| File: | build/source/openmp/runtime/src/kmp_affinity.cpp |
| Warning: | line 3502, column 15 Value stored to 'next' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* |
| 2 | * kmp_affinity.cpp -- affinity management |
| 3 | */ |
| 4 | |
| 5 | //===----------------------------------------------------------------------===// |
| 6 | // |
| 7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 8 | // See https://llvm.org/LICENSE.txt for license information. |
| 9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "kmp.h" |
| 14 | #include "kmp_affinity.h" |
| 15 | #include "kmp_i18n.h" |
| 16 | #include "kmp_io.h" |
| 17 | #include "kmp_str.h" |
| 18 | #include "kmp_wrapper_getpid.h" |
| 19 | #if KMP_USE_HIER_SCHED0 |
| 20 | #include "kmp_dispatch_hier.h" |
| 21 | #endif |
| 22 | #if KMP_USE_HWLOC0 |
| 23 | // Copied from hwloc |
| 24 | #define HWLOC_GROUP_KIND_INTEL_MODULE 102 |
| 25 | #define HWLOC_GROUP_KIND_INTEL_TILE 103 |
| 26 | #define HWLOC_GROUP_KIND_INTEL_DIE 104 |
| 27 | #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 |
| 28 | #endif |
| 29 | #include <ctype.h> |
| 30 | |
| 31 | // The machine topology |
| 32 | kmp_topology_t *__kmp_topology = nullptr; |
| 33 | // KMP_HW_SUBSET environment variable |
| 34 | kmp_hw_subset_t *__kmp_hw_subset = nullptr; |
| 35 | |
| 36 | // Store the real or imagined machine hierarchy here |
| 37 | static hierarchy_info machine_hierarchy; |
| 38 | |
| 39 | void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } |
| 40 | |
| 41 | void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { |
| 42 | kmp_uint32 depth; |
| 43 | // The test below is true if affinity is available, but set to "none". Need to |
| 44 | // init on first use of hierarchical barrier. |
| 45 | if (TCR_1(machine_hierarchy.uninitialized)(machine_hierarchy.uninitialized)) |
| 46 | machine_hierarchy.init(nproc); |
| 47 | |
| 48 | // Adjust the hierarchy in case num threads exceeds original |
| 49 | if (nproc > machine_hierarchy.base_num_threads) |
| 50 | machine_hierarchy.resize(nproc); |
| 51 | |
| 52 | depth = machine_hierarchy.depth; |
| 53 | KMP_DEBUG_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp" , 53); }; |
| 54 | |
| 55 | thr_bar->depth = depth; |
| 56 | __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, |
| 57 | &(thr_bar->base_leaf_kids)); |
| 58 | thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; |
| 59 | } |
| 60 | |
| 61 | static int nCoresPerPkg, nPackages; |
| 62 | static int __kmp_nThreadsPerCore; |
| 63 | #ifndef KMP_DFLT_NTH_CORES |
| 64 | static int __kmp_ncores; |
| 65 | #endif |
| 66 | |
| 67 | const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { |
| 68 | switch (type) { |
| 69 | case KMP_HW_SOCKET: |
| 70 | return ((plural) ? KMP_I18N_STR(Sockets)__kmp_i18n_catgets(kmp_i18n_str_Sockets) : KMP_I18N_STR(Socket)__kmp_i18n_catgets(kmp_i18n_str_Socket)); |
| 71 | case KMP_HW_DIE: |
| 72 | return ((plural) ? KMP_I18N_STR(Dice)__kmp_i18n_catgets(kmp_i18n_str_Dice) : KMP_I18N_STR(Die)__kmp_i18n_catgets(kmp_i18n_str_Die)); |
| 73 | case KMP_HW_MODULE: |
| 74 | return ((plural) ? KMP_I18N_STR(Modules)__kmp_i18n_catgets(kmp_i18n_str_Modules) : KMP_I18N_STR(Module)__kmp_i18n_catgets(kmp_i18n_str_Module)); |
| 75 | case KMP_HW_TILE: |
| 76 | return ((plural) ? KMP_I18N_STR(Tiles)__kmp_i18n_catgets(kmp_i18n_str_Tiles) : KMP_I18N_STR(Tile)__kmp_i18n_catgets(kmp_i18n_str_Tile)); |
| 77 | case KMP_HW_NUMA: |
| 78 | return ((plural) ? KMP_I18N_STR(NumaDomains)__kmp_i18n_catgets(kmp_i18n_str_NumaDomains) : KMP_I18N_STR(NumaDomain)__kmp_i18n_catgets(kmp_i18n_str_NumaDomain)); |
| 79 | case KMP_HW_L3: |
| 80 | return ((plural) ? KMP_I18N_STR(L3Caches)__kmp_i18n_catgets(kmp_i18n_str_L3Caches) : KMP_I18N_STR(L3Cache)__kmp_i18n_catgets(kmp_i18n_str_L3Cache)); |
| 81 | case KMP_HW_L2: |
| 82 | return ((plural) ? KMP_I18N_STR(L2Caches)__kmp_i18n_catgets(kmp_i18n_str_L2Caches) : KMP_I18N_STR(L2Cache)__kmp_i18n_catgets(kmp_i18n_str_L2Cache)); |
| 83 | case KMP_HW_L1: |
| 84 | return ((plural) ? KMP_I18N_STR(L1Caches)__kmp_i18n_catgets(kmp_i18n_str_L1Caches) : KMP_I18N_STR(L1Cache)__kmp_i18n_catgets(kmp_i18n_str_L1Cache)); |
| 85 | case KMP_HW_LLC: |
| 86 | return ((plural) ? KMP_I18N_STR(LLCaches)__kmp_i18n_catgets(kmp_i18n_str_LLCaches) : KMP_I18N_STR(LLCache)__kmp_i18n_catgets(kmp_i18n_str_LLCache)); |
| 87 | case KMP_HW_CORE: |
| 88 | return ((plural) ? KMP_I18N_STR(Cores)__kmp_i18n_catgets(kmp_i18n_str_Cores) : KMP_I18N_STR(Core)__kmp_i18n_catgets(kmp_i18n_str_Core)); |
| 89 | case KMP_HW_THREAD: |
| 90 | return ((plural) ? KMP_I18N_STR(Threads)__kmp_i18n_catgets(kmp_i18n_str_Threads) : KMP_I18N_STR(Thread)__kmp_i18n_catgets(kmp_i18n_str_Thread)); |
| 91 | case KMP_HW_PROC_GROUP: |
| 92 | return ((plural) ? KMP_I18N_STR(ProcGroups)__kmp_i18n_catgets(kmp_i18n_str_ProcGroups) : KMP_I18N_STR(ProcGroup)__kmp_i18n_catgets(kmp_i18n_str_ProcGroup)); |
| 93 | } |
| 94 | return KMP_I18N_STR(Unknown)__kmp_i18n_catgets(kmp_i18n_str_Unknown); |
| 95 | } |
| 96 | |
| 97 | const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { |
| 98 | switch (type) { |
| 99 | case KMP_HW_SOCKET: |
| 100 | return ((plural) ? "sockets" : "socket"); |
| 101 | case KMP_HW_DIE: |
| 102 | return ((plural) ? "dice" : "die"); |
| 103 | case KMP_HW_MODULE: |
| 104 | return ((plural) ? "modules" : "module"); |
| 105 | case KMP_HW_TILE: |
| 106 | return ((plural) ? "tiles" : "tile"); |
| 107 | case KMP_HW_NUMA: |
| 108 | return ((plural) ? "numa_domains" : "numa_domain"); |
| 109 | case KMP_HW_L3: |
| 110 | return ((plural) ? "l3_caches" : "l3_cache"); |
| 111 | case KMP_HW_L2: |
| 112 | return ((plural) ? "l2_caches" : "l2_cache"); |
| 113 | case KMP_HW_L1: |
| 114 | return ((plural) ? "l1_caches" : "l1_cache"); |
| 115 | case KMP_HW_LLC: |
| 116 | return ((plural) ? "ll_caches" : "ll_cache"); |
| 117 | case KMP_HW_CORE: |
| 118 | return ((plural) ? "cores" : "core"); |
| 119 | case KMP_HW_THREAD: |
| 120 | return ((plural) ? "threads" : "thread"); |
| 121 | case KMP_HW_PROC_GROUP: |
| 122 | return ((plural) ? "proc_groups" : "proc_group"); |
| 123 | } |
| 124 | return ((plural) ? "unknowns" : "unknown"); |
| 125 | } |
| 126 | |
| 127 | const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { |
| 128 | switch (type) { |
| 129 | case KMP_HW_CORE_TYPE_UNKNOWN: |
| 130 | return "unknown"; |
| 131 | #if KMP_ARCH_X860 || KMP_ARCH_X86_641 |
| 132 | case KMP_HW_CORE_TYPE_ATOM: |
| 133 | return "Intel Atom(R) processor"; |
| 134 | case KMP_HW_CORE_TYPE_CORE: |
| 135 | return "Intel(R) Core(TM) processor"; |
| 136 | #endif |
| 137 | } |
| 138 | return "unknown"; |
| 139 | } |
| 140 | |
| 141 | #if KMP_AFFINITY_SUPPORTED1 |
| 142 | // If affinity is supported, check the affinity |
| 143 | // verbose and warning flags before printing warning |
| 144 | #define KMP_AFF_WARNING(s, ...)if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { __kmp_msg(kmp_ms_warning, __kmp_msg_format (kmp_i18n_msg_...), __kmp_msg_null); } \ |
| 145 | if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \ |
| 146 | KMP_WARNING(__VA_ARGS__)__kmp_msg(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg___VA_ARGS__ ), __kmp_msg_null); \ |
| 147 | } |
| 148 | #else |
| 149 | #define KMP_AFF_WARNING(s, ...)if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { __kmp_msg(kmp_ms_warning, __kmp_msg_format (kmp_i18n_msg_...), __kmp_msg_null); } KMP_WARNING(__VA_ARGS__)__kmp_msg(kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg___VA_ARGS__ ), __kmp_msg_null) |
| 150 | #endif |
| 151 | |
| 152 | //////////////////////////////////////////////////////////////////////////////// |
| 153 | // kmp_hw_thread_t methods |
| 154 | int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { |
| 155 | const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; |
| 156 | const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; |
| 157 | int depth = __kmp_topology->get_depth(); |
| 158 | for (int level = 0; level < depth; ++level) { |
| 159 | if (ahwthread->ids[level] < bhwthread->ids[level]) |
| 160 | return -1; |
| 161 | else if (ahwthread->ids[level] > bhwthread->ids[level]) |
| 162 | return 1; |
| 163 | } |
| 164 | if (ahwthread->os_id < bhwthread->os_id) |
| 165 | return -1; |
| 166 | else if (ahwthread->os_id > bhwthread->os_id) |
| 167 | return 1; |
| 168 | return 0; |
| 169 | } |
| 170 | |
| 171 | #if KMP_AFFINITY_SUPPORTED1 |
| 172 | int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { |
| 173 | int i; |
| 174 | const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; |
| 175 | const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; |
| 176 | int depth = __kmp_topology->get_depth(); |
| 177 | int compact = __kmp_topology->compact; |
| 178 | KMP_DEBUG_ASSERT(compact >= 0)if (!(compact >= 0)) { __kmp_debug_assert("compact >= 0" , "openmp/runtime/src/kmp_affinity.cpp", 178); }; |
| 179 | KMP_DEBUG_ASSERT(compact <= depth)if (!(compact <= depth)) { __kmp_debug_assert("compact <= depth" , "openmp/runtime/src/kmp_affinity.cpp", 179); }; |
| 180 | for (i = 0; i < compact; i++) { |
| 181 | int j = depth - i - 1; |
| 182 | if (aa->sub_ids[j] < bb->sub_ids[j]) |
| 183 | return -1; |
| 184 | if (aa->sub_ids[j] > bb->sub_ids[j]) |
| 185 | return 1; |
| 186 | } |
| 187 | for (; i < depth; i++) { |
| 188 | int j = i - compact; |
| 189 | if (aa->sub_ids[j] < bb->sub_ids[j]) |
| 190 | return -1; |
| 191 | if (aa->sub_ids[j] > bb->sub_ids[j]) |
| 192 | return 1; |
| 193 | } |
| 194 | return 0; |
| 195 | } |
| 196 | #endif |
| 197 | |
| 198 | void kmp_hw_thread_t::print() const { |
| 199 | int depth = __kmp_topology->get_depth(); |
| 200 | printf("%4d ", os_id); |
| 201 | for (int i = 0; i < depth; ++i) { |
| 202 | printf("%4d ", ids[i]); |
| 203 | } |
| 204 | if (attrs) { |
| 205 | if (attrs.is_core_type_valid()) |
| 206 | printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); |
| 207 | if (attrs.is_core_eff_valid()) |
| 208 | printf(" (eff=%d)", attrs.get_core_eff()); |
| 209 | } |
| 210 | printf("\n"); |
| 211 | } |
| 212 | |
| 213 | //////////////////////////////////////////////////////////////////////////////// |
| 214 | // kmp_topology_t methods |
| 215 | |
| 216 | // Add a layer to the topology based on the ids. Assume the topology |
| 217 | // is perfectly nested (i.e., so no object has more than one parent) |
| 218 | void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { |
| 219 | // Figure out where the layer should go by comparing the ids of the current |
| 220 | // layers with the new ids |
| 221 | int target_layer; |
| 222 | int previous_id = kmp_hw_thread_t::UNKNOWN_ID; |
| 223 | int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; |
| 224 | |
| 225 | // Start from the highest layer and work down to find target layer |
| 226 | // If new layer is equal to another layer then put the new layer above |
| 227 | for (target_layer = 0; target_layer < depth; ++target_layer) { |
| 228 | bool layers_equal = true; |
| 229 | bool strictly_above_target_layer = false; |
| 230 | for (int i = 0; i < num_hw_threads; ++i) { |
| 231 | int id = hw_threads[i].ids[target_layer]; |
| 232 | int new_id = ids[i]; |
| 233 | if (id != previous_id && new_id == previous_new_id) { |
| 234 | // Found the layer we are strictly above |
| 235 | strictly_above_target_layer = true; |
| 236 | layers_equal = false; |
| 237 | break; |
| 238 | } else if (id == previous_id && new_id != previous_new_id) { |
| 239 | // Found a layer we are below. Move to next layer and check. |
| 240 | layers_equal = false; |
| 241 | break; |
| 242 | } |
| 243 | previous_id = id; |
| 244 | previous_new_id = new_id; |
| 245 | } |
| 246 | if (strictly_above_target_layer || layers_equal) |
| 247 | break; |
| 248 | } |
| 249 | |
| 250 | // Found the layer we are above. Now move everything to accommodate the new |
| 251 | // layer. And put the new ids and type into the topology. |
| 252 | for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) |
| 253 | types[j] = types[i]; |
| 254 | types[target_layer] = type; |
| 255 | for (int k = 0; k < num_hw_threads; ++k) { |
| 256 | for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) |
| 257 | hw_threads[k].ids[j] = hw_threads[k].ids[i]; |
| 258 | hw_threads[k].ids[target_layer] = ids[k]; |
| 259 | } |
| 260 | equivalent[type] = type; |
| 261 | depth++; |
| 262 | } |
| 263 | |
| 264 | #if KMP_GROUP_AFFINITY0 |
| 265 | // Insert the Windows Processor Group structure into the topology |
| 266 | void kmp_topology_t::_insert_windows_proc_groups() { |
| 267 | // Do not insert the processor group structure for a single group |
| 268 | if (__kmp_num_proc_groups == 1) |
| 269 | return; |
| 270 | kmp_affin_mask_t *mask; |
| 271 | int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads)___kmp_allocate((sizeof(int) * num_hw_threads), "openmp/runtime/src/kmp_affinity.cpp" , 271); |
| 272 | KMP_CPU_ALLOC(mask)(mask = __kmp_affinity_dispatch->allocate_mask()); |
| 273 | for (int i = 0; i < num_hw_threads; ++i) { |
| 274 | KMP_CPU_ZERO(mask)(mask)->zero(); |
| 275 | KMP_CPU_SET(hw_threads[i].os_id, mask)(mask)->set(hw_threads[i].os_id); |
| 276 | ids[i] = __kmp_get_proc_group(mask)(mask)->get_proc_group(); |
| 277 | } |
| 278 | KMP_CPU_FREE(mask)__kmp_affinity_dispatch->deallocate_mask(mask); |
| 279 | _insert_layer(KMP_HW_PROC_GROUP, ids); |
| 280 | __kmp_free(ids)___kmp_free((ids), "openmp/runtime/src/kmp_affinity.cpp", 280 ); |
| 281 | } |
| 282 | #endif |
| 283 | |
| 284 | // Remove layers that don't add information to the topology. |
| 285 | // This is done by having the layer take on the id = UNKNOWN_ID (-1) |
| 286 | void kmp_topology_t::_remove_radix1_layers() { |
| 287 | int preference[KMP_HW_LAST]; |
| 288 | int top_index1, top_index2; |
| 289 | // Set up preference associative array |
| 290 | preference[KMP_HW_SOCKET] = 110; |
| 291 | preference[KMP_HW_PROC_GROUP] = 100; |
| 292 | preference[KMP_HW_CORE] = 95; |
| 293 | preference[KMP_HW_THREAD] = 90; |
| 294 | preference[KMP_HW_NUMA] = 85; |
| 295 | preference[KMP_HW_DIE] = 80; |
| 296 | preference[KMP_HW_TILE] = 75; |
| 297 | preference[KMP_HW_MODULE] = 73; |
| 298 | preference[KMP_HW_L3] = 70; |
| 299 | preference[KMP_HW_L2] = 65; |
| 300 | preference[KMP_HW_L1] = 60; |
| 301 | preference[KMP_HW_LLC] = 5; |
| 302 | top_index1 = 0; |
| 303 | top_index2 = 1; |
| 304 | while (top_index1 < depth - 1 && top_index2 < depth) { |
| 305 | kmp_hw_t type1 = types[top_index1]; |
| 306 | kmp_hw_t type2 = types[top_index2]; |
| 307 | KMP_ASSERT_VALID_HW_TYPE(type1)if (!(type1 >= (kmp_hw_t)0 && type1 < KMP_HW_LAST )) { __kmp_debug_assert("type1 >= (kmp_hw_t)0 && type1 < KMP_HW_LAST" , "openmp/runtime/src/kmp_affinity.cpp", 307); }; |
| 308 | KMP_ASSERT_VALID_HW_TYPE(type2)if (!(type2 >= (kmp_hw_t)0 && type2 < KMP_HW_LAST )) { __kmp_debug_assert("type2 >= (kmp_hw_t)0 && type2 < KMP_HW_LAST" , "openmp/runtime/src/kmp_affinity.cpp", 308); }; |
| 309 | // Do not allow the three main topology levels (sockets, cores, threads) to |
| 310 | // be compacted down |
| 311 | if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || |
| 312 | type1 == KMP_HW_SOCKET) && |
| 313 | (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || |
| 314 | type2 == KMP_HW_SOCKET)) { |
| 315 | top_index1 = top_index2++; |
| 316 | continue; |
| 317 | } |
| 318 | bool radix1 = true; |
| 319 | bool all_same = true; |
| 320 | int id1 = hw_threads[0].ids[top_index1]; |
| 321 | int id2 = hw_threads[0].ids[top_index2]; |
| 322 | int pref1 = preference[type1]; |
| 323 | int pref2 = preference[type2]; |
| 324 | for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { |
| 325 | if (hw_threads[hwidx].ids[top_index1] == id1 && |
| 326 | hw_threads[hwidx].ids[top_index2] != id2) { |
| 327 | radix1 = false; |
| 328 | break; |
| 329 | } |
| 330 | if (hw_threads[hwidx].ids[top_index2] != id2) |
| 331 | all_same = false; |
| 332 | id1 = hw_threads[hwidx].ids[top_index1]; |
| 333 | id2 = hw_threads[hwidx].ids[top_index2]; |
| 334 | } |
| 335 | if (radix1) { |
| 336 | // Select the layer to remove based on preference |
| 337 | kmp_hw_t remove_type, keep_type; |
| 338 | int remove_layer, remove_layer_ids; |
| 339 | if (pref1 > pref2) { |
| 340 | remove_type = type2; |
| 341 | remove_layer = remove_layer_ids = top_index2; |
| 342 | keep_type = type1; |
| 343 | } else { |
| 344 | remove_type = type1; |
| 345 | remove_layer = remove_layer_ids = top_index1; |
| 346 | keep_type = type2; |
| 347 | } |
| 348 | // If all the indexes for the second (deeper) layer are the same. |
| 349 | // e.g., all are zero, then make sure to keep the first layer's ids |
| 350 | if (all_same) |
| 351 | remove_layer_ids = top_index2; |
| 352 | // Remove radix one type by setting the equivalence, removing the id from |
| 353 | // the hw threads and removing the layer from types and depth |
| 354 | set_equivalent_type(remove_type, keep_type); |
| 355 | for (int idx = 0; idx < num_hw_threads; ++idx) { |
| 356 | kmp_hw_thread_t &hw_thread = hw_threads[idx]; |
| 357 | for (int d = remove_layer_ids; d < depth - 1; ++d) |
| 358 | hw_thread.ids[d] = hw_thread.ids[d + 1]; |
| 359 | } |
| 360 | for (int idx = remove_layer; idx < depth - 1; ++idx) |
| 361 | types[idx] = types[idx + 1]; |
| 362 | depth--; |
| 363 | } else { |
| 364 | top_index1 = top_index2++; |
| 365 | } |
| 366 | } |
| 367 | KMP_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp" , 367); }; |
| 368 | } |
| 369 | |
| 370 | void kmp_topology_t::_set_last_level_cache() { |
| 371 | if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) |
| 372 | set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); |
| 373 | else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) |
| 374 | set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); |
| 375 | #if KMP_MIC_SUPPORTED((0 || 1) && (1 || 0)) |
| 376 | else if (__kmp_mic_type == mic3) { |
| 377 | if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) |
| 378 | set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); |
| 379 | else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) |
| 380 | set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); |
| 381 | // L2/Tile wasn't detected so just say L1 |
| 382 | else |
| 383 | set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); |
| 384 | } |
| 385 | #endif |
| 386 | else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) |
| 387 | set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); |
| 388 | // Fallback is to set last level cache to socket or core |
| 389 | if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { |
| 390 | if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) |
| 391 | set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); |
| 392 | else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) |
| 393 | set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); |
| 394 | } |
| 395 | KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN)if (!(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN)) { __kmp_debug_assert ("get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN", "openmp/runtime/src/kmp_affinity.cpp" , 395); }; |
| 396 | } |
| 397 | |
| 398 | // Gather the count of each topology layer and the ratio |
| 399 | void kmp_topology_t::_gather_enumeration_information() { |
| 400 | int previous_id[KMP_HW_LAST]; |
| 401 | int max[KMP_HW_LAST]; |
| 402 | |
| 403 | for (int i = 0; i < depth; ++i) { |
| 404 | previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; |
| 405 | max[i] = 0; |
| 406 | count[i] = 0; |
| 407 | ratio[i] = 0; |
| 408 | } |
| 409 | int core_level = get_level(KMP_HW_CORE); |
| 410 | for (int i = 0; i < num_hw_threads; ++i) { |
| 411 | kmp_hw_thread_t &hw_thread = hw_threads[i]; |
| 412 | for (int layer = 0; layer < depth; ++layer) { |
| 413 | int id = hw_thread.ids[layer]; |
| 414 | if (id != previous_id[layer]) { |
| 415 | // Add an additional increment to each count |
| 416 | for (int l = layer; l < depth; ++l) |
| 417 | count[l]++; |
| 418 | // Keep track of topology layer ratio statistics |
| 419 | max[layer]++; |
| 420 | for (int l = layer + 1; l < depth; ++l) { |
| 421 | if (max[l] > ratio[l]) |
| 422 | ratio[l] = max[l]; |
| 423 | max[l] = 1; |
| 424 | } |
| 425 | // Figure out the number of different core types |
| 426 | // and efficiencies for hybrid CPUs |
| 427 | if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { |
| 428 | if (hw_thread.attrs.is_core_eff_valid() && |
| 429 | hw_thread.attrs.core_eff >= num_core_efficiencies) { |
| 430 | // Because efficiencies can range from 0 to max efficiency - 1, |
| 431 | // the number of efficiencies is max efficiency + 1 |
| 432 | num_core_efficiencies = hw_thread.attrs.core_eff + 1; |
| 433 | } |
| 434 | if (hw_thread.attrs.is_core_type_valid()) { |
| 435 | bool found = false; |
| 436 | for (int j = 0; j < num_core_types; ++j) { |
| 437 | if (hw_thread.attrs.get_core_type() == core_types[j]) { |
| 438 | found = true; |
| 439 | break; |
| 440 | } |
| 441 | } |
| 442 | if (!found) { |
| 443 | KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES)if (!(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES)) { __kmp_debug_assert ("num_core_types < KMP_HW_MAX_NUM_CORE_TYPES", "openmp/runtime/src/kmp_affinity.cpp" , 443); }; |
| 444 | core_types[num_core_types++] = hw_thread.attrs.get_core_type(); |
| 445 | } |
| 446 | } |
| 447 | } |
| 448 | break; |
| 449 | } |
| 450 | } |
| 451 | for (int layer = 0; layer < depth; ++layer) { |
| 452 | previous_id[layer] = hw_thread.ids[layer]; |
| 453 | } |
| 454 | } |
| 455 | for (int layer = 0; layer < depth; ++layer) { |
| 456 | if (max[layer] > ratio[layer]) |
| 457 | ratio[layer] = max[layer]; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, |
| 462 | int above_level, |
| 463 | bool find_all) const { |
| 464 | int current, current_max; |
| 465 | int previous_id[KMP_HW_LAST]; |
| 466 | for (int i = 0; i < depth; ++i) |
| 467 | previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; |
| 468 | int core_level = get_level(KMP_HW_CORE); |
| 469 | if (find_all) |
| 470 | above_level = -1; |
| 471 | KMP_ASSERT(above_level < core_level)if (!(above_level < core_level)) { __kmp_debug_assert("above_level < core_level" , "openmp/runtime/src/kmp_affinity.cpp", 471); }; |
| 472 | current_max = 0; |
| 473 | current = 0; |
| 474 | for (int i = 0; i < num_hw_threads; ++i) { |
| 475 | kmp_hw_thread_t &hw_thread = hw_threads[i]; |
| 476 | if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { |
| 477 | if (current > current_max) |
| 478 | current_max = current; |
| 479 | current = hw_thread.attrs.contains(attr); |
| 480 | } else { |
| 481 | for (int level = above_level + 1; level <= core_level; ++level) { |
| 482 | if (hw_thread.ids[level] != previous_id[level]) { |
| 483 | if (hw_thread.attrs.contains(attr)) |
| 484 | current++; |
| 485 | break; |
| 486 | } |
| 487 | } |
| 488 | } |
| 489 | for (int level = 0; level < depth; ++level) |
| 490 | previous_id[level] = hw_thread.ids[level]; |
| 491 | } |
| 492 | if (current > current_max) |
| 493 | current_max = current; |
| 494 | return current_max; |
| 495 | } |
| 496 | |
| 497 | // Find out if the topology is uniform |
| 498 | void kmp_topology_t::_discover_uniformity() { |
| 499 | int num = 1; |
| 500 | for (int level = 0; level < depth; ++level) |
| 501 | num *= ratio[level]; |
| 502 | flags.uniform = (num == count[depth - 1]); |
| 503 | } |
| 504 | |
| 505 | // Set all the sub_ids for each hardware thread |
| 506 | void kmp_topology_t::_set_sub_ids() { |
| 507 | int previous_id[KMP_HW_LAST]; |
| 508 | int sub_id[KMP_HW_LAST]; |
| 509 | |
| 510 | for (int i = 0; i < depth; ++i) { |
| 511 | previous_id[i] = -1; |
| 512 | sub_id[i] = -1; |
| 513 | } |
| 514 | for (int i = 0; i < num_hw_threads; ++i) { |
| 515 | kmp_hw_thread_t &hw_thread = hw_threads[i]; |
| 516 | // Setup the sub_id |
| 517 | for (int j = 0; j < depth; ++j) { |
| 518 | if (hw_thread.ids[j] != previous_id[j]) { |
| 519 | sub_id[j]++; |
| 520 | for (int k = j + 1; k < depth; ++k) { |
| 521 | sub_id[k] = 0; |
| 522 | } |
| 523 | break; |
| 524 | } |
| 525 | } |
| 526 | // Set previous_id |
| 527 | for (int j = 0; j < depth; ++j) { |
| 528 | previous_id[j] = hw_thread.ids[j]; |
| 529 | } |
| 530 | // Set the sub_ids field |
| 531 | for (int j = 0; j < depth; ++j) { |
| 532 | hw_thread.sub_ids[j] = sub_id[j]; |
| 533 | } |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | void kmp_topology_t::_set_globals() { |
| 538 | // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores |
| 539 | int core_level, thread_level, package_level; |
| 540 | package_level = get_level(KMP_HW_SOCKET); |
| 541 | #if KMP_GROUP_AFFINITY0 |
| 542 | if (package_level == -1) |
| 543 | package_level = get_level(KMP_HW_PROC_GROUP); |
| 544 | #endif |
| 545 | core_level = get_level(KMP_HW_CORE); |
| 546 | thread_level = get_level(KMP_HW_THREAD); |
| 547 | |
| 548 | KMP_ASSERT(core_level != -1)if (!(core_level != -1)) { __kmp_debug_assert("core_level != -1" , "openmp/runtime/src/kmp_affinity.cpp", 548); }; |
| 549 | KMP_ASSERT(thread_level != -1)if (!(thread_level != -1)) { __kmp_debug_assert("thread_level != -1" , "openmp/runtime/src/kmp_affinity.cpp", 549); }; |
| 550 | |
| 551 | __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); |
| 552 | if (package_level != -1) { |
| 553 | nCoresPerPkg = calculate_ratio(core_level, package_level); |
| 554 | nPackages = get_count(package_level); |
| 555 | } else { |
| 556 | // assume one socket |
| 557 | nCoresPerPkg = get_count(core_level); |
| 558 | nPackages = 1; |
| 559 | } |
| 560 | #ifndef KMP_DFLT_NTH_CORES |
| 561 | __kmp_ncores = get_count(core_level); |
| 562 | #endif |
| 563 | } |
| 564 | |
| 565 | kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, |
| 566 | const kmp_hw_t *types) { |
| 567 | kmp_topology_t *retval; |
| 568 | // Allocate all data in one large allocation |
| 569 | size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + |
| 570 | sizeof(int) * (size_t)KMP_HW_LAST * 3; |
| 571 | char *bytes = (char *)__kmp_allocate(size)___kmp_allocate((size), "openmp/runtime/src/kmp_affinity.cpp" , 571); |
| 572 | retval = (kmp_topology_t *)bytes; |
| 573 | if (nproc > 0) { |
| 574 | retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); |
| 575 | } else { |
| 576 | retval->hw_threads = nullptr; |
| 577 | } |
| 578 | retval->num_hw_threads = nproc; |
| 579 | retval->depth = ndepth; |
| 580 | int *arr = |
| 581 | (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); |
| 582 | retval->types = (kmp_hw_t *)arr; |
| 583 | retval->ratio = arr + (size_t)KMP_HW_LAST; |
| 584 | retval->count = arr + 2 * (size_t)KMP_HW_LAST; |
| 585 | retval->num_core_efficiencies = 0; |
| 586 | retval->num_core_types = 0; |
| 587 | retval->compact = 0; |
| 588 | for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) |
| 589 | retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; |
| 590 | KMP_FOREACH_HW_TYPE(type)for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; type = (kmp_hw_t)((int)type + 1)) { retval->equivalent[type] = KMP_HW_UNKNOWN; } |
| 591 | for (int i = 0; i < ndepth; ++i) { |
| 592 | retval->types[i] = types[i]; |
| 593 | retval->equivalent[types[i]] = types[i]; |
| 594 | } |
| 595 | return retval; |
| 596 | } |
| 597 | |
| 598 | void kmp_topology_t::deallocate(kmp_topology_t *topology) { |
| 599 | if (topology) |
| 600 | __kmp_free(topology)___kmp_free((topology), "openmp/runtime/src/kmp_affinity.cpp" , 600); |
| 601 | } |
| 602 | |
| 603 | bool kmp_topology_t::check_ids() const { |
| 604 | // Assume ids have been sorted |
| 605 | if (num_hw_threads == 0) |
| 606 | return true; |
| 607 | for (int i = 1; i < num_hw_threads; ++i) { |
| 608 | kmp_hw_thread_t ¤t_thread = hw_threads[i]; |
| 609 | kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; |
| 610 | bool unique = false; |
| 611 | for (int j = 0; j < depth; ++j) { |
| 612 | if (previous_thread.ids[j] != current_thread.ids[j]) { |
| 613 | unique = true; |
| 614 | break; |
| 615 | } |
| 616 | } |
| 617 | if (unique) |
| 618 | continue; |
| 619 | return false; |
| 620 | } |
| 621 | return true; |
| 622 | } |
| 623 | |
| 624 | void kmp_topology_t::dump() const { |
| 625 | printf("***********************\n"); |
| 626 | printf("*** __kmp_topology: ***\n"); |
| 627 | printf("***********************\n"); |
| 628 | printf("* depth: %d\n", depth); |
| 629 | |
| 630 | printf("* types: "); |
| 631 | for (int i = 0; i < depth; ++i) |
| 632 | printf("%15s ", __kmp_hw_get_keyword(types[i])); |
| 633 | printf("\n"); |
| 634 | |
| 635 | printf("* ratio: "); |
| 636 | for (int i = 0; i < depth; ++i) { |
| 637 | printf("%15d ", ratio[i]); |
| 638 | } |
| 639 | printf("\n"); |
| 640 | |
| 641 | printf("* count: "); |
| 642 | for (int i = 0; i < depth; ++i) { |
| 643 | printf("%15d ", count[i]); |
| 644 | } |
| 645 | printf("\n"); |
| 646 | |
| 647 | printf("* num_core_eff: %d\n", num_core_efficiencies); |
| 648 | printf("* num_core_types: %d\n", num_core_types); |
| 649 | printf("* core_types: "); |
| 650 | for (int i = 0; i < num_core_types; ++i) |
| 651 | printf("%3d ", core_types[i]); |
| 652 | printf("\n"); |
| 653 | |
| 654 | printf("* equivalent map:\n"); |
| 655 | KMP_FOREACH_HW_TYPE(i)for (kmp_hw_t i = (kmp_hw_t)0; i < KMP_HW_LAST; i = (kmp_hw_t )((int)i + 1)) { |
| 656 | const char *key = __kmp_hw_get_keyword(i); |
| 657 | const char *value = __kmp_hw_get_keyword(equivalent[i]); |
| 658 | printf("%-15s -> %-15s\n", key, value); |
| 659 | } |
| 660 | |
| 661 | printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); |
| 662 | |
| 663 | printf("* num_hw_threads: %d\n", num_hw_threads); |
| 664 | printf("* hw_threads:\n"); |
| 665 | for (int i = 0; i < num_hw_threads; ++i) { |
| 666 | hw_threads[i].print(); |
| 667 | } |
| 668 | printf("***********************\n"); |
| 669 | } |
| 670 | |
| 671 | void kmp_topology_t::print(const char *env_var) const { |
| 672 | kmp_str_buf_t buf; |
| 673 | int print_types_depth; |
| 674 | __kmp_str_buf_init(&buf){ (&buf)->str = (&buf)->bulk; (&buf)->size = sizeof((&buf)->bulk); (&buf)->used = 0; (& buf)->bulk[0] = 0; }; |
| 675 | kmp_hw_t print_types[KMP_HW_LAST + 2]; |
| 676 | |
| 677 | // Num Available Threads |
| 678 | if (num_hw_threads) { |
| 679 | KMP_INFORM(AvailableOSProc, env_var, num_hw_threads)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AvailableOSProc , env_var, num_hw_threads), __kmp_msg_null); |
| 680 | } else { |
| 681 | KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AvailableOSProc , env_var, __kmp_xproc), __kmp_msg_null); |
| 682 | } |
| 683 | |
| 684 | // Uniform or not |
| 685 | if (is_uniform()) { |
| 686 | KMP_INFORM(Uniform, env_var)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_Uniform , env_var), __kmp_msg_null); |
| 687 | } else { |
| 688 | KMP_INFORM(NonUniform, env_var)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_NonUniform , env_var), __kmp_msg_null); |
| 689 | } |
| 690 | |
| 691 | // Equivalent types |
| 692 | KMP_FOREACH_HW_TYPE(type)for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; type = (kmp_hw_t)((int)type + 1)) { |
| 693 | kmp_hw_t eq_type = equivalent[type]; |
| 694 | if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { |
| 695 | KMP_INFORM(AffEqualTopologyTypes, env_var,__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffEqualTopologyTypes , env_var, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string (eq_type)), __kmp_msg_null) |
| 696 | __kmp_hw_get_catalog_string(type),__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffEqualTopologyTypes , env_var, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string (eq_type)), __kmp_msg_null) |
| 697 | __kmp_hw_get_catalog_string(eq_type))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffEqualTopologyTypes , env_var, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string (eq_type)), __kmp_msg_null); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | // Quick topology |
| 702 | KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST)if (!(depth > 0 && depth <= (int)KMP_HW_LAST)) { __kmp_debug_assert("depth > 0 && depth <= (int)KMP_HW_LAST" , "openmp/runtime/src/kmp_affinity.cpp", 702); }; |
| 703 | // Create a print types array that always guarantees printing |
| 704 | // the core and thread level |
| 705 | print_types_depth = 0; |
| 706 | for (int level = 0; level < depth; ++level) |
| 707 | print_types[print_types_depth++] = types[level]; |
| 708 | if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { |
| 709 | // Force in the core level for quick topology |
| 710 | if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { |
| 711 | // Force core before thread e.g., 1 socket X 2 threads/socket |
| 712 | // becomes 1 socket X 1 core/socket X 2 threads/socket |
| 713 | print_types[print_types_depth - 1] = KMP_HW_CORE; |
| 714 | print_types[print_types_depth++] = KMP_HW_THREAD; |
| 715 | } else { |
| 716 | print_types[print_types_depth++] = KMP_HW_CORE; |
| 717 | } |
| 718 | } |
