback(context_tab, snap2) < 0) | ||||
2460 | return -1; | ||||
2461 | } | ||||
2462 | if (best == -1 || r > best_r) { | ||||
2463 | best = split; | ||||
2464 | best_r = r; | ||||
2465 | } | ||||
2466 | if (isl_tab_rollback(context_tab, snap) < 0) | ||||
2467 | return -1; | ||||
2468 | } | ||||
2469 | |||||
2470 | return best; | ||||
2471 | } | ||||
2472 | |||||
2473 | static struct isl_basic_setisl_basic_map *context_lex_peek_basic_set( | ||||
2474 | struct isl_context *context) | ||||
2475 | { | ||||
2476 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2477 | if (!clex->tab) | ||||
2478 | return NULL((void*)0); | ||||
2479 | return isl_tab_peek_bset(clex->tab); | ||||
2480 | } | ||||
2481 | |||||
2482 | static struct isl_tab *context_lex_peek_tab(struct isl_context *context) | ||||
2483 | { | ||||
2484 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2485 | return clex->tab; | ||||
2486 | } | ||||
2487 | |||||
2488 | static void context_lex_add_eq(struct isl_context *context, isl_int *eq, | ||||
2489 | int check, int update) | ||||
2490 | { | ||||
2491 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2492 | if (isl_tab_extend_cons(clex->tab, 2) < 0) | ||||
2493 | goto error; | ||||
2494 | if (add_lexmin_eq(clex->tab, eq) < 0) | ||||
2495 | goto error; | ||||
2496 | if (check) { | ||||
2497 | int v = tab_has_valid_sample(clex->tab, eq, 1); | ||||
2498 | if (v < 0) | ||||
2499 | goto error; | ||||
2500 | if (!v) | ||||
2501 | clex->tab = check_integer_feasible(clex->tab); | ||||
2502 | } | ||||
2503 | if (update) | ||||
2504 | clex->tab = check_samples(clex->tab, eq, 1); | ||||
2505 | return; | ||||
2506 | error: | ||||
2507 | isl_tab_free(clex->tab); | ||||
2508 | clex->tab = NULL((void*)0); | ||||
2509 | } | ||||
2510 | |||||
2511 | static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq, | ||||
2512 | int check, int update) | ||||
2513 | { | ||||
2514 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2515 | if (isl_tab_extend_cons(clex->tab, 1) < 0) | ||||
2516 | goto error; | ||||
2517 | clex->tab = add_lexmin_ineq(clex->tab, ineq); | ||||
2518 | if (check) { | ||||
2519 | int v = tab_has_valid_sample(clex->tab, ineq, 0); | ||||
2520 | if (v < 0) | ||||
2521 | goto error; | ||||
2522 | if (!v) | ||||
2523 | clex->tab = check_integer_feasible(clex->tab); | ||||
2524 | } | ||||
2525 | if (update) | ||||
2526 | clex->tab = check_samples(clex->tab, ineq, 0); | ||||
2527 | return; | ||||
2528 | error: | ||||
2529 | isl_tab_free(clex->tab); | ||||
2530 | clex->tab = NULL((void*)0); | ||||
2531 | } | ||||
2532 | |||||
2533 | static isl_stat context_lex_add_ineq_wrap(void *user, isl_int *ineq) | ||||
2534 | { | ||||
2535 | struct isl_context *context = (struct isl_context *)user; | ||||
2536 | context_lex_add_ineq(context, ineq, 0, 0); | ||||
2537 | return context->op->is_ok(context) ? isl_stat_ok : isl_stat_error; | ||||
2538 | } | ||||
2539 | |||||
2540 | /* Check which signs can be obtained by "ineq" on all the currently | ||||
2541 | * active sample values. See row_sign for more information. | ||||
2542 | */ | ||||
2543 | static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq, | ||||
2544 | int strict) | ||||
2545 | { | ||||
2546 | int i; | ||||
2547 | int sgn; | ||||
2548 | isl_int tmp; | ||||
2549 | enum isl_tab_row_sign res = isl_tab_row_unknown; | ||||
2550 | |||||
2551 | isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown)do { if (tab->samples) break; do { isl_handle_error(tab-> mat->ctx, isl_error_unknown, "Assertion \"" "tab->samples" "\" failed", "polly/lib/External/isl/isl_tab_pip.c", 2551); return isl_tab_row_unknown; } while (0); } while (0); | ||||
2552 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,do { if (tab->samples->n_col == 1 + tab->n_var) break ; do { isl_handle_error(tab->mat->ctx, isl_error_unknown , "Assertion \"" "tab->samples->n_col == 1 + tab->n_var" "\" failed", "polly/lib/External/isl/isl_tab_pip.c", 2553); return isl_tab_row_unknown; } while (0); } while (0) | ||||
2553 | return isl_tab_row_unknown)do { if (tab->samples->n_col == 1 + tab->n_var) break ; do { isl_handle_error(tab->mat->ctx, isl_error_unknown , "Assertion \"" "tab->samples->n_col == 1 + tab->n_var" "\" failed", "polly/lib/External/isl/isl_tab_pip.c", 2553); return isl_tab_row_unknown; } while (0); } while (0); | ||||
2554 | |||||
2555 | isl_int_init(tmp)isl_sioimath_init((tmp)); | ||||
2556 | for (i = tab->n_outside; i < tab->n_sample; ++i) { | ||||
2557 | isl_seq_inner_product(tab->samples->row[i], ineq, | ||||
2558 | 1 + tab->n_var, &tmp); | ||||
2559 | sgn = isl_int_sgn(tmp)isl_sioimath_sgn(*(tmp)); | ||||
2560 | if (sgn > 0 || (sgn == 0 && strict)) { | ||||
2561 | if (res == isl_tab_row_unknown) | ||||
2562 | res = isl_tab_row_pos; | ||||
2563 | if (res == isl_tab_row_neg) | ||||
2564 | res = isl_tab_row_any; | ||||
2565 | } | ||||
2566 | if (sgn < 0) { | ||||
2567 | if (res == isl_tab_row_unknown) | ||||
2568 | res = isl_tab_row_neg; | ||||
2569 | if (res == isl_tab_row_pos) | ||||
2570 | res = isl_tab_row_any; | ||||
2571 | } | ||||
2572 | if (res == isl_tab_row_any) | ||||
2573 | break; | ||||
2574 | } | ||||
2575 | isl_int_clear(tmp)isl_sioimath_clear((tmp)); | ||||
2576 | |||||
2577 | return res; | ||||
2578 | } | ||||
2579 | |||||
2580 | static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context, | ||||
2581 | isl_int *ineq, int strict) | ||||
2582 | { | ||||
2583 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2584 | return tab_ineq_sign(clex->tab, ineq, strict); | ||||
2585 | } | ||||
2586 | |||||
2587 | /* Check whether "ineq" can be added to the tableau without rendering | ||||
2588 | * it infeasible. | ||||
2589 | */ | ||||
2590 | static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq) | ||||
2591 | { | ||||
2592 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2593 | struct isl_tab_undo *snap; | ||||
2594 | int feasible; | ||||
2595 | |||||
2596 | if (!clex->tab) | ||||
2597 | return -1; | ||||
2598 | |||||
2599 | if (isl_tab_extend_cons(clex->tab, 1) < 0) | ||||
2600 | return -1; | ||||
2601 | |||||
2602 | snap = isl_tab_snap(clex->tab); | ||||
2603 | if (isl_tab_push_basis(clex->tab) < 0) | ||||
2604 | return -1; | ||||
2605 | clex->tab = add_lexmin_ineq(clex->tab, ineq); | ||||
2606 | clex->tab = check_integer_feasible(clex->tab); | ||||
2607 | if (!clex->tab) | ||||
2608 | return -1; | ||||
2609 | feasible = !clex->tab->empty; | ||||
2610 | if (isl_tab_rollback(clex->tab, snap) < 0) | ||||
2611 | return -1; | ||||
2612 | |||||
2613 | return feasible; | ||||
2614 | } | ||||
2615 | |||||
2616 | static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab, | ||||
2617 | struct isl_vec *div) | ||||
2618 | { | ||||
2619 | return get_div(tab, context, div); | ||||
2620 | } | ||||
2621 | |||||
2622 | /* Insert a div specified by "div" to the context tableau at position "pos" and | ||||
2623 | * return isl_bool_true if the div is obviously non-negative. | ||||
2624 | * context_tab_add_div will always return isl_bool_true, because all variables | ||||
2625 | * in a isl_context_lex tableau are non-negative. | ||||
2626 | * However, if we are using a big parameter in the context, then this only | ||||
2627 | * reflects the non-negativity of the variable used to _encode_ the | ||||
2628 | * div, i.e., div' = M + div, so we can't draw any conclusions. | ||||
2629 | */ | ||||
2630 | static isl_bool context_lex_insert_div(struct isl_context *context, int pos, | ||||
2631 | __isl_keep isl_vec *div) | ||||
2632 | { | ||||
2633 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2634 | isl_bool nonneg; | ||||
2635 | nonneg = context_tab_insert_div(clex->tab, pos, div, | ||||
2636 | context_lex_add_ineq_wrap, context); | ||||
2637 | if (nonneg < 0) | ||||
2638 | return isl_bool_error; | ||||
2639 | if (clex->tab->M) | ||||
2640 | return isl_bool_false; | ||||
2641 | return nonneg; | ||||
2642 | } | ||||
2643 | |||||
2644 | static int context_lex_detect_equalities(struct isl_context *context, | ||||
2645 | struct isl_tab *tab) | ||||
2646 | { | ||||
2647 | return 0; | ||||
2648 | } | ||||
2649 | |||||
2650 | static int context_lex_best_split(struct isl_context *context, | ||||
2651 | struct isl_tab *tab) | ||||
2652 | { | ||||
2653 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2654 | struct isl_tab_undo *snap; | ||||
2655 | int r; | ||||
2656 | |||||
2657 | snap = isl_tab_snap(clex->tab); | ||||
2658 | if (isl_tab_push_basis(clex->tab) < 0) | ||||
2659 | return -1; | ||||
2660 | r = best_split(tab, clex->tab); | ||||
2661 | |||||
2662 | if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0) | ||||
2663 | return -1; | ||||
2664 | |||||
2665 | return r; | ||||
2666 | } | ||||
2667 | |||||
2668 | static int context_lex_is_empty(struct isl_context *context) | ||||
2669 | { | ||||
2670 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2671 | if (!clex->tab) | ||||
2672 | return -1; | ||||
2673 | return clex->tab->empty; | ||||
2674 | } | ||||
2675 | |||||
2676 | static void *context_lex_save(struct isl_context *context) | ||||
2677 | { | ||||
2678 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2679 | struct isl_tab_undo *snap; | ||||
2680 | |||||
2681 | snap = isl_tab_snap(clex->tab); | ||||
2682 | if (isl_tab_push_basis(clex->tab) < 0) | ||||
2683 | return NULL((void*)0); | ||||
2684 | if (isl_tab_save_samples(clex->tab) < 0) | ||||
2685 | return NULL((void*)0); | ||||
2686 | |||||
2687 | return snap; | ||||
2688 | } | ||||
2689 | |||||
2690 | static void context_lex_restore(struct isl_context *context, void *save) | ||||
2691 | { | ||||
2692 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2693 | if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) { | ||||
2694 | isl_tab_free(clex->tab); | ||||
2695 | clex->tab = NULL((void*)0); | ||||
2696 | } | ||||
2697 | } | ||||
2698 | |||||
2699 | static void context_lex_discard(void *save) | ||||
2700 | { | ||||
2701 | } | ||||
2702 | |||||
2703 | static int context_lex_is_ok(struct isl_context *context) | ||||
2704 | { | ||||
2705 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2706 | return !!clex->tab; | ||||
2707 | } | ||||
2708 | |||||
2709 | /* For each variable in the context tableau, check if the variable can | ||||
2710 | * only attain non-negative values. If so, mark the parameter as non-negative | ||||
2711 | * in the main tableau. This allows for a more direct identification of some | ||||
2712 | * cases of violated constraints. | ||||
2713 | */ | ||||
2714 | static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab, | ||||
2715 | struct isl_tab *context_tab) | ||||
2716 | { | ||||
2717 | int i; | ||||
2718 | struct isl_tab_undo *snap; | ||||
2719 | struct isl_vec *ineq = NULL((void*)0); | ||||
2720 | struct isl_tab_var *var; | ||||
2721 | int n; | ||||
2722 | |||||
2723 | if (context_tab->n_var == 0) | ||||
2724 | return tab; | ||||
2725 | |||||
2726 | ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var); | ||||
2727 | if (!ineq) | ||||
2728 | goto error; | ||||
2729 | |||||
2730 | if (isl_tab_extend_cons(context_tab, 1) < 0) | ||||
2731 | goto error; | ||||
2732 | |||||
2733 | snap = isl_tab_snap(context_tab); | ||||
2734 | |||||
2735 | n = 0; | ||||
2736 | isl_seq_clr(ineq->el, ineq->size); | ||||
2737 | for (i = 0; i < context_tab->n_var; ++i) { | ||||
2738 | isl_int_set_si(ineq->el[1 + i], 1)isl_sioimath_set_si((ineq->el[1 + i]), 1); | ||||
2739 | if (isl_tab_add_ineq(context_tab, ineq->el) < 0) | ||||
2740 | goto error; | ||||
2741 | var = &context_tab->con[context_tab->n_con - 1]; | ||||
2742 | if (!context_tab->empty && | ||||
2743 | !isl_tab_min_at_most_neg_one(context_tab, var)) { | ||||
2744 | int j = i; | ||||
2745 | if (i >= tab->n_param) | ||||
2746 | j = i - tab->n_param + tab->n_var - tab->n_div; | ||||
2747 | tab->var[j].is_nonneg = 1; | ||||
2748 | n++; | ||||
2749 | } | ||||
2750 | isl_int_set_si(ineq->el[1 + i], 0)isl_sioimath_set_si((ineq->el[1 + i]), 0); | ||||
2751 | if (isl_tab_rollback(context_tab, snap) < 0) | ||||
2752 | goto error; | ||||
2753 | } | ||||
2754 | |||||
2755 | if (context_tab->M && n == context_tab->n_var) { | ||||
2756 | context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1); | ||||
2757 | context_tab->M = 0; | ||||
2758 | } | ||||
2759 | |||||
2760 | isl_vec_free(ineq); | ||||
2761 | return tab; | ||||
2762 | error: | ||||
2763 | isl_vec_free(ineq); | ||||
2764 | isl_tab_free(tab); | ||||
2765 | return NULL((void*)0); | ||||
2766 | } | ||||
2767 | |||||
2768 | static struct isl_tab *context_lex_detect_nonnegative_parameters( | ||||
2769 | struct isl_context *context, struct isl_tab *tab) | ||||
2770 | { | ||||
2771 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2772 | struct isl_tab_undo *snap; | ||||
2773 | |||||
2774 | if (!tab) | ||||
2775 | return NULL((void*)0); | ||||
2776 | |||||
2777 | snap = isl_tab_snap(clex->tab); | ||||
2778 | if (isl_tab_push_basis(clex->tab) < 0) | ||||
2779 | goto error; | ||||
2780 | |||||
2781 | tab = tab_detect_nonnegative_parameters(tab, clex->tab); | ||||
2782 | |||||
2783 | if (isl_tab_rollback(clex->tab, snap) < 0) | ||||
2784 | goto error; | ||||
2785 | |||||
2786 | return tab; | ||||
2787 | error: | ||||
2788 | isl_tab_free(tab); | ||||
2789 | return NULL((void*)0); | ||||
2790 | } | ||||
2791 | |||||
2792 | static void context_lex_invalidate(struct isl_context *context) | ||||
2793 | { | ||||
2794 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2795 | isl_tab_free(clex->tab); | ||||
2796 | clex->tab = NULL((void*)0); | ||||
2797 | } | ||||
2798 | |||||
2799 | static __isl_null struct isl_context *context_lex_free( | ||||
2800 | struct isl_context *context) | ||||
2801 | { | ||||
2802 | struct isl_context_lex *clex = (struct isl_context_lex *)context; | ||||
2803 | isl_tab_free(clex->tab); | ||||
2804 | free(clex); | ||||
2805 | |||||
2806 | return NULL((void*)0); | ||||
2807 | } | ||||
2808 | |||||
2809 | struct isl_context_op isl_context_lex_op = { | ||||
2810 | context_lex_detect_nonnegative_parameters, | ||||
2811 | context_lex_peek_basic_set, | ||||
2812 | context_lex_peek_tab, | ||||
2813 | context_lex_add_eq, | ||||
2814 | context_lex_add_ineq, | ||||
2815 | context_lex_ineq_sign, | ||||
2816 | context_lex_test_ineq, | ||||
2817 | context_lex_get_div, | ||||
2818 | context_lex_insert_div, | ||||
2819 | context_lex_detect_equalities, | ||||
2820 | context_lex_best_split, | ||||
2821 | context_lex_is_empty, | ||||
2822 | context_lex_is_ok, | ||||
2823 | context_lex_save, | ||||
2824 | context_lex_restore, | ||||
2825 | context_lex_discard, | ||||
2826 | context_lex_invalidate, | ||||
2827 | context_lex_free, | ||||
2828 | }; | ||||
2829 | |||||
2830 | static struct isl_tab *context_tab_for_lexmin(__isl_take isl_basic_setisl_basic_map *bset) | ||||
2831 | { | ||||
2832 | struct isl_tab *tab; | ||||
2833 | |||||
2834 | if (!bset) | ||||
2835 | return NULL((void*)0); | ||||
2836 | tab = tab_for_lexmin(bset_to_bmap(bset), NULL((void*)0), 1, 0); | ||||
2837 | if (isl_tab_track_bset(tab, bset) < 0) | ||||
2838 | goto error; | ||||
2839 | tab = isl_tab_init_samples(tab); | ||||
2840 | return tab; | ||||
2841 | error: | ||||
2842 | isl_tab_free(tab); | ||||
2843 | return NULL((void*)0); | ||||
2844 | } | ||||
2845 | |||||
2846 | static struct isl_context *isl_context_lex_alloc(struct isl_basic_setisl_basic_map *dom) | ||||
2847 | { | ||||
2848 | struct isl_context_lex *clex; | ||||
2849 | |||||
2850 | if (!dom) | ||||
2851 | return NULL((void*)0); | ||||
2852 | |||||
2853 | clex = isl_alloc_type(dom->ctx, struct isl_context_lex)((struct isl_context_lex *)isl_malloc_or_die(dom->ctx, sizeof (struct isl_context_lex))); | ||||
2854 | if (!clex) | ||||
2855 | return NULL((void*)0); | ||||
2856 | |||||
2857 | clex->context.op = &isl_context_lex_op; | ||||
2858 | |||||
2859 | clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom)); | ||||
2860 | if (restore_lexmin(clex->tab) < 0) | ||||
2861 | goto error; | ||||
2862 | clex->tab = check_integer_feasible(clex->tab); | ||||
2863 | if (!clex->tab) | ||||
2864 | goto error; | ||||
2865 | |||||
2866 | return &clex->context; | ||||
2867 | error: | ||||
2868 | clex->context.op->free(&clex->context); | ||||
2869 | return NULL((void*)0); | ||||
2870 | } | ||||
2871 | |||||
2872 | /* Representation of the context when using generalized basis reduction. | ||||
2873 | * | ||||
2874 | * "shifted" contains the offsets of the unit hypercubes that lie inside the | ||||
2875 | * context. Any rational point in "shifted" can therefore be rounded | ||||
2876 | * up to an integer point in the context. | ||||
2877 | * If the context is constrained by any equality, then "shifted" is not used | ||||
2878 | * as it would be empty. | ||||
2879 | */ | ||||
2880 | struct isl_context_gbr { | ||||
2881 | struct isl_context context; | ||||
2882 | struct isl_tab *tab; | ||||
2883 | struct isl_tab *shifted; | ||||
2884 | struct isl_tab *cone; | ||||
2885 | }; | ||||
2886 | |||||
2887 | static struct isl_tab *context_gbr_detect_nonnegative_parameters( | ||||
2888 | struct isl_context *context, struct isl_tab *tab) | ||||
2889 | { | ||||
2890 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
2891 | if (!tab) | ||||
2892 | return NULL((void*)0); | ||||
2893 | return tab_detect_nonnegative_parameters(tab, cgbr->tab); | ||||
2894 | } | ||||
2895 | |||||
2896 | static struct isl_basic_setisl_basic_map *context_gbr_peek_basic_set( | ||||
2897 | struct isl_context *context) | ||||
2898 | { | ||||
2899 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
2900 | if (!cgbr->tab) | ||||
2901 | return NULL((void*)0); | ||||
2902 | return isl_tab_peek_bset(cgbr->tab); | ||||
2903 | } | ||||
2904 | |||||
2905 | static struct isl_tab *context_gbr_peek_tab(struct isl_context *context) | ||||
2906 | { | ||||
2907 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
2908 | return cgbr->tab; | ||||
2909 | } | ||||
2910 | |||||
2911 | /* Initialize the "shifted" tableau of the context, which | ||||
2912 | * contains the constraints of the original tableau shifted | ||||
2913 | * by the sum of all negative coefficients. This ensures | ||||
2914 | * that any rational point in the shifted tableau can | ||||
2915 | * be rounded up to yield an integer point in the original tableau. | ||||
2916 | */ | ||||
2917 | static void gbr_init_shifted(struct isl_context_gbr *cgbr) | ||||
2918 | { | ||||
2919 | int i, j; | ||||
2920 | struct isl_vec *cst; | ||||
2921 | struct isl_basic_setisl_basic_map *bset = isl_tab_peek_bset(cgbr->tab); | ||||
2922 | isl_size dim = isl_basic_set_dim(bset, isl_dim_all); | ||||
2923 | |||||
2924 | if (dim < 0) | ||||
2925 | return; | ||||
2926 | cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq); | ||||
2927 | if (!cst) | ||||
2928 | return; | ||||
2929 | |||||
2930 | for (i = 0; i < bset->n_ineq; ++i) { | ||||
2931 | isl_int_set(cst->el[i], bset->ineq[i][0])isl_sioimath_set((cst->el[i]), *(bset->ineq[i][0])); | ||||
2932 | for (j = 0; j < dim; ++j) { | ||||
2933 | if (!isl_int_is_neg(bset->ineq[i][1 + j])(isl_sioimath_sgn(*(bset->ineq[i][1 + j])) < 0)) | ||||
2934 | continue; | ||||
2935 | isl_int_add(bset->ineq[i][0], bset->ineq[i][0],isl_sioimath_add((bset->ineq[i][0]), *(bset->ineq[i][0] ), *(bset->ineq[i][1 + j])) | ||||
2936 | bset->ineq[i][1 + j])isl_sioimath_add((bset->ineq[i][0]), *(bset->ineq[i][0] ), *(bset->ineq[i][1 + j])); | ||||
