Bug Summary

File:build/source/openmp/runtime/src/kmp_affinity.cpp
Warning:line 3321, column 5
Value stored to 'idx' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name kmp_affinity.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-16/lib/clang/16 -I projects/openmp/runtime/src -I /build/source/openmp/runtime/src -I include -I /build/source/llvm/include -I /build/source/openmp/runtime/src/i18n -I /build/source/openmp/runtime/src/include -I /build/source/openmp/runtime/src/thirdparty/ittnotify -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D omp_EXPORTS -D _FORTIFY_SOURCE=2 -D NDEBUG -D _GNU_SOURCE -D _REENTRANT -D _FORTIFY_SOURCE=2 -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1670584389 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -Wno-enum-constexpr-conversion -Wno-extra -Wno-pedantic -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-covered-switch-default -Wno-frame-address -Wno-strict-aliasing -Wno-stringop-truncation -Wno-switch -Wno-uninitialized -Wno-return-type-c-linkage -Wno-cast-qual -Wno-int-to-void-pointer-cast -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-12-09-134624-15957-1 -x c++ /build/source/openmp/runtime/src/kmp_affinity.cpp
1/*
2 * kmp_affinity.cpp -- affinity management
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_affinity.h"
15#include "kmp_i18n.h"
16#include "kmp_io.h"
17#include "kmp_str.h"
18#include "kmp_wrapper_getpid.h"
19#if KMP_USE_HIER_SCHED0
20#include "kmp_dispatch_hier.h"
21#endif
22#if KMP_USE_HWLOC0
23// Copied from hwloc
24#define HWLOC_GROUP_KIND_INTEL_MODULE 102
25#define HWLOC_GROUP_KIND_INTEL_TILE 103
26#define HWLOC_GROUP_KIND_INTEL_DIE 104
27#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28#endif
29#include <ctype.h>
30
31// The machine topology
32kmp_topology_t *__kmp_topology = nullptr;
33// KMP_HW_SUBSET environment variable
34kmp_hw_subset_t *__kmp_hw_subset = nullptr;
35
36// Store the real or imagined machine hierarchy here
37static hierarchy_info machine_hierarchy;
38
39void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
40
41void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
42 kmp_uint32 depth;
43 // The test below is true if affinity is available, but set to "none". Need to
44 // init on first use of hierarchical barrier.
45 if (TCR_1(machine_hierarchy.uninitialized)(machine_hierarchy.uninitialized))
46 machine_hierarchy.init(nproc);
47
48 // Adjust the hierarchy in case num threads exceeds original
49 if (nproc > machine_hierarchy.base_num_threads)
50 machine_hierarchy.resize(nproc);
51
52 depth = machine_hierarchy.depth;
53 KMP_DEBUG_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp"
, 53); }
;
54
55 thr_bar->depth = depth;
56 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
57 &(thr_bar->base_leaf_kids));
58 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
59}
60
61static int nCoresPerPkg, nPackages;
62static int __kmp_nThreadsPerCore;
63#ifndef KMP_DFLT_NTH_CORES
64static int __kmp_ncores;
65#endif
66
67const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
68 switch (type) {
69 case KMP_HW_SOCKET:
70 return ((plural) ? KMP_I18N_STR(Sockets)__kmp_i18n_catgets(kmp_i18n_str_Sockets) : KMP_I18N_STR(Socket)__kmp_i18n_catgets(kmp_i18n_str_Socket));
71 case KMP_HW_DIE:
72 return ((plural) ? KMP_I18N_STR(Dice)__kmp_i18n_catgets(kmp_i18n_str_Dice) : KMP_I18N_STR(Die)__kmp_i18n_catgets(kmp_i18n_str_Die));
73 case KMP_HW_MODULE:
74 return ((plural) ? KMP_I18N_STR(Modules)__kmp_i18n_catgets(kmp_i18n_str_Modules) : KMP_I18N_STR(Module)__kmp_i18n_catgets(kmp_i18n_str_Module));
75 case KMP_HW_TILE:
76 return ((plural) ? KMP_I18N_STR(Tiles)__kmp_i18n_catgets(kmp_i18n_str_Tiles) : KMP_I18N_STR(Tile)__kmp_i18n_catgets(kmp_i18n_str_Tile));
77 case KMP_HW_NUMA:
78 return ((plural) ? KMP_I18N_STR(NumaDomains)__kmp_i18n_catgets(kmp_i18n_str_NumaDomains) : KMP_I18N_STR(NumaDomain)__kmp_i18n_catgets(kmp_i18n_str_NumaDomain));
79 case KMP_HW_L3:
80 return ((plural) ? KMP_I18N_STR(L3Caches)__kmp_i18n_catgets(kmp_i18n_str_L3Caches) : KMP_I18N_STR(L3Cache)__kmp_i18n_catgets(kmp_i18n_str_L3Cache));
81 case KMP_HW_L2:
82 return ((plural) ? KMP_I18N_STR(L2Caches)__kmp_i18n_catgets(kmp_i18n_str_L2Caches) : KMP_I18N_STR(L2Cache)__kmp_i18n_catgets(kmp_i18n_str_L2Cache));
83 case KMP_HW_L1:
84 return ((plural) ? KMP_I18N_STR(L1Caches)__kmp_i18n_catgets(kmp_i18n_str_L1Caches) : KMP_I18N_STR(L1Cache)__kmp_i18n_catgets(kmp_i18n_str_L1Cache));
85 case KMP_HW_LLC:
86 return ((plural) ? KMP_I18N_STR(LLCaches)__kmp_i18n_catgets(kmp_i18n_str_LLCaches) : KMP_I18N_STR(LLCache)__kmp_i18n_catgets(kmp_i18n_str_LLCache));
87 case KMP_HW_CORE:
88 return ((plural) ? KMP_I18N_STR(Cores)__kmp_i18n_catgets(kmp_i18n_str_Cores) : KMP_I18N_STR(Core)__kmp_i18n_catgets(kmp_i18n_str_Core));
89 case KMP_HW_THREAD:
90 return ((plural) ? KMP_I18N_STR(Threads)__kmp_i18n_catgets(kmp_i18n_str_Threads) : KMP_I18N_STR(Thread)__kmp_i18n_catgets(kmp_i18n_str_Thread));
91 case KMP_HW_PROC_GROUP:
92 return ((plural) ? KMP_I18N_STR(ProcGroups)__kmp_i18n_catgets(kmp_i18n_str_ProcGroups) : KMP_I18N_STR(ProcGroup)__kmp_i18n_catgets(kmp_i18n_str_ProcGroup));
93 }
94 return KMP_I18N_STR(Unknown)__kmp_i18n_catgets(kmp_i18n_str_Unknown);
95}
96
97const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
98 switch (type) {
99 case KMP_HW_SOCKET:
100 return ((plural) ? "sockets" : "socket");
101 case KMP_HW_DIE:
102 return ((plural) ? "dice" : "die");
103 case KMP_HW_MODULE:
104 return ((plural) ? "modules" : "module");
105 case KMP_HW_TILE:
106 return ((plural) ? "tiles" : "tile");
107 case KMP_HW_NUMA:
108 return ((plural) ? "numa_domains" : "numa_domain");
109 case KMP_HW_L3:
110 return ((plural) ? "l3_caches" : "l3_cache");
111 case KMP_HW_L2:
112 return ((plural) ? "l2_caches" : "l2_cache");
113 case KMP_HW_L1:
114 return ((plural) ? "l1_caches" : "l1_cache");
115 case KMP_HW_LLC:
116 return ((plural) ? "ll_caches" : "ll_cache");
117 case KMP_HW_CORE:
118 return ((plural) ? "cores" : "core");
119 case KMP_HW_THREAD:
120 return ((plural) ? "threads" : "thread");
121 case KMP_HW_PROC_GROUP:
122 return ((plural) ? "proc_groups" : "proc_group");
123 }
124 return ((plural) ? "unknowns" : "unknown");
125}
126
127const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
128 switch (type) {
129 case KMP_HW_CORE_TYPE_UNKNOWN:
130 return "unknown";
131#if KMP_ARCH_X860 || KMP_ARCH_X86_641
132 case KMP_HW_CORE_TYPE_ATOM:
133 return "Intel Atom(R) processor";
134 case KMP_HW_CORE_TYPE_CORE:
135 return "Intel(R) Core(TM) processor";
136#endif
137 }
138 return "unknown";
139}
140
141#if KMP_AFFINITY_SUPPORTED1
142// If affinity is supported, check the affinity
143// verbose and warning flags before printing warning
144#define KMP_AFF_WARNING(s, ...)if (s.flags.verbose || (s.flags.warnings && (s.type !=
affinity_none))) { __kmp_msg(kmp_ms_warning, __kmp_msg_format
(kmp_i18n_msg_...), __kmp_msg_null); }
\
145 if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \
146 KMP_WARNING(__VA_ARGS__)__kmp_msg(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg___VA_ARGS__
), __kmp_msg_null)
; \
147 }
148#else
149#define KMP_AFF_WARNING(s, ...)if (s.flags.verbose || (s.flags.warnings && (s.type !=
affinity_none))) { __kmp_msg(kmp_ms_warning, __kmp_msg_format
(kmp_i18n_msg_...), __kmp_msg_null); }
KMP_WARNING(__VA_ARGS__)__kmp_msg(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg___VA_ARGS__
), __kmp_msg_null)
150#endif
151
152////////////////////////////////////////////////////////////////////////////////
153// kmp_hw_thread_t methods
154int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
155 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
156 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
157 int depth = __kmp_topology->get_depth();
158 for (int level = 0; level < depth; ++level) {
159 if (ahwthread->ids[level] < bhwthread->ids[level])
160 return -1;
161 else if (ahwthread->ids[level] > bhwthread->ids[level])
162 return 1;
163 }
164 if (ahwthread->os_id < bhwthread->os_id)
165 return -1;
166 else if (ahwthread->os_id > bhwthread->os_id)
167 return 1;
168 return 0;
169}
170
171#if KMP_AFFINITY_SUPPORTED1
172int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
173 int i;
174 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
175 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
176 int depth = __kmp_topology->get_depth();
177 int compact = __kmp_topology->compact;
178 KMP_DEBUG_ASSERT(compact >= 0)if (!(compact >= 0)) { __kmp_debug_assert("compact >= 0"
, "openmp/runtime/src/kmp_affinity.cpp", 178); }
;
179 KMP_DEBUG_ASSERT(compact <= depth)if (!(compact <= depth)) { __kmp_debug_assert("compact <= depth"
, "openmp/runtime/src/kmp_affinity.cpp", 179); }
;
180 for (i = 0; i < compact; i++) {
181 int j = depth - i - 1;
182 if (aa->sub_ids[j] < bb->sub_ids[j])
183 return -1;
184 if (aa->sub_ids[j] > bb->sub_ids[j])
185 return 1;
186 }
187 for (; i < depth; i++) {
188 int j = i - compact;
189 if (aa->sub_ids[j] < bb->sub_ids[j])
190 return -1;
191 if (aa->sub_ids[j] > bb->sub_ids[j])
192 return 1;
193 }
194 return 0;
195}
196#endif
197
198void kmp_hw_thread_t::print() const {
199 int depth = __kmp_topology->get_depth();
200 printf("%4d ", os_id);
201 for (int i = 0; i < depth; ++i) {
202 printf("%4d ", ids[i]);
203 }
204 if (attrs) {
205 if (attrs.is_core_type_valid())
206 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
207 if (attrs.is_core_eff_valid())
208 printf(" (eff=%d)", attrs.get_core_eff());
209 }
210 printf("\n");
211}
212
213////////////////////////////////////////////////////////////////////////////////
214// kmp_topology_t methods
215
216// Add a layer to the topology based on the ids. Assume the topology
217// is perfectly nested (i.e., so no object has more than one parent)
218void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) {
219 // Figure out where the layer should go by comparing the ids of the current
220 // layers with the new ids
221 int target_layer;
222 int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
223 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
224
225 // Start from the highest layer and work down to find target layer
226 // If new layer is equal to another layer then put the new layer above
227 for (target_layer = 0; target_layer < depth; ++target_layer) {
228 bool layers_equal = true;
229 bool strictly_above_target_layer = false;
230 for (int i = 0; i < num_hw_threads; ++i) {
231 int id = hw_threads[i].ids[target_layer];
232 int new_id = ids[i];
233 if (id != previous_id && new_id == previous_new_id) {
234 // Found the layer we are strictly above
235 strictly_above_target_layer = true;
236 layers_equal = false;
237 break;
238 } else if (id == previous_id && new_id != previous_new_id) {
239 // Found a layer we are below. Move to next layer and check.
240 layers_equal = false;
241 break;
242 }
243 previous_id = id;
244 previous_new_id = new_id;
245 }
246 if (strictly_above_target_layer || layers_equal)
247 break;
248 }
249
250 // Found the layer we are above. Now move everything to accommodate the new
251 // layer. And put the new ids and type into the topology.
252 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
253 types[j] = types[i];
254 types[target_layer] = type;
255 for (int k = 0; k < num_hw_threads; ++k) {
256 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
257 hw_threads[k].ids[j] = hw_threads[k].ids[i];
258 hw_threads[k].ids[target_layer] = ids[k];
259 }
260 equivalent[type] = type;
261 depth++;
262}
263
264#if KMP_GROUP_AFFINITY0
265// Insert the Windows Processor Group structure into the topology
266void kmp_topology_t::_insert_windows_proc_groups() {
267 // Do not insert the processor group structure for a single group
268 if (__kmp_num_proc_groups == 1)
269 return;
270 kmp_affin_mask_t *mask;
271 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads)___kmp_allocate((sizeof(int) * num_hw_threads), "openmp/runtime/src/kmp_affinity.cpp"
, 271)
;
272 KMP_CPU_ALLOC(mask)(mask = __kmp_affinity_dispatch->allocate_mask());
273 for (int i = 0; i < num_hw_threads; ++i) {
274 KMP_CPU_ZERO(mask)(mask)->zero();
275 KMP_CPU_SET(hw_threads[i].os_id, mask)(mask)->set(hw_threads[i].os_id);
276 ids[i] = __kmp_get_proc_group(mask)(mask)->get_proc_group();
277 }
278 KMP_CPU_FREE(mask)__kmp_affinity_dispatch->deallocate_mask(mask);
279 _insert_layer(KMP_HW_PROC_GROUP, ids);
280 __kmp_free(ids)___kmp_free((ids), "openmp/runtime/src/kmp_affinity.cpp", 280
)
;
281}
282#endif
283
284// Remove layers that don't add information to the topology.
285// This is done by having the layer take on the id = UNKNOWN_ID (-1)
286void kmp_topology_t::_remove_radix1_layers() {
287 int preference[KMP_HW_LAST];
288 int top_index1, top_index2;
289 // Set up preference associative array
290 preference[KMP_HW_SOCKET] = 110;
291 preference[KMP_HW_PROC_GROUP] = 100;
292 preference[KMP_HW_CORE] = 95;
293 preference[KMP_HW_THREAD] = 90;
294 preference[KMP_HW_NUMA] = 85;
295 preference[KMP_HW_DIE] = 80;
296 preference[KMP_HW_TILE] = 75;
297 preference[KMP_HW_MODULE] = 73;
298 preference[KMP_HW_L3] = 70;
299 preference[KMP_HW_L2] = 65;
300 preference[KMP_HW_L1] = 60;
301 preference[KMP_HW_LLC] = 5;
302 top_index1 = 0;
303 top_index2 = 1;
304 while (top_index1 < depth - 1 && top_index2 < depth) {
305 kmp_hw_t type1 = types[top_index1];
306 kmp_hw_t type2 = types[top_index2];
307 KMP_ASSERT_VALID_HW_TYPE(type1)if (!(type1 >= (kmp_hw_t)0 && type1 < KMP_HW_LAST
)) { __kmp_debug_assert("type1 >= (kmp_hw_t)0 && type1 < KMP_HW_LAST"
, "openmp/runtime/src/kmp_affinity.cpp", 307); }
;
308 KMP_ASSERT_VALID_HW_TYPE(type2)if (!(type2 >= (kmp_hw_t)0 && type2 < KMP_HW_LAST
)) { __kmp_debug_assert("type2 >= (kmp_hw_t)0 && type2 < KMP_HW_LAST"
, "openmp/runtime/src/kmp_affinity.cpp", 308); }
;
309 // Do not allow the three main topology levels (sockets, cores, threads) to
310 // be compacted down
311 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
312 type1 == KMP_HW_SOCKET) &&
313 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
314 type2 == KMP_HW_SOCKET)) {
315 top_index1 = top_index2++;
316 continue;
317 }
318 bool radix1 = true;
319 bool all_same = true;
320 int id1 = hw_threads[0].ids[top_index1];
321 int id2 = hw_threads[0].ids[top_index2];
322 int pref1 = preference[type1];
323 int pref2 = preference[type2];
324 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
325 if (hw_threads[hwidx].ids[top_index1] == id1 &&
326 hw_threads[hwidx].ids[top_index2] != id2) {
327 radix1 = false;
328 break;
329 }
330 if (hw_threads[hwidx].ids[top_index2] != id2)
331 all_same = false;
332 id1 = hw_threads[hwidx].ids[top_index1];
333 id2 = hw_threads[hwidx].ids[top_index2];
334 }
335 if (radix1) {
336 // Select the layer to remove based on preference
337 kmp_hw_t remove_type, keep_type;
338 int remove_layer, remove_layer_ids;
339 if (pref1 > pref2) {
340 remove_type = type2;
341 remove_layer = remove_layer_ids = top_index2;
342 keep_type = type1;
343 } else {
344 remove_type = type1;
345 remove_layer = remove_layer_ids = top_index1;
346 keep_type = type2;
347 }
348 // If all the indexes for the second (deeper) layer are the same.
349 // e.g., all are zero, then make sure to keep the first layer's ids
350 if (all_same)
351 remove_layer_ids = top_index2;
352 // Remove radix one type by setting the equivalence, removing the id from
353 // the hw threads and removing the layer from types and depth
354 set_equivalent_type(remove_type, keep_type);
355 for (int idx = 0; idx < num_hw_threads; ++idx) {
356 kmp_hw_thread_t &hw_thread = hw_threads[idx];
357 for (int d = remove_layer_ids; d < depth - 1; ++d)
358 hw_thread.ids[d] = hw_thread.ids[d + 1];
359 }
360 for (int idx = remove_layer; idx < depth - 1; ++idx)
361 types[idx] = types[idx + 1];
362 depth--;
363 } else {
364 top_index1 = top_index2++;
365 }
366 }
367 KMP_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp"
, 367); }
;
368}
369
370void kmp_topology_t::_set_last_level_cache() {
371 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
372 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
373 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
374 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
375#if KMP_MIC_SUPPORTED((0 || 1) && (1 || 0))
376 else if (__kmp_mic_type == mic3) {
377 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
378 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
379 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
380 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
381 // L2/Tile wasn't detected so just say L1
382 else
383 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
384 }
385#endif
386 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
387 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
388 // Fallback is to set last level cache to socket or core
389 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
390 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
391 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
392 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
393 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
394 }
395 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN)if (!(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN)) { __kmp_debug_assert
("get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN", "openmp/runtime/src/kmp_affinity.cpp"
, 395); }
;
396}
397
398// Gather the count of each topology layer and the ratio
399void kmp_topology_t::_gather_enumeration_information() {
400 int previous_id[KMP_HW_LAST];
401 int max[KMP_HW_LAST];
402
403 for (int i = 0; i < depth; ++i) {
404 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
405 max[i] = 0;
406 count[i] = 0;
407 ratio[i] = 0;
408 }
409 int core_level = get_level(KMP_HW_CORE);
410 for (int i = 0; i < num_hw_threads; ++i) {
411 kmp_hw_thread_t &hw_thread = hw_threads[i];
412 for (int layer = 0; layer < depth; ++layer) {
413 int id = hw_thread.ids[layer];
414 if (id != previous_id[layer]) {
415 // Add an additional increment to each count
416 for (int l = layer; l < depth; ++l)
417 count[l]++;
418 // Keep track of topology layer ratio statistics
419 max[layer]++;
420 for (int l = layer + 1; l < depth; ++l) {
421 if (max[l] > ratio[l])
422 ratio[l] = max[l];
423 max[l] = 1;
424 }
425 // Figure out the number of different core types
426 // and efficiencies for hybrid CPUs
427 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
428 if (hw_thread.attrs.is_core_eff_valid() &&
429 hw_thread.attrs.core_eff >= num_core_efficiencies) {
430 // Because efficiencies can range from 0 to max efficiency - 1,
431 // the number of efficiencies is max efficiency + 1
432 num_core_efficiencies = hw_thread.attrs.core_eff + 1;
433 }
434 if (hw_thread.attrs.is_core_type_valid()) {
435 bool found = false;
436 for (int j = 0; j < num_core_types; ++j) {
437 if (hw_thread.attrs.get_core_type() == core_types[j]) {
438 found = true;
439 break;
440 }
441 }
442 if (!found) {
443 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES)if (!(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES)) { __kmp_debug_assert
("num_core_types < KMP_HW_MAX_NUM_CORE_TYPES", "openmp/runtime/src/kmp_affinity.cpp"
, 443); }
;
444 core_types[num_core_types++] = hw_thread.attrs.get_core_type();
445 }
446 }
447 }
448 break;
449 }
450 }
451 for (int layer = 0; layer < depth; ++layer) {
452 previous_id[layer] = hw_thread.ids[layer];
453 }
454 }
455 for (int layer = 0; layer < depth; ++layer) {
456 if (max[layer] > ratio[layer])
457 ratio[layer] = max[layer];
458 }
459}
460
461int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
462 int above_level,
463 bool find_all) const {
464 int current, current_max;
465 int previous_id[KMP_HW_LAST];
466 for (int i = 0; i < depth; ++i)
467 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
468 int core_level = get_level(KMP_HW_CORE);
469 if (find_all)
470 above_level = -1;
471 KMP_ASSERT(above_level < core_level)if (!(above_level < core_level)) { __kmp_debug_assert("above_level < core_level"
, "openmp/runtime/src/kmp_affinity.cpp", 471); }
;
472 current_max = 0;
473 current = 0;
474 for (int i = 0; i < num_hw_threads; ++i) {
475 kmp_hw_thread_t &hw_thread = hw_threads[i];
476 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
477 if (current > current_max)
478 current_max = current;
479 current = hw_thread.attrs.contains(attr);
480 } else {
481 for (int level = above_level + 1; level <= core_level; ++level) {
482 if (hw_thread.ids[level] != previous_id[level]) {
483 if (hw_thread.attrs.contains(attr))
484 current++;
485 break;
486 }
487 }
488 }
489 for (int level = 0; level < depth; ++level)
490 previous_id[level] = hw_thread.ids[level];
491 }
492 if (current > current_max)
493 current_max = current;
494 return current_max;
495}
496
497// Find out if the topology is uniform
498void kmp_topology_t::_discover_uniformity() {
499 int num = 1;
500 for (int level = 0; level < depth; ++level)
501 num *= ratio[level];
502 flags.uniform = (num == count[depth - 1]);
503}
504
505// Set all the sub_ids for each hardware thread
506void kmp_topology_t::_set_sub_ids() {
507 int previous_id[KMP_HW_LAST];
508 int sub_id[KMP_HW_LAST];
509
510 for (int i = 0; i < depth; ++i) {
511 previous_id[i] = -1;
512 sub_id[i] = -1;
513 }
514 for (int i = 0; i < num_hw_threads; ++i) {
515 kmp_hw_thread_t &hw_thread = hw_threads[i];
516 // Setup the sub_id
517 for (int j = 0; j < depth; ++j) {
518 if (hw_thread.ids[j] != previous_id[j]) {
519 sub_id[j]++;
520 for (int k = j + 1; k < depth; ++k) {
521 sub_id[k] = 0;
522 }
523 break;
524 }
525 }
526 // Set previous_id
527 for (int j = 0; j < depth; ++j) {
528 previous_id[j] = hw_thread.ids[j];
529 }
530 // Set the sub_ids field
531 for (int j = 0; j < depth; ++j) {
532 hw_thread.sub_ids[j] = sub_id[j];
533 }
534 }
535}
536
537void kmp_topology_t::_set_globals() {
538 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
539 int core_level, thread_level, package_level;
540 package_level = get_level(KMP_HW_SOCKET);
541#if KMP_GROUP_AFFINITY0
542 if (package_level == -1)
543 package_level = get_level(KMP_HW_PROC_GROUP);
544#endif
545 core_level = get_level(KMP_HW_CORE);
546 thread_level = get_level(KMP_HW_THREAD);
547
548 KMP_ASSERT(core_level != -1)if (!(core_level != -1)) { __kmp_debug_assert("core_level != -1"
, "openmp/runtime/src/kmp_affinity.cpp", 548); }
;
549 KMP_ASSERT(thread_level != -1)if (!(thread_level != -1)) { __kmp_debug_assert("thread_level != -1"
, "openmp/runtime/src/kmp_affinity.cpp", 549); }
;
550
551 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
552 if (package_level != -1) {
553 nCoresPerPkg = calculate_ratio(core_level, package_level);
554 nPackages = get_count(package_level);
555 } else {
556 // assume one socket
557 nCoresPerPkg = get_count(core_level);
558 nPackages = 1;
559 }
560#ifndef KMP_DFLT_NTH_CORES
561 __kmp_ncores = get_count(core_level);
562#endif
563}
564
565kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
566 const kmp_hw_t *types) {
567 kmp_topology_t *retval;
568 // Allocate all data in one large allocation
569 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
570 sizeof(int) * (size_t)KMP_HW_LAST * 3;
571 char *bytes = (char *)__kmp_allocate(size)___kmp_allocate((size), "openmp/runtime/src/kmp_affinity.cpp"
, 571)
;
572 retval = (kmp_topology_t *)bytes;
573 if (nproc > 0) {
574 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
575 } else {
576 retval->hw_threads = nullptr;
577 }
578 retval->num_hw_threads = nproc;
579 retval->depth = ndepth;
580 int *arr =
581 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
582 retval->types = (kmp_hw_t *)arr;
583 retval->ratio = arr + (size_t)KMP_HW_LAST;
584 retval->count = arr + 2 * (size_t)KMP_HW_LAST;
585 retval->num_core_efficiencies = 0;
586 retval->num_core_types = 0;
587 retval->compact = 0;
588 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
589 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
590 KMP_FOREACH_HW_TYPE(type)for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; type
= (kmp_hw_t)((int)type + 1))
{ retval->equivalent[type] = KMP_HW_UNKNOWN; }
591 for (int i = 0; i < ndepth; ++i) {
592 retval->types[i] = types[i];
593 retval->equivalent[types[i]] = types[i];
594 }
595 return retval;
596}
597
598void kmp_topology_t::deallocate(kmp_topology_t *topology) {
599 if (topology)
600 __kmp_free(topology)___kmp_free((topology), "openmp/runtime/src/kmp_affinity.cpp"
, 600)
;
601}
602
603bool kmp_topology_t::check_ids() const {
604 // Assume ids have been sorted
605 if (num_hw_threads == 0)
606 return true;
607 for (int i = 1; i < num_hw_threads; ++i) {
608 kmp_hw_thread_t &current_thread = hw_threads[i];
609 kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
610 bool unique = false;
611 for (int j = 0; j < depth; ++j) {
612 if (previous_thread.ids[j] != current_thread.ids[j]) {
613 unique = true;
614 break;
615 }
616 }
617 if (unique)
618 continue;
619 return false;
620 }
621 return true;
622}
623
624void kmp_topology_t::dump() const {
625 printf("***********************\n");
626 printf("*** __kmp_topology: ***\n");
627 printf("***********************\n");
628 printf("* depth: %d\n", depth);
629
630 printf("* types: ");
631 for (int i = 0; i < depth; ++i)
632 printf("%15s ", __kmp_hw_get_keyword(types[i]));