| 719 | // Always put threads at very end of quick topology |
| 720 | if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) |
| 721 | print_types[print_types_depth++] = KMP_HW_THREAD; |
| 722 | |
| 723 | __kmp_str_buf_clear(&buf); |
| 724 | kmp_hw_t numerator_type; |
| 725 | kmp_hw_t denominator_type = KMP_HW_UNKNOWN; |
| 726 | int core_level = get_level(KMP_HW_CORE); |
| 727 | int ncores = get_count(core_level); |
| 728 | |
| 729 | for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { |
| 730 | int c; |
| 731 | bool plural; |
| 732 | numerator_type = print_types[plevel]; |
| 733 | KMP_ASSERT_VALID_HW_TYPE(numerator_type)if (!(numerator_type >= (kmp_hw_t)0 && numerator_type < KMP_HW_LAST)) { __kmp_debug_assert("numerator_type >= (kmp_hw_t)0 && numerator_type < KMP_HW_LAST" , "openmp/runtime/src/kmp_affinity.cpp", 733); }; |
| 734 | if (equivalent[numerator_type] != numerator_type) |
| 735 | c = 1; |
| 736 | else |
| 737 | c = get_ratio(level++); |
| 738 | plural = (c > 1); |
| 739 | if (plevel == 0) { |
| 740 | __kmp_str_buf_print(&buf, "%d %s", c, |
| 741 | __kmp_hw_get_catalog_string(numerator_type, plural)); |
| 742 | } else { |
| 743 | __kmp_str_buf_print(&buf, " x %d %s/%s", c, |
| 744 | __kmp_hw_get_catalog_string(numerator_type, plural), |
| 745 | __kmp_hw_get_catalog_string(denominator_type)); |
| 746 | } |
| 747 | denominator_type = numerator_type; |
| 748 | } |
| 749 | KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_TopologyGeneric , env_var, buf.str, ncores), __kmp_msg_null); |
| 750 | |
| 751 | // Hybrid topology information |
| 752 | if (__kmp_is_hybrid_cpu()) { |
| 753 | for (int i = 0; i < num_core_types; ++i) { |
| 754 | kmp_hw_core_type_t core_type = core_types[i]; |
| 755 | kmp_hw_attr_t attr; |
| 756 | attr.clear(); |
| 757 | attr.set_core_type(core_type); |
| 758 | int ncores = get_ncores_with_attr(attr); |
| 759 | if (ncores > 0) { |
| 760 | KMP_INFORM(TopologyHybrid, env_var, ncores,__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_TopologyHybrid , env_var, ncores, __kmp_hw_get_core_type_string(core_type)), __kmp_msg_null) |
| 761 | __kmp_hw_get_core_type_string(core_type))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_TopologyHybrid , env_var, ncores, __kmp_hw_get_core_type_string(core_type)), __kmp_msg_null); |
| 762 | KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)if (!(num_core_efficiencies <= 8)) { __kmp_debug_assert("num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS" , "openmp/runtime/src/kmp_affinity.cpp", 762); } |
| 763 | for (int eff = 0; eff < num_core_efficiencies; ++eff) { |
| 764 | attr.set_core_eff(eff); |
| 765 | int ncores_with_eff = get_ncores_with_attr(attr); |
| 766 | if (ncores_with_eff > 0) { |
| 767 | KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_TopologyHybridCoreEff , env_var, ncores_with_eff, eff), __kmp_msg_null); |
| 768 | } |
| 769 | } |
| 770 | } |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | if (num_hw_threads <= 0) { |
| 775 | __kmp_str_buf_free(&buf); |
| 776 | return; |
| 777 | } |
| 778 | |
| 779 | // Full OS proc to hardware thread map |
| 780 | KMP_INFORM(OSProcToPhysicalThreadMap, env_var)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_OSProcToPhysicalThreadMap , env_var), __kmp_msg_null); |
| 781 | for (int i = 0; i < num_hw_threads; i++) { |
| 782 | __kmp_str_buf_clear(&buf); |
| 783 | for (int level = 0; level < depth; ++level) { |
| 784 | kmp_hw_t type = types[level]; |
| 785 | __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); |
| 786 | __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); |
| 787 | } |
| 788 | if (__kmp_is_hybrid_cpu()) |
| 789 | __kmp_str_buf_print( |
| 790 | &buf, "(%s)", |
| 791 | __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); |
| 792 | KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_OSProcMapToPack , env_var, hw_threads[i].os_id, buf.str), __kmp_msg_null); |
| 793 | } |
| 794 | |
| 795 | __kmp_str_buf_free(&buf); |
| 796 | } |
| 797 | |
| 798 | #if KMP_AFFINITY_SUPPORTED1 |
| 799 | void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const { |
| 800 | const char *env_var = affinity.env_var; |
| 801 | // Set the number of affinity granularity levels |
| 802 | if (affinity.gran_levels < 0) { |
| 803 | kmp_hw_t gran_type = get_equivalent_type(affinity.gran); |
| 804 | // Check if user's granularity request is valid |
| 805 | if (gran_type == KMP_HW_UNKNOWN) { |
| 806 | // First try core, then thread, then package |
| 807 | kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; |
| 808 | for (auto g : gran_types) { |
| 809 | if (get_equivalent_type(g) != KMP_HW_UNKNOWN) { |
| 810 | gran_type = g; |
| 811 | break; |
| 812 | } |
| 813 | } |
| 814 | KMP_ASSERT(gran_type != KMP_HW_UNKNOWN)if (!(gran_type != KMP_HW_UNKNOWN)) { __kmp_debug_assert("gran_type != KMP_HW_UNKNOWN" , "openmp/runtime/src/kmp_affinity.cpp", 814); }; |
| 815 | // Warn user what granularity setting will be used instead |
| 816 | KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffGranularityBad, env_var, __kmp_hw_get_catalog_string (affinity.gran), __kmp_hw_get_catalog_string(gran_type)), __kmp_msg_null ); } |
| 817 | __kmp_hw_get_catalog_string(affinity.gran),if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffGranularityBad, env_var, __kmp_hw_get_catalog_string (affinity.gran), __kmp_hw_get_catalog_string(gran_type)), __kmp_msg_null ); } |
| 818 | __kmp_hw_get_catalog_string(gran_type))if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffGranularityBad, env_var, __kmp_hw_get_catalog_string (affinity.gran), __kmp_hw_get_catalog_string(gran_type)), __kmp_msg_null ); }; |
| 819 | affinity.gran = gran_type; |
| 820 | } |
| 821 | #if KMP_GROUP_AFFINITY0 |
| 822 | // If more than one processor group exists, and the level of |
| 823 | // granularity specified by the user is too coarse, then the |
| 824 | // granularity must be adjusted "down" to processor group affinity |
| 825 | // because threads can only exist within one processor group. |
| 826 | // For example, if a user sets granularity=socket and there are two |
| 827 | // processor groups that cover a socket, then the runtime must |
| 828 | // restrict the granularity down to the processor group level. |
| 829 | if (__kmp_num_proc_groups > 1) { |
| 830 | int gran_depth = get_level(gran_type); |
| 831 | int proc_group_depth = get_level(KMP_HW_PROC_GROUP); |
| 832 | if (gran_depth >= 0 && proc_group_depth >= 0 && |
| 833 | gran_depth < proc_group_depth) { |
| 834 | KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffGranTooCoarseProcGroup, env_var , __kmp_hw_get_catalog_string(affinity.gran)), __kmp_msg_null ); } |
| 835 | __kmp_hw_get_catalog_string(affinity.gran))if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffGranTooCoarseProcGroup, env_var , __kmp_hw_get_catalog_string(affinity.gran)), __kmp_msg_null ); }; |
| 836 | affinity.gran = gran_type = KMP_HW_PROC_GROUP; |
| 837 | } |
| 838 | } |
| 839 | #endif |
| 840 | affinity.gran_levels = 0; |
| 841 | for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) |
| 842 | affinity.gran_levels++; |
| 843 | } |
| 844 | } |
| 845 | #endif |
| 846 | |
| 847 | void kmp_topology_t::canonicalize() { |
| 848 | #if KMP_GROUP_AFFINITY0 |
| 849 | _insert_windows_proc_groups(); |
| 850 | #endif |
| 851 | _remove_radix1_layers(); |
| 852 | _gather_enumeration_information(); |
| 853 | _discover_uniformity(); |
| 854 | _set_sub_ids(); |
| 855 | _set_globals(); |
| 856 | _set_last_level_cache(); |
| 857 | |
| 858 | #if KMP_MIC_SUPPORTED((0 || 1) && (1 || 0)) |
| 859 | // Manually Add L2 = Tile equivalence |
| 860 | if (__kmp_mic_type == mic3) { |
| 861 | if (get_level(KMP_HW_L2) != -1) |
| 862 | set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); |
| 863 | else if (get_level(KMP_HW_TILE) != -1) |
| 864 | set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); |
| 865 | } |
| 866 | #endif |
| 867 | |
| 868 | // Perform post canonicalization checking |
| 869 | KMP_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp" , 869); }; |
| 870 | for (int level = 0; level < depth; ++level) { |
| 871 | // All counts, ratios, and types must be valid |
| 872 | KMP_ASSERT(count[level] > 0 && ratio[level] > 0)if (!(count[level] > 0 && ratio[level] > 0)) { __kmp_debug_assert ("count[level] > 0 && ratio[level] > 0", "openmp/runtime/src/kmp_affinity.cpp" , 872); }; |
| 873 | KMP_ASSERT_VALID_HW_TYPE(types[level])if (!(types[level] >= (kmp_hw_t)0 && types[level] < KMP_HW_LAST)) { __kmp_debug_assert("types[level] >= (kmp_hw_t)0 && types[level] < KMP_HW_LAST" , "openmp/runtime/src/kmp_affinity.cpp", 873); }; |
| 874 | // Detected types must point to themselves |
| 875 | KMP_ASSERT(equivalent[types[level]] == types[level])if (!(equivalent[types[level]] == types[level])) { __kmp_debug_assert ("equivalent[types[level]] == types[level]", "openmp/runtime/src/kmp_affinity.cpp" , 875); }; |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | // Canonicalize an explicit packages X cores/pkg X threads/core topology |
| 880 | void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, |
| 881 | int nthreads_per_core, int ncores) { |
| 882 | int ndepth = 3; |
| 883 | depth = ndepth; |
| 884 | KMP_FOREACH_HW_TYPE(i)for (kmp_hw_t i = (kmp_hw_t)0; i < KMP_HW_LAST; i = (kmp_hw_t )((int)i + 1)) { equivalent[i] = KMP_HW_UNKNOWN; } |
| 885 | for (int level = 0; level < depth; ++level) { |
| 886 | count[level] = 0; |
| 887 | ratio[level] = 0; |
| 888 | } |
| 889 | count[0] = npackages; |
| 890 | count[1] = ncores; |
| 891 | count[2] = __kmp_xproc; |
| 892 | ratio[0] = npackages; |
| 893 | ratio[1] = ncores_per_pkg; |
| 894 | ratio[2] = nthreads_per_core; |
| 895 | equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; |
| 896 | equivalent[KMP_HW_CORE] = KMP_HW_CORE; |
| 897 | equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; |
| 898 | types[0] = KMP_HW_SOCKET; |
| 899 | types[1] = KMP_HW_CORE; |
| 900 | types[2] = KMP_HW_THREAD; |
| 901 | //__kmp_avail_proc = __kmp_xproc; |
| 902 | _discover_uniformity(); |
| 903 | } |
| 904 | |
| 905 | // Represents running sub IDs for a single core attribute where |
| 906 | // attribute values have SIZE possibilities. |
| 907 | template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t { |
| 908 | int last_level; // last level in topology to consider for sub_ids |
| 909 | int sub_id[SIZE]; // The sub ID for a given attribute value |
| 910 | int prev_sub_id[KMP_HW_LAST]; |
| 911 | IndexFunc indexer; |
| 912 | |
| 913 | public: |
| 914 | kmp_sub_ids_t(int last_level) : last_level(last_level) { |
| 915 | KMP_ASSERT(last_level < KMP_HW_LAST)if (!(last_level < KMP_HW_LAST)) { __kmp_debug_assert("last_level < KMP_HW_LAST" , "openmp/runtime/src/kmp_affinity.cpp", 915); }; |
| 916 | for (size_t i = 0; i < SIZE; ++i) |
| 917 | sub_id[i] = -1; |
| 918 | for (size_t i = 0; i < KMP_HW_LAST; ++i) |
| 919 | prev_sub_id[i] = -1; |
| 920 | } |
| 921 | void update(const kmp_hw_thread_t &hw_thread) { |
| 922 | int idx = indexer(hw_thread); |
| 923 | KMP_ASSERT(idx < (int)SIZE)if (!(idx < (int)SIZE)) { __kmp_debug_assert("idx < (int)SIZE" , "openmp/runtime/src/kmp_affinity.cpp", 923); }; |
| 924 | for (int level = 0; level <= last_level; ++level) { |
| 925 | if (hw_thread.sub_ids[level] != prev_sub_id[level]) { |
| 926 | if (level < last_level) |
| 927 | sub_id[idx] = -1; |
| 928 | sub_id[idx]++; |
| 929 | break; |
| 930 | } |
| 931 | } |
| 932 | for (int level = 0; level <= last_level; ++level) |
| 933 | prev_sub_id[level] = hw_thread.sub_ids[level]; |
| 934 | } |
| 935 | int get_sub_id(const kmp_hw_thread_t &hw_thread) const { |
| 936 | return sub_id[indexer(hw_thread)]; |
| 937 | } |
| 938 | }; |
| 939 | |
| 940 | static kmp_str_buf_t * |
| 941 | __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, |
| 942 | bool plural) { |
| 943 | __kmp_str_buf_init(buf){ (buf)->str = (buf)->bulk; (buf)->size = sizeof((buf )->bulk); (buf)->used = 0; (buf)->bulk[0] = 0; }; |
| 944 | if (attr.is_core_type_valid()) |
| 945 | __kmp_str_buf_print(buf, "%s %s", |
| 946 | __kmp_hw_get_core_type_string(attr.get_core_type()), |
| 947 | __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); |
| 948 | else |
| 949 | __kmp_str_buf_print(buf, "%s eff=%d", |
| 950 | __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), |
| 951 | attr.get_core_eff()); |
| 952 | return buf; |
| 953 | } |
| 954 | |
| 955 | // Apply the KMP_HW_SUBSET envirable to the topology |
| 956 | // Returns true if KMP_HW_SUBSET filtered any processors |
| 957 | // otherwise, returns false |
| 958 | bool kmp_topology_t::filter_hw_subset() { |
| 959 | // If KMP_HW_SUBSET wasn't requested, then do nothing. |
| 960 | if (!__kmp_hw_subset) |
| 961 | return false; |
| 962 | |
| 963 | // First, sort the KMP_HW_SUBSET items by the machine topology |
| 964 | __kmp_hw_subset->sort(); |
| 965 | |
| 966 | // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology |
| 967 | bool using_core_types = false; |
| 968 | bool using_core_effs = false; |
| 969 | int hw_subset_depth = __kmp_hw_subset->get_depth(); |
| 970 | kmp_hw_t specified[KMP_HW_LAST]; |
| 971 | int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth)__builtin_alloca (sizeof(int) * hw_subset_depth); |
| 972 | KMP_ASSERT(hw_subset_depth > 0)if (!(hw_subset_depth > 0)) { __kmp_debug_assert("hw_subset_depth > 0" , "openmp/runtime/src/kmp_affinity.cpp", 972); }; |
| 973 | KMP_FOREACH_HW_TYPE(i)for (kmp_hw_t i = (kmp_hw_t)0; i < KMP_HW_LAST; i = (kmp_hw_t )((int)i + 1)) { specified[i] = KMP_HW_UNKNOWN; } |
| 974 | int core_level = get_level(KMP_HW_CORE); |
| 975 | for (int i = 0; i < hw_subset_depth; ++i) { |
| 976 | int max_count; |
| 977 | const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); |
| 978 | int num = item.num[0]; |
| 979 | int offset = item.offset[0]; |
| 980 | kmp_hw_t type = item.type; |
| 981 | kmp_hw_t equivalent_type = equivalent[type]; |
| 982 | int level = get_level(type); |
| 983 | topology_levels[i] = level; |
| 984 | |
| 985 | // Check to see if current layer is in detected machine topology |
| 986 | if (equivalent_type != KMP_HW_UNKNOWN) { |
| 987 | __kmp_hw_subset->at(i).type = equivalent_type; |
| 988 | } else { |
| 989 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetNotExistGeneric , __kmp_hw_get_catalog_string(type)), __kmp_msg_null); } |
| 990 | __kmp_hw_get_catalog_string(type))if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetNotExistGeneric , __kmp_hw_get_catalog_string(type)), __kmp_msg_null); }; |
| 991 | return false; |
| 992 | } |
| 993 | |
| 994 | // Check to see if current layer has already been |
| 995 | // specified either directly or through an equivalent type |
| 996 | if (specified[equivalent_type] != KMP_HW_UNKNOWN) { |
| 997 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetEqvLayers , __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string (specified[equivalent_type])), __kmp_msg_null); } |
| 998 | __kmp_hw_get_catalog_string(type),if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetEqvLayers , __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string (specified[equivalent_type])), __kmp_msg_null); } |
| 999 | __kmp_hw_get_catalog_string(specified[equivalent_type]))if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetEqvLayers , __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string (specified[equivalent_type])), __kmp_msg_null); }; |
| 1000 | return false; |
| 1001 | } |
| 1002 | specified[equivalent_type] = type; |
| 1003 | |
| 1004 | // Check to see if each layer's num & offset parameters are valid |
| 1005 | max_count = get_ratio(level); |
| 1006 | if (max_count < 0 || |
| 1007 | (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { |
| 1008 | bool plural = (num > 1); |
| 1009 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetManyGeneric , __kmp_hw_get_catalog_string(type, plural)), __kmp_msg_null) ; } |
| 1010 | __kmp_hw_get_catalog_string(type, plural))if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetManyGeneric , __kmp_hw_get_catalog_string(type, plural)), __kmp_msg_null) ; }; |
| 1011 | return false; |
| 1012 | } |
| 1013 | |
| 1014 | // Check to see if core attributes are consistent |
| 1015 | if (core_level == level) { |
| 1016 | // Determine which core attributes are specified |
| 1017 | for (int j = 0; j < item.num_attrs; ++j) { |
| 1018 | if (item.attr[j].is_core_type_valid()) |
| 1019 | using_core_types = true; |
| 1020 | if (item.attr[j].is_core_eff_valid()) |
| 1021 | using_core_effs = true; |
| 1022 | } |
| 1023 | |
| 1024 | // Check if using a single core attribute on non-hybrid arch. |
| 1025 | // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. |
| 1026 | // |
| 1027 | // Check if using multiple core attributes on non-hyrbid arch. |
| 1028 | // Ignore all of KMP_HW_SUBSET if this is the case. |
| 1029 | if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { |
| 1030 | if (item.num_attrs == 1) { |
| 1031 | if (using_core_effs) { |
| 1032 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIgnoringAttr , "efficiency"), __kmp_msg_null); } |
| 1033 | "efficiency")if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIgnoringAttr , "efficiency"), __kmp_msg_null); }; |
| 1034 | } else { |
| 1035 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIgnoringAttr , "core_type"), __kmp_msg_null); } |
| 1036 | "core_type")if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIgnoringAttr , "core_type"), __kmp_msg_null); }; |
| 1037 | } |
| 1038 | using_core_effs = false; |
| 1039 | using_core_types = false; |
| 1040 | } else { |
| 1041 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid)if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetAttrsNonHybrid ), __kmp_msg_null); }; |
| 1042 | return false; |
| 1043 | } |
| 1044 | } |
| 1045 | |
| 1046 | // Check if using both core types and core efficiencies together |
| 1047 | if (using_core_types && using_core_effs) { |
| 1048 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIncompat , "core_type", "efficiency"), __kmp_msg_null); } |
| 1049 | "efficiency")if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIncompat , "core_type", "efficiency"), __kmp_msg_null); }; |
| 1050 | return false; |
| 1051 | } |
| 1052 | |
| 1053 | // Check that core efficiency values are valid |
| 1054 | if (using_core_effs) { |
| 1055 | for (int j = 0; j < item.num_attrs; ++j) { |
| 1056 | if (item.attr[j].is_core_eff_valid()) { |
| 1057 | int core_eff = item.attr[j].get_core_eff(); |
| 1058 | if (core_eff < 0 || core_eff >= num_core_efficiencies) { |
| 1059 | kmp_str_buf_t buf; |
| 1060 | __kmp_str_buf_init(&buf){ (&buf)->str = (&buf)->bulk; (&buf)->size = sizeof((&buf)->bulk); (&buf)->used = 0; (& buf)->bulk[0] = 0; }; |
| 1061 | __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); |
| 1062 | __kmp_msg(kmp_ms_warning, |
| 1063 | KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str)__kmp_msg_format(kmp_i18n_msg_AffHWSubsetAttrInvalid, "efficiency" , buf.str), |
| 1064 | KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1)__kmp_msg_format(kmp_i18n_hnt_ValidValuesRange, 0, num_core_efficiencies - 1), |
| 1065 | __kmp_msg_null); |
| 1066 | __kmp_str_buf_free(&buf); |
| 1067 | return false; |
| 1068 | } |
| 1069 | } |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | // Check that the number of requested cores with attributes is valid |
| 1074 | if (using_core_types || using_core_effs) { |
| 1075 | for (int j = 0; j < item.num_attrs; ++j) { |
| 1076 | int num = item.num[j]; |
| 1077 | int offset = item.offset[j]; |
| 1078 | int level_above = core_level - 1; |
| 1079 | if (level_above >= 0) { |
| 1080 | max_count = get_ncores_with_attr_per(item.attr[j], level_above); |
| 1081 | if (max_count <= 0 || |
| 1082 | (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { |
| 1083 | kmp_str_buf_t buf; |
| 1084 | __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); |
| 1085 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str)if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetManyGeneric , buf.str), __kmp_msg_null); }; |
| 1086 | __kmp_str_buf_free(&buf); |
| 1087 | return false; |
| 1088 | } |
| 1089 | } |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | if ((using_core_types || using_core_effs) && item.num_attrs > 1) { |
| 1094 | for (int j = 0; j < item.num_attrs; ++j) { |
| 1095 | // Ambiguous use of specific core attribute + generic core |
| 1096 | // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 |
| 1097 | if (!item.attr[j]) { |
| 1098 | kmp_hw_attr_t other_attr; |
| 1099 | for (int k = 0; k < item.num_attrs; ++k) { |
| 1100 | if (item.attr[k] != item.attr[j]) { |
| 1101 | other_attr = item.attr[k]; |
| 1102 | break; |
| 1103 | } |
| 1104 | } |
| 1105 | kmp_str_buf_t buf; |
| 1106 | __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); |
| 1107 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIncompat , __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str), __kmp_msg_null ); } |
| 1108 | __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str)if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetIncompat , __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str), __kmp_msg_null ); }; |
| 1109 | __kmp_str_buf_free(&buf); |
| 1110 | return false; |
| 1111 | } |
| 1112 | // Allow specifying a specific core type or core eff exactly once |
| 1113 | for (int k = 0; k < j; ++k) { |
| 1114 | if (!item.attr[j] || !item.attr[k]) |
| 1115 | continue; |
| 1116 | if (item.attr[k] == item.attr[j]) { |
| 1117 | kmp_str_buf_t buf; |
| 1118 | __kmp_hw_get_catalog_core_string(item.attr[j], &buf, |
| 1119 | item.num[j] > 0); |
| 1120 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str)if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetAttrRepeat , buf.str), __kmp_msg_null); }; |
| 1121 | __kmp_str_buf_free(&buf); |
| 1122 | return false; |
| 1123 | } |
| 1124 | } |
| 1125 | } |
| 1126 | } |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | struct core_type_indexer { |
| 1131 | int operator()(const kmp_hw_thread_t &t) const { |
| 1132 | switch (t.attrs.get_core_type()) { |
| 1133 | #if KMP_ARCH_X860 || KMP_ARCH_X86_641 |
| 1134 | case KMP_HW_CORE_TYPE_ATOM: |
| 1135 | return 1; |
| 1136 | case KMP_HW_CORE_TYPE_CORE: |
| 1137 | return 2; |
| 1138 | #endif |
| 1139 | case KMP_HW_CORE_TYPE_UNKNOWN: |
| 1140 | return 0; |
| 1141 | } |
| 1142 | KMP_ASSERT(0)if (!(0)) { __kmp_debug_assert("0", "openmp/runtime/src/kmp_affinity.cpp" , 1142); }; |
| 1143 | return 0; |
| 1144 | } |
| 1145 | }; |
| 1146 | struct core_eff_indexer { |
| 1147 | int operator()(const kmp_hw_thread_t &t) const { |
| 1148 | return t.attrs.get_core_eff(); |
| 1149 | } |
| 1150 | }; |
| 1151 | |
| 1152 | kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids( |
| 1153 | core_level); |
| 1154 | kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS8, core_eff_indexer> core_eff_sub_ids( |
| 1155 | core_level); |
| 1156 | |
| 1157 | // Determine which hardware threads should be filtered. |
| 1158 | int num_filtered = 0; |
| 1159 | bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads)___kmp_allocate((sizeof(bool) * num_hw_threads), "openmp/runtime/src/kmp_affinity.cpp" , 1159); |
| 1160 | for (int i = 0; i < num_hw_threads; ++i) { |
| 1161 | kmp_hw_thread_t &hw_thread = hw_threads[i]; |
| 1162 | // Update type_sub_id |
| 1163 | if (using_core_types) |
| 1164 | core_type_sub_ids.update(hw_thread); |
| 1165 | if (using_core_effs) |
| 1166 | core_eff_sub_ids.update(hw_thread); |
| 1167 | |
| 1168 | // Check to see if this hardware thread should be filtered |
| 1169 | bool should_be_filtered = false; |
| 1170 | for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; |
| 1171 | ++hw_subset_index) { |
| 1172 | const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); |
| 1173 | int level = topology_levels[hw_subset_index]; |
| 1174 | if (level == -1) |
| 1175 | continue; |
| 1176 | if ((using_core_effs || using_core_types) && level == core_level) { |
| 1177 | // Look for the core attribute in KMP_HW_SUBSET which corresponds |
| 1178 | // to this hardware thread's core attribute. Use this num,offset plus |
| 1179 | // the running sub_id for the particular core attribute of this hardware |
| 1180 | // thread to determine if the hardware thread should be filtered or not. |
| 1181 | int attr_idx; |
| 1182 | kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); |
| 1183 | int core_eff = hw_thread.attrs.get_core_eff(); |
| 1184 | for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { |
| 1185 | if (using_core_types && |
| 1186 | hw_subset_item.attr[attr_idx].get_core_type() == core_type) |
| 1187 | break; |
| 1188 | if (using_core_effs && |
| 1189 | hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) |
| 1190 | break; |
| 1191 | } |
| 1192 | // This core attribute isn't in the KMP_HW_SUBSET so always filter it. |
| 1193 | if (attr_idx == hw_subset_item.num_attrs) { |
| 1194 | should_be_filtered = true; |
| 1195 | break; |
| 1196 | } |
| 1197 | int sub_id; |
| 1198 | int num = hw_subset_item.num[attr_idx]; |
| 1199 | int offset = hw_subset_item.offset[attr_idx]; |
| 1200 | if (using_core_types) |
| 1201 | sub_id = core_type_sub_ids.get_sub_id(hw_thread); |
| 1202 | else |
| 1203 | sub_id = core_eff_sub_ids.get_sub_id(hw_thread); |
| 1204 | if (sub_id < offset || |
| 1205 | (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { |
| 1206 | should_be_filtered = true; |
| 1207 | break; |
| 1208 | } |
| 1209 | } else { |
| 1210 | int num = hw_subset_item.num[0]; |
| 1211 | int offset = hw_subset_item.offset[0]; |
| 1212 | if (hw_thread.sub_ids[level] < offset || |
| 1213 | (num != kmp_hw_subset_t::USE_ALL && |
| 1214 | hw_thread.sub_ids[level] >= offset + num)) { |
| 1215 | should_be_filtered = true; |
| 1216 | break; |
| 1217 | } |
| 1218 | } |
| 1219 | } |
| 1220 | // Collect filtering information |
| 1221 | filtered[i] = should_be_filtered; |
| 1222 | if (should_be_filtered) |
| 1223 | num_filtered++; |
| 1224 | } |
| 1225 | |
| 1226 | // One last check that we shouldn't allow filtering entire machine |
| 1227 | if (num_filtered == num_hw_threads) { |
| 1228 | KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered)if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_none))) { __kmp_msg (kmp_ms_warning, __kmp_msg_format(kmp_i18n_msg_AffHWSubsetAllFiltered ), __kmp_msg_null); }; |
| 1229 | __kmp_free(filtered)___kmp_free((filtered), "openmp/runtime/src/kmp_affinity.cpp" , 1229); |
| 1230 | return false; |
| 1231 | } |
| 1232 | |
| 1233 | // Apply the filter |
| 1234 | int new_index = 0; |
| 1235 | for (int i = 0; i < num_hw_threads; ++i) { |
| 1236 | if (!filtered[i]) { |
| 1237 | if (i != new_index) |
| 1238 | hw_threads[new_index] = hw_threads[i]; |
| 1239 | new_index++; |
| 1240 | } else { |
| 1241 | #if KMP_AFFINITY_SUPPORTED1 |
| 1242 | KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask)(__kmp_affin_fullMask)->clear(hw_threads[i].os_id); |
| 1243 | #endif |
| 1244 | __kmp_avail_proc--; |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | KMP_DEBUG_ASSERT(new_index <= num_hw_threads)if (!(new_index <= num_hw_threads)) { __kmp_debug_assert("new_index <= num_hw_threads" , "openmp/runtime/src/kmp_affinity.cpp", 1248); }; |
| 1249 | num_hw_threads = new_index; |
| 1250 | |
| 1251 | // Post hardware subset canonicalization |
| 1252 | _gather_enumeration_information(); |
| 1253 | _discover_uniformity(); |
| 1254 | _set_globals(); |
| 1255 | _set_last_level_cache(); |
| 1256 | __kmp_free(filtered)___kmp_free((filtered), "openmp/runtime/src/kmp_affinity.cpp" , 1256); |
| 1257 | return true; |
| 1258 | } |
| 1259 | |
| 1260 | bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { |
| 1261 | if (hw_level >= depth) |
| 1262 | return true; |
| 1263 | bool retval = true; |
| 1264 | const kmp_hw_thread_t &t1 = hw_threads[hwt1]; |
| 1265 | const kmp_hw_thread_t &t2 = hw_threads[hwt2]; |
| 1266 | for (int i = 0; i < (depth - hw_level); ++i) { |
| 1267 | if (t1.ids[i] != t2.ids[i]) |
| 1268 | return false; |
| 1269 | } |
| 1270 | return retval; |
| 1271 | } |
| 1272 | |
| 1273 | //////////////////////////////////////////////////////////////////////////////// |
| 1274 | |
| 1275 | #if KMP_AFFINITY_SUPPORTED1 |
| 1276 | class kmp_affinity_raii_t { |
| 1277 | kmp_affin_mask_t *mask; |
| 1278 | bool restored; |
| 1279 | |
| 1280 | public: |
| 1281 | kmp_affinity_raii_t() : restored(false) { |
| 1282 | KMP_CPU_ALLOC(mask)(mask = __kmp_affinity_dispatch->allocate_mask()); |
| 1283 | KMP_ASSERT(mask != NULL)if (!(mask != __null)) { __kmp_debug_assert("mask != NULL", "openmp/runtime/src/kmp_affinity.cpp" , 1283); }; |
| 1284 | __kmp_get_system_affinity(mask, TRUE)(mask)->get_system_affinity((!0)); |
| 1285 | } |
| 1286 | void restore() { |
| 1287 | __kmp_set_system_affinity(mask, TRUE)(mask)->set_system_affinity((!0)); |
| 1288 | KMP_CPU_FREE(mask)__kmp_affinity_dispatch->deallocate_mask(mask); |
| 1289 | restored = true; |
| 1290 | } |
| 1291 | ~kmp_affinity_raii_t() { |
| 1292 | if (!restored) { |
| 1293 | __kmp_set_system_affinity(mask, TRUE)(mask)->set_system_affinity((!0)); |
| 1294 | KMP_CPU_FREE(mask)__kmp_affinity_dispatch->deallocate_mask(mask); |
| 1295 | } |
| 1296 | } |
| 1297 | }; |
| 1298 | |
| 1299 | bool KMPAffinity::picked_api = false; |
| 1300 | |
| 1301 | void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n)___kmp_allocate((n), "openmp/runtime/src/kmp_affinity.cpp", 1301 ); } |
| 1302 | void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n)___kmp_allocate((n), "openmp/runtime/src/kmp_affinity.cpp", 1302 ); } |
| 1303 | void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p)___kmp_free((p), "openmp/runtime/src/kmp_affinity.cpp", 1303); } |
| 1304 | void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p)___kmp_free((p), "openmp/runtime/src/kmp_affinity.cpp", 1304); } |
| 1305 | void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n)___kmp_allocate((n), "openmp/runtime/src/kmp_affinity.cpp", 1305 ); } |
| 1306 | void KMPAffinity::operator delete(void *p) { __kmp_free(p)___kmp_free((p), "openmp/runtime/src/kmp_affinity.cpp", 1306); } |
| 1307 | |
| 1308 | void KMPAffinity::pick_api() { |
| 1309 | KMPAffinity *affinity_dispatch; |
| 1310 | if (picked_api) |
| 1311 | return; |
| 1312 | #if KMP_USE_HWLOC0 |
| 1313 | // Only use Hwloc if affinity isn't explicitly disabled and |
| 1314 | // user requests Hwloc topology method |
| 1315 | if (__kmp_affinity_top_method == affinity_top_method_hwloc && |
| 1316 | __kmp_affinity.type != affinity_disabled) { |
| 1317 | affinity_dispatch = new KMPHwlocAffinity(); |
| 1318 | } else |
| 1319 | #endif |
| 1320 | { |
| 1321 | affinity_dispatch = new KMPNativeAffinity(); |
| 1322 | } |
| 1323 | __kmp_affinity_dispatch = affinity_dispatch; |
| 1324 | picked_api = true; |
| 1325 | } |
| 1326 | |
| 1327 | void KMPAffinity::destroy_api() { |
| 1328 | if (__kmp_affinity_dispatch != NULL__null) { |
| 1329 | delete __kmp_affinity_dispatch; |
| 1330 | __kmp_affinity_dispatch = NULL__null; |
| 1331 | picked_api = false; |
| 1332 | } |
| 1333 | } |
| 1334 | |
| 1335 | #define KMP_ADVANCE_SCAN(scan) \ |
| 1336 | while (*scan != '\0') { \ |
| 1337 | scan++; \ |
| 1338 | } |
| 1339 | |
| 1340 | // Print the affinity mask to the character array in a pretty format. |
| 1341 | // The format is a comma separated list of non-negative integers or integer |
| 1342 | // ranges: e.g., 1,2,3-5,7,9-15 |
| 1343 | // The format can also be the string "{<empty>}" if no bits are set in mask |
| 1344 | char *__kmp_affinity_print_mask(char *buf, int buf_len, |
| 1345 | kmp_affin_mask_t *mask) { |
| 1346 | int start = 0, finish = 0, previous = 0; |
| 1347 | bool first_range; |
| 1348 | KMP_ASSERT(buf)if (!(buf)) { __kmp_debug_assert("buf", "openmp/runtime/src/kmp_affinity.cpp" , 1348); }; |
| 1349 | KMP_ASSERT(buf_len >= 40)if (!(buf_len >= 40)) { __kmp_debug_assert("buf_len >= 40" , "openmp/runtime/src/kmp_affinity.cpp", 1349); }; |
| 1350 | KMP_ASSERT(mask)if (!(mask)) { __kmp_debug_assert("mask", "openmp/runtime/src/kmp_affinity.cpp" , 1350); }; |
| 1351 | char *scan = buf; |
| 1352 | char *end = buf + buf_len - 1; |
| 1353 | |
| 1354 | // Check for empty set. |
| 1355 | if (mask->begin() == mask->end()) { |
| 1356 | KMP_SNPRINTFsnprintf(scan, end - scan + 1, "{<empty>}"); |
| 1357 | KMP_ADVANCE_SCAN(scan); |
| 1358 | KMP_ASSERT(scan <= end)if (!(scan <= end)) { __kmp_debug_assert("scan <= end", "openmp/runtime/src/kmp_affinity.cpp", 1358); }; |
| 1359 | return buf; |
| 1360 | } |
| 1361 | |
| 1362 | first_range = true; |
| 1363 | start = mask->begin(); |
| 1364 | while (1) { |
| 1365 | // Find next range |
| 1366 | // [start, previous] is inclusive range of contiguous bits in mask |
| 1367 | for (finish = mask->next(start), previous = start; |
| 1368 | finish == previous + 1 && finish != mask->end(); |
| 1369 | finish = mask->next(finish)) { |
| 1370 | previous = finish; |