2937 | } | ||||
2938 | } | ||||
2939 | |||||
2940 | cgbr->shifted = isl_tab_from_basic_set(bset, 0); | ||||
2941 | |||||
2942 | for (i = 0; i < bset->n_ineq; ++i) | ||||
2943 | isl_int_set(bset->ineq[i][0], cst->el[i])isl_sioimath_set((bset->ineq[i][0]), *(cst->el[i])); | ||||
2944 | |||||
2945 | isl_vec_free(cst); | ||||
2946 | } | ||||
2947 | |||||
2948 | /* Check if the shifted tableau is non-empty, and if so | ||||
2949 | * use the sample point to construct an integer point | ||||
2950 | * of the context tableau. | ||||
2951 | */ | ||||
2952 | static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr) | ||||
2953 | { | ||||
2954 | struct isl_vec *sample; | ||||
2955 | |||||
2956 | if (!cgbr->shifted) | ||||
2957 | gbr_init_shifted(cgbr); | ||||
2958 | if (!cgbr->shifted) | ||||
2959 | return NULL((void*)0); | ||||
2960 | if (cgbr->shifted->empty) | ||||
2961 | return isl_vec_alloc(cgbr->tab->mat->ctx, 0); | ||||
2962 | |||||
2963 | sample = isl_tab_get_sample_value(cgbr->shifted); | ||||
2964 | sample = isl_vec_ceil(sample); | ||||
2965 | |||||
2966 | return sample; | ||||
2967 | } | ||||
2968 | |||||
2969 | static __isl_give isl_basic_setisl_basic_map *drop_constant_terms( | ||||
2970 | __isl_take isl_basic_setisl_basic_map *bset) | ||||
2971 | { | ||||
2972 | int i; | ||||
2973 | |||||
2974 | if (!bset) | ||||
2975 | return NULL((void*)0); | ||||
2976 | |||||
2977 | for (i = 0; i < bset->n_eq; ++i) | ||||
2978 | isl_int_set_si(bset->eq[i][0], 0)isl_sioimath_set_si((bset->eq[i][0]), 0); | ||||
2979 | |||||
2980 | for (i = 0; i < bset->n_ineq; ++i) | ||||
2981 | isl_int_set_si(bset->ineq[i][0], 0)isl_sioimath_set_si((bset->ineq[i][0]), 0); | ||||
2982 | |||||
2983 | return bset; | ||||
2984 | } | ||||
2985 | |||||
2986 | static int use_shifted(struct isl_context_gbr *cgbr) | ||||
2987 | { | ||||
2988 | if (!cgbr->tab) | ||||
2989 | return 0; | ||||
2990 | return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0; | ||||
2991 | } | ||||
2992 | |||||
2993 | static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr) | ||||
2994 | { | ||||
2995 | struct isl_basic_setisl_basic_map *bset; | ||||
2996 | struct isl_basic_setisl_basic_map *cone; | ||||
2997 | |||||
2998 | if (isl_tab_sample_is_integer(cgbr->tab)) | ||||
2999 | return isl_tab_get_sample_value(cgbr->tab); | ||||
3000 | |||||
3001 | if (use_shifted(cgbr)) { | ||||
3002 | struct isl_vec *sample; | ||||
3003 | |||||
3004 | sample = gbr_get_shifted_sample(cgbr); | ||||
3005 | if (!sample || sample->size > 0) | ||||
3006 | return sample; | ||||
3007 | |||||
3008 | isl_vec_free(sample); | ||||
3009 | } | ||||
3010 | |||||
3011 | if (!cgbr->cone) { | ||||
3012 | bset = isl_tab_peek_bset(cgbr->tab); | ||||
3013 | cgbr->cone = isl_tab_from_recession_cone(bset, 0); | ||||
3014 | if (!cgbr->cone) | ||||
3015 | return NULL((void*)0); | ||||
3016 | if (isl_tab_track_bset(cgbr->cone, | ||||
3017 | isl_basic_set_copy(bset)) < 0) | ||||
3018 | return NULL((void*)0); | ||||
3019 | } | ||||
3020 | if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0) | ||||
3021 | return NULL((void*)0); | ||||
3022 | |||||
3023 | if (cgbr->cone->n_dead == cgbr->cone->n_col) { | ||||
3024 | struct isl_vec *sample; | ||||
3025 | struct isl_tab_undo *snap; | ||||
3026 | |||||
3027 | if (cgbr->tab->basis) { | ||||
3028 | if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) { | ||||
3029 | isl_mat_free(cgbr->tab->basis); | ||||
3030 | cgbr->tab->basis = NULL((void*)0); | ||||
3031 | } | ||||
3032 | cgbr->tab->n_zero = 0; | ||||
3033 | cgbr->tab->n_unbounded = 0; | ||||
3034 | } | ||||
3035 | |||||
3036 | snap = isl_tab_snap(cgbr->tab); | ||||
3037 | |||||
3038 | sample = isl_tab_sample(cgbr->tab); | ||||
3039 | |||||
3040 | if (!sample || isl_tab_rollback(cgbr->tab, snap) < 0) { | ||||
3041 | isl_vec_free(sample); | ||||
3042 | return NULL((void*)0); | ||||
3043 | } | ||||
3044 | |||||
3045 | return sample; | ||||
3046 | } | ||||
3047 | |||||
3048 | cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone)); | ||||
3049 | cone = drop_constant_terms(cone); | ||||
3050 | cone = isl_basic_set_update_from_tab(cone, cgbr->cone); | ||||
3051 | cone = isl_basic_set_underlying_set(cone); | ||||
3052 | cone = isl_basic_set_gauss(cone, NULL((void*)0)); | ||||
3053 | |||||
3054 | bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab)); | ||||
3055 | bset = isl_basic_set_update_from_tab(bset, cgbr->tab); | ||||
3056 | bset = isl_basic_set_underlying_set(bset); | ||||
3057 | bset = isl_basic_set_gauss(bset, NULL((void*)0)); | ||||
3058 | |||||
3059 | return isl_basic_set_sample_with_cone(bset, cone); | ||||
3060 | } | ||||
3061 | |||||
3062 | static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr) | ||||
3063 | { | ||||
3064 | struct isl_vec *sample; | ||||
3065 | |||||
3066 | if (!cgbr->tab) | ||||
3067 | return; | ||||
3068 | |||||
3069 | if (cgbr->tab->empty) | ||||
3070 | return; | ||||
3071 | |||||
3072 | sample = gbr_get_sample(cgbr); | ||||
3073 | if (!sample) | ||||
3074 | goto error; | ||||
3075 | |||||
3076 | if (sample->size == 0) { | ||||
3077 | isl_vec_free(sample); | ||||
3078 | if (isl_tab_mark_empty(cgbr->tab) < 0) | ||||
3079 | goto error; | ||||
3080 | return; | ||||
3081 | } | ||||
3082 | |||||
3083 | if (isl_tab_add_sample(cgbr->tab, sample) < 0) | ||||
3084 | goto error; | ||||
3085 | |||||
3086 | return; | ||||
3087 | error: | ||||
3088 | isl_tab_free(cgbr->tab); | ||||
3089 | cgbr->tab = NULL((void*)0); | ||||
3090 | } | ||||
3091 | |||||
3092 | static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq) | ||||
3093 | { | ||||
3094 | if (!tab) | ||||
3095 | return NULL((void*)0); | ||||
3096 | |||||
3097 | if (isl_tab_extend_cons(tab, 2) < 0) | ||||
3098 | goto error; | ||||
3099 | |||||
3100 | if (isl_tab_add_eq(tab, eq) < 0) | ||||
3101 | goto error; | ||||
3102 | |||||
3103 | return tab; | ||||
3104 | error: | ||||
3105 | isl_tab_free(tab); | ||||
3106 | return NULL((void*)0); | ||||
3107 | } | ||||
3108 | |||||
3109 | /* Add the equality described by "eq" to the context. | ||||
3110 | * If "check" is set, then we check if the context is empty after | ||||
3111 | * adding the equality. | ||||
3112 | * If "update" is set, then we check if the samples are still valid. | ||||
3113 | * | ||||
3114 | * We do not explicitly add shifted copies of the equality to | ||||
3115 | * cgbr->shifted since they would conflict with each other. | ||||
3116 | * Instead, we directly mark cgbr->shifted empty. | ||||
3117 | */ | ||||
3118 | static void context_gbr_add_eq(struct isl_context *context, isl_int *eq, | ||||
3119 | int check, int update) | ||||
3120 | { | ||||
3121 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3122 | |||||
3123 | cgbr->tab = add_gbr_eq(cgbr->tab, eq); | ||||
3124 | |||||
3125 | if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) { | ||||
3126 | if (isl_tab_mark_empty(cgbr->shifted) < 0) | ||||
3127 | goto error; | ||||
3128 | } | ||||
3129 | |||||
3130 | if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) { | ||||
3131 | if (isl_tab_extend_cons(cgbr->cone, 2) < 0) | ||||
3132 | goto error; | ||||
3133 | if (isl_tab_add_eq(cgbr->cone, eq) < 0) | ||||
3134 | goto error; | ||||
3135 | } | ||||
3136 | |||||
3137 | if (check) { | ||||
3138 | int v = tab_has_valid_sample(cgbr->tab, eq, 1); | ||||
3139 | if (v < 0) | ||||
3140 | goto error; | ||||
3141 | if (!v) | ||||
3142 | check_gbr_integer_feasible(cgbr); | ||||
3143 | } | ||||
3144 | if (update) | ||||
3145 | cgbr->tab = check_samples(cgbr->tab, eq, 1); | ||||
3146 | return; | ||||
3147 | error: | ||||
3148 | isl_tab_free(cgbr->tab); | ||||
3149 | cgbr->tab = NULL((void*)0); | ||||
3150 | } | ||||
3151 | |||||
3152 | static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq) | ||||
3153 | { | ||||
3154 | if (!cgbr->tab) | ||||
3155 | return; | ||||
3156 | |||||
3157 | if (isl_tab_extend_cons(cgbr->tab, 1) < 0) | ||||
3158 | goto error; | ||||
3159 | |||||
3160 | if (isl_tab_add_ineq(cgbr->tab, ineq) < 0) | ||||
3161 | goto error; | ||||
3162 | |||||
3163 | if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) { | ||||
3164 | int i; | ||||
3165 | isl_size dim; | ||||
3166 | dim = isl_basic_map_dim(cgbr->tab->bmap, isl_dim_all); | ||||
3167 | if (dim < 0) | ||||
3168 | goto error; | ||||
3169 | |||||
3170 | if (isl_tab_extend_cons(cgbr->shifted, 1) < 0) | ||||
3171 | goto error; | ||||
3172 | |||||
3173 | for (i = 0; i < dim; ++i) { | ||||
3174 | if (!isl_int_is_neg(ineq[1 + i])(isl_sioimath_sgn(*(ineq[1 + i])) < 0)) | ||||
3175 | continue; | ||||
3176 | isl_int_add(ineq[0], ineq[0], ineq[1 + i])isl_sioimath_add((ineq[0]), *(ineq[0]), *(ineq[1 + i])); | ||||
3177 | } | ||||
3178 | |||||
3179 | if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0) | ||||
3180 | goto error; | ||||
3181 | |||||
3182 | for (i = 0; i < dim; ++i) { | ||||
3183 | if (!isl_int_is_neg(ineq[1 + i])(isl_sioimath_sgn(*(ineq[1 + i])) < 0)) | ||||
3184 | continue; | ||||
3185 | isl_int_sub(ineq[0], ineq[0], ineq[1 + i])isl_sioimath_sub((ineq[0]), *(ineq[0]), *(ineq[1 + i])); | ||||
3186 | } | ||||
3187 | } | ||||
3188 | |||||
3189 | if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) { | ||||
3190 | if (isl_tab_extend_cons(cgbr->cone, 1) < 0) | ||||
3191 | goto error; | ||||
3192 | if (isl_tab_add_ineq(cgbr->cone, ineq) < 0) | ||||
3193 | goto error; | ||||
3194 | } | ||||
3195 | |||||
3196 | return; | ||||
3197 | error: | ||||
3198 | isl_tab_free(cgbr->tab); | ||||
3199 | cgbr->tab = NULL((void*)0); | ||||
3200 | } | ||||
3201 | |||||
3202 | static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq, | ||||
3203 | int check, int update) | ||||
3204 | { | ||||
3205 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3206 | |||||
3207 | add_gbr_ineq(cgbr, ineq); | ||||
3208 | if (!cgbr->tab) | ||||
3209 | return; | ||||
3210 | |||||
3211 | if (check) { | ||||
3212 | int v = tab_has_valid_sample(cgbr->tab, ineq, 0); | ||||
3213 | if (v < 0) | ||||
3214 | goto error; | ||||
3215 | if (!v) | ||||
3216 | check_gbr_integer_feasible(cgbr); | ||||
3217 | } | ||||
3218 | if (update) | ||||
3219 | cgbr->tab = check_samples(cgbr->tab, ineq, 0); | ||||
3220 | return; | ||||
3221 | error: | ||||
3222 | isl_tab_free(cgbr->tab); | ||||
3223 | cgbr->tab = NULL((void*)0); | ||||
3224 | } | ||||
3225 | |||||
3226 | static isl_stat context_gbr_add_ineq_wrap(void *user, isl_int *ineq) | ||||
3227 | { | ||||
3228 | struct isl_context *context = (struct isl_context *)user; | ||||
3229 | context_gbr_add_ineq(context, ineq, 0, 0); | ||||
3230 | return context->op->is_ok(context) ? isl_stat_ok : isl_stat_error; | ||||
3231 | } | ||||
3232 | |||||
3233 | static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context, | ||||
3234 | isl_int *ineq, int strict) | ||||
3235 | { | ||||
3236 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3237 | return tab_ineq_sign(cgbr->tab, ineq, strict); | ||||
3238 | } | ||||
3239 | |||||
3240 | /* Check whether "ineq" can be added to the tableau without rendering | ||||
3241 | * it infeasible. | ||||
3242 | */ | ||||
3243 | static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq) | ||||
3244 | { | ||||
3245 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3246 | struct isl_tab_undo *snap; | ||||
3247 | struct isl_tab_undo *shifted_snap = NULL((void*)0); | ||||
3248 | struct isl_tab_undo *cone_snap = NULL((void*)0); | ||||
3249 | int feasible; | ||||
3250 | |||||
3251 | if (!cgbr->tab) | ||||
3252 | return -1; | ||||
3253 | |||||
3254 | if (isl_tab_extend_cons(cgbr->tab, 1) < 0) | ||||
3255 | return -1; | ||||
3256 | |||||
3257 | snap = isl_tab_snap(cgbr->tab); | ||||
3258 | if (cgbr->shifted) | ||||
3259 | shifted_snap = isl_tab_snap(cgbr->shifted); | ||||
3260 | if (cgbr->cone) | ||||
3261 | cone_snap = isl_tab_snap(cgbr->cone); | ||||
3262 | add_gbr_ineq(cgbr, ineq); | ||||
3263 | check_gbr_integer_feasible(cgbr); | ||||
3264 | if (!cgbr->tab) | ||||
3265 | return -1; | ||||
3266 | feasible = !cgbr->tab->empty; | ||||
3267 | if (isl_tab_rollback(cgbr->tab, snap) < 0) | ||||
3268 | return -1; | ||||
3269 | if (shifted_snap) { | ||||
3270 | if (isl_tab_rollback(cgbr->shifted, shifted_snap)) | ||||
3271 | return -1; | ||||
3272 | } else if (cgbr->shifted) { | ||||
3273 | isl_tab_free(cgbr->shifted); | ||||
3274 | cgbr->shifted = NULL((void*)0); | ||||
3275 | } | ||||
3276 | if (cone_snap) { | ||||
3277 | if (isl_tab_rollback(cgbr->cone, cone_snap)) | ||||
3278 | return -1; | ||||
3279 | } else if (cgbr->cone) { | ||||
3280 | isl_tab_free(cgbr->cone); | ||||
3281 | cgbr->cone = NULL((void*)0); | ||||
3282 | } | ||||
3283 | |||||
3284 | return feasible; | ||||
3285 | } | ||||
3286 | |||||
3287 | /* Return the column of the last of the variables associated to | ||||
3288 | * a column that has a non-zero coefficient. | ||||
3289 | * This function is called in a context where only coefficients | ||||
3290 | * of parameters or divs can be non-zero. | ||||
3291 | */ | ||||
3292 | static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p) | ||||
3293 | { | ||||
3294 | int i; | ||||
3295 | int col; | ||||
3296 | |||||
3297 | if (tab->n_var == 0) | ||||
3298 | return -1; | ||||
3299 | |||||
3300 | for (i = tab->n_var - 1; i >= 0; --i) { | ||||
3301 | if (i >= tab->n_param && i < tab->n_var - tab->n_div) | ||||
3302 | continue; | ||||
3303 | if (tab->var[i].is_row) | ||||
3304 | continue; | ||||
3305 | col = tab->var[i].index; | ||||
3306 | if (!isl_int_is_zero(p[col])(isl_sioimath_sgn(*(p[col])) == 0)) | ||||
3307 | return col; | ||||
3308 | } | ||||
3309 | |||||
3310 | return -1; | ||||
3311 | } | ||||
3312 | |||||
3313 | /* Look through all the recently added equalities in the context | ||||
3314 | * to see if we can propagate any of them to the main tableau. | ||||
3315 | * | ||||
3316 | * The newly added equalities in the context are encoded as pairs | ||||
3317 | * of inequalities starting at inequality "first". | ||||
3318 | * | ||||
3319 | * We tentatively add each of these equalities to the main tableau | ||||
3320 | * and if this happens to result in a row with a final coefficient | ||||
3321 | * that is one or negative one, we use it to kill a column | ||||
3322 | * in the main tableau. Otherwise, we discard the tentatively | ||||
3323 | * added row. | ||||
3324 | * This tentative addition of equality constraints turns | ||||
3325 | * on the undo facility of the tableau. Turn it off again | ||||
3326 | * at the end, assuming it was turned off to begin with. | ||||
3327 | * | ||||
3328 | * Return 0 on success and -1 on failure. | ||||
3329 | */ | ||||
3330 | static int propagate_equalities(struct isl_context_gbr *cgbr, | ||||
3331 | struct isl_tab *tab, unsigned first) | ||||
3332 | { | ||||
3333 | int i; | ||||
3334 | struct isl_vec *eq = NULL((void*)0); | ||||
3335 | isl_bool needs_undo; | ||||
3336 | |||||
3337 | needs_undo = isl_tab_need_undo(tab); | ||||
3338 | if (needs_undo < 0) | ||||
3339 | goto error; | ||||
3340 | eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); | ||||
3341 | if (!eq) | ||||
3342 | goto error; | ||||
3343 | |||||
3344 | if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0) | ||||
3345 | goto error; | ||||
3346 | |||||
3347 | isl_seq_clr(eq->el + 1 + tab->n_param, | ||||
3348 | tab->n_var - tab->n_param - tab->n_div); | ||||
3349 | for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) { | ||||
3350 | int j; | ||||
3351 | int r; | ||||
3352 | struct isl_tab_undo *snap; | ||||
3353 | snap = isl_tab_snap(tab); | ||||
3354 | |||||
3355 | isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param); | ||||
3356 | isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div, | ||||
3357 | cgbr->tab->bmap->ineq[i] + 1 + tab->n_param, | ||||
3358 | tab->n_div); | ||||
3359 | |||||
3360 | r = isl_tab_add_row(tab, eq->el); | ||||
3361 | if (r < 0) | ||||
3362 | goto error; | ||||
3363 | r = tab->con[r].index; | ||||
3364 | j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M); | ||||
3365 | if (j < 0 || j < tab->n_dead || | ||||
3366 | !isl_int_is_one(tab->mat->row[r][0])(isl_sioimath_cmp_si(*(tab->mat->row[r][0]), 1) == 0) || | ||||
3367 | (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j])(isl_sioimath_cmp_si(*(tab->mat->row[r][2 + tab->M + j]), 1) == 0) && | ||||
3368 | !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j])(isl_sioimath_cmp_si(*(tab->mat->row[r][2 + tab->M + j]), -1) == 0))) { | ||||
3369 | if (isl_tab_rollback(tab, snap) < 0) | ||||
3370 | goto error; | ||||
3371 | continue; | ||||
3372 | } | ||||
3373 | if (isl_tab_pivot(tab, r, j) < 0) | ||||
3374 | goto error; | ||||
3375 | if (isl_tab_kill_col(tab, j) < 0) | ||||
3376 | goto error; | ||||
3377 | |||||
3378 | if (restore_lexmin(tab) < 0) | ||||
3379 | goto error; | ||||
3380 | } | ||||
3381 | |||||
3382 | if (!needs_undo) | ||||
3383 | isl_tab_clear_undo(tab); | ||||
3384 | isl_vec_free(eq); | ||||
3385 | |||||
3386 | return 0; | ||||
3387 | error: | ||||
3388 | isl_vec_free(eq); | ||||
3389 | isl_tab_free(cgbr->tab); | ||||
3390 | cgbr->tab = NULL((void*)0); | ||||
3391 | return -1; | ||||
3392 | } | ||||
3393 | |||||
3394 | static int context_gbr_detect_equalities(struct isl_context *context, | ||||
3395 | struct isl_tab *tab) | ||||
3396 | { | ||||
3397 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3398 | unsigned n_ineq; | ||||
3399 | |||||
3400 | if (!cgbr->cone) { | ||||
3401 | struct isl_basic_setisl_basic_map *bset = isl_tab_peek_bset(cgbr->tab); | ||||
3402 | cgbr->cone = isl_tab_from_recession_cone(bset, 0); | ||||
3403 | if (!cgbr->cone) | ||||
3404 | goto error; | ||||
3405 | if (isl_tab_track_bset(cgbr->cone, | ||||
3406 | isl_basic_set_copy(bset)) < 0) | ||||
3407 | goto error; | ||||
3408 | } | ||||
3409 | if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0) | ||||
3410 | goto error; | ||||
3411 | |||||
3412 | n_ineq = cgbr->tab->bmap->n_ineq; | ||||
3413 | cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone); | ||||
3414 | if (!cgbr->tab) | ||||
3415 | return -1; | ||||
3416 | if (cgbr->tab->bmap->n_ineq > n_ineq && | ||||
3417 | propagate_equalities(cgbr, tab, n_ineq) < 0) | ||||
3418 | return -1; | ||||
3419 | |||||
3420 | return 0; | ||||
3421 | error: | ||||
3422 | isl_tab_free(cgbr->tab); | ||||
3423 | cgbr->tab = NULL((void*)0); | ||||
3424 | return -1; | ||||
3425 | } | ||||
3426 | |||||
3427 | static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab, | ||||
3428 | struct isl_vec *div) | ||||
3429 | { | ||||
3430 | return get_div(tab, context, div); | ||||
3431 | } | ||||
3432 | |||||
3433 | static isl_bool context_gbr_insert_div(struct isl_context *context, int pos, | ||||
3434 | __isl_keep isl_vec *div) | ||||
3435 | { | ||||
3436 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3437 | if (cgbr->cone) { | ||||
3438 | int r, o_div; | ||||
3439 | isl_size n_div; | ||||
3440 | |||||
3441 | n_div = isl_basic_map_dim(cgbr->cone->bmap, isl_dim_div); | ||||
3442 | if (n_div < 0) | ||||
3443 | return isl_bool_error; | ||||
3444 | o_div = cgbr->cone->n_var - n_div; | ||||
3445 | |||||
3446 | if (isl_tab_extend_cons(cgbr->cone, 3) < 0) | ||||
3447 | return isl_bool_error; | ||||
3448 | if (isl_tab_extend_vars(cgbr->cone, 1) < 0) | ||||
3449 | return isl_bool_error; | ||||
3450 | if ((r = isl_tab_insert_var(cgbr->cone, pos)) <0) | ||||