633 printf("\n");
634
635 printf("* ratio: ");
636 for (int i = 0; i < depth; ++i) {
637 printf("%15d ", ratio[i]);
638 }
639 printf("\n");
640
641 printf("* count: ");
642 for (int i = 0; i < depth; ++i) {
643 printf("%15d ", count[i]);
644 }
645 printf("\n");
646
647 printf("* num_core_eff: %d\n", num_core_efficiencies);
648 printf("* num_core_types: %d\n", num_core_types);
649 printf("* core_types: ");
650 for (int i = 0; i < num_core_types; ++i)
651 printf("%3d ", core_types[i]);
652 printf("\n");
653
654 printf("* equivalent map:\n");
655 KMP_FOREACH_HW_TYPE(i)for (kmp_hw_t i = (kmp_hw_t)0; i < KMP_HW_LAST; i = (kmp_hw_t
)((int)i + 1))
{
656 const char *key = __kmp_hw_get_keyword(i);
657 const char *value = __kmp_hw_get_keyword(equivalent[i]);
658 printf("%-15s -> %-15s\n", key, value);
659 }
660
661 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
662
663 printf("* num_hw_threads: %d\n", num_hw_threads);
664 printf("* hw_threads:\n");
665 for (int i = 0; i < num_hw_threads; ++i) {
666 hw_threads[i].print();
667 }
668 printf("***********************\n");
669}
670
671void kmp_topology_t::print(const char *env_var) const {
672 kmp_str_buf_t buf;
673 int print_types_depth;
674 __kmp_str_buf_init(&buf){ (&buf)->str = (&buf)->bulk; (&buf)->size
= sizeof((&buf)->bulk); (&buf)->used = 0; (&
buf)->bulk[0] = 0; }
;
675 kmp_hw_t print_types[KMP_HW_LAST + 2];
676
677 // Num Available Threads
678 if (num_hw_threads) {
679 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AvailableOSProc
, env_var, num_hw_threads), __kmp_msg_null)
;
680 } else {
681 KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AvailableOSProc
, env_var, __kmp_xproc), __kmp_msg_null)
;
682 }
683
684 // Uniform or not
685 if (is_uniform()) {
686 KMP_INFORM(Uniform, env_var)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_Uniform
, env_var), __kmp_msg_null)
;
687 } else {
688 KMP_INFORM(NonUniform, env_var)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_NonUniform
, env_var), __kmp_msg_null)
;
689 }
690
691 // Equivalent types
692 KMP_FOREACH_HW_TYPE(type)for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; type
= (kmp_hw_t)((int)type + 1))
{
693 kmp_hw_t eq_type = equivalent[type];
694 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
695 KMP_INFORM(AffEqualTopologyTypes, env_var,__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffEqualTopologyTypes
, env_var, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string
(eq_type)), __kmp_msg_null)
696 __kmp_hw_get_catalog_string(type),__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffEqualTopologyTypes
, env_var, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string
(eq_type)), __kmp_msg_null)
697 __kmp_hw_get_catalog_string(eq_type))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffEqualTopologyTypes
, env_var, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string
(eq_type)), __kmp_msg_null)
;
698 }
699 }
700
701 // Quick topology
702 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST)if (!(depth > 0 && depth <= (int)KMP_HW_LAST)) {
__kmp_debug_assert("depth > 0 && depth <= (int)KMP_HW_LAST"
, "openmp/runtime/src/kmp_affinity.cpp", 702); }
;
703 // Create a print types array that always guarantees printing
704 // the core and thread level
705 print_types_depth = 0;
706 for (int level = 0; level < depth; ++level)
707 print_types[print_types_depth++] = types[level];
708 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
709 // Force in the core level for quick topology
710 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
711 // Force core before thread e.g., 1 socket X 2 threads/socket
712 // becomes 1 socket X 1 core/socket X 2 threads/socket
713 print_types[print_types_depth - 1] = KMP_HW_CORE;
714 print_types[print_types_depth++] = KMP_HW_THREAD;
715 } else {
716 print_types[print_types_depth++] = KMP_HW_CORE;
717 }
718 }
719 // Always put threads at very end of quick topology
720 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
721 print_types[print_types_depth++] = KMP_HW_THREAD;
722
723 __kmp_str_buf_clear(&buf);
724 kmp_hw_t numerator_type;
725 kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
726 int core_level = get_level(KMP_HW_CORE);
727 int ncores = get_count(core_level);
728
729 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
730 int c;
731 bool plural;
732 numerator_type = print_types[plevel];
733 KMP_ASSERT_VALID_HW_TYPE(numerator_type)if (!(numerator_type >= (kmp_hw_t)0 && numerator_type
< KMP_HW_LAST)) { __kmp_debug_assert("numerator_type >= (kmp_hw_t)0 && numerator_type < KMP_HW_LAST"
, "openmp/runtime/src/kmp_affinity.cpp", 733); }
;
734 if (equivalent[numerator_type] != numerator_type)
735 c = 1;
736 else
737 c = get_ratio(level++);
738 plural = (c > 1);
739 if (plevel == 0) {
740 __kmp_str_buf_print(&buf, "%d %s", c,
741 __kmp_hw_get_catalog_string(numerator_type, plural));
742 } else {
743 __kmp_str_buf_print(&buf, " x %d %s/%s", c,
744 __kmp_hw_get_catalog_string(numerator_type, plural),
745 __kmp_hw_get_catalog_string(denominator_type));
746 }
747 denominator_type = numerator_type;
748 }
749 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_TopologyGeneric
, env_var, buf.str, ncores), __kmp_msg_null)
;
750
751 // Hybrid topology information
752 if (__kmp_is_hybrid_cpu()) {
753 for (int i = 0; i < num_core_types; ++i) {
754 kmp_hw_core_type_t core_type = core_types[i];
755 kmp_hw_attr_t attr;
756 attr.clear();
757 attr.set_core_type(core_type);
758 int ncores = get_ncores_with_attr(attr);
759 if (ncores > 0) {
760 KMP_INFORM(TopologyHybrid, env_var, ncores,__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_TopologyHybrid
, env_var, ncores, __kmp_hw_get_core_type_string(core_type)),
__kmp_msg_null)
761 __kmp_hw_get_core_type_string(core_type))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_TopologyHybrid
, env_var, ncores, __kmp_hw_get_core_type_string(core_type)),
__kmp_msg_null)
;
762 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)if (!(num_core_efficiencies <= 8)) { __kmp_debug_assert("num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS"
, "openmp/runtime/src/kmp_affinity.cpp", 762); }
763 for (int eff = 0; eff < num_core_efficiencies; ++eff) {
764 attr.set_core_eff(eff);
765 int ncores_with_eff = get_ncores_with_attr(attr);
766 if (ncores_with_eff > 0) {
767 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_TopologyHybridCoreEff
, env_var, ncores_with_eff, eff), __kmp_msg_null)
;
768 }
769 }
770 }
771 }
772 }
773
774 if (num_hw_threads <= 0) {
775 __kmp_str_buf_free(&buf);
776 return;
777 }
778
779 // Full OS proc to hardware thread map
780 KMP_INFORM(OSProcToPhysicalThreadMap, env_var)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_OSProcToPhysicalThreadMap
, env_var), __kmp_msg_null)
;
781 for (int i = 0; i < num_hw_threads; i++) {
782 __kmp_str_buf_clear(&buf);
783 for (int level = 0; level < depth; ++level) {
784 kmp_hw_t type = types[level];
785 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
786 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
787 }
788 if (__kmp_is_hybrid_cpu())
789 __kmp_str_buf_print(
790 &buf, "(%s)",
791 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
792 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_OSProcMapToPack
, env_var, hw_threads[i].os_id, buf.str), __kmp_msg_null)
;
793 }
794
795 __kmp_str_buf_free(&buf);
796}
797
798#if KMP_AFFINITY_SUPPORTED1
799void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const {
800 const char *env_var = affinity.env_var;
801 // Set the number of affinity granularity levels
802 if (affinity.gran_levels < 0) {
803 kmp_hw_t gran_type = get_equivalent_type(affinity.gran);
804 // Check if user's granularity request is valid
805 if (gran_type == KMP_HW_UNKNOWN) {
806 // First try core, then thread, then package
807 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
808 for (auto g : gran_types) {
809 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) {
810 gran_type = g;
811 break;
812 }
813 }
814 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN)if (!(gran_type != KMP_HW_UNKNOWN)) { __kmp_debug_assert("gran_type != KMP_HW_UNKNOWN"
, "openmp/runtime/src/kmp_affinity.cpp", 814); }
;
815 // Warn user what granularity setting will be used instead
816 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffGranularityBad, env_var, __kmp_hw_get_catalog_string
(affinity.gran), __kmp_hw_get_catalog_string(gran_type)), __kmp_msg_null
); }
817 __kmp_hw_get_catalog_string(affinity.gran),if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffGranularityBad, env_var, __kmp_hw_get_catalog_string
(affinity.gran), __kmp_hw_get_catalog_string(gran_type)), __kmp_msg_null
); }
818 __kmp_hw_get_catalog_string(gran_type))if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffGranularityBad, env_var, __kmp_hw_get_catalog_string
(affinity.gran), __kmp_hw_get_catalog_string(gran_type)), __kmp_msg_null
); }
;
819 affinity.gran = gran_type;
820 }
821#if KMP_GROUP_AFFINITY0
822 // If more than one processor group exists, and the level of
823 // granularity specified by the user is too coarse, then the
824 // granularity must be adjusted "down" to processor group affinity
825 // because threads can only exist within one processor group.
826 // For example, if a user sets granularity=socket and there are two
827 // processor groups that cover a socket, then the runtime must
828 // restrict the granularity down to the processor group level.
829 if (__kmp_num_proc_groups > 1) {
830 int gran_depth = get_level(gran_type);
831 int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
832 if (gran_depth >= 0 && proc_group_depth >= 0 &&
833 gran_depth < proc_group_depth) {
834 KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffGranTooCoarseProcGroup, env_var
, __kmp_hw_get_catalog_string(affinity.gran)), __kmp_msg_null
); }
835 __kmp_hw_get_catalog_string(affinity.gran))if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffGranTooCoarseProcGroup, env_var
, __kmp_hw_get_catalog_string(affinity.gran)), __kmp_msg_null
); }
;
836 affinity.gran = gran_type = KMP_HW_PROC_GROUP;
837 }
838 }
839#endif
840 affinity.gran_levels = 0;
841 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
842 affinity.gran_levels++;
843 }
844}
845#endif
846
847void kmp_topology_t::canonicalize() {
848#if KMP_GROUP_AFFINITY0
849 _insert_windows_proc_groups();
850#endif
851 _remove_radix1_layers();
852 _gather_enumeration_information();
853 _discover_uniformity();
854 _set_sub_ids();
855 _set_globals();
856 _set_last_level_cache();
857
858#if KMP_MIC_SUPPORTED((0 || 1) && (1 || 0))
859 // Manually Add L2 = Tile equivalence
860 if (__kmp_mic_type == mic3) {
861 if (get_level(KMP_HW_L2) != -1)
862 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
863 else if (get_level(KMP_HW_TILE) != -1)
864 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
865 }
866#endif
867
868 // Perform post canonicalization checking
869 KMP_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp"
, 869); }
;
870 for (int level = 0; level < depth; ++level) {
871 // All counts, ratios, and types must be valid
872 KMP_ASSERT(count[level] > 0 && ratio[level] > 0)if (!(count[level] > 0 && ratio[level] > 0)) { __kmp_debug_assert
("count[level] > 0 && ratio[level] > 0", "openmp/runtime/src/kmp_affinity.cpp"
, 872); }
;
873 KMP_ASSERT_VALID_HW_TYPE(types[level])if (!(types[level] >= (kmp_hw_t)0 && types[level] <
KMP_HW_LAST)) { __kmp_debug_assert("types[level] >= (kmp_hw_t)0 && types[level] < KMP_HW_LAST"
, "openmp/runtime/src/kmp_affinity.cpp", 873); }
;
874 // Detected types must point to themselves
875 KMP_ASSERT(equivalent[types[level]] == types[level])if (!(equivalent[types[level]] == types[level])) { __kmp_debug_assert
("equivalent[types[level]] == types[level]", "openmp/runtime/src/kmp_affinity.cpp"
, 875); }
;
876 }
877}
878
879// Canonicalize an explicit packages X cores/pkg X threads/core topology
880void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
881 int nthreads_per_core, int ncores) {
882 int ndepth = 3;
883 depth = ndepth;
884 KMP_FOREACH_HW_TYPE(i)for (kmp_hw_t i = (kmp_hw_t)0; i < KMP_HW_LAST; i = (kmp_hw_t
)((int)i + 1))
{ equivalent[i] = KMP_HW_UNKNOWN; }
885 for (int level = 0; level < depth; ++level) {
886 count[level] = 0;
887 ratio[level] = 0;
888 }
889 count[0] = npackages;
890 count[1] = ncores;
891 count[2] = __kmp_xproc;
892 ratio[0] = npackages;
893 ratio[1] = ncores_per_pkg;
894 ratio[2] = nthreads_per_core;
895 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
896 equivalent[KMP_HW_CORE] = KMP_HW_CORE;
897 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
898 types[0] = KMP_HW_SOCKET;
899 types[1] = KMP_HW_CORE;
900 types[2] = KMP_HW_THREAD;
901 //__kmp_avail_proc = __kmp_xproc;
902 _discover_uniformity();
903}
904
905// Represents running sub IDs for a single core attribute where
906// attribute values have SIZE possibilities.
907template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t {
908 int last_level; // last level in topology to consider for sub_ids
909 int sub_id[SIZE]; // The sub ID for a given attribute value
910 int prev_sub_id[KMP_HW_LAST];
911 IndexFunc indexer;
912
913public:
914 kmp_sub_ids_t(int last_level) : last_level(last_level) {
915 KMP_ASSERT(last_level < KMP_HW_LAST)if (!(last_level < KMP_HW_LAST)) { __kmp_debug_assert("last_level < KMP_HW_LAST"
, "openmp/runtime/src/kmp_affinity.cpp", 915); }
;
916 for (size_t i = 0; i < SIZE; ++i)
917 sub_id[i] = -1;
918 for (size_t i = 0; i < KMP_HW_LAST; ++i)
919 prev_sub_id[i] = -1;
920 }
921 void update(const kmp_hw_thread_t &hw_thread) {
922 int idx = indexer(hw_thread);
923 KMP_ASSERT(idx < (int)SIZE)if (!(idx < (int)SIZE)) { __kmp_debug_assert("idx < (int)SIZE"
, "openmp/runtime/src/kmp_affinity.cpp", 923); }
;
924 for (int level = 0; level <= last_level; ++level) {
925 if (hw_thread.sub_ids[level] != prev_sub_id[level]) {
926 if (level < last_level)
927 sub_id[idx] = -1;
928 sub_id[idx]++;
929 break;
930 }
931 }
932 for (int level = 0; level <= last_level; ++level)
933 prev_sub_id[level] = hw_thread.sub_ids[level];
934 }
935 int get_sub_id(const kmp_hw_thread_t &hw_thread) const {
936 return sub_id[indexer(hw_thread)];
937 }
938};
939
940static kmp_str_buf_t *
941__kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
942 bool plural) {
943 __kmp_str_buf_init(buf){ (buf)->str = (buf)->bulk; (buf)->size = sizeof((buf
)->bulk); (buf)->used = 0; (buf)->bulk[0] = 0; }
;
944 if (attr.is_core_type_valid())
945 __kmp_str_buf_print(buf, "%s %s",
946 __kmp_hw_get_core_type_string(attr.get_core_type()),
947 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
948 else
949 __kmp_str_buf_print(buf, "%s eff=%d",
950 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
951 attr.get_core_eff());
952 return buf;
953}
954
955// Apply the KMP_HW_SUBSET envirable to the topology
956// Returns true if KMP_HW_SUBSET filtered any processors
957// otherwise, returns false
958bool kmp_topology_t::filter_hw_subset() {
959 // If KMP_HW_SUBSET wasn't requested, then do nothing.
960 if (!__kmp_hw_subset)
961 return false;
962
963 // First, sort the KMP_HW_SUBSET items by the machine topology
964 __kmp_hw_subset->sort();
965
966 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
967 bool using_core_types = false;
968 bool using_core_effs = false;
969 int hw_subset_depth = __kmp_hw_subset->get_depth();
970 kmp_hw_t specified[KMP_HW_LAST];
971 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth)__builtin_alloca (sizeof(int) * hw_subset_depth);
972 KMP_ASSERT(hw_subset_depth > 0)if (!(hw_subset_depth > 0)) { __kmp_debug_assert("hw_subset_depth > 0"
, "openmp/runtime/src/kmp_affinity.cpp", 972); }
;
973 KMP_FOREACH_HW_TYPE(i)for (kmp_hw_t i = (kmp_hw_t)0; i < KMP_HW_LAST; i = (kmp_hw_t
)((int)i + 1))
{ specified[i] = KMP_HW_UNKNOWN; }
974 int core_level = get_level(KMP_HW_CORE);
975 for (int i = 0; i < hw_subset_depth; ++i) {
976 int max_count;
977 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
978 int num = item.num[0];
979 int offset = item.offset[0];
980 kmp_hw_t type = item.type;
981 kmp_hw_t equivalent_type = equivalent[type];
982 int level = get_level(type);
983 topology_levels[i] = level;
984
985 // Check to see if current layer is in detected machine topology
986 if (equivalent_type != KMP_HW_UNKNOWN) {
987 __kmp_hw_subset->at(i).type = equivalent_type;
988 } else {
989 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetNotExistGeneric
, __kmp_hw_get_catalog_string(type)), __kmp_msg_null); }
990 __kmp_hw_get_catalog_string(type))if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetNotExistGeneric
, __kmp_hw_get_catalog_string(type)), __kmp_msg_null); }
;
991 return false;
992 }
993
994 // Check to see if current layer has already been
995 // specified either directly or through an equivalent type
996 if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
997 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetEqvLayers
, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string
(specified[equivalent_type])), __kmp_msg_null); }
998 __kmp_hw_get_catalog_string(type),if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetEqvLayers
, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string
(specified[equivalent_type])), __kmp_msg_null); }
999 __kmp_hw_get_catalog_string(specified[equivalent_type]))if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetEqvLayers
, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string
(specified[equivalent_type])), __kmp_msg_null); }
;
1000 return false;
1001 }
1002 specified[equivalent_type] = type;
1003
1004 // Check to see if each layer's num & offset parameters are valid
1005 max_count = get_ratio(level);
1006 if (max_count < 0 ||
1007 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1008 bool plural = (num > 1);
1009 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetManyGeneric
, __kmp_hw_get_catalog_string(type, plural)), __kmp_msg_null)
; }
1010 __kmp_hw_get_catalog_string(type, plural))if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetManyGeneric
, __kmp_hw_get_catalog_string(type, plural)), __kmp_msg_null)
; }
;
1011 return false;
1012 }
1013
1014 // Check to see if core attributes are consistent
1015 if (core_level == level) {
1016 // Determine which core attributes are specified
1017 for (int j = 0; j < item.num_attrs; ++j) {
1018 if (item.attr[j].is_core_type_valid())
1019 using_core_types = true;
1020 if (item.attr[j].is_core_eff_valid())
1021 using_core_effs = true;
1022 }
1023
1024 // Check if using a single core attribute on non-hybrid arch.
1025 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1026 //
1027 // Check if using multiple core attributes on non-hyrbid arch.
1028 // Ignore all of KMP_HW_SUBSET if this is the case.
1029 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1030 if (item.num_attrs == 1) {
1031 if (using_core_effs) {
1032 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIgnoringAttr
, "efficiency"), __kmp_msg_null); }
1033 "efficiency")if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIgnoringAttr
, "efficiency"), __kmp_msg_null); }
;
1034 } else {
1035 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIgnoringAttr
, "core_type"), __kmp_msg_null); }
1036 "core_type")if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIgnoringAttr
, "core_type"), __kmp_msg_null); }
;
1037 }
1038 using_core_effs = false;
1039 using_core_types = false;
1040 } else {
1041 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid)if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetAttrsNonHybrid
), __kmp_msg_null); }
;
1042 return false;
1043 }
1044 }
1045
1046 // Check if using both core types and core efficiencies together
1047 if (using_core_types && using_core_effs) {
1048 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIncompat
, "core_type", "efficiency"), __kmp_msg_null); }
1049 "efficiency")if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIncompat
, "core_type", "efficiency"), __kmp_msg_null); }
;
1050 return false;
1051 }
1052
1053 // Check that core efficiency values are valid
1054 if (using_core_effs) {
1055 for (int j = 0; j < item.num_attrs; ++j) {
1056 if (item.attr[j].is_core_eff_valid()) {
1057 int core_eff = item.attr[j].get_core_eff();
1058 if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1059 kmp_str_buf_t buf;
1060 __kmp_str_buf_init(&buf){ (&buf)->str = (&buf)->bulk; (&buf)->size
= sizeof((&buf)->bulk); (&buf)->used = 0; (&
buf)->bulk[0] = 0; }
;
1061 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
1062 __kmp_msg(kmp_ms_warning,
1063 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str)__kmp_msg_format(kmp_i18n_msg_AffHWSubsetAttrInvalid, "efficiency"
, buf.str)
,
1064 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1)__kmp_msg_format(kmp_i18n_hnt_ValidValuesRange, 0, num_core_efficiencies
- 1)
,
1065 __kmp_msg_null);
1066 __kmp_str_buf_free(&buf);
1067 return false;
1068 }
1069 }
1070 }
1071 }
1072
1073 // Check that the number of requested cores with attributes is valid
1074 if (using_core_types || using_core_effs) {
1075 for (int j = 0; j < item.num_attrs; ++j) {
1076 int num = item.num[j];
1077 int offset = item.offset[j];
1078 int level_above = core_level - 1;
1079 if (level_above >= 0) {
1080 max_count = get_ncores_with_attr_per(item.attr[j], level_above);
1081 if (max_count <= 0 ||
1082 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1083 kmp_str_buf_t buf;
1084 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
1085 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str)if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetManyGeneric
, buf.str), __kmp_msg_null); }
;
1086 __kmp_str_buf_free(&buf);
1087 return false;
1088 }
1089 }
1090 }
1091 }
1092
1093 if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1094 for (int j = 0; j < item.num_attrs; ++j) {
1095 // Ambiguous use of specific core attribute + generic core
1096 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1097 if (!item.attr[j]) {
1098 kmp_hw_attr_t other_attr;
1099 for (int k = 0; k < item.num_attrs; ++k) {
1100 if (item.attr[k] != item.attr[j]) {
1101 other_attr = item.attr[k];
1102 break;
1103 }
1104 }
1105 kmp_str_buf_t buf;
1106 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
1107 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIncompat
, __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str), __kmp_msg_null
); }
1108 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str)if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIncompat
, __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str), __kmp_msg_null
); }
;
1109 __kmp_str_buf_free(&buf);
1110 return false;
1111 }
1112 // Allow specifying a specific core type or core eff exactly once
1113 for (int k = 0; k < j; ++k) {
1114 if (!item.attr[j] || !item.attr[k])
1115 continue;
1116 if (item.attr[k] == item.attr[j]) {
1117 kmp_str_buf_t buf;
1118 __kmp_hw_get_catalog_core_string(item.attr[j], &buf,
1119 item.num[j] > 0);
1120 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str)if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetAttrRepeat
, buf.str), __kmp_msg_null); }
;
1121 __kmp_str_buf_free(&buf);
1122 return false;
1123 }
1124 }
1125 }
1126 }
1127 }
1128 }
1129
1130 struct core_type_indexer {
1131 int operator()(const kmp_hw_thread_t &t) const {
1132 switch (t.attrs.get_core_type()) {
1133#if KMP_ARCH_X860 || KMP_ARCH_X86_641
1134 case KMP_HW_CORE_TYPE_ATOM:
1135 return 1;
1136 case KMP_HW_CORE_TYPE_CORE:
1137 return 2;
1138#endif
1139 case KMP_HW_CORE_TYPE_UNKNOWN:
1140 return 0;
1141 }
1142 KMP_ASSERT(0)if (!(0)) { __kmp_debug_assert("0", "openmp/runtime/src/kmp_affinity.cpp"
, 1142); }
;
1143 return 0;
1144 }
1145 };
1146 struct core_eff_indexer {
1147 int operator()(const kmp_hw_thread_t &t) const {
1148 return t.attrs.get_core_eff();
1149 }
1150 };
1151
1152 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids(
1153 core_level);
1154 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS8, core_eff_indexer> core_eff_sub_ids(
1155 core_level);
1156
1157 // Determine which hardware threads should be filtered.
1158 int num_filtered = 0;
1159 bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads)___kmp_allocate((sizeof(bool) * num_hw_threads), "openmp/runtime/src/kmp_affinity.cpp"
, 1159)
;
1160 for (int i = 0; i < num_hw_threads; ++i) {
1161 kmp_hw_thread_t &hw_thread = hw_threads[i];
1162 // Update type_sub_id
1163 if (using_core_types)
1164 core_type_sub_ids.update(hw_thread);
1165 if (using_core_effs)
1166 core_eff_sub_ids.update(hw_thread);
1167
1168 // Check to see if this hardware thread should be filtered
1169 bool should_be_filtered = false;
1170 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1171 ++hw_subset_index) {
1172 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
1173 int level = topology_levels[hw_subset_index];
1174 if (level == -1)
1175 continue;
1176 if ((using_core_effs || using_core_types) && level == core_level) {
1177 // Look for the core attribute in KMP_HW_SUBSET which corresponds
1178 // to this hardware thread's core attribute. Use this num,offset plus
1179 // the running sub_id for the particular core attribute of this hardware
1180 // thread to determine if the hardware thread should be filtered or not.