| 1371 | } |
| 1372 | |
| 1373 | // The first range does not need a comma printed before it, but the rest |
| 1374 | // of the ranges do need a comma beforehand |
| 1375 | if (!first_range) { |
| 1376 | KMP_SNPRINTFsnprintf(scan, end - scan + 1, "%s", ","); |
| 1377 | KMP_ADVANCE_SCAN(scan); |
| 1378 | } else { |
| 1379 | first_range = false; |
| 1380 | } |
| 1381 | // Range with three or more contiguous bits in the affinity mask |
| 1382 | if (previous - start > 1) { |
| 1383 | KMP_SNPRINTFsnprintf(scan, end - scan + 1, "%u-%u", start, previous); |
| 1384 | } else { |
| 1385 | // Range with one or two contiguous bits in the affinity mask |
| 1386 | KMP_SNPRINTFsnprintf(scan, end - scan + 1, "%u", start); |
| 1387 | KMP_ADVANCE_SCAN(scan); |
| 1388 | if (previous - start > 0) { |
| 1389 | KMP_SNPRINTFsnprintf(scan, end - scan + 1, ",%u", previous); |
| 1390 | } |
| 1391 | } |
| 1392 | KMP_ADVANCE_SCAN(scan); |
| 1393 | // Start over with new start point |
| 1394 | start = finish; |
| 1395 | if (start == mask->end()) |
| 1396 | break; |
| 1397 | // Check for overflow |
| 1398 | if (end - scan < 2) |
| 1399 | break; |
| 1400 | } |
| 1401 | |
| 1402 | // Check for overflow |
| 1403 | KMP_ASSERT(scan <= end)if (!(scan <= end)) { __kmp_debug_assert("scan <= end", "openmp/runtime/src/kmp_affinity.cpp", 1403); }; |
| 1404 | return buf; |
| 1405 | } |
| 1406 | #undef KMP_ADVANCE_SCAN |
| 1407 | |
| 1408 | // Print the affinity mask to the string buffer object in a pretty format |
| 1409 | // The format is a comma separated list of non-negative integers or integer |
| 1410 | // ranges: e.g., 1,2,3-5,7,9-15 |
| 1411 | // The format can also be the string "{<empty>}" if no bits are set in mask |
| 1412 | kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, |
| 1413 | kmp_affin_mask_t *mask) { |
| 1414 | int start = 0, finish = 0, previous = 0; |
| 1415 | bool first_range; |
| 1416 | KMP_ASSERT(buf)if (!(buf)) { __kmp_debug_assert("buf", "openmp/runtime/src/kmp_affinity.cpp" , 1416); }; |
| 1417 | KMP_ASSERT(mask)if (!(mask)) { __kmp_debug_assert("mask", "openmp/runtime/src/kmp_affinity.cpp" , 1417); }; |
| 1418 | |
| 1419 | __kmp_str_buf_clear(buf); |
| 1420 | |
| 1421 | // Check for empty set. |
| 1422 | if (mask->begin() == mask->end()) { |
| 1423 | __kmp_str_buf_print(buf, "%s", "{<empty>}"); |
| 1424 | return buf; |
| 1425 | } |
| 1426 | |
| 1427 | first_range = true; |
| 1428 | start = mask->begin(); |
| 1429 | while (1) { |
| 1430 | // Find next range |
| 1431 | // [start, previous] is inclusive range of contiguous bits in mask |
| 1432 | for (finish = mask->next(start), previous = start; |
| 1433 | finish == previous + 1 && finish != mask->end(); |
| 1434 | finish = mask->next(finish)) { |
| 1435 | previous = finish; |
| 1436 | } |
| 1437 | |
| 1438 | // The first range does not need a comma printed before it, but the rest |
| 1439 | // of the ranges do need a comma beforehand |
| 1440 | if (!first_range) { |
| 1441 | __kmp_str_buf_print(buf, "%s", ","); |
| 1442 | } else { |
| 1443 | first_range = false; |
| 1444 | } |
| 1445 | // Range with three or more contiguous bits in the affinity mask |
| 1446 | if (previous - start > 1) { |
| 1447 | __kmp_str_buf_print(buf, "%u-%u", start, previous); |
| 1448 | } else { |
| 1449 | // Range with one or two contiguous bits in the affinity mask |
| 1450 | __kmp_str_buf_print(buf, "%u", start); |
| 1451 | if (previous - start > 0) { |
| 1452 | __kmp_str_buf_print(buf, ",%u", previous); |
| 1453 | } |
| 1454 | } |
| 1455 | // Start over with new start point |
| 1456 | start = finish; |
| 1457 | if (start == mask->end()) |
| 1458 | break; |
| 1459 | } |
| 1460 | return buf; |
| 1461 | } |
| 1462 | |
| 1463 | // Return (possibly empty) affinity mask representing the offline CPUs |
| 1464 | // Caller must free the mask |
| 1465 | kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { |
| 1466 | kmp_affin_mask_t *offline; |
| 1467 | KMP_CPU_ALLOC(offline)(offline = __kmp_affinity_dispatch->allocate_mask()); |
| 1468 | KMP_CPU_ZERO(offline)(offline)->zero(); |
| 1469 | #if KMP_OS_LINUX1 |
| 1470 | int n, begin_cpu, end_cpu; |
| 1471 | kmp_safe_raii_file_t offline_file; |
| 1472 | auto skip_ws = [](FILE *f) { |
| 1473 | int c; |
| 1474 | do { |
| 1475 | c = fgetc(f); |
| 1476 | } while (isspace(c)); |
| 1477 | if (c != EOF(-1)) |
| 1478 | ungetc(c, f); |
| 1479 | }; |
| 1480 | // File contains CSV of integer ranges representing the offline CPUs |
| 1481 | // e.g., 1,2,4-7,9,11-15 |
| 1482 | int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); |
| 1483 | if (status != 0) |
| 1484 | return offline; |
| 1485 | while (!feof(offline_file)) { |
| 1486 | skip_ws(offline_file); |
| 1487 | n = fscanf(offline_file, "%d", &begin_cpu); |
| 1488 | if (n != 1) |
| 1489 | break; |
| 1490 | skip_ws(offline_file); |
| 1491 | int c = fgetc(offline_file); |
| 1492 | if (c == EOF(-1) || c == ',') { |
| 1493 | // Just single CPU |
| 1494 | end_cpu = begin_cpu; |
| 1495 | } else if (c == '-') { |
| 1496 | // Range of CPUs |
| 1497 | skip_ws(offline_file); |
| 1498 | n = fscanf(offline_file, "%d", &end_cpu); |
| 1499 | if (n != 1) |
| 1500 | break; |
| 1501 | skip_ws(offline_file); |
| 1502 | c = fgetc(offline_file); // skip ',' |
| 1503 | } else { |
| 1504 | // Syntax problem |
| 1505 | break; |
| 1506 | } |
| 1507 | // Ensure a valid range of CPUs |
| 1508 | if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || |
| 1509 | end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { |
| 1510 | continue; |
| 1511 | } |
| 1512 | // Insert [begin_cpu, end_cpu] into offline mask |
| 1513 | for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { |
| 1514 | KMP_CPU_SET(cpu, offline)(offline)->set(cpu); |
| 1515 | } |
| 1516 | } |
| 1517 | #endif |
| 1518 | return offline; |
| 1519 | } |
| 1520 | |
| 1521 | // Return the number of available procs |
| 1522 | int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { |
| 1523 | int avail_proc = 0; |
| 1524 | KMP_CPU_ZERO(mask)(mask)->zero(); |
| 1525 | |
| 1526 | #if KMP_GROUP_AFFINITY0 |
| 1527 | |
| 1528 | if (__kmp_num_proc_groups > 1) { |
| 1529 | int group; |
| 1530 | KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL)if (!(__kmp_GetActiveProcessorCount != __null)) { __kmp_debug_assert ("__kmp_GetActiveProcessorCount != __null", "openmp/runtime/src/kmp_affinity.cpp" , 1530); }; |
| 1531 | for (group = 0; group < __kmp_num_proc_groups; group++) { |
| 1532 | int i; |
| 1533 | int num = __kmp_GetActiveProcessorCount(group); |
| 1534 | for (i = 0; i < num; i++) { |
| 1535 | KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask)(mask)->set(i + group * (8 * sizeof(DWORD_PTR))); |
| 1536 | avail_proc++; |
| 1537 | } |
| 1538 | } |
| 1539 | } else |
| 1540 | |
| 1541 | #endif /* KMP_GROUP_AFFINITY */ |
| 1542 | |
| 1543 | { |
| 1544 | int proc; |
| 1545 | kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); |
| 1546 | for (proc = 0; proc < __kmp_xproc; proc++) { |
| 1547 | // Skip offline CPUs |
| 1548 | if (KMP_CPU_ISSET(proc, offline_cpus)(offline_cpus)->is_set(proc)) |
| 1549 | continue; |
| 1550 | KMP_CPU_SET(proc, mask)(mask)->set(proc); |
| 1551 | avail_proc++; |
| 1552 | } |
| 1553 | KMP_CPU_FREE(offline_cpus)__kmp_affinity_dispatch->deallocate_mask(offline_cpus); |
| 1554 | } |
| 1555 | |
| 1556 | return avail_proc; |
| 1557 | } |
| 1558 | |
| 1559 | // All of the __kmp_affinity_create_*_map() routines should allocate the |
| 1560 | // internal topology object and set the layer ids for it. Each routine |
| 1561 | // returns a boolean on whether it was successful at doing so. |
| 1562 | kmp_affin_mask_t *__kmp_affin_fullMask = NULL__null; |
| 1563 | // Original mask is a subset of full mask in multiple processor groups topology |
| 1564 | kmp_affin_mask_t *__kmp_affin_origMask = NULL__null; |
| 1565 | |
| 1566 | #if KMP_USE_HWLOC0 |
| 1567 | static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { |
| 1568 | #if HWLOC_API_VERSION >= 0x00020000 |
| 1569 | return hwloc_obj_type_is_cache(obj->type); |
| 1570 | #else |
| 1571 | return obj->type == HWLOC_OBJ_CACHE; |
| 1572 | #endif |
| 1573 | } |
| 1574 | |
| 1575 | // Returns KMP_HW_* type derived from HWLOC_* type |
| 1576 | static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { |
| 1577 | |
| 1578 | if (__kmp_hwloc_is_cache_type(obj)) { |
| 1579 | if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) |
| 1580 | return KMP_HW_UNKNOWN; |
| 1581 | switch (obj->attr->cache.depth) { |
| 1582 | case 1: |
| 1583 | return KMP_HW_L1; |
| 1584 | case 2: |
| 1585 | #if KMP_MIC_SUPPORTED((0 || 1) && (1 || 0)) |
| 1586 | if (__kmp_mic_type == mic3) { |
| 1587 | return KMP_HW_TILE; |
| 1588 | } |
| 1589 | #endif |
| 1590 | return KMP_HW_L2; |
| 1591 | case 3: |
| 1592 | return KMP_HW_L3; |
| 1593 | } |
| 1594 | return KMP_HW_UNKNOWN; |
| 1595 | } |
| 1596 | |
| 1597 | switch (obj->type) { |
| 1598 | case HWLOC_OBJ_PACKAGE: |
| 1599 | return KMP_HW_SOCKET; |
| 1600 | case HWLOC_OBJ_NUMANODE: |
| 1601 | return KMP_HW_NUMA; |
| 1602 | case HWLOC_OBJ_CORE: |
| 1603 | return KMP_HW_CORE; |
| 1604 | case HWLOC_OBJ_PU: |
| 1605 | return KMP_HW_THREAD; |
| 1606 | case HWLOC_OBJ_GROUP: |
| 1607 | #if HWLOC_API_VERSION >= 0x00020000 |
| 1608 | if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) |
| 1609 | return KMP_HW_DIE; |
| 1610 | else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) |
| 1611 | return KMP_HW_TILE; |
| 1612 | else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) |
| 1613 | return KMP_HW_MODULE; |
| 1614 | else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) |
| 1615 | return KMP_HW_PROC_GROUP; |
| 1616 | #endif |
| 1617 | return KMP_HW_UNKNOWN; |
| 1618 | #if HWLOC_API_VERSION >= 0x00020100 |
| 1619 | case HWLOC_OBJ_DIE: |
| 1620 | return KMP_HW_DIE; |
| 1621 | #endif |
| 1622 | } |
| 1623 | return KMP_HW_UNKNOWN; |
| 1624 | } |
| 1625 | |
| 1626 | // Returns the number of objects of type 'type' below 'obj' within the topology |
| 1627 | // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is |
| 1628 | // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET |
| 1629 | // object. |
| 1630 | static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, |
| 1631 | hwloc_obj_type_t type) { |
| 1632 | int retval = 0; |
| 1633 | hwloc_obj_t first; |
| 1634 | for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, |
| 1635 | obj->logical_index, type, 0); |
| 1636 | first != NULL__null && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, |
| 1637 | obj->type, first) == obj; |
| 1638 | first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, |
| 1639 | first)) { |
| 1640 | ++retval; |
| 1641 | } |
| 1642 | return retval; |
| 1643 | } |
| 1644 | |
| 1645 | // This gets the sub_id for a lower object under a higher object in the |
| 1646 | // topology tree |
| 1647 | static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, |
| 1648 | hwloc_obj_t lower) { |
| 1649 | hwloc_obj_t obj; |
| 1650 | hwloc_obj_type_t ltype = lower->type; |
| 1651 | int lindex = lower->logical_index - 1; |
| 1652 | int sub_id = 0; |
| 1653 | // Get the previous lower object |
| 1654 | obj = hwloc_get_obj_by_type(t, ltype, lindex); |
| 1655 | while (obj && lindex >= 0 && |
| 1656 | hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { |
| 1657 | if (obj->userdata) { |
| 1658 | sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)reinterpret_cast<kmp_intptr_t>(obj->userdata)); |
| 1659 | break; |
| 1660 | } |
| 1661 | sub_id++; |
| 1662 | lindex--; |
| 1663 | obj = hwloc_get_obj_by_type(t, ltype, lindex); |
| 1664 | } |
| 1665 | // store sub_id + 1 so that 0 is differed from NULL |
| 1666 | lower->userdata = RCAST(void *, sub_id + 1)reinterpret_cast<void *>(sub_id + 1); |
| 1667 | return sub_id; |
| 1668 | } |
| 1669 | |
| 1670 | static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { |
| 1671 | kmp_hw_t type; |
| 1672 | int hw_thread_index, sub_id; |
| 1673 | int depth; |
| 1674 | hwloc_obj_t pu, obj, root, prev; |
| 1675 | kmp_hw_t types[KMP_HW_LAST]; |
| 1676 | hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; |
| 1677 | |
| 1678 | hwloc_topology_t tp = __kmp_hwloc_topology; |
| 1679 | *msg_id = kmp_i18n_null; |
| 1680 | if (__kmp_affinity.flags.verbose) { |
| 1681 | KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY")__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffUsingHwloc , "KMP_AFFINITY"), __kmp_msg_null); |
| 1682 | } |
| 1683 | |
| 1684 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 1685 | // Hack to try and infer the machine topology using only the data |
| 1686 | // available from hwloc on the current thread, and __kmp_xproc. |
| 1687 | KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert ("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp" , 1687); }; |
| 1688 | // hwloc only guarantees existance of PU object, so check PACKAGE and CORE |
| 1689 | hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); |
| 1690 | if (o != NULL__null) |
| 1691 | nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); |
| 1692 | else |
| 1693 | nCoresPerPkg = 1; // no PACKAGE found |
| 1694 | o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); |
| 1695 | if (o != NULL__null) |
| 1696 | __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); |
| 1697 | else |
| 1698 | __kmp_nThreadsPerCore = 1; // no CORE found |
| 1699 | __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; |
| 1700 | if (nCoresPerPkg == 0) |
| 1701 | nCoresPerPkg = 1; // to prevent possible division by 0 |
| 1702 | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| 1703 | return true; |
| 1704 | } |
| 1705 | |
| 1706 | #if HWLOC_API_VERSION >= 0x00020400 |
| 1707 | // Handle multiple types of cores if they exist on the system |
| 1708 | int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); |
| 1709 | |
| 1710 | typedef struct kmp_hwloc_cpukinds_info_t { |
| 1711 | int efficiency; |
| 1712 | kmp_hw_core_type_t core_type; |
| 1713 | hwloc_bitmap_t mask; |
| 1714 | } kmp_hwloc_cpukinds_info_t; |
| 1715 | kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; |
| 1716 | |
| 1717 | if (nr_cpu_kinds > 0) { |
| 1718 | unsigned nr_infos; |
| 1719 | struct hwloc_info_s *infos; |
| 1720 | cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(___kmp_allocate((sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds ), "openmp/runtime/src/kmp_affinity.cpp", 1721) |
| 1721 | sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds)___kmp_allocate((sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds ), "openmp/runtime/src/kmp_affinity.cpp", 1721); |
| 1722 | for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { |
| 1723 | cpukinds[idx].efficiency = -1; |
| 1724 | cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; |
| 1725 | cpukinds[idx].mask = hwloc_bitmap_alloc(); |
| 1726 | if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, |
| 1727 | &cpukinds[idx].efficiency, &nr_infos, &infos, |
| 1728 | 0) == 0) { |
| 1729 | for (unsigned i = 0; i < nr_infos; ++i) { |
| 1730 | if (__kmp_str_match("CoreType", 8, infos[i].name)) { |
| 1731 | #if KMP_ARCH_X860 || KMP_ARCH_X86_641 |
| 1732 | if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { |
| 1733 | cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; |
| 1734 | break; |
| 1735 | } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { |
| 1736 | cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; |
| 1737 | break; |
| 1738 | } |
| 1739 | #endif |
| 1740 | } |
| 1741 | } |
| 1742 | } |
| 1743 | } |
| 1744 | } |
| 1745 | #endif |
| 1746 | |
| 1747 | root = hwloc_get_root_obj(tp); |
| 1748 | |
| 1749 | // Figure out the depth and types in the topology |
| 1750 | depth = 0; |
| 1751 | pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); |
| 1752 | KMP_ASSERT(pu)if (!(pu)) { __kmp_debug_assert("pu", "openmp/runtime/src/kmp_affinity.cpp" , 1752); }; |
| 1753 | obj = pu; |
| 1754 | types[depth] = KMP_HW_THREAD; |
| 1755 | hwloc_types[depth] = obj->type; |
| 1756 | depth++; |
| 1757 | while (obj != root && obj != NULL__null) { |
| 1758 | obj = obj->parent; |
| 1759 | #if HWLOC_API_VERSION >= 0x00020000 |
| 1760 | if (obj->memory_arity) { |
| 1761 | hwloc_obj_t memory; |
| 1762 | for (memory = obj->memory_first_child; memory; |
| 1763 | memory = hwloc_get_next_child(tp, obj, memory)) { |
| 1764 | if (memory->type == HWLOC_OBJ_NUMANODE) |
| 1765 | break; |
| 1766 | } |
| 1767 | if (memory && memory->type == HWLOC_OBJ_NUMANODE) { |
| 1768 | types[depth] = KMP_HW_NUMA; |
| 1769 | hwloc_types[depth] = memory->type; |
| 1770 | depth++; |
| 1771 | } |
| 1772 | } |
| 1773 | #endif |
| 1774 | type = __kmp_hwloc_type_2_topology_type(obj); |
| 1775 | if (type != KMP_HW_UNKNOWN) { |
| 1776 | types[depth] = type; |
| 1777 | hwloc_types[depth] = obj->type; |
| 1778 | depth++; |
| 1779 | } |
| 1780 | } |
| 1781 | KMP_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp" , 1781); }; |
| 1782 | |
| 1783 | // Get the order for the types correct |
| 1784 | for (int i = 0, j = depth - 1; i < j; ++i, --j) { |
| 1785 | hwloc_obj_type_t hwloc_temp = hwloc_types[i]; |
| 1786 | kmp_hw_t temp = types[i]; |
| 1787 | types[i] = types[j]; |
| 1788 | types[j] = temp; |
| 1789 | hwloc_types[i] = hwloc_types[j]; |
| 1790 | hwloc_types[j] = hwloc_temp; |
| 1791 | } |
| 1792 | |
| 1793 | // Allocate the data structure to be returned. |
| 1794 | __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); |
| 1795 | |
| 1796 | hw_thread_index = 0; |
| 1797 | pu = NULL__null; |
| 1798 | while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) { |
| 1799 | int index = depth - 1; |
| 1800 | bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(pu->os_index); |
| 1801 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); |
| 1802 | if (included) { |
| 1803 | hw_thread.clear(); |
| 1804 | hw_thread.ids[index] = pu->logical_index; |
| 1805 | hw_thread.os_id = pu->os_index; |
| 1806 | // If multiple core types, then set that attribute for the hardware thread |
| 1807 | #if HWLOC_API_VERSION >= 0x00020400 |
| 1808 | if (cpukinds) { |
| 1809 | int cpukind_index = -1; |
| 1810 | for (int i = 0; i < nr_cpu_kinds; ++i) { |
| 1811 | if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { |
| 1812 | cpukind_index = i; |
| 1813 | break; |
| 1814 | } |
| 1815 | } |
| 1816 | if (cpukind_index >= 0) { |
| 1817 | hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); |
| 1818 | hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); |
| 1819 | } |
| 1820 | } |
| 1821 | #endif |
| 1822 | index--; |
| 1823 | } |
| 1824 | obj = pu; |
| 1825 | prev = obj; |
| 1826 | while (obj != root && obj != NULL__null) { |
| 1827 | obj = obj->parent; |
| 1828 | #if HWLOC_API_VERSION >= 0x00020000 |
| 1829 | // NUMA Nodes are handled differently since they are not within the |
| 1830 | // parent/child structure anymore. They are separate children |
| 1831 | // of obj (memory_first_child points to first memory child) |
| 1832 | if (obj->memory_arity) { |
| 1833 | hwloc_obj_t memory; |
| 1834 | for (memory = obj->memory_first_child; memory; |
| 1835 | memory = hwloc_get_next_child(tp, obj, memory)) { |
| 1836 | if (memory->type == HWLOC_OBJ_NUMANODE) |
| 1837 | break; |
| 1838 | } |
| 1839 | if (memory && memory->type == HWLOC_OBJ_NUMANODE) { |
| 1840 | sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); |
| 1841 | if (included) { |
| 1842 | hw_thread.ids[index] = memory->logical_index; |
| 1843 | hw_thread.ids[index + 1] = sub_id; |
| 1844 | index--; |
| 1845 | } |
| 1846 | prev = memory; |
| 1847 | } |
| 1848 | prev = obj; |
| 1849 | } |
| 1850 | #endif |
| 1851 | type = __kmp_hwloc_type_2_topology_type(obj); |
| 1852 | if (type != KMP_HW_UNKNOWN) { |
| 1853 | sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); |
| 1854 | if (included) { |
| 1855 | hw_thread.ids[index] = obj->logical_index; |
| 1856 | hw_thread.ids[index + 1] = sub_id; |
| 1857 | index--; |
| 1858 | } |
| 1859 | prev = obj; |
| 1860 | } |
| 1861 | } |
| 1862 | if (included) |
| 1863 | hw_thread_index++; |
| 1864 | } |
| 1865 | |
| 1866 | #if HWLOC_API_VERSION >= 0x00020400 |
| 1867 | // Free the core types information |
| 1868 | if (cpukinds) { |
| 1869 | for (int idx = 0; idx < nr_cpu_kinds; ++idx) |
| 1870 | hwloc_bitmap_free(cpukinds[idx].mask); |
| 1871 | __kmp_free(cpukinds)___kmp_free((cpukinds), "openmp/runtime/src/kmp_affinity.cpp" , 1871); |
| 1872 | } |
| 1873 | #endif |
| 1874 | __kmp_topology->sort_ids(); |
| 1875 | return true; |
| 1876 | } |
| 1877 | #endif // KMP_USE_HWLOC |
| 1878 | |
| 1879 | // If we don't know how to retrieve the machine's processor topology, or |
| 1880 | // encounter an error in doing so, this routine is called to form a "flat" |
| 1881 | // mapping of os thread id's <-> processor id's. |
| 1882 | static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { |
| 1883 | *msg_id = kmp_i18n_null; |
| 1884 | int depth = 3; |
| 1885 | kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; |
| 1886 | |
| 1887 | if (__kmp_affinity.flags.verbose) { |
| 1888 | KMP_INFORM(UsingFlatOS, "KMP_AFFINITY")__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_UsingFlatOS , "KMP_AFFINITY"), __kmp_msg_null); |
| 1889 | } |
| 1890 | |
| 1891 | // Even if __kmp_affinity.type == affinity_none, this routine might still |
| 1892 | // be called to set __kmp_ncores, as well as |
| 1893 | // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| 1894 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 1895 | KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert ("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp" , 1895); }; |
| 1896 | __kmp_ncores = nPackages = __kmp_xproc; |
| 1897 | __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| 1898 | return true; |
| 1899 | } |
| 1900 | |
| 1901 | // When affinity is off, this routine will still be called to set |
| 1902 | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| 1903 | // Make sure all these vars are set correctly, and return now if affinity is |
| 1904 | // not enabled. |
| 1905 | __kmp_ncores = nPackages = __kmp_avail_proc; |
| 1906 | __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| 1907 | |
| 1908 | // Construct the data structure to be returned. |
| 1909 | __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); |
| 1910 | int avail_ct = 0; |
| 1911 | int i; |
| 1912 | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask)for (i = (__kmp_affin_fullMask)->begin(); (int)i != (__kmp_affin_fullMask )->end(); i = (__kmp_affin_fullMask)->next(i)) { |
| 1913 | // Skip this proc if it is not included in the machine model. |
| 1914 | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(i)) { |
| 1915 | continue; |
| 1916 | } |
| 1917 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); |
| 1918 | hw_thread.clear(); |
| 1919 | hw_thread.os_id = i; |
| 1920 | hw_thread.ids[0] = i; |
| 1921 | hw_thread.ids[1] = 0; |
| 1922 | hw_thread.ids[2] = 0; |
| 1923 | avail_ct++; |
| 1924 | } |
| 1925 | if (__kmp_affinity.flags.verbose) { |
| 1926 | KMP_INFORM(OSProcToPackage, "KMP_AFFINITY")__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_OSProcToPackage , "KMP_AFFINITY"), __kmp_msg_null); |
| 1927 | } |
| 1928 | return true; |
| 1929 | } |
| 1930 | |
| 1931 | #if KMP_GROUP_AFFINITY0 |
| 1932 | // If multiple Windows* OS processor groups exist, we can create a 2-level |
| 1933 | // topology map with the groups at level 0 and the individual procs at level 1. |
| 1934 | // This facilitates letting the threads float among all procs in a group, |
| 1935 | // if granularity=group (the default when there are multiple groups). |
| 1936 | static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { |
| 1937 | *msg_id = kmp_i18n_null; |
| 1938 | int depth = 3; |
| 1939 | kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; |
| 1940 | const static size_t BITS_PER_GROUP = CHAR_BIT8 * sizeof(DWORD_PTR); |
| 1941 | |
| 1942 | if (__kmp_affinity.flags.verbose) { |
| 1943 | KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY")__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffWindowsProcGroupMap , "KMP_AFFINITY"), __kmp_msg_null); |
| 1944 | } |
| 1945 | |
| 1946 | // If we aren't affinity capable, then use flat topology |
| 1947 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 1948 | KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert ("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp" , 1948); }; |
| 1949 | nPackages = __kmp_num_proc_groups; |
| 1950 | __kmp_nThreadsPerCore = 1; |
| 1951 | __kmp_ncores = __kmp_xproc; |
| 1952 | nCoresPerPkg = nPackages / __kmp_ncores; |
| 1953 | return true; |
| 1954 | } |
| 1955 | |
| 1956 | // Construct the data structure to be returned. |
| 1957 | __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); |
| 1958 | int avail_ct = 0; |
| 1959 | int i; |
| 1960 | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask)for (i = (__kmp_affin_fullMask)->begin(); (int)i != (__kmp_affin_fullMask )->end(); i = (__kmp_affin_fullMask)->next(i)) { |
| 1961 | // Skip this proc if it is not included in the machine model. |
| 1962 | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(i)) { |
| 1963 | continue; |
| 1964 | } |
| 1965 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); |
| 1966 | hw_thread.clear(); |
| 1967 | hw_thread.os_id = i; |
| 1968 | hw_thread.ids[0] = i / BITS_PER_GROUP; |
| 1969 | hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; |
| 1970 | } |
| 1971 | return true; |
| 1972 | } |
| 1973 | #endif /* KMP_GROUP_AFFINITY */ |
| 1974 | |
| 1975 | #if KMP_ARCH_X860 || KMP_ARCH_X86_641 |
| 1976 | |
| 1977 | template <kmp_uint32 LSB, kmp_uint32 MSB> |
| 1978 | static inline unsigned __kmp_extract_bits(kmp_uint32 v) { |
| 1979 | const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; |
| 1980 | const kmp_uint32 SHIFT_RIGHT = LSB; |
| 1981 | kmp_uint32 retval = v; |
| 1982 | retval <<= SHIFT_LEFT; |
| 1983 | retval >>= (SHIFT_LEFT + SHIFT_RIGHT); |
| 1984 | return retval; |
| 1985 | } |
| 1986 | |
| 1987 | static int __kmp_cpuid_mask_width(int count) { |
| 1988 | int r = 0; |
| 1989 | |
| 1990 | while ((1 << r) < count) |
| 1991 | ++r; |
| 1992 | return r; |
| 1993 | } |
| 1994 | |
| 1995 | class apicThreadInfo { |
| 1996 | public: |
| 1997 | unsigned osId; // param to __kmp_affinity_bind_thread |
| 1998 | unsigned apicId; // from cpuid after binding |
| 1999 | unsigned maxCoresPerPkg; // "" |
| 2000 | unsigned maxThreadsPerPkg; // "" |
| 2001 | unsigned pkgId; // inferred from above values |
| 2002 | unsigned coreId; // "" |
| 2003 | unsigned threadId; // "" |
| 2004 | }; |
| 2005 | |
| 2006 | static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, |
| 2007 | const void *b) { |
| 2008 | const apicThreadInfo *aa = (const apicThreadInfo *)a; |
| 2009 | const apicThreadInfo *bb = (const apicThreadInfo *)b; |
| 2010 | if (aa->pkgId < bb->pkgId) |
| 2011 | return -1; |
| 2012 | if (aa->pkgId > bb->pkgId) |
| 2013 | return 1; |
| 2014 | if (aa->coreId < bb->coreId) |
| 2015 | return -1; |
| 2016 | if (aa->coreId > bb->coreId) |
| 2017 | return 1; |
| 2018 | if (aa->threadId < bb->threadId) |
| 2019 | return -1; |
| 2020 | if (aa->threadId > bb->threadId) |
| 2021 | return 1; |
| 2022 | return 0; |
| 2023 | } |
| 2024 | |
| 2025 | class kmp_cache_info_t { |
| 2026 | public: |
| 2027 | struct info_t { |
| 2028 | unsigned level, mask; |
| 2029 | }; |
| 2030 | kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } |
| 2031 | size_t get_depth() const { return depth; } |
| 2032 | info_t &operator[](size_t index) { return table[index]; } |
| 2033 | const info_t &operator[](size_t index) const { return table[index]; } |
| 2034 | |
| 2035 | static kmp_hw_t get_topology_type(unsigned level) { |
| 2036 | KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL)if (!(level >= 1 && level <= MAX_CACHE_LEVEL)) { __kmp_debug_assert("level >= 1 && level <= MAX_CACHE_LEVEL" , "openmp/runtime/src/kmp_affinity.cpp", 2036); }; |
| 2037 | switch (level) { |
| 2038 | case 1: |
| 2039 | return KMP_HW_L1; |
| 2040 | case 2: |
| 2041 | return KMP_HW_L2; |
| 2042 | case 3: |
| 2043 | return KMP_HW_L3; |
| 2044 | } |
| 2045 | return KMP_HW_UNKNOWN; |
| 2046 | } |
| 2047 | |
| 2048 | private: |
| 2049 | static const int MAX_CACHE_LEVEL = 3; |
| 2050 | |
| 2051 | size_t depth; |
| 2052 | info_t table[MAX_CACHE_LEVEL]; |
| 2053 | |
| 2054 | void get_leaf4_levels() { |
| 2055 | unsigned level = 0; |
| 2056 | while (depth < MAX_CACHE_LEVEL) { |
| 2057 | unsigned cache_type, max_threads_sharing; |
| 2058 | unsigned cache_level, cache_mask_width; |
| 2059 | kmp_cpuid buf2; |
| 2060 | __kmp_x86_cpuid(4, level, &buf2); |
| 2061 | cache_type = __kmp_extract_bits<0, 4>(buf2.eax); |
| 2062 | if (!cache_type) |
| 2063 | break; |
| 2064 | // Skip instruction caches |
| 2065 | if (cache_type == 2) { |
| 2066 | level++; |
| 2067 | continue; |
| 2068 | } |
| 2069 | max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; |
| 2070 | cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); |
| 2071 | cache_level = __kmp_extract_bits<5, 7>(buf2.eax); |
| 2072 | table[depth].level = cache_level; |
| 2073 | table[depth].mask = ((-1) << cache_mask_width); |
| 2074 | depth++; |
| 2075 | level++; |
| 2076 | } |
| 2077 | } |
| 2078 | }; |
| 2079 | |
| 2080 | // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use |
| 2081 | // an algorithm which cycles through the available os threads, setting |
| 2082 | // the current thread's affinity mask to that thread, and then retrieves |
| 2083 | // the Apic Id for each thread context using the cpuid instruction. |
| 2084 | static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { |
| 2085 | kmp_cpuid buf; |
| 2086 | *msg_id = kmp_i18n_null; |
| 2087 | |
| 2088 | if (__kmp_affinity.flags.verbose) { |
| 2089 | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr , "KMP_AFFINITY", __kmp_i18n_catgets(kmp_i18n_str_DecodingLegacyAPIC )), __kmp_msg_null); |
| 2090 | } |
| 2091 | |
| 2092 | // Check if cpuid leaf 4 is supported. |
| 2093 | __kmp_x86_cpuid(0, 0, &buf); |
| 2094 | if (buf.eax < 4) { |
| 2095 | *msg_id = kmp_i18n_str_NoLeaf4Support; |
| 2096 | return false; |
| 2097 | } |
| 2098 | |
| 2099 | // The algorithm used starts by setting the affinity to each available thread |
| 2100 | // and retrieving info from the cpuid instruction, so if we are not capable of |
| 2101 | // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we |
| 2102 | // need to do something else - use the defaults that we calculated from |
| 2103 | // issuing cpuid without binding to each proc. |
| 2104 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 2105 | // Hack to try and infer the machine topology using only the data |
| 2106 | // available from cpuid on the current thread, and __kmp_xproc. |
| 2107 | KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert ("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp" , 2107); }; |
| 2108 | |
| 2109 | // Get an upper bound on the number of threads per package using cpuid(1). |
| 2110 | // On some OS/chps combinations where HT is supported by the chip but is |
| 2111 | // disabled, this value will be 2 on a single core chip. Usually, it will be |
| 2112 | // 2 if HT is enabled and 1 if HT is disabled. |
| 2113 | __kmp_x86_cpuid(1, 0, &buf); |
| 2114 | int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; |
| 2115 | if (maxThreadsPerPkg == 0) { |
| 2116 | maxThreadsPerPkg = 1; |
| 2117 | } |
| 2118 | |
| 2119 | // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded |
| 2120 | // value. |
| 2121 | // |
| 2122 | // The author of cpu_count.cpp treated this only an upper bound on the |
| 2123 | // number of cores, but I haven't seen any cases where it was greater than |
| 2124 | // the actual number of cores, so we will treat it as exact in this block of |
| 2125 | // code. |
| 2126 | // |
| 2127 | // First, we need to check if cpuid(4) is supported on this chip. To see if |
| 2128 | // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or |
| 2129 | // greater. |
| 2130 | __kmp_x86_cpuid(0, 0, &buf); |
| 2131 | if (buf.eax >= 4) { |
| 2132 | __kmp_x86_cpuid(4, 0, &buf); |
| 2133 | nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; |
| 2134 | } else { |
| 2135 | nCoresPerPkg = 1; |
| 2136 | } |
| 2137 | |
| 2138 | // There is no way to reliably tell if HT is enabled without issuing the |
| 2139 | // cpuid instruction from every thread, can correlating the cpuid info, so |
| 2140 | // if the machine is not affinity capable, we assume that HT is off. We have |
| 2141 | // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine |
| 2142 | // does not support HT. |
| 2143 | // |
| 2144 | // - Older OSes are usually found on machines with older chips, which do not |
| 2145 | // support HT. |
| 2146 | // - The performance penalty for mistakenly identifying a machine as HT when |
| 2147 | // it isn't (which results in blocktime being incorrectly set to 0) is |