3451 | return isl_bool_error; | ||||
3452 | |||||
3453 | cgbr->cone->bmap = isl_basic_map_insert_div(cgbr->cone->bmap, | ||||
3454 | r - o_div, div); | ||||
3455 | if (!cgbr->cone->bmap) | ||||
3456 | return isl_bool_error; | ||||
3457 | if (isl_tab_push_var(cgbr->cone, isl_tab_undo_bmap_div, | ||||
3458 | &cgbr->cone->var[r]) < 0) | ||||
3459 | return isl_bool_error; | ||||
3460 | } | ||||
3461 | return context_tab_insert_div(cgbr->tab, pos, div, | ||||
3462 | context_gbr_add_ineq_wrap, context); | ||||
3463 | } | ||||
3464 | |||||
3465 | static int context_gbr_best_split(struct isl_context *context, | ||||
3466 | struct isl_tab *tab) | ||||
3467 | { | ||||
3468 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3469 | struct isl_tab_undo *snap; | ||||
3470 | int r; | ||||
3471 | |||||
3472 | snap = isl_tab_snap(cgbr->tab); | ||||
3473 | r = best_split(tab, cgbr->tab); | ||||
3474 | |||||
3475 | if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0) | ||||
3476 | return -1; | ||||
3477 | |||||
3478 | return r; | ||||
3479 | } | ||||
3480 | |||||
3481 | static int context_gbr_is_empty(struct isl_context *context) | ||||
3482 | { | ||||
3483 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3484 | if (!cgbr->tab) | ||||
3485 | return -1; | ||||
3486 | return cgbr->tab->empty; | ||||
3487 | } | ||||
3488 | |||||
3489 | struct isl_gbr_tab_undo { | ||||
3490 | struct isl_tab_undo *tab_snap; | ||||
3491 | struct isl_tab_undo *shifted_snap; | ||||
3492 | struct isl_tab_undo *cone_snap; | ||||
3493 | }; | ||||
3494 | |||||
3495 | static void *context_gbr_save(struct isl_context *context) | ||||
3496 | { | ||||
3497 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3498 | struct isl_gbr_tab_undo *snap; | ||||
3499 | |||||
3500 | if (!cgbr->tab) | ||||
3501 | return NULL((void*)0); | ||||
3502 | |||||
3503 | snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo)((struct isl_gbr_tab_undo *)isl_malloc_or_die(cgbr->tab-> mat->ctx, sizeof(struct isl_gbr_tab_undo))); | ||||
3504 | if (!snap) | ||||
3505 | return NULL((void*)0); | ||||
3506 | |||||
3507 | snap->tab_snap = isl_tab_snap(cgbr->tab); | ||||
3508 | if (isl_tab_save_samples(cgbr->tab) < 0) | ||||
3509 | goto error; | ||||
3510 | |||||
3511 | if (cgbr->shifted) | ||||
3512 | snap->shifted_snap = isl_tab_snap(cgbr->shifted); | ||||
3513 | else | ||||
3514 | snap->shifted_snap = NULL((void*)0); | ||||
3515 | |||||
3516 | if (cgbr->cone) | ||||
3517 | snap->cone_snap = isl_tab_snap(cgbr->cone); | ||||
3518 | else | ||||
3519 | snap->cone_snap = NULL((void*)0); | ||||
3520 | |||||
3521 | return snap; | ||||
3522 | error: | ||||
3523 | free(snap); | ||||
3524 | return NULL((void*)0); | ||||
3525 | } | ||||
3526 | |||||
3527 | static void context_gbr_restore(struct isl_context *context, void *save) | ||||
3528 | { | ||||
3529 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3530 | struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save; | ||||
3531 | if (!snap) | ||||
3532 | goto error; | ||||
3533 | if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) | ||||
3534 | goto error; | ||||
3535 | |||||
3536 | if (snap->shifted_snap) { | ||||
3537 | if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0) | ||||
3538 | goto error; | ||||
3539 | } else if (cgbr->shifted) { | ||||
3540 | isl_tab_free(cgbr->shifted); | ||||
3541 | cgbr->shifted = NULL((void*)0); | ||||
3542 | } | ||||
3543 | |||||
3544 | if (snap->cone_snap) { | ||||
3545 | if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0) | ||||
3546 | goto error; | ||||
3547 | } else if (cgbr->cone) { | ||||
3548 | isl_tab_free(cgbr->cone); | ||||
3549 | cgbr->cone = NULL((void*)0); | ||||
3550 | } | ||||
3551 | |||||
3552 | free(snap); | ||||
3553 | |||||
3554 | return; | ||||
3555 | error: | ||||
3556 | free(snap); | ||||
3557 | isl_tab_free(cgbr->tab); | ||||
3558 | cgbr->tab = NULL((void*)0); | ||||
3559 | } | ||||
3560 | |||||
3561 | static void context_gbr_discard(void *save) | ||||
3562 | { | ||||
3563 | struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save; | ||||
3564 | free(snap); | ||||
3565 | } | ||||
3566 | |||||
3567 | static int context_gbr_is_ok(struct isl_context *context) | ||||
3568 | { | ||||
3569 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3570 | return !!cgbr->tab; | ||||
3571 | } | ||||
3572 | |||||
3573 | static void context_gbr_invalidate(struct isl_context *context) | ||||
3574 | { | ||||
3575 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3576 | isl_tab_free(cgbr->tab); | ||||
3577 | cgbr->tab = NULL((void*)0); | ||||
3578 | } | ||||
3579 | |||||
3580 | static __isl_null struct isl_context *context_gbr_free( | ||||
3581 | struct isl_context *context) | ||||
3582 | { | ||||
3583 | struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; | ||||
3584 | isl_tab_free(cgbr->tab); | ||||
3585 | isl_tab_free(cgbr->shifted); | ||||
3586 | isl_tab_free(cgbr->cone); | ||||
3587 | free(cgbr); | ||||
3588 | |||||
3589 | return NULL((void*)0); | ||||
3590 | } | ||||
3591 | |||||
3592 | struct isl_context_op isl_context_gbr_op = { | ||||
3593 | context_gbr_detect_nonnegative_parameters, | ||||
3594 | context_gbr_peek_basic_set, | ||||
3595 | context_gbr_peek_tab, | ||||
3596 | context_gbr_add_eq, | ||||
3597 | context_gbr_add_ineq, | ||||
3598 | context_gbr_ineq_sign, | ||||
3599 | context_gbr_test_ineq, | ||||
3600 | context_gbr_get_div, | ||||
3601 | context_gbr_insert_div, | ||||
3602 | context_gbr_detect_equalities, | ||||
3603 | context_gbr_best_split, | ||||
3604 | context_gbr_is_empty, | ||||
3605 | context_gbr_is_ok, | ||||
3606 | context_gbr_save, | ||||
3607 | context_gbr_restore, | ||||
3608 | context_gbr_discard, | ||||
3609 | context_gbr_invalidate, | ||||
3610 | context_gbr_free, | ||||
3611 | }; | ||||
3612 | |||||
3613 | static struct isl_context *isl_context_gbr_alloc(__isl_keep isl_basic_setisl_basic_map *dom) | ||||
3614 | { | ||||
3615 | struct isl_context_gbr *cgbr; | ||||
3616 | |||||
3617 | if (!dom) | ||||
3618 | return NULL((void*)0); | ||||
3619 | |||||
3620 | cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr)((struct isl_context_gbr *)isl_calloc_or_die(dom->ctx, 1, sizeof (struct isl_context_gbr))); | ||||
3621 | if (!cgbr) | ||||
3622 | return NULL((void*)0); | ||||
3623 | |||||
3624 | cgbr->context.op = &isl_context_gbr_op; | ||||
3625 | |||||
3626 | cgbr->shifted = NULL((void*)0); | ||||
3627 | cgbr->cone = NULL((void*)0); | ||||
3628 | cgbr->tab = isl_tab_from_basic_set(dom, 1); | ||||
3629 | cgbr->tab = isl_tab_init_samples(cgbr->tab); | ||||
3630 | if (!cgbr->tab) | ||||
3631 | goto error; | ||||
3632 | check_gbr_integer_feasible(cgbr); | ||||
3633 | |||||
3634 | return &cgbr->context; | ||||
3635 | error: | ||||
3636 | cgbr->context.op->free(&cgbr->context); | ||||
3637 | return NULL((void*)0); | ||||
3638 | } | ||||
3639 | |||||
3640 | /* Allocate a context corresponding to "dom". | ||||
3641 | * The representation specific fields are initialized by | ||||
3642 | * isl_context_lex_alloc or isl_context_gbr_alloc. | ||||
3643 | * The shared "n_unknown" field is initialized to the number | ||||
3644 | * of final unknown integer divisions in "dom". | ||||
3645 | */ | ||||
3646 | static struct isl_context *isl_context_alloc(__isl_keep isl_basic_setisl_basic_map *dom) | ||||
3647 | { | ||||
3648 | struct isl_context *context; | ||||
3649 | int first; | ||||
3650 | isl_size n_div; | ||||
3651 | |||||
3652 | if (!dom) | ||||
3653 | return NULL((void*)0); | ||||
3654 | |||||
3655 | if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN1) | ||||
3656 | context = isl_context_lex_alloc(dom); | ||||
3657 | else | ||||
3658 | context = isl_context_gbr_alloc(dom); | ||||
3659 | |||||
3660 | if (!context) | ||||
3661 | return NULL((void*)0); | ||||
3662 | |||||
3663 | first = isl_basic_set_first_unknown_div(dom); | ||||
3664 | n_div = isl_basic_set_dim(dom, isl_dim_div); | ||||
3665 | if (first < 0 || n_div < 0) | ||||
3666 | return context->op->free(context); | ||||
3667 | context->n_unknown = n_div - first; | ||||
3668 | |||||
3669 | return context; | ||||
3670 | } | ||||
3671 | |||||
3672 | /* Initialize some common fields of "sol", which keeps track | ||||
3673 | * of the solution of an optimization problem on "bmap" over | ||||
3674 | * the domain "dom". | ||||
3675 | * If "max" is set, then a maximization problem is being solved, rather than | ||||
3676 | * a minimization problem, which means that the variables in the | ||||
3677 | * tableau have value "M - x" rather than "M + x". | ||||
3678 | */ | ||||
3679 | static isl_stat sol_init(struct isl_sol *sol, __isl_keep isl_basic_map *bmap, | ||||
3680 | __isl_keep isl_basic_setisl_basic_map *dom, int max) | ||||
3681 | { | ||||
3682 | sol->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)(!!(((bmap)->flags) & ((1 << 4)))); | ||||
3683 | sol->dec_level.callback.run = &sol_dec_level_wrap; | ||||
3684 | sol->dec_level.sol = sol; | ||||
3685 | sol->max = max; | ||||
3686 | sol->n_out = isl_basic_map_dim(bmap, isl_dim_out); | ||||
3687 | sol->space = isl_basic_map_get_space(bmap); | ||||
3688 | |||||
3689 | sol->context = isl_context_alloc(dom); | ||||
3690 | if (sol->n_out < 0 || !sol->space || !sol->context) | ||||
3691 | return isl_stat_error; | ||||
3692 | |||||
3693 | return isl_stat_ok; | ||||
3694 | } | ||||
3695 | |||||
3696 | /* Construct an isl_sol_map structure for accumulating the solution. | ||||
3697 | * If track_empty is set, then we also keep track of the parts | ||||
3698 | * of the context where there is no solution. | ||||
3699 | * If max is set, then we are solving a maximization, rather than | ||||
3700 | * a minimization problem, which means that the variables in the | ||||
3701 | * tableau have value "M - x" rather than "M + x". | ||||
3702 | */ | ||||
3703 | static struct isl_sol *sol_map_init(__isl_keep isl_basic_map *bmap, | ||||
3704 | __isl_take isl_basic_setisl_basic_map *dom, int track_empty, int max) | ||||
3705 | { | ||||
3706 | struct isl_sol_map *sol_map = NULL((void*)0); | ||||
3707 | isl_space *space; | ||||
3708 | |||||
3709 | if (!bmap) | ||||
3710 | goto error; | ||||
3711 | |||||
3712 | sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map)((struct isl_sol_map *)isl_calloc_or_die(bmap->ctx, 1, sizeof (struct isl_sol_map))); | ||||
3713 | if (!sol_map) | ||||
3714 | goto error; | ||||
3715 | |||||
3716 | sol_map->sol.free = &sol_map_free; | ||||
3717 | if (sol_init(&sol_map->sol, bmap, dom, max) < 0) | ||||
3718 | goto error; | ||||
3719 | sol_map->sol.add = &sol_map_add_wrap; | ||||
3720 | sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL((void*)0); | ||||
3721 | space = isl_space_copy(sol_map->sol.space); | ||||
3722 | sol_map->map = isl_map_alloc_space(space, 1, ISL_MAP_DISJOINT(1 << 0)); | ||||
3723 | if (!sol_map->map) | ||||
3724 | goto error; | ||||
3725 | |||||
3726 | if (track_empty) { | ||||
3727 | sol_map->empty = isl_set_alloc_space(isl_basic_set_get_space(dom), | ||||
3728 | 1, ISL_SET_DISJOINT(1 << 0)); | ||||
3729 | if (!sol_map->empty) | ||||
3730 | goto error; | ||||
3731 | } | ||||
3732 | |||||
3733 | isl_basic_set_free(dom); | ||||
3734 | return &sol_map->sol; | ||||
3735 | error: | ||||
3736 | isl_basic_set_free(dom); | ||||
3737 | sol_free(&sol_map->sol); | ||||
3738 | return NULL((void*)0); | ||||
3739 | } | ||||
3740 | |||||
3741 | /* Check whether all coefficients of (non-parameter) variables | ||||
3742 | * are non-positive, meaning that no pivots can be performed on the row. | ||||
3743 | */ | ||||
3744 | static int is_critical(struct isl_tab *tab, int row) | ||||
3745 | { | ||||
3746 | int j; | ||||
3747 | unsigned off = 2 + tab->M; | ||||
3748 | |||||
3749 | for (j = tab->n_dead; j < tab->n_col; ++j) { | ||||
3750 | if (col_is_parameter_var(tab, j)) | ||||
3751 | continue; | ||||
3752 | |||||
3753 | if (isl_int_is_pos(tab->mat->row[row][off + j])(isl_sioimath_sgn(*(tab->mat->row[row][off + j])) > 0 )) | ||||
3754 | return 0; | ||||
3755 | } | ||||
3756 | |||||
3757 | return 1; | ||||
3758 | } | ||||
3759 | |||||
3760 | /* Check whether the inequality represented by vec is strict over the integers, | ||||
3761 | * i.e., there are no integer values satisfying the constraint with | ||||
3762 | * equality. This happens if the gcd of the coefficients is not a divisor | ||||
3763 | * of the constant term. If so, scale the constraint down by the gcd | ||||
3764 | * of the coefficients. | ||||
3765 | */ | ||||
3766 | static int is_strict(struct isl_vec *vec) | ||||
3767 | { | ||||
3768 | isl_int gcd; | ||||
3769 | int strict = 0; | ||||
3770 | |||||
3771 | isl_int_init(gcd)isl_sioimath_init((gcd)); | ||||
3772 | isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd); | ||||
3773 | if (!isl_int_is_one(gcd)(isl_sioimath_cmp_si(*(gcd), 1) == 0)) { | ||||
3774 | strict = !isl_int_is_divisible_by(vec->el[0], gcd)isl_sioimath_is_divisible_by(*(vec->el[0]), *(gcd)); | ||||
3775 | isl_int_fdiv_q(vec->el[0], vec->el[0], gcd)isl_sioimath_fdiv_q((vec->el[0]), *(vec->el[0]), *(gcd) ); | ||||
3776 | isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1); | ||||
3777 | } | ||||
3778 | isl_int_clear(gcd)isl_sioimath_clear((gcd)); | ||||
3779 | |||||
3780 | return strict; | ||||
3781 | } | ||||
3782 | |||||
3783 | /* Determine the sign of the given row of the main tableau. | ||||
3784 | * The result is one of | ||||
3785 | * isl_tab_row_pos: always non-negative; no pivot needed | ||||
3786 | * isl_tab_row_neg: always non-positive; pivot | ||||
3787 | * isl_tab_row_any: can be both positive and negative; split | ||||
3788 | * | ||||
3789 | * We first handle some simple cases | ||||
3790 | * - the row sign may be known already | ||||
3791 | * - the row may be obviously non-negative | ||||
3792 | * - the parametric constant may be equal to that of another row | ||||
3793 | * for which we know the sign. This sign will be either "pos" or | ||||
3794 | * "any". If it had been "neg" then we would have pivoted before. | ||||
3795 | * | ||||
3796 | * If none of these cases hold, we check the value of the row for each | ||||
3797 | * of the currently active samples. Based on the signs of these values | ||||
3798 | * we make an initial determination of the sign of the row. | ||||
3799 | * | ||||
3800 | * all zero -> unk(nown) | ||||
3801 | * all non-negative -> pos | ||||
3802 | * all non-positive -> neg | ||||
3803 | * both negative and positive -> all | ||||
3804 | * | ||||
3805 | * If we end up with "all", we are done. | ||||
3806 | * Otherwise, we perform a check for positive and/or negative | ||||
3807 | * values as follows. | ||||
3808 | * | ||||
3809 | * samples neg unk pos | ||||
3810 | * <0 ? Y N Y N | ||||
3811 | * pos any pos | ||||
3812 | * >0 ? Y N Y N | ||||
3813 | * any neg any neg | ||||
3814 | * | ||||
3815 | * There is no special sign for "zero", because we can usually treat zero | ||||
3816 | * as either non-negative or non-positive, whatever works out best. | ||||
3817 | * However, if the row is "critical", meaning that pivoting is impossible | ||||
3818 | * then we don't want to limp zero with the non-positive case, because | ||||
3819 | * then we we would lose the solution for those values of the parameters | ||||
3820 | * where the value of the row is zero. Instead, we treat 0 as non-negative | ||||
3821 | * ensuring a split if the row can attain both zero and negative values. | ||||
3822 | * The same happens when the original constraint was one that could not | ||||
3823 | * be satisfied with equality by any integer values of the parameters. | ||||
3824 | * In this case, we normalize the constraint, but then a value of zero | ||||
3825 | * for the normalized constraint is actually a positive value for the | ||||
3826 | * original constraint, so again we need to treat zero as non-negative. | ||||
3827 | * In both these cases, we have the following decision tree instead: | ||||
3828 | * | ||||
3829 | * all non-negative -> pos | ||||
3830 | * all negative -> neg | ||||
3831 | * both negative and non-negative -> all | ||||
3832 | * | ||||
3833 | * samples neg pos | ||||
3834 | * <0 ? Y N | ||||
3835 | * any pos | ||||
3836 | * >=0 ? Y N | ||||
3837 | * any neg | ||||
3838 | */ | ||||
3839 | static enum isl_tab_row_sign row_sign(struct isl_tab *tab, | ||||
3840 | struct isl_sol *sol, int row) | ||||
3841 | { | ||||
3842 | struct isl_vec *ineq = NULL((void*)0); | ||||
3843 | enum isl_tab_row_sign res = isl_tab_row_unknown; | ||||
3844 | int critical; | ||||
3845 | int strict; | ||||
3846 | int row2; | ||||
3847 | |||||
3848 | if (tab->row_sign[row] != isl_tab_row_unknown) | ||||
3849 | return tab->row_sign[row]; | ||||
3850 | if (is_obviously_nonneg(tab, row)) | ||||
3851 | return isl_tab_row_pos; | ||||
3852 | for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) { | ||||
3853 | if (tab->row_sign[row2] == isl_tab_row_unknown) | ||||
3854 | continue; | ||||
3855 | if (identical_parameter_line(tab, row, row2)) | ||||
3856 | return tab->row_sign[row2]; | ||||
3857 | } | ||||
3858 | |||||
3859 | critical = is_critical(tab, row); | ||||
3860 | |||||
3861 | ineq = get_row_parameter_ineq(tab, row); | ||||
3862 | if (!ineq) | ||||
3863 | goto error; | ||||
3864 | |||||
3865 | strict = is_strict(ineq); | ||||
3866 | |||||
3867 | res = sol->context->op->ineq_sign(sol->context, ineq->el, | ||||
3868 | critical || strict); | ||||
3869 | |||||
3870 | if (res == isl_tab_row_unknown || res == isl_tab_row_pos) { | ||||
3871 | /* test for negative values */ | ||||
3872 | int feasible; | ||||
3873 | isl_seq_neg(ineq->el, ineq->el, ineq->size); | ||||
3874 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1)isl_sioimath_sub_ui((ineq->el[0]), *(ineq->el[0]), 1); | ||||
3875 | |||||
3876 | feasible = sol->context->op->test_ineq(sol->context, ineq->el); | ||||
3877 | if (feasible < 0) | ||||
3878 | goto error; | ||||
3879 | if (!feasible) | ||||
3880 | res = isl_tab_row_pos; | ||||
3881 | else | ||||
3882 | res = (res == isl_tab_row_unknown) ? isl_tab_row_neg | ||||
3883 | : isl_tab_row_any; | ||||
3884 | if (res == isl_tab_row_neg) { | ||||
3885 | isl_seq_neg(ineq->el, ineq->el, ineq->size); | ||||
3886 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1)isl_sioimath_sub_ui((ineq->el[0]), *(ineq->el[0]), 1); | ||||
3887 | } | ||||
3888 | } | ||||
3889 | |||||
3890 | if (res == isl_tab_row_neg) { | ||||
3891 | /* test for positive values */ | ||||
3892 | int feasible; | ||||
3893 | if (!critical && !strict) | ||||
3894 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1)isl_sioimath_sub_ui((ineq->el[0]), *(ineq->el[0]), 1); | ||||
3895 | |||||
3896 | feasible = sol->context->op->test_ineq(sol->context, ineq->el); | ||||
3897 | if (feasible < 0) | ||||
3898 | goto error; | ||||
3899 | if (feasible) | ||||
3900 | res = isl_tab_row_any; | ||||
3901 | } | ||||
3902 | |||||
3903 | isl_vec_free(ineq); | ||||
3904 | return res; | ||||
3905 | error: | ||||
3906 | isl_vec_free(ineq); | ||||
3907 | return isl_tab_row_unknown; | ||||
3908 | } | ||||
3909 | |||||
3910 | static void find_solutions(struct isl_sol *sol, struct isl_tab *tab); | ||||
3911 | |||||
3912 | /* Find solutions for values of the parameters that satisfy the given | ||||
3913 | * inequality. | ||||
3914 | * | ||||
3915 | * We currently take a snapshot of the context tableau that is reset | ||||