1181 int attr_idx;
1182 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1183 int core_eff = hw_thread.attrs.get_core_eff();
1184 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1185 if (using_core_types &&
1186 hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1187 break;
1188 if (using_core_effs &&
1189 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1190 break;
1191 }
1192 // This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1193 if (attr_idx == hw_subset_item.num_attrs) {
1194 should_be_filtered = true;
1195 break;
1196 }
1197 int sub_id;
1198 int num = hw_subset_item.num[attr_idx];
1199 int offset = hw_subset_item.offset[attr_idx];
1200 if (using_core_types)
1201 sub_id = core_type_sub_ids.get_sub_id(hw_thread);
1202 else
1203 sub_id = core_eff_sub_ids.get_sub_id(hw_thread);
1204 if (sub_id < offset ||
1205 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1206 should_be_filtered = true;
1207 break;
1208 }
1209 } else {
1210 int num = hw_subset_item.num[0];
1211 int offset = hw_subset_item.offset[0];
1212 if (hw_thread.sub_ids[level] < offset ||
1213 (num != kmp_hw_subset_t::USE_ALL &&
1214 hw_thread.sub_ids[level] >= offset + num)) {
1215 should_be_filtered = true;
1216 break;
1217 }
1218 }
1219 }
1220 // Collect filtering information
1221 filtered[i] = should_be_filtered;
1222 if (should_be_filtered)
1223 num_filtered++;
1224 }
1225
1226 // One last check that we shouldn't allow filtering entire machine
1227 if (num_filtered == num_hw_threads) {
1228 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered)if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings
&& (__kmp_affinity.type != affinity_none))) { __kmp_msg
(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetAllFiltered
), __kmp_msg_null); }
;
1229 __kmp_free(filtered)___kmp_free((filtered), "openmp/runtime/src/kmp_affinity.cpp"
, 1229)
;
1230 return false;
1231 }
1232
1233 // Apply the filter
1234 int new_index = 0;
1235 for (int i = 0; i < num_hw_threads; ++i) {
1236 if (!filtered[i]) {
1237 if (i != new_index)
1238 hw_threads[new_index] = hw_threads[i];
1239 new_index++;
1240 } else {
1241#if KMP_AFFINITY_SUPPORTED1
1242 KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask)(__kmp_affin_fullMask)->clear(hw_threads[i].os_id);
1243#endif
1244 __kmp_avail_proc--;
1245 }
1246 }
1247
1248 KMP_DEBUG_ASSERT(new_index <= num_hw_threads)if (!(new_index <= num_hw_threads)) { __kmp_debug_assert("new_index <= num_hw_threads"
, "openmp/runtime/src/kmp_affinity.cpp", 1248); }
;
1249 num_hw_threads = new_index;
1250
1251 // Post hardware subset canonicalization
1252 _gather_enumeration_information();
1253 _discover_uniformity();
1254 _set_globals();
1255 _set_last_level_cache();
1256 __kmp_free(filtered)___kmp_free((filtered), "openmp/runtime/src/kmp_affinity.cpp"
, 1256)
;
1257 return true;
1258}
1259
1260bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const {
1261 if (hw_level >= depth)
1262 return true;
1263 bool retval = true;
1264 const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1265 const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1266 for (int i = 0; i < (depth - hw_level); ++i) {
1267 if (t1.ids[i] != t2.ids[i])
1268 return false;
1269 }
1270 return retval;
1271}
1272
1273////////////////////////////////////////////////////////////////////////////////
1274
1275#if KMP_AFFINITY_SUPPORTED1
1276class kmp_affinity_raii_t {
1277 kmp_affin_mask_t *mask;
1278 bool restored;
1279
1280public:
1281 kmp_affinity_raii_t() : restored(false) {
1282 KMP_CPU_ALLOC(mask)(mask = __kmp_affinity_dispatch->allocate_mask());
1283 KMP_ASSERT(mask != NULL)if (!(mask != __null)) { __kmp_debug_assert("mask != NULL", "openmp/runtime/src/kmp_affinity.cpp"
, 1283); }
;
1284 __kmp_get_system_affinity(mask, TRUE)(mask)->get_system_affinity((!0));
1285 }
1286 void restore() {
1287 __kmp_set_system_affinity(mask, TRUE)(mask)->set_system_affinity((!0));
1288 KMP_CPU_FREE(mask)__kmp_affinity_dispatch->deallocate_mask(mask);
1289 restored = true;
1290 }
1291 ~kmp_affinity_raii_t() {
1292 if (!restored) {
1293 __kmp_set_system_affinity(mask, TRUE)(mask)->set_system_affinity((!0));
1294 KMP_CPU_FREE(mask)__kmp_affinity_dispatch->deallocate_mask(mask);
1295 }
1296 }
1297};
1298
1299bool KMPAffinity::picked_api = false;
1300
1301void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n)___kmp_allocate((n), "openmp/runtime/src/kmp_affinity.cpp", 1301
)
; }
1302void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n)___kmp_allocate((n), "openmp/runtime/src/kmp_affinity.cpp", 1302
)
; }
1303void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p)___kmp_free((p), "openmp/runtime/src/kmp_affinity.cpp", 1303); }
1304void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p)___kmp_free((p), "openmp/runtime/src/kmp_affinity.cpp", 1304); }
1305void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n)___kmp_allocate((n), "openmp/runtime/src/kmp_affinity.cpp", 1305
)
; }
1306void KMPAffinity::operator delete(void *p) { __kmp_free(p)___kmp_free((p), "openmp/runtime/src/kmp_affinity.cpp", 1306); }
1307
1308void KMPAffinity::pick_api() {
1309 KMPAffinity *affinity_dispatch;
1310 if (picked_api)
1311 return;
1312#if KMP_USE_HWLOC0
1313 // Only use Hwloc if affinity isn't explicitly disabled and
1314 // user requests Hwloc topology method
1315 if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1316 __kmp_affinity.type != affinity_disabled) {
1317 affinity_dispatch = new KMPHwlocAffinity();
1318 } else
1319#endif
1320 {
1321 affinity_dispatch = new KMPNativeAffinity();
1322 }
1323 __kmp_affinity_dispatch = affinity_dispatch;
1324 picked_api = true;
1325}
1326
1327void KMPAffinity::destroy_api() {
1328 if (__kmp_affinity_dispatch != NULL__null) {
1329 delete __kmp_affinity_dispatch;
1330 __kmp_affinity_dispatch = NULL__null;
1331 picked_api = false;
1332 }
1333}
1334
1335#define KMP_ADVANCE_SCAN(scan) \
1336 while (*scan != '\0') { \
1337 scan++; \
1338 }
1339
1340// Print the affinity mask to the character array in a pretty format.
1341// The format is a comma separated list of non-negative integers or integer
1342// ranges: e.g., 1,2,3-5,7,9-15
1343// The format can also be the string "{<empty>}" if no bits are set in mask
1344char *__kmp_affinity_print_mask(char *buf, int buf_len,
1345 kmp_affin_mask_t *mask) {
1346 int start = 0, finish = 0, previous = 0;
1347 bool first_range;
1348 KMP_ASSERT(buf)if (!(buf)) { __kmp_debug_assert("buf", "openmp/runtime/src/kmp_affinity.cpp"
, 1348); }
;
1349 KMP_ASSERT(buf_len >= 40)if (!(buf_len >= 40)) { __kmp_debug_assert("buf_len >= 40"
, "openmp/runtime/src/kmp_affinity.cpp", 1349); }
;
1350 KMP_ASSERT(mask)if (!(mask)) { __kmp_debug_assert("mask", "openmp/runtime/src/kmp_affinity.cpp"
, 1350); }
;
1351 char *scan = buf;
1352 char *end = buf + buf_len - 1;
1353
1354 // Check for empty set.
1355 if (mask->begin() == mask->end()) {
1356 KMP_SNPRINTFsnprintf(scan, end - scan + 1, "{<empty>}");
1357 KMP_ADVANCE_SCAN(scan);
1358 KMP_ASSERT(scan <= end)if (!(scan <= end)) { __kmp_debug_assert("scan <= end",
"openmp/runtime/src/kmp_affinity.cpp", 1358); }
;
1359 return buf;
1360 }
1361
1362 first_range = true;
1363 start = mask->begin();
1364 while (1) {
1365 // Find next range
1366 // [start, previous] is inclusive range of contiguous bits in mask
1367 for (finish = mask->next(start), previous = start;
1368 finish == previous + 1 && finish != mask->end();
1369 finish = mask->next(finish)) {
1370 previous = finish;
1371 }
1372
1373 // The first range does not need a comma printed before it, but the rest
1374 // of the ranges do need a comma beforehand
1375 if (!first_range) {
1376 KMP_SNPRINTFsnprintf(scan, end - scan + 1, "%s", ",");
1377 KMP_ADVANCE_SCAN(scan);
1378 } else {
1379 first_range = false;
1380 }
1381 // Range with three or more contiguous bits in the affinity mask
1382 if (previous - start > 1) {
1383 KMP_SNPRINTFsnprintf(scan, end - scan + 1, "%u-%u", start, previous);
1384 } else {
1385 // Range with one or two contiguous bits in the affinity mask
1386 KMP_SNPRINTFsnprintf(scan, end - scan + 1, "%u", start);
1387 KMP_ADVANCE_SCAN(scan);
1388 if (previous - start > 0) {
1389 KMP_SNPRINTFsnprintf(scan, end - scan + 1, ",%u", previous);
1390 }
1391 }
1392 KMP_ADVANCE_SCAN(scan);
1393 // Start over with new start point
1394 start = finish;
1395 if (start == mask->end())
1396 break;
1397 // Check for overflow
1398 if (end - scan < 2)
1399 break;
1400 }
1401
1402 // Check for overflow
1403 KMP_ASSERT(scan <= end)if (!(scan <= end)) { __kmp_debug_assert("scan <= end",
"openmp/runtime/src/kmp_affinity.cpp", 1403); }
;
1404 return buf;
1405}
1406#undef KMP_ADVANCE_SCAN
1407
1408// Print the affinity mask to the string buffer object in a pretty format
1409// The format is a comma separated list of non-negative integers or integer
1410// ranges: e.g., 1,2,3-5,7,9-15
1411// The format can also be the string "{<empty>}" if no bits are set in mask
1412kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1413 kmp_affin_mask_t *mask) {
1414 int start = 0, finish = 0, previous = 0;
1415 bool first_range;
1416 KMP_ASSERT(buf)if (!(buf)) { __kmp_debug_assert("buf", "openmp/runtime/src/kmp_affinity.cpp"
, 1416); }
;
1417 KMP_ASSERT(mask)if (!(mask)) { __kmp_debug_assert("mask", "openmp/runtime/src/kmp_affinity.cpp"
, 1417); }
;
1418
1419 __kmp_str_buf_clear(buf);
1420
1421 // Check for empty set.
1422 if (mask->begin() == mask->end()) {
1423 __kmp_str_buf_print(buf, "%s", "{<empty>}");
1424 return buf;
1425 }
1426
1427 first_range = true;
1428 start = mask->begin();
1429 while (1) {
1430 // Find next range
1431 // [start, previous] is inclusive range of contiguous bits in mask
1432 for (finish = mask->next(start), previous = start;
1433 finish == previous + 1 && finish != mask->end();
1434 finish = mask->next(finish)) {
1435 previous = finish;
1436 }
1437
1438 // The first range does not need a comma printed before it, but the rest
1439 // of the ranges do need a comma beforehand
1440 if (!first_range) {
1441 __kmp_str_buf_print(buf, "%s", ",");
1442 } else {
1443 first_range = false;
1444 }
1445 // Range with three or more contiguous bits in the affinity mask
1446 if (previous - start > 1) {
1447 __kmp_str_buf_print(buf, "%u-%u", start, previous);
1448 } else {
1449 // Range with one or two contiguous bits in the affinity mask
1450 __kmp_str_buf_print(buf, "%u", start);
1451 if (previous - start > 0) {
1452 __kmp_str_buf_print(buf, ",%u", previous);
1453 }
1454 }
1455 // Start over with new start point
1456 start = finish;
1457 if (start == mask->end())
1458 break;
1459 }
1460 return buf;
1461}
1462
1463// Return (possibly empty) affinity mask representing the offline CPUs
1464// Caller must free the mask
1465kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1466 kmp_affin_mask_t *offline;
1467 KMP_CPU_ALLOC(offline)(offline = __kmp_affinity_dispatch->allocate_mask());
1468 KMP_CPU_ZERO(offline)(offline)->zero();
1469#if KMP_OS_LINUX1
1470 int n, begin_cpu, end_cpu;
1471 kmp_safe_raii_file_t offline_file;
1472 auto skip_ws = [](FILE *f) {
1473 int c;
1474 do {
1475 c = fgetc(f);
1476 } while (isspace(c));
1477 if (c != EOF(-1))
1478 ungetc(c, f);
1479 };
1480 // File contains CSV of integer ranges representing the offline CPUs
1481 // e.g., 1,2,4-7,9,11-15
1482 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r");
1483 if (status != 0)
1484 return offline;
1485 while (!feof(offline_file)) {
1486 skip_ws(offline_file);
1487 n = fscanf(offline_file, "%d", &begin_cpu);
1488 if (n != 1)
1489 break;
1490 skip_ws(offline_file);
1491 int c = fgetc(offline_file);
1492 if (c == EOF(-1) || c == ',') {
1493 // Just single CPU
1494 end_cpu = begin_cpu;
1495 } else if (c == '-') {
1496 // Range of CPUs
1497 skip_ws(offline_file);
1498 n = fscanf(offline_file, "%d", &end_cpu);
1499 if (n != 1)
1500 break;
1501 skip_ws(offline_file);
1502 c = fgetc(offline_file); // skip ','
1503 } else {
1504 // Syntax problem
1505 break;
1506 }
1507 // Ensure a valid range of CPUs
1508 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1509 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1510 continue;
1511 }
1512 // Insert [begin_cpu, end_cpu] into offline mask
1513 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1514 KMP_CPU_SET(cpu, offline)(offline)->set(cpu);
1515 }
1516 }
1517#endif
1518 return offline;
1519}
1520
1521// Return the number of available procs
1522int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1523 int avail_proc = 0;
1524 KMP_CPU_ZERO(mask)(mask)->zero();
1525
1526#if KMP_GROUP_AFFINITY0
1527
1528 if (__kmp_num_proc_groups > 1) {
1529 int group;
1530 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL)if (!(__kmp_GetActiveProcessorCount != __null)) { __kmp_debug_assert
("__kmp_GetActiveProcessorCount != __null", "openmp/runtime/src/kmp_affinity.cpp"
, 1530); }
;
1531 for (group = 0; group < __kmp_num_proc_groups; group++) {
1532 int i;
1533 int num = __kmp_GetActiveProcessorCount(group);
1534 for (i = 0; i < num; i++) {
1535 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask)(mask)->set(i + group * (8 * sizeof(DWORD_PTR)));
1536 avail_proc++;
1537 }
1538 }
1539 } else
1540
1541#endif /* KMP_GROUP_AFFINITY */
1542
1543 {
1544 int proc;
1545 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1546 for (proc = 0; proc < __kmp_xproc; proc++) {
1547 // Skip offline CPUs
1548 if (KMP_CPU_ISSET(proc, offline_cpus)(offline_cpus)->is_set(proc))
1549 continue;
1550 KMP_CPU_SET(proc, mask)(mask)->set(proc);
1551 avail_proc++;
1552 }
1553 KMP_CPU_FREE(offline_cpus)__kmp_affinity_dispatch->deallocate_mask(offline_cpus);
1554 }
1555
1556 return avail_proc;
1557}
1558
1559// All of the __kmp_affinity_create_*_map() routines should allocate the
1560// internal topology object and set the layer ids for it. Each routine
1561// returns a boolean on whether it was successful at doing so.
1562kmp_affin_mask_t *__kmp_affin_fullMask = NULL__null;
1563// Original mask is a subset of full mask in multiple processor groups topology
1564kmp_affin_mask_t *__kmp_affin_origMask = NULL__null;
1565
1566#if KMP_USE_HWLOC0
1567static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1568#if HWLOC_API_VERSION >= 0x00020000
1569 return hwloc_obj_type_is_cache(obj->type);
1570#else
1571 return obj->type == HWLOC_OBJ_CACHE;
1572#endif
1573}
1574
1575// Returns KMP_HW_* type derived from HWLOC_* type
1576static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1577
1578 if (__kmp_hwloc_is_cache_type(obj)) {
1579 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1580 return KMP_HW_UNKNOWN;
1581 switch (obj->attr->cache.depth) {
1582 case 1:
1583 return KMP_HW_L1;
1584 case 2:
1585#if KMP_MIC_SUPPORTED((0 || 1) && (1 || 0))
1586 if (__kmp_mic_type == mic3) {
1587 return KMP_HW_TILE;
1588 }
1589#endif
1590 return KMP_HW_L2;
1591 case 3:
1592 return KMP_HW_L3;
1593 }
1594 return KMP_HW_UNKNOWN;
1595 }
1596
1597 switch (obj->type) {
1598 case HWLOC_OBJ_PACKAGE:
1599 return KMP_HW_SOCKET;
1600 case HWLOC_OBJ_NUMANODE:
1601 return KMP_HW_NUMA;
1602 case HWLOC_OBJ_CORE:
1603 return KMP_HW_CORE;
1604 case HWLOC_OBJ_PU:
1605 return KMP_HW_THREAD;
1606 case HWLOC_OBJ_GROUP:
1607 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1608 return KMP_HW_DIE;
1609 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1610 return KMP_HW_TILE;
1611 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1612 return KMP_HW_MODULE;
1613 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1614 return KMP_HW_PROC_GROUP;
1615 return KMP_HW_UNKNOWN;
1616#if HWLOC_API_VERSION >= 0x00020100
1617 case HWLOC_OBJ_DIE:
1618 return KMP_HW_DIE;
1619#endif
1620 }
1621 return KMP_HW_UNKNOWN;
1622}
1623
1624// Returns the number of objects of type 'type' below 'obj' within the topology
1625// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1626// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1627// object.
1628static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1629 hwloc_obj_type_t type) {
1630 int retval = 0;
1631 hwloc_obj_t first;
1632 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1633 obj->logical_index, type, 0);
1634 first != NULL__null && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1635 obj->type, first) == obj;
1636 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1637 first)) {
1638 ++retval;
1639 }
1640 return retval;
1641}
1642
1643// This gets the sub_id for a lower object under a higher object in the
1644// topology tree
1645static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1646 hwloc_obj_t lower) {
1647 hwloc_obj_t obj;
1648 hwloc_obj_type_t ltype = lower->type;
1649 int lindex = lower->logical_index - 1;
1650 int sub_id = 0;
1651 // Get the previous lower object
1652 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1653 while (obj && lindex >= 0 &&
1654 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1655 if (obj->userdata) {
1656 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)reinterpret_cast<kmp_intptr_t>(obj->userdata));
1657 break;
1658 }
1659 sub_id++;
1660 lindex--;
1661 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1662 }
1663 // store sub_id + 1 so that 0 is differed from NULL
1664 lower->userdata = RCAST(void *, sub_id + 1)reinterpret_cast<void *>(sub_id + 1);
1665 return sub_id;
1666}
1667
1668static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1669 kmp_hw_t type;
1670 int hw_thread_index, sub_id;
1671 int depth;
1672 hwloc_obj_t pu, obj, root, prev;
1673 kmp_hw_t types[KMP_HW_LAST];
1674 hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1675
1676 hwloc_topology_t tp = __kmp_hwloc_topology;
1677 *msg_id = kmp_i18n_null;
1678 if (__kmp_affinity.flags.verbose) {
1679 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY")__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffUsingHwloc
, "KMP_AFFINITY"), __kmp_msg_null)
;
1680 }
1681
1682 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
1683 // Hack to try and infer the machine topology using only the data
1684 // available from hwloc on the current thread, and __kmp_xproc.
1685 KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert
("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp"
, 1685); }
;
1686 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1687 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1688 if (o != NULL__null)
1689 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1690 else
1691 nCoresPerPkg = 1; // no PACKAGE found
1692 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1693 if (o != NULL__null)
1694 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1695 else
1696 __kmp_nThreadsPerCore = 1; // no CORE found
1697 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1698 if (nCoresPerPkg == 0)
1699 nCoresPerPkg = 1; // to prevent possible division by 0
1700 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1701 return true;
1702 }
1703
1704 // Handle multiple types of cores if they exist on the system
1705 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1706
1707 typedef struct kmp_hwloc_cpukinds_info_t {
1708 int efficiency;
1709 kmp_hw_core_type_t core_type;
1710 hwloc_bitmap_t mask;
1711 } kmp_hwloc_cpukinds_info_t;
1712 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1713
1714 if (nr_cpu_kinds > 0) {
1715 unsigned nr_infos;
1716 struct hwloc_info_s *infos;
1717 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(___kmp_allocate((sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds
), "openmp/runtime/src/kmp_affinity.cpp", 1718)
1718 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds)___kmp_allocate((sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds
), "openmp/runtime/src/kmp_affinity.cpp", 1718)
;
1719 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1720 cpukinds[idx].efficiency = -1;
1721 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1722 cpukinds[idx].mask = hwloc_bitmap_alloc();
1723 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1724 &cpukinds[idx].efficiency, &nr_infos, &infos,
1725 0) == 0) {
1726 for (unsigned i = 0; i < nr_infos; ++i) {
1727 if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1728#if KMP_ARCH_X860 || KMP_ARCH_X86_641
1729 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1730 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1731 break;
1732 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1733 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1734 break;
1735 }
1736#endif
1737 }
1738 }
1739 }
1740 }
1741 }
1742
1743 root = hwloc_get_root_obj(tp);
1744
1745 // Figure out the depth and types in the topology
1746 depth = 0;
1747 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1748 KMP_ASSERT(pu)if (!(pu)) { __kmp_debug_assert("pu", "openmp/runtime/src/kmp_affinity.cpp"
, 1748); }
;
1749 obj = pu;
1750 types[depth] = KMP_HW_THREAD;
1751 hwloc_types[depth] = obj->type;
1752 depth++;
1753 while (obj != root && obj != NULL__null) {
1754 obj = obj->parent;
1755#if HWLOC_API_VERSION >= 0x00020000
1756 if (obj->memory_arity) {
1757 hwloc_obj_t memory;
1758 for (memory = obj->memory_first_child; memory;
1759 memory = hwloc_get_next_child(tp, obj, memory)) {
1760 if (memory->type == HWLOC_OBJ_NUMANODE)
1761 break;
1762 }
1763 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1764 types[depth] = KMP_HW_NUMA;
1765 hwloc_types[depth] = memory->type;
1766 depth++;
1767 }
1768 }
1769#endif
1770 type = __kmp_hwloc_type_2_topology_type(obj);
1771 if (type != KMP_HW_UNKNOWN) {
1772 types[depth] = type;
1773 hwloc_types[depth] = obj->type;
1774 depth++;
1775 }
1776 }
1777 KMP_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp"
, 1777); }
;
1778
1779 // Get the order for the types correct
1780 for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1781 hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1782 kmp_hw_t temp = types[i];
1783 types[i] = types[j];
1784 types[j] = temp;
1785 hwloc_types[i] = hwloc_types[j];
1786 hwloc_types[j] = hwloc_temp;
1787 }
1788
1789 // Allocate the data structure to be returned.
1790 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1791
1792 hw_thread_index = 0;
1793 pu = NULL__null;
1794 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
1795 int index = depth - 1;
1796 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(pu->os_index);
1797 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1798 if (included) {
1799 hw_thread.clear();
1800 hw_thread.ids[index] = pu->logical_index;
1801 hw_thread.os_id = pu->os_index;
1802 // If multiple core types, then set that attribute for the hardware thread
1803 if (cpukinds) {
1804 int cpukind_index = -1;
1805 for (int i = 0; i < nr_cpu_kinds; ++i) {
1806 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1807 cpukind_index = i;
1808 break;
1809 }
1810 }
1811 if (cpukind_index >= 0) {
1812 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1813 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1814 }
1815 }
1816 index--;
1817 }
1818 obj = pu;
1819 prev = obj;
1820 while (obj != root && obj != NULL__null) {
1821 obj = obj->parent;
1822#if HWLOC_API_VERSION >= 0x00020000
1823 // NUMA Nodes are handled differently since they are not within the
1824 // parent/child structure anymore. They are separate children
1825 // of obj (memory_first_child points to first memory child)
1826 if (obj->memory_arity) {
1827 hwloc_obj_t memory;
1828 for (memory = obj->memory_first_child; memory;
1829 memory = hwloc_get_next_child(tp, obj, memory)) {
1830 if (memory->type == HWLOC_OBJ_NUMANODE)
1831 break;
1832 }
1833 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1834 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1835 if (included) {
1836 hw_thread.ids[index] = memory->logical_index;
1837 hw_thread.ids[index + 1] = sub_id;
1838 index--;
1839 }
1840 prev = memory;
1841 }
1842 prev = obj;
1843 }
1844#endif
1845 type = __kmp_hwloc_type_2_topology_type(obj);
1846 if (type != KMP_HW_UNKNOWN) {
1847 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1848 if (included) {
1849 hw_thread.ids[index] = obj->logical_index;
1850 hw_thread.ids[index + 1] = sub_id;
1851 index--;
1852 }
1853 prev = obj;
1854 }
1855 }
1856 if (included)
1857 hw_thread_index++;
1858 }
1859
1860 // Free the core types information
1861 if (cpukinds) {
1862 for (int idx = 0; idx < nr_cpu_kinds; ++idx)
1863 hwloc_bitmap_free(cpukinds[idx].mask);
1864 __kmp_free(cpukinds)___kmp_free((cpukinds), "openmp/runtime/src/kmp_affinity.cpp"
, 1864)
;
1865 }
1866 __kmp_topology->sort_ids();
1867 return true;
1868}
1869#endif // KMP_USE_HWLOC
1870
1871// If we don't know how to retrieve the machine's processor topology, or
1872// encounter an error in doing so, this routine is called to form a "flat"
1873// mapping of os thread id's <-> processor id's.
1874static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1875 *msg_id = kmp_i18n_null;
1876 int depth = 3;
1877 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1878
1879 if (__kmp_affinity.flags.verbose) {
1880 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY")__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_UsingFlatOS
, "KMP_AFFINITY"), __kmp_msg_null)
;
1881 }
1882
1883 // Even if __kmp_affinity.type == affinity_none, this routine might still
1884 // be called to set __kmp_ncores, as well as
1885 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1886 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
1887 KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert
("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp"
, 1887); }
;
1888 __kmp_ncores = nPackages = __kmp_xproc;
1889 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1890 return true;
1891 }
1892
1893 // When affinity is off, this routine will still be called to set
1894 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1895 // Make sure all these vars are set correctly, and return now if affinity is
1896 // not enabled.
1897 __kmp_ncores = nPackages = __kmp_avail_proc;
1898 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1899
1900 // Construct the data structure to be returned.
1901 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1902 int avail_ct = 0;
1903 int i;
1904 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask)for (i = (__kmp_affin_fullMask)->begin(); (int)i != (__kmp_affin_fullMask
)->end(); i = (__kmp_affin_fullMask)->next(i))
{
1905 // Skip this proc if it is not included in the machine model.
1906 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(i)) {
1907 continue;
1908 }
1909 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
1910 hw_thread.clear();
1911 hw_thread.os_id = i;
1912 hw_thread.ids[0] = i;
1913 hw_thread.ids[1] = 0;
1914 hw_thread.ids[2] = 0;
1915 avail_ct++;
1916 }
1917 if (__kmp_affinity.flags.verbose) {
1918 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY")__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_OSProcToPackage
, "KMP_AFFINITY"), __kmp_msg_null)
;
1919 }
1920 return true;
1921}
1922
1923#if KMP_GROUP_AFFINITY0
1924// If multiple Windows* OS processor groups exist, we can create a 2-level
1925// topology map with the groups at level 0 and the individual procs at level 1.
1926// This facilitates letting the threads float among all procs in a group,
1927// if granularity=group (the default when there are multiple groups).
1928static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
1929 *msg_id = kmp_i18n_null;
1930 int depth = 3;
1931 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
1932 const static size_t BITS_PER_GROUP = CHAR_BIT8 * sizeof(DWORD_PTR);
1933
1934 if (__kmp_affinity.flags.verbose) {
1935 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY")__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffWindowsProcGroupMap
, "KMP_AFFINITY"), __kmp_msg_null)
;
1936 }
1937
1938 // If we aren't affinity capable, then use flat topology
1939 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
1940 KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert
("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp"
, 1940); }
;
1941 nPackages = __kmp_num_proc_groups;
1942 __kmp_nThreadsPerCore = 1;
1943 __kmp_ncores = __kmp_xproc;
1944 nCoresPerPkg = nPackages / __kmp_ncores;
1945 return true;
1946 }
1947
1948 // Construct the data structure to be returned.
1949 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1950 int avail_ct = 0;
1951 int i;
1952 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask)for (i = (__kmp_affin_fullMask)->begin(); (int)i != (__kmp_affin_fullMask
)->end(); i = (__kmp_affin_fullMask)->next(i))
{
1953 // Skip this proc if it is not included in the machine model.
1954 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(i)) {
1955 continue;
1956 }
1957 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
1958 hw_thread.clear();
1959 hw_thread.os_id = i;
1960 hw_thread.ids[0] = i / BITS_PER_GROUP;
1961 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
1962 }
1963 return true;
1964}
1965#endif /* KMP_GROUP_AFFINITY */
1966
1967#if KMP_ARCH_X860 || KMP_ARCH_X86_641
1968
1969template <kmp_uint32 LSB, kmp_uint32 MSB>
1970static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
1971 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
1972 const kmp_uint32 SHIFT_RIGHT = LSB;
1973 kmp_uint32 retval = v;
1974 retval <<= SHIFT_LEFT;
1975 retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
1976 return retval;
1977}
1978
1979static int __kmp_cpuid_mask_width(int count) {
1980 int r = 0;
1981
1982 while ((1 << r) < count)
1983 ++r;
1984 return r;
1985}
1986
1987class apicThreadInfo {
1988public:
1989 unsigned osId; // param to __kmp_affinity_bind_thread
1990 unsigned apicId; // from cpuid after binding
1991 unsigned maxCoresPerPkg; // ""
1992 unsigned maxThreadsPerPkg; // ""
1993 unsigned pkgId; // inferred from above values
1994 unsigned coreId; // ""
1995 unsigned threadId; // ""
1996};
1997
1998static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1999 const void *b) {
2000 const apicThreadInfo *aa = (const apicThreadInfo *)a;
2001 const apicThreadInfo *bb = (const apicThreadInfo *)b;
2002 if (aa->pkgId < bb->pkgId)
2003 return -1;
2004 if (aa->pkgId > bb->pkgId)
2005 return 1;
2006 if (aa->coreId < bb->coreId)
2007 return -1;
2008 if (aa->coreId > bb->coreId)
2009 return 1;
2010 if (aa->threadId < bb->threadId)
2011 return -1;
2012 if (aa->threadId > bb->threadId)
2013 return 1;
2014 return 0;
2015}
2016
2017class kmp_cache_info_t {
2018public:
2019 struct info_t {
2020 unsigned level, mask;
2021 };
2022 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
2023 size_t get_depth() const { return depth; }
2024 info_t &operator[](size_t index) { return table[index]; }
2025 const info_t &operator[](size_t index) const { return table[index]; }
2026
2027 static kmp_hw_t get_topology_type(unsigned level) {
2028 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL)if (!(level >= 1 && level <= MAX_CACHE_LEVEL)) {
__kmp_debug_assert("level >= 1 && level <= MAX_CACHE_LEVEL"
, "openmp/runtime/src/kmp_affinity.cpp", 2028); }
;
2029 switch (level) {
2030 case 1:
2031 return KMP_HW_L1;
2032 case 2:
2033 return KMP_HW_L2;
2034 case 3:
2035 return KMP_HW_L3;
2036 }
2037 return KMP_HW_UNKNOWN;
2038 }
2039
2040private:
2041 static const int MAX_CACHE_LEVEL = 3;
2042
2043 size_t depth;
2044 info_t table[MAX_CACHE_LEVEL];
2045
2046 void get_leaf4_levels() {
2047 unsigned level = 0;
2048 while (depth < MAX_CACHE_LEVEL) {
2049 unsigned cache_type, max_threads_sharing;
2050 unsigned cache_level, cache_mask_width;
2051 kmp_cpuid buf2;
2052 __kmp_x86_cpuid(4, level, &buf2);
2053 cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
2054 if (!cache_type)
2055 break;
2056 // Skip instruction caches
2057 if (cache_type == 2) {
2058 level++;
2059 continue;
2060 }
2061 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
2062 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
2063 cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
2064 table[depth].level = cache_level;
2065 table[depth].mask = ((-1) << cache_mask_width);
2066 depth++;
2067 level++;
2068 }
2069 }
2070};
2071
2072// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2073// an algorithm which cycles through the available os threads, setting
2074// the current thread's affinity mask to that thread, and then retrieves
2075// the Apic Id for each thread context using the cpuid instruction.