| 2148 | // greater than the penalty when for mistakenly identifying a machine as |
| 2149 | // being 1 thread/core when it is really HT enabled (which results in |
| 2150 | // blocktime being incorrectly set to a positive value). |
| 2151 | __kmp_ncores = __kmp_xproc; |
| 2152 | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| 2153 | __kmp_nThreadsPerCore = 1; |
| 2154 | return true; |
| 2155 | } |
| 2156 | |
| 2157 | // From here on, we can assume that it is safe to call |
| 2158 | // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if |
| 2159 | // __kmp_affinity.type = affinity_none. |
| 2160 | |
| 2161 | // Save the affinity mask for the current thread. |
| 2162 | kmp_affinity_raii_t previous_affinity; |
| 2163 | |
| 2164 | // Run through each of the available contexts, binding the current thread |
| 2165 | // to it, and obtaining the pertinent information using the cpuid instr. |
| 2166 | // |
| 2167 | // The relevant information is: |
| 2168 | // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context |
| 2169 | // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. |
| 2170 | // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value |
| 2171 | // of this field determines the width of the core# + thread# fields in the |
| 2172 | // Apic Id. It is also an upper bound on the number of threads per |
| 2173 | // package, but it has been verified that situations happen were it is not |
| 2174 | // exact. In particular, on certain OS/chip combinations where Intel(R) |
| 2175 | // Hyper-Threading Technology is supported by the chip but has been |
| 2176 | // disabled, the value of this field will be 2 (for a single core chip). |
| 2177 | // On other OS/chip combinations supporting Intel(R) Hyper-Threading |
| 2178 | // Technology, the value of this field will be 1 when Intel(R) |
| 2179 | // Hyper-Threading Technology is disabled and 2 when it is enabled. |
| 2180 | // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value |
| 2181 | // of this field (+1) determines the width of the core# field in the Apic |
| 2182 | // Id. The comments in "cpucount.cpp" say that this value is an upper |
| 2183 | // bound, but the IA-32 architecture manual says that it is exactly the |
| 2184 | // number of cores per package, and I haven't seen any case where it |
| 2185 | // wasn't. |
| 2186 | // |
| 2187 | // From this information, deduce the package Id, core Id, and thread Id, |
| 2188 | // and set the corresponding fields in the apicThreadInfo struct. |
| 2189 | unsigned i; |
| 2190 | apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(___kmp_allocate((__kmp_avail_proc * sizeof(apicThreadInfo)), "openmp/runtime/src/kmp_affinity.cpp" , 2191) |
| 2191 | __kmp_avail_proc * sizeof(apicThreadInfo))___kmp_allocate((__kmp_avail_proc * sizeof(apicThreadInfo)), "openmp/runtime/src/kmp_affinity.cpp" , 2191); |
| 2192 | unsigned nApics = 0; |
| 2193 | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask)for (i = (__kmp_affin_fullMask)->begin(); (int)i != (__kmp_affin_fullMask )->end(); i = (__kmp_affin_fullMask)->next(i)) { |
| 2194 | // Skip this proc if it is not included in the machine model. |
| 2195 | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(i)) { |
| 2196 | continue; |
| 2197 | } |
| 2198 | KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc)if (!((int)nApics < __kmp_avail_proc)) { __kmp_debug_assert ("(int)nApics < __kmp_avail_proc", "openmp/runtime/src/kmp_affinity.cpp" , 2198); }; |
| 2199 | |
| 2200 | __kmp_affinity_dispatch->bind_thread(i); |
| 2201 | threadInfo[nApics].osId = i; |
| 2202 | |
| 2203 | // The apic id and max threads per pkg come from cpuid(1). |
| 2204 | __kmp_x86_cpuid(1, 0, &buf); |
| 2205 | if (((buf.edx >> 9) & 1) == 0) { |
| 2206 | __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 2206); |
| 2207 | *msg_id = kmp_i18n_str_ApicNotPresent; |
| 2208 | return false; |
| 2209 | } |
| 2210 | threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; |
| 2211 | threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; |
| 2212 | if (threadInfo[nApics].maxThreadsPerPkg == 0) { |
| 2213 | threadInfo[nApics].maxThreadsPerPkg = 1; |
| 2214 | } |
| 2215 | |
| 2216 | // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded |
| 2217 | // value. |
| 2218 | // |
| 2219 | // First, we need to check if cpuid(4) is supported on this chip. To see if |
| 2220 | // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n |
| 2221 | // or greater. |
| 2222 | __kmp_x86_cpuid(0, 0, &buf); |
| 2223 | if (buf.eax >= 4) { |
| 2224 | __kmp_x86_cpuid(4, 0, &buf); |
| 2225 | threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; |
| 2226 | } else { |
| 2227 | threadInfo[nApics].maxCoresPerPkg = 1; |
| 2228 | } |
| 2229 | |
| 2230 | // Infer the pkgId / coreId / threadId using only the info obtained locally. |
| 2231 | int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); |
| 2232 | threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; |
| 2233 | |
| 2234 | int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); |
| 2235 | int widthT = widthCT - widthC; |
| 2236 | if (widthT < 0) { |
| 2237 | // I've never seen this one happen, but I suppose it could, if the cpuid |
| 2238 | // instruction on a chip was really screwed up. Make sure to restore the |
| 2239 | // affinity mask before the tail call. |
| 2240 | __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 2240); |
| 2241 | *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| 2242 | return false; |
| 2243 | } |
| 2244 | |
| 2245 | int maskC = (1 << widthC) - 1; |
| 2246 | threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; |
| 2247 | |
| 2248 | int maskT = (1 << widthT) - 1; |
| 2249 | threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; |
| 2250 | |
| 2251 | nApics++; |
| 2252 | } |
| 2253 | |
| 2254 | // We've collected all the info we need. |
| 2255 | // Restore the old affinity mask for this thread. |
| 2256 | previous_affinity.restore(); |
| 2257 | |
| 2258 | // Sort the threadInfo table by physical Id. |
| 2259 | qsort(threadInfo, nApics, sizeof(*threadInfo), |
| 2260 | __kmp_affinity_cmp_apicThreadInfo_phys_id); |
| 2261 | |
| 2262 | // The table is now sorted by pkgId / coreId / threadId, but we really don't |
| 2263 | // know the radix of any of the fields. pkgId's may be sparsely assigned among |
| 2264 | // the chips on a system. Although coreId's are usually assigned |
| 2265 | // [0 .. coresPerPkg-1] and threadId's are usually assigned |
| 2266 | // [0..threadsPerCore-1], we don't want to make any such assumptions. |
| 2267 | // |
| 2268 | // For that matter, we don't know what coresPerPkg and threadsPerCore (or the |
| 2269 | // total # packages) are at this point - we want to determine that now. We |
| 2270 | // only have an upper bound on the first two figures. |
| 2271 | // |
| 2272 | // We also perform a consistency check at this point: the values returned by |
| 2273 | // the cpuid instruction for any thread bound to a given package had better |
| 2274 | // return the same info for maxThreadsPerPkg and maxCoresPerPkg. |
| 2275 | nPackages = 1; |
| 2276 | nCoresPerPkg = 1; |
| 2277 | __kmp_nThreadsPerCore = 1; |
| 2278 | unsigned nCores = 1; |
| 2279 | |
| 2280 | unsigned pkgCt = 1; // to determine radii |
| 2281 | unsigned lastPkgId = threadInfo[0].pkgId; |
| 2282 | unsigned coreCt = 1; |
| 2283 | unsigned lastCoreId = threadInfo[0].coreId; |
| 2284 | unsigned threadCt = 1; |
| 2285 | unsigned lastThreadId = threadInfo[0].threadId; |
| 2286 | |
| 2287 | // intra-pkg consist checks |
| 2288 | unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; |
| 2289 | unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; |
| 2290 | |
| 2291 | for (i = 1; i < nApics; i++) { |
| 2292 | if (threadInfo[i].pkgId != lastPkgId) { |
| 2293 | nCores++; |
| 2294 | pkgCt++; |
| 2295 | lastPkgId = threadInfo[i].pkgId; |
| 2296 | if ((int)coreCt > nCoresPerPkg) |
| 2297 | nCoresPerPkg = coreCt; |
| 2298 | coreCt = 1; |
| 2299 | lastCoreId = threadInfo[i].coreId; |
| 2300 | if ((int)threadCt > __kmp_nThreadsPerCore) |
| 2301 | __kmp_nThreadsPerCore = threadCt; |
| 2302 | threadCt = 1; |
| 2303 | lastThreadId = threadInfo[i].threadId; |
| 2304 | |
| 2305 | // This is a different package, so go on to the next iteration without |
| 2306 | // doing any consistency checks. Reset the consistency check vars, though. |
| 2307 | prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; |
| 2308 | prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; |
| 2309 | continue; |
| 2310 | } |
| 2311 | |
| 2312 | if (threadInfo[i].coreId != lastCoreId) { |
| 2313 | nCores++; |
| 2314 | coreCt++; |
| 2315 | lastCoreId = threadInfo[i].coreId; |
| 2316 | if ((int)threadCt > __kmp_nThreadsPerCore) |
| 2317 | __kmp_nThreadsPerCore = threadCt; |
| 2318 | threadCt = 1; |
| 2319 | lastThreadId = threadInfo[i].threadId; |
| 2320 | } else if (threadInfo[i].threadId != lastThreadId) { |
| 2321 | threadCt++; |
| 2322 | lastThreadId = threadInfo[i].threadId; |
| 2323 | } else { |
| 2324 | __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 2324); |
| 2325 | *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; |
| 2326 | return false; |
| 2327 | } |
| 2328 | |
| 2329 | // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg |
| 2330 | // fields agree between all the threads bounds to a given package. |
| 2331 | if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || |
| 2332 | (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { |
| 2333 | __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 2333); |
| 2334 | *msg_id = kmp_i18n_str_InconsistentCpuidInfo; |
| 2335 | return false; |
| 2336 | } |
| 2337 | } |
| 2338 | // When affinity is off, this routine will still be called to set |
| 2339 | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| 2340 | // Make sure all these vars are set correctly |
| 2341 | nPackages = pkgCt; |
| 2342 | if ((int)coreCt > nCoresPerPkg) |
| 2343 | nCoresPerPkg = coreCt; |
| 2344 | if ((int)threadCt > __kmp_nThreadsPerCore) |
| 2345 | __kmp_nThreadsPerCore = threadCt; |
| 2346 | __kmp_ncores = nCores; |
| 2347 | KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc)if (!(nApics == (unsigned)__kmp_avail_proc)) { __kmp_debug_assert ("nApics == (unsigned)__kmp_avail_proc", "openmp/runtime/src/kmp_affinity.cpp" , 2347); }; |
| 2348 | |
| 2349 | // Now that we've determined the number of packages, the number of cores per |
| 2350 | // package, and the number of threads per core, we can construct the data |
| 2351 | // structure that is to be returned. |
| 2352 | int idx = 0; |
| 2353 | int pkgLevel = 0; |
| 2354 | int coreLevel = 1; |
| 2355 | int threadLevel = 2; |
| 2356 | //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); |
| 2357 | int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); |
| 2358 | kmp_hw_t types[3]; |
| 2359 | if (pkgLevel >= 0) |
| 2360 | types[idx++] = KMP_HW_SOCKET; |
| 2361 | if (coreLevel >= 0) |
| 2362 | types[idx++] = KMP_HW_CORE; |
| 2363 | if (threadLevel >= 0) |
| 2364 | types[idx++] = KMP_HW_THREAD; |
| 2365 | |
| 2366 | KMP_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp" , 2366); }; |
| 2367 | __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); |
| 2368 | |
| 2369 | for (i = 0; i < nApics; ++i) { |
| 2370 | idx = 0; |
| 2371 | unsigned os = threadInfo[i].osId; |
| 2372 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); |
| 2373 | hw_thread.clear(); |
| 2374 | |
| 2375 | if (pkgLevel >= 0) { |
| 2376 | hw_thread.ids[idx++] = threadInfo[i].pkgId; |
| 2377 | } |
| 2378 | if (coreLevel >= 0) { |
| 2379 | hw_thread.ids[idx++] = threadInfo[i].coreId; |
| 2380 | } |
| 2381 | if (threadLevel >= 0) { |
| 2382 | hw_thread.ids[idx++] = threadInfo[i].threadId; |
| 2383 | } |
| 2384 | hw_thread.os_id = os; |
| 2385 | } |
| 2386 | |
| 2387 | __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 2387); |
| 2388 | __kmp_topology->sort_ids(); |
| 2389 | if (!__kmp_topology->check_ids()) { |
| 2390 | kmp_topology_t::deallocate(__kmp_topology); |
| 2391 | __kmp_topology = nullptr; |
| 2392 | *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; |
| 2393 | return false; |
| 2394 | } |
| 2395 | return true; |
| 2396 | } |
| 2397 | |
| 2398 | // Hybrid cpu detection using CPUID.1A |
| 2399 | // Thread should be pinned to processor already |
| 2400 | static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, |
| 2401 | unsigned *native_model_id) { |
| 2402 | kmp_cpuid buf; |
| 2403 | __kmp_x86_cpuid(0x1a, 0, &buf); |
| 2404 | *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); |
| 2405 | switch (*type) { |
| 2406 | case KMP_HW_CORE_TYPE_ATOM: |
| 2407 | *efficiency = 0; |
| 2408 | break; |
| 2409 | case KMP_HW_CORE_TYPE_CORE: |
| 2410 | *efficiency = 1; |
| 2411 | break; |
| 2412 | default: |
| 2413 | *efficiency = 0; |
| 2414 | } |
| 2415 | *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); |
| 2416 | } |
| 2417 | |
| 2418 | // Intel(R) microarchitecture code name Nehalem, Dunnington and later |
| 2419 | // architectures support a newer interface for specifying the x2APIC Ids, |
| 2420 | // based on CPUID.B or CPUID.1F |
| 2421 | /* |
| 2422 | * CPUID.B or 1F, Input ECX (sub leaf # aka level number) |
| 2423 | Bits Bits Bits Bits |
| 2424 | 31-16 15-8 7-4 4-0 |
| 2425 | ---+-----------+--------------+-------------+-----------------+ |
| 2426 | EAX| reserved | reserved | reserved | Bits to Shift | |
| 2427 | ---+-----------|--------------+-------------+-----------------| |
| 2428 | EBX| reserved | Num logical processors at level (16 bits) | |
| 2429 | ---+-----------|--------------+-------------------------------| |
| 2430 | ECX| reserved | Level Type | Level Number (8 bits) | |
| 2431 | ---+-----------+--------------+-------------------------------| |
| 2432 | EDX| X2APIC ID (32 bits) | |
| 2433 | ---+----------------------------------------------------------+ |
| 2434 | */ |
| 2435 | |
| 2436 | enum { |
| 2437 | INTEL_LEVEL_TYPE_INVALID = 0, // Package level |
| 2438 | INTEL_LEVEL_TYPE_SMT = 1, |
| 2439 | INTEL_LEVEL_TYPE_CORE = 2, |
| 2440 | INTEL_LEVEL_TYPE_MODULE = 3, |
| 2441 | INTEL_LEVEL_TYPE_TILE = 4, |
| 2442 | INTEL_LEVEL_TYPE_DIE = 5, |
| 2443 | INTEL_LEVEL_TYPE_LAST = 6, |
| 2444 | }; |
| 2445 | |
| 2446 | struct cpuid_level_info_t { |
| 2447 | unsigned level_type, mask, mask_width, nitems, cache_mask; |
| 2448 | }; |
| 2449 | |
| 2450 | static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { |
| 2451 | switch (intel_type) { |
| 2452 | case INTEL_LEVEL_TYPE_INVALID: |
| 2453 | return KMP_HW_SOCKET; |
| 2454 | case INTEL_LEVEL_TYPE_SMT: |
| 2455 | return KMP_HW_THREAD; |
| 2456 | case INTEL_LEVEL_TYPE_CORE: |
| 2457 | return KMP_HW_CORE; |
| 2458 | case INTEL_LEVEL_TYPE_TILE: |
| 2459 | return KMP_HW_TILE; |
| 2460 | case INTEL_LEVEL_TYPE_MODULE: |
| 2461 | return KMP_HW_MODULE; |
| 2462 | case INTEL_LEVEL_TYPE_DIE: |
| 2463 | return KMP_HW_DIE; |
| 2464 | } |
| 2465 | return KMP_HW_UNKNOWN; |
| 2466 | } |
| 2467 | |
| 2468 | // This function takes the topology leaf, a levels array to store the levels |
| 2469 | // detected and a bitmap of the known levels. |
| 2470 | // Returns the number of levels in the topology |
| 2471 | static unsigned |
| 2472 | __kmp_x2apicid_get_levels(int leaf, |
| 2473 | cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], |
| 2474 | kmp_uint64 known_levels) { |
| 2475 | unsigned level, levels_index; |
| 2476 | unsigned level_type, mask_width, nitems; |
| 2477 | kmp_cpuid buf; |
| 2478 | |
| 2479 | // New algorithm has known topology layers act as highest unknown topology |
| 2480 | // layers when unknown topology layers exist. |
| 2481 | // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> |
| 2482 | // are unknown topology layers, Then SMT will take the characteristics of |
| 2483 | // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). |
| 2484 | // This eliminates unknown portions of the topology while still keeping the |
| 2485 | // correct structure. |
| 2486 | level = levels_index = 0; |
| 2487 | do { |
| 2488 | __kmp_x86_cpuid(leaf, level, &buf); |
| 2489 | level_type = __kmp_extract_bits<8, 15>(buf.ecx); |
| 2490 | mask_width = __kmp_extract_bits<0, 4>(buf.eax); |
| 2491 | nitems = __kmp_extract_bits<0, 15>(buf.ebx); |
| 2492 | if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) |
| 2493 | return 0; |
| 2494 | |
| 2495 | if (known_levels & (1ull << level_type)) { |
| 2496 | // Add a new level to the topology |
| 2497 | KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST)if (!(levels_index < INTEL_LEVEL_TYPE_LAST)) { __kmp_debug_assert ("levels_index < INTEL_LEVEL_TYPE_LAST", "openmp/runtime/src/kmp_affinity.cpp" , 2497); }; |
| 2498 | levels[levels_index].level_type = level_type; |
| 2499 | levels[levels_index].mask_width = mask_width; |
| 2500 | levels[levels_index].nitems = nitems; |
| 2501 | levels_index++; |
| 2502 | } else { |
| 2503 | // If it is an unknown level, then logically move the previous layer up |
| 2504 | if (levels_index > 0) { |
| 2505 | levels[levels_index - 1].mask_width = mask_width; |
| 2506 | levels[levels_index - 1].nitems = nitems; |
| 2507 | } |
| 2508 | } |
| 2509 | level++; |
| 2510 | } while (level_type != INTEL_LEVEL_TYPE_INVALID); |
| 2511 | |
| 2512 | // Set the masks to & with apicid |
| 2513 | for (unsigned i = 0; i < levels_index; ++i) { |
| 2514 | if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { |
| 2515 | levels[i].mask = ~((-1) << levels[i].mask_width); |
| 2516 | levels[i].cache_mask = (-1) << levels[i].mask_width; |
| 2517 | for (unsigned j = 0; j < i; ++j) |
| 2518 | levels[i].mask ^= levels[j].mask; |
| 2519 | } else { |
| 2520 | KMP_DEBUG_ASSERT(levels_index > 0)if (!(levels_index > 0)) { __kmp_debug_assert("levels_index > 0" , "openmp/runtime/src/kmp_affinity.cpp", 2520); }; |
| 2521 | levels[i].mask = (-1) << levels[i - 1].mask_width; |
| 2522 | levels[i].cache_mask = 0; |
| 2523 | } |
| 2524 | } |
| 2525 | return levels_index; |
| 2526 | } |
| 2527 | |
| 2528 | static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { |
| 2529 | |
| 2530 | cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; |
| 2531 | kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; |
| 2532 | unsigned levels_index; |
| 2533 | kmp_cpuid buf; |
| 2534 | kmp_uint64 known_levels; |
| 2535 | int topology_leaf, highest_leaf, apic_id; |
| 2536 | int num_leaves; |
| 2537 | static int leaves[] = {0, 0}; |
| 2538 | |
| 2539 | kmp_i18n_id_t leaf_message_id; |
| 2540 | |
| 2541 | KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST)static_assert(sizeof(known_levels) * 8 > KMP_HW_LAST, "Build condition error" ); |
| 2542 | |
| 2543 | *msg_id = kmp_i18n_null; |
| 2544 | if (__kmp_affinity.flags.verbose) { |
| 2545 | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr , "KMP_AFFINITY", __kmp_i18n_catgets(kmp_i18n_str_Decodingx2APIC )), __kmp_msg_null); |
| 2546 | } |
| 2547 | |
| 2548 | // Figure out the known topology levels |
| 2549 | known_levels = 0ull; |
| 2550 | for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { |
| 2551 | if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { |
| 2552 | known_levels |= (1ull << i); |
| 2553 | } |
| 2554 | } |
| 2555 | |
| 2556 | // Get the highest cpuid leaf supported |
| 2557 | __kmp_x86_cpuid(0, 0, &buf); |
| 2558 | highest_leaf = buf.eax; |
| 2559 | |
| 2560 | // If a specific topology method was requested, only allow that specific leaf |
| 2561 | // otherwise, try both leaves 31 and 11 in that order |
| 2562 | num_leaves = 0; |
| 2563 | if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { |
| 2564 | num_leaves = 1; |
| 2565 | leaves[0] = 11; |
| 2566 | leaf_message_id = kmp_i18n_str_NoLeaf11Support; |
| 2567 | } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { |
| 2568 | num_leaves = 1; |
| 2569 | leaves[0] = 31; |
| 2570 | leaf_message_id = kmp_i18n_str_NoLeaf31Support; |
| 2571 | } else { |
| 2572 | num_leaves = 2; |
| 2573 | leaves[0] = 31; |
| 2574 | leaves[1] = 11; |
| 2575 | leaf_message_id = kmp_i18n_str_NoLeaf11Support; |
| 2576 | } |
| 2577 | |
| 2578 | // Check to see if cpuid leaf 31 or 11 is supported. |
| 2579 | __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; |
| 2580 | topology_leaf = -1; |
| 2581 | for (int i = 0; i < num_leaves; ++i) { |
| 2582 | int leaf = leaves[i]; |
| 2583 | if (highest_leaf < leaf) |
| 2584 | continue; |
| 2585 | __kmp_x86_cpuid(leaf, 0, &buf); |
| 2586 | if (buf.ebx == 0) |
| 2587 | continue; |
| 2588 | topology_leaf = leaf; |
| 2589 | levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); |
| 2590 | if (levels_index == 0) |
| 2591 | continue; |
| 2592 | break; |
| 2593 | } |
| 2594 | if (topology_leaf == -1 || levels_index == 0) { |
| 2595 | *msg_id = leaf_message_id; |
| 2596 | return false; |
| 2597 | } |
| 2598 | KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST)if (!(levels_index <= INTEL_LEVEL_TYPE_LAST)) { __kmp_debug_assert ("levels_index <= INTEL_LEVEL_TYPE_LAST", "openmp/runtime/src/kmp_affinity.cpp" , 2598); }; |
| 2599 | |
| 2600 | // The algorithm used starts by setting the affinity to each available thread |
| 2601 | // and retrieving info from the cpuid instruction, so if we are not capable of |
| 2602 | // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then |
| 2603 | // we need to do something else - use the defaults that we calculated from |
| 2604 | // issuing cpuid without binding to each proc. |
| 2605 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 2606 | // Hack to try and infer the machine topology using only the data |
| 2607 | // available from cpuid on the current thread, and __kmp_xproc. |
| 2608 | KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert ("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp" , 2608); }; |
| 2609 | for (unsigned i = 0; i < levels_index; ++i) { |
| 2610 | if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { |
| 2611 | __kmp_nThreadsPerCore = levels[i].nitems; |
| 2612 | } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { |
| 2613 | nCoresPerPkg = levels[i].nitems; |
| 2614 | } |
| 2615 | } |
| 2616 | __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; |
| 2617 | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| 2618 | return true; |
| 2619 | } |
| 2620 | |
| 2621 | // Allocate the data structure to be returned. |
| 2622 | int depth = levels_index; |
| 2623 | for (int i = depth - 1, j = 0; i >= 0; --i, ++j) |
| 2624 | types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); |
| 2625 | __kmp_topology = |
| 2626 | kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); |
| 2627 | |
| 2628 | // Insert equivalent cache types if they exist |
| 2629 | kmp_cache_info_t cache_info; |
| 2630 | for (size_t i = 0; i < cache_info.get_depth(); ++i) { |
| 2631 | const kmp_cache_info_t::info_t &info = cache_info[i]; |
| 2632 | unsigned cache_mask = info.mask; |
| 2633 | unsigned cache_level = info.level; |
| 2634 | for (unsigned j = 0; j < levels_index; ++j) { |
| 2635 | unsigned hw_cache_mask = levels[j].cache_mask; |
| 2636 | kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); |
| 2637 | if (hw_cache_mask == cache_mask && j < levels_index - 1) { |
| 2638 | kmp_hw_t type = |
| 2639 | __kmp_intel_type_2_topology_type(levels[j + 1].level_type); |
| 2640 | __kmp_topology->set_equivalent_type(cache_type, type); |
| 2641 | } |
| 2642 | } |
| 2643 | } |
| 2644 | |
| 2645 | // From here on, we can assume that it is safe to call |
| 2646 | // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if |
| 2647 | // __kmp_affinity.type = affinity_none. |
| 2648 | |
| 2649 | // Save the affinity mask for the current thread. |
| 2650 | kmp_affinity_raii_t previous_affinity; |
| 2651 | |
| 2652 | // Run through each of the available contexts, binding the current thread |
| 2653 | // to it, and obtaining the pertinent information using the cpuid instr. |
| 2654 | unsigned int proc; |
| 2655 | int hw_thread_index = 0; |
| 2656 | KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask)for (proc = (__kmp_affin_fullMask)->begin(); (int)proc != ( __kmp_affin_fullMask)->end(); proc = (__kmp_affin_fullMask )->next(proc)) { |
| 2657 | cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; |
| 2658 | unsigned my_levels_index; |
| 2659 | |
| 2660 | // Skip this proc if it is not included in the machine model. |
| 2661 | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(proc)) { |
| 2662 | continue; |
| 2663 | } |
| 2664 | KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc)if (!(hw_thread_index < __kmp_avail_proc)) { __kmp_debug_assert ("hw_thread_index < __kmp_avail_proc", "openmp/runtime/src/kmp_affinity.cpp" , 2664); }; |
| 2665 | |
| 2666 | __kmp_affinity_dispatch->bind_thread(proc); |
| 2667 | |
| 2668 | // New algorithm |
| 2669 | __kmp_x86_cpuid(topology_leaf, 0, &buf); |
| 2670 | apic_id = buf.edx; |
| 2671 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); |
| 2672 | my_levels_index = |
| 2673 | __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); |
| 2674 | if (my_levels_index == 0 || my_levels_index != levels_index) { |
| 2675 | *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| 2676 | return false; |
| 2677 | } |
| 2678 | hw_thread.clear(); |
| 2679 | hw_thread.os_id = proc; |
| 2680 | // Put in topology information |
| 2681 | for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { |
| 2682 | hw_thread.ids[idx] = apic_id & my_levels[j].mask; |
| 2683 | if (j > 0) { |
| 2684 | hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; |
| 2685 | } |
| 2686 | } |
| 2687 | // Hybrid information |
| 2688 | if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { |
| 2689 | kmp_hw_core_type_t type; |
| 2690 | unsigned native_model_id; |
| 2691 | int efficiency; |
| 2692 | __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); |
| 2693 | hw_thread.attrs.set_core_type(type); |
| 2694 | hw_thread.attrs.set_core_eff(efficiency); |
| 2695 | } |
| 2696 | hw_thread_index++; |
| 2697 | } |
| 2698 | KMP_ASSERT(hw_thread_index > 0)if (!(hw_thread_index > 0)) { __kmp_debug_assert("hw_thread_index > 0" , "openmp/runtime/src/kmp_affinity.cpp", 2698); }; |
| 2699 | __kmp_topology->sort_ids(); |
| 2700 | if (!__kmp_topology->check_ids()) { |
| 2701 | kmp_topology_t::deallocate(__kmp_topology); |
| 2702 | __kmp_topology = nullptr; |
| 2703 | *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; |
| 2704 | return false; |
| 2705 | } |
| 2706 | return true; |
| 2707 | } |
| 2708 | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| 2709 | |
| 2710 | #define osIdIndex0 0 |
| 2711 | #define threadIdIndex1 1 |
| 2712 | #define coreIdIndex2 2 |
| 2713 | #define pkgIdIndex3 3 |
| 2714 | #define nodeIdIndex4 4 |
| 2715 | |
| 2716 | typedef unsigned *ProcCpuInfo; |
| 2717 | static unsigned maxIndex = pkgIdIndex3; |
| 2718 | |
| 2719 | static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, |
| 2720 | const void *b) { |
| 2721 | unsigned i; |
| 2722 | const unsigned *aa = *(unsigned *const *)a; |
| 2723 | const unsigned *bb = *(unsigned *const *)b; |
| 2724 | for (i = maxIndex;; i--) { |
| 2725 | if (aa[i] < bb[i]) |
| 2726 | return -1; |
| 2727 | if (aa[i] > bb[i]) |
| 2728 | return 1; |
| 2729 | if (i == osIdIndex0) |
| 2730 | break; |
| 2731 | } |
| 2732 | return 0; |
| 2733 | } |
| 2734 | |
| 2735 | #if KMP_USE_HIER_SCHED0 |
| 2736 | // Set the array sizes for the hierarchy layers |
| 2737 | static void __kmp_dispatch_set_hierarchy_values() { |
| 2738 | // Set the maximum number of L1's to number of cores |
| 2739 | // Set the maximum number of L2's to to either number of cores / 2 for |
| 2740 | // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing |
| 2741 | // Or the number of cores for Intel(R) Xeon(R) processors |
| 2742 | // Set the maximum number of NUMA nodes and L3's to number of packages |
| 2743 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = |
| 2744 | nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; |
| 2745 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; |
| 2746 | #if KMP_ARCH_X86_641 && (KMP_OS_LINUX1 || KMP_OS_FREEBSD0 || KMP_OS_WINDOWS0) && \ |
| 2747 | KMP_MIC_SUPPORTED((0 || 1) && (1 || 0)) |
| 2748 | if (__kmp_mic_type >= mic3) |
| 2749 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; |
| 2750 | else |
| 2751 | #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) |
| 2752 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; |
| 2753 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; |
| 2754 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; |
| 2755 | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; |
| 2756 | // Set the number of threads per unit |
| 2757 | // Number of hardware threads per L1/L2/L3/NUMA/LOOP |
| 2758 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; |
| 2759 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = |
| 2760 | __kmp_nThreadsPerCore; |
| 2761 | #if KMP_ARCH_X86_641 && (KMP_OS_LINUX1 || KMP_OS_FREEBSD0 || KMP_OS_WINDOWS0) && \ |
| 2762 | KMP_MIC_SUPPORTED((0 || 1) && (1 || 0)) |
| 2763 | if (__kmp_mic_type >= mic3) |
| 2764 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = |
| 2765 | 2 * __kmp_nThreadsPerCore; |
| 2766 | else |
| 2767 | #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) |
| 2768 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = |
| 2769 | __kmp_nThreadsPerCore; |
| 2770 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = |
| 2771 | nCoresPerPkg * __kmp_nThreadsPerCore; |
| 2772 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = |
| 2773 | nCoresPerPkg * __kmp_nThreadsPerCore; |
| 2774 | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = |
| 2775 | nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; |
| 2776 | } |
| 2777 | |
| 2778 | // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) |
| 2779 | // i.e., this thread's L1 or this thread's L2, etc. |
| 2780 | int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { |
| 2781 | int index = type + 1; |
| 2782 | int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; |
| 2783 | KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST)if (!(type != kmp_hier_layer_e::LAYER_LAST)) { __kmp_debug_assert ("type != kmp_hier_layer_e::LAYER_LAST", "openmp/runtime/src/kmp_affinity.cpp" , 2783); }; |
| 2784 | if (type == kmp_hier_layer_e::LAYER_THREAD) |
| 2785 | return tid; |
| 2786 | else if (type == kmp_hier_layer_e::LAYER_LOOP) |
| 2787 | return 0; |
| 2788 | KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0)if (!(__kmp_hier_max_units[index] != 0)) { __kmp_debug_assert ("__kmp_hier_max_units[index] != 0", "openmp/runtime/src/kmp_affinity.cpp" , 2788); }; |
| 2789 | if (tid >= num_hw_threads) |
| 2790 | tid = tid % num_hw_threads; |
| 2791 | return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; |
| 2792 | } |
| 2793 | |
| 2794 | // Return the number of t1's per t2 |
| 2795 | int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { |
| 2796 | int i1 = t1 + 1; |
| 2797 | int i2 = t2 + 1; |
| 2798 | KMP_DEBUG_ASSERT(i1 <= i2)if (!(i1 <= i2)) { __kmp_debug_assert("i1 <= i2", "openmp/runtime/src/kmp_affinity.cpp" , 2798); }; |
| 2799 | KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST)if (!(t1 != kmp_hier_layer_e::LAYER_LAST)) { __kmp_debug_assert ("t1 != kmp_hier_layer_e::LAYER_LAST", "openmp/runtime/src/kmp_affinity.cpp" , 2799); }; |
| 2800 | KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST)if (!(t2 != kmp_hier_layer_e::LAYER_LAST)) { __kmp_debug_assert ("t2 != kmp_hier_layer_e::LAYER_LAST", "openmp/runtime/src/kmp_affinity.cpp" , 2800); }; |
| 2801 | KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0)if (!(__kmp_hier_threads_per[i1] != 0)) { __kmp_debug_assert( "__kmp_hier_threads_per[i1] != 0", "openmp/runtime/src/kmp_affinity.cpp" , 2801); }; |
| 2802 | // (nthreads/t2) / (nthreads/t1) = t1 / t2 |
| 2803 | return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; |
| 2804 | } |
| 2805 | #endif // KMP_USE_HIER_SCHED |
| 2806 | |
| 2807 | static inline const char *__kmp_cpuinfo_get_filename() { |
| 2808 | const char *filename; |
| 2809 | if (__kmp_cpuinfo_file != nullptr) |
| 2810 | filename = __kmp_cpuinfo_file; |
| 2811 | else |
| 2812 | filename = "/proc/cpuinfo"; |
| 2813 | return filename; |
| 2814 | } |
| 2815 | |
| 2816 | static inline const char *__kmp_cpuinfo_get_envvar() { |
| 2817 | const char *envvar = nullptr; |
| 2818 | if (__kmp_cpuinfo_file != nullptr) |
| 2819 | envvar = "KMP_CPUINFO_FILE"; |
| 2820 | return envvar; |
| 2821 | } |
| 2822 | |
| 2823 | // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the |
| 2824 | // affinity map. |
| 2825 | static bool __kmp_affinity_create_cpuinfo_map(int *line, |
| 2826 | kmp_i18n_id_t *const msg_id) { |
| 2827 | const char *filename = __kmp_cpuinfo_get_filename(); |
| 2828 | const char *envvar = __kmp_cpuinfo_get_envvar(); |
| 2829 | *msg_id = kmp_i18n_null; |