3916 | * when we return from this function, while we make a copy of the main | ||||
3917 | * tableau, leaving the original main tableau untouched. | ||||
3918 | * These are fairly arbitrary choices. Making a copy also of the context | ||||
3919 | * tableau would obviate the need to undo any changes made to it later, | ||||
3920 | * while taking a snapshot of the main tableau could reduce memory usage. | ||||
3921 | * If we were to switch to taking a snapshot of the main tableau, | ||||
3922 | * we would have to keep in mind that we need to save the row signs | ||||
3923 | * and that we need to do this before saving the current basis | ||||
3924 | * such that the basis has been restore before we restore the row signs. | ||||
3925 | */ | ||||
3926 | static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq) | ||||
3927 | { | ||||
3928 | void *saved; | ||||
3929 | |||||
3930 | if (!sol->context) | ||||
3931 | goto error; | ||||
3932 | saved = sol->context->op->save(sol->context); | ||||
3933 | |||||
3934 | tab = isl_tab_dup(tab); | ||||
3935 | if (!tab) | ||||
3936 | goto error; | ||||
3937 | |||||
3938 | sol->context->op->add_ineq(sol->context, ineq, 0, 1); | ||||
3939 | |||||
3940 | find_solutions(sol, tab); | ||||
3941 | |||||
3942 | if (!sol->error) | ||||
3943 | sol->context->op->restore(sol->context, saved); | ||||
3944 | else | ||||
3945 | sol->context->op->discard(saved); | ||||
3946 | return; | ||||
3947 | error: | ||||
3948 | sol->error = 1; | ||||
3949 | } | ||||
3950 | |||||
3951 | /* Record the absence of solutions for those values of the parameters | ||||
3952 | * that do not satisfy the given inequality with equality. | ||||
3953 | */ | ||||
3954 | static void no_sol_in_strict(struct isl_sol *sol, | ||||
3955 | struct isl_tab *tab, struct isl_vec *ineq) | ||||
3956 | { | ||||
3957 | int empty; | ||||
3958 | void *saved; | ||||
3959 | |||||
3960 | if (!sol->context || sol->error) | ||||
3961 | goto error; | ||||
3962 | saved = sol->context->op->save(sol->context); | ||||
3963 | |||||
3964 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1)isl_sioimath_sub_ui((ineq->el[0]), *(ineq->el[0]), 1); | ||||
3965 | |||||
3966 | sol->context->op->add_ineq(sol->context, ineq->el, 1, 0); | ||||
3967 | if (!sol->context) | ||||
3968 | goto error; | ||||
3969 | |||||
3970 | empty = tab->empty; | ||||
3971 | tab->empty = 1; | ||||
3972 | sol_add(sol, tab); | ||||
3973 | tab->empty = empty; | ||||
3974 | |||||
3975 | isl_int_add_ui(ineq->el[0], ineq->el[0], 1)isl_sioimath_add_ui((ineq->el[0]), *(ineq->el[0]), 1); | ||||
3976 | |||||
3977 | sol->context->op->restore(sol->context, saved); | ||||
3978 | return; | ||||
3979 | error: | ||||
3980 | sol->error = 1; | ||||
3981 | } | ||||
3982 | |||||
3983 | /* Reset all row variables that are marked to have a sign that may | ||||
3984 | * be both positive and negative to have an unknown sign. | ||||
3985 | */ | ||||
3986 | static void reset_any_to_unknown(struct isl_tab *tab) | ||||
3987 | { | ||||
3988 | int row; | ||||
3989 | |||||
3990 | for (row = tab->n_redundant; row < tab->n_row; ++row) { | ||||
3991 | if (!isl_tab_var_from_row(tab, row)->is_nonneg) | ||||
3992 | continue; | ||||
3993 | if (tab->row_sign[row] == isl_tab_row_any) | ||||
3994 | tab->row_sign[row] = isl_tab_row_unknown; | ||||
3995 | } | ||||
3996 | } | ||||
3997 | |||||
3998 | /* Compute the lexicographic minimum of the set represented by the main | ||||
3999 | * tableau "tab" within the context "sol->context_tab". | ||||
4000 | * On entry the sample value of the main tableau is lexicographically | ||||
4001 | * less than or equal to this lexicographic minimum. | ||||
4002 | * Pivots are performed until a feasible point is found, which is then | ||||
4003 | * necessarily equal to the minimum, or until the tableau is found to | ||||
4004 | * be infeasible. Some pivots may need to be performed for only some | ||||
4005 | * feasible values of the context tableau. If so, the context tableau | ||||
4006 | * is split into a part where the pivot is needed and a part where it is not. | ||||
4007 | * | ||||
4008 | * Whenever we enter the main loop, the main tableau is such that no | ||||
4009 | * "obvious" pivots need to be performed on it, where "obvious" means | ||||
4010 | * that the given row can be seen to be negative without looking at | ||||
4011 | * the context tableau. In particular, for non-parametric problems, | ||||
4012 | * no pivots need to be performed on the main tableau. | ||||
4013 | * The caller of find_solutions is responsible for making this property | ||||
4014 | * hold prior to the first iteration of the loop, while restore_lexmin | ||||
4015 | * is called before every other iteration. | ||||
4016 | * | ||||
4017 | * Inside the main loop, we first examine the signs of the rows of | ||||
4018 | * the main tableau within the context of the context tableau. | ||||
4019 | * If we find a row that is always non-positive for all values of | ||||
4020 | * the parameters satisfying the context tableau and negative for at | ||||
4021 | * least one value of the parameters, we perform the appropriate pivot | ||||
4022 | * and start over. An exception is the case where no pivot can be | ||||
4023 | * performed on the row. In this case, we require that the sign of | ||||
4024 | * the row is negative for all values of the parameters (rather than just | ||||
4025 | * non-positive). This special case is handled inside row_sign, which | ||||
4026 | * will say that the row can have any sign if it determines that it can | ||||
4027 | * attain both negative and zero values. | ||||
4028 | * | ||||
4029 | * If we can't find a row that always requires a pivot, but we can find | ||||
4030 | * one or more rows that require a pivot for some values of the parameters | ||||
4031 | * (i.e., the row can attain both positive and negative signs), then we split | ||||
4032 | * the context tableau into two parts, one where we force the sign to be | ||||
4033 | * non-negative and one where we force is to be negative. | ||||
4034 | * The non-negative part is handled by a recursive call (through find_in_pos). | ||||
4035 | * Upon returning from this call, we continue with the negative part and | ||||
4036 | * perform the required pivot. | ||||
4037 | * | ||||
4038 | * If no such rows can be found, all rows are non-negative and we have | ||||
4039 | * found a (rational) feasible point. If we only wanted a rational point | ||||
4040 | * then we are done. | ||||
4041 | * Otherwise, we check if all values of the sample point of the tableau | ||||
4042 | * are integral for the variables. If so, we have found the minimal | ||||
4043 | * integral point and we are done. | ||||
4044 | * If the sample point is not integral, then we need to make a distinction | ||||
4045 | * based on whether the constant term is non-integral or the coefficients | ||||
4046 | * of the parameters. Furthermore, in order to decide how to handle | ||||
4047 | * the non-integrality, we also need to know whether the coefficients | ||||
4048 | * of the other columns in the tableau are integral. This leads | ||||
4049 | * to the following table. The first two rows do not correspond | ||||
4050 | * to a non-integral sample point and are only mentioned for completeness. | ||||
4051 | * | ||||
4052 | * constant parameters other | ||||
4053 | * | ||||
4054 | * int int int | | ||||
4055 | * int int rat | -> no problem | ||||
4056 | * | ||||
4057 | * rat int int -> fail | ||||
4058 | * | ||||
4059 | * rat int rat -> cut | ||||
4060 | * | ||||
4061 | * int rat rat | | ||||
4062 | * rat rat rat | -> parametric cut | ||||
4063 | * | ||||
4064 | * int rat int | | ||||
4065 | * rat rat int | -> split context | ||||
4066 | * | ||||
4067 | * If the parametric constant is completely integral, then there is nothing | ||||
4068 | * to be done. If the constant term is non-integral, but all the other | ||||
4069 | * coefficient are integral, then there is nothing that can be done | ||||
4070 | * and the tableau has no integral solution. | ||||
4071 | * If, on the other hand, one or more of the other columns have rational | ||||
4072 | * coefficients, but the parameter coefficients are all integral, then | ||||
4073 | * we can perform a regular (non-parametric) cut. | ||||
4074 | * Finally, if there is any parameter coefficient that is non-integral, | ||||
4075 | * then we need to involve the context tableau. There are two cases here. | ||||
4076 | * If at least one other column has a rational coefficient, then we | ||||
4077 | * can perform a parametric cut in the main tableau by adding a new | ||||
4078 | * integer division in the context tableau. | ||||
4079 | * If all other columns have integral coefficients, then we need to | ||||
4080 | * enforce that the rational combination of parameters (c + \sum a_i y_i)/m | ||||
4081 | * is always integral. We do this by introducing an integer division | ||||
4082 | * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should | ||||
4083 | * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i. | ||||
4084 | * Since q is expressed in the tableau as | ||||
4085 | * c + \sum a_i y_i - m q >= 0 | ||||
4086 | * -c - \sum a_i y_i + m q + m - 1 >= 0 | ||||
4087 | * it is sufficient to add the inequality | ||||
4088 | * -c - \sum a_i y_i + m q >= 0 | ||||
4089 | * In the part of the context where this inequality does not hold, the | ||||
4090 | * main tableau is marked as being empty. | ||||
4091 | */ | ||||
4092 | static void find_solutions(struct isl_sol *sol, struct isl_tab *tab) | ||||
4093 | { | ||||
4094 | struct isl_context *context; | ||||
4095 | int r; | ||||
4096 | |||||
4097 | if (!tab || sol->error) | ||||
4098 | goto error; | ||||
4099 | |||||
4100 | context = sol->context; | ||||
4101 | |||||
4102 | if (tab->empty) | ||||
4103 | goto done; | ||||
4104 | if (context->op->is_empty(context)) | ||||
4105 | goto done; | ||||
4106 | |||||
4107 | for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) { | ||||
4108 | int flags; | ||||
4109 | int row; | ||||
4110 | enum isl_tab_row_sign sgn; | ||||
4111 | int split = -1; | ||||
4112 | int n_split = 0; | ||||
4113 | |||||
4114 | for (row = tab->n_redundant; row < tab->n_row; ++row) { | ||||
4115 | if (!isl_tab_var_from_row(tab, row)->is_nonneg) | ||||
4116 | continue; | ||||
4117 | sgn = row_sign(tab, sol, row); | ||||
4118 | if (!sgn) | ||||
4119 | goto error; | ||||
4120 | tab->row_sign[row] = sgn; | ||||
4121 | if (sgn == isl_tab_row_any) | ||||
4122 | n_split++; | ||||
4123 | if (sgn == isl_tab_row_any && split == -1) | ||||
4124 | split = row; | ||||
4125 | if (sgn == isl_tab_row_neg) | ||||
4126 | break; | ||||
4127 | } | ||||
4128 | if (row < tab->n_row) | ||||
4129 | continue; | ||||
4130 | if (split != -1) { | ||||
4131 | struct isl_vec *ineq; | ||||
4132 | if (n_split != 1) | ||||
4133 | split = context->op->best_split(context, tab); | ||||
4134 | if (split < 0) | ||||
4135 | goto error; | ||||
4136 | ineq = get_row_parameter_ineq(tab, split); | ||||
4137 | if (!ineq) | ||||
4138 | goto error; | ||||
4139 | is_strict(ineq); | ||||
4140 | reset_any_to_unknown(tab); | ||||
4141 | tab->row_sign[split] = isl_tab_row_pos; | ||||
4142 | sol_inc_level(sol); | ||||
4143 | find_in_pos(sol, tab, ineq->el); | ||||
4144 | tab->row_sign[split] = isl_tab_row_neg; | ||||
4145 | isl_seq_neg(ineq->el, ineq->el, ineq->size); | ||||
4146 | isl_int_sub_ui(ineq->el[0], ineq->el[0], 1)isl_sioimath_sub_ui((ineq->el[0]), *(ineq->el[0]), 1); | ||||
4147 | if (!sol->error) | ||||
4148 | context->op->add_ineq(context, ineq->el, 0, 1); | ||||
4149 | isl_vec_free(ineq); | ||||
4150 | if (sol->error) | ||||
4151 | goto error; | ||||
4152 | continue; | ||||
4153 | } | ||||
4154 | if (tab->rational) | ||||
4155 | break; | ||||
4156 | row = first_non_integer_row(tab, &flags); | ||||
4157 | if (row < 0) | ||||
4158 | break; | ||||
4159 | if (ISL_FL_ISSET(flags, I_PAR)(!!((flags) & (1 << 1)))) { | ||||
4160 | if (ISL_FL_ISSET(flags, I_VAR)(!!((flags) & (1 << 2)))) { | ||||
4161 | if (isl_tab_mark_empty(tab) < 0) | ||||
4162 | goto error; | ||||
4163 | break; | ||||
4164 | } | ||||
4165 | row = add_cut(tab, row); | ||||
4166 | } else if (ISL_FL_ISSET(flags, I_VAR)(!!((flags) & (1 << 2)))) { | ||||
4167 | struct isl_vec *div; | ||||
4168 | struct isl_vec *ineq; | ||||
4169 | int d; | ||||
4170 | div = get_row_split_div(tab, row); | ||||
4171 | if (!div) | ||||
4172 | goto error; | ||||
4173 | d = context->op->get_div(context, tab, div); | ||||
4174 | isl_vec_free(div); | ||||
4175 | if (d < 0) | ||||
4176 | goto error; | ||||
4177 | ineq = ineq_for_div(context->op->peek_basic_set(context), d); | ||||
4178 | if (!ineq) | ||||
4179 | goto error; | ||||
4180 | sol_inc_level(sol); | ||||
4181 | no_sol_in_strict(sol, tab, ineq); | ||||
4182 | isl_seq_neg(ineq->el, ineq->el, ineq->size); | ||||
4183 | context->op->add_ineq(context, ineq->el, 1, 1); | ||||
4184 | isl_vec_free(ineq); | ||||
4185 | if (sol->error || !context->op->is_ok(context)) | ||||
4186 | goto error; | ||||
4187 | tab = set_row_cst_to_div(tab, row, d); | ||||
4188 | if (context->op->is_empty(context)) | ||||
4189 | break; | ||||
4190 | } else | ||||
4191 | row = add_parametric_cut(tab, row, context); | ||||
4192 | if (row < 0) | ||||
4193 | goto error; | ||||
4194 | } | ||||
4195 | if (r < 0) | ||||
4196 | goto error; | ||||
4197 | done: | ||||
4198 | sol_add(sol, tab); | ||||
4199 | isl_tab_free(tab); | ||||
4200 | return; | ||||
4201 | error: | ||||
4202 | isl_tab_free(tab); | ||||
4203 | sol->error = 1; | ||||
4204 | } | ||||
4205 | |||||
4206 | /* Does "sol" contain a pair of partial solutions that could potentially | ||||
4207 | * be merged? | ||||
4208 | * | ||||
4209 | * We currently only check that "sol" is not in an error state | ||||
4210 | * and that there are at least two partial solutions of which the final two | ||||
4211 | * are defined at the same level. | ||||
4212 | */ | ||||
4213 | static int sol_has_mergeable_solutions(struct isl_sol *sol) | ||||
4214 | { | ||||
4215 | if (sol->error) | ||||
4216 | return 0; | ||||
4217 | if (!sol->partial) | ||||
4218 | return 0; | ||||
4219 | if (!sol->partial->next) | ||||
4220 | return 0; | ||||
4221 | return sol->partial->level == sol->partial->next->level; | ||||
4222 | } | ||||
4223 | |||||
4224 | /* Compute the lexicographic minimum of the set represented by the main | ||||
4225 | * tableau "tab" within the context "sol->context_tab". | ||||
4226 | * | ||||
4227 | * As a preprocessing step, we first transfer all the purely parametric | ||||
4228 | * equalities from the main tableau to the context tableau, i.e., | ||||
4229 | * parameters that have been pivoted to a row. | ||||
4230 | * These equalities are ignored by the main algorithm, because the | ||||
4231 | * corresponding rows may not be marked as being non-negative. | ||||
4232 | * In parts of the context where the added equality does not hold, | ||||
4233 | * the main tableau is marked as being empty. | ||||
4234 | * | ||||
4235 | * Before we embark on the actual computation, we save a copy | ||||
4236 | * of the context. When we return, we check if there are any | ||||
4237 | * partial solutions that can potentially be merged. If so, | ||||
4238 | * we perform a rollback to the initial state of the context. | ||||
4239 | * The merging of partial solutions happens inside calls to | ||||
4240 | * sol_dec_level that are pushed onto the undo stack of the context. | ||||
4241 | * If there are no partial solutions that can potentially be merged | ||||
4242 | * then the rollback is skipped as it would just be wasted effort. | ||||
4243 | */ | ||||
4244 | static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab) | ||||
4245 | { | ||||
4246 | int row; | ||||
4247 | void *saved; | ||||
4248 | |||||
4249 | if (!tab) | ||||
4250 | goto error; | ||||
4251 | |||||
4252 | sol->level = 0; | ||||
4253 | |||||
4254 | for (row = tab->n_redundant; row < tab->n_row; ++row) { | ||||
4255 | int p; | ||||
4256 | struct isl_vec *eq; | ||||
4257 | |||||
4258 | if (!row_is_parameter_var(tab, row)) | ||||
4259 | continue; | ||||
4260 | if (tab->row_var[row] < tab->n_param) | ||||
4261 | p = tab->row_var[row]; | ||||
4262 | else | ||||
4263 | p = tab->row_var[row] | ||||
4264 | + tab->n_param - (tab->n_var - tab->n_div); | ||||
4265 | |||||
4266 | eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div); | ||||
4267 | if (!eq) | ||||
4268 | goto error; | ||||
4269 | get_row_parameter_line(tab, row, eq->el); | ||||
4270 | isl_int_neg(eq->el[1 + p], tab->mat->row[row][0])isl_sioimath_neg((eq->el[1 + p]), *(tab->mat->row[row ][0])); | ||||
4271 | eq = isl_vec_normalize(eq); | ||||
4272 | |||||
4273 | sol_inc_level(sol); | ||||
4274 | no_sol_in_strict(sol, tab, eq); | ||||
4275 | |||||
4276 | isl_seq_neg(eq->el, eq->el, eq->size); | ||||
4277 | sol_inc_level(sol); | ||||
4278 | no_sol_in_strict(sol, tab, eq); | ||||
4279 | isl_seq_neg(eq->el, eq->el, eq->size); | ||||
4280 | |||||
4281 | sol->context->op->add_eq(sol->context, eq->el, 1, 1); | ||||
4282 | |||||
4283 | isl_vec_free(eq); | ||||
4284 | |||||
4285 | if (isl_tab_mark_redundant(tab, row) < 0) | ||||
4286 | goto error; | ||||
4287 | |||||
4288 | if (sol->context->op->is_empty(sol->context)) | ||||
4289 | break; | ||||
4290 | |||||
4291 | row = tab->n_redundant - 1; | ||||
4292 | } | ||||
4293 | |||||
4294 | saved = sol->context->op->save(sol->context); | ||||
4295 | |||||
4296 | find_solutions(sol, tab); | ||||
4297 | |||||
4298 | if (sol_has_mergeable_solutions(sol)) | ||||
4299 | sol->context->op->restore(sol->context, saved); | ||||
4300 | else | ||||
4301 | sol->context->op->discard(saved); | ||||
4302 | |||||
4303 | sol->level = 0; | ||||
4304 | sol_pop(sol); | ||||
4305 | |||||
4306 | return; | ||||
4307 | error: | ||||
4308 | isl_tab_free(tab); | ||||
4309 | sol->error = 1; | ||||
4310 | } | ||||
4311 | |||||
4312 | /* Check if integer division "div" of "dom" also occurs in "bmap". | ||||
4313 | * If so, return its position within the divs. | ||||
4314 | * Otherwise, return a position beyond the integer divisions. | ||||
4315 | */ | ||||
4316 | static int find_context_div(__isl_keep isl_basic_map *bmap, | ||||
4317 | __isl_keep isl_basic_setisl_basic_map *dom, unsigned div) | ||||
4318 | { | ||||
4319 | int i; | ||||
4320 | isl_size b_v_div, d_v_div; | ||||
4321 | isl_size n_div; | ||||
4322 | |||||
4323 | b_v_div = isl_basic_map_var_offset(bmap, isl_dim_div); | ||||
4324 | d_v_div = isl_basic_set_var_offset(dom, isl_dim_div); | ||||
4325 | n_div = isl_basic_map_dim(bmap, isl_dim_div); | ||||
4326 | if (b_v_div < 0 || d_v_div < 0 || n_div < 0) | ||||
4327 | return -1; | ||||
4328 | |||||
4329 | if (isl_int_is_zero(dom->div[div][0])(isl_sioimath_sgn(*(dom->div[div][0])) == 0)) | ||||
4330 | return n_div; | ||||
4331 | if (isl_seq_first_non_zero(dom->div[div] + 2 + d_v_div, | ||||
4332 | dom->n_div) != -1) | ||||
4333 | return n_div; | ||||
4334 | |||||
4335 | for (i = 0; i < n_div; ++i) { | ||||
4336 | if (isl_int_is_zero(bmap->div[i][0])(isl_sioimath_sgn(*(bmap->div[i][0])) == 0)) | ||||
4337 | continue; | ||||
4338 | if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_v_div, | ||||
4339 | (b_v_div - d_v_div) + n_div) != -1) | ||||
4340 | continue; | ||||
4341 | if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_v_div)) | ||||
4342 | return i; | ||||