2076static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2077 kmp_cpuid buf;
2078 *msg_id = kmp_i18n_null;
2079
2080 if (__kmp_affinity.flags.verbose) {
2081 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr
, "KMP_AFFINITY", __kmp_i18n_catgets(kmp_i18n_str_DecodingLegacyAPIC
)), __kmp_msg_null)
;
2082 }
2083
2084 // Check if cpuid leaf 4 is supported.
2085 __kmp_x86_cpuid(0, 0, &buf);
2086 if (buf.eax < 4) {
2087 *msg_id = kmp_i18n_str_NoLeaf4Support;
2088 return false;
2089 }
2090
2091 // The algorithm used starts by setting the affinity to each available thread
2092 // and retrieving info from the cpuid instruction, so if we are not capable of
2093 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2094 // need to do something else - use the defaults that we calculated from
2095 // issuing cpuid without binding to each proc.
2096 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
2097 // Hack to try and infer the machine topology using only the data
2098 // available from cpuid on the current thread, and __kmp_xproc.
2099 KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert
("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp"
, 2099); }
;
2100
2101 // Get an upper bound on the number of threads per package using cpuid(1).
2102 // On some OS/chps combinations where HT is supported by the chip but is
2103 // disabled, this value will be 2 on a single core chip. Usually, it will be
2104 // 2 if HT is enabled and 1 if HT is disabled.
2105 __kmp_x86_cpuid(1, 0, &buf);
2106 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2107 if (maxThreadsPerPkg == 0) {
2108 maxThreadsPerPkg = 1;
2109 }
2110
2111 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2112 // value.
2113 //
2114 // The author of cpu_count.cpp treated this only an upper bound on the
2115 // number of cores, but I haven't seen any cases where it was greater than
2116 // the actual number of cores, so we will treat it as exact in this block of
2117 // code.
2118 //
2119 // First, we need to check if cpuid(4) is supported on this chip. To see if
2120 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2121 // greater.
2122 __kmp_x86_cpuid(0, 0, &buf);
2123 if (buf.eax >= 4) {
2124 __kmp_x86_cpuid(4, 0, &buf);
2125 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2126 } else {
2127 nCoresPerPkg = 1;
2128 }
2129
2130 // There is no way to reliably tell if HT is enabled without issuing the
2131 // cpuid instruction from every thread, can correlating the cpuid info, so
2132 // if the machine is not affinity capable, we assume that HT is off. We have
2133 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2134 // does not support HT.
2135 //
2136 // - Older OSes are usually found on machines with older chips, which do not
2137 // support HT.
2138 // - The performance penalty for mistakenly identifying a machine as HT when
2139 // it isn't (which results in blocktime being incorrectly set to 0) is
2140 // greater than the penalty when for mistakenly identifying a machine as
2141 // being 1 thread/core when it is really HT enabled (which results in
2142 // blocktime being incorrectly set to a positive value).
2143 __kmp_ncores = __kmp_xproc;
2144 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2145 __kmp_nThreadsPerCore = 1;
2146 return true;
2147 }
2148
2149 // From here on, we can assume that it is safe to call
2150 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2151 // __kmp_affinity.type = affinity_none.
2152
2153 // Save the affinity mask for the current thread.
2154 kmp_affinity_raii_t previous_affinity;
2155
2156 // Run through each of the available contexts, binding the current thread
2157 // to it, and obtaining the pertinent information using the cpuid instr.
2158 //
2159 // The relevant information is:
2160 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2161 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2162 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2163 // of this field determines the width of the core# + thread# fields in the
2164 // Apic Id. It is also an upper bound on the number of threads per
2165 // package, but it has been verified that situations happen were it is not
2166 // exact. In particular, on certain OS/chip combinations where Intel(R)
2167 // Hyper-Threading Technology is supported by the chip but has been
2168 // disabled, the value of this field will be 2 (for a single core chip).
2169 // On other OS/chip combinations supporting Intel(R) Hyper-Threading
2170 // Technology, the value of this field will be 1 when Intel(R)
2171 // Hyper-Threading Technology is disabled and 2 when it is enabled.
2172 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
2173 // of this field (+1) determines the width of the core# field in the Apic
2174 // Id. The comments in "cpucount.cpp" say that this value is an upper
2175 // bound, but the IA-32 architecture manual says that it is exactly the
2176 // number of cores per package, and I haven't seen any case where it
2177 // wasn't.
2178 //
2179 // From this information, deduce the package Id, core Id, and thread Id,
2180 // and set the corresponding fields in the apicThreadInfo struct.
2181 unsigned i;
2182 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(___kmp_allocate((__kmp_avail_proc * sizeof(apicThreadInfo)), "openmp/runtime/src/kmp_affinity.cpp"
, 2183)
2183 __kmp_avail_proc * sizeof(apicThreadInfo))___kmp_allocate((__kmp_avail_proc * sizeof(apicThreadInfo)), "openmp/runtime/src/kmp_affinity.cpp"
, 2183)
;
2184 unsigned nApics = 0;
2185 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask)for (i = (__kmp_affin_fullMask)->begin(); (int)i != (__kmp_affin_fullMask
)->end(); i = (__kmp_affin_fullMask)->next(i))
{
2186 // Skip this proc if it is not included in the machine model.
2187 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(i)) {
2188 continue;
2189 }
2190 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc)if (!((int)nApics < __kmp_avail_proc)) { __kmp_debug_assert
("(int)nApics < __kmp_avail_proc", "openmp/runtime/src/kmp_affinity.cpp"
, 2190); }
;
2191
2192 __kmp_affinity_dispatch->bind_thread(i);
2193 threadInfo[nApics].osId = i;
2194
2195 // The apic id and max threads per pkg come from cpuid(1).
2196 __kmp_x86_cpuid(1, 0, &buf);
2197 if (((buf.edx >> 9) & 1) == 0) {
2198 __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 2198)
;
2199 *msg_id = kmp_i18n_str_ApicNotPresent;
2200 return false;
2201 }
2202 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2203 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2204 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2205 threadInfo[nApics].maxThreadsPerPkg = 1;
2206 }
2207
2208 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2209 // value.
2210 //
2211 // First, we need to check if cpuid(4) is supported on this chip. To see if
2212 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2213 // or greater.
2214 __kmp_x86_cpuid(0, 0, &buf);
2215 if (buf.eax >= 4) {
2216 __kmp_x86_cpuid(4, 0, &buf);
2217 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2218 } else {
2219 threadInfo[nApics].maxCoresPerPkg = 1;
2220 }
2221
2222 // Infer the pkgId / coreId / threadId using only the info obtained locally.
2223 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
2224 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2225
2226 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
2227 int widthT = widthCT - widthC;
2228 if (widthT < 0) {
2229 // I've never seen this one happen, but I suppose it could, if the cpuid
2230 // instruction on a chip was really screwed up. Make sure to restore the
2231 // affinity mask before the tail call.
2232 __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 2232)
;
2233 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2234 return false;
2235 }
2236
2237 int maskC = (1 << widthC) - 1;
2238 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2239
2240 int maskT = (1 << widthT) - 1;
2241 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2242
2243 nApics++;
2244 }
2245
2246 // We've collected all the info we need.
2247 // Restore the old affinity mask for this thread.
2248 previous_affinity.restore();
2249
2250 // Sort the threadInfo table by physical Id.
2251 qsort(threadInfo, nApics, sizeof(*threadInfo),
2252 __kmp_affinity_cmp_apicThreadInfo_phys_id);
2253
2254 // The table is now sorted by pkgId / coreId / threadId, but we really don't
2255 // know the radix of any of the fields. pkgId's may be sparsely assigned among
2256 // the chips on a system. Although coreId's are usually assigned
2257 // [0 .. coresPerPkg-1] and threadId's are usually assigned
2258 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2259 //
2260 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2261 // total # packages) are at this point - we want to determine that now. We
2262 // only have an upper bound on the first two figures.
2263 //
2264 // We also perform a consistency check at this point: the values returned by
2265 // the cpuid instruction for any thread bound to a given package had better
2266 // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2267 nPackages = 1;
2268 nCoresPerPkg = 1;
2269 __kmp_nThreadsPerCore = 1;
2270 unsigned nCores = 1;
2271
2272 unsigned pkgCt = 1; // to determine radii
2273 unsigned lastPkgId = threadInfo[0].pkgId;
2274 unsigned coreCt = 1;
2275 unsigned lastCoreId = threadInfo[0].coreId;
2276 unsigned threadCt = 1;
2277 unsigned lastThreadId = threadInfo[0].threadId;
2278
2279 // intra-pkg consist checks
2280 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2281 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2282
2283 for (i = 1; i < nApics; i++) {
2284 if (threadInfo[i].pkgId != lastPkgId) {
2285 nCores++;
2286 pkgCt++;
2287 lastPkgId = threadInfo[i].pkgId;
2288 if ((int)coreCt > nCoresPerPkg)
2289 nCoresPerPkg = coreCt;
2290 coreCt = 1;
2291 lastCoreId = threadInfo[i].coreId;
2292 if ((int)threadCt > __kmp_nThreadsPerCore)
2293 __kmp_nThreadsPerCore = threadCt;
2294 threadCt = 1;
2295 lastThreadId = threadInfo[i].threadId;
2296
2297 // This is a different package, so go on to the next iteration without
2298 // doing any consistency checks. Reset the consistency check vars, though.
2299 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2300 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2301 continue;
2302 }
2303
2304 if (threadInfo[i].coreId != lastCoreId) {
2305 nCores++;
2306 coreCt++;
2307 lastCoreId = threadInfo[i].coreId;
2308 if ((int)threadCt > __kmp_nThreadsPerCore)
2309 __kmp_nThreadsPerCore = threadCt;
2310 threadCt = 1;
2311 lastThreadId = threadInfo[i].threadId;
2312 } else if (threadInfo[i].threadId != lastThreadId) {
2313 threadCt++;
2314 lastThreadId = threadInfo[i].threadId;
2315 } else {
2316 __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 2316)
;
2317 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2318 return false;
2319 }
2320
2321 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2322 // fields agree between all the threads bounds to a given package.
2323 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2324 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2325 __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 2325)
;
2326 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2327 return false;
2328 }
2329 }
2330 // When affinity is off, this routine will still be called to set
2331 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2332 // Make sure all these vars are set correctly
2333 nPackages = pkgCt;
2334 if ((int)coreCt > nCoresPerPkg)
2335 nCoresPerPkg = coreCt;
2336 if ((int)threadCt > __kmp_nThreadsPerCore)
2337 __kmp_nThreadsPerCore = threadCt;
2338 __kmp_ncores = nCores;
2339 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc)if (!(nApics == (unsigned)__kmp_avail_proc)) { __kmp_debug_assert
("nApics == (unsigned)__kmp_avail_proc", "openmp/runtime/src/kmp_affinity.cpp"
, 2339); }
;
2340
2341 // Now that we've determined the number of packages, the number of cores per
2342 // package, and the number of threads per core, we can construct the data
2343 // structure that is to be returned.
2344 int idx = 0;
2345 int pkgLevel = 0;
2346 int coreLevel = 1;
2347 int threadLevel = 2;
2348 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2349 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2350 kmp_hw_t types[3];
2351 if (pkgLevel >= 0)
2352 types[idx++] = KMP_HW_SOCKET;
2353 if (coreLevel >= 0)
2354 types[idx++] = KMP_HW_CORE;
2355 if (threadLevel >= 0)
2356 types[idx++] = KMP_HW_THREAD;
2357
2358 KMP_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp"
, 2358); }
;
2359 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
2360
2361 for (i = 0; i < nApics; ++i) {
2362 idx = 0;
2363 unsigned os = threadInfo[i].osId;
2364 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2365 hw_thread.clear();
2366
2367 if (pkgLevel >= 0) {
2368 hw_thread.ids[idx++] = threadInfo[i].pkgId;
2369 }
2370 if (coreLevel >= 0) {
2371 hw_thread.ids[idx++] = threadInfo[i].coreId;
2372 }
2373 if (threadLevel >= 0) {
2374 hw_thread.ids[idx++] = threadInfo[i].threadId;
2375 }
2376 hw_thread.os_id = os;
2377 }
2378
2379 __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 2379)
;
2380 __kmp_topology->sort_ids();
2381 if (!__kmp_topology->check_ids()) {
2382 kmp_topology_t::deallocate(__kmp_topology);
2383 __kmp_topology = nullptr;
2384 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2385 return false;
2386 }
2387 return true;
2388}
2389
2390// Hybrid cpu detection using CPUID.1A
2391// Thread should be pinned to processor already
2392static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2393 unsigned *native_model_id) {
2394 kmp_cpuid buf;
2395 __kmp_x86_cpuid(0x1a, 0, &buf);
2396 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
2397 switch (*type) {
2398 case KMP_HW_CORE_TYPE_ATOM:
2399 *efficiency = 0;
2400 break;
2401 case KMP_HW_CORE_TYPE_CORE:
2402 *efficiency = 1;
2403 break;
2404 default:
2405 *efficiency = 0;
2406 }
2407 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
2408}
2409
2410// Intel(R) microarchitecture code name Nehalem, Dunnington and later
2411// architectures support a newer interface for specifying the x2APIC Ids,
2412// based on CPUID.B or CPUID.1F
2413/*
2414 * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2415 Bits Bits Bits Bits
2416 31-16 15-8 7-4 4-0
2417---+-----------+--------------+-------------+-----------------+
2418EAX| reserved | reserved | reserved | Bits to Shift |
2419---+-----------|--------------+-------------+-----------------|
2420EBX| reserved | Num logical processors at level (16 bits) |
2421---+-----------|--------------+-------------------------------|
2422ECX| reserved | Level Type | Level Number (8 bits) |
2423---+-----------+--------------+-------------------------------|
2424EDX| X2APIC ID (32 bits) |
2425---+----------------------------------------------------------+
2426*/
2427
2428enum {
2429 INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2430 INTEL_LEVEL_TYPE_SMT = 1,
2431 INTEL_LEVEL_TYPE_CORE = 2,
2432 INTEL_LEVEL_TYPE_TILE = 3,
2433 INTEL_LEVEL_TYPE_MODULE = 4,
2434 INTEL_LEVEL_TYPE_DIE = 5,
2435 INTEL_LEVEL_TYPE_LAST = 6,
2436};
2437
2438struct cpuid_level_info_t {
2439 unsigned level_type, mask, mask_width, nitems, cache_mask;
2440};
2441
2442static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2443 switch (intel_type) {
2444 case INTEL_LEVEL_TYPE_INVALID:
2445 return KMP_HW_SOCKET;
2446 case INTEL_LEVEL_TYPE_SMT:
2447 return KMP_HW_THREAD;
2448 case INTEL_LEVEL_TYPE_CORE:
2449 return KMP_HW_CORE;
2450 case INTEL_LEVEL_TYPE_TILE:
2451 return KMP_HW_TILE;
2452 case INTEL_LEVEL_TYPE_MODULE:
2453 return KMP_HW_MODULE;
2454 case INTEL_LEVEL_TYPE_DIE:
2455 return KMP_HW_DIE;
2456 }
2457 return KMP_HW_UNKNOWN;
2458}
2459
2460// This function takes the topology leaf, a levels array to store the levels
2461// detected and a bitmap of the known levels.
2462// Returns the number of levels in the topology
2463static unsigned
2464__kmp_x2apicid_get_levels(int leaf,
2465 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
2466 kmp_uint64 known_levels) {
2467 unsigned level, levels_index;
2468 unsigned level_type, mask_width, nitems;
2469 kmp_cpuid buf;
2470
2471 // New algorithm has known topology layers act as highest unknown topology
2472 // layers when unknown topology layers exist.
2473 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2474 // are unknown topology layers, Then SMT will take the characteristics of
2475 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2476 // This eliminates unknown portions of the topology while still keeping the
2477 // correct structure.
2478 level = levels_index = 0;
2479 do {
2480 __kmp_x86_cpuid(leaf, level, &buf);
2481 level_type = __kmp_extract_bits<8, 15>(buf.ecx);
2482 mask_width = __kmp_extract_bits<0, 4>(buf.eax);
2483 nitems = __kmp_extract_bits<0, 15>(buf.ebx);
2484 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
2485 return 0;
2486
2487 if (known_levels & (1ull << level_type)) {
2488 // Add a new level to the topology
2489 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST)if (!(levels_index < INTEL_LEVEL_TYPE_LAST)) { __kmp_debug_assert
("levels_index < INTEL_LEVEL_TYPE_LAST", "openmp/runtime/src/kmp_affinity.cpp"
, 2489); }
;
2490 levels[levels_index].level_type = level_type;
2491 levels[levels_index].mask_width = mask_width;
2492 levels[levels_index].nitems = nitems;
2493 levels_index++;
2494 } else {
2495 // If it is an unknown level, then logically move the previous layer up
2496 if (levels_index > 0) {
2497 levels[levels_index - 1].mask_width = mask_width;
2498 levels[levels_index - 1].nitems = nitems;
2499 }
2500 }
2501 level++;
2502 } while (level_type != INTEL_LEVEL_TYPE_INVALID);
2503
2504 // Set the masks to & with apicid
2505 for (unsigned i = 0; i < levels_index; ++i) {
2506 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2507 levels[i].mask = ~((-1) << levels[i].mask_width);
2508 levels[i].cache_mask = (-1) << levels[i].mask_width;
2509 for (unsigned j = 0; j < i; ++j)
2510 levels[i].mask ^= levels[j].mask;
2511 } else {
2512 KMP_DEBUG_ASSERT(levels_index > 0)if (!(levels_index > 0)) { __kmp_debug_assert("levels_index > 0"
, "openmp/runtime/src/kmp_affinity.cpp", 2512); }
;
2513 levels[i].mask = (-1) << levels[i - 1].mask_width;
2514 levels[i].cache_mask = 0;
2515 }
2516 }
2517 return levels_index;
2518}
2519
2520static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2521
2522 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2523 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2524 unsigned levels_index;
2525 kmp_cpuid buf;
2526 kmp_uint64 known_levels;
2527 int topology_leaf, highest_leaf, apic_id;
2528 int num_leaves;
2529 static int leaves[] = {0, 0};
2530
2531 kmp_i18n_id_t leaf_message_id;
2532
2533 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST)static_assert(sizeof(known_levels) * 8 > KMP_HW_LAST, "Build condition error"
)
;
2534
2535 *msg_id = kmp_i18n_null;
2536 if (__kmp_affinity.flags.verbose) {
2537 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr
, "KMP_AFFINITY", __kmp_i18n_catgets(kmp_i18n_str_Decodingx2APIC
)), __kmp_msg_null)
;
2538 }
2539
2540 // Figure out the known topology levels
2541 known_levels = 0ull;
2542 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
2543 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
2544 known_levels |= (1ull << i);
2545 }
2546 }
2547
2548 // Get the highest cpuid leaf supported
2549 __kmp_x86_cpuid(0, 0, &buf);
2550 highest_leaf = buf.eax;
2551
2552 // If a specific topology method was requested, only allow that specific leaf
2553 // otherwise, try both leaves 31 and 11 in that order
2554 num_leaves = 0;
2555 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2556 num_leaves = 1;
2557 leaves[0] = 11;
2558 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2559 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2560 num_leaves = 1;
2561 leaves[0] = 31;
2562 leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2563 } else {
2564 num_leaves = 2;
2565 leaves[0] = 31;
2566 leaves[1] = 11;
2567 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2568 }
2569
2570 // Check to see if cpuid leaf 31 or 11 is supported.
2571 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2572 topology_leaf = -1;
2573 for (int i = 0; i < num_leaves; ++i) {
2574 int leaf = leaves[i];
2575 if (highest_leaf < leaf)
2576 continue;
2577 __kmp_x86_cpuid(leaf, 0, &buf);
2578 if (buf.ebx == 0)
2579 continue;
2580 topology_leaf = leaf;
2581 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
2582 if (levels_index == 0)
2583 continue;
2584 break;
2585 }
2586 if (topology_leaf == -1 || levels_index == 0) {
2587 *msg_id = leaf_message_id;
2588 return false;
2589 }
2590 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST)if (!(levels_index <= INTEL_LEVEL_TYPE_LAST)) { __kmp_debug_assert
("levels_index <= INTEL_LEVEL_TYPE_LAST", "openmp/runtime/src/kmp_affinity.cpp"
, 2590); }
;
2591
2592 // The algorithm used starts by setting the affinity to each available thread
2593 // and retrieving info from the cpuid instruction, so if we are not capable of
2594 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2595 // we need to do something else - use the defaults that we calculated from
2596 // issuing cpuid without binding to each proc.
2597 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
2598 // Hack to try and infer the machine topology using only the data
2599 // available from cpuid on the current thread, and __kmp_xproc.
2600 KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert
("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp"
, 2600); }
;
2601 for (unsigned i = 0; i < levels_index; ++i) {
2602 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2603 __kmp_nThreadsPerCore = levels[i].nitems;
2604 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2605 nCoresPerPkg = levels[i].nitems;
2606 }
2607 }
2608 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2609 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2610 return true;
2611 }
2612
2613 // Allocate the data structure to be returned.
2614 int depth = levels_index;
2615 for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
2616 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
2617 __kmp_topology =
2618 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
2619
2620 // Insert equivalent cache types if they exist
2621 kmp_cache_info_t cache_info;
2622 for (size_t i = 0; i < cache_info.get_depth(); ++i) {
2623 const kmp_cache_info_t::info_t &info = cache_info[i];
2624 unsigned cache_mask = info.mask;
2625 unsigned cache_level = info.level;
2626 for (unsigned j = 0; j < levels_index; ++j) {
2627 unsigned hw_cache_mask = levels[j].cache_mask;
2628 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2629 if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2630 kmp_hw_t type =
2631 __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2632 __kmp_topology->set_equivalent_type(cache_type, type);
2633 }
2634 }
2635 }
2636
2637 // From here on, we can assume that it is safe to call
2638 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2639 // __kmp_affinity.type = affinity_none.
2640
2641 // Save the affinity mask for the current thread.
2642 kmp_affinity_raii_t previous_affinity;
2643
2644 // Run through each of the available contexts, binding the current thread
2645 // to it, and obtaining the pertinent information using the cpuid instr.
2646 unsigned int proc;
2647 int hw_thread_index = 0;
2648 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask)for (proc = (__kmp_affin_fullMask)->begin(); (int)proc != (
__kmp_affin_fullMask)->end(); proc = (__kmp_affin_fullMask
)->next(proc))
{
2649 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2650 unsigned my_levels_index;
2651
2652 // Skip this proc if it is not included in the machine model.
2653 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(proc)) {
2654 continue;
2655 }
2656 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc)if (!(hw_thread_index < __kmp_avail_proc)) { __kmp_debug_assert
("hw_thread_index < __kmp_avail_proc", "openmp/runtime/src/kmp_affinity.cpp"
, 2656); }
;
2657
2658 __kmp_affinity_dispatch->bind_thread(proc);
2659
2660 // New algorithm
2661 __kmp_x86_cpuid(topology_leaf, 0, &buf);
2662 apic_id = buf.edx;
2663 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2664 my_levels_index =
2665 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2666 if (my_levels_index == 0 || my_levels_index != levels_index) {
2667 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2668 return false;
2669 }
2670 hw_thread.clear();
2671 hw_thread.os_id = proc;
2672 // Put in topology information
2673 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2674 hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2675 if (j > 0) {
2676 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2677 }
2678 }
2679 // Hybrid information
2680 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2681 kmp_hw_core_type_t type;
2682 unsigned native_model_id;
2683 int efficiency;
2684 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id);
2685 hw_thread.attrs.set_core_type(type);
2686 hw_thread.attrs.set_core_eff(efficiency);
2687 }
2688 hw_thread_index++;
2689 }
2690 KMP_ASSERT(hw_thread_index > 0)if (!(hw_thread_index > 0)) { __kmp_debug_assert("hw_thread_index > 0"
, "openmp/runtime/src/kmp_affinity.cpp", 2690); }
;
2691 __kmp_topology->sort_ids();
2692 if (!__kmp_topology->check_ids()) {
2693 kmp_topology_t::deallocate(__kmp_topology);
2694 __kmp_topology = nullptr;
2695 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2696 return false;
2697 }
2698 return true;
2699}
2700#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2701
2702#define osIdIndex0 0
2703#define threadIdIndex1 1
2704#define coreIdIndex2 2
2705#define pkgIdIndex3 3
2706#define nodeIdIndex4 4
2707
2708typedef unsigned *ProcCpuInfo;
2709static unsigned maxIndex = pkgIdIndex3;
2710
2711static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2712 const void *b) {
2713 unsigned i;
2714 const unsigned *aa = *(unsigned *const *)a;
2715 const unsigned *bb = *(unsigned *const *)b;
2716 for (i = maxIndex;; i--) {
2717 if (aa[i] < bb[i])
2718 return -1;
2719 if (aa[i] > bb[i])
2720 return 1;
2721 if (i == osIdIndex0)
2722 break;
2723 }
2724 return 0;
2725}
2726
2727#if KMP_USE_HIER_SCHED0
2728// Set the array sizes for the hierarchy layers
2729static void __kmp_dispatch_set_hierarchy_values() {
2730 // Set the maximum number of L1's to number of cores
2731 // Set the maximum number of L2's to to either number of cores / 2 for
2732 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2733 // Or the number of cores for Intel(R) Xeon(R) processors
2734 // Set the maximum number of NUMA nodes and L3's to number of packages
2735 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2736 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2737 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2738#if KMP_ARCH_X86_641 && (KMP_OS_LINUX1 || KMP_OS_FREEBSD0 || KMP_OS_WINDOWS0) && \
2739 KMP_MIC_SUPPORTED((0 || 1) && (1 || 0))
2740 if (__kmp_mic_type >= mic3)
2741 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2742 else
2743#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2744 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2745 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2746 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2747 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2748 // Set the number of threads per unit
2749 // Number of hardware threads per L1/L2/L3/NUMA/LOOP
2750 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2751 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2752 __kmp_nThreadsPerCore;
2753#if KMP_ARCH_X86_641 && (KMP_OS_LINUX1 || KMP_OS_FREEBSD0 || KMP_OS_WINDOWS0) && \
2754 KMP_MIC_SUPPORTED((0 || 1) && (1 || 0))
2755 if (__kmp_mic_type >= mic3)
2756 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2757 2 * __kmp_nThreadsPerCore;
2758 else
2759#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2760 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2761 __kmp_nThreadsPerCore;
2762 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2763 nCoresPerPkg * __kmp_nThreadsPerCore;
2764 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2765 nCoresPerPkg * __kmp_nThreadsPerCore;
2766 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2767 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2768}
2769
2770// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2771// i.e., this thread's L1 or this thread's L2, etc.