| 2830 | |
| 2831 | if (__kmp_affinity.flags.verbose) { |
| 2832 | KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffParseFilename , "KMP_AFFINITY", filename), __kmp_msg_null); |
| 2833 | } |
| 2834 | |
| 2835 | kmp_safe_raii_file_t f(filename, "r", envvar); |
| 2836 | |
| 2837 | // Scan of the file, and count the number of "processor" (osId) fields, |
| 2838 | // and find the highest value of <n> for a node_<n> field. |
| 2839 | char buf[256]; |
| 2840 | unsigned num_records = 0; |
| 2841 | while (!feof(f)) { |
| 2842 | buf[sizeof(buf) - 1] = 1; |
| 2843 | if (!fgets(buf, sizeof(buf), f)) { |
| 2844 | // Read errors presumably because of EOF |
| 2845 | break; |
| 2846 | } |
| 2847 | |
| 2848 | char s1[] = "processor"; |
| 2849 | if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { |
| 2850 | num_records++; |
| 2851 | continue; |
| 2852 | } |
| 2853 | |
| 2854 | // FIXME - this will match "node_<n> <garbage>" |
| 2855 | unsigned level; |
| 2856 | if (KMP_SSCANFsscanf(buf, "node_%u id", &level) == 1) { |
| 2857 | // validate the input fisrt: |
| 2858 | if (level > (unsigned)__kmp_xproc) { // level is too big |
| 2859 | level = __kmp_xproc; |
| 2860 | } |
| 2861 | if (nodeIdIndex4 + level >= maxIndex) { |
| 2862 | maxIndex = nodeIdIndex4 + level; |
| 2863 | } |
| 2864 | continue; |
| 2865 | } |
| 2866 | } |
| 2867 | |
| 2868 | // Check for empty file / no valid processor records, or too many. The number |
| 2869 | // of records can't exceed the number of valid bits in the affinity mask. |
| 2870 | if (num_records == 0) { |
| 2871 | *msg_id = kmp_i18n_str_NoProcRecords; |
| 2872 | return false; |
| 2873 | } |
| 2874 | if (num_records > (unsigned)__kmp_xproc) { |
| 2875 | *msg_id = kmp_i18n_str_TooManyProcRecords; |
| 2876 | return false; |
| 2877 | } |
| 2878 | |
| 2879 | // Set the file pointer back to the beginning, so that we can scan the file |
| 2880 | // again, this time performing a full parse of the data. Allocate a vector of |
| 2881 | // ProcCpuInfo object, where we will place the data. Adding an extra element |
| 2882 | // at the end allows us to remove a lot of extra checks for termination |
| 2883 | // conditions. |
| 2884 | if (fseek(f, 0, SEEK_SET0) != 0) { |
| 2885 | *msg_id = kmp_i18n_str_CantRewindCpuinfo; |
| 2886 | return false; |
| 2887 | } |
| 2888 | |
| 2889 | // Allocate the array of records to store the proc info in. The dummy |
| 2890 | // element at the end makes the logic in filling them out easier to code. |
| 2891 | unsigned **threadInfo = |
| 2892 | (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *))___kmp_allocate(((num_records + 1) * sizeof(unsigned *)), "openmp/runtime/src/kmp_affinity.cpp" , 2892); |
| 2893 | unsigned i; |
| 2894 | for (i = 0; i <= num_records; i++) { |
| 2895 | threadInfo[i] = |
| 2896 | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned))___kmp_allocate(((maxIndex + 1) * sizeof(unsigned)), "openmp/runtime/src/kmp_affinity.cpp" , 2896); |
| 2897 | } |
| 2898 | |
| 2899 | #define CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo [i]), "openmp/runtime/src/kmp_affinity.cpp", 2899); } ___kmp_free ((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 2899); \ |
| 2900 | for (i = 0; i <= num_records; i++) { \ |
| 2901 | __kmp_free(threadInfo[i])___kmp_free((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp" , 2901); \ |
| 2902 | } \ |
| 2903 | __kmp_free(threadInfo)___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 2903); |
| 2904 | |
| 2905 | // A value of UINT_MAX means that we didn't find the field |
| 2906 | unsigned __index; |
| 2907 | |
| 2908 | #define INIT_PROC_INFO(p)for (__index = 0; __index <= maxIndex; __index++) { (p)[__index ] = (2147483647 *2U +1U); } \ |
| 2909 | for (__index = 0; __index <= maxIndex; __index++) { \ |
| 2910 | (p)[__index] = UINT_MAX(2147483647 *2U +1U); \ |
| 2911 | } |
| 2912 | |
| 2913 | for (i = 0; i <= num_records; i++) { |
| 2914 | INIT_PROC_INFO(threadInfo[i])for (__index = 0; __index <= maxIndex; __index++) { (threadInfo [i])[__index] = (2147483647 *2U +1U); }; |
| 2915 | } |
| 2916 | |
| 2917 | unsigned num_avail = 0; |
| 2918 | *line = 0; |
| 2919 | while (!feof(f)) { |
| 2920 | // Create an inner scoping level, so that all the goto targets at the end of |
| 2921 | // the loop appear in an outer scoping level. This avoids warnings about |
| 2922 | // jumping past an initialization to a target in the same block. |
| 2923 | { |
| 2924 | buf[sizeof(buf) - 1] = 1; |
| 2925 | bool long_line = false; |
| 2926 | if (!fgets(buf, sizeof(buf), f)) { |
| 2927 | // Read errors presumably because of EOF |
| 2928 | // If there is valid data in threadInfo[num_avail], then fake |
| 2929 | // a blank line in ensure that the last address gets parsed. |
| 2930 | bool valid = false; |
| 2931 | for (i = 0; i <= maxIndex; i++) { |
| 2932 | if (threadInfo[num_avail][i] != UINT_MAX(2147483647 *2U +1U)) { |
| 2933 | valid = true; |
| 2934 | } |
| 2935 | } |
| 2936 | if (!valid) { |
| 2937 | break; |
| 2938 | } |
| 2939 | buf[0] = 0; |
| 2940 | } else if (!buf[sizeof(buf) - 1]) { |
| 2941 | // The line is longer than the buffer. Set a flag and don't |
| 2942 | // emit an error if we were going to ignore the line, anyway. |
| 2943 | long_line = true; |
| 2944 | |
| 2945 | #define CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free ((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 2945 ); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 2945);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false ; } \ |
| 2946 | if (long_line) { \ |
| 2947 | CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo [i]), "openmp/runtime/src/kmp_affinity.cpp", 2947); } ___kmp_free ((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 2947);; \ |
| 2948 | *msg_id = kmp_i18n_str_LongLineCpuinfo; \ |
| 2949 | return false; \ |
| 2950 | } |
| 2951 | } |
| 2952 | (*line)++; |
| 2953 | |
| 2954 | #if KMP_ARCH_LOONGARCH640 |
| 2955 | // The parsing logic of /proc/cpuinfo in this function highly depends on |
| 2956 | // the blank lines between each processor info block. But on LoongArch a |
| 2957 | // blank line exists before the first processor info block (i.e. after the |
| 2958 | // "system type" line). This blank line was added because the "system |
| 2959 | // type" line is unrelated to any of the CPUs. We must skip this line so |
| 2960 | // that the original logic works on LoongArch. |
| 2961 | if (*buf == '\n' && *line == 2) |
| 2962 | continue; |
| 2963 | #endif |
| 2964 | |
| 2965 | char s1[] = "processor"; |
| 2966 | if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { |
| 2967 | CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free ((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 2967 ); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 2967);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false ; }; |
| 2968 | char *p = strchr(buf + sizeof(s1) - 1, ':'); |
| 2969 | unsigned val; |
| 2970 | if ((p == NULL__null) || (KMP_SSCANFsscanf(p + 1, "%u\n", &val) != 1)) |
| 2971 | goto no_val; |
| 2972 | if (threadInfo[num_avail][osIdIndex0] != UINT_MAX(2147483647 *2U +1U)) |
| 2973 | #if KMP_ARCH_AARCH640 |
| 2974 | // Handle the old AArch64 /proc/cpuinfo layout differently, |
| 2975 | // it contains all of the 'processor' entries listed in a |
| 2976 | // single 'Processor' section, therefore the normal looking |
| 2977 | // for duplicates in that section will always fail. |
| 2978 | num_avail++; |
| 2979 | #else |
| 2980 | goto dup_field; |
| 2981 | #endif |
| 2982 | threadInfo[num_avail][osIdIndex0] = val; |
| 2983 | #if KMP_OS_LINUX1 && !(KMP_ARCH_X860 || KMP_ARCH_X86_641) |
| 2984 | char path[256]; |
| 2985 | KMP_SNPRINTFsnprintf( |
| 2986 | path, sizeof(path), |
| 2987 | "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", |
| 2988 | threadInfo[num_avail][osIdIndex0]); |
| 2989 | __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex3]); |
| 2990 | |
| 2991 | KMP_SNPRINTFsnprintf(path, sizeof(path), |
| 2992 | "/sys/devices/system/cpu/cpu%u/topology/core_id", |
| 2993 | threadInfo[num_avail][osIdIndex0]); |
| 2994 | __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex2]); |
| 2995 | continue; |
| 2996 | #else |
| 2997 | } |
| 2998 | char s2[] = "physical id"; |
| 2999 | if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { |
| 3000 | CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free ((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 3000 ); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 3000);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false ; }; |
| 3001 | char *p = strchr(buf + sizeof(s2) - 1, ':'); |
| 3002 | unsigned val; |
| 3003 | if ((p == NULL__null) || (KMP_SSCANFsscanf(p + 1, "%u\n", &val) != 1)) |
| 3004 | goto no_val; |
| 3005 | if (threadInfo[num_avail][pkgIdIndex3] != UINT_MAX(2147483647 *2U +1U)) |
| 3006 | goto dup_field; |
| 3007 | threadInfo[num_avail][pkgIdIndex3] = val; |
| 3008 | continue; |
| 3009 | } |
| 3010 | char s3[] = "core id"; |
| 3011 | if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { |
| 3012 | CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free ((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 3012 ); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 3012);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false ; }; |
| 3013 | char *p = strchr(buf + sizeof(s3) - 1, ':'); |
| 3014 | unsigned val; |
| 3015 | if ((p == NULL__null) || (KMP_SSCANFsscanf(p + 1, "%u\n", &val) != 1)) |
| 3016 | goto no_val; |
| 3017 | if (threadInfo[num_avail][coreIdIndex2] != UINT_MAX(2147483647 *2U +1U)) |
| 3018 | goto dup_field; |
| 3019 | threadInfo[num_avail][coreIdIndex2] = val; |
| 3020 | continue; |
| 3021 | #endif // KMP_OS_LINUX && USE_SYSFS_INFO |
| 3022 | } |
| 3023 | char s4[] = "thread id"; |
| 3024 | if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { |
| 3025 | CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free ((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 3025 ); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 3025);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false ; }; |
| 3026 | char *p = strchr(buf + sizeof(s4) - 1, ':'); |
| 3027 | unsigned val; |
| 3028 | if ((p == NULL__null) || (KMP_SSCANFsscanf(p + 1, "%u\n", &val) != 1)) |
| 3029 | goto no_val; |
| 3030 | if (threadInfo[num_avail][threadIdIndex1] != UINT_MAX(2147483647 *2U +1U)) |
| 3031 | goto dup_field; |
| 3032 | threadInfo[num_avail][threadIdIndex1] = val; |
| 3033 | continue; |
| 3034 | } |
| 3035 | unsigned level; |
| 3036 | if (KMP_SSCANFsscanf(buf, "node_%u id", &level) == 1) { |
| 3037 | CHECK_LINEif (long_line) { for (i = 0; i <= num_records; i++) { ___kmp_free ((threadInfo[i]), "openmp/runtime/src/kmp_affinity.cpp", 3037 ); } ___kmp_free((threadInfo), "openmp/runtime/src/kmp_affinity.cpp" , 3037);; *msg_id = kmp_i18n_str_LongLineCpuinfo; return false ; }; |
| 3038 | char *p = strchr(buf + sizeof(s4) - 1, ':'); |
| 3039 | unsigned val; |
| 3040 | if ((p == NULL__null) || (KMP_SSCANFsscanf(p + 1, "%u\n", &val) != 1)) |
| 3041 | goto no_val; |
| 3042 | // validate the input before using level: |
| 3043 | if (level > (unsigned)__kmp_xproc) { // level is too big |
| 3044 | level = __kmp_xproc; |
| 3045 | } |
| 3046 | if (threadInfo[num_avail][nodeIdIndex4 + level] != UINT_MAX(2147483647 *2U +1U)) |
| 3047 | goto dup_field; |
| 3048 | threadInfo[num_avail][nodeIdIndex4 + level] = val; |
| 3049 | continue; |
| 3050 | } |
| 3051 | |
| 3052 | // We didn't recognize the leading token on the line. There are lots of |
| 3053 | // leading tokens that we don't recognize - if the line isn't empty, go on |
| 3054 | // to the next line. |
| 3055 | if ((*buf != 0) && (*buf != '\n')) { |
| 3056 | // If the line is longer than the buffer, read characters |
| 3057 | // until we find a newline. |
| 3058 | if (long_line) { |
| 3059 | int ch; |
| 3060 | while (((ch = fgetc(f)) != EOF(-1)) && (ch != '\n')) |
| 3061 | ; |
| 3062 | } |
| 3063 | continue; |
| 3064 | } |
| 3065 | |
| 3066 | // A newline has signalled the end of the processor record. |
| 3067 | // Check that there aren't too many procs specified. |
| 3068 | if ((int)num_avail == __kmp_xproc) { |
| 3069 | CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo [i]), "openmp/runtime/src/kmp_affinity.cpp", 3069); } ___kmp_free ((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3069);; |
| 3070 | *msg_id = kmp_i18n_str_TooManyEntries; |
| 3071 | return false; |
| 3072 | } |
| 3073 | |
| 3074 | // Check for missing fields. The osId field must be there, and we |
| 3075 | // currently require that the physical id field is specified, also. |
| 3076 | if (threadInfo[num_avail][osIdIndex0] == UINT_MAX(2147483647 *2U +1U)) { |
| 3077 | CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo [i]), "openmp/runtime/src/kmp_affinity.cpp", 3077); } ___kmp_free ((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3077);; |
| 3078 | *msg_id = kmp_i18n_str_MissingProcField; |
| 3079 | return false; |
| 3080 | } |
| 3081 | if (threadInfo[0][pkgIdIndex3] == UINT_MAX(2147483647 *2U +1U)) { |
| 3082 | CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo [i]), "openmp/runtime/src/kmp_affinity.cpp", 3082); } ___kmp_free ((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3082);; |
| 3083 | *msg_id = kmp_i18n_str_MissingPhysicalIDField; |
| 3084 | return false; |
| 3085 | } |
| 3086 | |
| 3087 | // Skip this proc if it is not included in the machine model. |
| 3088 | if (KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0) && |
| 3089 | !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],(__kmp_affin_fullMask)->is_set(threadInfo[num_avail][0]) |
| 3090 | __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(threadInfo[num_avail][0])) { |
| 3091 | INIT_PROC_INFO(threadInfo[num_avail])for (__index = 0; __index <= maxIndex; __index++) { (threadInfo [num_avail])[__index] = (2147483647 *2U +1U); }; |
| 3092 | continue; |
| 3093 | } |
| 3094 | |
| 3095 | // We have a successful parse of this proc's info. |
| 3096 | // Increment the counter, and prepare for the next proc. |
| 3097 | num_avail++; |
| 3098 | KMP_ASSERT(num_avail <= num_records)if (!(num_avail <= num_records)) { __kmp_debug_assert("num_avail <= num_records" , "openmp/runtime/src/kmp_affinity.cpp", 3098); }; |
| 3099 | INIT_PROC_INFO(threadInfo[num_avail])for (__index = 0; __index <= maxIndex; __index++) { (threadInfo [num_avail])[__index] = (2147483647 *2U +1U); }; |
| 3100 | } |
| 3101 | continue; |
| 3102 | |
| 3103 | no_val: |
| 3104 | CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo [i]), "openmp/runtime/src/kmp_affinity.cpp", 3104); } ___kmp_free ((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3104);; |
| 3105 | *msg_id = kmp_i18n_str_MissingValCpuinfo; |
| 3106 | return false; |
| 3107 | |
| 3108 | dup_field: |
| 3109 | CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo [i]), "openmp/runtime/src/kmp_affinity.cpp", 3109); } ___kmp_free ((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3109);; |
| 3110 | *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; |
| 3111 | return false; |
| 3112 | } |
| 3113 | *line = 0; |
| 3114 | |
| 3115 | #if KMP_MIC0 && REDUCE_TEAM_SIZE |
| 3116 | unsigned teamSize = 0; |
| 3117 | #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 3118 | |
| 3119 | // check for num_records == __kmp_xproc ??? |
| 3120 | |
| 3121 | // If it is configured to omit the package level when there is only a single |
| 3122 | // package, the logic at the end of this routine won't work if there is only a |
| 3123 | // single thread |
| 3124 | KMP_ASSERT(num_avail > 0)if (!(num_avail > 0)) { __kmp_debug_assert("num_avail > 0" , "openmp/runtime/src/kmp_affinity.cpp", 3124); }; |
| 3125 | KMP_ASSERT(num_avail <= num_records)if (!(num_avail <= num_records)) { __kmp_debug_assert("num_avail <= num_records" , "openmp/runtime/src/kmp_affinity.cpp", 3125); }; |
| 3126 | |
| 3127 | // Sort the threadInfo table by physical Id. |
| 3128 | qsort(threadInfo, num_avail, sizeof(*threadInfo), |
| 3129 | __kmp_affinity_cmp_ProcCpuInfo_phys_id); |
| 3130 | |
| 3131 | // The table is now sorted by pkgId / coreId / threadId, but we really don't |
| 3132 | // know the radix of any of the fields. pkgId's may be sparsely assigned among |
| 3133 | // the chips on a system. Although coreId's are usually assigned |
| 3134 | // [0 .. coresPerPkg-1] and threadId's are usually assigned |
| 3135 | // [0..threadsPerCore-1], we don't want to make any such assumptions. |
| 3136 | // |
| 3137 | // For that matter, we don't know what coresPerPkg and threadsPerCore (or the |
| 3138 | // total # packages) are at this point - we want to determine that now. We |
| 3139 | // only have an upper bound on the first two figures. |
| 3140 | unsigned *counts = |
| 3141 | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned))___kmp_allocate(((maxIndex + 1) * sizeof(unsigned)), "openmp/runtime/src/kmp_affinity.cpp" , 3141); |
| 3142 | unsigned *maxCt = |
| 3143 | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned))___kmp_allocate(((maxIndex + 1) * sizeof(unsigned)), "openmp/runtime/src/kmp_affinity.cpp" , 3143); |
| 3144 | unsigned *totals = |
| 3145 | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned))___kmp_allocate(((maxIndex + 1) * sizeof(unsigned)), "openmp/runtime/src/kmp_affinity.cpp" , 3145); |
| 3146 | unsigned *lastId = |
| 3147 | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned))___kmp_allocate(((maxIndex + 1) * sizeof(unsigned)), "openmp/runtime/src/kmp_affinity.cpp" , 3147); |
| 3148 | |
| 3149 | bool assign_thread_ids = false; |
| 3150 | unsigned threadIdCt; |
| 3151 | unsigned index; |
| 3152 | |
| 3153 | restart_radix_check: |
| 3154 | threadIdCt = 0; |
| 3155 | |
| 3156 | // Initialize the counter arrays with data from threadInfo[0]. |
| 3157 | if (assign_thread_ids) { |
| 3158 | if (threadInfo[0][threadIdIndex1] == UINT_MAX(2147483647 *2U +1U)) { |
| 3159 | threadInfo[0][threadIdIndex1] = threadIdCt++; |
| 3160 | } else if (threadIdCt <= threadInfo[0][threadIdIndex1]) { |
| 3161 | threadIdCt = threadInfo[0][threadIdIndex1] + 1; |
| 3162 | } |
| 3163 | } |
| 3164 | for (index = 0; index <= maxIndex; index++) { |
| 3165 | counts[index] = 1; |
| 3166 | maxCt[index] = 1; |
| 3167 | totals[index] = 1; |
| 3168 | lastId[index] = threadInfo[0][index]; |
| 3169 | ; |
| 3170 | } |
| 3171 | |
| 3172 | // Run through the rest of the OS procs. |
| 3173 | for (i = 1; i < num_avail; i++) { |
| 3174 | // Find the most significant index whose id differs from the id for the |
| 3175 | // previous OS proc. |
| 3176 | for (index = maxIndex; index >= threadIdIndex1; index--) { |
| 3177 | if (assign_thread_ids && (index == threadIdIndex1)) { |
| 3178 | // Auto-assign the thread id field if it wasn't specified. |
| 3179 | if (threadInfo[i][threadIdIndex1] == UINT_MAX(2147483647 *2U +1U)) { |
| 3180 | threadInfo[i][threadIdIndex1] = threadIdCt++; |
| 3181 | } |
| 3182 | // Apparently the thread id field was specified for some entries and not |
| 3183 | // others. Start the thread id counter off at the next higher thread id. |
| 3184 | else if (threadIdCt <= threadInfo[i][threadIdIndex1]) { |
| 3185 | threadIdCt = threadInfo[i][threadIdIndex1] + 1; |
| 3186 | } |
| 3187 | } |
| 3188 | if (threadInfo[i][index] != lastId[index]) { |
| 3189 | // Run through all indices which are less significant, and reset the |
| 3190 | // counts to 1. At all levels up to and including index, we need to |
| 3191 | // increment the totals and record the last id. |
| 3192 | unsigned index2; |
| 3193 | for (index2 = threadIdIndex1; index2 < index; index2++) { |
| 3194 | totals[index2]++; |
| 3195 | if (counts[index2] > maxCt[index2]) { |
| 3196 | maxCt[index2] = counts[index2]; |
| 3197 | } |
| 3198 | counts[index2] = 1; |
| 3199 | lastId[index2] = threadInfo[i][index2]; |
| 3200 | } |
| 3201 | counts[index]++; |
| 3202 | totals[index]++; |
| 3203 | lastId[index] = threadInfo[i][index]; |
| 3204 | |
| 3205 | if (assign_thread_ids && (index > threadIdIndex1)) { |
| 3206 | |
| 3207 | #if KMP_MIC0 && REDUCE_TEAM_SIZE |
| 3208 | // The default team size is the total #threads in the machine |
| 3209 | // minus 1 thread for every core that has 3 or more threads. |
| 3210 | teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); |
| 3211 | #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 3212 | |
| 3213 | // Restart the thread counter, as we are on a new core. |
| 3214 | threadIdCt = 0; |
| 3215 | |
| 3216 | // Auto-assign the thread id field if it wasn't specified. |
| 3217 | if (threadInfo[i][threadIdIndex1] == UINT_MAX(2147483647 *2U +1U)) { |
| 3218 | threadInfo[i][threadIdIndex1] = threadIdCt++; |
| 3219 | } |
| 3220 | |
| 3221 | // Apparently the thread id field was specified for some entries and |
| 3222 | // not others. Start the thread id counter off at the next higher |
| 3223 | // thread id. |
| 3224 | else if (threadIdCt <= threadInfo[i][threadIdIndex1]) { |
| 3225 | threadIdCt = threadInfo[i][threadIdIndex1] + 1; |
| 3226 | } |
| 3227 | } |
| 3228 | break; |
| 3229 | } |
| 3230 | } |
| 3231 | if (index < threadIdIndex1) { |
| 3232 | // If thread ids were specified, it is an error if they are not unique. |
| 3233 | // Also, check that we waven't already restarted the loop (to be safe - |
| 3234 | // shouldn't need to). |
| 3235 | if ((threadInfo[i][threadIdIndex1] != UINT_MAX(2147483647 *2U +1U)) || assign_thread_ids) { |
| 3236 | __kmp_free(lastId)___kmp_free((lastId), "openmp/runtime/src/kmp_affinity.cpp", 3236 ); |
| 3237 | __kmp_free(totals)___kmp_free((totals), "openmp/runtime/src/kmp_affinity.cpp", 3237 ); |
| 3238 | __kmp_free(maxCt)___kmp_free((maxCt), "openmp/runtime/src/kmp_affinity.cpp", 3238 ); |
| 3239 | __kmp_free(counts)___kmp_free((counts), "openmp/runtime/src/kmp_affinity.cpp", 3239 ); |
| 3240 | CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo [i]), "openmp/runtime/src/kmp_affinity.cpp", 3240); } ___kmp_free ((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3240);; |
| 3241 | *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; |
| 3242 | return false; |
| 3243 | } |
| 3244 | |
| 3245 | // If the thread ids were not specified and we see entries entries that |
| 3246 | // are duplicates, start the loop over and assign the thread ids manually. |
| 3247 | assign_thread_ids = true; |
| 3248 | goto restart_radix_check; |
| 3249 | } |
| 3250 | } |
| 3251 | |
| 3252 | #if KMP_MIC0 && REDUCE_TEAM_SIZE |
| 3253 | // The default team size is the total #threads in the machine |
| 3254 | // minus 1 thread for every core that has 3 or more threads. |
| 3255 | teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); |
| 3256 | #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 3257 | |
| 3258 | for (index = threadIdIndex1; index <= maxIndex; index++) { |
| 3259 | if (counts[index] > maxCt[index]) { |
| 3260 | maxCt[index] = counts[index]; |
| 3261 | } |
| 3262 | } |
| 3263 | |
| 3264 | __kmp_nThreadsPerCore = maxCt[threadIdIndex1]; |
| 3265 | nCoresPerPkg = maxCt[coreIdIndex2]; |
| 3266 | nPackages = totals[pkgIdIndex3]; |
| 3267 | |
| 3268 | // When affinity is off, this routine will still be called to set |
| 3269 | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| 3270 | // Make sure all these vars are set correctly, and return now if affinity is |
| 3271 | // not enabled. |
| 3272 | __kmp_ncores = totals[coreIdIndex2]; |
| 3273 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 3274 | KMP_ASSERT(__kmp_affinity.type == affinity_none)if (!(__kmp_affinity.type == affinity_none)) { __kmp_debug_assert ("__kmp_affinity.type == affinity_none", "openmp/runtime/src/kmp_affinity.cpp" , 3274); }; |
| 3275 | return true; |
| 3276 | } |
| 3277 | |
| 3278 | #if KMP_MIC0 && REDUCE_TEAM_SIZE |
| 3279 | // Set the default team size. |
| 3280 | if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { |
| 3281 | __kmp_dflt_team_nth = teamSize; |
| 3282 | KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "if (kmp_a_debug >= 20) { __kmp_debug_printf ("__kmp_affinity_create_cpuinfo_map: setting " "__kmp_dflt_team_nth = %d\n", __kmp_dflt_team_nth); } |
| 3283 | "__kmp_dflt_team_nth = %d\n",if (kmp_a_debug >= 20) { __kmp_debug_printf ("__kmp_affinity_create_cpuinfo_map: setting " "__kmp_dflt_team_nth = %d\n", __kmp_dflt_team_nth); } |
| 3284 | __kmp_dflt_team_nth))if (kmp_a_debug >= 20) { __kmp_debug_printf ("__kmp_affinity_create_cpuinfo_map: setting " "__kmp_dflt_team_nth = %d\n", __kmp_dflt_team_nth); }; |
| 3285 | } |
| 3286 | #endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 3287 | |
| 3288 | KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc)if (!(num_avail == (unsigned)__kmp_avail_proc)) { __kmp_debug_assert ("num_avail == (unsigned)__kmp_avail_proc", "openmp/runtime/src/kmp_affinity.cpp" , 3288); }; |
| 3289 | |
| 3290 | // Count the number of levels which have more nodes at that level than at the |
| 3291 | // parent's level (with there being an implicit root node of the top level). |
| 3292 | // This is equivalent to saying that there is at least one node at this level |
| 3293 | // which has a sibling. These levels are in the map, and the package level is |
| 3294 | // always in the map. |
| 3295 | bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool))___kmp_allocate(((maxIndex + 1) * sizeof(bool)), "openmp/runtime/src/kmp_affinity.cpp" , 3295); |
| 3296 | for (index = threadIdIndex1; index < maxIndex; index++) { |
| 3297 | KMP_ASSERT(totals[index] >= totals[index + 1])if (!(totals[index] >= totals[index + 1])) { __kmp_debug_assert ("totals[index] >= totals[index + 1]", "openmp/runtime/src/kmp_affinity.cpp" , 3297); }; |
| 3298 | inMap[index] = (totals[index] > totals[index + 1]); |
| 3299 | } |
| 3300 | inMap[maxIndex] = (totals[maxIndex] > 1); |
| 3301 | inMap[pkgIdIndex3] = true; |
| 3302 | inMap[coreIdIndex2] = true; |
| 3303 | inMap[threadIdIndex1] = true; |
| 3304 | |
| 3305 | int depth = 0; |
| 3306 | int idx = 0; |
| 3307 | kmp_hw_t types[KMP_HW_LAST]; |
| 3308 | int pkgLevel = -1; |
| 3309 | int coreLevel = -1; |
| 3310 | int threadLevel = -1; |
| 3311 | for (index = threadIdIndex1; index <= maxIndex; index++) { |
| 3312 | if (inMap[index]) { |
| 3313 | depth++; |
| 3314 | } |
| 3315 | } |
| 3316 | if (inMap[pkgIdIndex3]) { |
| 3317 | pkgLevel = idx; |
| 3318 | types[idx++] = KMP_HW_SOCKET; |
| 3319 | } |
| 3320 | if (inMap[coreIdIndex2]) { |
| 3321 | coreLevel = idx; |
| 3322 | types[idx++] = KMP_HW_CORE; |
| 3323 | } |
| 3324 | if (inMap[threadIdIndex1]) { |
| 3325 | threadLevel = idx; |
| 3326 | types[idx++] = KMP_HW_THREAD; |
| 3327 | } |
| 3328 | KMP_ASSERT(depth > 0)if (!(depth > 0)) { __kmp_debug_assert("depth > 0", "openmp/runtime/src/kmp_affinity.cpp" , 3328); }; |
| 3329 | |
| 3330 | // Construct the data structure that is to be returned. |
| 3331 | __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); |
| 3332 | |
| 3333 | for (i = 0; i < num_avail; ++i) { |
| 3334 | unsigned os = threadInfo[i][osIdIndex0]; |
| 3335 | int src_index; |
| 3336 | kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); |
| 3337 | hw_thread.clear(); |
| 3338 | hw_thread.os_id = os; |
| 3339 | |
| 3340 | idx = 0; |
| 3341 | for (src_index = maxIndex; src_index >= threadIdIndex1; src_index--) { |
| 3342 | if (!inMap[src_index]) { |
| 3343 | continue; |
| 3344 | } |
| 3345 | if (src_index == pkgIdIndex3) { |
| 3346 | hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; |
| 3347 | } else if (src_index == coreIdIndex2) { |
| 3348 | hw_thread.ids[coreLevel] = threadInfo[i][src_index]; |
| 3349 | } else if (src_index == threadIdIndex1) { |
| 3350 | hw_thread.ids[threadLevel] = threadInfo[i][src_index]; |
| 3351 | } |
| 3352 | } |
| 3353 | } |
| 3354 | |
| 3355 | __kmp_free(inMap)___kmp_free((inMap), "openmp/runtime/src/kmp_affinity.cpp", 3355 ); |
| 3356 | __kmp_free(lastId)___kmp_free((lastId), "openmp/runtime/src/kmp_affinity.cpp", 3356 ); |
| 3357 | __kmp_free(totals)___kmp_free((totals), "openmp/runtime/src/kmp_affinity.cpp", 3357 ); |
| 3358 | __kmp_free(maxCt)___kmp_free((maxCt), "openmp/runtime/src/kmp_affinity.cpp", 3358 ); |
| 3359 | __kmp_free(counts)___kmp_free((counts), "openmp/runtime/src/kmp_affinity.cpp", 3359 ); |
| 3360 | CLEANUP_THREAD_INFOfor (i = 0; i <= num_records; i++) { ___kmp_free((threadInfo [i]), "openmp/runtime/src/kmp_affinity.cpp", 3360); } ___kmp_free ((threadInfo), "openmp/runtime/src/kmp_affinity.cpp", 3360);; |
| 3361 | __kmp_topology->sort_ids(); |
| 3362 | if (!__kmp_topology->check_ids()) { |
| 3363 | kmp_topology_t::deallocate(__kmp_topology); |
| 3364 | __kmp_topology = nullptr; |
| 3365 | *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; |
| 3366 | return false; |
| 3367 | } |
| 3368 | return true; |
| 3369 | } |
| 3370 | |
| 3371 | // Create and return a table of affinity masks, indexed by OS thread ID. |
| 3372 | // This routine handles OR'ing together all the affinity masks of threads |
| 3373 | // that are sufficiently close, if granularity > fine. |
| 3374 | static void __kmp_create_os_id_masks(unsigned *numUnique, |
| 3375 | kmp_affinity_t &affinity) { |
| 3376 | // First form a table of affinity masks in order of OS thread id. |
| 3377 | int maxOsId; |
| 3378 | int i; |
| 3379 | int numAddrs = __kmp_topology->get_num_hw_threads(); |
| 3380 | int depth = __kmp_topology->get_depth(); |
| 3381 | const char *env_var = affinity.env_var; |
| 3382 | KMP_ASSERT(numAddrs)if (!(numAddrs)) { __kmp_debug_assert("numAddrs", "openmp/runtime/src/kmp_affinity.cpp" , 3382); }; |
| 3383 | KMP_ASSERT(depth)if (!(depth)) { __kmp_debug_assert("depth", "openmp/runtime/src/kmp_affinity.cpp" , 3383); }; |
| 3384 | |
| 3385 | maxOsId = 0; |
| 3386 | for (i = numAddrs - 1;; --i) { |
| 3387 | int osId = __kmp_topology->at(i).os_id; |
| 3388 | if (osId > maxOsId) { |
| 3389 | maxOsId = osId; |
| 3390 | } |
| 3391 | if (i == 0) |
| 3392 | break; |
| 3393 | } |
| 3394 | affinity.num_os_id_masks = maxOsId + 1; |
| 3395 | KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks)(affinity.os_id_masks = __kmp_affinity_dispatch->allocate_mask_array (affinity.num_os_id_masks)); |
| 3396 | KMP_ASSERT(affinity.gran_levels >= 0)if (!(affinity.gran_levels >= 0)) { __kmp_debug_assert("affinity.gran_levels >= 0" , "openmp/runtime/src/kmp_affinity.cpp", 3396); }; |
| 3397 | if (affinity.flags.verbose && (affinity.gran_levels > 0)) { |
| 3398 | KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_ThreadsMigrate , env_var, affinity.gran_levels), __kmp_msg_null); |
| 3399 | } |
| 3400 | if (affinity.gran_levels >= (int)depth) { |
| 3401 | KMP_AFF_WARNING(affinity, AffThreadsMayMigrate)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffThreadsMayMigrate), __kmp_msg_null ); }; |
| 3402 | } |
| 3403 | |
| 3404 | // Run through the table, forming the masks for all threads on each core. |
| 3405 | // Threads on the same core will have identical kmp_hw_thread_t objects, not |
| 3406 | // considering the last level, which must be the thread id. All threads on a |
| 3407 | // core will appear consecutively. |
| 3408 | int unique = 0; |
| 3409 | int j = 0; // index of 1st thread on core |
| 3410 | int leader = 0; |
| 3411 | kmp_affin_mask_t *sum; |
| 3412 | KMP_CPU_ALLOC_ON_STACK(sum)(sum = __kmp_affinity_dispatch->allocate_mask()); |
| 3413 | KMP_CPU_ZERO(sum)(sum)->zero(); |
| 3414 | KMP_CPU_SET(__kmp_topology->at(0).os_id, sum)(sum)->set(__kmp_topology->at(0).os_id); |
| 3415 | for (i = 1; i < numAddrs; i++) { |
| 3416 | // If this thread is sufficiently close to the leader (within the |
| 3417 | // granularity setting), then set the bit for this os thread in the |
| 3418 | // affinity mask for this group, and go on to the next thread. |
| 3419 | if (__kmp_topology->is_close(leader, i, affinity.gran_levels)) { |
| 3420 | KMP_CPU_SET(__kmp_topology->at(i).os_id, sum)(sum)->set(__kmp_topology->at(i).os_id); |
| 3421 | continue; |
| 3422 | } |
| 3423 | |
| 3424 | // For every thread in this group, copy the mask to the thread's entry in |
| 3425 | // the OS Id mask table. Mark the first address as a leader. |
| 3426 | for (; j < i; j++) { |
| 3427 | int osId = __kmp_topology->at(j).os_id; |
| 3428 | KMP_DEBUG_ASSERT(osId <= maxOsId)if (!(osId <= maxOsId)) { __kmp_debug_assert("osId <= maxOsId" , "openmp/runtime/src/kmp_affinity.cpp", 3428); }; |
| 3429 | kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId)__kmp_affinity_dispatch->index_mask_array(affinity.os_id_masks , osId); |
| 3430 | KMP_CPU_COPY(mask, sum)(mask)->copy(sum); |
| 3431 | __kmp_topology->at(j).leader = (j == leader); |
| 3432 | } |
| 3433 | unique++; |
| 3434 | |
| 3435 | // Start a new mask. |
| 3436 | leader = i; |
| 3437 | KMP_CPU_ZERO(sum)(sum)->zero(); |
| 3438 | KMP_CPU_SET(__kmp_topology->at(i).os_id, sum)(sum)->set(__kmp_topology->at(i).os_id); |
| 3439 | } |
| 3440 | |
| 3441 | // For every thread in last group, copy the mask to the thread's |