4343 | } | ||||
4344 | return n_div; | ||||
4345 | } | ||||
4346 | |||||
4347 | /* The correspondence between the variables in the main tableau, | ||||
4348 | * the context tableau, and the input map and domain is as follows. | ||||
4349 | * The first n_param and the last n_div variables of the main tableau | ||||
4350 | * form the variables of the context tableau. | ||||
4351 | * In the basic map, these n_param variables correspond to the | ||||
4352 | * parameters and the input dimensions. In the domain, they correspond | ||||
4353 | * to the parameters and the set dimensions. | ||||
4354 | * The n_div variables correspond to the integer divisions in the domain. | ||||
4355 | * To ensure that everything lines up, we may need to copy some of the | ||||
4356 | * integer divisions of the domain to the map. These have to be placed | ||||
4357 | * in the same order as those in the context and they have to be placed | ||||
4358 | * after any other integer divisions that the map may have. | ||||
4359 | * This function performs the required reordering. | ||||
4360 | */ | ||||
4361 | static __isl_give isl_basic_map *align_context_divs( | ||||
4362 | __isl_take isl_basic_map *bmap, __isl_keep isl_basic_setisl_basic_map *dom) | ||||
4363 | { | ||||
4364 | int i; | ||||
4365 | int common = 0; | ||||
4366 | int other; | ||||
4367 | unsigned bmap_n_div; | ||||
4368 | |||||
4369 | bmap_n_div = isl_basic_map_dim(bmap, isl_dim_div); | ||||
4370 | |||||
4371 | for (i = 0; i < dom->n_div; ++i) { | ||||
4372 | int pos; | ||||
4373 | |||||
4374 | pos = find_context_div(bmap, dom, i); | ||||
4375 | if (pos < 0) | ||||
4376 | return isl_basic_map_free(bmap); | ||||
4377 | if (pos < bmap_n_div) | ||||
4378 | common++; | ||||
4379 | } | ||||
4380 | other = bmap_n_div - common; | ||||
4381 | if (dom->n_div - common > 0) { | ||||
4382 | bmap = isl_basic_map_cow(bmap); | ||||
4383 | bmap = isl_basic_map_extend(bmap, dom->n_div - common, 0, 0); | ||||
4384 | if (!bmap) | ||||
4385 | return NULL((void*)0); | ||||
4386 | } | ||||
4387 | for (i = 0; i < dom->n_div; ++i) { | ||||
4388 | int pos = find_context_div(bmap, dom, i); | ||||
4389 | if (pos < 0) | ||||
4390 | bmap = isl_basic_map_free(bmap); | ||||
4391 | if (pos >= bmap_n_div) { | ||||
4392 | pos = isl_basic_map_alloc_div(bmap); | ||||
4393 | if (pos < 0) | ||||
4394 | goto error; | ||||
4395 | isl_int_set_si(bmap->div[pos][0], 0)isl_sioimath_set_si((bmap->div[pos][0]), 0); | ||||
4396 | bmap_n_div++; | ||||
4397 | } | ||||
4398 | if (pos != other + i) | ||||
4399 | bmap = isl_basic_map_swap_div(bmap, pos, other + i); | ||||
4400 | } | ||||
4401 | return bmap; | ||||
4402 | error: | ||||
4403 | isl_basic_map_free(bmap); | ||||
4404 | return NULL((void*)0); | ||||
4405 | } | ||||
4406 | |||||
4407 | /* Base case of isl_tab_basic_map_partial_lexopt, after removing | ||||
4408 | * some obvious symmetries. | ||||
4409 | * | ||||
4410 | * We make sure the divs in the domain are properly ordered, | ||||
4411 | * because they will be added one by one in the given order | ||||
4412 | * during the construction of the solution map. | ||||
4413 | * Furthermore, make sure that the known integer divisions | ||||
4414 | * appear before any unknown integer division because the solution | ||||
4415 | * may depend on the known integer divisions, while anything that | ||||
4416 | * depends on any variable starting from the first unknown integer | ||||
4417 | * division is ignored in sol_pma_add. | ||||
4418 | */ | ||||
4419 | static struct isl_sol *basic_map_partial_lexopt_base_sol( | ||||
4420 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_setisl_basic_map *dom, | ||||
4421 | __isl_give isl_setisl_map **empty, int max, | ||||
4422 | struct isl_sol *(*init)(__isl_keep isl_basic_map *bmap, | ||||
4423 | __isl_take isl_basic_setisl_basic_map *dom, int track_empty, int max)) | ||||
4424 | { | ||||
4425 | struct isl_tab *tab; | ||||
4426 | struct isl_sol *sol = NULL((void*)0); | ||||
4427 | struct isl_context *context; | ||||
4428 | |||||
4429 | if (dom->n_div) { | ||||
4430 | dom = isl_basic_set_sort_divs(dom); | ||||
4431 | bmap = align_context_divs(bmap, dom); | ||||
4432 | } | ||||
4433 | sol = init(bmap, dom, !!empty, max); | ||||
4434 | if (!sol) | ||||
4435 | goto error; | ||||
4436 | |||||
4437 | context = sol->context; | ||||
4438 | if (isl_basic_set_plain_is_empty(context->op->peek_basic_set(context))) | ||||
4439 | /* nothing */; | ||||
4440 | else if (isl_basic_map_plain_is_empty(bmap)) { | ||||
4441 | if (sol->add_empty) | ||||
4442 | sol->add_empty(sol, | ||||
4443 | isl_basic_set_copy(context->op->peek_basic_set(context))); | ||||
4444 | } else { | ||||
4445 | tab = tab_for_lexmin(bmap, | ||||
4446 | context->op->peek_basic_set(context), 1, max); | ||||
4447 | tab = context->op->detect_nonnegative_parameters(context, tab); | ||||
4448 | find_solutions_main(sol, tab); | ||||
4449 | } | ||||
4450 | if (sol->error) | ||||
4451 | goto error; | ||||
4452 | |||||
4453 | isl_basic_map_free(bmap); | ||||
4454 | return sol; | ||||
4455 | error: | ||||
4456 | sol_free(sol); | ||||
4457 | isl_basic_map_free(bmap); | ||||
4458 | return NULL((void*)0); | ||||
4459 | } | ||||
4460 | |||||
4461 | /* Base case of isl_tab_basic_map_partial_lexopt, after removing | ||||
4462 | * some obvious symmetries. | ||||
4463 | * | ||||
4464 | * We call basic_map_partial_lexopt_base_sol and extract the results. | ||||
4465 | */ | ||||
4466 | static __isl_give isl_map *basic_map_partial_lexopt_base( | ||||
4467 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_setisl_basic_map *dom, | ||||
4468 | __isl_give isl_setisl_map **empty, int max) | ||||
4469 | { | ||||
4470 | isl_map *result = NULL((void*)0); | ||||
4471 | struct isl_sol *sol; | ||||
4472 | struct isl_sol_map *sol_map; | ||||
4473 | |||||
4474 | sol = basic_map_partial_lexopt_base_sol(bmap, dom, empty, max, | ||||
4475 | &sol_map_init); | ||||
4476 | if (!sol) | ||||
4477 | return NULL((void*)0); | ||||
4478 | sol_map = (struct isl_sol_map *) sol; | ||||
4479 | |||||
4480 | result = isl_map_copy(sol_map->map); | ||||
4481 | if (empty) | ||||
4482 | *empty = isl_set_copy(sol_map->empty); | ||||
4483 | sol_free(&sol_map->sol); | ||||
4484 | return result; | ||||
4485 | } | ||||
4486 | |||||
4487 | /* Return a count of the number of occurrences of the "n" first | ||||
4488 | * variables in the inequality constraints of "bmap". | ||||
4489 | */ | ||||
4490 | static __isl_give int *count_occurrences(__isl_keep isl_basic_map *bmap, | ||||
4491 | int n) | ||||
4492 | { | ||||
4493 | int i, j; | ||||
4494 | isl_ctx *ctx; | ||||
4495 | int *occurrences; | ||||
4496 | |||||
4497 | if (!bmap) | ||||
4498 | return NULL((void*)0); | ||||
4499 | ctx = isl_basic_map_get_ctx(bmap); | ||||
4500 | occurrences = isl_calloc_array(ctx, int, n)((int *)isl_calloc_or_die(ctx, n, sizeof(int))); | ||||
4501 | if (!occurrences) | ||||
4502 | return NULL((void*)0); | ||||
4503 | |||||
4504 | for (i = 0; i < bmap->n_ineq; ++i) { | ||||
4505 | for (j = 0; j < n; ++j) { | ||||
4506 | if (!isl_int_is_zero(bmap->ineq[i][1 + j])(isl_sioimath_sgn(*(bmap->ineq[i][1 + j])) == 0)) | ||||
4507 | occurrences[j]++; | ||||
4508 | } | ||||
4509 | } | ||||
4510 | |||||
4511 | return occurrences; | ||||
4512 | } | ||||
4513 | |||||
4514 | /* Do all of the "n" variables with non-zero coefficients in "c" | ||||
4515 | * occur in exactly a single constraint. | ||||
4516 | * "occurrences" is an array of length "n" containing the number | ||||
4517 | * of occurrences of each of the variables in the inequality constraints. | ||||
4518 | */ | ||||
4519 | static int single_occurrence(int n, isl_int *c, int *occurrences) | ||||
4520 | { | ||||
4521 | int i; | ||||
4522 | |||||
4523 | for (i = 0; i < n; ++i) { | ||||
4524 | if (isl_int_is_zero(c[i])(isl_sioimath_sgn(*(c[i])) == 0)) | ||||
4525 | continue; | ||||
4526 | if (occurrences[i] != 1) | ||||
4527 | return 0; | ||||
4528 | } | ||||
4529 | |||||
4530 | return 1; | ||||
4531 | } | ||||
4532 | |||||
4533 | /* Do all of the "n" initial variables that occur in inequality constraint | ||||
4534 | * "ineq" of "bmap" only occur in that constraint? | ||||
4535 | */ | ||||
4536 | static int all_single_occurrence(__isl_keep isl_basic_map *bmap, int ineq, | ||||
4537 | int n) | ||||
4538 | { | ||||
4539 | int i, j; | ||||
4540 | |||||
4541 | for (i = 0; i < n; ++i) { | ||||
4542 | if (isl_int_is_zero(bmap->ineq[ineq][1 + i])(isl_sioimath_sgn(*(bmap->ineq[ineq][1 + i])) == 0)) | ||||
4543 | continue; | ||||
4544 | for (j = 0; j < bmap->n_ineq; ++j) { | ||||
4545 | if (j == ineq) | ||||
4546 | continue; | ||||
4547 | if (!isl_int_is_zero(bmap->ineq[j][1 + i])(isl_sioimath_sgn(*(bmap->ineq[j][1 + i])) == 0)) | ||||
4548 | return 0; | ||||
4549 | } | ||||
4550 | } | ||||
4551 | |||||
4552 | return 1; | ||||
4553 | } | ||||
4554 | |||||
4555 | /* Structure used during detection of parallel constraints. | ||||
4556 | * n_in: number of "input" variables: isl_dim_param + isl_dim_in | ||||
4557 | * n_out: number of "output" variables: isl_dim_out + isl_dim_div | ||||
4558 | * val: the coefficients of the output variables | ||||
4559 | */ | ||||
4560 | struct isl_constraint_equal_info { | ||||
4561 | unsigned n_in; | ||||
4562 | unsigned n_out; | ||||
4563 | isl_int *val; | ||||
4564 | }; | ||||
4565 | |||||
4566 | /* Check whether the coefficients of the output variables | ||||
4567 | * of the constraint in "entry" are equal to info->val. | ||||
4568 | */ | ||||
4569 | static isl_bool constraint_equal(const void *entry, const void *val) | ||||
4570 | { | ||||
4571 | isl_int **row = (isl_int **)entry; | ||||
4572 | const struct isl_constraint_equal_info *info = val; | ||||
4573 | int eq; | ||||
4574 | |||||
4575 | eq = isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out); | ||||
4576 | return isl_bool_ok(eq); | ||||
4577 | } | ||||
4578 | |||||
4579 | /* Check whether "bmap" has a pair of constraints that have | ||||
4580 | * the same coefficients for the output variables. | ||||
4581 | * Note that the coefficients of the existentially quantified | ||||
4582 | * variables need to be zero since the existentially quantified | ||||
4583 | * of the result are usually not the same as those of the input. | ||||
4584 | * Furthermore, check that each of the input variables that occur | ||||
4585 | * in those constraints does not occur in any other constraint. | ||||
4586 | * If so, return true and return the row indices of the two constraints | ||||
4587 | * in *first and *second. | ||||
4588 | */ | ||||
4589 | static isl_bool parallel_constraints(__isl_keep isl_basic_map *bmap, | ||||
4590 | int *first, int *second) | ||||
4591 | { | ||||
4592 | int i; | ||||
4593 | isl_ctx *ctx; | ||||
4594 | int *occurrences = NULL((void*)0); | ||||
4595 | struct isl_hash_table *table = NULL((void*)0); | ||||
4596 | struct isl_hash_table_entry *entry; | ||||
4597 | struct isl_constraint_equal_info info; | ||||
4598 | isl_size nparam, n_in, n_out, n_div; | ||||
4599 | |||||
4600 | ctx = isl_basic_map_get_ctx(bmap); | ||||
4601 | table = isl_hash_table_alloc(ctx, bmap->n_ineq); | ||||
4602 | if (!table) | ||||
4603 | goto error; | ||||
4604 | |||||
4605 | nparam = isl_basic_map_dim(bmap, isl_dim_param); | ||||
4606 | n_in = isl_basic_map_dim(bmap, isl_dim_in); | ||||
4607 | n_out = isl_basic_map_dim(bmap, isl_dim_out); | ||||
4608 | n_div = isl_basic_map_dim(bmap, isl_dim_div); | ||||
4609 | if (nparam < 0 || n_in < 0 || n_out < 0 || n_div < 0) | ||||
4610 | goto error; | ||||
4611 | info.n_in = nparam + n_in; | ||||
4612 | occurrences = count_occurrences(bmap, info.n_in); | ||||
4613 | if (info.n_in && !occurrences) | ||||
4614 | goto error; | ||||
4615 | info.n_out = n_out + n_div; | ||||
4616 | for (i = 0; i < bmap->n_ineq; ++i) { | ||||
4617 | uint32_t hash; | ||||
4618 | |||||
4619 | info.val = bmap->ineq[i] + 1 + info.n_in; | ||||
4620 | if (isl_seq_first_non_zero(info.val, n_out) < 0) | ||||
4621 | continue; | ||||
4622 | if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0) | ||||
4623 | continue; | ||||
4624 | if (!single_occurrence(info.n_in, bmap->ineq[i] + 1, | ||||
4625 | occurrences)) | ||||
4626 | continue; | ||||
4627 | hash = isl_seq_get_hash(info.val, info.n_out); | ||||
4628 | entry = isl_hash_table_find(ctx, table, hash, | ||||
4629 | constraint_equal, &info, 1); | ||||
4630 | if (!entry) | ||||
4631 | goto error; | ||||
4632 | if (entry->data) | ||||
4633 | break; | ||||
4634 | entry->data = &bmap->ineq[i]; | ||||
4635 | } | ||||
4636 | |||||
4637 | if (i
| ||||
4638 | *first = ((isl_int **)entry->data) - bmap->ineq; | ||||
4639 | *second = i; | ||||
4640 | } | ||||
4641 | |||||
4642 | isl_hash_table_free(ctx, table); | ||||
4643 | free(occurrences); | ||||
4644 | |||||
4645 | return isl_bool_ok(i < bmap->n_ineq); | ||||
4646 | error: | ||||
4647 | isl_hash_table_free(ctx, table); | ||||
4648 | free(occurrences); | ||||
4649 | return isl_bool_error; | ||||
4650 | } | ||||
4651 | |||||
4652 | /* Given a set of upper bounds in "var", add constraints to "bset" | ||||
4653 | * that make the i-th bound smallest. | ||||
4654 | * | ||||
4655 | * In particular, if there are n bounds b_i, then add the constraints | ||||
4656 | * | ||||
4657 | * b_i <= b_j for j > i | ||||
4658 | * b_i < b_j for j < i | ||||
4659 | */ | ||||
4660 | static __isl_give isl_basic_setisl_basic_map *select_minimum(__isl_take isl_basic_setisl_basic_map *bset, | ||||
4661 | __isl_keep isl_mat *var, int i) | ||||
4662 | { | ||||
4663 | isl_ctx *ctx; | ||||
4664 | int j, k; | ||||
4665 | |||||
4666 | ctx = isl_mat_get_ctx(var); | ||||
4667 | |||||
4668 | for (j = 0; j < var->n_row; ++j) { | ||||
4669 | if (j == i) | ||||
4670 | continue; | ||||
4671 | k = isl_basic_set_alloc_inequality(bset); | ||||
4672 | if (k < 0) | ||||
4673 | goto error; | ||||
4674 | isl_seq_combine(bset->ineq[k], ctx->one, var->row[j], | ||||
4675 | ctx->negone, var->row[i], var->n_col); | ||||
4676 | isl_int_set_si(bset->ineq[k][var->n_col], 0)isl_sioimath_set_si((bset->ineq[k][var->n_col]), 0); | ||||
4677 | if (j < i) | ||||
4678 | isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1)isl_sioimath_sub_ui((bset->ineq[k][0]), *(bset->ineq[k] [0]), 1); | ||||
4679 | } | ||||
4680 | |||||
4681 | bset = isl_basic_set_finalize(bset); | ||||
4682 | |||||
4683 | return bset; | ||||
4684 | error: | ||||
4685 | isl_basic_set_free(bset); | ||||
4686 | return NULL((void*)0); | ||||
4687 | } | ||||
4688 | |||||
4689 | /* Given a set of upper bounds on the last "input" variable m, | ||||
4690 | * construct a set that assigns the minimal upper bound to m, i.e., | ||||
4691 | * construct a set that divides the space into cells where one | ||||
4692 | * of the upper bounds is smaller than all the others and assign | ||||
4693 | * this upper bound to m. | ||||
4694 | * | ||||
4695 | * In particular, if there are n bounds b_i, then the result | ||||
4696 | * consists of n basic sets, each one of the form | ||||
4697 | * | ||||
4698 | * m = b_i | ||||
4699 | * b_i <= b_j for j > i | ||||
4700 | * b_i < b_j for j < i | ||||
4701 | */ | ||||
4702 | static __isl_give isl_setisl_map *set_minimum(__isl_take isl_space *space, | ||||
4703 | __isl_take isl_mat *var) | ||||
4704 | { | ||||
4705 | int i, k; | ||||
4706 | isl_basic_setisl_basic_map *bset = NULL((void*)0); | ||||
4707 | isl_setisl_map *set = NULL((void*)0); | ||||
4708 | |||||
4709 | if (!space || !var) | ||||
4710 | goto error; | ||||
4711 | |||||
4712 | set = isl_set_alloc_space(isl_space_copy(space), | ||||
4713 | var->n_row, ISL_SET_DISJOINT(1 << 0)); | ||||
4714 | |||||
4715 | for (i = 0; i < var->n_row; ++i) { | ||||
4716 | bset = isl_basic_set_alloc_space(isl_space_copy(space), 0, | ||||
4717 | 1, var->n_row - 1); | ||||
4718 | k = isl_basic_set_alloc_equality(bset); | ||||
4719 | if (k < 0) | ||||
4720 | goto error; | ||||
4721 | isl_seq_cpy(bset->eq[k], var->row[i], var->n_col); | ||||
4722 | isl_int_set_si(bset->eq[k][var->n_col], -1)isl_sioimath_set_si((bset->eq[k][var->n_col]), -1); | ||||
4723 | bset = select_minimum(bset, var, i); | ||||
4724 | set = isl_set_add_basic_set(set, bset); | ||||
4725 | } | ||||
4726 | |||||
4727 | isl_space_free(space); | ||||
4728 | isl_mat_free(var); | ||||
4729 | return set; | ||||
4730 | error: | ||||
4731 | isl_basic_set_free(bset); | ||||
4732 | isl_set_free(set); | ||||
4733 | isl_space_free(space); | ||||
4734 | isl_mat_free(var); | ||||
4735 | return NULL((void*)0); | ||||
4736 | } | ||||
4737 | |||||
4738 | /* Given that the last input variable of "bmap" represents the minimum | ||||
4739 | * of the bounds in "cst", check whether we need to split the domain | ||||
4740 | * based on which bound attains the minimum. | ||||
4741 | * | ||||
4742 | * A split is needed when the minimum appears in an integer division | ||||
4743 | * or in an equality. Otherwise, it is only needed if it appears in | ||||
4744 | * an upper bound that is different from the upper bounds on which it | ||||
4745 | * is defined. | ||||
4746 | */ | ||||
4747 | static isl_bool need_split_basic_map(__isl_keep isl_basic_map *bmap, | ||||
4748 | __isl_keep isl_mat *cst) | ||||
4749 | { | ||||
4750 | int i, j; | ||||
4751 | isl_size total; | ||||
4752 | unsigned pos; | ||||
4753 | |||||
4754 | pos = cst->n_col - 1; | ||||
4755 | total = isl_basic_map_dim(bmap, isl_dim_all); | ||||
4756 | if (total < 0) | ||||
4757 | return isl_bool_error; | ||||
4758 | |||||
4759 | for (i = 0; i < bmap->n_div; ++i) | ||||
4760 | if (!isl_int_is_zero(bmap->div[i][2 + pos])(isl_sioimath_sgn(*(bmap->div[i][2 + pos])) == 0)) | ||||
4761 | return isl_bool_true; | ||||
4762 | |||||
4763 | for (i = 0; i < bmap->n_eq; ++i) | ||||
4764 | if (!isl_int_is_zero(bmap->eq[i][1 + pos])(isl_sioimath_sgn(*(bmap->eq[i][1 + pos])) == 0)) | ||||
4765 | return isl_bool_true; | ||||
4766 | |||||
4767 | for (i = 0; i < bmap->n_ineq; ++i) { | ||||
4768 | if (isl_int_is_nonneg(bmap->ineq[i][1 + pos])(isl_sioimath_sgn(*(bmap->ineq[i][1 + pos])) >= 0)) | ||||
4769 | continue; | ||||
4770 | if (!isl_int_is_negone(bmap->ineq[i][1 + pos])(isl_sioimath_cmp_si(*(bmap->ineq[i][1 + pos]), -1) == 0)) | ||||
4771 | return isl_bool_true; | ||||
4772 | if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1, | ||||
4773 | total - pos - 1) >= 0) | ||||
4774 | return isl_bool_true; | ||||
4775 | |||||
4776 | for (j = 0; j < cst->n_row; ++j) | ||||
4777 | if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col)) | ||||
4778 | break; | ||||
4779 | if (j >= cst->n_row) | ||||
4780 | return isl_bool_true; | ||||
4781 | } | ||||
4782 | |||||
4783 | return isl_bool_false; | ||||
4784 | } | ||||
4785 | |||||
4786 | /* Given that the last set variable of "bset" represents the minimum | ||||
4787 | * of the bounds in "cst", check whether we need to split the domain | ||||
4788 | * based on which bound attains the minimum. | ||||
4789 | * | ||||
4790 | * We simply call need_split_basic_map here. This is safe because | ||||
4791 | * the position of the minimum is computed from "cst" and not | ||||
4792 | * from "bmap". | ||||
4793 | */ | ||||
4794 | static isl_bool need_split_basic_set(__isl_keep isl_basic_setisl_basic_map *bset, | ||||
4795 | __isl_keep isl_mat *cst) | ||||
4796 | { | ||||
4797 | return need_split_basic_map(bset_to_bmap(bset), cst); | ||||
4798 | } | ||||
4799 | |||||