2772int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2773 int index = type + 1;
2774 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2775 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST)if (!(type != kmp_hier_layer_e::LAYER_LAST)) { __kmp_debug_assert
("type != kmp_hier_layer_e::LAYER_LAST", "openmp/runtime/src/kmp_affinity.cpp"
, 2775); }
;
2776 if (type == kmp_hier_layer_e::LAYER_THREAD)
2777 return tid;
2778 else if (type == kmp_hier_layer_e::LAYER_LOOP)
2779 return 0;
2780 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0)if (!(__kmp_hier_max_units[index] != 0)) { __kmp_debug_assert
("__kmp_hier_max_units[index] != 0", "openmp/runtime/src/kmp_affinity.cpp"
, 2780); }
;
2781 if (tid >= num_hw_threads)
2782 tid = tid % num_hw_threads;
2783 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2784}
2785
2786// Return the number of t1's per t2
2787int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2788 int i1 = t1 + 1;
2789 int i2 = t2 + 1;
2790 KMP_DEBUG_ASSERT(i1 <= i2)if (!(i1 <= i2)) { __kmp_debug_assert("i1 <= i2", "openmp/runtime/src/kmp_affinity.cpp"
, 2790); }
;
2791 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST)if (!(t1 != kmp_hier_layer_e::LAYER_LAST)) { __kmp_debug_assert
("t1 != kmp_hier_layer_e::LAYER_LAST", "openmp/runtime/src/kmp_affinity.cpp"
, 2791); }
;
2792 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST)if (!(t2 != kmp_hier_layer_e::LAYER_LAST)) { __kmp_debug_assert
("t2 != kmp_hier_layer_e::LAYER_LAST", "openmp/runtime/src/kmp_affinity.cpp"
, 2792); }
;
2793 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0)if (!(__kmp_hier_threads_per[i1] != 0)) { __kmp_debug_assert(
"__kmp_hier_threads_per[i1] != 0", "openmp/runtime/src/kmp_affinity.cpp"
, 2793); }
;
2794 // (nthreads/t2) / (nthreads/t1) = t1 / t2
2795 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2796}
2797#endif // KMP_USE_HIER_SCHED
2798
2799static inline const char *__kmp_cpuinfo_get_filename() {
2800 const char *filename;
2801 if (__kmp_cpuinfo_file != nullptr)
2802 filename = __kmp_cpuinfo_file;
2803 else
2804 filename = "/proc/cpuinfo";
2805 return filename;
2806}
2807
2808static inline const char *__kmp_cpuinfo_get_envvar() {
2809 const char *envvar = nullptr;
2810 if (__kmp_cpuinfo_file != nullptr)
2811 envvar = "KMP_CPUINFO_FILE";
2812 return envvar;
2813}
2814
2815// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2816// affinity map.
2817static bool __kmp_affinity_create_cpuinfo_map(int *line,
2818 kmp_i18n_id_t *const msg_id) {
2819 const char *filename = __kmp_cpuinfo_get_filename();
2820 const char *envvar = __kmp_cpuinfo_get_envvar();
2821 *msg_id = kmp_i18n_null;
2822
2823 if (__kmp_affinity.flags.verbose) {
2824 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffParseFilename
, "KMP_AFFINITY", filename), __kmp_msg_null)
;
2825 }
2826
2827 kmp_safe_raii_file_t f(filename, "r", envvar);
2828
2829 // Scan of the file, and count the number of "processor" (osId) fields,
2830 // and find the highest value of <n> for a node_<n> field.
2831 char buf[256];
2832 unsigned num_records = 0;
2833 while (!feof(f)) {
2834 buf[sizeof(buf) - 1] = 1;
2835 if (!fgets(buf, sizeof(buf), f)) {
2836 // Read errors presumably because of EOF
2837 break;
2838 }
2839
2840 char s1[] = "processor";
2841 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2842 num_records++;
2843 continue;
2844 }
2845
2846 // FIXME - this will match "node_<n> <garbage>"
2847 unsigned level;
2848 if (KMP_SSCANFsscanf(buf, "node_%u id", &level) == 1) {
2849 // validate the input fisrt:
2850 if (level > (unsigned)__kmp_xproc) { // level is too big
2851 level = __kmp_xproc;
2852 }
2853 if (nodeIdIndex4 + level >= maxIndex) {
2854 maxIndex = nodeIdIndex4 + level;
2855 }
2856 continue;
2857 }
2858 }
2859
2860 // Check for empty file / no valid processor records, or too many. The number
2861 // of records can't exceed the number of valid bits in the affinity mask.
2862 if (num_records == 0) {
2863 *msg_id = kmp_i18n_str_NoProcRecords;
2864 return false;
2865 }
2866 if (num_records > (unsigned)__kmp_xproc) {
2867 *msg_id = kmp_i18n_str_TooManyProcRecords;
2868 return false;
2869 }
2870
2871 // Set the file pointer back to the beginning, so that we can scan the file
2872 // again, this time performing a full parse of the data. Allocate a vector of
2873 // ProcCpuInfo object, where we will place the data. Adding an extra element
2874 // at the end allows us to remove a lot of extra checks for termination
2875 // conditions.
2876 if (fseek(f, 0, SEEK_SET0) != 0) {
2877 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2878 return false;
2879 }
2880
2881 // Allocate the array of records to store the proc info in. The dummy
2882 // element at the end makes the logic in filling them out easier to code.
2883 unsigned **threadInfo =
2884 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *))___kmp_allocate(((num_records + 1) * sizeof(unsigned *)), "openmp/runtime/src/kmp_affinity.cpp"
, 2884)
;
2885 unsigned i;
2886 for (i = 0; i <= num_records; i++) {
2887 threadInfo[i] =
2888 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned))___kmp_allocate(((maxIndex + 1) * sizeof(unsigned)), "openmp/runtime/src/kmp_affinity.cpp"
, 2888)
;
2889 }
2890
2891#define CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo
[i]), "openmp/runtime/src/kmp_affinity.cpp", 2891); } ___kmp_free
((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 2891);
\
2892 for (i = 0; i <= num_records; i++) { \
2893 __kmp_free(threadInfo[i])___kmp_free((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp"
, 2893)
; \
2894 } \
2895 __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 2895)
;
2896
2897 // A value of UINT_MAX means that we didn't find the field
2898 unsigned __index;
2899
2900#define INIT_PROC_INFO(p)for (__index = 0; __index <= maxIndex; __index++) { (p)[__index
] = (2147483647 *2U +1U); }
\
2901 for (__index = 0; __index <= maxIndex; __index++) { \
2902 (p)[__index] = UINT_MAX(2147483647 *2U +1U); \
2903 }
2904
2905 for (i = 0; i <= num_records; i++) {
2906 INIT_PROC_INFO(threadInfo[i])for (__index = 0; __index <= maxIndex; __index++) { (threadInfo
[i])[__index] = (2147483647 *2U +1U); }
;
2907 }
2908
2909 unsigned num_avail = 0;
2910 *line = 0;
2911 while (!feof(f)) {
2912 // Create an inner scoping level, so that all the goto targets at the end of
2913 // the loop appear in an outer scoping level. This avoids warnings about
2914 // jumping past an initialization to a target in the same block.
2915 {
2916 buf[sizeof(buf) - 1] = 1;
2917 bool long_line = false;
2918 if (!fgets(buf, sizeof(buf), f)) {
2919 // Read errors presumably because of EOF
2920 // If there is valid data in threadInfo[num_avail], then fake
2921 // a blank line in ensure that the last address gets parsed.
2922 bool valid = false;
2923 for (i = 0; i <= maxIndex; i++) {
2924 if (threadInfo[num_avail][i] != UINT_MAX(2147483647 *2U +1U)) {
2925 valid = true;
2926 }
2927 }
2928 if (!valid) {
2929 break;
2930 }
2931 buf[0] = 0;
2932 } else if (!buf[sizeof(buf) - 1]) {
2933 // The line is longer than the buffer. Set a flag and don't
2934 // emit an error if we were going to ignore the line, anyway.
2935 long_line = true;
2936
2937#define CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free
((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 2937
); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 2937);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false
; }
\
2938 if (long_line) { \
2939 CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo
[i]), "openmp/runtime/src/kmp_affinity.cpp", 2939); } ___kmp_free
((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 2939);
; \
2940 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
2941 return false; \
2942 }
2943 }
2944 (*line)++;
2945
2946 char s1[] = "processor";
2947 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2948 CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free
((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 2948
); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 2948);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false
; }
;
2949 char *p = strchr(buf + sizeof(s1) - 1, ':');
2950 unsigned val;
2951 if ((p == NULL__null) || (KMP_SSCANFsscanf(p + 1, "%u\n", &val) != 1))
2952 goto no_val;
2953 if (threadInfo[num_avail][osIdIndex0] != UINT_MAX(2147483647 *2U +1U))
2954#if KMP_ARCH_AARCH640
2955 // Handle the old AArch64 /proc/cpuinfo layout differently,
2956 // it contains all of the 'processor' entries listed in a
2957 // single 'Processor' section, therefore the normal looking
2958 // for duplicates in that section will always fail.
2959 num_avail++;
2960#else
2961 goto dup_field;
2962#endif
2963 threadInfo[num_avail][osIdIndex0] = val;
2964#if KMP_OS_LINUX1 && !(KMP_ARCH_X860 || KMP_ARCH_X86_641)
2965 char path[256];
2966 KMP_SNPRINTFsnprintf(
2967 path, sizeof(path),
2968 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2969 threadInfo[num_avail][osIdIndex0]);
2970 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex3]);
2971
2972 KMP_SNPRINTFsnprintf(path, sizeof(path),
2973 "/sys/devices/system/cpu/cpu%u/topology/core_id",
2974 threadInfo[num_avail][osIdIndex0]);
2975 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex2]);
2976 continue;
2977#else
2978 }
2979 char s2[] = "physical id";
2980 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2981 CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free
((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 2981
); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 2981);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false
; }
;
2982 char *p = strchr(buf + sizeof(s2) - 1, ':');
2983 unsigned val;
2984 if ((p == NULL__null) || (KMP_SSCANFsscanf(p + 1, "%u\n", &val) != 1))
2985 goto no_val;
2986 if (threadInfo[num_avail][pkgIdIndex3] != UINT_MAX(2147483647 *2U +1U))
2987 goto dup_field;
2988 threadInfo[num_avail][pkgIdIndex3] = val;
2989 continue;
2990 }
2991 char s3[] = "core id";
2992 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2993 CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free
((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 2993
); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 2993);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false
; }
;
2994 char *p = strchr(buf + sizeof(s3) - 1, ':');
2995 unsigned val;
2996 if ((p == NULL__null) || (KMP_SSCANFsscanf(p + 1, "%u\n", &val) != 1))
2997 goto no_val;
2998 if (threadInfo[num_avail][coreIdIndex2] != UINT_MAX(2147483647 *2U +1U))
2999 goto dup_field;
3000 threadInfo[num_avail][coreIdIndex2] = val;
3001 continue;
3002#endif // KMP_OS_LINUX && USE_SYSFS_INFO
3003 }
3004 char s4[] = "thread id";
3005 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
3006 CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free
((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 3006
); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 3006);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false
; }
;
3007 char *p = strchr(buf + sizeof(s4) - 1, ':');
3008 unsigned val;
3009 if ((p == NULL__null) || (KMP_SSCANFsscanf(p + 1, "%u\n", &val) != 1))
3010 goto no_val;
3011 if (threadInfo[num_avail][threadIdIndex1] != UINT_MAX(2147483647 *2U +1U))
3012 goto dup_field;
3013 threadInfo[num_avail][threadIdIndex1] = val;
3014 continue;
3015 }
3016 unsigned level;
3017 if (KMP_SSCANFsscanf(buf, "node_%u id", &level) == 1) {
3018 CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free
((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 3018
); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp"
, 3018);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false
; }
;
3019 char *p = strchr(buf + sizeof(s4) - 1, ':');
3020 unsigned val;
3021 if ((p == NULL__null) || (KMP_SSCANFsscanf(p + 1, "%u\n", &val) != 1))
3022 goto no_val;
3023 // validate the input before using level:
3024 if (level > (unsigned)__kmp_xproc) { // level is too big
3025 level = __kmp_xproc;
3026 }
3027 if (threadInfo[num_avail][nodeIdIndex4 + level] != UINT_MAX(2147483647 *2U +1U))
3028 goto dup_field;
3029 threadInfo[num_avail][nodeIdIndex4 + level] = val;
3030 continue;
3031 }
3032
3033 // We didn't recognize the leading token on the line. There are lots of
3034 // leading tokens that we don't recognize - if the line isn't empty, go on
3035 // to the next line.
3036 if ((*buf != 0) && (*buf != '\n')) {
3037 // If the line is longer than the buffer, read characters
3038 // until we find a newline.
3039 if (long_line) {
3040 int ch;
3041 while (((ch = fgetc(f)) != EOF(-1)) && (ch != '\n'))
3042 ;
3043 }
3044 continue;
3045 }
3046
3047 // A newline has signalled the end of the processor record.
3048 // Check that there aren't too many procs specified.
3049 if ((int)num_avail == __kmp_xproc) {
3050 CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo
[i]), "openmp/runtime/src/kmp_affinity.cpp", 3050); } ___kmp_free
((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3050);
;
3051 *msg_id = kmp_i18n_str_TooManyEntries;
3052 return false;
3053 }
3054
3055 // Check for missing fields. The osId field must be there, and we
3056 // currently require that the physical id field is specified, also.
3057 if (threadInfo[num_avail][osIdIndex0] == UINT_MAX(2147483647 *2U +1U)) {
3058 CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo
[i]), "openmp/runtime/src/kmp_affinity.cpp", 3058); } ___kmp_free
((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3058);
;
3059 *msg_id = kmp_i18n_str_MissingProcField;
3060 return false;
3061 }
3062 if (threadInfo[0][pkgIdIndex3] == UINT_MAX(2147483647 *2U +1U)) {
3063 CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo
[i]), "openmp/runtime/src/kmp_affinity.cpp", 3063); } ___kmp_free
((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3063);
;
3064 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
3065 return false;
3066 }
3067
3068 // Skip this proc if it is not included in the machine model.
3069 if (KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0) &&
3070 !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],(__kmp_affin_fullMask)->is_set(threadInfo[num_avail][0])
3071 __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(threadInfo[num_avail][0])) {
3072 INIT_PROC_INFO(threadInfo[num_avail])for (__index = 0; __index <= maxIndex; __index++) { (threadInfo
[num_avail])[__index] = (2147483647 *2U +1U); }
;
3073 continue;
3074 }
3075
3076 // We have a successful parse of this proc's info.
3077 // Increment the counter, and prepare for the next proc.
3078 num_avail++;
3079 KMP_ASSERT(num_avail <= num_records)if (!(num_avail <= num_records)) { __kmp_debug_assert("num_avail <= num_records"
, "openmp/runtime/src/kmp_affinity.cpp", 3079); }
;
3080 INIT_PROC_INFO(threadInfo[num_avail])for (__index = 0; __index <= maxIndex; __index++) { (threadInfo
[num_avail])[__index] = (2147483647 *2U +1U); }
;
3081 }
3082 continue;
3083
3084 no_val:
3085 CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo
[i]), "openmp/runtime/src/kmp_affinity.cpp", 3085); } ___kmp_free
((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3085);
;
3086 *msg_id = kmp_i18n_str_MissingValCpuinfo;
3087 return false;
3088
3089 dup_field:
3090 CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo
[i]), "openmp/runtime/src/kmp_affinity.cpp", 3090); } ___kmp_free
((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3090);
;
3091 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3092 return false;
3093 }
3094 *line = 0;
3095
3096#if KMP_MIC0 && REDUCE_TEAM_SIZE
3097 unsigned teamSize = 0;
3098#endif // KMP_MIC && REDUCE_TEAM_SIZE
3099
3100 // check for num_records == __kmp_xproc ???
3101
3102 // If it is configured to omit the package level when there is only a single
3103 // package, the logic at the end of this routine won't work if there is only a
3104 // single thread
3105 KMP_ASSERT(num_avail > 0)if (!(num_avail > 0)) { __kmp_debug_assert("num_avail > 0"
, "openmp/runtime/src/kmp_affinity.cpp", 3105); }
;
3106 KMP_ASSERT(num_avail <= num_records)if (!(num_avail <= num_records)) { __kmp_debug_assert("num_avail <= num_records"
, "openmp/runtime/src/kmp_affinity.cpp", 3106); }
;
3107
3108 // Sort the threadInfo table by physical Id.
3109 qsort(threadInfo, num_avail, sizeof(*threadInfo),
3110 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
3111
3112 // The table is now sorted by pkgId / coreId / threadId, but we really don't
3113 // know the radix of any of the fields. pkgId's may be sparsely assigned among
3114 // the chips on a system. Although coreId's are usually assigned
3115 // [0 .. coresPerPkg-1] and threadId's are usually assigned
3116 // [0..threadsPerCore-1], we don't want to make any such assumptions.
3117 //
3118 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3119 // total # packages) are at this point - we want to determine that now. We
3120 // only have an upper bound on the first two figures.
3121 unsigned *counts =
3122 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned))___kmp_allocate(((maxIndex + 1) * sizeof(unsigned)), "openmp/runtime/src/kmp_affinity.cpp"
, 3122)
;
3123 unsigned *maxCt =
3124 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned))___kmp_allocate(((maxIndex + 1) * sizeof(unsigned)), "openmp/runtime/src/kmp_affinity.cpp"
, 3124)
;
3125 unsigned *totals =
3126 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned))___kmp_allocate(((maxIndex + 1) * sizeof(unsigned)), "openmp/runtime/src/kmp_affinity.cpp"
, 3126)
;
3127 unsigned *lastId =
3128 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned))___kmp_allocate(((maxIndex + 1) * sizeof(unsigned)), "openmp/runtime/src/kmp_affinity.cpp"
, 3128)
;
3129
3130 bool assign_thread_ids = false;
3131 unsigned threadIdCt;
3132 unsigned index;
3133
3134restart_radix_check:
3135 threadIdCt = 0;
3136
3137 // Initialize the counter arrays with data from threadInfo[0].
3138 if (assign_thread_ids) {
3139 if (threadInfo[0][threadIdIndex1] == UINT_MAX(2147483647 *2U +1U)) {
3140 threadInfo[0][threadIdIndex1] = threadIdCt++;
3141 } else if (threadIdCt <= threadInfo[0][threadIdIndex1]) {
3142 threadIdCt = threadInfo[0][threadIdIndex1] + 1;
3143 }
3144 }
3145 for (index = 0; index <= maxIndex; index++) {
3146 counts[index] = 1;
3147 maxCt[index] = 1;
3148 totals[index] = 1;
3149 lastId[index] = threadInfo[0][index];
3150 ;
3151 }
3152
3153 // Run through the rest of the OS procs.
3154 for (i = 1; i < num_avail; i++) {
3155 // Find the most significant index whose id differs from the id for the
3156 // previous OS proc.
3157 for (index = maxIndex; index >= threadIdIndex1; index--) {
3158 if (assign_thread_ids && (index == threadIdIndex1)) {
3159 // Auto-assign the thread id field if it wasn't specified.
3160 if (threadInfo[i][threadIdIndex1] == UINT_MAX(2147483647 *2U +1U)) {
3161 threadInfo[i][threadIdIndex1] = threadIdCt++;
3162 }
3163 // Apparently the thread id field was specified for some entries and not
3164 // others. Start the thread id counter off at the next higher thread id.
3165 else if (threadIdCt <= threadInfo[i][threadIdIndex1]) {
3166 threadIdCt = threadInfo[i][threadIdIndex1] + 1;
3167 }
3168 }
3169 if (threadInfo[i][index] != lastId[index]) {
3170 // Run through all indices which are less significant, and reset the
3171 // counts to 1. At all levels up to and including index, we need to
3172 // increment the totals and record the last id.
3173 unsigned index2;
3174 for (index2 = threadIdIndex1; index2 < index; index2++) {
3175 totals[index2]++;
3176 if (counts[index2] > maxCt[index2]) {
3177 maxCt[index2] = counts[index2];
3178 }
3179 counts[index2] = 1;
3180 lastId[index2] = threadInfo[i][index2];
3181 }
3182 counts[index]++;
3183 totals[index]++;
3184 lastId[index] = threadInfo[i][index];
3185
3186 if (assign_thread_ids && (index > threadIdIndex1)) {
3187
3188#if KMP_MIC0 && REDUCE_TEAM_SIZE
3189 // The default team size is the total #threads in the machine
3190 // minus 1 thread for every core that has 3 or more threads.
3191 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3192#endif // KMP_MIC && REDUCE_TEAM_SIZE
3193
3194 // Restart the thread counter, as we are on a new core.
3195 threadIdCt = 0;
3196
3197 // Auto-assign the thread id field if it wasn't specified.
3198 if (threadInfo[i][threadIdIndex1] == UINT_MAX(2147483647 *2U +1U)) {
3199 threadInfo[i][threadIdIndex1] = threadIdCt++;
3200 }
3201
3202 // Apparently the thread id field was specified for some entries and
3203 // not others. Start the thread id counter off at the next higher
3204 // thread id.
3205 else if (threadIdCt <= threadInfo[i][threadIdIndex1]) {
3206 threadIdCt = threadInfo[i][threadIdIndex1] + 1;
3207 }
3208 }
3209 break;
3210 }
3211 }
3212 if (index < threadIdIndex1) {
3213 // If thread ids were specified, it is an error if they are not unique.
3214 // Also, check that we waven't already restarted the loop (to be safe -
3215 // shouldn't need to).
3216 if ((threadInfo[i][threadIdIndex1] != UINT_MAX(2147483647 *2U +1U)) || assign_thread_ids) {
3217 __kmp_free(lastId)___kmp_free((lastId), "openmp/runtime/src/kmp_affinity.cpp", 3217
)
;
3218 __kmp_free(totals)___kmp_free((totals), "openmp/runtime/src/kmp_affinity.cpp", 3218
)
;
3219 __kmp_free(maxCt)___kmp_free((maxCt), "openmp/runtime/src/kmp_affinity.cpp", 3219
)
;
3220 __kmp_free(counts)___kmp_free((counts), "openmp/runtime/src/kmp_affinity.cpp", 3220
)
;
3221 CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo
[i]), "openmp/runtime/src/kmp_affinity.cpp", 3221); } ___kmp_free
((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3221);
;
3222 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3223 return false;
3224 }
3225
3226 // If the thread ids were not specified and we see entries entries that
3227 // are duplicates, start the loop over and assign the thread ids manually.
3228 assign_thread_ids = true;
3229 goto restart_radix_check;
3230 }
3231 }
3232
3233#if KMP_MIC0 && REDUCE_TEAM_SIZE
3234 // The default team size is the total #threads in the machine
3235 // minus 1 thread for every core that has 3 or more threads.
3236 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3237#endif // KMP_MIC && REDUCE_TEAM_SIZE
3238
3239 for (index = threadIdIndex1; index <= maxIndex; index++) {
3240 if (counts[index] > maxCt[index]) {
3241 maxCt[index] = counts[index];
3242 }
3243 }
3244
3245 __kmp_nThreadsPerCore = maxCt[threadIdIndex1];
3246 nCoresPerPkg = maxCt[coreIdIndex2];
3247 nPackages = totals[pkgIdIndex3];
3248
3249 // When affinity is off, this routine will still be called to set
3250 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3251 // Make sure all these vars are set correctly, and return now if affinity is
3252 // not enabled.
3253 __kmp_ncores = totals[coreIdIndex2];
3254 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
3255 KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert
("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp"
, 3255); }
;
3256 return true;
3257 }
3258
3259#if KMP_MIC0 && REDUCE_TEAM_SIZE
3260 // Set the default team size.
3261 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3262 __kmp_dflt_team_nth = teamSize;
3263 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "if (kmp_a_debug >= 20) { __kmp_debug_printf ("__kmp_affinity_create_cpuinfo_map: setting "
"__kmp_dflt_team_nth = %d\n", __kmp_dflt_team_nth); }
3264 "__kmp_dflt_team_nth = %d\n",if (kmp_a_debug >= 20) { __kmp_debug_printf ("__kmp_affinity_create_cpuinfo_map: setting "
"__kmp_dflt_team_nth = %d\n", __kmp_dflt_team_nth); }
3265 __kmp_dflt_team_nth))if (kmp_a_debug >= 20) { __kmp_debug_printf ("__kmp_affinity_create_cpuinfo_map: setting "
"__kmp_dflt_team_nth = %d\n", __kmp_dflt_team_nth); }
;
3266 }
3267#endif // KMP_MIC && REDUCE_TEAM_SIZE
3268
3269 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc)if (!(num_avail == (unsigned)__kmp_avail_proc)) { __kmp_debug_assert
("num_avail == (unsigned)__kmp_avail_proc", "openmp/runtime/src/kmp_affinity.cpp"
, 3269); }
;
3270
3271 // Count the number of levels which have more nodes at that level than at the
3272 // parent's level (with there being an implicit root node of the top level).
3273 // This is equivalent to saying that there is at least one node at this level
3274 // which has a sibling. These levels are in the map, and the package level is
3275 // always in the map.
3276 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool))___kmp_allocate(((maxIndex + 1) * sizeof(bool)), "openmp/runtime/src/kmp_affinity.cpp"
, 3276)
;
3277 for (index = threadIdIndex1; index < maxIndex; index++) {
3278 KMP_ASSERT(totals[index] >= totals[index + 1])if (!(totals[index] >= totals[index + 1])) { __kmp_debug_assert
("totals[index] >= totals[index + 1]", "openmp/runtime/src/kmp_affinity.cpp"
, 3278); }
;
3279 inMap[index] = (totals[index] > totals[index + 1]);
3280 }
3281 inMap[maxIndex] = (totals[maxIndex] > 1);
3282 inMap[pkgIdIndex3] = true;
3283 inMap[coreIdIndex2] = true;
3284 inMap[threadIdIndex1] = true;
3285
3286 int depth = 0;
3287 int idx = 0;
3288 kmp_hw_t types[KMP_HW_LAST];
3289 int pkgLevel = -1;
3290 int coreLevel = -1;
3291 int threadLevel = -1;
3292 for (index = threadIdIndex1; index <= maxIndex; index++) {
3293 if (inMap[index]) {
3294 depth++;
3295 }
3296 }
3297 if (inMap[pkgIdIndex3]) {
3298 pkgLevel = idx;
3299 types[idx++] = KMP_HW_SOCKET;
3300 }
3301 if (inMap[coreIdIndex2]) {
3302 coreLevel = idx;
3303 types[idx++] = KMP_HW_CORE;
3304 }
3305 if (inMap[threadIdIndex1]) {
3306 threadLevel = idx;
3307 types[idx++] = KMP_HW_THREAD;
3308 }
3309 KMP_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp"
, 3309); }
;
3310
3311 // Construct the data structure that is to be returned.
3312 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
3313
3314 for (i = 0; i < num_avail; ++i) {
3315 unsigned os = threadInfo[i][osIdIndex0];
3316 int src_index;
3317 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3318 hw_thread.clear();
3319 hw_thread.os_id = os;
3320
3321 idx = 0;
Value stored to 'idx' is never read
3322 for (src_index = maxIndex; src_index >= threadIdIndex1; src_index--) {
3323 if (!inMap[src_index]) {
3324 continue;
3325 }
3326 if (src_index == pkgIdIndex3) {
3327 hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3328 } else if (src_index == coreIdIndex2) {
3329 hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3330 } else if (src_index == threadIdIndex1) {
3331 hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3332 }
3333 }
3334 }
3335
3336 __kmp_free(inMap)___kmp_free((inMap), "openmp/runtime/src/kmp_affinity.cpp", 3336
)
;
3337 __kmp_free(lastId)___kmp_free((lastId), "openmp/runtime/src/kmp_affinity.cpp", 3337
)
;
3338 __kmp_free(totals)___kmp_free((totals), "openmp/runtime/src/kmp_affinity.cpp", 3338
)
;
3339 __kmp_free(maxCt)___kmp_free((maxCt), "openmp/runtime/src/kmp_affinity.cpp", 3339
)
;
3340 __kmp_free(counts)___kmp_free((counts), "openmp/runtime/src/kmp_affinity.cpp", 3340
)
;
3341 CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo
[i]), "openmp/runtime/src/kmp_affinity.cpp", 3341); } ___kmp_free
((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3341);
;
3342 __kmp_topology->sort_ids();
3343 if (!__kmp_topology->check_ids()) {
3344 kmp_topology_t::deallocate(__kmp_topology);
3345 __kmp_topology = nullptr;
3346 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3347 return false;
3348 }
3349 return true;
3350}
3351
3352// Create and return a table of affinity masks, indexed by OS thread ID.