| 3442 | // entry in the OS Id mask table. |
| 3443 | for (; j < i; j++) { |
| 3444 | int osId = __kmp_topology->at(j).os_id; |
| 3445 | KMP_DEBUG_ASSERT(osId <= maxOsId)if (!(osId <= maxOsId)) { __kmp_debug_assert("osId <= maxOsId" , "openmp/runtime/src/kmp_affinity.cpp", 3445); }; |
| 3446 | kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId)__kmp_affinity_dispatch->index_mask_array(affinity.os_id_masks , osId); |
| 3447 | KMP_CPU_COPY(mask, sum)(mask)->copy(sum); |
| 3448 | __kmp_topology->at(j).leader = (j == leader); |
| 3449 | } |
| 3450 | unique++; |
| 3451 | KMP_CPU_FREE_FROM_STACK(sum)__kmp_affinity_dispatch->deallocate_mask(sum); |
| 3452 | |
| 3453 | *numUnique = unique; |
| 3454 | } |
| 3455 | |
| 3456 | // Stuff for the affinity proclist parsers. It's easier to declare these vars |
| 3457 | // as file-static than to try and pass them through the calling sequence of |
| 3458 | // the recursive-descent OMP_PLACES parser. |
| 3459 | static kmp_affin_mask_t *newMasks; |
| 3460 | static int numNewMasks; |
| 3461 | static int nextNewMask; |
| 3462 | |
| 3463 | #define ADD_MASK(_mask) \ |
| 3464 | { \ |
| 3465 | if (nextNewMask >= numNewMasks) { \ |
| 3466 | int i; \ |
| 3467 | numNewMasks *= 2; \ |
| 3468 | kmp_affin_mask_t *temp; \ |
| 3469 | KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks)(temp = __kmp_affinity_dispatch->allocate_mask_array(numNewMasks )); \ |
| 3470 | for (i = 0; i < numNewMasks / 2; i++) { \ |
| 3471 | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i)__kmp_affinity_dispatch->index_mask_array(newMasks, i); \ |
| 3472 | kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i)__kmp_affinity_dispatch->index_mask_array(temp, i); \ |
| 3473 | KMP_CPU_COPY(dest, src)(dest)->copy(src); \ |
| 3474 | } \ |
| 3475 | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2)__kmp_affinity_dispatch->deallocate_mask_array(newMasks); \ |
| 3476 | newMasks = temp; \ |
| 3477 | } \ |
| 3478 | KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask))(__kmp_affinity_dispatch->index_mask_array(newMasks, nextNewMask ))->copy((_mask)); \ |
| 3479 | nextNewMask++; \ |
| 3480 | } |
| 3481 | |
| 3482 | #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ |
| 3483 | { \ |
| 3484 | if (((_osId) > _maxOsId) || \ |
| 3485 | (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId)))(__kmp_affinity_dispatch->index_mask_array((_osId2Mask), ( _osId)))->is_set((_osId)))) { \ |
| 3486 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, _osId ), __kmp_msg_null); }; \ |
| 3487 | } else { \ |
| 3488 | ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))__kmp_affinity_dispatch->index_mask_array(_osId2Mask, (_osId ))); \ |
| 3489 | } \ |
| 3490 | } |
| 3491 | |
| 3492 | // Re-parse the proclist (for the explicit affinity type), and form the list |
| 3493 | // of affinity newMasks indexed by gtid. |
| 3494 | static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) { |
| 3495 | int i; |
| 3496 | kmp_affin_mask_t **out_masks = &affinity.masks; |
| 3497 | unsigned *out_numMasks = &affinity.num_masks; |
| 3498 | const char *proclist = affinity.proclist; |
| 3499 | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; |
| 3500 | int maxOsId = affinity.num_os_id_masks - 1; |
| 3501 | const char *scan = proclist; |
| 3502 | const char *next = proclist; |
Value stored to 'next' during its initialization is never read | |
| 3503 | |
| 3504 | // We use malloc() for the temporary mask vector, so that we can use |
| 3505 | // realloc() to extend it. |
| 3506 | numNewMasks = 2; |
| 3507 | KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks)(newMasks = __kmp_affinity_dispatch->allocate_mask_array(numNewMasks )); |
| 3508 | nextNewMask = 0; |
| 3509 | kmp_affin_mask_t *sumMask; |
| 3510 | KMP_CPU_ALLOC(sumMask)(sumMask = __kmp_affinity_dispatch->allocate_mask()); |
| 3511 | int setSize = 0; |
| 3512 | |
| 3513 | for (;;) { |
| 3514 | int start, end, stride; |
| 3515 | |
| 3516 | SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; }; |
| 3517 | next = scan; |
| 3518 | if (*next == '\0') { |
| 3519 | break; |
| 3520 | } |
| 3521 | |
| 3522 | if (*next == '{') { |
| 3523 | int num; |
| 3524 | setSize = 0; |
| 3525 | next++; // skip '{' |
| 3526 | SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; }; |
| 3527 | scan = next; |
| 3528 | |
| 3529 | // Read the first integer in the set. |
| 3530 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist")if (!((*next >= '0') && (*next <= '9'))) { __kmp_debug_assert (("bad proclist"), "openmp/runtime/src/kmp_affinity.cpp", 3530 ); }; |
| 3531 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3532 | num = __kmp_str_to_int(scan, *next); |
| 3533 | KMP_ASSERT2(num >= 0, "bad explicit proc list")if (!(num >= 0)) { __kmp_debug_assert(("bad explicit proc list" ), "openmp/runtime/src/kmp_affinity.cpp", 3533); }; |
| 3534 | |
| 3535 | // Copy the mask for that osId to the sum (union) mask. |
| 3536 | if ((num > maxOsId) || |
| 3537 | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, num) )->is_set(num))) { |
| 3538 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, num), __kmp_msg_null); }; |
| 3539 | KMP_CPU_ZERO(sumMask)(sumMask)->zero(); |
| 3540 | } else { |
| 3541 | KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num))(sumMask)->copy(__kmp_affinity_dispatch->index_mask_array (osId2Mask, num)); |
| 3542 | setSize = 1; |
| 3543 | } |
| 3544 | |
| 3545 | for (;;) { |
| 3546 | // Check for end of set. |
| 3547 | SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; }; |
| 3548 | if (*next == '}') { |
| 3549 | next++; // skip '}' |
| 3550 | break; |
| 3551 | } |
| 3552 | |
| 3553 | // Skip optional comma. |
| 3554 | if (*next == ',') { |
| 3555 | next++; |
| 3556 | } |
| 3557 | SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; }; |
| 3558 | |
| 3559 | // Read the next integer in the set. |
| 3560 | scan = next; |
| 3561 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list")if (!((*next >= '0') && (*next <= '9'))) { __kmp_debug_assert (("bad explicit proc list"), "openmp/runtime/src/kmp_affinity.cpp" , 3561); }; |
| 3562 | |
| 3563 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3564 | num = __kmp_str_to_int(scan, *next); |
| 3565 | KMP_ASSERT2(num >= 0, "bad explicit proc list")if (!(num >= 0)) { __kmp_debug_assert(("bad explicit proc list" ), "openmp/runtime/src/kmp_affinity.cpp", 3565); }; |
| 3566 | |
| 3567 | // Add the mask for that osId to the sum mask. |
| 3568 | if ((num > maxOsId) || |
| 3569 | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, num) )->is_set(num))) { |
| 3570 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, num), __kmp_msg_null); }; |
| 3571 | } else { |
| 3572 | KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num))(sumMask)->bitwise_or(__kmp_affinity_dispatch->index_mask_array (osId2Mask, num)); |
| 3573 | setSize++; |
| 3574 | } |
| 3575 | } |
| 3576 | if (setSize > 0) { |
| 3577 | ADD_MASK(sumMask); |
| 3578 | } |
| 3579 | |
| 3580 | SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; }; |
| 3581 | if (*next == ',') { |
| 3582 | next++; |
| 3583 | } |
| 3584 | scan = next; |
| 3585 | continue; |
| 3586 | } |
| 3587 | |
| 3588 | // Read the first integer. |
| 3589 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list")if (!((*next >= '0') && (*next <= '9'))) { __kmp_debug_assert (("bad explicit proc list"), "openmp/runtime/src/kmp_affinity.cpp" , 3589); }; |
| 3590 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3591 | start = __kmp_str_to_int(scan, *next); |
| 3592 | KMP_ASSERT2(start >= 0, "bad explicit proc list")if (!(start >= 0)) { __kmp_debug_assert(("bad explicit proc list" ), "openmp/runtime/src/kmp_affinity.cpp", 3592); }; |
| 3593 | SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; }; |
| 3594 | |
| 3595 | // If this isn't a range, then add a mask to the list and go on. |
| 3596 | if (*next != '-') { |
| 3597 | ADD_MASK_OSID(start, osId2Mask, maxOsId); |
| 3598 | |
| 3599 | // Skip optional comma. |
| 3600 | if (*next == ',') { |
| 3601 | next++; |
| 3602 | } |
| 3603 | scan = next; |
| 3604 | continue; |
| 3605 | } |
| 3606 | |
| 3607 | // This is a range. Skip over the '-' and read in the 2nd int. |
| 3608 | next++; // skip '-' |
| 3609 | SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; }; |
| 3610 | scan = next; |
| 3611 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list")if (!((*next >= '0') && (*next <= '9'))) { __kmp_debug_assert (("bad explicit proc list"), "openmp/runtime/src/kmp_affinity.cpp" , 3611); }; |
| 3612 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3613 | end = __kmp_str_to_int(scan, *next); |
| 3614 | KMP_ASSERT2(end >= 0, "bad explicit proc list")if (!(end >= 0)) { __kmp_debug_assert(("bad explicit proc list" ), "openmp/runtime/src/kmp_affinity.cpp", 3614); }; |
| 3615 | |
| 3616 | // Check for a stride parameter |
| 3617 | stride = 1; |
| 3618 | SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; }; |
| 3619 | if (*next == ':') { |
| 3620 | // A stride is specified. Skip over the ':" and read the 3rd int. |
| 3621 | int sign = +1; |
| 3622 | next++; // skip ':' |
| 3623 | SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; }; |
| 3624 | scan = next; |
| 3625 | if (*next == '-') { |
| 3626 | sign = -1; |
| 3627 | next++; |
| 3628 | SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; }; |
| 3629 | scan = next; |
| 3630 | } |
| 3631 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list")if (!((*next >= '0') && (*next <= '9'))) { __kmp_debug_assert (("bad explicit proc list"), "openmp/runtime/src/kmp_affinity.cpp" , 3631); }; |
| 3632 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3633 | stride = __kmp_str_to_int(scan, *next); |
| 3634 | KMP_ASSERT2(stride >= 0, "bad explicit proc list")if (!(stride >= 0)) { __kmp_debug_assert(("bad explicit proc list" ), "openmp/runtime/src/kmp_affinity.cpp", 3634); }; |
| 3635 | stride *= sign; |
| 3636 | } |
| 3637 | |
| 3638 | // Do some range checks. |
| 3639 | KMP_ASSERT2(stride != 0, "bad explicit proc list")if (!(stride != 0)) { __kmp_debug_assert(("bad explicit proc list" ), "openmp/runtime/src/kmp_affinity.cpp", 3639); }; |
| 3640 | if (stride > 0) { |
| 3641 | KMP_ASSERT2(start <= end, "bad explicit proc list")if (!(start <= end)) { __kmp_debug_assert(("bad explicit proc list" ), "openmp/runtime/src/kmp_affinity.cpp", 3641); }; |
| 3642 | } else { |
| 3643 | KMP_ASSERT2(start >= end, "bad explicit proc list")if (!(start >= end)) { __kmp_debug_assert(("bad explicit proc list" ), "openmp/runtime/src/kmp_affinity.cpp", 3643); }; |
| 3644 | } |
| 3645 | KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list")if (!((end - start) / stride <= 65536)) { __kmp_debug_assert (("bad explicit proc list"), "openmp/runtime/src/kmp_affinity.cpp" , 3645); }; |
| 3646 | |
| 3647 | // Add the mask for each OS proc # to the list. |
| 3648 | if (stride > 0) { |
| 3649 | do { |
| 3650 | ADD_MASK_OSID(start, osId2Mask, maxOsId); |
| 3651 | start += stride; |
| 3652 | } while (start <= end); |
| 3653 | } else { |
| 3654 | do { |
| 3655 | ADD_MASK_OSID(start, osId2Mask, maxOsId); |
| 3656 | start += stride; |
| 3657 | } while (start >= end); |
| 3658 | } |
| 3659 | |
| 3660 | // Skip optional comma. |
| 3661 | SKIP_WS(next){ while (*(next) == ' ' || *(next) == '\t') (next)++; }; |
| 3662 | if (*next == ',') { |
| 3663 | next++; |
| 3664 | } |
| 3665 | scan = next; |
| 3666 | } |
| 3667 | |
| 3668 | *out_numMasks = nextNewMask; |
| 3669 | if (nextNewMask == 0) { |
| 3670 | *out_masks = NULL__null; |
| 3671 | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks)__kmp_affinity_dispatch->deallocate_mask_array(newMasks); |
| 3672 | return; |
| 3673 | } |
| 3674 | KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask)((*out_masks) = __kmp_affinity_dispatch->allocate_mask_array (nextNewMask)); |
| 3675 | for (i = 0; i < nextNewMask; i++) { |
| 3676 | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i)__kmp_affinity_dispatch->index_mask_array(newMasks, i); |
| 3677 | kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i)__kmp_affinity_dispatch->index_mask_array((*out_masks), i); |
| 3678 | KMP_CPU_COPY(dest, src)(dest)->copy(src); |
| 3679 | } |
| 3680 | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks)__kmp_affinity_dispatch->deallocate_mask_array(newMasks); |
| 3681 | KMP_CPU_FREE(sumMask)__kmp_affinity_dispatch->deallocate_mask(sumMask); |
| 3682 | } |
| 3683 | |
| 3684 | /*----------------------------------------------------------------------------- |
| 3685 | Re-parse the OMP_PLACES proc id list, forming the newMasks for the different |
| 3686 | places. Again, Here is the grammar: |
| 3687 | |
| 3688 | place_list := place |
| 3689 | place_list := place , place_list |
| 3690 | place := num |
| 3691 | place := place : num |
| 3692 | place := place : num : signed |
| 3693 | place := { subplacelist } |
| 3694 | place := ! place // (lowest priority) |
| 3695 | subplace_list := subplace |
| 3696 | subplace_list := subplace , subplace_list |
| 3697 | subplace := num |
| 3698 | subplace := num : num |
| 3699 | subplace := num : num : signed |
| 3700 | signed := num |
| 3701 | signed := + signed |
| 3702 | signed := - signed |
| 3703 | -----------------------------------------------------------------------------*/ |
| 3704 | static void __kmp_process_subplace_list(const char **scan, |
| 3705 | kmp_affinity_t &affinity, int maxOsId, |
| 3706 | kmp_affin_mask_t *tempMask, |
| 3707 | int *setSize) { |
| 3708 | const char *next; |
| 3709 | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; |
| 3710 | |
| 3711 | for (;;) { |
| 3712 | int start, count, stride, i; |
| 3713 | |
| 3714 | // Read in the starting proc id |
| 3715 | SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; }; |
| 3716 | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list")if (!((**scan >= '0') && (**scan <= '9'))) { __kmp_debug_assert (("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp" , 3716); }; |
| 3717 | next = *scan; |
| 3718 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3719 | start = __kmp_str_to_int(*scan, *next); |
| 3720 | KMP_ASSERT(start >= 0)if (!(start >= 0)) { __kmp_debug_assert("start >= 0", "openmp/runtime/src/kmp_affinity.cpp" , 3720); }; |
| 3721 | *scan = next; |
| 3722 | |
| 3723 | // valid follow sets are ',' ':' and '}' |
| 3724 | SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; }; |
| 3725 | if (**scan == '}' || **scan == ',') { |
| 3726 | if ((start > maxOsId) || |
| 3727 | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, start ))->is_set(start))) { |
| 3728 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, start ), __kmp_msg_null); }; |
| 3729 | } else { |
| 3730 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start))(tempMask)->bitwise_or(__kmp_affinity_dispatch->index_mask_array (osId2Mask, start)); |
| 3731 | (*setSize)++; |
| 3732 | } |
| 3733 | if (**scan == '}') { |
| 3734 | break; |
| 3735 | } |
| 3736 | (*scan)++; // skip ',' |
| 3737 | continue; |
| 3738 | } |
| 3739 | KMP_ASSERT2(**scan == ':', "bad explicit places list")if (!(**scan == ':')) { __kmp_debug_assert(("bad explicit places list" ), "openmp/runtime/src/kmp_affinity.cpp", 3739); }; |
| 3740 | (*scan)++; // skip ':' |
| 3741 | |
| 3742 | // Read count parameter |
| 3743 | SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; }; |
| 3744 | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list")if (!((**scan >= '0') && (**scan <= '9'))) { __kmp_debug_assert (("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp" , 3744); }; |
| 3745 | next = *scan; |
| 3746 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3747 | count = __kmp_str_to_int(*scan, *next); |
| 3748 | KMP_ASSERT(count >= 0)if (!(count >= 0)) { __kmp_debug_assert("count >= 0", "openmp/runtime/src/kmp_affinity.cpp" , 3748); }; |
| 3749 | *scan = next; |
| 3750 | |
| 3751 | // valid follow sets are ',' ':' and '}' |
| 3752 | SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; }; |
| 3753 | if (**scan == '}' || **scan == ',') { |
| 3754 | for (i = 0; i < count; i++) { |
| 3755 | if ((start > maxOsId) || |
| 3756 | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, start ))->is_set(start))) { |
| 3757 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, start ), __kmp_msg_null); }; |
| 3758 | break; // don't proliferate warnings for large count |
| 3759 | } else { |
| 3760 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start))(tempMask)->bitwise_or(__kmp_affinity_dispatch->index_mask_array (osId2Mask, start)); |
| 3761 | start++; |
| 3762 | (*setSize)++; |
| 3763 | } |
| 3764 | } |
| 3765 | if (**scan == '}') { |
| 3766 | break; |
| 3767 | } |
| 3768 | (*scan)++; // skip ',' |
| 3769 | continue; |
| 3770 | } |
| 3771 | KMP_ASSERT2(**scan == ':', "bad explicit places list")if (!(**scan == ':')) { __kmp_debug_assert(("bad explicit places list" ), "openmp/runtime/src/kmp_affinity.cpp", 3771); }; |
| 3772 | (*scan)++; // skip ':' |
| 3773 | |
| 3774 | // Read stride parameter |
| 3775 | int sign = +1; |
| 3776 | for (;;) { |
| 3777 | SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; }; |
| 3778 | if (**scan == '+') { |
| 3779 | (*scan)++; // skip '+' |
| 3780 | continue; |
| 3781 | } |
| 3782 | if (**scan == '-') { |
| 3783 | sign *= -1; |
| 3784 | (*scan)++; // skip '-' |
| 3785 | continue; |
| 3786 | } |
| 3787 | break; |
| 3788 | } |
| 3789 | SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; }; |
| 3790 | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list")if (!((**scan >= '0') && (**scan <= '9'))) { __kmp_debug_assert (("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp" , 3790); }; |
| 3791 | next = *scan; |
| 3792 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3793 | stride = __kmp_str_to_int(*scan, *next); |
| 3794 | KMP_ASSERT(stride >= 0)if (!(stride >= 0)) { __kmp_debug_assert("stride >= 0", "openmp/runtime/src/kmp_affinity.cpp", 3794); }; |
| 3795 | *scan = next; |
| 3796 | stride *= sign; |
| 3797 | |
| 3798 | // valid follow sets are ',' and '}' |
| 3799 | SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; }; |
| 3800 | if (**scan == '}' || **scan == ',') { |
| 3801 | for (i = 0; i < count; i++) { |
| 3802 | if ((start > maxOsId) || |
| 3803 | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, start ))->is_set(start))) { |
| 3804 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, start ), __kmp_msg_null); }; |
| 3805 | break; // don't proliferate warnings for large count |
| 3806 | } else { |
| 3807 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start))(tempMask)->bitwise_or(__kmp_affinity_dispatch->index_mask_array (osId2Mask, start)); |
| 3808 | start += stride; |
| 3809 | (*setSize)++; |
| 3810 | } |
| 3811 | } |
| 3812 | if (**scan == '}') { |
| 3813 | break; |
| 3814 | } |
| 3815 | (*scan)++; // skip ',' |
| 3816 | continue; |
| 3817 | } |
| 3818 | |
| 3819 | KMP_ASSERT2(0, "bad explicit places list")if (!(0)) { __kmp_debug_assert(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp" , 3819); }; |
| 3820 | } |
| 3821 | } |
| 3822 | |
| 3823 | static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity, |
| 3824 | int maxOsId, kmp_affin_mask_t *tempMask, |
| 3825 | int *setSize) { |
| 3826 | const char *next; |
| 3827 | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; |
| 3828 | |
| 3829 | // valid follow sets are '{' '!' and num |
| 3830 | SKIP_WS(*scan){ while (*(*scan) == ' ' || *(*scan) == '\t') (*scan)++; }; |
| 3831 | if (**scan == '{') { |
| 3832 | (*scan)++; // skip '{' |
| 3833 | __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize); |
| 3834 | KMP_ASSERT2(**scan == '}', "bad explicit places list")if (!(**scan == '}')) { __kmp_debug_assert(("bad explicit places list" ), "openmp/runtime/src/kmp_affinity.cpp", 3834); }; |
| 3835 | (*scan)++; // skip '}' |
| 3836 | } else if (**scan == '!') { |
| 3837 | (*scan)++; // skip '!' |
| 3838 | __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize); |
| 3839 | KMP_CPU_COMPLEMENT(maxOsId, tempMask)(tempMask)->bitwise_not(); |
| 3840 | } else if ((**scan >= '0') && (**scan <= '9')) { |
| 3841 | next = *scan; |
| 3842 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3843 | int num = __kmp_str_to_int(*scan, *next); |
| 3844 | KMP_ASSERT(num >= 0)if (!(num >= 0)) { __kmp_debug_assert("num >= 0", "openmp/runtime/src/kmp_affinity.cpp" , 3844); }; |
| 3845 | if ((num > maxOsId) || |
| 3846 | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, num) )->is_set(num))) { |
| 3847 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, num), __kmp_msg_null); }; |
| 3848 | } else { |
| 3849 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num))(tempMask)->bitwise_or(__kmp_affinity_dispatch->index_mask_array (osId2Mask, num)); |
| 3850 | (*setSize)++; |
| 3851 | } |
| 3852 | *scan = next; // skip num |
| 3853 | } else { |
| 3854 | KMP_ASSERT2(0, "bad explicit places list")if (!(0)) { __kmp_debug_assert(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp" , 3854); }; |
| 3855 | } |
| 3856 | } |
| 3857 | |
| 3858 | // static void |
| 3859 | void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) { |
| 3860 | int i, j, count, stride, sign; |
| 3861 | kmp_affin_mask_t **out_masks = &affinity.masks; |
| 3862 | unsigned *out_numMasks = &affinity.num_masks; |
| 3863 | const char *placelist = affinity.proclist; |
| 3864 | kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; |
| 3865 | int maxOsId = affinity.num_os_id_masks - 1; |
| 3866 | const char *scan = placelist; |
| 3867 | const char *next = placelist; |
| 3868 | |
| 3869 | numNewMasks = 2; |
| 3870 | KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks)(newMasks = __kmp_affinity_dispatch->allocate_mask_array(numNewMasks )); |
| 3871 | nextNewMask = 0; |
| 3872 | |
| 3873 | // tempMask is modified based on the previous or initial |
| 3874 | // place to form the current place |
| 3875 | // previousMask contains the previous place |
| 3876 | kmp_affin_mask_t *tempMask; |
| 3877 | kmp_affin_mask_t *previousMask; |
| 3878 | KMP_CPU_ALLOC(tempMask)(tempMask = __kmp_affinity_dispatch->allocate_mask()); |
| 3879 | KMP_CPU_ZERO(tempMask)(tempMask)->zero(); |
| 3880 | KMP_CPU_ALLOC(previousMask)(previousMask = __kmp_affinity_dispatch->allocate_mask()); |
| 3881 | KMP_CPU_ZERO(previousMask)(previousMask)->zero(); |
| 3882 | int setSize = 0; |
| 3883 | |
| 3884 | for (;;) { |
| 3885 | __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize); |
| 3886 | |
| 3887 | // valid follow sets are ',' ':' and EOL |
| 3888 | SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; }; |
| 3889 | if (*scan == '\0' || *scan == ',') { |
| 3890 | if (setSize > 0) { |
| 3891 | ADD_MASK(tempMask); |
| 3892 | } |
| 3893 | KMP_CPU_ZERO(tempMask)(tempMask)->zero(); |
| 3894 | setSize = 0; |
| 3895 | if (*scan == '\0') { |
| 3896 | break; |
| 3897 | } |
| 3898 | scan++; // skip ',' |
| 3899 | continue; |
| 3900 | } |
| 3901 | |
| 3902 | KMP_ASSERT2(*scan == ':', "bad explicit places list")if (!(*scan == ':')) { __kmp_debug_assert(("bad explicit places list" ), "openmp/runtime/src/kmp_affinity.cpp", 3902); }; |
| 3903 | scan++; // skip ':' |
| 3904 | |
| 3905 | // Read count parameter |
| 3906 | SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; }; |
| 3907 | KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list")if (!((*scan >= '0') && (*scan <= '9'))) { __kmp_debug_assert (("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp" , 3907); }; |
| 3908 | next = scan; |
| 3909 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3910 | count = __kmp_str_to_int(scan, *next); |
| 3911 | KMP_ASSERT(count >= 0)if (!(count >= 0)) { __kmp_debug_assert("count >= 0", "openmp/runtime/src/kmp_affinity.cpp" , 3911); }; |
| 3912 | scan = next; |
| 3913 | |
| 3914 | // valid follow sets are ',' ':' and EOL |
| 3915 | SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; }; |
| 3916 | if (*scan == '\0' || *scan == ',') { |
| 3917 | stride = +1; |
| 3918 | } else { |
| 3919 | KMP_ASSERT2(*scan == ':', "bad explicit places list")if (!(*scan == ':')) { __kmp_debug_assert(("bad explicit places list" ), "openmp/runtime/src/kmp_affinity.cpp", 3919); }; |
| 3920 | scan++; // skip ':' |
| 3921 | |
| 3922 | // Read stride parameter |
| 3923 | sign = +1; |
| 3924 | for (;;) { |
| 3925 | SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; }; |
| 3926 | if (*scan == '+') { |
| 3927 | scan++; // skip '+' |
| 3928 | continue; |
| 3929 | } |
| 3930 | if (*scan == '-') { |
| 3931 | sign *= -1; |
| 3932 | scan++; // skip '-' |
| 3933 | continue; |
| 3934 | } |
| 3935 | break; |
| 3936 | } |
| 3937 | SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; }; |
| 3938 | KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list")if (!((*scan >= '0') && (*scan <= '9'))) { __kmp_debug_assert (("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp" , 3938); }; |
| 3939 | next = scan; |
| 3940 | SKIP_DIGITS(next){ while (*(next) >= '0' && *(next) <= '9') (next )++; }; |
| 3941 | stride = __kmp_str_to_int(scan, *next); |
| 3942 | KMP_DEBUG_ASSERT(stride >= 0)if (!(stride >= 0)) { __kmp_debug_assert("stride >= 0", "openmp/runtime/src/kmp_affinity.cpp", 3942); }; |
| 3943 | scan = next; |
| 3944 | stride *= sign; |
| 3945 | } |
| 3946 | |
| 3947 | // Add places determined by initial_place : count : stride |
| 3948 | for (i = 0; i < count; i++) { |
| 3949 | if (setSize == 0) { |
| 3950 | break; |
| 3951 | } |
| 3952 | // Add the current place, then build the next place (tempMask) from that |
| 3953 | KMP_CPU_COPY(previousMask, tempMask)(previousMask)->copy(tempMask); |
| 3954 | ADD_MASK(previousMask); |
| 3955 | KMP_CPU_ZERO(tempMask)(tempMask)->zero(); |
| 3956 | setSize = 0; |
| 3957 | KMP_CPU_SET_ITERATE(j, previousMask)for (j = (previousMask)->begin(); (int)j != (previousMask) ->end(); j = (previousMask)->next(j)) { |
| 3958 | if (!KMP_CPU_ISSET(j, previousMask)(previousMask)->is_set(j)) { |
| 3959 | continue; |
| 3960 | } |
| 3961 | if ((j + stride > maxOsId) || (j + stride < 0) || |
| 3962 | (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(j)) || |
| 3963 | (!KMP_CPU_ISSET(j + stride,(__kmp_affinity_dispatch->index_mask_array(osId2Mask, j + stride ))->is_set(j + stride) |
| 3964 | KMP_CPU_INDEX(osId2Mask, j + stride))(__kmp_affinity_dispatch->index_mask_array(osId2Mask, j + stride ))->is_set(j + stride))) { |
| 3965 | if (i < count - 1) { |
| 3966 | KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffIgnoreInvalidProcID, j + stride ), __kmp_msg_null); }; |
| 3967 | } |
| 3968 | continue; |
| 3969 | } |
| 3970 | KMP_CPU_SET(j + stride, tempMask)(tempMask)->set(j + stride); |
| 3971 | setSize++; |
| 3972 | } |
| 3973 | } |
| 3974 | KMP_CPU_ZERO(tempMask)(tempMask)->zero(); |
| 3975 | setSize = 0; |
| 3976 | |
| 3977 | // valid follow sets are ',' and EOL |
| 3978 | SKIP_WS(scan){ while (*(scan) == ' ' || *(scan) == '\t') (scan)++; }; |
| 3979 | if (*scan == '\0') { |
| 3980 | break; |
| 3981 | } |
| 3982 | if (*scan == ',') { |
| 3983 | scan++; // skip ',' |
| 3984 | continue; |
| 3985 | } |
| 3986 | |
| 3987 | KMP_ASSERT2(0, "bad explicit places list")if (!(0)) { __kmp_debug_assert(("bad explicit places list"), "openmp/runtime/src/kmp_affinity.cpp" , 3987); }; |
| 3988 | } |
| 3989 | |
| 3990 | *out_numMasks = nextNewMask; |
| 3991 | if (nextNewMask == 0) { |
| 3992 | *out_masks = NULL__null; |
| 3993 | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks)__kmp_affinity_dispatch->deallocate_mask_array(newMasks); |
| 3994 | return; |
| 3995 | } |
| 3996 | KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask)((*out_masks) = __kmp_affinity_dispatch->allocate_mask_array (nextNewMask)); |
| 3997 | KMP_CPU_FREE(tempMask)__kmp_affinity_dispatch->deallocate_mask(tempMask); |
| 3998 | KMP_CPU_FREE(previousMask)__kmp_affinity_dispatch->deallocate_mask(previousMask); |
| 3999 | for (i = 0; i < nextNewMask; i++) { |
| 4000 | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i)__kmp_affinity_dispatch->index_mask_array(newMasks, i); |
| 4001 | kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i)__kmp_affinity_dispatch->index_mask_array((*out_masks), i); |
| 4002 | KMP_CPU_COPY(dest, src)(dest)->copy(src); |
| 4003 | } |
| 4004 | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks)__kmp_affinity_dispatch->deallocate_mask_array(newMasks); |
| 4005 | } |
| 4006 | |
| 4007 | #undef ADD_MASK |
| 4008 | #undef ADD_MASK_OSID |
| 4009 | |
| 4010 | // This function figures out the deepest level at which there is at least one |
| 4011 | // cluster/core with more than one processing unit bound to it. |
| 4012 | static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { |
| 4013 | int core_level = 0; |
| 4014 | |
| 4015 | for (int i = 0; i < nprocs; i++) { |
| 4016 | const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); |
| 4017 | for (int j = bottom_level; j > 0; j--) { |
| 4018 | if (hw_thread.ids[j] > 0) { |
| 4019 | if (core_level < (j - 1)) { |
| 4020 | core_level = j - 1; |
| 4021 | } |
| 4022 | } |
| 4023 | } |
| 4024 | } |
| 4025 | return core_level; |
| 4026 | } |
| 4027 | |
| 4028 | // This function counts number of clusters/cores at given level. |
| 4029 | static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, |
| 4030 | int core_level) { |
| 4031 | return __kmp_topology->get_count(core_level); |
| 4032 | } |
| 4033 | // This function finds to which cluster/core given processing unit is bound. |
| 4034 | static int __kmp_affinity_find_core(int proc, int bottom_level, |
| 4035 | int core_level) { |
| 4036 | int core = 0; |
| 4037 | KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads())if (!(proc >= 0 && proc < __kmp_topology->get_num_hw_threads ())) { __kmp_debug_assert("proc >= 0 && proc < __kmp_topology->get_num_hw_threads()" , "openmp/runtime/src/kmp_affinity.cpp", 4037); }; |
| 4038 | for (int i = 0; i <= proc; ++i) { |
| 4039 | if (i + 1 <= proc) { |
| 4040 | for (int j = 0; j <= core_level; ++j) { |
| 4041 | if (__kmp_topology->at(i + 1).sub_ids[j] != |
| 4042 | __kmp_topology->at(i).sub_ids[j]) { |
| 4043 | core++; |
| 4044 | break; |
| 4045 | } |
| 4046 | } |
| 4047 | } |
| 4048 | } |
| 4049 | return core; |
| 4050 | } |
| 4051 | |
| 4052 | // This function finds maximal number of processing units bound to a |
| 4053 | // cluster/core at given level. |
| 4054 | static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, |
| 4055 | int core_level) { |
| 4056 | if (core_level >= bottom_level) |
| 4057 | return 1; |
| 4058 | int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); |
| 4059 | return __kmp_topology->calculate_ratio(thread_level, core_level); |
| 4060 | } |
| 4061 | |
| 4062 | static int *procarr = NULL__null; |
| 4063 | static int __kmp_aff_depth = 0; |
| 4064 | static int *__kmp_osid_to_hwthread_map = NULL__null; |
| 4065 | |
| 4066 | static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask, |
| 4067 | kmp_affinity_ids_t &ids, |
| 4068 | kmp_affinity_attrs_t &attrs) { |
| 4069 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) |
| 4070 | return; |
| 4071 | |
| 4072 | // Initiailze ids and attrs thread data |
| 4073 | for (int i = 0; i < KMP_HW_LAST; ++i) |
| 4074 | ids[i] = kmp_hw_thread_t::UNKNOWN_ID; |
| 4075 | attrs = KMP_AFFINITY_ATTRS_UNKNOWN{ KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0 , 0 }; |
| 4076 | |
| 4077 | // Iterate through each os id within the mask and determine |
| 4078 | // the topology id and attribute information |
| 4079 | int cpu; |
| 4080 | int depth = __kmp_topology->get_depth(); |
| 4081 | KMP_CPU_SET_ITERATE(cpu, mask)for (cpu = (mask)->begin(); (int)cpu != (mask)->end(); cpu = (mask)->next(cpu)) { |
| 4082 | int osid_idx = __kmp_osid_to_hwthread_map[cpu]; |
| 4083 | const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx); |
| 4084 | for (int level = 0; level < depth; ++level) { |
| 4085 | kmp_hw_t type = __kmp_topology->get_type(level); |
| 4086 | int id = hw_thread.sub_ids[level]; |
| 4087 | if (ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids[type] == id) { |
| 4088 | ids[type] = id; |
| 4089 | } else { |
| 4090 | // This mask spans across multiple topology units, set it as such |
| 4091 | // and mark every level below as such as well. |
| 4092 | ids[type] = kmp_hw_thread_t::MULTIPLE_ID; |
| 4093 | for (; level < depth; ++level) { |
| 4094 | kmp_hw_t type = __kmp_topology->get_type(level); |
| 4095 | ids[type] = kmp_hw_thread_t::MULTIPLE_ID; |
| 4096 | } |
| 4097 | } |
| 4098 | } |
| 4099 | if (!attrs.valid) { |
| 4100 | attrs.core_type = hw_thread.attrs.get_core_type(); |
| 4101 | attrs.core_eff = hw_thread.attrs.get_core_eff(); |
| 4102 | attrs.valid = 1; |
| 4103 | } else { |
| 4104 | // This mask spans across multiple attributes, set it as such |
| 4105 | if (attrs.core_type != hw_thread.attrs.get_core_type()) |