4800 | /* Given that the last set variable of "set" represents the minimum | ||||
4801 | * of the bounds in "cst", check whether we need to split the domain | ||||
4802 | * based on which bound attains the minimum. | ||||
4803 | */ | ||||
4804 | static isl_bool need_split_set(__isl_keep isl_setisl_map *set, __isl_keep isl_mat *cst) | ||||
4805 | { | ||||
4806 | int i; | ||||
4807 | |||||
4808 | for (i = 0; i < set->n; ++i) { | ||||
4809 | isl_bool split; | ||||
4810 | |||||
4811 | split = need_split_basic_set(set->p[i], cst); | ||||
4812 | if (split < 0 || split) | ||||
4813 | return split; | ||||
4814 | } | ||||
4815 | |||||
4816 | return isl_bool_false; | ||||
4817 | } | ||||
4818 | |||||
4819 | /* Given a map of which the last input variable is the minimum | ||||
4820 | * of the bounds in "cst", split each basic set in the set | ||||
4821 | * in pieces where one of the bounds is (strictly) smaller than the others. | ||||
4822 | * This subdivision is given in "min_expr". | ||||
4823 | * The variable is subsequently projected out. | ||||
4824 | * | ||||
4825 | * We only do the split when it is needed. | ||||
4826 | * For example if the last input variable m = min(a,b) and the only | ||||
4827 | * constraints in the given basic set are lower bounds on m, | ||||
4828 | * i.e., l <= m = min(a,b), then we can simply project out m | ||||
4829 | * to obtain l <= a and l <= b, without having to split on whether | ||||
4830 | * m is equal to a or b. | ||||
4831 | */ | ||||
4832 | static __isl_give isl_map *split_domain(__isl_take isl_map *opt, | ||||
4833 | __isl_take isl_setisl_map *min_expr, __isl_take isl_mat *cst) | ||||
4834 | { | ||||
4835 | isl_size n_in; | ||||
4836 | int i; | ||||
4837 | isl_space *space; | ||||
4838 | isl_map *res; | ||||
4839 | |||||
4840 | n_in = isl_map_dim(opt, isl_dim_in); | ||||
4841 | if (n_in < 0 || !min_expr || !cst) | ||||
4842 | goto error; | ||||
4843 | |||||
4844 | space = isl_map_get_space(opt); | ||||
4845 | space = isl_space_drop_dims(space, isl_dim_in, n_in - 1, 1); | ||||
4846 | res = isl_map_empty(space); | ||||
4847 | |||||
4848 | for (i = 0; i < opt->n; ++i) { | ||||
4849 | isl_map *map; | ||||
4850 | isl_bool split; | ||||
4851 | |||||
4852 | map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i])); | ||||
4853 | split = need_split_basic_map(opt->p[i], cst); | ||||
4854 | if (split < 0) | ||||
4855 | map = isl_map_free(map); | ||||
4856 | else if (split) | ||||
4857 | map = isl_map_intersect_domain(map, | ||||
4858 | isl_set_copy(min_expr)); | ||||
4859 | map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1); | ||||
4860 | |||||
4861 | res = isl_map_union_disjoint(res, map); | ||||
4862 | } | ||||
4863 | |||||
4864 | isl_map_free(opt); | ||||
4865 | isl_set_free(min_expr); | ||||
4866 | isl_mat_free(cst); | ||||
4867 | return res; | ||||
4868 | error: | ||||
4869 | isl_map_free(opt); | ||||
4870 | isl_set_free(min_expr); | ||||
4871 | isl_mat_free(cst); | ||||
4872 | return NULL((void*)0); | ||||
4873 | } | ||||
4874 | |||||
4875 | /* Given a set of which the last set variable is the minimum | ||||
4876 | * of the bounds in "cst", split each basic set in the set | ||||
4877 | * in pieces where one of the bounds is (strictly) smaller than the others. | ||||
4878 | * This subdivision is given in "min_expr". | ||||
4879 | * The variable is subsequently projected out. | ||||
4880 | */ | ||||
4881 | static __isl_give isl_setisl_map *split(__isl_take isl_setisl_map *empty, | ||||
4882 | __isl_take isl_setisl_map *min_expr, __isl_take isl_mat *cst) | ||||
4883 | { | ||||
4884 | isl_map *map; | ||||
4885 | |||||
4886 | map = isl_map_from_domain(empty); | ||||
4887 | map = split_domain(map, min_expr, cst); | ||||
4888 | empty = isl_map_domain(map); | ||||
4889 | |||||
4890 | return empty; | ||||
4891 | } | ||||
4892 | |||||
4893 | static __isl_give isl_map *basic_map_partial_lexopt( | ||||
4894 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_setisl_basic_map *dom, | ||||
4895 | __isl_give isl_setisl_map **empty, int max); | ||||
4896 | |||||
4897 | /* This function is called from basic_map_partial_lexopt_symm. | ||||
4898 | * The last variable of "bmap" and "dom" corresponds to the minimum | ||||
4899 | * of the bounds in "cst". "map_space" is the space of the original | ||||
4900 | * input relation (of basic_map_partial_lexopt_symm) and "set_space" | ||||
4901 | * is the space of the original domain. | ||||
4902 | * | ||||
4903 | * We recursively call basic_map_partial_lexopt and then plug in | ||||
4904 | * the definition of the minimum in the result. | ||||
4905 | */ | ||||
4906 | static __isl_give isl_map *basic_map_partial_lexopt_symm_core( | ||||
4907 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_setisl_basic_map *dom, | ||||
4908 | __isl_give isl_setisl_map **empty, int max, __isl_take isl_mat *cst, | ||||
4909 | __isl_take isl_space *map_space, __isl_take isl_space *set_space) | ||||
4910 | { | ||||
4911 | isl_map *opt; | ||||
4912 | isl_setisl_map *min_expr; | ||||
4913 | |||||
4914 | min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst)); | ||||
4915 | |||||
4916 | opt = basic_map_partial_lexopt(bmap, dom, empty, max); | ||||
| |||||
4917 | |||||
4918 | if (empty) { | ||||
4919 | *empty = split(*empty, | ||||
4920 | isl_set_copy(min_expr), isl_mat_copy(cst)); | ||||
4921 | *empty = isl_set_reset_space(*empty, set_space); | ||||
4922 | } | ||||
4923 | |||||
4924 | opt = split_domain(opt, min_expr, cst); | ||||
4925 | opt = isl_map_reset_space(opt, map_space); | ||||
4926 | |||||
4927 | return opt; | ||||
4928 | } | ||||
4929 | |||||
4930 | /* Extract a domain from "bmap" for the purpose of computing | ||||
4931 | * a lexicographic optimum. | ||||
4932 | * | ||||
4933 | * This function is only called when the caller wants to compute a full | ||||
4934 | * lexicographic optimum, i.e., without specifying a domain. In this case, | ||||
4935 | * the caller is not interested in the part of the domain space where | ||||
4936 | * there is no solution and the domain can be initialized to those constraints | ||||
4937 | * of "bmap" that only involve the parameters and the input dimensions. | ||||
4938 | * This relieves the parametric programming engine from detecting those | ||||
4939 | * inequalities and transferring them to the context. More importantly, | ||||
4940 | * it ensures that those inequalities are transferred first and not | ||||
4941 | * intermixed with inequalities that actually split the domain. | ||||
4942 | * | ||||
4943 | * If the caller does not require the absence of existentially quantified | ||||
4944 | * variables in the result (i.e., if ISL_OPT_QE is not set in "flags"), | ||||
4945 | * then the actual domain of "bmap" can be used. This ensures that | ||||
4946 | * the domain does not need to be split at all just to separate out | ||||
4947 | * pieces of the domain that do not have a solution from piece that do. | ||||
4948 | * This domain cannot be used in general because it may involve | ||||
4949 | * (unknown) existentially quantified variables which will then also | ||||
4950 | * appear in the solution. | ||||
4951 | */ | ||||
4952 | static __isl_give isl_basic_setisl_basic_map *extract_domain(__isl_keep isl_basic_map *bmap, | ||||
4953 | unsigned flags) | ||||
4954 | { | ||||
4955 | isl_size n_div; | ||||
4956 | isl_size n_out; | ||||
4957 | |||||
4958 | n_div = isl_basic_map_dim(bmap, isl_dim_div); | ||||
4959 | n_out = isl_basic_map_dim(bmap, isl_dim_out); | ||||
4960 | if (n_div < 0 || n_out < 0) | ||||
4961 | return NULL((void*)0); | ||||
4962 | bmap = isl_basic_map_copy(bmap); | ||||
4963 | if (ISL_FL_ISSET(flags, ISL_OPT_QE)(!!((flags) & ((1 << 2))))) { | ||||
4964 | bmap = isl_basic_map_drop_constraints_involving_dims(bmap, | ||||
4965 | isl_dim_div, 0, n_div); | ||||
4966 | bmap = isl_basic_map_drop_constraints_involving_dims(bmap, | ||||
4967 | isl_dim_out, 0, n_out); | ||||
4968 | } | ||||
4969 | return isl_basic_map_domain(bmap); | ||||
4970 | } | ||||
4971 | |||||
4972 | #undef TYPEisl_pw_multi_aff | ||||
4973 | #define TYPEisl_pw_multi_aff isl_map | ||||
4974 | #undef SUFFIX_pw_multi_aff | ||||
4975 | #define SUFFIX_pw_multi_aff | ||||
4976 | #include "isl_tab_lexopt_templ.c" | ||||
4977 | |||||
4978 | /* Extract the subsequence of the sample value of "tab" | ||||
4979 | * starting at "pos" and of length "len". | ||||
4980 | */ | ||||
4981 | static __isl_give isl_vec *extract_sample_sequence(struct isl_tab *tab, | ||||
4982 | int pos, int len) | ||||
4983 | { | ||||
4984 | int i; | ||||
4985 | isl_ctx *ctx; | ||||
4986 | isl_vec *v; | ||||
4987 | |||||
4988 | ctx = isl_tab_get_ctx(tab); | ||||
4989 | v = isl_vec_alloc(ctx, len); | ||||
4990 | if (!v) | ||||
4991 | return NULL((void*)0); | ||||
4992 | for (i = 0; i < len; ++i) { | ||||
4993 | if (!tab->var[pos + i].is_row) { | ||||
4994 | isl_int_set_si(v->el[i], 0)isl_sioimath_set_si((v->el[i]), 0); | ||||
4995 | } else { | ||||
4996 | int row; | ||||
4997 | |||||
4998 | row = tab->var[pos + i].index; | ||||
4999 | isl_int_divexact(v->el[i], tab->mat->row[row][1],isl_sioimath_tdiv_q((v->el[i]), *(tab->mat->row[row] [1]), *(tab->mat->row[row][0])) | ||||
5000 | tab->mat->row[row][0])isl_sioimath_tdiv_q((v->el[i]), *(tab->mat->row[row] [1]), *(tab->mat->row[row][0])); | ||||
5001 | } | ||||
5002 | } | ||||
5003 | |||||
5004 | return v; | ||||
5005 | } | ||||
5006 | |||||
5007 | /* Check if the sequence of variables starting at "pos" | ||||
5008 | * represents a trivial solution according to "trivial". | ||||
5009 | * That is, is the result of applying "trivial" to this sequence | ||||
5010 | * equal to the zero vector? | ||||
5011 | */ | ||||
5012 | static isl_bool region_is_trivial(struct isl_tab *tab, int pos, | ||||
5013 | __isl_keep isl_mat *trivial) | ||||
5014 | { | ||||
5015 | isl_size n, len; | ||||
5016 | isl_vec *v; | ||||
5017 | isl_bool is_trivial; | ||||
5018 | |||||
5019 | n = isl_mat_rows(trivial); | ||||
5020 | if (n < 0) | ||||
5021 | return isl_bool_error; | ||||
5022 | |||||
5023 | if (n == 0) | ||||
5024 | return isl_bool_false; | ||||
5025 | |||||
5026 | len = isl_mat_cols(trivial); | ||||
5027 | if (len < 0) | ||||
5028 | return isl_bool_error; | ||||
5029 | v = extract_sample_sequence(tab, pos, len); | ||||
5030 | v = isl_mat_vec_product(isl_mat_copy(trivial), v); | ||||
5031 | is_trivial = isl_vec_is_zero(v); | ||||
5032 | isl_vec_free(v); | ||||
5033 | |||||
5034 | return is_trivial; | ||||
5035 | } | ||||
5036 | |||||
5037 | /* Global internal data for isl_tab_basic_set_non_trivial_lexmin. | ||||
5038 | * | ||||
5039 | * "n_op" is the number of initial coordinates to optimize, | ||||
5040 | * as passed to isl_tab_basic_set_non_trivial_lexmin. | ||||
5041 | * "region" is the "n_region"-sized array of regions passed | ||||
5042 | * to isl_tab_basic_set_non_trivial_lexmin. | ||||
5043 | * | ||||
5044 | * "tab" is the tableau that corresponds to the ILP problem. | ||||
5045 | * "local" is an array of local data structure, one for each | ||||
5046 | * (potential) level of the backtracking procedure of | ||||
5047 | * isl_tab_basic_set_non_trivial_lexmin. | ||||
5048 | * "v" is a pre-allocated vector that can be used for adding | ||||
5049 | * constraints to the tableau. | ||||
5050 | * | ||||
5051 | * "sol" contains the best solution found so far. | ||||
5052 | * It is initialized to a vector of size zero. | ||||
5053 | */ | ||||
5054 | struct isl_lexmin_data { | ||||
5055 | int n_op; | ||||
5056 | int n_region; | ||||
5057 | struct isl_trivial_region *region; | ||||
5058 | |||||
5059 | struct isl_tab *tab; | ||||
5060 | struct isl_local_region *local; | ||||
5061 | isl_vec *v; | ||||
5062 | |||||
5063 | isl_vec *sol; | ||||
5064 | }; | ||||
5065 | |||||
5066 | /* Return the index of the first trivial region, "n_region" if all regions | ||||
5067 | * are non-trivial or -1 in case of error. | ||||
5068 | */ | ||||
5069 | static int first_trivial_region(struct isl_lexmin_data *data) | ||||
5070 | { | ||||
5071 | int i; | ||||
5072 | |||||
5073 | for (i = 0; i < data->n_region; ++i) { | ||||
5074 | isl_bool trivial; | ||||
5075 | trivial = region_is_trivial(data->tab, data->region[i].pos, | ||||
5076 | data->region[i].trivial); | ||||
5077 | if (trivial < 0) | ||||
5078 | return -1; | ||||
5079 | if (trivial) | ||||
5080 | return i; | ||||
5081 | } | ||||
5082 | |||||
5083 | return data->n_region; | ||||
5084 | } | ||||
5085 | |||||
5086 | /* Check if the solution is optimal, i.e., whether the first | ||||
5087 | * n_op entries are zero. | ||||
5088 | */ | ||||
5089 | static int is_optimal(__isl_keep isl_vec *sol, int n_op) | ||||
5090 | { | ||||
5091 | int i; | ||||
5092 | |||||
5093 | for (i = 0; i < n_op; ++i) | ||||
5094 | if (!isl_int_is_zero(sol->el[1 + i])(isl_sioimath_sgn(*(sol->el[1 + i])) == 0)) | ||||
5095 | return 0; | ||||
5096 | return 1; | ||||
5097 | } | ||||
5098 | |||||
5099 | /* Add constraints to "tab" that ensure that any solution is significantly | ||||
5100 | * better than that represented by "sol". That is, find the first | ||||
5101 | * relevant (within first n_op) non-zero coefficient and force it (along | ||||
5102 | * with all previous coefficients) to be zero. | ||||
5103 | * If the solution is already optimal (all relevant coefficients are zero), | ||||
5104 | * then just mark the table as empty. | ||||
5105 | * "n_zero" is the number of coefficients that have been forced zero | ||||
5106 | * by previous calls to this function at the same level. | ||||
5107 | * Return the updated number of forced zero coefficients or -1 on error. | ||||
5108 | * | ||||
5109 | * This function assumes that at least 2 * (n_op - n_zero) more rows and | ||||
5110 | * at least 2 * (n_op - n_zero) more elements in the constraint array | ||||
5111 | * are available in the tableau. | ||||
5112 | */ | ||||
5113 | static int force_better_solution(struct isl_tab *tab, | ||||
5114 | __isl_keep isl_vec *sol, int n_op, int n_zero) | ||||
5115 | { | ||||
5116 | int i, n; | ||||
5117 | isl_ctx *ctx; | ||||
5118 | isl_vec *v = NULL((void*)0); | ||||
5119 | |||||
5120 | if (!sol) | ||||
5121 | return -1; | ||||
5122 | |||||
5123 | for (i = n_zero; i < n_op; ++i) | ||||
5124 | if (!isl_int_is_zero(sol->el[1 + i])(isl_sioimath_sgn(*(sol->el[1 + i])) == 0)) | ||||
5125 | break; | ||||
5126 | |||||
5127 | if (i == n_op) { | ||||
5128 | if (isl_tab_mark_empty(tab) < 0) | ||||
5129 | return -1; | ||||
5130 | return n_op; | ||||
5131 | } | ||||
5132 | |||||
5133 | ctx = isl_vec_get_ctx(sol); | ||||
5134 | v = isl_vec_alloc(ctx, 1 + tab->n_var); | ||||
5135 | if (!v) | ||||
5136 | return -1; | ||||
5137 | |||||
5138 | n = i + 1; | ||||
5139 | for (; i >= n_zero; --i) { | ||||
5140 | v = isl_vec_clr(v); | ||||
5141 | isl_int_set_si(v->el[1 + i], -1)isl_sioimath_set_si((v->el[1 + i]), -1); | ||||
5142 | if (add_lexmin_eq(tab, v->el) < 0) | ||||
5143 | goto error; | ||||
5144 | } | ||||
5145 | |||||
5146 | isl_vec_free(v); | ||||
5147 | return n; | ||||
5148 | error: | ||||
5149 | isl_vec_free(v); | ||||
5150 | return -1; | ||||
5151 | } | ||||
5152 | |||||
5153 | /* Fix triviality direction "dir" of the given region to zero. | ||||
5154 | * | ||||
5155 | * This function assumes that at least two more rows and at least | ||||
5156 | * two more elements in the constraint array are available in the tableau. | ||||
5157 | */ | ||||
5158 | static isl_stat fix_zero(struct isl_tab *tab, struct isl_trivial_region *region, | ||||
5159 | int dir, struct isl_lexmin_data *data) | ||||
5160 | { | ||||
5161 | isl_size len; | ||||
5162 | |||||
5163 | data->v = isl_vec_clr(data->v); | ||||
5164 | if (!data->v) | ||||
5165 | return isl_stat_error; | ||||
5166 | len = isl_mat_cols(region->trivial); | ||||
5167 | if (len < 0) | ||||
5168 | return isl_stat_error; | ||||
5169 | isl_seq_cpy(data->v->el + 1 + region->pos, region->trivial->row[dir], | ||||
5170 | len); | ||||
5171 | if (add_lexmin_eq(tab, data->v->el) < 0) | ||||
5172 | return isl_stat_error; | ||||
5173 | |||||
5174 | return isl_stat_ok; | ||||
5175 | } | ||||
5176 | |||||
5177 | /* This function selects case "side" for non-triviality region "region", | ||||
5178 | * assuming all the equality constraints have been imposed already. | ||||
5179 | * In particular, the triviality direction side/2 is made positive | ||||
5180 | * if side is even and made negative if side is odd. | ||||
5181 | * | ||||
5182 | * This function assumes that at least one more row and at least | ||||
5183 | * one more element in the constraint array are available in the tableau. | ||||
5184 | */ | ||||
5185 | static struct isl_tab *pos_neg(struct isl_tab *tab, | ||||
5186 | struct isl_trivial_region *region, | ||||
5187 | int side, struct isl_lexmin_data *data) | ||||
5188 | { | ||||
5189 | isl_size len; | ||||
5190 | |||||
5191 | data->v = isl_vec_clr(data->v); | ||||
5192 | if (!data->v) | ||||
5193 | goto error; | ||||
5194 | isl_int_set_si(data->v->el[0], -1)isl_sioimath_set_si((data->v->el[0]), -1); | ||||
5195 | len = isl_mat_cols(region->trivial); | ||||
5196 | if (len < 0) | ||||
5197 | goto error; | ||||
5198 | if (side % 2 == 0) | ||||
5199 | isl_seq_cpy(data->v->el + 1 + region->pos, | ||||
5200 | region->trivial->row[side / 2], len); | ||||
5201 | else | ||||
5202 | isl_seq_neg(data->v->el + 1 + region->pos, | ||||
5203 | region->trivial->row[side / 2], len); | ||||
5204 | return add_lexmin_ineq(tab, data->v->el); | ||||
5205 | error: | ||||
5206 | isl_tab_free(tab); | ||||
5207 | return NULL((void*)0); | ||||
5208 | } | ||||
5209 | |||||
5210 | /* Local data at each level of the backtracking procedure of | ||||
5211 | * isl_tab_basic_set_non_trivial_lexmin. | ||||
5212 | * | ||||
5213 | * "update" is set if a solution has been found in the current case | ||||
5214 | * of this level, such that a better solution needs to be enforced | ||||
5215 | * in the next case. | ||||
5216 | * "n_zero" is the number of initial coordinates that have already | ||||
5217 | * been forced to be zero at this level. | ||||
5218 | * "region" is the non-triviality region considered at this level. | ||||
5219 | * "side" is the index of the current case at this level. | ||||
5220 | * "n" is the number of triviality directions. | ||||
5221 | * "snap" is a snapshot of the tableau holding a state that needs | ||||
5222 | * to be satisfied by all subsequent cases. | ||||
5223 | */ | ||||
5224 | struct isl_local_region { | ||||
5225 | int update; | ||||
5226 | int n_zero; | ||||
5227 | int region; | ||||
5228 | int side; | ||||
5229 | int n; | ||||
5230 | struct isl_tab_undo *snap; | ||||
5231 | }; | ||||
5232 | |||||
5233 | /* Initialize the global data structure "data" used while solving | ||||
5234 | * the ILP problem "bset". | ||||
5235 | */ | ||||
5236 | static isl_stat init_lexmin_data(struct isl_lexmin_data *data, | ||||
5237 | __isl_keep isl_basic_setisl_basic_map *bset) | ||||
5238 | { | ||||
5239 | isl_ctx *ctx; | ||||
5240 | |||||
5241 | ctx = isl_basic_set_get_ctx(bset); | ||||
5242 | |||||
5243 | data->tab = tab_for_lexmin(bset, NULL((void*)0), 0, 0); | ||||
5244 | if (!data->tab) | ||||
5245 | return isl_stat_error; | ||||
5246 | |||||
5247 | data->v = isl_vec_alloc(ctx, 1 + data->tab->n_var); | ||||
5248 | if (!data->v) | ||||
5249 | return isl_stat_error; | ||||