3353// This routine handles OR'ing together all the affinity masks of threads
3354// that are sufficiently close, if granularity > fine.
3355static void __kmp_create_os_id_masks(unsigned *numUnique,
3356 kmp_affinity_t &affinity) {
3357 // First form a table of affinity masks in order of OS thread id.
3358 int maxOsId;
3359 int i;
3360 int numAddrs = __kmp_topology->get_num_hw_threads();
3361 int depth = __kmp_topology->get_depth();
3362 const char *env_var = affinity.env_var;
3363 KMP_ASSERT(numAddrs)if (!(numAddrs)) { __kmp_debug_assert("numAddrs", "openmp/runtime/src/kmp_affinity.cpp"
, 3363); }
;
3364 KMP_ASSERT(depth)if (!(depth)) { __kmp_debug_assert("depth", "openmp/runtime/src/kmp_affinity.cpp"
, 3364); }
;
3365
3366 maxOsId = 0;
3367 for (i = numAddrs - 1;; --i) {
3368 int osId = __kmp_topology->at(i).os_id;
3369 if (osId > maxOsId) {
3370 maxOsId = osId;
3371 }
3372 if (i == 0)
3373 break;
3374 }
3375 affinity.num_os_id_masks = maxOsId + 1;
3376 KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks)(affinity.os_id_masks = __kmp_affinity_dispatch->allocate_mask_array
(affinity.num_os_id_masks))
;
3377 KMP_ASSERT(affinity.gran_levels >= 0)if (!(affinity.gran_levels >= 0)) { __kmp_debug_assert("affinity.gran_levels >= 0"
, "openmp/runtime/src/kmp_affinity.cpp", 3377); }
;
3378 if (affinity.flags.verbose && (affinity.gran_levels > 0)) {
3379 KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_ThreadsMigrate
, env_var, affinity.gran_levels), __kmp_msg_null)
;
3380 }
3381 if (affinity.gran_levels >= (int)depth) {
3382 KMP_AFF_WARNING(affinity, AffThreadsMayMigrate)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffThreadsMayMigrate), __kmp_msg_null
); }
;
3383 }
3384
3385 // Run through the table, forming the masks for all threads on each core.
3386 // Threads on the same core will have identical kmp_hw_thread_t objects, not
3387 // considering the last level, which must be the thread id. All threads on a
3388 // core will appear consecutively.
3389 int unique = 0;
3390 int j = 0; // index of 1st thread on core
3391 int leader = 0;
3392 kmp_affin_mask_t *sum;
3393 KMP_CPU_ALLOC_ON_STACK(sum)(sum = __kmp_affinity_dispatch->allocate_mask());
3394 KMP_CPU_ZERO(sum)(sum)->zero();
3395 KMP_CPU_SET(__kmp_topology->at(0).os_id, sum)(sum)->set(__kmp_topology->at(0).os_id);
3396 for (i = 1; i < numAddrs; i++) {
3397 // If this thread is sufficiently close to the leader (within the
3398 // granularity setting), then set the bit for this os thread in the
3399 // affinity mask for this group, and go on to the next thread.
3400 if (__kmp_topology->is_close(leader, i, affinity.gran_levels)) {
3401 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum)(sum)->set(__kmp_topology->at(i).os_id);
3402 continue;
3403 }
3404
3405 // For every thread in this group, copy the mask to the thread's entry in
3406 // the OS Id mask table. Mark the first address as a leader.
3407 for (; j < i; j++) {
3408 int osId = __kmp_topology->at(j).os_id;
3409 KMP_DEBUG_ASSERT(osId <= maxOsId)if (!(osId <= maxOsId)) { __kmp_debug_assert("osId <= maxOsId"
, "openmp/runtime/src/kmp_affinity.cpp", 3409); }
;
3410 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId)__kmp_affinity_dispatch->index_mask_array(affinity.os_id_masks
, osId)
;
3411 KMP_CPU_COPY(mask, sum)(mask)->copy(sum);
3412 __kmp_topology->at(j).leader = (j == leader);
3413 }
3414 unique++;
3415
3416 // Start a new mask.
3417 leader = i;
3418 KMP_CPU_ZERO(sum)(sum)->zero();
3419 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum)(sum)->set(__kmp_topology->at(i).os_id);
3420 }
3421
3422 // For every thread in last group, copy the mask to the thread's
3423 // entry in the OS Id mask table.
3424 for (; j < i; j++) {
3425 int osId = __kmp_topology->at(j).os_id;
3426 KMP_DEBUG_ASSERT(osId <= maxOsId)if (!(osId <= maxOsId)) { __kmp_debug_assert("osId <= maxOsId"
, "openmp/runtime/src/kmp_affinity.cpp", 3426); }
;
3427 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId)__kmp_affinity_dispatch->index_mask_array(affinity.os_id_masks
, osId)
;
3428 KMP_CPU_COPY(mask, sum)(mask)->copy(sum);
3429 __kmp_topology->at(j).leader = (j == leader);
3430 }
3431 unique++;
3432 KMP_CPU_FREE_FROM_STACK(sum)__kmp_affinity_dispatch->deallocate_mask(sum);
3433
3434 *numUnique = unique;
3435}
3436
3437// Stuff for the affinity proclist parsers. It's easier to declare these vars
3438// as file-static than to try and pass them through the calling sequence of
3439// the recursive-descent OMP_PLACES parser.
3440static kmp_affin_mask_t *newMasks;
3441static int numNewMasks;
3442static int nextNewMask;
3443
3444#define ADD_MASK(_mask) \
3445 { \
3446 if (nextNewMask >= numNewMasks) { \
3447 int i; \
3448 numNewMasks *= 2; \
3449 kmp_affin_mask_t *temp; \
3450 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks)(temp = __kmp_affinity_dispatch->allocate_mask_array(numNewMasks
))
; \
3451 for (i = 0; i < numNewMasks / 2; i++) { \
3452 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i)__kmp_affinity_dispatch->index_mask_array(newMasks, i); \
3453 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i)__kmp_affinity_dispatch->index_mask_array(temp, i); \
3454 KMP_CPU_COPY(dest, src)(dest)->copy(src); \
3455 } \
3456 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2)__kmp_affinity_dispatch->deallocate_mask_array(newMasks); \
3457 newMasks = temp; \
3458 } \
3459 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask))(__kmp_affinity_dispatch->index_mask_array(newMasks, nextNewMask
))->copy((_mask))
; \
3460 nextNewMask++; \
3461 }
3462
3463#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
3464 { \
3465 if (((_osId) > _maxOsId) || \
3466 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId)))(__kmp_affinity_dispatch->index_mask_array((_osId2Mask), (
_osId)))->is_set((_osId))
)) { \
3467 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, _osId
), __kmp_msg_null); }
; \
3468 } else { \
3469 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))__kmp_affinity_dispatch->index_mask_array(_osId2Mask, (_osId
))
); \
3470 } \
3471 }
3472
3473// Re-parse the proclist (for the explicit affinity type), and form the list
3474// of affinity newMasks indexed by gtid.
3475static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) {
3476 int i;
3477 kmp_affin_mask_t **out_masks = &affinity.masks;
3478 unsigned *out_numMasks = &affinity.num_masks;
3479 const char *proclist = affinity.proclist;
3480 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3481 int maxOsId = affinity.num_os_id_masks - 1;
3482 const char *scan = proclist;
3483 const char *next = proclist;
3484
3485 // We use malloc() for the temporary mask vector, so that we can use
3486 // realloc() to extend it.
3487 numNewMasks = 2;
3488 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks)(newMasks = __kmp_affinity_dispatch->allocate_mask_array(numNewMasks
))
;
3489 nextNewMask = 0;
3490 kmp_affin_mask_t *sumMask;
3491 KMP_CPU_ALLOC(sumMask)(sumMask = __kmp_affinity_dispatch->allocate_mask());
3492 int setSize = 0;
3493
3494 for (;;) {
3495 int start, end, stride;
3496
3497 SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; };
3498 next = scan;
3499 if (*next == '\0') {
3500 break;
3501 }
3502
3503 if (*next == '{') {
3504 int num;
3505 setSize = 0;
3506 next++; // skip '{'
3507 SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; };
3508 scan = next;
3509
3510 // Read the first integer in the set.
3511 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist")if (!((*next >= '0') && (*next <= '9'))) { __kmp_debug_assert
(("bad proclist"), "openmp/runtime/src/kmp_affinity.cpp", 3511
); }
;
3512 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3513 num = __kmp_str_to_int(scan, *next);
3514 KMP_ASSERT2(num >= 0, "bad explicit proc list")if (!(num >= 0)) { __kmp_debug_assert(("bad explicit proc list"
), "openmp/runtime/src/kmp_affinity.cpp", 3514); }
;
3515
3516 // Copy the mask for that osId to the sum (union) mask.
3517 if ((num > maxOsId) ||
3518 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, num)
)->is_set(num)
)) {
3519 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, num),
__kmp_msg_null); }
;
3520 KMP_CPU_ZERO(sumMask)(sumMask)->zero();
3521 } else {
3522 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num))(sumMask)->copy(__kmp_affinity_dispatch->index_mask_array
(osId2Mask, num))
;
3523 setSize = 1;
3524 }
3525
3526 for (;;) {
3527 // Check for end of set.
3528 SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; };
3529 if (*next == '}') {
3530 next++; // skip '}'
3531 break;
3532 }
3533
3534 // Skip optional comma.
3535 if (*next == ',') {
3536 next++;
3537 }
3538 SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; };
3539
3540 // Read the next integer in the set.
3541 scan = next;
3542 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list")if (!((*next >= '0') && (*next <= '9'))) { __kmp_debug_assert
(("bad explicit proc list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3542); }
;
3543
3544 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3545 num = __kmp_str_to_int(scan, *next);
3546 KMP_ASSERT2(num >= 0, "bad explicit proc list")if (!(num >= 0)) { __kmp_debug_assert(("bad explicit proc list"
), "openmp/runtime/src/kmp_affinity.cpp", 3546); }
;
3547
3548 // Add the mask for that osId to the sum mask.
3549 if ((num > maxOsId) ||
3550 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, num)
)->is_set(num)
)) {
3551 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, num),
__kmp_msg_null); }
;
3552 } else {
3553 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num))(sumMask)->bitwise_or(__kmp_affinity_dispatch->index_mask_array
(osId2Mask, num))
;
3554 setSize++;
3555 }
3556 }
3557 if (setSize > 0) {
3558 ADD_MASK(sumMask);
3559 }
3560
3561 SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; };
3562 if (*next == ',') {
3563 next++;
3564 }
3565 scan = next;
3566 continue;
3567 }
3568
3569 // Read the first integer.
3570 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list")if (!((*next >= '0') && (*next <= '9'))) { __kmp_debug_assert
(("bad explicit proc list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3570); }
;
3571 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3572 start = __kmp_str_to_int(scan, *next);
3573 KMP_ASSERT2(start >= 0, "bad explicit proc list")if (!(start >= 0)) { __kmp_debug_assert(("bad explicit proc list"
), "openmp/runtime/src/kmp_affinity.cpp", 3573); }
;
3574 SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; };
3575
3576 // If this isn't a range, then add a mask to the list and go on.
3577 if (*next != '-') {
3578 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3579
3580 // Skip optional comma.
3581 if (*next == ',') {
3582 next++;
3583 }
3584 scan = next;
3585 continue;
3586 }
3587
3588 // This is a range. Skip over the '-' and read in the 2nd int.
3589 next++; // skip '-'
3590 SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; };
3591 scan = next;
3592 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list")if (!((*next >= '0') && (*next <= '9'))) { __kmp_debug_assert
(("bad explicit proc list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3592); }
;
3593 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3594 end = __kmp_str_to_int(scan, *next);
3595 KMP_ASSERT2(end >= 0, "bad explicit proc list")if (!(end >= 0)) { __kmp_debug_assert(("bad explicit proc list"
), "openmp/runtime/src/kmp_affinity.cpp", 3595); }
;
3596
3597 // Check for a stride parameter
3598 stride = 1;
3599 SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; };
3600 if (*next == ':') {
3601 // A stride is specified. Skip over the ':" and read the 3rd int.
3602 int sign = +1;
3603 next++; // skip ':'
3604 SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; };
3605 scan = next;
3606 if (*next == '-') {
3607 sign = -1;
3608 next++;
3609 SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; };
3610 scan = next;
3611 }
3612 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list")if (!((*next >= '0') && (*next <= '9'))) { __kmp_debug_assert
(("bad explicit proc list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3612); }
;
3613 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3614 stride = __kmp_str_to_int(scan, *next);
3615 KMP_ASSERT2(stride >= 0, "bad explicit proc list")if (!(stride >= 0)) { __kmp_debug_assert(("bad explicit proc list"
), "openmp/runtime/src/kmp_affinity.cpp", 3615); }
;
3616 stride *= sign;
3617 }
3618
3619 // Do some range checks.
3620 KMP_ASSERT2(stride != 0, "bad explicit proc list")if (!(stride != 0)) { __kmp_debug_assert(("bad explicit proc list"
), "openmp/runtime/src/kmp_affinity.cpp", 3620); }
;
3621 if (stride > 0) {
3622 KMP_ASSERT2(start <= end, "bad explicit proc list")if (!(start <= end)) { __kmp_debug_assert(("bad explicit proc list"
), "openmp/runtime/src/kmp_affinity.cpp", 3622); }
;
3623 } else {
3624 KMP_ASSERT2(start >= end, "bad explicit proc list")if (!(start >= end)) { __kmp_debug_assert(("bad explicit proc list"
), "openmp/runtime/src/kmp_affinity.cpp", 3624); }
;
3625 }
3626 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list")if (!((end - start) / stride <= 65536)) { __kmp_debug_assert
(("bad explicit proc list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3626); }
;
3627
3628 // Add the mask for each OS proc # to the list.
3629 if (stride > 0) {
3630 do {
3631 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3632 start += stride;
3633 } while (start <= end);
3634 } else {
3635 do {
3636 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3637 start += stride;
3638 } while (start >= end);
3639 }
3640
3641 // Skip optional comma.
3642 SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; };
3643 if (*next == ',') {
3644 next++;
3645 }
3646 scan = next;
3647 }
3648
3649 *out_numMasks = nextNewMask;
3650 if (nextNewMask == 0) {
3651 *out_masks = NULL__null;
3652 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks)__kmp_affinity_dispatch->deallocate_mask_array(newMasks);
3653 return;
3654 }
3655 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask)((*out_masks) = __kmp_affinity_dispatch->allocate_mask_array
(nextNewMask))
;
3656 for (i = 0; i < nextNewMask; i++) {
3657 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i)__kmp_affinity_dispatch->index_mask_array(newMasks, i);
3658 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i)__kmp_affinity_dispatch->index_mask_array((*out_masks), i);
3659 KMP_CPU_COPY(dest, src)(dest)->copy(src);
3660 }
3661 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks)__kmp_affinity_dispatch->deallocate_mask_array(newMasks);
3662 KMP_CPU_FREE(sumMask)__kmp_affinity_dispatch->deallocate_mask(sumMask);
3663}
3664
3665/*-----------------------------------------------------------------------------
3666Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3667places. Again, Here is the grammar:
3668
3669place_list := place
3670place_list := place , place_list
3671place := num
3672place := place : num
3673place := place : num : signed
3674place := { subplacelist }
3675place := ! place // (lowest priority)
3676subplace_list := subplace
3677subplace_list := subplace , subplace_list
3678subplace := num
3679subplace := num : num
3680subplace := num : num : signed
3681signed := num
3682signed := + signed
3683signed := - signed
3684-----------------------------------------------------------------------------*/
3685static void __kmp_process_subplace_list(const char **scan,
3686 kmp_affinity_t &affinity, int maxOsId,
3687 kmp_affin_mask_t *tempMask,
3688 int *setSize) {
3689 const char *next;
3690 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3691
3692 for (;;) {
3693 int start, count, stride, i;
3694
3695 // Read in the starting proc id
3696 SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; };
3697 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list")if (!((**scan >= '0') && (**scan <= '9'))) { __kmp_debug_assert
(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3697); }
;
3698 next = *scan;
3699 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3700 start = __kmp_str_to_int(*scan, *next);
3701 KMP_ASSERT(start >= 0)if (!(start >= 0)) { __kmp_debug_assert("start >= 0", "openmp/runtime/src/kmp_affinity.cpp"
, 3701); }
;
3702 *scan = next;
3703
3704 // valid follow sets are ',' ':' and '}'
3705 SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; };
3706 if (**scan == '}' || **scan == ',') {
3707 if ((start > maxOsId) ||
3708 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, start
))->is_set(start)
)) {
3709 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, start
), __kmp_msg_null); }
;
3710 } else {
3711 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start))(tempMask)->bitwise_or(__kmp_affinity_dispatch->index_mask_array
(osId2Mask, start))
;
3712 (*setSize)++;
3713 }
3714 if (**scan == '}') {
3715 break;
3716 }
3717 (*scan)++; // skip ','
3718 continue;
3719 }
3720 KMP_ASSERT2(**scan == ':', "bad explicit places list")if (!(**scan == ':')) { __kmp_debug_assert(("bad explicit places list"
), "openmp/runtime/src/kmp_affinity.cpp", 3720); }
;
3721 (*scan)++; // skip ':'
3722
3723 // Read count parameter
3724 SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; };
3725 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list")if (!((**scan >= '0') && (**scan <= '9'))) { __kmp_debug_assert
(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3725); }
;
3726 next = *scan;
3727 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3728 count = __kmp_str_to_int(*scan, *next);
3729 KMP_ASSERT(count >= 0)if (!(count >= 0)) { __kmp_debug_assert("count >= 0", "openmp/runtime/src/kmp_affinity.cpp"
, 3729); }
;
3730 *scan = next;
3731
3732 // valid follow sets are ',' ':' and '}'
3733 SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; };
3734 if (**scan == '}' || **scan == ',') {
3735 for (i = 0; i < count; i++) {
3736 if ((start > maxOsId) ||
3737 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, start
))->is_set(start)
)) {
3738 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, start
), __kmp_msg_null); }
;
3739 break; // don't proliferate warnings for large count
3740 } else {
3741 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start))(tempMask)->bitwise_or(__kmp_affinity_dispatch->index_mask_array
(osId2Mask, start))
;
3742 start++;
3743 (*setSize)++;
3744 }
3745 }
3746 if (**scan == '}') {
3747 break;
3748 }
3749 (*scan)++; // skip ','
3750 continue;
3751 }
3752 KMP_ASSERT2(**scan == ':', "bad explicit places list")if (!(**scan == ':')) { __kmp_debug_assert(("bad explicit places list"
), "openmp/runtime/src/kmp_affinity.cpp", 3752); }
;
3753 (*scan)++; // skip ':'
3754
3755 // Read stride parameter
3756 int sign = +1;
3757 for (;;) {
3758 SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; };
3759 if (**scan == '+') {
3760 (*scan)++; // skip '+'
3761 continue;
3762 }
3763 if (**scan == '-') {
3764 sign *= -1;
3765 (*scan)++; // skip '-'
3766 continue;
3767 }
3768 break;
3769 }
3770 SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; };
3771 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list")if (!((**scan >= '0') && (**scan <= '9'))) { __kmp_debug_assert
(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3771); }
;
3772 next = *scan;
3773 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3774 stride = __kmp_str_to_int(*scan, *next);
3775 KMP_ASSERT(stride >= 0)if (!(stride >= 0)) { __kmp_debug_assert("stride >= 0",
"openmp/runtime/src/kmp_affinity.cpp", 3775); }
;
3776 *scan = next;
3777 stride *= sign;
3778
3779 // valid follow sets are ',' and '}'
3780 SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; };
3781 if (**scan == '}' || **scan == ',') {
3782 for (i = 0; i < count; i++) {
3783 if ((start > maxOsId) ||
3784 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, start
))->is_set(start)
)) {
3785 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, start
), __kmp_msg_null); }
;
3786 break; // don't proliferate warnings for large count
3787 } else {
3788 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start))(tempMask)->bitwise_or(__kmp_affinity_dispatch->index_mask_array
(osId2Mask, start))
;
3789 start += stride;
3790 (*setSize)++;
3791 }
3792 }
3793 if (**scan == '}') {
3794 break;
3795 }
3796 (*scan)++; // skip ','
3797 continue;
3798 }
3799
3800 KMP_ASSERT2(0, "bad explicit places list")if (!(0)) { __kmp_debug_assert(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3800); }
;
3801 }
3802}
3803
3804static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity,
3805 int maxOsId, kmp_affin_mask_t *tempMask,
3806 int *setSize) {
3807 const char *next;
3808 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3809
3810 // valid follow sets are '{' '!' and num
3811 SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; };
3812 if (**scan == '{') {
3813 (*scan)++; // skip '{'
3814 __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize);
3815 KMP_ASSERT2(**scan == '}', "bad explicit places list")if (!(**scan == '}')) { __kmp_debug_assert(("bad explicit places list"
), "openmp/runtime/src/kmp_affinity.cpp", 3815); }
;
3816 (*scan)++; // skip '}'
3817 } else if (**scan == '!') {
3818 (*scan)++; // skip '!'
3819 __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize);
3820 KMP_CPU_COMPLEMENT(maxOsId, tempMask)(tempMask)->bitwise_not();
3821 } else if ((**scan >= '0') && (**scan <= '9')) {
3822 next = *scan;
3823 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3824 int num = __kmp_str_to_int(*scan, *next);
3825 KMP_ASSERT(num >= 0)if (!(num >= 0)) { __kmp_debug_assert("num >= 0", "openmp/runtime/src/kmp_affinity.cpp"
, 3825); }
;
3826 if ((num > maxOsId) ||
3827 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, num)
)->is_set(num)
)) {
3828 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, num),
__kmp_msg_null); }
;
3829 } else {
3830 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num))(tempMask)->bitwise_or(__kmp_affinity_dispatch->index_mask_array
(osId2Mask, num))
;
3831 (*setSize)++;
3832 }
3833 *scan = next; // skip num
3834 } else {
3835 KMP_ASSERT2(0, "bad explicit places list")if (!(0)) { __kmp_debug_assert(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3835); }
;
3836 }
3837}
3838
3839// static void
3840void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) {
3841 int i, j, count, stride, sign;
3842 kmp_affin_mask_t **out_masks = &affinity.masks;
3843 unsigned *out_numMasks = &affinity.num_masks;
3844 const char *placelist = affinity.proclist;
3845 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3846 int maxOsId = affinity.num_os_id_masks - 1;
3847 const char *scan = placelist;
3848 const char *next = placelist;
3849
3850 numNewMasks = 2;
3851 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks)(newMasks = __kmp_affinity_dispatch->allocate_mask_array(numNewMasks
))
;
3852 nextNewMask = 0;
3853
3854 // tempMask is modified based on the previous or initial
3855 // place to form the current place
3856 // previousMask contains the previous place
3857 kmp_affin_mask_t *tempMask;
3858 kmp_affin_mask_t *previousMask;
3859 KMP_CPU_ALLOC(tempMask)(tempMask = __kmp_affinity_dispatch->allocate_mask());
3860 KMP_CPU_ZERO(tempMask)(tempMask)->zero();
3861 KMP_CPU_ALLOC(previousMask)(previousMask = __kmp_affinity_dispatch->allocate_mask());
3862 KMP_CPU_ZERO(previousMask)(previousMask)->zero();
3863 int setSize = 0;
3864
3865 for (;;) {
3866 __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize);
3867
3868 // valid follow sets are ',' ':' and EOL
3869 SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; };
3870 if (*scan == '\0' || *scan == ',') {
3871 if (setSize > 0) {
3872 ADD_MASK(tempMask);
3873 }
3874 KMP_CPU_ZERO(tempMask)(tempMask)->zero();
3875 setSize = 0;
3876 if (*scan == '\0') {
3877 break;
3878 }
3879 scan++; // skip ','
3880 continue;
3881 }
3882
3883 KMP_ASSERT2(*scan == ':', "bad explicit places list")if (!(*scan == ':')) { __kmp_debug_assert(("bad explicit places list"
), "openmp/runtime/src/kmp_affinity.cpp", 3883); }
;
3884 scan++; // skip ':'
3885
3886 // Read count parameter
3887 SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; };
3888 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list")if (!((*scan >= '0') && (*scan <= '9'))) { __kmp_debug_assert
(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3888); }
;
3889 next = scan;
3890 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3891 count = __kmp_str_to_int(scan, *next);
3892 KMP_ASSERT(count >= 0)if (!(count >= 0)) { __kmp_debug_assert("count >= 0", "openmp/runtime/src/kmp_affinity.cpp"
, 3892); }
;
3893 scan = next;
3894
3895 // valid follow sets are ',' ':' and EOL
3896 SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; };
3897 if (*scan == '\0' || *scan == ',') {
3898 stride = +1;
3899 } else {
3900 KMP_ASSERT2(*scan == ':', "bad explicit places list")if (!(*scan == ':')) { __kmp_debug_assert(("bad explicit places list"
), "openmp/runtime/src/kmp_affinity.cpp", 3900); }
;
3901 scan++; // skip ':'
3902
3903 // Read stride parameter
3904 sign = +1;
3905 for (;;) {
3906 SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; };
3907 if (*scan == '+') {
3908 scan++; // skip '+'
3909 continue;
3910 }
3911 if (*scan == '-') {
3912 sign *= -1;
3913 scan++; // skip '-'
3914 continue;
3915 }
3916 break;
3917 }
3918 SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; };
3919 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list")if (!((*scan >= '0') && (*scan <= '9'))) { __kmp_debug_assert
(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3919); }
;
3920 next = scan;
3921 SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next
)++; }
;
3922 stride = __kmp_str_to_int(scan, *next);
3923 KMP_DEBUG_ASSERT(stride >= 0)if (!(stride >= 0)) { __kmp_debug_assert("stride >= 0",
"openmp/runtime/src/kmp_affinity.cpp", 3923); }
;
3924 scan = next;
3925 stride *= sign;
3926 }
3927
3928 // Add places determined by initial_place : count : stride
3929 for (i = 0; i < count; i++) {
3930 if (setSize == 0) {
3931 break;
3932 }
3933 // Add the current place, then build the next place (tempMask) from that
3934 KMP_CPU_COPY(previousMask, tempMask)(previousMask)->copy(tempMask);
3935 ADD_MASK(previousMask);
3936 KMP_CPU_ZERO(tempMask)(tempMask)->zero();
3937 setSize = 0;
3938 KMP_CPU_SET_ITERATE(j, previousMask)for (j = (previousMask)->begin(); (int)j != (previousMask)
->end(); j = (previousMask)->next(j))
{
3939 if (!KMP_CPU_ISSET(j, previousMask)(previousMask)->is_set(j)) {
3940 continue;
3941 }
3942 if ((j + stride > maxOsId) || (j + stride < 0) ||
3943 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(j)) ||
3944 (!KMP_CPU_ISSET(j + stride,(__kmp_affinity_dispatch->index_mask_array(osId2Mask, j + stride
))->is_set(j + stride)
3945 KMP_CPU_INDEX(osId2Mask, j + stride))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, j + stride
))->is_set(j + stride)
)) {
3946 if (i < count - 1) {
3947 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, j + stride
), __kmp_msg_null); }
;
3948 }
3949 continue;
3950 }
3951 KMP_CPU_SET(j + stride, tempMask)(tempMask)->set(j + stride);
3952 setSize++;
3953 }
3954 }
3955 KMP_CPU_ZERO(tempMask)(tempMask)->zero();
3956 setSize = 0;
3957
3958 // valid follow sets are ',' and EOL
3959 SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; };
3960 if (*scan == '\0') {
3961 break;
3962 }
3963 if (*scan == ',') {
3964 scan++; // skip ','
3965 continue;
3966 }
3967
3968 KMP_ASSERT2(0, "bad explicit places list")if (!(0)) { __kmp_debug_assert(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp"
, 3968); }
;
3969 }
3970
3971 *out_numMasks = nextNewMask;
3972 if (nextNewMask == 0) {
3973 *out_masks = NULL__null;
3974 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks)__kmp_affinity_dispatch->deallocate_mask_array(newMasks);
3975 return;
3976 }
3977 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask)((*out_masks) = __kmp_affinity_dispatch->allocate_mask_array
(nextNewMask))
;
3978 KMP_CPU_FREE(tempMask)__kmp_affinity_dispatch->deallocate_mask(tempMask);
3979 KMP_CPU_FREE(previousMask)__kmp_affinity_dispatch->deallocate_mask(previousMask);
3980 for (i = 0; i < nextNewMask; i++) {
3981 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i)__kmp_affinity_dispatch->index_mask_array(newMasks, i);
3982 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i)__kmp_affinity_dispatch->index_mask_array((*out_masks), i);
3983 KMP_CPU_COPY(dest, src)(dest)->copy(src);
3984 }
3985 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks)__kmp_affinity_dispatch->deallocate_mask_array(newMasks);
3986}
3987
3988#undef ADD_MASK
3989#undef ADD_MASK_OSID
3990
3991// This function figures out the deepest level at which there is at least one
3992// cluster/core with more than one processing unit bound to it.