| 4106 | attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN; |
| 4107 | if (attrs.core_eff != hw_thread.attrs.get_core_eff()) |
| 4108 | attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF; |
| 4109 | } |
| 4110 | } |
| 4111 | } |
| 4112 | |
| 4113 | static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) { |
| 4114 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) |
| 4115 | return; |
| 4116 | const kmp_affin_mask_t *mask = th->th.th_affin_mask; |
| 4117 | kmp_affinity_ids_t &ids = th->th.th_topology_ids; |
| 4118 | kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs; |
| 4119 | __kmp_affinity_get_mask_topology_info(mask, ids, attrs); |
| 4120 | } |
| 4121 | |
| 4122 | // Assign the topology information to each place in the place list |
| 4123 | // A thread can then grab not only its affinity mask, but the topology |
| 4124 | // information associated with that mask. e.g., Which socket is a thread on |
| 4125 | static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) { |
| 4126 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) |
| 4127 | return; |
| 4128 | if (affinity.type != affinity_none) { |
| 4129 | KMP_ASSERT(affinity.num_os_id_masks)if (!(affinity.num_os_id_masks)) { __kmp_debug_assert("affinity.num_os_id_masks" , "openmp/runtime/src/kmp_affinity.cpp", 4129); }; |
| 4130 | KMP_ASSERT(affinity.os_id_masks)if (!(affinity.os_id_masks)) { __kmp_debug_assert("affinity.os_id_masks" , "openmp/runtime/src/kmp_affinity.cpp", 4130); }; |
| 4131 | } |
| 4132 | KMP_ASSERT(affinity.num_masks)if (!(affinity.num_masks)) { __kmp_debug_assert("affinity.num_masks" , "openmp/runtime/src/kmp_affinity.cpp", 4132); }; |
| 4133 | KMP_ASSERT(affinity.masks)if (!(affinity.masks)) { __kmp_debug_assert("affinity.masks", "openmp/runtime/src/kmp_affinity.cpp", 4133); }; |
| 4134 | KMP_ASSERT(__kmp_affin_fullMask)if (!(__kmp_affin_fullMask)) { __kmp_debug_assert("__kmp_affin_fullMask" , "openmp/runtime/src/kmp_affinity.cpp", 4134); }; |
| 4135 | |
| 4136 | int max_cpu = __kmp_affin_fullMask->get_max_cpu(); |
| 4137 | int num_hw_threads = __kmp_topology->get_num_hw_threads(); |
| 4138 | |
| 4139 | // Allocate thread topology information |
| 4140 | if (!affinity.ids) { |
| 4141 | affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate(___kmp_allocate((sizeof(kmp_affinity_ids_t) * affinity.num_masks ), "openmp/runtime/src/kmp_affinity.cpp", 4142) |
| 4142 | sizeof(kmp_affinity_ids_t) * affinity.num_masks)___kmp_allocate((sizeof(kmp_affinity_ids_t) * affinity.num_masks ), "openmp/runtime/src/kmp_affinity.cpp", 4142); |
| 4143 | } |
| 4144 | if (!affinity.attrs) { |
| 4145 | affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate(___kmp_allocate((sizeof(kmp_affinity_attrs_t) * affinity.num_masks ), "openmp/runtime/src/kmp_affinity.cpp", 4146) |
| 4146 | sizeof(kmp_affinity_attrs_t) * affinity.num_masks)___kmp_allocate((sizeof(kmp_affinity_attrs_t) * affinity.num_masks ), "openmp/runtime/src/kmp_affinity.cpp", 4146); |
| 4147 | } |
| 4148 | if (!__kmp_osid_to_hwthread_map) { |
| 4149 | // Want the +1 because max_cpu should be valid index into map |
| 4150 | __kmp_osid_to_hwthread_map = |
| 4151 | (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1))___kmp_allocate((sizeof(int) * (max_cpu + 1)), "openmp/runtime/src/kmp_affinity.cpp" , 4151); |
| 4152 | } |
| 4153 | |
| 4154 | // Create the OS proc to hardware thread map |
| 4155 | for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) |
| 4156 | __kmp_osid_to_hwthread_map[__kmp_topology->at(hw_thread).os_id] = hw_thread; |
| 4157 | |
| 4158 | for (unsigned i = 0; i < affinity.num_masks; ++i) { |
| 4159 | kmp_affinity_ids_t &ids = affinity.ids[i]; |
| 4160 | kmp_affinity_attrs_t &attrs = affinity.attrs[i]; |
| 4161 | kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i)__kmp_affinity_dispatch->index_mask_array(affinity.masks, i ); |
| 4162 | __kmp_affinity_get_mask_topology_info(mask, ids, attrs); |
| 4163 | } |
| 4164 | } |
| 4165 | |
| 4166 | // Create a one element mask array (set of places) which only contains the |
| 4167 | // initial process's affinity mask |
| 4168 | static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) { |
| 4169 | KMP_ASSERT(__kmp_affin_fullMask != NULL)if (!(__kmp_affin_fullMask != __null)) { __kmp_debug_assert("__kmp_affin_fullMask != NULL" , "openmp/runtime/src/kmp_affinity.cpp", 4169); }; |
| 4170 | KMP_ASSERT(affinity.type == affinity_none)if (!(affinity.type == affinity_none)) { __kmp_debug_assert("affinity.type == affinity_none" , "openmp/runtime/src/kmp_affinity.cpp", 4170); }; |
| 4171 | affinity.num_masks = 1; |
| 4172 | KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks)(affinity.masks = __kmp_affinity_dispatch->allocate_mask_array (affinity.num_masks)); |
| 4173 | kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0)__kmp_affinity_dispatch->index_mask_array(affinity.masks, 0 ); |
| 4174 | KMP_CPU_COPY(dest, __kmp_affin_fullMask)(dest)->copy(__kmp_affin_fullMask); |
| 4175 | __kmp_affinity_get_topology_info(affinity); |
| 4176 | } |
| 4177 | |
| 4178 | static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) { |
| 4179 | // Create the "full" mask - this defines all of the processors that we |
| 4180 | // consider to be in the machine model. If respect is set, then it is the |
| 4181 | // initialization thread's affinity mask. Otherwise, it is all processors that |
| 4182 | // we know about on the machine. |
| 4183 | int verbose = affinity.flags.verbose; |
| 4184 | const char *env_var = affinity.env_var; |
| 4185 | |
| 4186 | // Already initialized |
| 4187 | if (__kmp_affin_fullMask && __kmp_affin_origMask) |
| 4188 | return; |
| 4189 | |
| 4190 | if (__kmp_affin_fullMask == NULL__null) { |
| 4191 | KMP_CPU_ALLOC(__kmp_affin_fullMask)(__kmp_affin_fullMask = __kmp_affinity_dispatch->allocate_mask ()); |
| 4192 | } |
| 4193 | if (__kmp_affin_origMask == NULL__null) { |
| 4194 | KMP_CPU_ALLOC(__kmp_affin_origMask)(__kmp_affin_origMask = __kmp_affinity_dispatch->allocate_mask ()); |
| 4195 | } |
| 4196 | if (KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 4197 | __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE)(__kmp_affin_fullMask)->get_system_affinity((!0)); |
| 4198 | // Make a copy before possible expanding to the entire machine mask |
| 4199 | __kmp_affin_origMask->copy(__kmp_affin_fullMask); |
| 4200 | if (affinity.flags.respect) { |
| 4201 | // Count the number of available processors. |
| 4202 | unsigned i; |
| 4203 | __kmp_avail_proc = 0; |
| 4204 | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask)for (i = (__kmp_affin_fullMask)->begin(); (int)i != (__kmp_affin_fullMask )->end(); i = (__kmp_affin_fullMask)->next(i)) { |
| 4205 | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(i)) { |
| 4206 | continue; |
| 4207 | } |
| 4208 | __kmp_avail_proc++; |
| 4209 | } |
| 4210 | if (__kmp_avail_proc > __kmp_xproc) { |
| 4211 | KMP_AFF_WARNING(affinity, ErrorInitializeAffinity)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_ErrorInitializeAffinity), __kmp_msg_null ); }; |
| 4212 | affinity.type = affinity_none; |
| 4213 | KMP_AFFINITY_DISABLE()(__kmp_affin_mask_size = 0); |
| 4214 | return; |
| 4215 | } |
| 4216 | |
| 4217 | if (verbose) { |
| 4218 | char buf[KMP_AFFIN_MASK_PRINT_LEN1024]; |
| 4219 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024, |
| 4220 | __kmp_affin_fullMask); |
| 4221 | KMP_INFORM(InitOSProcSetRespect, env_var, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_InitOSProcSetRespect , env_var, buf), __kmp_msg_null); |
| 4222 | } |
| 4223 | } else { |
| 4224 | if (verbose) { |
| 4225 | char buf[KMP_AFFIN_MASK_PRINT_LEN1024]; |
| 4226 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024, |
| 4227 | __kmp_affin_fullMask); |
| 4228 | KMP_INFORM(InitOSProcSetNotRespect, env_var, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_InitOSProcSetNotRespect , env_var, buf), __kmp_msg_null); |
| 4229 | } |
| 4230 | __kmp_avail_proc = |
| 4231 | __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); |
| 4232 | #if KMP_OS_WINDOWS0 |
| 4233 | if (__kmp_num_proc_groups <= 1) { |
| 4234 | // Copy expanded full mask if topology has single processor group |
| 4235 | __kmp_affin_origMask->copy(__kmp_affin_fullMask); |
| 4236 | } |
| 4237 | // Set the process affinity mask since threads' affinity |
| 4238 | // masks must be subset of process mask in Windows* OS |
| 4239 | __kmp_affin_fullMask->set_process_affinity(true); |
| 4240 | #endif |
| 4241 | } |
| 4242 | } |
| 4243 | } |
| 4244 | |
| 4245 | static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) { |
| 4246 | bool success = false; |
| 4247 | const char *env_var = affinity.env_var; |
| 4248 | kmp_i18n_id_t msg_id = kmp_i18n_null; |
| 4249 | int verbose = affinity.flags.verbose; |
| 4250 | |
| 4251 | // For backward compatibility, setting KMP_CPUINFO_FILE => |
| 4252 | // KMP_TOPOLOGY_METHOD=cpuinfo |
| 4253 | if ((__kmp_cpuinfo_file != NULL__null) && |
| 4254 | (__kmp_affinity_top_method == affinity_top_method_all)) { |
| 4255 | __kmp_affinity_top_method = affinity_top_method_cpuinfo; |
| 4256 | } |
| 4257 | |
| 4258 | if (__kmp_affinity_top_method == affinity_top_method_all) { |
| 4259 | // In the default code path, errors are not fatal - we just try using |
| 4260 | // another method. We only emit a warning message if affinity is on, or the |
| 4261 | // verbose flag is set, an the nowarnings flag was not set. |
| 4262 | #if KMP_USE_HWLOC0 |
| 4263 | if (!success && |
| 4264 | __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { |
| 4265 | if (!__kmp_hwloc_error) { |
| 4266 | success = __kmp_affinity_create_hwloc_map(&msg_id); |
| 4267 | if (!success && verbose) { |
| 4268 | KMP_INFORM(AffIgnoringHwloc, env_var)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffIgnoringHwloc , env_var), __kmp_msg_null); |
| 4269 | } |
| 4270 | } else if (verbose) { |
| 4271 | KMP_INFORM(AffIgnoringHwloc, env_var)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffIgnoringHwloc , env_var), __kmp_msg_null); |
| 4272 | } |
| 4273 | } |
| 4274 | #endif |
| 4275 | |
| 4276 | #if KMP_ARCH_X860 || KMP_ARCH_X86_641 |
| 4277 | if (!success) { |
| 4278 | success = __kmp_affinity_create_x2apicid_map(&msg_id); |
| 4279 | if (!success && verbose && msg_id != kmp_i18n_null) { |
| 4280 | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr , env_var, __kmp_i18n_catgets(msg_id)), __kmp_msg_null); |
| 4281 | } |
| 4282 | } |
| 4283 | if (!success) { |
| 4284 | success = __kmp_affinity_create_apicid_map(&msg_id); |
| 4285 | if (!success && verbose && msg_id != kmp_i18n_null) { |
| 4286 | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr , env_var, __kmp_i18n_catgets(msg_id)), __kmp_msg_null); |
| 4287 | } |
| 4288 | } |
| 4289 | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| 4290 | |
| 4291 | #if KMP_OS_LINUX1 |
| 4292 | if (!success) { |
| 4293 | int line = 0; |
| 4294 | success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); |
| 4295 | if (!success && verbose && msg_id != kmp_i18n_null) { |
| 4296 | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr , env_var, __kmp_i18n_catgets(msg_id)), __kmp_msg_null); |
| 4297 | } |
| 4298 | } |
| 4299 | #endif /* KMP_OS_LINUX */ |
| 4300 | |
| 4301 | #if KMP_GROUP_AFFINITY0 |
| 4302 | if (!success && (__kmp_num_proc_groups > 1)) { |
| 4303 | success = __kmp_affinity_create_proc_group_map(&msg_id); |
| 4304 | if (!success && verbose && msg_id != kmp_i18n_null) { |
| 4305 | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr , env_var, __kmp_i18n_catgets(msg_id)), __kmp_msg_null); |
| 4306 | } |
| 4307 | } |
| 4308 | #endif /* KMP_GROUP_AFFINITY */ |
| 4309 | |
| 4310 | if (!success) { |
| 4311 | success = __kmp_affinity_create_flat_map(&msg_id); |
| 4312 | if (!success && verbose && msg_id != kmp_i18n_null) { |
| 4313 | KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id))__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_AffInfoStr , env_var, __kmp_i18n_catgets(msg_id)), __kmp_msg_null); |
| 4314 | } |
| 4315 | KMP_ASSERT(success)if (!(success)) { __kmp_debug_assert("success", "openmp/runtime/src/kmp_affinity.cpp" , 4315); }; |
| 4316 | } |
| 4317 | } |
| 4318 | |
| 4319 | // If the user has specified that a paricular topology discovery method is to be |
| 4320 | // used, then we abort if that method fails. The exception is group affinity, |
| 4321 | // which might have been implicitly set. |
| 4322 | #if KMP_USE_HWLOC0 |
| 4323 | else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { |
| 4324 | KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC)if (!(__kmp_affinity_dispatch->get_api_type() == KMPAffinity ::HWLOC)) { __kmp_debug_assert("__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC" , "openmp/runtime/src/kmp_affinity.cpp", 4324); }; |
| 4325 | success = __kmp_affinity_create_hwloc_map(&msg_id); |
| 4326 | if (!success) { |
| 4327 | KMP_ASSERT(msg_id != kmp_i18n_null)if (!(msg_id != kmp_i18n_null)) { __kmp_debug_assert("msg_id != kmp_i18n_null" , "openmp/runtime/src/kmp_affinity.cpp", 4327); }; |
| 4328 | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_MsgExiting, __kmp_i18n_catgets (msg_id)), __kmp_msg_null); |
| 4329 | } |
| 4330 | } |
| 4331 | #endif // KMP_USE_HWLOC |
| 4332 | |
| 4333 | #if KMP_ARCH_X860 || KMP_ARCH_X86_641 |
| 4334 | else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || |
| 4335 | __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { |
| 4336 | success = __kmp_affinity_create_x2apicid_map(&msg_id); |
| 4337 | if (!success) { |
| 4338 | KMP_ASSERT(msg_id != kmp_i18n_null)if (!(msg_id != kmp_i18n_null)) { __kmp_debug_assert("msg_id != kmp_i18n_null" , "openmp/runtime/src/kmp_affinity.cpp", 4338); }; |
| 4339 | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_MsgExiting, __kmp_i18n_catgets (msg_id)), __kmp_msg_null); |
| 4340 | } |
| 4341 | } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { |
| 4342 | success = __kmp_affinity_create_apicid_map(&msg_id); |
| 4343 | if (!success) { |
| 4344 | KMP_ASSERT(msg_id != kmp_i18n_null)if (!(msg_id != kmp_i18n_null)) { __kmp_debug_assert("msg_id != kmp_i18n_null" , "openmp/runtime/src/kmp_affinity.cpp", 4344); }; |
| 4345 | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_MsgExiting, __kmp_i18n_catgets (msg_id)), __kmp_msg_null); |
| 4346 | } |
| 4347 | } |
| 4348 | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| 4349 | |
| 4350 | else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { |
| 4351 | int line = 0; |
| 4352 | success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); |
| 4353 | if (!success) { |
| 4354 | KMP_ASSERT(msg_id != kmp_i18n_null)if (!(msg_id != kmp_i18n_null)) { __kmp_debug_assert("msg_id != kmp_i18n_null" , "openmp/runtime/src/kmp_affinity.cpp", 4354); }; |
| 4355 | const char *filename = __kmp_cpuinfo_get_filename(); |
| 4356 | if (line > 0) { |
| 4357 | KMP_FATAL(FileLineMsgExiting, filename, line,__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id)), __kmp_msg_null) |
| 4358 | __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id)), __kmp_msg_null); |
| 4359 | } else { |
| 4360 | KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_FileMsgExiting, filename , __kmp_i18n_catgets(msg_id)), __kmp_msg_null); |
| 4361 | } |
| 4362 | } |
| 4363 | } |
| 4364 | |
| 4365 | #if KMP_GROUP_AFFINITY0 |
| 4366 | else if (__kmp_affinity_top_method == affinity_top_method_group) { |
| 4367 | success = __kmp_affinity_create_proc_group_map(&msg_id); |
| 4368 | KMP_ASSERT(success)if (!(success)) { __kmp_debug_assert("success", "openmp/runtime/src/kmp_affinity.cpp" , 4368); }; |
| 4369 | if (!success) { |
| 4370 | KMP_ASSERT(msg_id != kmp_i18n_null)if (!(msg_id != kmp_i18n_null)) { __kmp_debug_assert("msg_id != kmp_i18n_null" , "openmp/runtime/src/kmp_affinity.cpp", 4370); }; |
| 4371 | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id))__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_MsgExiting, __kmp_i18n_catgets (msg_id)), __kmp_msg_null); |
| 4372 | } |
| 4373 | } |
| 4374 | #endif /* KMP_GROUP_AFFINITY */ |
| 4375 | |
| 4376 | else if (__kmp_affinity_top_method == affinity_top_method_flat) { |
| 4377 | success = __kmp_affinity_create_flat_map(&msg_id); |
| 4378 | // should not fail |
| 4379 | KMP_ASSERT(success)if (!(success)) { __kmp_debug_assert("success", "openmp/runtime/src/kmp_affinity.cpp" , 4379); }; |
| 4380 | } |
| 4381 | |
| 4382 | // Early exit if topology could not be created |
| 4383 | if (!__kmp_topology) { |
| 4384 | if (KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 4385 | KMP_AFF_WARNING(affinity, ErrorInitializeAffinity)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_ErrorInitializeAffinity), __kmp_msg_null ); }; |
| 4386 | } |
| 4387 | if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && |
| 4388 | __kmp_ncores > 0) { |
| 4389 | __kmp_topology = kmp_topology_t::allocate(0, 0, NULL__null); |
| 4390 | __kmp_topology->canonicalize(nPackages, nCoresPerPkg, |
| 4391 | __kmp_nThreadsPerCore, __kmp_ncores); |
| 4392 | if (verbose) { |
| 4393 | __kmp_topology->print(env_var); |
| 4394 | } |
| 4395 | } |
| 4396 | return false; |
| 4397 | } |
| 4398 | |
| 4399 | // Canonicalize, print (if requested), apply KMP_HW_SUBSET |
| 4400 | __kmp_topology->canonicalize(); |
| 4401 | if (verbose) |
| 4402 | __kmp_topology->print(env_var); |
| 4403 | bool filtered = __kmp_topology->filter_hw_subset(); |
| 4404 | if (filtered) { |
| 4405 | #if KMP_OS_WINDOWS0 |
| 4406 | // Copy filtered full mask if topology has single processor group |
| 4407 | if (__kmp_num_proc_groups <= 1) |
| 4408 | #endif |
| 4409 | __kmp_affin_origMask->copy(__kmp_affin_fullMask); |
| 4410 | } |
| 4411 | if (filtered && verbose) |
| 4412 | __kmp_topology->print("KMP_HW_SUBSET"); |
| 4413 | return success; |
| 4414 | } |
| 4415 | |
| 4416 | static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) { |
| 4417 | bool is_regular_affinity = (&affinity == &__kmp_affinity); |
| 4418 | bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity); |
| 4419 | const char *env_var = affinity.env_var; |
| 4420 | |
| 4421 | if (affinity.flags.initialized) { |
| 4422 | KMP_ASSERT(__kmp_affin_fullMask != NULL)if (!(__kmp_affin_fullMask != __null)) { __kmp_debug_assert("__kmp_affin_fullMask != NULL" , "openmp/runtime/src/kmp_affinity.cpp", 4422); }; |
| 4423 | return; |
| 4424 | } |
| 4425 | |
| 4426 | if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask)) |
| 4427 | __kmp_aux_affinity_initialize_masks(affinity); |
| 4428 | |
| 4429 | if (is_regular_affinity && !__kmp_topology) { |
| 4430 | bool success = __kmp_aux_affinity_initialize_topology(affinity); |
| 4431 | if (success) { |
| 4432 | // Initialize other data structures which depend on the topology |
| 4433 | machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); |
| 4434 | KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads())if (!(__kmp_avail_proc == __kmp_topology->get_num_hw_threads ())) { __kmp_debug_assert("__kmp_avail_proc == __kmp_topology->get_num_hw_threads()" , "openmp/runtime/src/kmp_affinity.cpp", 4434); }; |
| 4435 | } else { |
| 4436 | affinity.type = affinity_none; |
| 4437 | KMP_AFFINITY_DISABLE()(__kmp_affin_mask_size = 0); |
| 4438 | } |
| 4439 | } |
| 4440 | |
| 4441 | // If KMP_AFFINITY=none, then only create the single "none" place |
| 4442 | // which is the process's initial affinity mask or the number of |
| 4443 | // hardware threads depending on respect,norespect |
| 4444 | if (affinity.type == affinity_none) { |
| 4445 | __kmp_create_affinity_none_places(affinity); |
| 4446 | #if KMP_USE_HIER_SCHED0 |
| 4447 | __kmp_dispatch_set_hierarchy_values(); |
| 4448 | #endif |
| 4449 | affinity.flags.initialized = TRUE(!0); |
| 4450 | return; |
| 4451 | } |
| 4452 | |
| 4453 | __kmp_topology->set_granularity(affinity); |
| 4454 | int depth = __kmp_topology->get_depth(); |
| 4455 | |
| 4456 | // Create the table of masks, indexed by thread Id. |
| 4457 | unsigned numUnique; |
| 4458 | __kmp_create_os_id_masks(&numUnique, affinity); |
| 4459 | if (affinity.gran_levels == 0) { |
| 4460 | KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc)if (!((int)numUnique == __kmp_avail_proc)) { __kmp_debug_assert ("(int)numUnique == __kmp_avail_proc", "openmp/runtime/src/kmp_affinity.cpp" , 4460); }; |
| 4461 | } |
| 4462 | |
| 4463 | switch (affinity.type) { |
| 4464 | |
| 4465 | case affinity_explicit: |
| 4466 | KMP_DEBUG_ASSERT(affinity.proclist != NULL)if (!(affinity.proclist != __null)) { __kmp_debug_assert("affinity.proclist != __null" , "openmp/runtime/src/kmp_affinity.cpp", 4466); }; |
| 4467 | if (is_hidden_helper_affinity || |
| 4468 | __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { |
| 4469 | __kmp_affinity_process_proclist(affinity); |
| 4470 | } else { |
| 4471 | __kmp_affinity_process_placelist(affinity); |
| 4472 | } |
| 4473 | if (affinity.num_masks == 0) { |
| 4474 | KMP_AFF_WARNING(affinity, AffNoValidProcID)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffNoValidProcID), __kmp_msg_null ); }; |
| 4475 | affinity.type = affinity_none; |
| 4476 | __kmp_create_affinity_none_places(affinity); |
| 4477 | affinity.flags.initialized = TRUE(!0); |
| 4478 | return; |
| 4479 | } |
| 4480 | break; |
| 4481 | |
| 4482 | // The other affinity types rely on sorting the hardware threads according to |
| 4483 | // some permutation of the machine topology tree. Set affinity.compact |
| 4484 | // and affinity.offset appropriately, then jump to a common code |
| 4485 | // fragment to do the sort and create the array of affinity masks. |
| 4486 | case affinity_logical: |
| 4487 | affinity.compact = 0; |
| 4488 | if (affinity.offset) { |
| 4489 | affinity.offset = |
| 4490 | __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; |
| 4491 | } |
| 4492 | goto sortTopology; |
| 4493 | |
| 4494 | case affinity_physical: |
| 4495 | if (__kmp_nThreadsPerCore > 1) { |
| 4496 | affinity.compact = 1; |
| 4497 | if (affinity.compact >= depth) { |
| 4498 | affinity.compact = 0; |
| 4499 | } |
| 4500 | } else { |
| 4501 | affinity.compact = 0; |
| 4502 | } |
| 4503 | if (affinity.offset) { |
| 4504 | affinity.offset = |
| 4505 | __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; |
| 4506 | } |
| 4507 | goto sortTopology; |
| 4508 | |
| 4509 | case affinity_scatter: |
| 4510 | if (affinity.compact >= depth) { |
| 4511 | affinity.compact = 0; |
| 4512 | } else { |
| 4513 | affinity.compact = depth - 1 - affinity.compact; |
| 4514 | } |
| 4515 | goto sortTopology; |
| 4516 | |
| 4517 | case affinity_compact: |
| 4518 | if (affinity.compact >= depth) { |
| 4519 | affinity.compact = depth - 1; |
| 4520 | } |
| 4521 | goto sortTopology; |
| 4522 | |
| 4523 | case affinity_balanced: |
| 4524 | if (depth <= 1 || is_hidden_helper_affinity) { |
| 4525 | KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffBalancedNotAvail, env_var) , __kmp_msg_null); }; |
| 4526 | affinity.type = affinity_none; |
| 4527 | __kmp_create_affinity_none_places(affinity); |
| 4528 | affinity.flags.initialized = TRUE(!0); |
| 4529 | return; |
| 4530 | } else if (!__kmp_topology->is_uniform()) { |
| 4531 | // Save the depth for further usage |
| 4532 | __kmp_aff_depth = depth; |
| 4533 | |
| 4534 | int core_level = |
| 4535 | __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); |
| 4536 | int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, |
| 4537 | core_level); |
| 4538 | int maxprocpercore = __kmp_affinity_max_proc_per_core( |
| 4539 | __kmp_avail_proc, depth - 1, core_level); |
| 4540 | |
| 4541 | int nproc = ncores * maxprocpercore; |
| 4542 | if ((nproc < 2) || (nproc < __kmp_avail_proc)) { |
| 4543 | KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var)if (affinity.flags.verbose || (affinity.flags.warnings && (affinity.type != affinity_none))) { __kmp_msg(kmp_ms_warning , __kmp_msg_format(kmp_i18n_msg_AffBalancedNotAvail, env_var) , __kmp_msg_null); }; |
| 4544 | affinity.type = affinity_none; |
| 4545 | __kmp_create_affinity_none_places(affinity); |
| 4546 | affinity.flags.initialized = TRUE(!0); |
| 4547 | return; |
| 4548 | } |
| 4549 | |
| 4550 | procarr = (int *)__kmp_allocate(sizeof(int) * nproc)___kmp_allocate((sizeof(int) * nproc), "openmp/runtime/src/kmp_affinity.cpp" , 4550); |
| 4551 | for (int i = 0; i < nproc; i++) { |
| 4552 | procarr[i] = -1; |
| 4553 | } |
| 4554 | |
| 4555 | int lastcore = -1; |
| 4556 | int inlastcore = 0; |
| 4557 | for (int i = 0; i < __kmp_avail_proc; i++) { |
| 4558 | int proc = __kmp_topology->at(i).os_id; |
| 4559 | int core = __kmp_affinity_find_core(i, depth - 1, core_level); |
| 4560 | |
| 4561 | if (core == lastcore) { |
| 4562 | inlastcore++; |
| 4563 | } else { |
| 4564 | inlastcore = 0; |
| 4565 | } |
| 4566 | lastcore = core; |
| 4567 | |
| 4568 | procarr[core * maxprocpercore + inlastcore] = proc; |
| 4569 | } |
| 4570 | } |
| 4571 | if (affinity.compact >= depth) { |
| 4572 | affinity.compact = depth - 1; |
| 4573 | } |
| 4574 | |
| 4575 | sortTopology: |
| 4576 | // Allocate the gtid->affinity mask table. |
| 4577 | if (affinity.flags.dups) { |
| 4578 | affinity.num_masks = __kmp_avail_proc; |
| 4579 | } else { |
| 4580 | affinity.num_masks = numUnique; |
| 4581 | } |
| 4582 | |
| 4583 | if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && |
| 4584 | (__kmp_affinity_num_places > 0) && |
| 4585 | ((unsigned)__kmp_affinity_num_places < affinity.num_masks) && |
| 4586 | !is_hidden_helper_affinity) { |
| 4587 | affinity.num_masks = __kmp_affinity_num_places; |
| 4588 | } |
| 4589 | |
| 4590 | KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks)(affinity.masks = __kmp_affinity_dispatch->allocate_mask_array (affinity.num_masks)); |
| 4591 | |
| 4592 | // Sort the topology table according to the current setting of |
| 4593 | // affinity.compact, then fill out affinity.masks. |
| 4594 | __kmp_topology->sort_compact(affinity); |
| 4595 | { |
| 4596 | int i; |
| 4597 | unsigned j; |
| 4598 | int num_hw_threads = __kmp_topology->get_num_hw_threads(); |
| 4599 | for (i = 0, j = 0; i < num_hw_threads; i++) { |
| 4600 | if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) { |
| 4601 | continue; |
| 4602 | } |
| 4603 | int osId = __kmp_topology->at(i).os_id; |
| 4604 | |
| 4605 | kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId)__kmp_affinity_dispatch->index_mask_array(affinity.os_id_masks , osId); |
| 4606 | kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j)__kmp_affinity_dispatch->index_mask_array(affinity.masks, j ); |
| 4607 | KMP_ASSERT(KMP_CPU_ISSET(osId, src))if (!((src)->is_set(osId))) { __kmp_debug_assert("KMP_CPU_ISSET(osId, src)" , "openmp/runtime/src/kmp_affinity.cpp", 4607); }; |
| 4608 | KMP_CPU_COPY(dest, src)(dest)->copy(src); |
| 4609 | if (++j >= affinity.num_masks) { |
| 4610 | break; |
| 4611 | } |
| 4612 | } |
| 4613 | KMP_DEBUG_ASSERT(j == affinity.num_masks)if (!(j == affinity.num_masks)) { __kmp_debug_assert("j == affinity.num_masks" , "openmp/runtime/src/kmp_affinity.cpp", 4613); }; |
| 4614 | } |
| 4615 | // Sort the topology back using ids |
| 4616 | __kmp_topology->sort_ids(); |
| 4617 | break; |
| 4618 | |
| 4619 | default: |
| 4620 | KMP_ASSERT2(0, "Unexpected affinity setting")if (!(0)) { __kmp_debug_assert(("Unexpected affinity setting" ), "openmp/runtime/src/kmp_affinity.cpp", 4620); }; |
| 4621 | } |
| 4622 | __kmp_affinity_get_topology_info(affinity); |
| 4623 | affinity.flags.initialized = TRUE(!0); |
| 4624 | } |
| 4625 | |
| 4626 | void __kmp_affinity_initialize(kmp_affinity_t &affinity) { |
| 4627 | // Much of the code above was written assuming that if a machine was not |
| 4628 | // affinity capable, then affinity type == affinity_none. |
| 4629 | // We now explicitly represent this as affinity type == affinity_disabled. |
| 4630 | // There are too many checks for affinity type == affinity_none in this code. |
| 4631 | // Instead of trying to change them all, check if |
| 4632 | // affinity type == affinity_disabled, and if so, slam it with affinity_none, |
| 4633 | // call the real initialization routine, then restore affinity type to |
| 4634 | // affinity_disabled. |
| 4635 | int disabled = (affinity.type == affinity_disabled); |
| 4636 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) |
| 4637 | KMP_ASSERT(disabled)if (!(disabled)) { __kmp_debug_assert("disabled", "openmp/runtime/src/kmp_affinity.cpp" , 4637); }; |
| 4638 | if (disabled) |
| 4639 | affinity.type = affinity_none; |
| 4640 | __kmp_aux_affinity_initialize(affinity); |
| 4641 | if (disabled) |
| 4642 | affinity.type = affinity_disabled; |
| 4643 | } |
| 4644 | |
| 4645 | void __kmp_affinity_uninitialize(void) { |
| 4646 | for (kmp_affinity_t *affinity : __kmp_affinities) { |
| 4647 | if (affinity->masks != NULL__null) |
| 4648 | KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks)__kmp_affinity_dispatch->deallocate_mask_array(affinity-> masks); |
| 4649 | if (affinity->os_id_masks != NULL__null) |
| 4650 | KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks)__kmp_affinity_dispatch->deallocate_mask_array(affinity-> os_id_masks); |
| 4651 | if (affinity->proclist != NULL__null) |
| 4652 | __kmp_free(affinity->proclist)___kmp_free((affinity->proclist), "openmp/runtime/src/kmp_affinity.cpp" , 4652); |
| 4653 | if (affinity->ids != NULL__null) |
| 4654 | __kmp_free(affinity->ids)___kmp_free((affinity->ids), "openmp/runtime/src/kmp_affinity.cpp" , 4654); |
| 4655 | if (affinity->attrs != NULL__null) |
| 4656 | __kmp_free(affinity->attrs)___kmp_free((affinity->attrs), "openmp/runtime/src/kmp_affinity.cpp" , 4656); |
| 4657 | *affinity = KMP_AFFINITY_INIT(affinity->env_var){ nullptr, affinity_default, KMP_HW_UNKNOWN, -1, 0, 0, {(!0), 0, (!0), (2), 0, 0}, 0, nullptr, nullptr, nullptr, 0, nullptr , affinity->env_var }; |
| 4658 | } |
| 4659 | if (__kmp_affin_origMask != NULL__null) { |
| 4660 | if (KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 4661 | __kmp_set_system_affinity(__kmp_affin_origMask, FALSE)(__kmp_affin_origMask)->set_system_affinity(0); |
| 4662 | } |
| 4663 | KMP_CPU_FREE(__kmp_affin_origMask)__kmp_affinity_dispatch->deallocate_mask(__kmp_affin_origMask ); |
| 4664 | __kmp_affin_origMask = NULL__null; |
| 4665 | } |
| 4666 | __kmp_affinity_num_places = 0; |
| 4667 | if (procarr != NULL__null) { |
| 4668 | __kmp_free(procarr)___kmp_free((procarr), "openmp/runtime/src/kmp_affinity.cpp", 4668); |
| 4669 | procarr = NULL__null; |
| 4670 | } |
| 4671 | if (__kmp_osid_to_hwthread_map) { |
| 4672 | __kmp_free(__kmp_osid_to_hwthread_map)___kmp_free((__kmp_osid_to_hwthread_map), "openmp/runtime/src/kmp_affinity.cpp" , 4672); |
| 4673 | __kmp_osid_to_hwthread_map = NULL__null; |
| 4674 | } |
| 4675 | #if KMP_USE_HWLOC0 |
| 4676 | if (__kmp_hwloc_topology != NULL__null) { |
| 4677 | hwloc_topology_destroy(__kmp_hwloc_topology); |
| 4678 | __kmp_hwloc_topology = NULL__null; |
| 4679 | } |
| 4680 | #endif |
| 4681 | if (__kmp_hw_subset) { |
| 4682 | kmp_hw_subset_t::deallocate(__kmp_hw_subset); |
| 4683 | __kmp_hw_subset = nullptr; |
| 4684 | } |
| 4685 | if (__kmp_topology) { |
| 4686 | kmp_topology_t::deallocate(__kmp_topology); |
| 4687 | __kmp_topology = nullptr; |
| 4688 | } |
| 4689 | KMPAffinity::destroy_api(); |
| 4690 | } |
| 4691 | |
| 4692 | static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity, |
| 4693 | int *place, kmp_affin_mask_t **mask) { |
| 4694 | int mask_idx; |
| 4695 | bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid)((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num ); |
| 4696 | if (is_hidden_helper) |
| 4697 | // The first gtid is the regular primary thread, the second gtid is the main |
| 4698 | // thread of hidden team which does not participate in task execution. |
| 4699 | mask_idx = gtid - 2; |
| 4700 | else |
| 4701 | mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); |
| 4702 | KMP_DEBUG_ASSERT(affinity->num_masks > 0)if (!(affinity->num_masks > 0)) { __kmp_debug_assert("affinity->num_masks > 0" , "openmp/runtime/src/kmp_affinity.cpp", 4702); }; |
| 4703 | *place = (mask_idx + affinity->offset) % affinity->num_masks; |
| 4704 | *mask = KMP_CPU_INDEX(affinity->masks, *place)__kmp_affinity_dispatch->index_mask_array(affinity->masks , *place); |
| 4705 | } |
| 4706 | |
| 4707 | // This function initializes the per-thread data concerning affinity including |
| 4708 | // the mask and topology information |
| 4709 | void __kmp_affinity_set_init_mask(int gtid, int isa_root) { |
| 4710 | |
| 4711 | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid])((void *)(__kmp_threads[gtid])); |
| 4712 | |
| 4713 | // Set the thread topology information to default of unknown |
| 4714 | for (int id = 0; id < KMP_HW_LAST; ++id) |
| 4715 | th->th.th_topology_ids[id] = kmp_hw_thread_t::UNKNOWN_ID; |
| 4716 | th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN{ KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0 , 0 }; |
| 4717 | |