5250 | data->local = isl_calloc_array(ctx, struct isl_local_region,((struct isl_local_region *)isl_calloc_or_die(ctx, data->n_region , sizeof(struct isl_local_region))) | ||||
5251 | data->n_region)((struct isl_local_region *)isl_calloc_or_die(ctx, data->n_region , sizeof(struct isl_local_region))); | ||||
5252 | if (data->n_region && !data->local) | ||||
5253 | return isl_stat_error; | ||||
5254 | |||||
5255 | data->sol = isl_vec_alloc(ctx, 0); | ||||
5256 | |||||
5257 | return isl_stat_ok; | ||||
5258 | } | ||||
5259 | |||||
5260 | /* Mark all outer levels as requiring a better solution | ||||
5261 | * in the next cases. | ||||
5262 | */ | ||||
5263 | static void update_outer_levels(struct isl_lexmin_data *data, int level) | ||||
5264 | { | ||||
5265 | int i; | ||||
5266 | |||||
5267 | for (i = 0; i < level; ++i) | ||||
5268 | data->local[i].update = 1; | ||||
5269 | } | ||||
5270 | |||||
5271 | /* Initialize "local" to refer to region "region" and | ||||
5272 | * to initiate processing at this level. | ||||
5273 | */ | ||||
5274 | static isl_stat init_local_region(struct isl_local_region *local, int region, | ||||
5275 | struct isl_lexmin_data *data) | ||||
5276 | { | ||||
5277 | isl_size n = isl_mat_rows(data->region[region].trivial); | ||||
5278 | |||||
5279 | if (n < 0) | ||||
5280 | return isl_stat_error; | ||||
5281 | local->n = n; | ||||
5282 | local->region = region; | ||||
5283 | local->side = 0; | ||||
5284 | local->update = 0; | ||||
5285 | local->n_zero = 0; | ||||
5286 | |||||
5287 | return isl_stat_ok; | ||||
5288 | } | ||||
5289 | |||||
5290 | /* What to do next after entering a level of the backtracking procedure. | ||||
5291 | * | ||||
5292 | * error: some error has occurred; abort | ||||
5293 | * done: an optimal solution has been found; stop search | ||||
5294 | * backtrack: backtrack to the previous level | ||||
5295 | * handle: add the constraints for the current level and | ||||
5296 | * move to the next level | ||||
5297 | */ | ||||
5298 | enum isl_next { | ||||
5299 | isl_next_error = -1, | ||||
5300 | isl_next_done, | ||||
5301 | isl_next_backtrack, | ||||
5302 | isl_next_handle, | ||||
5303 | }; | ||||
5304 | |||||
5305 | /* Have all cases of the current region been considered? | ||||
5306 | * If there are n directions, then there are 2n cases. | ||||
5307 | * | ||||
5308 | * The constraints in the current tableau are imposed | ||||
5309 | * in all subsequent cases. This means that if the current | ||||
5310 | * tableau is empty, then none of those cases should be considered | ||||
5311 | * anymore and all cases have effectively been considered. | ||||
5312 | */ | ||||
5313 | static int finished_all_cases(struct isl_local_region *local, | ||||
5314 | struct isl_lexmin_data *data) | ||||
5315 | { | ||||
5316 | if (data->tab->empty) | ||||
5317 | return 1; | ||||
5318 | return local->side >= 2 * local->n; | ||||
5319 | } | ||||
5320 | |||||
5321 | /* Enter level "level" of the backtracking search and figure out | ||||
5322 | * what to do next. "init" is set if the level was entered | ||||
5323 | * from a higher level and needs to be initialized. | ||||
5324 | * Otherwise, the level is entered as a result of backtracking and | ||||
5325 | * the tableau needs to be restored to a position that can | ||||
5326 | * be used for the next case at this level. | ||||
5327 | * The snapshot is assumed to have been saved in the previous case, | ||||
5328 | * before the constraints specific to that case were added. | ||||
5329 | * | ||||
5330 | * In the initialization case, the local region is initialized | ||||
5331 | * to point to the first violated region. | ||||
5332 | * If the constraints of all regions are satisfied by the current | ||||
5333 | * sample of the tableau, then tell the caller to continue looking | ||||
5334 | * for a better solution or to stop searching if an optimal solution | ||||
5335 | * has been found. | ||||
5336 | * | ||||
5337 | * If the tableau is empty or if all cases at the current level | ||||
5338 | * have been considered, then the caller needs to backtrack as well. | ||||
5339 | */ | ||||
5340 | static enum isl_next enter_level(int level, int init, | ||||
5341 | struct isl_lexmin_data *data) | ||||
5342 | { | ||||
5343 | struct isl_local_region *local = &data->local[level]; | ||||
5344 | |||||
5345 | if (init) { | ||||
5346 | int r; | ||||
5347 | |||||
5348 | data->tab = cut_to_integer_lexmin(data->tab, CUT_ONE0); | ||||
5349 | if (!data->tab) | ||||
5350 | return isl_next_error; | ||||
5351 | if (data->tab->empty) | ||||
5352 | return isl_next_backtrack; | ||||
5353 | r = first_trivial_region(data); | ||||
5354 | if (r < 0) | ||||
5355 | return isl_next_error; | ||||
5356 | if (r == data->n_region) { | ||||
5357 | update_outer_levels(data, level); | ||||
5358 | isl_vec_free(data->sol); | ||||
5359 | data->sol = isl_tab_get_sample_value(data->tab); | ||||
5360 | if (!data->sol) | ||||
5361 | return isl_next_error; | ||||
5362 | if (is_optimal(data->sol, data->n_op)) | ||||
5363 | return isl_next_done; | ||||
5364 | return isl_next_backtrack; | ||||
5365 | } | ||||
5366 | if (level >= data->n_region) | ||||
5367 | isl_die(isl_vec_get_ctx(data->v), isl_error_internal,do { isl_handle_error(isl_vec_get_ctx(data->v), isl_error_internal , "nesting level too deep", "polly/lib/External/isl/isl_tab_pip.c" , 5369); return isl_next_error; } while (0) | ||||
5368 | "nesting level too deep",do { isl_handle_error(isl_vec_get_ctx(data->v), isl_error_internal , "nesting level too deep", "polly/lib/External/isl/isl_tab_pip.c" , 5369); return isl_next_error; } while (0) | ||||
5369 | return isl_next_error)do { isl_handle_error(isl_vec_get_ctx(data->v), isl_error_internal , "nesting level too deep", "polly/lib/External/isl/isl_tab_pip.c" , 5369); return isl_next_error; } while (0); | ||||
5370 | if (init_local_region(local, r, data) < 0) | ||||
5371 | return isl_next_error; | ||||
5372 | if (isl_tab_extend_cons(data->tab, | ||||
5373 | 2 * local->n + 2 * data->n_op) < 0) | ||||
5374 | return isl_next_error; | ||||
5375 | } else { | ||||
5376 | if (isl_tab_rollback(data->tab, local->snap) < 0) | ||||
5377 | return isl_next_error; | ||||
5378 | } | ||||
5379 | |||||
5380 | if (finished_all_cases(local, data)) | ||||
5381 | return isl_next_backtrack; | ||||
5382 | return isl_next_handle; | ||||
5383 | } | ||||
5384 | |||||
5385 | /* If a solution has been found in the previous case at this level | ||||
5386 | * (marked by local->update being set), then add constraints | ||||
5387 | * that enforce a better solution in the present and all following cases. | ||||
5388 | * The constraints only need to be imposed once because they are | ||||
5389 | * included in the snapshot (taken in pick_side) that will be used in | ||||
5390 | * subsequent cases. | ||||
5391 | */ | ||||
5392 | static isl_stat better_next_side(struct isl_local_region *local, | ||||
5393 | struct isl_lexmin_data *data) | ||||
5394 | { | ||||
5395 | if (!local->update) | ||||
5396 | return isl_stat_ok; | ||||
5397 | |||||
5398 | local->n_zero = force_better_solution(data->tab, | ||||
5399 | data->sol, data->n_op, local->n_zero); | ||||
5400 | if (local->n_zero < 0) | ||||
5401 | return isl_stat_error; | ||||
5402 | |||||
5403 | local->update = 0; | ||||
5404 | |||||
5405 | return isl_stat_ok; | ||||
5406 | } | ||||
5407 | |||||
5408 | /* Add constraints to data->tab that select the current case (local->side) | ||||
5409 | * at the current level. | ||||
5410 | * | ||||
5411 | * If the linear combinations v should not be zero, then the cases are | ||||
5412 | * v_0 >= 1 | ||||
5413 | * v_0 <= -1 | ||||
5414 | * v_0 = 0 and v_1 >= 1 | ||||
5415 | * v_0 = 0 and v_1 <= -1 | ||||
5416 | * v_0 = 0 and v_1 = 0 and v_2 >= 1 | ||||
5417 | * v_0 = 0 and v_1 = 0 and v_2 <= -1 | ||||
5418 | * ... | ||||
5419 | * in this order. | ||||
5420 | * | ||||
5421 | * A snapshot is taken after the equality constraint (if any) has been added | ||||
5422 | * such that the next case can start off from this position. | ||||
5423 | * The rollback to this position is performed in enter_level. | ||||
5424 | */ | ||||
5425 | static isl_stat pick_side(struct isl_local_region *local, | ||||
5426 | struct isl_lexmin_data *data) | ||||
5427 | { | ||||
5428 | struct isl_trivial_region *region; | ||||
5429 | int side, base; | ||||
5430 | |||||
5431 | region = &data->region[local->region]; | ||||
5432 | side = local->side; | ||||
5433 | base = 2 * (side/2); | ||||
5434 | |||||
5435 | if (side == base && base >= 2 && | ||||
5436 | fix_zero(data->tab, region, base / 2 - 1, data) < 0) | ||||
5437 | return isl_stat_error; | ||||
5438 | |||||
5439 | local->snap = isl_tab_snap(data->tab); | ||||
5440 | if (isl_tab_push_basis(data->tab) < 0) | ||||
5441 | return isl_stat_error; | ||||
5442 | |||||
5443 | data->tab = pos_neg(data->tab, region, side, data); | ||||
5444 | if (!data->tab) | ||||
5445 | return isl_stat_error; | ||||
5446 | return isl_stat_ok; | ||||
5447 | } | ||||
5448 | |||||
5449 | /* Free the memory associated to "data". | ||||
5450 | */ | ||||
5451 | static void clear_lexmin_data(struct isl_lexmin_data *data) | ||||
5452 | { | ||||
5453 | free(data->local); | ||||
5454 | isl_vec_free(data->v); | ||||
5455 | isl_tab_free(data->tab); | ||||
5456 | } | ||||
5457 | |||||
5458 | /* Return the lexicographically smallest non-trivial solution of the | ||||
5459 | * given ILP problem. | ||||
5460 | * | ||||
5461 | * All variables are assumed to be non-negative. | ||||
5462 | * | ||||
5463 | * n_op is the number of initial coordinates to optimize. | ||||
5464 | * That is, once a solution has been found, we will only continue looking | ||||
5465 | * for solutions that result in significantly better values for those | ||||
5466 | * initial coordinates. That is, we only continue looking for solutions | ||||
5467 | * that increase the number of initial zeros in this sequence. | ||||
5468 | * | ||||
5469 | * A solution is non-trivial, if it is non-trivial on each of the | ||||
5470 | * specified regions. Each region represents a sequence of | ||||
5471 | * triviality directions on a sequence of variables that starts | ||||
5472 | * at a given position. A solution is non-trivial on such a region if | ||||
5473 | * at least one of the triviality directions is non-zero | ||||
5474 | * on that sequence of variables. | ||||
5475 | * | ||||
5476 | * Whenever a conflict is encountered, all constraints involved are | ||||
5477 | * reported to the caller through a call to "conflict". | ||||
5478 | * | ||||
5479 | * We perform a simple branch-and-bound backtracking search. | ||||
5480 | * Each level in the search represents an initially trivial region | ||||
5481 | * that is forced to be non-trivial. | ||||
5482 | * At each level we consider 2 * n cases, where n | ||||
5483 | * is the number of triviality directions. | ||||
5484 | * In terms of those n directions v_i, we consider the cases | ||||
5485 | * v_0 >= 1 | ||||
5486 | * v_0 <= -1 | ||||
5487 | * v_0 = 0 and v_1 >= 1 | ||||
5488 | * v_0 = 0 and v_1 <= -1 | ||||
5489 | * v_0 = 0 and v_1 = 0 and v_2 >= 1 | ||||
5490 | * v_0 = 0 and v_1 = 0 and v_2 <= -1 | ||||
5491 | * ... | ||||
5492 | * in this order. | ||||
5493 | */ | ||||
5494 | __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin( | ||||
5495 | __isl_take isl_basic_setisl_basic_map *bset, int n_op, int n_region, | ||||
5496 | struct isl_trivial_region *region, | ||||
5497 | int (*conflict)(int con, void *user), void *user) | ||||
5498 | { | ||||
5499 | struct isl_lexmin_data data = { n_op, n_region, region }; | ||||
5500 | int level, init; | ||||
5501 | |||||
5502 | if (!bset) | ||||
5503 | return NULL((void*)0); | ||||
5504 | |||||
5505 | if (init_lexmin_data(&data, bset) < 0) | ||||
5506 | goto error; | ||||
5507 | data.tab->conflict = conflict; | ||||
5508 | data.tab->conflict_user = user; | ||||
5509 | |||||
5510 | level = 0; | ||||
5511 | init = 1; | ||||
5512 | |||||
5513 | while (level >= 0) { | ||||
5514 | enum isl_next next; | ||||
5515 | struct isl_local_region *local = &data.local[level]; | ||||
5516 | |||||
5517 | next = enter_level(level, init, &data); | ||||
5518 | if (next < 0) | ||||
5519 | goto error; | ||||
5520 | if (next == isl_next_done) | ||||
5521 | break; | ||||
5522 | if (next == isl_next_backtrack) { | ||||
5523 | level--; | ||||
5524 | init = 0; | ||||
5525 | continue; | ||||
5526 | } | ||||
5527 | |||||
5528 | if (better_next_side(local, &data) < 0) | ||||
5529 | goto error; | ||||
5530 | if (pick_side(local, &data) < 0) | ||||
5531 | goto error; | ||||
5532 | |||||
5533 | local->side++; | ||||
5534 | level++; | ||||
5535 | init = 1; | ||||
5536 | } | ||||
5537 | |||||
5538 | clear_lexmin_data(&data); | ||||
5539 | isl_basic_set_free(bset); | ||||
5540 | |||||
5541 | return data.sol; | ||||
5542 | error: | ||||
5543 | clear_lexmin_data(&data); | ||||
5544 | isl_basic_set_free(bset); | ||||
5545 | isl_vec_free(data.sol); | ||||
5546 | return NULL((void*)0); | ||||
5547 | } | ||||
5548 | |||||
5549 | /* Wrapper for a tableau that is used for computing | ||||
5550 | * the lexicographically smallest rational point of a non-negative set. | ||||
5551 | * This point is represented by the sample value of "tab", | ||||
5552 | * unless "tab" is empty. | ||||
5553 | */ | ||||
5554 | struct isl_tab_lexmin { | ||||
5555 | isl_ctx *ctx; | ||||
5556 | struct isl_tab *tab; | ||||
5557 | }; | ||||
5558 | |||||
5559 | /* Free "tl" and return NULL. | ||||
5560 | */ | ||||
5561 | __isl_null isl_tab_lexmin *isl_tab_lexmin_free(__isl_take isl_tab_lexmin *tl) | ||||
5562 | { | ||||
5563 | if (!tl) | ||||
5564 | return NULL((void*)0); | ||||
5565 | isl_ctx_deref(tl->ctx); | ||||
5566 | isl_tab_free(tl->tab); | ||||
5567 | free(tl); | ||||
5568 | |||||
5569 | return NULL((void*)0); | ||||
5570 | } | ||||
5571 | |||||
5572 | /* Construct an isl_tab_lexmin for computing | ||||
5573 | * the lexicographically smallest rational point in "bset", | ||||
5574 | * assuming that all variables are non-negative. | ||||
5575 | */ | ||||
5576 | __isl_give isl_tab_lexmin *isl_tab_lexmin_from_basic_set( | ||||
5577 | __isl_take isl_basic_setisl_basic_map *bset) | ||||
5578 | { | ||||
5579 | isl_ctx *ctx; | ||||
5580 | isl_tab_lexmin *tl; | ||||
5581 | |||||
5582 | if (!bset) | ||||
5583 | return NULL((void*)0); | ||||
5584 | |||||
5585 | ctx = isl_basic_set_get_ctx(bset); | ||||
5586 | tl = isl_calloc_type(ctx, struct isl_tab_lexmin)((struct isl_tab_lexmin *)isl_calloc_or_die(ctx, 1, sizeof(struct isl_tab_lexmin))); | ||||
5587 | if (!tl) | ||||
5588 | goto error; | ||||
5589 | tl->ctx = ctx; | ||||
5590 | isl_ctx_ref(ctx); | ||||
5591 | tl->tab = tab_for_lexmin(bset, NULL((void*)0), 0, 0); | ||||
5592 | isl_basic_set_free(bset); | ||||
5593 | if (!tl->tab) | ||||
5594 | return isl_tab_lexmin_free(tl); | ||||
5595 | return tl; | ||||
5596 | error: | ||||
5597 | isl_basic_set_free(bset); | ||||
5598 | isl_tab_lexmin_free(tl); | ||||
5599 | return NULL((void*)0); | ||||
5600 | } | ||||
5601 | |||||
5602 | /* Return the dimension of the set represented by "tl". | ||||
5603 | */ | ||||
5604 | int isl_tab_lexmin_dim(__isl_keep isl_tab_lexmin *tl) | ||||
5605 | { | ||||
5606 | return tl ? tl->tab->n_var : -1; | ||||
5607 | } | ||||
5608 | |||||
5609 | /* Add the equality with coefficients "eq" to "tl", updating the optimal | ||||
5610 | * solution if needed. | ||||
5611 | * The equality is added as two opposite inequality constraints. | ||||
5612 | */ | ||||
5613 | __isl_give isl_tab_lexmin *isl_tab_lexmin_add_eq(__isl_take isl_tab_lexmin *tl, | ||||
5614 | isl_int *eq) | ||||
5615 | { | ||||
5616 | unsigned n_var; | ||||
5617 | |||||
5618 | if (!tl || !eq) | ||||
5619 | return isl_tab_lexmin_free(tl); | ||||
5620 | |||||
5621 | if (isl_tab_extend_cons(tl->tab, 2) < 0) | ||||
5622 | return isl_tab_lexmin_free(tl); | ||||
5623 | n_var = tl->tab->n_var; | ||||
5624 | isl_seq_neg(eq, eq, 1 + n_var); | ||||
5625 | tl->tab = add_lexmin_ineq(tl->tab, eq); | ||||
5626 | isl_seq_neg(eq, eq, 1 + n_var); | ||||
5627 | tl->tab = add_lexmin_ineq(tl->tab, eq); | ||||
5628 | |||||
5629 | if (!tl->tab) | ||||
5630 | return isl_tab_lexmin_free(tl); | ||||
5631 | |||||
5632 | return tl; | ||||
5633 | } | ||||
5634 | |||||
5635 | /* Add cuts to "tl" until the sample value reaches an integer value or | ||||
5636 | * until the result becomes empty. | ||||
5637 | */ | ||||
5638 | __isl_give isl_tab_lexmin *isl_tab_lexmin_cut_to_integer( | ||||
5639 | __isl_take isl_tab_lexmin *tl) | ||||
5640 | { | ||||
5641 | if (!tl) | ||||
5642 | return NULL((void*)0); | ||||
5643 | tl->tab = cut_to_integer_lexmin(tl->tab, CUT_ONE0); | ||||
5644 | if (!tl->tab) | ||||
5645 | return isl_tab_lexmin_free(tl); | ||||
5646 | return tl; | ||||
5647 | } | ||||
5648 | |||||
5649 | /* Return the lexicographically smallest rational point in the basic set | ||||
5650 | * from which "tl" was constructed. | ||||
5651 | * If the original input was empty, then return a zero-length vector. | ||||
5652 | */ | ||||
5653 | __isl_give isl_vec *isl_tab_lexmin_get_solution(__isl_keep isl_tab_lexmin *tl) | ||||
5654 | { | ||||
5655 | if (!tl) | ||||
5656 | return NULL((void*)0); | ||||
5657 | if (tl->tab->empty) | ||||
5658 | return isl_vec_alloc(tl->ctx, 0); | ||||
5659 | else | ||||
5660 | return isl_tab_get_sample_value(tl->tab); | ||||
5661 | } | ||||
5662 | |||||
5663 | struct isl_sol_pma { | ||||
5664 | struct isl_sol sol; | ||||
5665 | isl_pw_multi_aff *pma; | ||||
5666 | isl_setisl_map *empty; | ||||
5667 | }; | ||||
5668 | |||||
5669 | static void sol_pma_free(struct isl_sol *sol) | ||||
5670 | { | ||||
5671 | struct isl_sol_pma *sol_pma = (struct isl_sol_pma *) sol; | ||||
5672 | isl_pw_multi_aff_free(sol_pma->pma); | ||||
5673 | isl_set_free(sol_pma->empty); | ||||
5674 | } | ||||
5675 | |||||
5676 | /* This function is called for parts of the context where there is | ||||
5677 | * no solution, with "bset" corresponding to the context tableau. | ||||
5678 | * Simply add the basic set to the set "empty". | ||||
5679 | */ | ||||
5680 | static void sol_pma_add_empty(struct isl_sol_pma *sol, | ||||
5681 | __isl_take isl_basic_setisl_basic_map *bset) | ||||
5682 | { | ||||
5683 | if (!bset || !sol->empty) | ||||
5684 | goto error; | ||||
5685 | |||||
5686 | sol->empty = isl_set_grow(sol->empty, 1); | ||||
5687 | bset = isl_basic_set_simplify(bset); | ||||
5688 | bset = isl_basic_set_finalize(bset); | ||||
5689 | sol->empty = isl_set_add_basic_set(sol->empty, bset); | ||||
5690 | if (!sol->empty) | ||||
5691 | sol->sol.error = 1; | ||||
5692 | return; | ||||
5693 | error: | ||||
5694 | isl_basic_set_free(bset); | ||||
5695 | sol->sol.error = 1; | ||||
5696 | } | ||||
5697 | |||||
5698 | /* Given a basic set "dom" that represents the context and a tuple of | ||||
5699 | * affine expressions "maff" defined over this domain, construct | ||||
5700 | * an isl_pw_multi_aff with a single cell corresponding to "dom" and | ||||
5701 | * the affine expressions in "maff". | ||||
5702 | */ | ||||
5703 | static void sol_pma_add(struct isl_sol_pma *sol, | ||||
5704 | __isl_take isl_basic_setisl_basic_map *dom, __isl_take isl_multi_aff *maff) | ||||
5705 | { | ||||
5706 | isl_pw_multi_aff *pma; | ||||
5707 | |||||
5708 | dom = isl_basic_set_simplify(dom); | ||||
5709 | dom = isl_basic_set_finalize(dom); | ||||