3993static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
3994 int core_level = 0;
3995
3996 for (int i = 0; i < nprocs; i++) {
3997 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3998 for (int j = bottom_level; j > 0; j--) {
3999 if (hw_thread.ids[j] > 0) {
4000 if (core_level < (j - 1)) {
4001 core_level = j - 1;
4002 }
4003 }
4004 }
4005 }
4006 return core_level;
4007}
4008
4009// This function counts number of clusters/cores at given level.
4010static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
4011 int core_level) {
4012 return __kmp_topology->get_count(core_level);
4013}
4014// This function finds to which cluster/core given processing unit is bound.
4015static int __kmp_affinity_find_core(int proc, int bottom_level,
4016 int core_level) {
4017 int core = 0;
4018 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads())if (!(proc >= 0 && proc < __kmp_topology->get_num_hw_threads
())) { __kmp_debug_assert("proc >= 0 && proc < __kmp_topology->get_num_hw_threads()"
, "openmp/runtime/src/kmp_affinity.cpp", 4018); }
;
4019 for (int i = 0; i <= proc; ++i) {
4020 if (i + 1 <= proc) {
4021 for (int j = 0; j <= core_level; ++j) {
4022 if (__kmp_topology->at(i + 1).sub_ids[j] !=
4023 __kmp_topology->at(i).sub_ids[j]) {
4024 core++;
4025 break;
4026 }
4027 }
4028 }
4029 }
4030 return core;
4031}
4032
4033// This function finds maximal number of processing units bound to a
4034// cluster/core at given level.
4035static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4036 int core_level) {
4037 if (core_level >= bottom_level)
4038 return 1;
4039 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
4040 return __kmp_topology->calculate_ratio(thread_level, core_level);
4041}
4042
4043static int *procarr = NULL__null;
4044static int __kmp_aff_depth = 0;
4045
4046// Create a one element mask array (set of places) which only contains the
4047// initial process's affinity mask
4048static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) {
4049 KMP_ASSERT(__kmp_affin_fullMask != NULL)if (!(__kmp_affin_fullMask != __null)) { __kmp_debug_assert("__kmp_affin_fullMask != NULL"
, "openmp/runtime/src/kmp_affinity.cpp", 4049); }
;
4050 KMP_ASSERT(affinity.type == affinity_none)if (!(affinity.type == affinity_none)) { __kmp_debug_assert("affinity.type == affinity_none"
, "openmp/runtime/src/kmp_affinity.cpp", 4050); }
;
4051 affinity.num_masks = 1;
4052 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks)(affinity.masks = __kmp_affinity_dispatch->allocate_mask_array
(affinity.num_masks))
;
4053 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0)__kmp_affinity_dispatch->index_mask_array(affinity.masks, 0
)
;
4054 KMP_CPU_COPY(dest, __kmp_affin_fullMask)(dest)->copy(__kmp_affin_fullMask);
4055}
4056
4057static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) {
4058 // Create the "full" mask - this defines all of the processors that we
4059 // consider to be in the machine model. If respect is set, then it is the
4060 // initialization thread's affinity mask. Otherwise, it is all processors that
4061 // we know about on the machine.
4062 int verbose = affinity.flags.verbose;
4063 const char *env_var = affinity.env_var;
4064
4065 // Already initialized
4066 if (__kmp_affin_fullMask && __kmp_affin_origMask)
4067 return;
4068
4069 if (__kmp_affin_fullMask == NULL__null) {
4070 KMP_CPU_ALLOC(__kmp_affin_fullMask)(__kmp_affin_fullMask = __kmp_affinity_dispatch->allocate_mask
())
;
4071 }
4072 if (__kmp_affin_origMask == NULL__null) {
4073 KMP_CPU_ALLOC(__kmp_affin_origMask)(__kmp_affin_origMask = __kmp_affinity_dispatch->allocate_mask
())
;
4074 }
4075 if (KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
4076 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE)(__kmp_affin_fullMask)->get_system_affinity((!0));
4077 // Make a copy before possible expanding to the entire machine mask
4078 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4079 if (affinity.flags.respect) {
4080 // Count the number of available processors.
4081 unsigned i;
4082 __kmp_avail_proc = 0;
4083 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask)for (i = (__kmp_affin_fullMask)->begin(); (int)i != (__kmp_affin_fullMask
)->end(); i = (__kmp_affin_fullMask)->next(i))
{
4084 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(i)) {
4085 continue;
4086 }
4087 __kmp_avail_proc++;
4088 }
4089 if (__kmp_avail_proc > __kmp_xproc) {
4090 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_ErrorInitializeAffinity), __kmp_msg_null
); }
;
4091 affinity.type = affinity_none;
4092 KMP_AFFINITY_DISABLE()(__kmp_affin_mask_size = 0);
4093 return;
4094 }
4095
4096 if (verbose) {
4097 char buf[KMP_AFFIN_MASK_PRINT_LEN1024];
4098 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024,
4099 __kmp_affin_fullMask);
4100 KMP_INFORM(InitOSProcSetRespect, env_var, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_InitOSProcSetRespect
, env_var, buf), __kmp_msg_null)
;
4101 }
4102 } else {
4103 if (verbose) {
4104 char buf[KMP_AFFIN_MASK_PRINT_LEN1024];
4105 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024,
4106 __kmp_affin_fullMask);
4107 KMP_INFORM(InitOSProcSetNotRespect, env_var, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_InitOSProcSetNotRespect
, env_var, buf), __kmp_msg_null)
;
4108 }
4109 __kmp_avail_proc =
4110 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4111#if KMP_OS_WINDOWS0
4112 if (__kmp_num_proc_groups <= 1) {
4113 // Copy expanded full mask if topology has single processor group
4114 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4115 }
4116 // Set the process affinity mask since threads' affinity
4117 // masks must be subset of process mask in Windows* OS
4118 __kmp_affin_fullMask->set_process_affinity(true);
4119#endif
4120 }
4121 }
4122}
4123
4124static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) {
4125 bool success = false;
4126 const char *env_var = affinity.env_var;
4127 kmp_i18n_id_t msg_id = kmp_i18n_null;
4128 int verbose = affinity.flags.verbose;
4129
4130 // For backward compatibility, setting KMP_CPUINFO_FILE =>
4131 // KMP_TOPOLOGY_METHOD=cpuinfo
4132 if ((__kmp_cpuinfo_file != NULL__null) &&
4133 (__kmp_affinity_top_method == affinity_top_method_all)) {
4134 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4135 }
4136
4137 if (__kmp_affinity_top_method == affinity_top_method_all) {
4138// In the default code path, errors are not fatal - we just try using
4139// another method. We only emit a warning message if affinity is on, or the
4140// verbose flag is set, an the nowarnings flag was not set.
4141#if KMP_USE_HWLOC0
4142 if (!success &&
4143 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4144 if (!__kmp_hwloc_error) {
4145 success = __kmp_affinity_create_hwloc_map(&msg_id);
4146 if (!success && verbose) {
4147 KMP_INFORM(AffIgnoringHwloc, env_var)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffIgnoringHwloc
, env_var), __kmp_msg_null)
;
4148 }
4149 } else if (verbose) {
4150 KMP_INFORM(AffIgnoringHwloc, env_var)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffIgnoringHwloc
, env_var), __kmp_msg_null)
;
4151 }
4152 }
4153#endif
4154
4155#if KMP_ARCH_X860 || KMP_ARCH_X86_641
4156 if (!success) {
4157 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4158 if (!success && verbose && msg_id != kmp_i18n_null) {
4159 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr
, env_var, __kmp_i18n_catgets(msg_id)), __kmp_msg_null)
;
4160 }
4161 }
4162 if (!success) {
4163 success = __kmp_affinity_create_apicid_map(&msg_id);
4164 if (!success && verbose && msg_id != kmp_i18n_null) {
4165 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr
, env_var, __kmp_i18n_catgets(msg_id)), __kmp_msg_null)
;
4166 }
4167 }
4168#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4169
4170#if KMP_OS_LINUX1
4171 if (!success) {
4172 int line = 0;
4173 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4174 if (!success && verbose && msg_id != kmp_i18n_null) {
4175 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr
, env_var, __kmp_i18n_catgets(msg_id)), __kmp_msg_null)
;
4176 }
4177 }
4178#endif /* KMP_OS_LINUX */
4179
4180#if KMP_GROUP_AFFINITY0
4181 if (!success && (__kmp_num_proc_groups > 1)) {
4182 success = __kmp_affinity_create_proc_group_map(&msg_id);
4183 if (!success && verbose && msg_id != kmp_i18n_null) {
4184 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr
, env_var, __kmp_i18n_catgets(msg_id)), __kmp_msg_null)
;
4185 }
4186 }
4187#endif /* KMP_GROUP_AFFINITY */
4188
4189 if (!success) {
4190 success = __kmp_affinity_create_flat_map(&msg_id);
4191 if (!success && verbose && msg_id != kmp_i18n_null) {
4192 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr
, env_var, __kmp_i18n_catgets(msg_id)), __kmp_msg_null)
;
4193 }
4194 KMP_ASSERT(success)if (!(success)) { __kmp_debug_assert("success", "openmp/runtime/src/kmp_affinity.cpp"
, 4194); }
;
4195 }
4196 }
4197
4198// If the user has specified that a paricular topology discovery method is to be
4199// used, then we abort if that method fails. The exception is group affinity,
4200// which might have been implicitly set.
4201#if KMP_USE_HWLOC0
4202 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4203 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC)if (!(__kmp_affinity_dispatch->get_api_type() == KMPAffinity
::HWLOC)) { __kmp_debug_assert("__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC"
, "openmp/runtime/src/kmp_affinity.cpp", 4203); }
;
4204 success = __kmp_affinity_create_hwloc_map(&msg_id);
4205 if (!success) {
4206 KMP_ASSERT(msg_id != kmp_i18n_null)if (!(msg_id != kmp_i18n_null)) { __kmp_debug_assert("msg_id != kmp_i18n_null"
, "openmp/runtime/src/kmp_affinity.cpp", 4206); }
;
4207 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_MsgExiting, __kmp_i18n_catgets
(msg_id)), __kmp_msg_null)
;
4208 }
4209 }
4210#endif // KMP_USE_HWLOC
4211
4212#if KMP_ARCH_X860 || KMP_ARCH_X86_641
4213 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4214 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4215 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4216 if (!success) {
4217 KMP_ASSERT(msg_id != kmp_i18n_null)if (!(msg_id != kmp_i18n_null)) { __kmp_debug_assert("msg_id != kmp_i18n_null"
, "openmp/runtime/src/kmp_affinity.cpp", 4217); }
;
4218 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_MsgExiting, __kmp_i18n_catgets
(msg_id)), __kmp_msg_null)
;
4219 }
4220 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4221 success = __kmp_affinity_create_apicid_map(&msg_id);
4222 if (!success) {
4223 KMP_ASSERT(msg_id != kmp_i18n_null)if (!(msg_id != kmp_i18n_null)) { __kmp_debug_assert("msg_id != kmp_i18n_null"
, "openmp/runtime/src/kmp_affinity.cpp", 4223); }
;
4224 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_MsgExiting, __kmp_i18n_catgets
(msg_id)), __kmp_msg_null)
;
4225 }
4226 }
4227#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4228
4229 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4230 int line = 0;
4231 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4232 if (!success) {
4233 KMP_ASSERT(msg_id != kmp_i18n_null)if (!(msg_id != kmp_i18n_null)) { __kmp_debug_assert("msg_id != kmp_i18n_null"
, "openmp/runtime/src/kmp_affinity.cpp", 4233); }
;
4234 const char *filename = __kmp_cpuinfo_get_filename();
4235 if (line > 0) {
4236 KMP_FATAL(FileLineMsgExiting, filename, line,__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_FileLineMsgExiting,
filename, line, __kmp_i18n_catgets(msg_id)), __kmp_msg_null)
4237 __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_FileLineMsgExiting,
filename, line, __kmp_i18n_catgets(msg_id)), __kmp_msg_null)
;
4238 } else {
4239 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_FileMsgExiting, filename
, __kmp_i18n_catgets(msg_id)), __kmp_msg_null)
;
4240 }
4241 }
4242 }
4243
4244#if KMP_GROUP_AFFINITY0
4245 else if (__kmp_affinity_top_method == affinity_top_method_group) {
4246 success = __kmp_affinity_create_proc_group_map(&msg_id);
4247 KMP_ASSERT(success)if (!(success)) { __kmp_debug_assert("success", "openmp/runtime/src/kmp_affinity.cpp"
, 4247); }
;
4248 if (!success) {
4249 KMP_ASSERT(msg_id != kmp_i18n_null)if (!(msg_id != kmp_i18n_null)) { __kmp_debug_assert("msg_id != kmp_i18n_null"
, "openmp/runtime/src/kmp_affinity.cpp", 4249); }
;
4250 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_MsgExiting, __kmp_i18n_catgets
(msg_id)), __kmp_msg_null)
;
4251 }
4252 }
4253#endif /* KMP_GROUP_AFFINITY */
4254
4255 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4256 success = __kmp_affinity_create_flat_map(&msg_id);
4257 // should not fail
4258 KMP_ASSERT(success)if (!(success)) { __kmp_debug_assert("success", "openmp/runtime/src/kmp_affinity.cpp"
, 4258); }
;
4259 }
4260
4261 // Early exit if topology could not be created
4262 if (!__kmp_topology) {
4263 if (KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
4264 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_ErrorInitializeAffinity), __kmp_msg_null
); }
;
4265 }
4266 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4267 __kmp_ncores > 0) {
4268 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL__null);
4269 __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
4270 __kmp_nThreadsPerCore, __kmp_ncores);
4271 if (verbose) {
4272 __kmp_topology->print(env_var);
4273 }
4274 }
4275 return false;
4276 }
4277
4278 // Canonicalize, print (if requested), apply KMP_HW_SUBSET
4279 __kmp_topology->canonicalize();
4280 if (verbose)
4281 __kmp_topology->print(env_var);
4282 bool filtered = __kmp_topology->filter_hw_subset();
4283 if (filtered) {
4284#if KMP_OS_WINDOWS0
4285 // Copy filtered full mask if topology has single processor group
4286 if (__kmp_num_proc_groups <= 1)
4287#endif
4288 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4289 }
4290 if (filtered && verbose)
4291 __kmp_topology->print("KMP_HW_SUBSET");
4292 return success;
4293}
4294
4295static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) {
4296 bool is_regular_affinity = (&affinity == &__kmp_affinity);
4297 bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity);
4298 const char *env_var = affinity.env_var;
4299
4300 if (affinity.flags.initialized) {
4301 KMP_ASSERT(__kmp_affin_fullMask != NULL)if (!(__kmp_affin_fullMask != __null)) { __kmp_debug_assert("__kmp_affin_fullMask != NULL"
, "openmp/runtime/src/kmp_affinity.cpp", 4301); }
;
4302 return;
4303 }
4304
4305 if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask))
4306 __kmp_aux_affinity_initialize_masks(affinity);
4307
4308 if (is_regular_affinity && !__kmp_topology) {
4309 bool success = __kmp_aux_affinity_initialize_topology(affinity);
4310 if (success) {
4311 // Initialize other data structures which depend on the topology
4312 machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
4313 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads())if (!(__kmp_avail_proc == __kmp_topology->get_num_hw_threads
())) { __kmp_debug_assert("__kmp_avail_proc == __kmp_topology->get_num_hw_threads()"
, "openmp/runtime/src/kmp_affinity.cpp", 4313); }
;
4314 } else {
4315 affinity.type = affinity_none;
4316 KMP_AFFINITY_DISABLE()(__kmp_affin_mask_size = 0);
4317 }
4318 }
4319
4320 // If KMP_AFFINITY=none, then only create the single "none" place
4321 // which is the process's initial affinity mask or the number of
4322 // hardware threads depending on respect,norespect
4323 if (affinity.type == affinity_none) {
4324 __kmp_create_affinity_none_places(affinity);
4325#if KMP_USE_HIER_SCHED0
4326 __kmp_dispatch_set_hierarchy_values();
4327#endif
4328 affinity.flags.initialized = TRUE(!0);
4329 return;
4330 }
4331
4332 __kmp_topology->set_granularity(affinity);
4333 int depth = __kmp_topology->get_depth();
4334
4335 // Create the table of masks, indexed by thread Id.
4336 unsigned numUnique;
4337 __kmp_create_os_id_masks(&numUnique, affinity);
4338 if (affinity.gran_levels == 0) {
4339 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc)if (!((int)numUnique == __kmp_avail_proc)) { __kmp_debug_assert
("(int)numUnique == __kmp_avail_proc", "openmp/runtime/src/kmp_affinity.cpp"
, 4339); }
;
4340 }
4341
4342 switch (affinity.type) {
4343
4344 case affinity_explicit:
4345 KMP_DEBUG_ASSERT(affinity.proclist != NULL)if (!(affinity.proclist != __null)) { __kmp_debug_assert("affinity.proclist != __null"
, "openmp/runtime/src/kmp_affinity.cpp", 4345); }
;
4346 if (is_hidden_helper_affinity ||
4347 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4348 __kmp_affinity_process_proclist(affinity);
4349 } else {
4350 __kmp_affinity_process_placelist(affinity);
4351 }
4352 if (affinity.num_masks == 0) {
4353 KMP_AFF_WARNING(affinity, AffNoValidProcID)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffNoValidProcID), __kmp_msg_null
); }
;
4354 affinity.type = affinity_none;
4355 __kmp_create_affinity_none_places(affinity);
4356 affinity.flags.initialized = TRUE(!0);
4357 return;
4358 }
4359 break;
4360
4361 // The other affinity types rely on sorting the hardware threads according to
4362 // some permutation of the machine topology tree. Set affinity.compact
4363 // and affinity.offset appropriately, then jump to a common code
4364 // fragment to do the sort and create the array of affinity masks.
4365 case affinity_logical:
4366 affinity.compact = 0;
4367 if (affinity.offset) {
4368 affinity.offset =
4369 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4370 }
4371 goto sortTopology;
4372
4373 case affinity_physical:
4374 if (__kmp_nThreadsPerCore > 1) {
4375 affinity.compact = 1;
4376 if (affinity.compact >= depth) {
4377 affinity.compact = 0;
4378 }
4379 } else {
4380 affinity.compact = 0;
4381 }
4382 if (affinity.offset) {
4383 affinity.offset =
4384 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4385 }
4386 goto sortTopology;
4387
4388 case affinity_scatter:
4389 if (affinity.compact >= depth) {
4390 affinity.compact = 0;
4391 } else {
4392 affinity.compact = depth - 1 - affinity.compact;
4393 }
4394 goto sortTopology;
4395
4396 case affinity_compact:
4397 if (affinity.compact >= depth) {
4398 affinity.compact = depth - 1;
4399 }
4400 goto sortTopology;
4401
4402 case affinity_balanced:
4403 if (depth <= 1 || is_hidden_helper_affinity) {
4404 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffBalancedNotAvail, env_var)
, __kmp_msg_null); }
;
4405 affinity.type = affinity_none;
4406 __kmp_create_affinity_none_places(affinity);
4407 affinity.flags.initialized = TRUE(!0);
4408 return;
4409 } else if (!__kmp_topology->is_uniform()) {
4410 // Save the depth for further usage
4411 __kmp_aff_depth = depth;
4412
4413 int core_level =
4414 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
4415 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
4416 core_level);
4417 int maxprocpercore = __kmp_affinity_max_proc_per_core(
4418 __kmp_avail_proc, depth - 1, core_level);
4419
4420 int nproc = ncores * maxprocpercore;
4421 if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4422 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var)if (affinity.flags.verbose || (affinity.flags.warnings &&
(affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning
, __kmp_msg_format(kmp_i18n_msg_AffBalancedNotAvail, env_var)
, __kmp_msg_null); }
;
4423 affinity.type = affinity_none;
4424 affinity.flags.initialized = TRUE(!0);
4425 return;
4426 }
4427
4428 procarr = (int *)__kmp_allocate(sizeof(int) * nproc)___kmp_allocate((sizeof(int) * nproc), "openmp/runtime/src/kmp_affinity.cpp"
, 4428)
;
4429 for (int i = 0; i < nproc; i++) {
4430 procarr[i] = -1;
4431 }
4432
4433 int lastcore = -1;
4434 int inlastcore = 0;
4435 for (int i = 0; i < __kmp_avail_proc; i++) {
4436 int proc = __kmp_topology->at(i).os_id;
4437 int core = __kmp_affinity_find_core(i, depth - 1, core_level);
4438
4439 if (core == lastcore) {
4440 inlastcore++;
4441 } else {
4442 inlastcore = 0;
4443 }
4444 lastcore = core;
4445
4446 procarr[core * maxprocpercore + inlastcore] = proc;
4447 }
4448 }
4449 if (affinity.compact >= depth) {
4450 affinity.compact = depth - 1;
4451 }
4452
4453 sortTopology:
4454 // Allocate the gtid->affinity mask table.
4455 if (affinity.flags.dups) {
4456 affinity.num_masks = __kmp_avail_proc;
4457 } else {
4458 affinity.num_masks = numUnique;
4459 }
4460
4461 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4462 (__kmp_affinity_num_places > 0) &&
4463 ((unsigned)__kmp_affinity_num_places < affinity.num_masks) &&
4464 !is_hidden_helper_affinity) {
4465 affinity.num_masks = __kmp_affinity_num_places;
4466 }
4467
4468 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks)(affinity.masks = __kmp_affinity_dispatch->allocate_mask_array
(affinity.num_masks))
;
4469
4470 // Sort the topology table according to the current setting of
4471 // affinity.compact, then fill out affinity.masks.
4472 __kmp_topology->sort_compact(affinity);
4473 {
4474 int i;
4475 unsigned j;
4476 int num_hw_threads = __kmp_topology->get_num_hw_threads();
4477 for (i = 0, j = 0; i < num_hw_threads; i++) {
4478 if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) {
4479 continue;
4480 }
4481 int osId = __kmp_topology->at(i).os_id;
4482
4483 kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId)__kmp_affinity_dispatch->index_mask_array(affinity.os_id_masks
, osId)
;
4484 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j)__kmp_affinity_dispatch->index_mask_array(affinity.masks, j
)
;
4485 KMP_ASSERT(KMP_CPU_ISSET(osId, src))if (!((src)->is_set(osId))) { __kmp_debug_assert("KMP_CPU_ISSET(osId, src)"
, "openmp/runtime/src/kmp_affinity.cpp", 4485); }
;
4486 KMP_CPU_COPY(dest, src)(dest)->copy(src);
4487 if (++j >= affinity.num_masks) {
4488 break;
4489 }
4490 }
4491 KMP_DEBUG_ASSERT(j == affinity.num_masks)if (!(j == affinity.num_masks)) { __kmp_debug_assert("j == affinity.num_masks"
, "openmp/runtime/src/kmp_affinity.cpp", 4491); }
;
4492 }
4493 // Sort the topology back using ids
4494 __kmp_topology->sort_ids();
4495 break;
4496
4497 default:
4498 KMP_ASSERT2(0, "Unexpected affinity setting")if (!(0)) { __kmp_debug_assert(("Unexpected affinity setting"
), "openmp/runtime/src/kmp_affinity.cpp", 4498); }
;
4499 }
4500 affinity.flags.initialized = TRUE(!0);
4501}
4502
4503void __kmp_affinity_initialize(kmp_affinity_t &affinity) {
4504 // Much of the code above was written assuming that if a machine was not
4505 // affinity capable, then affinity type == affinity_none.
4506 // We now explicitly represent this as affinity type == affinity_disabled.
4507 // There are too many checks for affinity type == affinity_none in this code.
4508 // Instead of trying to change them all, check if
4509 // affinity type == affinity_disabled, and if so, slam it with affinity_none,
4510 // call the real initialization routine, then restore affinity type to
4511 // affinity_disabled.
4512 int disabled = (affinity.type == affinity_disabled);
4513 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0))
4514 KMP_ASSERT(disabled)if (!(disabled)) { __kmp_debug_assert("disabled", "openmp/runtime/src/kmp_affinity.cpp"
, 4514); }
;
4515 if (disabled)
4516 affinity.type = affinity_none;
4517 __kmp_aux_affinity_initialize(affinity);
4518 if (disabled)
4519 affinity.type = affinity_disabled;
4520}
4521
4522void __kmp_affinity_uninitialize(void) {
4523 for (kmp_affinity_t *affinity : __kmp_affinities) {
4524 if (affinity->masks != NULL__null)
4525 KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks)__kmp_affinity_dispatch->deallocate_mask_array(affinity->
masks)
;
4526 if (affinity->os_id_masks != NULL__null)
4527 KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks)__kmp_affinity_dispatch->deallocate_mask_array(affinity->
os_id_masks)
;
4528 if (affinity->proclist != NULL__null)
4529 __kmp_free(affinity->proclist)___kmp_free((affinity->proclist), "openmp/runtime/src/kmp_affinity.cpp"
, 4529)
;
4530 *affinity = KMP_AFFINITY_INIT(affinity->env_var){ nullptr, affinity_default, KMP_HW_UNKNOWN, -1, 0, 0, {(!0),
0, (!0), (2), 0, 0}, 0, nullptr, 0, nullptr, affinity->env_var
}
;
4531 }
4532 if (__kmp_affin_origMask != NULL__null) {
4533 if (KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
4534 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE)(__kmp_affin_origMask)->set_system_affinity(0);
4535 }
4536 KMP_CPU_FREE(__kmp_affin_origMask)__kmp_affinity_dispatch->deallocate_mask(__kmp_affin_origMask
)
;
4537 __kmp_affin_origMask = NULL__null;
4538 }
4539 __kmp_affinity_num_places = 0;
4540 if (procarr != NULL__null) {
4541 __kmp_free(procarr)___kmp_free((procarr), "openmp/runtime/src/kmp_affinity.cpp",
4541)
;
4542 procarr = NULL__null;
4543 }
4544#if KMP_USE_HWLOC0
4545 if (__kmp_hwloc_topology != NULL__null) {
4546 hwloc_topology_destroy(__kmp_hwloc_topology);
4547 __kmp_hwloc_topology = NULL__null;
4548 }
4549#endif
4550 if (__kmp_hw_subset) {
4551 kmp_hw_subset_t::deallocate(__kmp_hw_subset);
4552 __kmp_hw_subset = nullptr;
4553 }
4554 if (__kmp_topology) {
4555 kmp_topology_t::deallocate(__kmp_topology);
4556 __kmp_topology = nullptr;
4557 }
4558 KMPAffinity::destroy_api();
4559}
4560
4561static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity,
4562 int *place, kmp_affin_mask_t **mask) {
4563 int mask_idx;
4564 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid)((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num
)
;
4565 if (is_hidden_helper)
4566 // The first gtid is the regular primary thread, the second gtid is the main
4567 // thread of hidden team which does not participate in task execution.