5710 | pma = isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom), maff); | ||||
5711 | sol->pma = isl_pw_multi_aff_add_disjoint(sol->pma, pma); | ||||
5712 | if (!sol->pma) | ||||
5713 | sol->sol.error = 1; | ||||
5714 | } | ||||
5715 | |||||
5716 | static void sol_pma_add_empty_wrap(struct isl_sol *sol, | ||||
5717 | __isl_take isl_basic_setisl_basic_map *bset) | ||||
5718 | { | ||||
5719 | sol_pma_add_empty((struct isl_sol_pma *)sol, bset); | ||||
5720 | } | ||||
5721 | |||||
5722 | static void sol_pma_add_wrap(struct isl_sol *sol, | ||||
5723 | __isl_take isl_basic_setisl_basic_map *dom, __isl_take isl_multi_aff *ma) | ||||
5724 | { | ||||
5725 | sol_pma_add((struct isl_sol_pma *)sol, dom, ma); | ||||
5726 | } | ||||
5727 | |||||
5728 | /* Construct an isl_sol_pma structure for accumulating the solution. | ||||
5729 | * If track_empty is set, then we also keep track of the parts | ||||
5730 | * of the context where there is no solution. | ||||
5731 | * If max is set, then we are solving a maximization, rather than | ||||
5732 | * a minimization problem, which means that the variables in the | ||||
5733 | * tableau have value "M - x" rather than "M + x". | ||||
5734 | */ | ||||
5735 | static struct isl_sol *sol_pma_init(__isl_keep isl_basic_map *bmap, | ||||
5736 | __isl_take isl_basic_setisl_basic_map *dom, int track_empty, int max) | ||||
5737 | { | ||||
5738 | struct isl_sol_pma *sol_pma = NULL((void*)0); | ||||
5739 | isl_space *space; | ||||
5740 | |||||
5741 | if (!bmap) | ||||
5742 | goto error; | ||||
5743 | |||||
5744 | sol_pma = isl_calloc_type(bmap->ctx, struct isl_sol_pma)((struct isl_sol_pma *)isl_calloc_or_die(bmap->ctx, 1, sizeof (struct isl_sol_pma))); | ||||
5745 | if (!sol_pma) | ||||
5746 | goto error; | ||||
5747 | |||||
5748 | sol_pma->sol.free = &sol_pma_free; | ||||
5749 | if (sol_init(&sol_pma->sol, bmap, dom, max) < 0) | ||||
5750 | goto error; | ||||
5751 | sol_pma->sol.add = &sol_pma_add_wrap; | ||||
5752 | sol_pma->sol.add_empty = track_empty ? &sol_pma_add_empty_wrap : NULL((void*)0); | ||||
5753 | space = isl_space_copy(sol_pma->sol.space); | ||||
5754 | sol_pma->pma = isl_pw_multi_aff_empty(space); | ||||
5755 | if (!sol_pma->pma) | ||||
5756 | goto error; | ||||
5757 | |||||
5758 | if (track_empty) { | ||||
5759 | sol_pma->empty = isl_set_alloc_space(isl_basic_set_get_space(dom), | ||||
5760 | 1, ISL_SET_DISJOINT(1 << 0)); | ||||
5761 | if (!sol_pma->empty) | ||||
5762 | goto error; | ||||
5763 | } | ||||
5764 | |||||
5765 | isl_basic_set_free(dom); | ||||
5766 | return &sol_pma->sol; | ||||
5767 | error: | ||||
5768 | isl_basic_set_free(dom); | ||||
5769 | sol_free(&sol_pma->sol); | ||||
5770 | return NULL((void*)0); | ||||
5771 | } | ||||
5772 | |||||
5773 | /* Base case of isl_tab_basic_map_partial_lexopt, after removing | ||||
5774 | * some obvious symmetries. | ||||
5775 | * | ||||
5776 | * We call basic_map_partial_lexopt_base_sol and extract the results. | ||||
5777 | */ | ||||
5778 | static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_base_pw_multi_aff( | ||||
5779 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_setisl_basic_map *dom, | ||||
5780 | __isl_give isl_setisl_map **empty, int max) | ||||
5781 | { | ||||
5782 | isl_pw_multi_aff *result = NULL((void*)0); | ||||
5783 | struct isl_sol *sol; | ||||
5784 | struct isl_sol_pma *sol_pma; | ||||
5785 | |||||
5786 | sol = basic_map_partial_lexopt_base_sol(bmap, dom, empty, max, | ||||
5787 | &sol_pma_init); | ||||
5788 | if (!sol) | ||||
5789 | return NULL((void*)0); | ||||
5790 | sol_pma = (struct isl_sol_pma *) sol; | ||||
5791 | |||||
5792 | result = isl_pw_multi_aff_copy(sol_pma->pma); | ||||
5793 | if (empty) | ||||
5794 | *empty = isl_set_copy(sol_pma->empty); | ||||
5795 | sol_free(&sol_pma->sol); | ||||
5796 | return result; | ||||
5797 | } | ||||
5798 | |||||
5799 | /* Given that the last input variable of "maff" represents the minimum | ||||
5800 | * of some bounds, check whether we need to plug in the expression | ||||
5801 | * of the minimum. | ||||
5802 | * | ||||
5803 | * In particular, check if the last input variable appears in any | ||||
5804 | * of the expressions in "maff". | ||||
5805 | */ | ||||
5806 | static isl_bool need_substitution(__isl_keep isl_multi_aff *maff) | ||||
5807 | { | ||||
5808 | int i; | ||||
5809 | isl_size n_in; | ||||
5810 | unsigned pos; | ||||
5811 | |||||
5812 | n_in = isl_multi_aff_dim(maff, isl_dim_in); | ||||
5813 | if (n_in < 0) | ||||
5814 | return isl_bool_error; | ||||
5815 | pos = n_in - 1; | ||||
5816 | |||||
5817 | for (i = 0; i < maff->n; ++i) { | ||||
5818 | isl_bool involves; | ||||
5819 | |||||
5820 | involves = isl_aff_involves_dims(maff->u.p[i], | ||||
5821 | isl_dim_in, pos, 1); | ||||
5822 | if (involves < 0 || involves) | ||||
5823 | return involves; | ||||
5824 | } | ||||
5825 | |||||
5826 | return isl_bool_false; | ||||
5827 | } | ||||
5828 | |||||
5829 | /* Given a set of upper bounds on the last "input" variable m, | ||||
5830 | * construct a piecewise affine expression that selects | ||||
5831 | * the minimal upper bound to m, i.e., | ||||
5832 | * divide the space into cells where one | ||||
5833 | * of the upper bounds is smaller than all the others and select | ||||
5834 | * this upper bound on that cell. | ||||
5835 | * | ||||
5836 | * In particular, if there are n bounds b_i, then the result | ||||
5837 | * consists of n cell, each one of the form | ||||
5838 | * | ||||
5839 | * b_i <= b_j for j > i | ||||
5840 | * b_i < b_j for j < i | ||||
5841 | * | ||||
5842 | * The affine expression on this cell is | ||||
5843 | * | ||||
5844 | * b_i | ||||
5845 | */ | ||||
5846 | static __isl_give isl_pw_aff *set_minimum_pa(__isl_take isl_space *space, | ||||
5847 | __isl_take isl_mat *var) | ||||
5848 | { | ||||
5849 | int i; | ||||
5850 | isl_aff *aff = NULL((void*)0); | ||||
5851 | isl_basic_setisl_basic_map *bset = NULL((void*)0); | ||||
5852 | isl_pw_aff *paff = NULL((void*)0); | ||||
5853 | isl_space *pw_space; | ||||
5854 | isl_local_space *ls = NULL((void*)0); | ||||
5855 | |||||
5856 | if (!space || !var) | ||||
5857 | goto error; | ||||
5858 | |||||
5859 | ls = isl_local_space_from_space(isl_space_copy(space)); | ||||
5860 | pw_space = isl_space_copy(space); | ||||
5861 | pw_space = isl_space_from_domain(pw_space); | ||||
5862 | pw_space = isl_space_add_dims(pw_space, isl_dim_out, 1); | ||||
5863 | paff = isl_pw_aff_alloc_size(pw_space, var->n_row); | ||||
5864 | |||||
5865 | for (i = 0; i < var->n_row; ++i) { | ||||
5866 | isl_pw_aff *paff_i; | ||||
5867 | |||||
5868 | aff = isl_aff_alloc(isl_local_space_copy(ls)); | ||||
5869 | bset = isl_basic_set_alloc_space(isl_space_copy(space), 0, | ||||
5870 | 0, var->n_row - 1); | ||||
5871 | if (!aff || !bset) | ||||
5872 | goto error; | ||||
5873 | isl_int_set_si(aff->v->el[0], 1)isl_sioimath_set_si((aff->v->el[0]), 1); | ||||
5874 | isl_seq_cpy(aff->v->el + 1, var->row[i], var->n_col); | ||||
5875 | isl_int_set_si(aff->v->el[1 + var->n_col], 0)isl_sioimath_set_si((aff->v->el[1 + var->n_col]), 0); | ||||
5876 | bset = select_minimum(bset, var, i); | ||||
5877 | paff_i = isl_pw_aff_alloc(isl_set_from_basic_set(bset), aff); | ||||
5878 | paff = isl_pw_aff_add_disjoint(paff, paff_i); | ||||
5879 | } | ||||
5880 | |||||
5881 | isl_local_space_free(ls); | ||||
5882 | isl_space_free(space); | ||||
5883 | isl_mat_free(var); | ||||
5884 | return paff; | ||||
5885 | error: | ||||
5886 | isl_aff_free(aff); | ||||
5887 | isl_basic_set_free(bset); | ||||
5888 | isl_pw_aff_free(paff); | ||||
5889 | isl_local_space_free(ls); | ||||
5890 | isl_space_free(space); | ||||
5891 | isl_mat_free(var); | ||||
5892 | return NULL((void*)0); | ||||
5893 | } | ||||
5894 | |||||
5895 | /* Given a piecewise multi-affine expression of which the last input variable | ||||
5896 | * is the minimum of the bounds in "cst", plug in the value of the minimum. | ||||
5897 | * This minimum expression is given in "min_expr_pa". | ||||
5898 | * The set "min_expr" contains the same information, but in the form of a set. | ||||
5899 | * The variable is subsequently projected out. | ||||
5900 | * | ||||
5901 | * The implementation is similar to those of "split" and "split_domain". | ||||
5902 | * If the variable appears in a given expression, then minimum expression | ||||
5903 | * is plugged in. Otherwise, if the variable appears in the constraints | ||||
5904 | * and a split is required, then the domain is split. Otherwise, no split | ||||
5905 | * is performed. | ||||
5906 | */ | ||||
5907 | static __isl_give isl_pw_multi_aff *split_domain_pma( | ||||
5908 | __isl_take isl_pw_multi_aff *opt, __isl_take isl_pw_aff *min_expr_pa, | ||||
5909 | __isl_take isl_setisl_map *min_expr, __isl_take isl_mat *cst) | ||||
5910 | { | ||||
5911 | isl_size n_in; | ||||
5912 | int i; | ||||
5913 | isl_space *space; | ||||
5914 | isl_pw_multi_aff *res; | ||||
5915 | |||||
5916 | if (!opt || !min_expr || !cst) | ||||
5917 | goto error; | ||||
5918 | |||||
5919 | n_in = isl_pw_multi_aff_dim(opt, isl_dim_in); | ||||
5920 | if (n_in < 0) | ||||
5921 | goto error; | ||||
5922 | space = isl_pw_multi_aff_get_space(opt); | ||||
5923 | space = isl_space_drop_dims(space, isl_dim_in, n_in - 1, 1); | ||||
5924 | res = isl_pw_multi_aff_empty(space); | ||||
5925 | |||||
5926 | for (i = 0; i < opt->n; ++i) { | ||||
5927 | isl_bool subs; | ||||
5928 | isl_pw_multi_aff *pma; | ||||
5929 | |||||
5930 | pma = isl_pw_multi_aff_alloc(isl_set_copy(opt->p[i].set), | ||||
5931 | isl_multi_aff_copy(opt->p[i].maff)); | ||||
5932 | subs = need_substitution(opt->p[i].maff); | ||||
5933 | if (subs < 0) { | ||||
5934 | pma = isl_pw_multi_aff_free(pma); | ||||
5935 | } else if (subs) { | ||||
5936 | pma = isl_pw_multi_aff_substitute(pma, | ||||
5937 | n_in - 1, min_expr_pa); | ||||
5938 | } else { | ||||
5939 | isl_bool split; | ||||
5940 | split = need_split_set(opt->p[i].set, cst); | ||||
5941 | if (split < 0) | ||||
5942 | pma = isl_pw_multi_aff_free(pma); | ||||
5943 | else if (split) | ||||
5944 | pma = isl_pw_multi_aff_intersect_domain(pma, | ||||
5945 | isl_set_copy(min_expr)); | ||||
5946 | } | ||||
5947 | pma = isl_pw_multi_aff_project_out(pma, | ||||
5948 | isl_dim_in, n_in - 1, 1); | ||||
5949 | |||||
5950 | res = isl_pw_multi_aff_add_disjoint(res, pma); | ||||
5951 | } | ||||
5952 | |||||
5953 | isl_pw_multi_aff_free(opt); | ||||
5954 | isl_pw_aff_free(min_expr_pa); | ||||
5955 | isl_set_free(min_expr); | ||||
5956 | isl_mat_free(cst); | ||||
5957 | return res; | ||||
5958 | error: | ||||
5959 | isl_pw_multi_aff_free(opt); | ||||
5960 | isl_pw_aff_free(min_expr_pa); | ||||
5961 | isl_set_free(min_expr); | ||||
5962 | isl_mat_free(cst); | ||||
5963 | return NULL((void*)0); | ||||
5964 | } | ||||
5965 | |||||
5966 | static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pw_multi_aff( | ||||
5967 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_setisl_basic_map *dom, | ||||
5968 | __isl_give isl_setisl_map **empty, int max); | ||||
5969 | |||||
5970 | /* This function is called from basic_map_partial_lexopt_symm. | ||||
5971 | * The last variable of "bmap" and "dom" corresponds to the minimum | ||||
5972 | * of the bounds in "cst". "map_space" is the space of the original | ||||
5973 | * input relation (of basic_map_partial_lexopt_symm) and "set_space" | ||||
5974 | * is the space of the original domain. | ||||
5975 | * | ||||
5976 | * We recursively call basic_map_partial_lexopt and then plug in | ||||
5977 | * the definition of the minimum in the result. | ||||
5978 | */ | ||||
5979 | static __isl_give isl_pw_multi_aff * | ||||
5980 | basic_map_partial_lexopt_symm_core_pw_multi_aff( | ||||
5981 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_setisl_basic_map *dom, | ||||
5982 | __isl_give isl_setisl_map **empty, int max, __isl_take isl_mat *cst, | ||||
5983 | __isl_take isl_space *map_space, __isl_take isl_space *set_space) | ||||
5984 | { | ||||
5985 | isl_pw_multi_aff *opt; | ||||
5986 | isl_pw_aff *min_expr_pa; | ||||
5987 | isl_setisl_map *min_expr; | ||||
5988 | |||||
5989 | min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst)); | ||||
5990 | min_expr_pa = set_minimum_pa(isl_basic_set_get_space(dom), | ||||
5991 | isl_mat_copy(cst)); | ||||
5992 | |||||
5993 | opt = basic_map_partial_lexopt_pw_multi_aff(bmap, dom, empty, max); | ||||
5994 | |||||
5995 | if (empty) { | ||||
5996 | *empty = split(*empty, | ||||
5997 | isl_set_copy(min_expr), isl_mat_copy(cst)); | ||||
5998 | *empty = isl_set_reset_space(*empty, set_space); | ||||
5999 | } | ||||
6000 | |||||
6001 | opt = split_domain_pma(opt, min_expr_pa, min_expr, cst); | ||||
6002 | opt = isl_pw_multi_aff_reset_space(opt, map_space); | ||||
6003 | |||||
6004 | return opt; | ||||
6005 | } | ||||
6006 | |||||
6007 | #undef TYPEisl_pw_multi_aff | ||||
6008 | #define TYPEisl_pw_multi_aff isl_pw_multi_aff | ||||
6009 | #undef SUFFIX_pw_multi_aff | ||||
6010 | #define SUFFIX_pw_multi_aff _pw_multi_aff | ||||
6011 | #include "isl_tab_lexopt_templ.c" |
1 | /* |
2 | * Copyright 2008-2009 Katholieke Universiteit Leuven |
3 | * Copyright 2010 INRIA Saclay |
4 | * Copyright 2011 Sven Verdoolaege |
5 | * |
6 | * Use of this software is governed by the MIT license |
7 | * |
8 | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
9 | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
10 | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
11 | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
12 | */ |
13 | |
14 | #define xSF(TYPE,SUFFIX)TYPESUFFIX TYPEisl_pw_multi_aff ## SUFFIX_pw_multi_aff |
15 | #define SF(TYPE,SUFFIX)isl_pw_multi_aff_pw_multi_aff xSF(TYPE,SUFFIX)TYPESUFFIX |
16 | |
17 | /* Given a basic map with at least two parallel constraints (as found |
18 | * by the function parallel_constraints), first look for more constraints |
19 | * parallel to the two constraint and replace the found list of parallel |
20 | * constraints by a single constraint with as "input" part the minimum |
21 | * of the input parts of the list of constraints. Then, recursively call |
22 | * basic_map_partial_lexopt (possibly finding more parallel constraints) |
23 | * and plug in the definition of the minimum in the result. |
24 | * |
25 | * As in parallel_constraints, only inequality constraints that only |
26 | * involve input variables that do not occur in any other inequality |
27 | * constraints are considered. |
28 | * |
29 | * More specifically, given a set of constraints |
30 | * |
31 | * a x + b_i(p) >= 0 |
32 | * |
33 | * Replace this set by a single constraint |
34 | * |
35 | * a x + u >= 0 |
36 | * |
37 | * with u a new parameter with constraints |
38 | * |
39 | * u <= b_i(p) |
40 | * |
41 | * Any solution to the new system is also a solution for the original system |
42 | * since |
43 | * |
44 | * a x >= -u >= -b_i(p) |
45 | * |
46 | * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can |
47 | * therefore be plugged into the solution. |
48 | */ |
49 | static TYPEisl_pw_multi_aff *SF(basic_map_partial_lexopt_symm,SUFFIX)basic_map_partial_lexopt_symm_pw_multi_aff( |
50 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_setisl_basic_map *dom, |
51 | __isl_give isl_setisl_map **empty, int max, int first, int second) |
52 | { |
53 | int i, n, k; |
54 | int *list = NULL((void*)0); |
55 | isl_size bmap_in, bmap_param, bmap_all; |
56 | unsigned n_in, n_out, n_div; |
57 | isl_ctx *ctx; |
58 | isl_vec *var = NULL((void*)0); |
59 | isl_mat *cst = NULL((void*)0); |
60 | isl_space *map_space, *set_space; |
61 | |
62 | map_space = isl_basic_map_get_space(bmap); |
63 | set_space = empty ? isl_basic_set_get_space(dom) : NULL((void*)0); |
64 | |
65 | bmap_in = isl_basic_map_dim(bmap, isl_dim_in); |
66 | bmap_param = isl_basic_map_dim(bmap, isl_dim_param); |
67 | bmap_all = isl_basic_map_dim(bmap, isl_dim_all); |
68 | if (bmap_in < 0 || bmap_param < 0 || bmap_all < 0) |
69 | goto error; |
70 | n_in = bmap_param + bmap_in; |
71 | n_out = bmap_all - n_in; |
72 | |
73 | ctx = isl_basic_map_get_ctx(bmap); |
74 | list = isl_alloc_array(ctx, int, bmap->n_ineq)((int *)isl_malloc_or_die(ctx, (bmap->n_ineq)*sizeof(int)) ); |
75 | var = isl_vec_alloc(ctx, n_out); |
76 | if ((bmap->n_ineq && !list) || (n_out && !var)) |
77 | goto error; |
78 | |
79 | list[0] = first; |
80 | list[1] = second; |
81 | isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out); |
82 | for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) { |
83 | if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out) && |
84 | all_single_occurrence(bmap, i, n_in)) |
85 | list[n++] = i; |
86 | } |
87 | |
88 | cst = isl_mat_alloc(ctx, n, 1 + n_in); |
89 | if (!cst) |
90 | goto error; |
91 | |
92 | for (i = 0; i < n; ++i) |
93 | isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in); |
94 | |
95 | bmap = isl_basic_map_cow(bmap); |
96 | if (!bmap) |
97 | goto error; |
98 | for (i = n - 1; i >= 0; --i) |
99 | if (isl_basic_map_drop_inequality(bmap, list[i]) < 0) |
100 | goto error; |
101 | |
102 | bmap = isl_basic_map_add_dims(bmap, isl_dim_in, 1); |
103 | bmap = isl_basic_map_extend_constraints(bmap, 0, 1); |
104 | k = isl_basic_map_alloc_inequality(bmap); |
105 | if (k < 0) |
106 | goto error; |
107 | isl_seq_clr(bmap->ineq[k], 1 + n_in); |
108 | isl_int_set_si(bmap->ineq[k][1 + n_in], 1)isl_sioimath_set_si((bmap->ineq[k][1 + n_in]), 1); |
109 | isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out); |
110 | bmap = isl_basic_map_finalize(bmap); |
111 | |
112 | n_div = isl_basic_set_dim(dom, isl_dim_div); |
113 | dom = isl_basic_set_add_dims(dom, isl_dim_set, 1); |
114 | dom = isl_basic_set_extend_constraints(dom, 0, n); |
115 | for (i = 0; i < n; ++i) { |
116 | k = isl_basic_set_alloc_inequality(dom); |
117 | if (k < 0) |
118 | goto error; |
119 | isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in); |
120 | isl_int_set_si(dom->ineq[k][1 + n_in], -1)isl_sioimath_set_si((dom->ineq[k][1 + n_in]), -1); |
121 | isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div); |
122 | } |
123 | |
124 | isl_vec_free(var); |
125 | free(list); |
126 | |
127 | return SF(basic_map_partial_lexopt_symm_core,SUFFIX)basic_map_partial_lexopt_symm_core_pw_multi_aff(bmap, dom, empty, |
128 | max, cst, map_space, set_space); |
129 | error: |
130 | isl_space_free(map_space); |
131 | isl_space_free(set_space); |
132 | isl_mat_free(cst); |
133 | isl_vec_free(var); |
134 | free(list); |
135 | isl_basic_set_free(dom); |
136 | isl_basic_map_free(bmap); |
137 | return NULL((void*)0); |
138 | } |
139 | |
140 | /* Recursive part of isl_tab_basic_map_partial_lexopt*, after detecting |
141 | * equalities and removing redundant constraints. |
142 | * |
143 | * We first check if there are any parallel constraints (left). |
144 | * If not, we are in the base case. |
145 | * If there are parallel constraints, we replace them by a single |
146 | * constraint in basic_map_partial_lexopt_symm_pma and then call |
147 | * this function recursively to look for more parallel constraints. |
148 | */ |
149 | static __isl_give TYPEisl_pw_multi_aff *SF(basic_map_partial_lexopt,SUFFIX)basic_map_partial_lexopt_pw_multi_aff( |
150 | __isl_take isl_basic_map *bmap, __isl_take isl_basic_setisl_basic_map *dom, |
151 | __isl_give isl_setisl_map **empty, int max) |
152 | { |
153 | isl_bool par = isl_bool_false; |
154 | int first, second; |
155 | |
156 | if (!bmap) |
157 | goto err |