4568 mask_idx = gtid - 2;
4569 else
4570 mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
4571 KMP_DEBUG_ASSERT(affinity->num_masks > 0)if (!(affinity->num_masks > 0)) { __kmp_debug_assert("affinity->num_masks > 0"
, "openmp/runtime/src/kmp_affinity.cpp", 4571); }
;
4572 *place = (mask_idx + affinity->offset) % affinity->num_masks;
4573 *mask = KMP_CPU_INDEX(affinity->masks, *place)__kmp_affinity_dispatch->index_mask_array(affinity->masks
, *place)
;
4574}
4575
4576void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4577 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
4578 return;
4579 }
4580
4581 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid])((void *)(__kmp_threads[gtid]));
4582 if (th->th.th_affin_mask == NULL__null) {
4583 KMP_CPU_ALLOC(th->th.th_affin_mask)(th->th.th_affin_mask = __kmp_affinity_dispatch->allocate_mask
())
;
4584 } else {
4585 KMP_CPU_ZERO(th->th.th_affin_mask)(th->th.th_affin_mask)->zero();
4586 }
4587
4588 // Copy the thread mask to the kmp_info_t structure. If
4589 // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e.
4590 // one that has all of the OS proc ids set, or if
4591 // __kmp_affinity.flags.respect is set, then the full mask is the
4592 // same as the mask of the initialization thread.
4593 kmp_affin_mask_t *mask;
4594 int i;
4595 const kmp_affinity_t *affinity;
4596 const char *env_var;
4597 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid)((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num
)
;
4598
4599 if (is_hidden_helper)
4600 affinity = &__kmp_hh_affinity;
4601 else
4602 affinity = &__kmp_affinity;
4603 env_var = affinity->env_var;
4604
4605 if (KMP_AFFINITY_NON_PROC_BIND((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || __kmp_nested_proc_bind
.bind_types[0] == proc_bind_intel) && (__kmp_affinity
.num_masks > 0 || __kmp_affinity.type == affinity_balanced
))
|| is_hidden_helper) {
4606 if ((affinity->type == affinity_none) ||
4607 (affinity->type == affinity_balanced) ||
4608 KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num
)
) {
4609#if KMP_GROUP_AFFINITY0
4610 if (__kmp_num_proc_groups > 1) {
4611 return;
4612 }
4613#endif
4614 KMP_ASSERT(__kmp_affin_fullMask != NULL)if (!(__kmp_affin_fullMask != __null)) { __kmp_debug_assert("__kmp_affin_fullMask != NULL"
, "openmp/runtime/src/kmp_affinity.cpp", 4614); }
;
4615 i = 0;
4616 mask = __kmp_affin_fullMask;
4617 } else {
4618 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
4619 }
4620 } else {
4621 if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) {
4622#if KMP_GROUP_AFFINITY0
4623 if (__kmp_num_proc_groups > 1) {
4624 return;
4625 }
4626#endif
4627 KMP_ASSERT(__kmp_affin_fullMask != NULL)if (!(__kmp_affin_fullMask != __null)) { __kmp_debug_assert("__kmp_affin_fullMask != NULL"
, "openmp/runtime/src/kmp_affinity.cpp", 4627); }
;
4628 i = KMP_PLACE_ALL(-1);
4629 mask = __kmp_affin_fullMask;
4630 } else {
4631 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
4632 }
4633 }
4634
4635 th->th.th_current_place = i;
4636 if (isa_root && !is_hidden_helper) {
4637 th->th.th_new_place = i;
4638 th->th.th_first_place = 0;
4639 th->th.th_last_place = affinity->num_masks - 1;
4640 } else if (KMP_AFFINITY_NON_PROC_BIND((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || __kmp_nested_proc_bind
.bind_types[0] == proc_bind_intel) && (__kmp_affinity
.num_masks > 0 || __kmp_affinity.type == affinity_balanced
))
) {
4641 // When using a Non-OMP_PROC_BIND affinity method,
4642 // set all threads' place-partition-var to the entire place list
4643 th->th.th_first_place = 0;
4644 th->th.th_last_place = affinity->num_masks - 1;
4645 }
4646
4647 if (i == KMP_PLACE_ALL(-1)) {
4648 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_init_mask: binding T#%d to all places\n"
, gtid); }
4649 gtid))if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_init_mask: binding T#%d to all places\n"
, gtid); }
;
4650 } else {
4651 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n"
, gtid, i); }
4652 gtid, i))if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n"
, gtid, i); }
;
4653 }
4654
4655 KMP_CPU_COPY(th->th.th_affin_mask, mask)(th->th.th_affin_mask)->copy(mask);
4656
4657 /* to avoid duplicate printing (will be correctly printed on barrier) */
4658 if (affinity->flags.verbose &&
4659 (affinity->type == affinity_none ||
4660 (i != KMP_PLACE_ALL(-1) && affinity->type != affinity_balanced)) &&
4661 !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num
)
) {
4662 char buf[KMP_AFFIN_MASK_PRINT_LEN1024];
4663 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024,
4664 th->th.th_affin_mask);
4665 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet
, env_var, (kmp_int32)getpid(), syscall(186), gtid, buf), __kmp_msg_null
)
4666 gtid, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet
, env_var, (kmp_int32)getpid(), syscall(186), gtid, buf), __kmp_msg_null
)
;
4667 }
4668
4669#if KMP_OS_WINDOWS0
4670 // On Windows* OS, the process affinity mask might have changed. If the user
4671 // didn't request affinity and this call fails, just continue silently.
4672 // See CQ171393.
4673 if (affinity->type == affinity_none) {
4674 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE)(th->th.th_affin_mask)->set_system_affinity(0);
4675 } else
4676#endif
4677 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE)(th->th.th_affin_mask)->set_system_affinity((!0));
4678}
4679
4680void __kmp_affinity_set_place(int gtid) {
4681 // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND
4682 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0) || KMP_HIDDEN_HELPER_THREAD(gtid)((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num
)
) {
4683 return;
4684 }
4685
4686 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid])((void *)(__kmp_threads[gtid]));
4687
4688 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_place: binding T#%d to place %d (current "
"place = %d)\n", gtid, th->th.th_new_place, th->th.th_current_place
); }
4689 "place = %d)\n",if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_place: binding T#%d to place %d (current "
"place = %d)\n", gtid, th->th.th_new_place, th->th.th_current_place
); }
4690 gtid, th->th.th_new_place, th->th.th_current_place))if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_place: binding T#%d to place %d (current "
"place = %d)\n", gtid, th->th.th_new_place, th->th.th_current_place
); }
;
4691
4692 // Check that the new place is within this thread's partition.
4693 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL)if (!(th->th.th_affin_mask != __null)) { __kmp_debug_assert
("th->th.th_affin_mask != __null", "openmp/runtime/src/kmp_affinity.cpp"
, 4693); }
;
4694 KMP_ASSERT(th->th.th_new_place >= 0)if (!(th->th.th_new_place >= 0)) { __kmp_debug_assert("th->th.th_new_place >= 0"
, "openmp/runtime/src/kmp_affinity.cpp", 4694); }
;
4695 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks)if (!((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks
)) { __kmp_debug_assert("(unsigned)th->th.th_new_place <= __kmp_affinity.num_masks"
, "openmp/runtime/src/kmp_affinity.cpp", 4695); }
;
4696 if (th->th.th_first_place <= th->th.th_last_place) {
4697 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&if (!((th->th.th_new_place >= th->th.th_first_place)
&& (th->th.th_new_place <= th->th.th_last_place
))) { __kmp_debug_assert("(th->th.th_new_place >= th->th.th_first_place) && (th->th.th_new_place <= th->th.th_last_place)"
, "openmp/runtime/src/kmp_affinity.cpp", 4698); }
4698 (th->th.th_new_place <= th->th.th_last_place))if (!((th->th.th_new_place >= th->th.th_first_place)
&& (th->th.th_new_place <= th->th.th_last_place
))) { __kmp_debug_assert("(th->th.th_new_place >= th->th.th_first_place) && (th->th.th_new_place <= th->th.th_last_place)"
, "openmp/runtime/src/kmp_affinity.cpp", 4698); }
;
4699 } else {
4700 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||if (!((th->th.th_new_place <= th->th.th_first_place)
|| (th->th.th_new_place >= th->th.th_last_place))) {
__kmp_debug_assert("(th->th.th_new_place <= th->th.th_first_place) || (th->th.th_new_place >= th->th.th_last_place)"
, "openmp/runtime/src/kmp_affinity.cpp", 4701); }
4701 (th->th.th_new_place >= th->th.th_last_place))if (!((th->th.th_new_place <= th->th.th_first_place)
|| (th->th.th_new_place >= th->th.th_last_place))) {
__kmp_debug_assert("(th->th.th_new_place <= th->th.th_first_place) || (th->th.th_new_place >= th->th.th_last_place)"
, "openmp/runtime/src/kmp_affinity.cpp", 4701); }
;
4702 }
4703
4704 // Copy the thread mask to the kmp_info_t structure,
4705 // and set this thread's affinity.
4706 kmp_affin_mask_t *mask =
4707 KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place)__kmp_affinity_dispatch->index_mask_array(__kmp_affinity.masks
, th->th.th_new_place)
;
4708 KMP_CPU_COPY(th->th.th_affin_mask, mask)(th->th.th_affin_mask)->copy(mask);
4709 th->th.th_current_place = th->th.th_new_place;
4710
4711 if (__kmp_affinity.flags.verbose) {
4712 char buf[KMP_AFFIN_MASK_PRINT_LEN1024];
4713 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024,
4714 th->th.th_affin_mask);
4715 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet
, "OMP_PROC_BIND", (kmp_int32)getpid(), syscall(186), gtid, buf
), __kmp_msg_null)
4716 __kmp_gettid(), gtid, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet
, "OMP_PROC_BIND", (kmp_int32)getpid(), syscall(186), gtid, buf
), __kmp_msg_null)
;
4717 }
4718 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE)(th->th.th_affin_mask)->set_system_affinity((!0));
4719}
4720
4721int __kmp_aux_set_affinity(void **mask) {
4722 int gtid;
4723 kmp_info_t *th;
4724 int retval;
4725
4726 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
4727 return -1;
4728 }
4729
4730 gtid = __kmp_entry_gtid()__kmp_get_global_thread_id_reg();
4731 KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4732 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4733 char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4734 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4735 (kmp_affin_mask_t *)(*mask));if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4736 __kmp_debug_printf(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4737 "kmp_set_affinity: setting affinity mask for thread %d = %s\n",if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4738 gtid, buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4739 })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n"
, gtid, buf); }; }
;
4740
4741 if (__kmp_env_consistency_check) {
4742 if ((mask == NULL__null) || (*mask == NULL__null)) {
4743 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask
, "kmp_set_affinity"), __kmp_msg_null)
;
4744 } else {
4745 unsigned proc;
4746 int num_procs = 0;
4747
4748 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask)))for (proc = (((kmp_affin_mask_t *)(*mask)))->begin(); (int
)proc != (((kmp_affin_mask_t *)(*mask)))->end(); proc = ((
(kmp_affin_mask_t *)(*mask)))->next(proc))
{
4749 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(proc)) {
4750 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask
, "kmp_set_affinity"), __kmp_msg_null)
;
4751 }
4752 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))((kmp_affin_mask_t *)(*mask))->is_set(proc)) {
4753 continue;
4754 }
4755 num_procs++;
4756 }
4757 if (num_procs == 0) {
4758 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask
, "kmp_set_affinity"), __kmp_msg_null)
;
4759 }
4760
4761#if KMP_GROUP_AFFINITY0
4762 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask))((kmp_affin_mask_t *)(*mask))->get_proc_group() < 0) {
4763 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask
, "kmp_set_affinity"), __kmp_msg_null)
;
4764 }
4765#endif /* KMP_GROUP_AFFINITY */
4766 }
4767 }
4768
4769 th = __kmp_threads[gtid];
4770 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL)if (!(th->th.th_affin_mask != __null)) { __kmp_debug_assert
("th->th.th_affin_mask != __null", "openmp/runtime/src/kmp_affinity.cpp"
, 4770); }
;
4771 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE)((kmp_affin_mask_t *)(*mask))->set_system_affinity(0);
4772 if (retval == 0) {
4773 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask))(th->th.th_affin_mask)->copy((kmp_affin_mask_t *)(*mask
))
;
4774 }
4775
4776 th->th.th_current_place = KMP_PLACE_UNDEFINED(-2);
4777 th->th.th_new_place = KMP_PLACE_UNDEFINED(-2);
4778 th->th.th_first_place = 0;
4779 th->th.th_last_place = __kmp_affinity.num_masks - 1;
4780
4781 // Turn off 4.0 affinity for the current tread at this parallel level.
4782 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4783
4784 return retval;
4785}
4786
4787int __kmp_aux_get_affinity(void **mask) {
4788 int gtid;
4789 int retval;
4790#if KMP_OS_WINDOWS0 || KMP_DEBUG1
4791 kmp_info_t *th;
4792#endif
4793 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
4794 return -1;
4795 }
4796
4797 gtid = __kmp_entry_gtid()__kmp_get_global_thread_id_reg();
4798#if KMP_OS_WINDOWS0 || KMP_DEBUG1
4799 th = __kmp_threads[gtid];
4800#else
4801 (void)gtid; // unused variable
4802#endif
4803 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL)if (!(th->th.th_affin_mask != __null)) { __kmp_debug_assert
("th->th.th_affin_mask != __null", "openmp/runtime/src/kmp_affinity.cpp"
, 4803); }
;
4804
4805 KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask
); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4806 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask
); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4807 char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask
); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4808 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask
); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4809 th->th.th_affin_mask);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask
); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4810 __kmp_printf(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask
); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4811 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask
); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4812 buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask
); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4813 })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask
); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n"
, gtid, buf); }; }
;
4814
4815 if (__kmp_env_consistency_check) {
4816 if ((mask == NULL__null) || (*mask == NULL__null)) {
4817 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask
, "kmp_get_affinity"), __kmp_msg_null)
;
4818 }
4819 }
4820
4821#if !KMP_OS_WINDOWS0
4822
4823 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE)((kmp_affin_mask_t *)(*mask))->get_system_affinity(0);
4824 KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4825 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4826 char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4827 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4828 (kmp_affin_mask_t *)(*mask));if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4829 __kmp_printf(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4830 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4831 buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n"
, gtid, buf); }; }
4832 })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char
buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t
*)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n"
, gtid, buf); }; }
;
4833 return retval;
4834
4835#else
4836 (void)retval;
4837
4838 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask)((kmp_affin_mask_t *)(*mask))->copy(th->th.th_affin_mask
)
;
4839 return 0;
4840
4841#endif /* KMP_OS_WINDOWS */
4842}
4843
4844int __kmp_aux_get_affinity_max_proc() {
4845 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
4846 return 0;
4847 }
4848#if KMP_GROUP_AFFINITY0
4849 if (__kmp_num_proc_groups > 1) {
4850 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT8);
4851 }
4852#endif
4853 return __kmp_xproc;
4854}
4855
4856int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4857 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
4858 return -1;
4859 }
4860
4861 KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4862 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4863 int gtid = __kmp_entry_gtid();if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4864 char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4865 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4866 (kmp_affin_mask_t *)(*mask));if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4867 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4868 "affinity mask for thread %d = %s\n",if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4869 proc, gtid, buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4870 })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
;
4871
4872 if (__kmp_env_consistency_check) {
4873 if ((mask == NULL__null) || (*mask == NULL__null)) {
4874 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask
, "kmp_set_affinity_mask_proc"), __kmp_msg_null)
;
4875 }
4876 }
4877
4878 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4879 return -1;
4880 }
4881 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(proc)) {
4882 return -2;
4883 }
4884
4885 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask))((kmp_affin_mask_t *)(*mask))->set(proc);
4886 return 0;
4887}
4888
4889int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
4890 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
4891 return -1;
4892 }
4893
4894 KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4895 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4896 int gtid = __kmp_entry_gtid();if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4897 char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4898 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4899 (kmp_affin_mask_t *)(*mask));if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4900 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4901 "affinity mask for thread %d = %s\n",if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4902 proc, gtid, buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4903 })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
;
4904
4905 if (__kmp_env_consistency_check) {
4906 if ((mask == NULL__null) || (*mask == NULL__null)) {
4907 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask
, "kmp_unset_affinity_mask_proc"), __kmp_msg_null)
;
4908 }
4909 }
4910
4911 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4912 return -1;
4913 }
4914 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(proc)) {
4915 return -2;
4916 }
4917
4918 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask))((kmp_affin_mask_t *)(*mask))->clear(proc);
4919 return 0;
4920}
4921
4922int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
4923 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) {
4924 return -1;
4925 }
4926
4927 KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4928 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4929 int gtid = __kmp_entry_gtid();if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4930 char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4931 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4932 (kmp_affin_mask_t *)(*mask));if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4933 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4934 "affinity mask for thread %d = %s\n",if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4935 proc, gtid, buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
4936 })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid
= __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask
(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf(
"kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n"
, proc, gtid, buf); }; }
;
4937
4938 if (__kmp_env_consistency_check) {
4939 if ((mask == NULL__null) || (*mask == NULL__null)) {
4940 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask
, "kmp_get_affinity_mask_proc"), __kmp_msg_null)
;
4941 }
4942 }
4943
4944 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4945 return -1;
4946 }
4947 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(proc)) {
4948 return 0;
4949 }
4950
4951 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))((kmp_affin_mask_t *)(*mask))->is_set(proc);
4952}
4953
4954// Dynamic affinity settings - Affinity balanced
4955void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
4956 KMP_DEBUG_ASSERT(th)if (!(th)) { __kmp_debug_assert("th", "openmp/runtime/src/kmp_affinity.cpp"
, 4956); }
;
4957 bool fine_gran = true;
4958 int tid = th->th.th_info.ds.ds_tid;
4959 const char *env_var = "KMP_AFFINITY";
4960
4961 // Do not perform balanced affinity for the hidden helper threads
4962 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))((__kmp_gtid_from_thread(th)) >= 1 && (__kmp_gtid_from_thread
(th)) <= __kmp_hidden_helper_threads_num)
)
4963 return;
4964
4965 switch (__kmp_affinity.gran) {
4966 case KMP_HW_THREAD:
4967 break;
4968 case KMP_HW_CORE:
4969 if (__kmp_nThreadsPerCore > 1) {
4970 fine_gran = false;
4971 }
4972 break;
4973 case KMP_HW_SOCKET:
4974 if (nCoresPerPkg > 1) {
4975 fine_gran = false;
4976 }
4977 break;
4978 default:
4979 fine_gran = false;
4980 }
4981
4982 if (__kmp_topology->is_uniform()) {
4983 int coreID;
4984 int threadID;
4985 // Number of hyper threads per core in HT machine
4986 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4987 // Number of cores
4988 int ncores = __kmp_ncores;
4989 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
4990 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
4991 ncores = nPackages;
4992 }
4993 // How many threads will be bound to each core
4994 int chunk = nthreads / ncores;
4995 // How many cores will have an additional thread bound to it - "big cores"
4996 int big_cores = nthreads % ncores;
4997 // Number of threads on the big cores
4998 int big_nth = (chunk + 1) * big_cores;
4999 if (tid < big_nth) {
5000 coreID = tid / (chunk + 1);
5001 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5002 } else { // tid >= big_nth
5003 coreID = (tid - big_cores) / chunk;
5004 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5005 }
5006 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),if (!((__kmp_affin_mask_size > 0))) { __kmp_debug_assert((
"Illegal set affinity operation when not capable"), "openmp/runtime/src/kmp_affinity.cpp"
, 5007); }
5007 "Illegal set affinity operation when not capable")if (!((__kmp_affin_mask_size > 0))) { __kmp_debug_assert((
"Illegal set affinity operation when not capable"), "openmp/runtime/src/kmp_affinity.cpp"
, 5007); }
;
5008
5009 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5010 KMP_CPU_ZERO(mask)(mask)->zero();
5011
5012 if (fine_gran) {
5013 int osID =
5014 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
5015 KMP_CPU_SET(osID, mask)(mask)->set(osID);
5016 } else {
5017 for (int i = 0; i < __kmp_nth_per_core; i++) {
5018 int osID;
5019 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
5020 KMP_CPU_SET(osID, mask)(mask)->set(osID);
5021 }
5022 }
5023 if (__kmp_affinity.flags.verbose) {
5024 char buf[KMP_AFFIN_MASK_PRINT_LEN1024];
5025 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024, mask);
5026 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet
, env_var, (kmp_int32)getpid(), syscall(186), tid, buf), __kmp_msg_null
)
5027 tid, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet
, env_var, (kmp_int32)getpid(), syscall(186), tid, buf), __kmp_msg_null
)
;
5028 }
5029 __kmp_set_system_affinity(mask, TRUE)(mask)->set_system_affinity((!0));
5030 } else { // Non-uniform topology
5031
5032 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5033 KMP_CPU_ZERO(mask)(mask)->zero();
5034
5035 int core_level =
5036 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
5037 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
5038 __kmp_aff_depth - 1, core_level);
5039 int nth_per_core = __kmp_affinity_max_proc_per_core(
5040 __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5041
5042 // For performance gain consider the special case nthreads ==
5043 // __kmp_avail_proc
5044 if (nthreads == __kmp_avail_proc) {
5045 if (fine_gran) {
5046 int osID = __kmp_topology->at(tid).os_id;
5047 KMP_CPU_SET(osID, mask)(mask)->set(osID);
5048 } else {
5049 int core =
5050 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
5051 for (int i = 0; i < __kmp_avail_proc; i++) {
5052 int osID = __kmp_topology->at(i).os_id;
5053 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
5054 core) {
5055 KMP_CPU_SET(osID, mask)(mask)->set(osID);
5056 }
5057 }
5058 }
5059 } else if (nthreads <= ncores) {
5060
5061 int core = 0;
5062 for (int i = 0; i < ncores; i++) {
5063 // Check if this core from procarr[] is in the mask
5064 int in_mask = 0;
5065 for (int j = 0; j < nth_per_core; j++) {
5066 if (procarr[i * nth_per_core + j] != -1) {
5067 in_mask = 1;
5068 break;
5069 }
5070 }
5071 if (in_mask) {
5072 if (tid == core) {
5073 for (int j = 0; j < nth_per_core; j++) {
5074 int osID = procarr[i * nth_per_core + j];
5075 if (osID != -1) {
5076 KMP_CPU_SET(osID, mask)(mask)->set(osID);
5077 // For fine granularity it is enough to set the first available
5078 // osID for this core
5079 if (fine_gran) {
5080 break;
5081 }
5082 }
5083 }
5084 break;
5085 } else {
5086 core++;
5087 }
5088 }
5089 }
5090 } else { // nthreads > ncores
5091 // Array to save the number of processors at each core
5092 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores)__builtin_alloca (sizeof(int) * ncores);
5093 // Array to save the number of cores with "x" available processors;
5094 int *ncores_with_x_procs =
5095 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1))__builtin_alloca (sizeof(int) * (nth_per_core + 1));
5096 // Array to save the number of cores with # procs from x to nth_per_core
5097 int *ncores_with_x_to_max_procs =
5098 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1))__builtin_alloca (sizeof(int) * (nth_per_core + 1));
5099
5100 for (int i = 0; i <= nth_per_core; i++) {
5101 ncores_with_x_procs[i] = 0;
5102 ncores_with_x_to_max_procs[i] = 0;
5103 }
5104
5105 for (int i = 0; i < ncores; i++) {
5106 int cnt = 0;
5107 for (int j = 0; j < nth_per_core; j++) {
5108 if (procarr[i * nth_per_core + j] != -1) {
5109 cnt++;
5110 }
5111 }
5112 nproc_at_core[i] = cnt;
5113 ncores_with_x_procs[cnt]++;
5114 }
5115
5116 for (int i = 0; i <= nth_per_core; i++) {
5117 for (int j = i; j <= nth_per_core; j++) {
5118 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5119 }
5120 }
5121
5122 // Max number of processors
5123 int nproc = nth_per_core * ncores;
5124 // An array to keep number of threads per each context
5125 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc)___kmp_allocate((sizeof(int) * nproc), "openmp/runtime/src/kmp_affinity.cpp"
, 5125)
;
5126 for (int i = 0; i < nproc; i++) {
5127 newarr[i] = 0;
5128 }
5129
5130 int nth = nthreads;
5131 int flag = 0;
5132 while (nth > 0) {
5133 for (int j = 1; j <= nth_per_core; j++) {
5134 int cnt = ncores_with_x_to_max_procs[j];
5135 for (int i = 0; i < ncores; i++) {
5136 // Skip the core with 0 processors
5137 if (nproc_at_core[i] == 0) {
5138 continue;
5139 }
5140 for (int k = 0; k < nth_per_core; k++) {
5141 if (procarr[i * nth_per_core + k] != -1) {
5142 if (newarr[i * nth_per_core + k] == 0) {
5143 newarr[i * nth_per_core + k] = 1;
5144 cnt--;
5145 nth--;
5146 break;
5147 } else {
5148 if (flag != 0) {
5149 newarr[i * nth_per_core + k]++;
5150 cnt--;
5151 nth--;
5152 break;
5153 }
5154 }
5155 }
5156 }
5157 if (cnt == 0 || nth == 0) {
5158 break;
5159 }
5160 }
5161 if (nth == 0) {
5162 break;
5163 }
5164 }
5165 flag = 1;
5166 }
5167 int sum = 0;
5168 for (int i = 0; i < nproc; i++) {
5169 sum += newarr[i];
5170 if (sum > tid) {
5171 if (fine_gran) {
5172 int osID = procarr[i];
5173 KMP_CPU_SET(osID, mask)(mask)->set(osID);
5174 } else {
5175 int coreID = i / nth_per_core;
5176 for (int ii = 0; ii < nth_per_core; ii++) {
5177 int osID = procarr[coreID * nth_per_core + ii];
5178 if (osID != -1) {
5179 KMP_CPU_SET(osID, mask)(mask)->set(osID);
5180 }
5181 }
5182 }
5183 break;
5184 }
5185 }
5186 __kmp_free(newarr)___kmp_free((newarr), "openmp/runtime/src/kmp_affinity.cpp", 5186
)
;
5187 }
5188
5189 if (__kmp_affinity.flags.verbose) {
5190 char buf[KMP_AFFIN_MASK_PRINT_LEN1024];
5191 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024, mask);
5192 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet
, env_var, (kmp_int32)getpid(), syscall(186), tid, buf), __kmp_msg_null
)
5193 tid, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet
, env_var, (kmp_int32)getpid(), syscall(186), tid, buf), __kmp_msg_null
)
;
5194 }
5195 __kmp_set_system_affinity(mask, TRUE)(mask)->set_system_affinity((!0));
5196 }
5197}
5198
5199#if KMP_OS_LINUX1 || KMP_OS_FREEBSD0
5200// We don't need this entry for Windows because
5201// there is GetProcessAffinityMask() api
5202//
5203// The intended usage is indicated by these steps:
5204// 1) The user gets the current affinity mask
5205// 2) Then sets the affinity by calling this function
5206// 3) Error check the return value
5207// 4) Use non-OpenMP parallelization
5208// 5) Reset the affinity to what was stored in step 1)
5209#ifdef __cplusplus201703L
5210extern "C"
5211#endif
5212 int
5213 kmp_set_thread_affinity_mask_initial()
5214// the function returns 0 on success,
5215// -1 if we cannot bind thread
5216// >0 (errno) if an error happened during binding
5217{
5218 int gtid = __kmp_get_gtid()__kmp_get_global_thread_id();
5219 if (gtid < 0) {
5220 // Do not touch non-omp threads
5221 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: "
"non-omp thread, returning\n"); }
5222 "non-omp thread, returning\n"))if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: "
"non-omp thread, returning\n"); }
;
5223 return -1;
5224 }
5225 if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0) || !__kmp_init_middle) {
5226 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: "
"affinity not initialized, returning\n"); }
5227 "affinity not initialized, returning\n"))if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: "
"affinity not initialized, returning\n"); }
;
5228 return -1;
5229 }
5230 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: "
"set full mask for thread %d\n", gtid); }
5231 "set full mask for thread %d\n",if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: "
"set full mask for thread %d\n", gtid); }
5232 gtid))if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: "
"set full mask for thread %d\n", gtid); }
;
5233 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL)if (!(__kmp_affin_fullMask != __null)) { __kmp_debug_assert("__kmp_affin_fullMask != __null"
, "openmp/runtime/src/kmp_affinity.cpp", 5233); }
;
5234 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE)(__kmp_affin_fullMask)->set_system_affinity(0);
5235}
5236#endif
5237
5238#endif // KMP_AFFINITY_SUPPORTED