| 4718 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 4719 | return; |
| 4720 | } |
| 4721 | |
| 4722 | if (th->th.th_affin_mask == NULL__null) { |
| 4723 | KMP_CPU_ALLOC(th->th.th_affin_mask)(th->th.th_affin_mask = __kmp_affinity_dispatch->allocate_mask ()); |
| 4724 | } else { |
| 4725 | KMP_CPU_ZERO(th->th.th_affin_mask)(th->th.th_affin_mask)->zero(); |
| 4726 | } |
| 4727 | |
| 4728 | // Copy the thread mask to the kmp_info_t structure. If |
| 4729 | // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e. |
| 4730 | // one that has all of the OS proc ids set, or if |
| 4731 | // __kmp_affinity.flags.respect is set, then the full mask is the |
| 4732 | // same as the mask of the initialization thread. |
| 4733 | kmp_affin_mask_t *mask; |
| 4734 | int i; |
| 4735 | const kmp_affinity_t *affinity; |
| 4736 | const char *env_var; |
| 4737 | bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid)((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num ); |
| 4738 | |
| 4739 | if (is_hidden_helper) |
| 4740 | affinity = &__kmp_hh_affinity; |
| 4741 | else |
| 4742 | affinity = &__kmp_affinity; |
| 4743 | env_var = affinity->env_var; |
| 4744 | |
| 4745 | if (KMP_AFFINITY_NON_PROC_BIND((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || __kmp_nested_proc_bind .bind_types[0] == proc_bind_intel) && (__kmp_affinity .num_masks > 0 || __kmp_affinity.type == affinity_balanced )) || is_hidden_helper) { |
| 4746 | if ((affinity->type == affinity_none) || |
| 4747 | (affinity->type == affinity_balanced) || |
| 4748 | KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num )) { |
| 4749 | #if KMP_GROUP_AFFINITY0 |
| 4750 | if (__kmp_num_proc_groups > 1) { |
| 4751 | return; |
| 4752 | } |
| 4753 | #endif |
| 4754 | KMP_ASSERT(__kmp_affin_fullMask != NULL)if (!(__kmp_affin_fullMask != __null)) { __kmp_debug_assert("__kmp_affin_fullMask != NULL" , "openmp/runtime/src/kmp_affinity.cpp", 4754); }; |
| 4755 | i = 0; |
| 4756 | mask = __kmp_affin_fullMask; |
| 4757 | } else { |
| 4758 | __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); |
| 4759 | } |
| 4760 | } else { |
| 4761 | if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) { |
| 4762 | #if KMP_GROUP_AFFINITY0 |
| 4763 | if (__kmp_num_proc_groups > 1) { |
| 4764 | return; |
| 4765 | } |
| 4766 | #endif |
| 4767 | KMP_ASSERT(__kmp_affin_fullMask != NULL)if (!(__kmp_affin_fullMask != __null)) { __kmp_debug_assert("__kmp_affin_fullMask != NULL" , "openmp/runtime/src/kmp_affinity.cpp", 4767); }; |
| 4768 | i = KMP_PLACE_ALL(-1); |
| 4769 | mask = __kmp_affin_fullMask; |
| 4770 | } else { |
| 4771 | __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); |
| 4772 | } |
| 4773 | } |
| 4774 | |
| 4775 | th->th.th_current_place = i; |
| 4776 | if (isa_root && !is_hidden_helper) { |
| 4777 | th->th.th_new_place = i; |
| 4778 | th->th.th_first_place = 0; |
| 4779 | th->th.th_last_place = affinity->num_masks - 1; |
| 4780 | } else if (KMP_AFFINITY_NON_PROC_BIND((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || __kmp_nested_proc_bind .bind_types[0] == proc_bind_intel) && (__kmp_affinity .num_masks > 0 || __kmp_affinity.type == affinity_balanced ))) { |
| 4781 | // When using a Non-OMP_PROC_BIND affinity method, |
| 4782 | // set all threads' place-partition-var to the entire place list |
| 4783 | th->th.th_first_place = 0; |
| 4784 | th->th.th_last_place = affinity->num_masks - 1; |
| 4785 | } |
| 4786 | // Copy topology information associated with the place |
| 4787 | if (i >= 0) { |
| 4788 | th->th.th_topology_ids = __kmp_affinity.ids[i]; |
| 4789 | th->th.th_topology_attrs = __kmp_affinity.attrs[i]; |
| 4790 | } |
| 4791 | |
| 4792 | if (i == KMP_PLACE_ALL(-1)) { |
| 4793 | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_init_mask: binding T#%d to all places\n" , gtid); } |
| 4794 | gtid))if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_init_mask: binding T#%d to all places\n" , gtid); }; |
| 4795 | } else { |
| 4796 | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n" , gtid, i); } |
| 4797 | gtid, i))if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n" , gtid, i); }; |
| 4798 | } |
| 4799 | |
| 4800 | KMP_CPU_COPY(th->th.th_affin_mask, mask)(th->th.th_affin_mask)->copy(mask); |
| 4801 | |
| 4802 | /* to avoid duplicate printing (will be correctly printed on barrier) */ |
| 4803 | if (affinity->flags.verbose && |
| 4804 | (affinity->type == affinity_none || |
| 4805 | (i != KMP_PLACE_ALL(-1) && affinity->type != affinity_balanced)) && |
| 4806 | !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num )) { |
| 4807 | char buf[KMP_AFFIN_MASK_PRINT_LEN1024]; |
| 4808 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024, |
| 4809 | th->th.th_affin_mask); |
| 4810 | KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet , env_var, (kmp_int32)getpid(), syscall(186), gtid, buf), __kmp_msg_null ) |
| 4811 | gtid, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet , env_var, (kmp_int32)getpid(), syscall(186), gtid, buf), __kmp_msg_null ); |
| 4812 | } |
| 4813 | |
| 4814 | #if KMP_OS_WINDOWS0 |
| 4815 | // On Windows* OS, the process affinity mask might have changed. If the user |
| 4816 | // didn't request affinity and this call fails, just continue silently. |
| 4817 | // See CQ171393. |
| 4818 | if (affinity->type == affinity_none) { |
| 4819 | __kmp_set_system_affinity(th->th.th_affin_mask, FALSE)(th->th.th_affin_mask)->set_system_affinity(0); |
| 4820 | } else |
| 4821 | #endif |
| 4822 | __kmp_set_system_affinity(th->th.th_affin_mask, TRUE)(th->th.th_affin_mask)->set_system_affinity((!0)); |
| 4823 | } |
| 4824 | |
| 4825 | void __kmp_affinity_set_place(int gtid) { |
| 4826 | // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND |
| 4827 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0) || KMP_HIDDEN_HELPER_THREAD(gtid)((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num )) { |
| 4828 | return; |
| 4829 | } |
| 4830 | |
| 4831 | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid])((void *)(__kmp_threads[gtid])); |
| 4832 | |
| 4833 | KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_place: binding T#%d to place %d (current " "place = %d)\n", gtid, th->th.th_new_place, th->th.th_current_place ); } |
| 4834 | "place = %d)\n",if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_place: binding T#%d to place %d (current " "place = %d)\n", gtid, th->th.th_new_place, th->th.th_current_place ); } |
| 4835 | gtid, th->th.th_new_place, th->th.th_current_place))if (kmp_a_debug >= 100) { __kmp_debug_printf ("__kmp_affinity_set_place: binding T#%d to place %d (current " "place = %d)\n", gtid, th->th.th_new_place, th->th.th_current_place ); }; |
| 4836 | |
| 4837 | // Check that the new place is within this thread's partition. |
| 4838 | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL)if (!(th->th.th_affin_mask != __null)) { __kmp_debug_assert ("th->th.th_affin_mask != __null", "openmp/runtime/src/kmp_affinity.cpp" , 4838); }; |
| 4839 | KMP_ASSERT(th->th.th_new_place >= 0)if (!(th->th.th_new_place >= 0)) { __kmp_debug_assert("th->th.th_new_place >= 0" , "openmp/runtime/src/kmp_affinity.cpp", 4839); }; |
| 4840 | KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks)if (!((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks )) { __kmp_debug_assert("(unsigned)th->th.th_new_place <= __kmp_affinity.num_masks" , "openmp/runtime/src/kmp_affinity.cpp", 4840); }; |
| 4841 | if (th->th.th_first_place <= th->th.th_last_place) { |
| 4842 | KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&if (!((th->th.th_new_place >= th->th.th_first_place) && (th->th.th_new_place <= th->th.th_last_place ))) { __kmp_debug_assert("(th->th.th_new_place >= th->th.th_first_place) && (th->th.th_new_place <= th->th.th_last_place)" , "openmp/runtime/src/kmp_affinity.cpp", 4843); } |
| 4843 | (th->th.th_new_place <= th->th.th_last_place))if (!((th->th.th_new_place >= th->th.th_first_place) && (th->th.th_new_place <= th->th.th_last_place ))) { __kmp_debug_assert("(th->th.th_new_place >= th->th.th_first_place) && (th->th.th_new_place <= th->th.th_last_place)" , "openmp/runtime/src/kmp_affinity.cpp", 4843); }; |
| 4844 | } else { |
| 4845 | KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||if (!((th->th.th_new_place <= th->th.th_first_place) || (th->th.th_new_place >= th->th.th_last_place))) { __kmp_debug_assert("(th->th.th_new_place <= th->th.th_first_place) || (th->th.th_new_place >= th->th.th_last_place)" , "openmp/runtime/src/kmp_affinity.cpp", 4846); } |
| 4846 | (th->th.th_new_place >= th->th.th_last_place))if (!((th->th.th_new_place <= th->th.th_first_place) || (th->th.th_new_place >= th->th.th_last_place))) { __kmp_debug_assert("(th->th.th_new_place <= th->th.th_first_place) || (th->th.th_new_place >= th->th.th_last_place)" , "openmp/runtime/src/kmp_affinity.cpp", 4846); }; |
| 4847 | } |
| 4848 | |
| 4849 | // Copy the thread mask to the kmp_info_t structure, |
| 4850 | // and set this thread's affinity. |
| 4851 | kmp_affin_mask_t *mask = |
| 4852 | KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place)__kmp_affinity_dispatch->index_mask_array(__kmp_affinity.masks , th->th.th_new_place); |
| 4853 | KMP_CPU_COPY(th->th.th_affin_mask, mask)(th->th.th_affin_mask)->copy(mask); |
| 4854 | th->th.th_current_place = th->th.th_new_place; |
| 4855 | // Copy topology information associated with the place |
| 4856 | th->th.th_topology_ids = __kmp_affinity.ids[th->th.th_new_place]; |
| 4857 | th->th.th_topology_attrs = __kmp_affinity.attrs[th->th.th_new_place]; |
| 4858 | |
| 4859 | if (__kmp_affinity.flags.verbose) { |
| 4860 | char buf[KMP_AFFIN_MASK_PRINT_LEN1024]; |
| 4861 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024, |
| 4862 | th->th.th_affin_mask); |
| 4863 | KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet , "OMP_PROC_BIND", (kmp_int32)getpid(), syscall(186), gtid, buf ), __kmp_msg_null) |
| 4864 | __kmp_gettid(), gtid, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet , "OMP_PROC_BIND", (kmp_int32)getpid(), syscall(186), gtid, buf ), __kmp_msg_null); |
| 4865 | } |
| 4866 | __kmp_set_system_affinity(th->th.th_affin_mask, TRUE)(th->th.th_affin_mask)->set_system_affinity((!0)); |
| 4867 | } |
| 4868 | |
| 4869 | int __kmp_aux_set_affinity(void **mask) { |
| 4870 | int gtid; |
| 4871 | kmp_info_t *th; |
| 4872 | int retval; |
| 4873 | |
| 4874 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 4875 | return -1; |
| 4876 | } |
| 4877 | |
| 4878 | gtid = __kmp_entry_gtid()__kmp_get_global_thread_id_reg(); |
| 4879 | KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4880 | 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4881 | char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4882 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4883 | (kmp_affin_mask_t *)(*mask));if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4884 | __kmp_debug_printf(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4885 | "kmp_set_affinity: setting affinity mask for thread %d = %s\n",if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4886 | gtid, buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4887 | })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n" , gtid, buf); }; }; |
| 4888 | |
| 4889 | if (__kmp_env_consistency_check) { |
| 4890 | if ((mask == NULL__null) || (*mask == NULL__null)) { |
| 4891 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask , "kmp_set_affinity"), __kmp_msg_null); |
| 4892 | } else { |
| 4893 | unsigned proc; |
| 4894 | int num_procs = 0; |
| 4895 | |
| 4896 | KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask)))for (proc = (((kmp_affin_mask_t *)(*mask)))->begin(); (int )proc != (((kmp_affin_mask_t *)(*mask)))->end(); proc = (( (kmp_affin_mask_t *)(*mask)))->next(proc)) { |
| 4897 | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(proc)) { |
| 4898 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask , "kmp_set_affinity"), __kmp_msg_null); |
| 4899 | } |
| 4900 | if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))((kmp_affin_mask_t *)(*mask))->is_set(proc)) { |
| 4901 | continue; |
| 4902 | } |
| 4903 | num_procs++; |
| 4904 | } |
| 4905 | if (num_procs == 0) { |
| 4906 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask , "kmp_set_affinity"), __kmp_msg_null); |
| 4907 | } |
| 4908 | |
| 4909 | #if KMP_GROUP_AFFINITY0 |
| 4910 | if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask))((kmp_affin_mask_t *)(*mask))->get_proc_group() < 0) { |
| 4911 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask , "kmp_set_affinity"), __kmp_msg_null); |
| 4912 | } |
| 4913 | #endif /* KMP_GROUP_AFFINITY */ |
| 4914 | } |
| 4915 | } |
| 4916 | |
| 4917 | th = __kmp_threads[gtid]; |
| 4918 | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL)if (!(th->th.th_affin_mask != __null)) { __kmp_debug_assert ("th->th.th_affin_mask != __null", "openmp/runtime/src/kmp_affinity.cpp" , 4918); }; |
| 4919 | retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE)((kmp_affin_mask_t *)(*mask))->set_system_affinity(0); |
| 4920 | if (retval == 0) { |
| 4921 | KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask))(th->th.th_affin_mask)->copy((kmp_affin_mask_t *)(*mask )); |
| 4922 | } |
| 4923 | |
| 4924 | th->th.th_current_place = KMP_PLACE_UNDEFINED(-2); |
| 4925 | th->th.th_new_place = KMP_PLACE_UNDEFINED(-2); |
| 4926 | th->th.th_first_place = 0; |
| 4927 | th->th.th_last_place = __kmp_affinity.num_masks - 1; |
| 4928 | |
| 4929 | // Turn off 4.0 affinity for the current tread at this parallel level. |
| 4930 | th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; |
| 4931 | |
| 4932 | return retval; |
| 4933 | } |
| 4934 | |
| 4935 | int __kmp_aux_get_affinity(void **mask) { |
| 4936 | int gtid; |
| 4937 | int retval; |
| 4938 | #if KMP_OS_WINDOWS0 || KMP_DEBUG1 |
| 4939 | kmp_info_t *th; |
| 4940 | #endif |
| 4941 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 4942 | return -1; |
| 4943 | } |
| 4944 | |
| 4945 | gtid = __kmp_entry_gtid()__kmp_get_global_thread_id_reg(); |
| 4946 | #if KMP_OS_WINDOWS0 || KMP_DEBUG1 |
| 4947 | th = __kmp_threads[gtid]; |
| 4948 | #else |
| 4949 | (void)gtid; // unused variable |
| 4950 | #endif |
| 4951 | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL)if (!(th->th.th_affin_mask != __null)) { __kmp_debug_assert ("th->th.th_affin_mask != __null", "openmp/runtime/src/kmp_affinity.cpp" , 4951); }; |
| 4952 | |
| 4953 | KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask ); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4954 | 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask ); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4955 | char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask ); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4956 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask ); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4957 | th->th.th_affin_mask);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask ); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4958 | __kmp_printf(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask ); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4959 | "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask ); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4960 | buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask ); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4961 | })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, th->th.th_affin_mask ); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n" , gtid, buf); }; }; |
| 4962 | |
| 4963 | if (__kmp_env_consistency_check) { |
| 4964 | if ((mask == NULL__null) || (*mask == NULL__null)) { |
| 4965 | KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask , "kmp_get_affinity"), __kmp_msg_null); |
| 4966 | } |
| 4967 | } |
| 4968 | |
| 4969 | #if !KMP_OS_WINDOWS0 |
| 4970 | |
| 4971 | retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE)((kmp_affin_mask_t *)(*mask))->get_system_affinity(0); |
| 4972 | KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4973 | 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4974 | char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4975 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4976 | (kmp_affin_mask_t *)(*mask));if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4977 | __kmp_printf(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4978 | "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4979 | buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n" , gtid, buf); }; } |
| 4980 | })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { char buf[1024]; __kmp_affinity_print_mask(buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n" , gtid, buf); }; }; |
| 4981 | return retval; |
| 4982 | |
| 4983 | #else |
| 4984 | (void)retval; |
| 4985 | |
| 4986 | KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask)((kmp_affin_mask_t *)(*mask))->copy(th->th.th_affin_mask ); |
| 4987 | return 0; |
| 4988 | |
| 4989 | #endif /* KMP_OS_WINDOWS */ |
| 4990 | } |
| 4991 | |
| 4992 | int __kmp_aux_get_affinity_max_proc() { |
| 4993 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 4994 | return 0; |
| 4995 | } |
| 4996 | #if KMP_GROUP_AFFINITY0 |
| 4997 | if (__kmp_num_proc_groups > 1) { |
| 4998 | return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT8); |
| 4999 | } |
| 5000 | #endif |
| 5001 | return __kmp_xproc; |
| 5002 | } |
| 5003 | |
| 5004 | int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { |
| 5005 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 5006 | return -1; |
| 5007 | } |
| 5008 | |
| 5009 | KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5010 | 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5011 | int gtid = __kmp_entry_gtid();if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5012 | char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5013 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5014 | (kmp_affin_mask_t *)(*mask));if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5015 | __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5016 | "affinity mask for thread %d = %s\n",if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5017 | proc, gtid, buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5018 | })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; }; |
| 5019 | |
| 5020 | if (__kmp_env_consistency_check) { |
| 5021 | if ((mask == NULL__null) || (*mask == NULL__null)) { |
| 5022 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask , "kmp_set_affinity_mask_proc"), __kmp_msg_null); |
| 5023 | } |
| 5024 | } |
| 5025 | |
| 5026 | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { |
| 5027 | return -1; |
| 5028 | } |
| 5029 | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(proc)) { |
| 5030 | return -2; |
| 5031 | } |
| 5032 | |
| 5033 | KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask))((kmp_affin_mask_t *)(*mask))->set(proc); |
| 5034 | return 0; |
| 5035 | } |
| 5036 | |
| 5037 | int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { |
| 5038 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 5039 | return -1; |
| 5040 | } |
| 5041 | |
| 5042 | KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5043 | 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5044 | int gtid = __kmp_entry_gtid();if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5045 | char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5046 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5047 | (kmp_affin_mask_t *)(*mask));if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5048 | __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5049 | "affinity mask for thread %d = %s\n",if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5050 | proc, gtid, buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5051 | })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; }; |
| 5052 | |
| 5053 | if (__kmp_env_consistency_check) { |
| 5054 | if ((mask == NULL__null) || (*mask == NULL__null)) { |
| 5055 | KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask , "kmp_unset_affinity_mask_proc"), __kmp_msg_null); |
| 5056 | } |
| 5057 | } |
| 5058 | |
| 5059 | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { |
| 5060 | return -1; |
| 5061 | } |
| 5062 | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(proc)) { |
| 5063 | return -2; |
| 5064 | } |
| 5065 | |
| 5066 | KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask))((kmp_affin_mask_t *)(*mask))->clear(proc); |
| 5067 | return 0; |
| 5068 | } |
| 5069 | |
| 5070 | int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { |
| 5071 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0)) { |
| 5072 | return -1; |
| 5073 | } |
| 5074 | |
| 5075 | KA_TRACE(if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5076 | 1000, (""); {if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5077 | int gtid = __kmp_entry_gtid();if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5078 | char buf[KMP_AFFIN_MASK_PRINT_LEN];if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5079 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5080 | (kmp_affin_mask_t *)(*mask));if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5081 | __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5082 | "affinity mask for thread %d = %s\n",if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5083 | proc, gtid, buf);if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; } |
| 5084 | })if (kmp_a_debug >= 1000) { __kmp_debug_printf (""); { int gtid = __kmp_get_global_thread_id_reg(); char buf[1024]; __kmp_affinity_print_mask (buf, 1024, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n" , proc, gtid, buf); }; }; |
| 5085 | |
| 5086 | if (__kmp_env_consistency_check) { |
| 5087 | if ((mask == NULL__null) || (*mask == NULL__null)) { |
| 5088 | KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc")__kmp_fatal(__kmp_msg_format(kmp_i18n_msg_AffinityInvalidMask , "kmp_get_affinity_mask_proc"), __kmp_msg_null); |
| 5089 | } |
| 5090 | } |
| 5091 | |
| 5092 | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { |
| 5093 | return -1; |
| 5094 | } |
| 5095 | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)(__kmp_affin_fullMask)->is_set(proc)) { |
| 5096 | return 0; |
| 5097 | } |
| 5098 | |
| 5099 | return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))((kmp_affin_mask_t *)(*mask))->is_set(proc); |
| 5100 | } |
| 5101 | |
| 5102 | // Dynamic affinity settings - Affinity balanced |
| 5103 | void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { |
| 5104 | KMP_DEBUG_ASSERT(th)if (!(th)) { __kmp_debug_assert("th", "openmp/runtime/src/kmp_affinity.cpp" , 5104); }; |
| 5105 | bool fine_gran = true; |
| 5106 | int tid = th->th.th_info.ds.ds_tid; |
| 5107 | const char *env_var = "KMP_AFFINITY"; |
| 5108 | |
| 5109 | // Do not perform balanced affinity for the hidden helper threads |
| 5110 | if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))((__kmp_gtid_from_thread(th)) >= 1 && (__kmp_gtid_from_thread (th)) <= __kmp_hidden_helper_threads_num)) |
| 5111 | return; |
| 5112 | |
| 5113 | switch (__kmp_affinity.gran) { |
| 5114 | case KMP_HW_THREAD: |
| 5115 | break; |
| 5116 | case KMP_HW_CORE: |
| 5117 | if (__kmp_nThreadsPerCore > 1) { |
| 5118 | fine_gran = false; |
| 5119 | } |
| 5120 | break; |
| 5121 | case KMP_HW_SOCKET: |
| 5122 | if (nCoresPerPkg > 1) { |
| 5123 | fine_gran = false; |
| 5124 | } |
| 5125 | break; |
| 5126 | default: |
| 5127 | fine_gran = false; |
| 5128 | } |
| 5129 | |
| 5130 | if (__kmp_topology->is_uniform()) { |
| 5131 | int coreID; |
| 5132 | int threadID; |
| 5133 | // Number of hyper threads per core in HT machine |
| 5134 | int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; |
| 5135 | // Number of cores |
| 5136 | int ncores = __kmp_ncores; |
| 5137 | if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { |
| 5138 | __kmp_nth_per_core = __kmp_avail_proc / nPackages; |
| 5139 | ncores = nPackages; |
| 5140 | } |
| 5141 | // How many threads will be bound to each core |
| 5142 | int chunk = nthreads / ncores; |
| 5143 | // How many cores will have an additional thread bound to it - "big cores" |
| 5144 | int big_cores = nthreads % ncores; |
| 5145 | // Number of threads on the big cores |
| 5146 | int big_nth = (chunk + 1) * big_cores; |
| 5147 | if (tid < big_nth) { |
| 5148 | coreID = tid / (chunk + 1); |
| 5149 | threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; |
| 5150 | } else { // tid >= big_nth |
| 5151 | coreID = (tid - big_cores) / chunk; |
| 5152 | threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; |
| 5153 | } |
| 5154 | KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),if (!((__kmp_affin_mask_size > 0))) { __kmp_debug_assert(( "Illegal set affinity operation when not capable"), "openmp/runtime/src/kmp_affinity.cpp" , 5155); } |
| 5155 | "Illegal set affinity operation when not capable")if (!((__kmp_affin_mask_size > 0))) { __kmp_debug_assert(( "Illegal set affinity operation when not capable"), "openmp/runtime/src/kmp_affinity.cpp" , 5155); }; |
| 5156 | |
| 5157 | kmp_affin_mask_t *mask = th->th.th_affin_mask; |
| 5158 | KMP_CPU_ZERO(mask)(mask)->zero(); |
| 5159 | |
| 5160 | if (fine_gran) { |
| 5161 | int osID = |
| 5162 | __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; |
| 5163 | KMP_CPU_SET(osID, mask)(mask)->set(osID); |
| 5164 | } else { |
| 5165 | for (int i = 0; i < __kmp_nth_per_core; i++) { |
| 5166 | int osID; |
| 5167 | osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; |
| 5168 | KMP_CPU_SET(osID, mask)(mask)->set(osID); |
| 5169 | } |
| 5170 | } |
| 5171 | if (__kmp_affinity.flags.verbose) { |
| 5172 | char buf[KMP_AFFIN_MASK_PRINT_LEN1024]; |
| 5173 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024, mask); |
| 5174 | KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet , env_var, (kmp_int32)getpid(), syscall(186), tid, buf), __kmp_msg_null ) |
| 5175 | tid, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet , env_var, (kmp_int32)getpid(), syscall(186), tid, buf), __kmp_msg_null ); |
| 5176 | } |
| 5177 | __kmp_affinity_get_thread_topology_info(th); |
| 5178 | __kmp_set_system_affinity(mask, TRUE)(mask)->set_system_affinity((!0)); |
| 5179 | } else { // Non-uniform topology |
| 5180 | |
| 5181 | kmp_affin_mask_t *mask = th->th.th_affin_mask; |
| 5182 | KMP_CPU_ZERO(mask)(mask)->zero(); |
| 5183 | |
| 5184 | int core_level = |
| 5185 | __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); |
| 5186 | int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, |
| 5187 | __kmp_aff_depth - 1, core_level); |
| 5188 | int nth_per_core = __kmp_affinity_max_proc_per_core( |
| 5189 | __kmp_avail_proc, __kmp_aff_depth - 1, core_level); |
| 5190 | |
| 5191 | // For performance gain consider the special case nthreads == |
| 5192 | // __kmp_avail_proc |
| 5193 | if (nthreads == __kmp_avail_proc) { |
| 5194 | if (fine_gran) { |
| 5195 | int osID = __kmp_topology->at(tid).os_id; |
| 5196 | KMP_CPU_SET(osID, mask)(mask)->set(osID); |
| 5197 | } else { |
| 5198 | int core = |
| 5199 | __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); |
| 5200 | for (int i = 0; i < __kmp_avail_proc; i++) { |
| 5201 | int osID = __kmp_topology->at(i).os_id; |
| 5202 | if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == |
| 5203 | core) { |
| 5204 | KMP_CPU_SET(osID, mask)(mask)->set(osID); |
| 5205 | } |
| 5206 | } |
| 5207 | } |
| 5208 | } else if (nthreads <= ncores) { |
| 5209 | |
| 5210 | int core = 0; |
| 5211 | for (int i = 0; i < ncores; i++) { |
| 5212 | // Check if this core from procarr[] is in the mask |
| 5213 | int in_mask = 0; |
| 5214 | for (int j = 0; j < nth_per_core; j++) { |
| 5215 | if (procarr[i * nth_per_core + j] != -1) { |
| 5216 | in_mask = 1; |
| 5217 | break; |
| 5218 | } |
| 5219 | } |
| 5220 | if (in_mask) { |
| 5221 | if (tid == core) { |
| 5222 | for (int j = 0; j < nth_per_core; j++) { |
| 5223 | int osID = procarr[i * nth_per_core + j]; |
| 5224 | if (osID != -1) { |
| 5225 | KMP_CPU_SET(osID, mask)(mask)->set(osID); |
| 5226 | // For fine granularity it is enough to set the first available |
| 5227 | // osID for this core |
| 5228 | if (fine_gran) { |
| 5229 | break; |
| 5230 | } |
| 5231 | } |
| 5232 | } |
| 5233 | break; |
| 5234 | } else { |
| 5235 | core++; |
| 5236 | } |
| 5237 | } |
| 5238 | } |
| 5239 | } else { // nthreads > ncores |
| 5240 | // Array to save the number of processors at each core |
| 5241 | int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores)__builtin_alloca (sizeof(int) * ncores); |
| 5242 | // Array to save the number of cores with "x" available processors; |
| 5243 | int *ncores_with_x_procs = |
| 5244 | (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1))__builtin_alloca (sizeof(int) * (nth_per_core + 1)); |
| 5245 | // Array to save the number of cores with # procs from x to nth_per_core |
| 5246 | int *ncores_with_x_to_max_procs = |
| 5247 | (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1))__builtin_alloca (sizeof(int) * (nth_per_core + 1)); |
| 5248 | |
| 5249 | for (int i = 0; i <= nth_per_core; i++) { |
| 5250 | ncores_with_x_procs[i] = 0; |
| 5251 | ncores_with_x_to_max_procs[i] = 0; |
| 5252 | } |
| 5253 | |
| 5254 | for (int i = 0; i < ncores; i++) { |
| 5255 | int cnt = 0; |
| 5256 | for (int j = 0; j < nth_per_core; j++) { |
| 5257 | if (procarr[i * nth_per_core + j] != -1) { |
| 5258 | cnt++; |
| 5259 | } |
| 5260 | } |
| 5261 | nproc_at_core[i] = cnt; |
| 5262 | ncores_with_x_procs[cnt]++; |
| 5263 | } |
| 5264 | |
| 5265 | for (int i = 0; i <= nth_per_core; i++) { |
| 5266 | for (int j = i; j <= nth_per_core; j++) { |
| 5267 | ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; |
| 5268 | } |
| 5269 | } |
| 5270 | |
| 5271 | // Max number of processors |
| 5272 | int nproc = nth_per_core * ncores; |
| 5273 | // An array to keep number of threads per each context |
| 5274 | int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc)___kmp_allocate((sizeof(int) * nproc), "openmp/runtime/src/kmp_affinity.cpp" , 5274); |
| 5275 | for (int i = 0; i < nproc; i++) { |
| 5276 | newarr[i] = 0; |
| 5277 | } |
| 5278 | |
| 5279 | int nth = nthreads; |
| 5280 | int flag = 0; |
| 5281 | while (nth > 0) { |
| 5282 | for (int j = 1; j <= nth_per_core; j++) { |
| 5283 | int cnt = ncores_with_x_to_max_procs[j]; |
| 5284 | for (int i = 0; i < ncores; i++) { |
| 5285 | // Skip the core with 0 processors |
| 5286 | if (nproc_at_core[i] == 0) { |
| 5287 | continue; |
| 5288 | } |
| 5289 | for (int k = 0; k < nth_per_core; k++) { |
| 5290 | if (procarr[i * nth_per_core + k] != -1) { |
| 5291 | if (newarr[i * nth_per_core + k] == 0) { |
| 5292 | newarr[i * nth_per_core + k] = 1; |
| 5293 | cnt--; |
| 5294 | nth--; |
| 5295 | break; |
| 5296 | } else { |
| 5297 | if (flag != 0) { |
| 5298 | newarr[i * nth_per_core + k]++; |
| 5299 | cnt--; |
| 5300 | nth--; |
| 5301 | break; |
| 5302 | } |
| 5303 | } |
| 5304 | } |
| 5305 | } |
| 5306 | if (cnt == 0 || nth == 0) { |
| 5307 | break; |
| 5308 | } |
| 5309 | } |
| 5310 | if (nth == 0) { |
| 5311 | break; |
| 5312 | } |
| 5313 | } |
| 5314 | flag = 1; |
| 5315 | } |
| 5316 | int sum = 0; |
| 5317 | for (int i = 0; i < nproc; i++) { |
| 5318 | sum += newarr[i]; |
| 5319 | if (sum > tid) { |
| 5320 | if (fine_gran) { |
| 5321 | int osID = procarr[i]; |
| 5322 | KMP_CPU_SET(osID, mask)(mask)->set(osID); |
| 5323 | } else { |
| 5324 | int coreID = i / nth_per_core; |
| 5325 | for (int ii = 0; ii < nth_per_core; ii++) { |
| 5326 | int osID = procarr[coreID * nth_per_core + ii]; |
| 5327 | if (osID != -1) { |
| 5328 | KMP_CPU_SET(osID, mask)(mask)->set(osID); |
| 5329 | } |
| 5330 | } |
| 5331 | } |
| 5332 | break; |
| 5333 | } |
| 5334 | } |
| 5335 | __kmp_free(newarr)___kmp_free((newarr), "openmp/runtime/src/kmp_affinity.cpp", 5335 ); |
| 5336 | } |
| 5337 | |
| 5338 | if (__kmp_affinity.flags.verbose) { |
| 5339 | char buf[KMP_AFFIN_MASK_PRINT_LEN1024]; |
| 5340 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN1024, mask); |
| 5341 | KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet , env_var, (kmp_int32)getpid(), syscall(186), tid, buf), __kmp_msg_null ) |
| 5342 | tid, buf)__kmp_msg(kmp_ms_inform, __kmp_msg_format(kmp_i18n_msg_BoundToOSProcSet , env_var, (kmp_int32)getpid(), syscall(186), tid, buf), __kmp_msg_null ); |
| 5343 | } |
| 5344 | __kmp_affinity_get_thread_topology_info(th); |
| 5345 | __kmp_set_system_affinity(mask, TRUE)(mask)->set_system_affinity((!0)); |
| 5346 | } |
| 5347 | } |
| 5348 | |
| 5349 | #if KMP_OS_LINUX1 || KMP_OS_FREEBSD0 |
| 5350 | // We don't need this entry for Windows because |
| 5351 | // there is GetProcessAffinityMask() api |
| 5352 | // |
| 5353 | // The intended usage is indicated by these steps: |
| 5354 | // 1) The user gets the current affinity mask |
| 5355 | // 2) Then sets the affinity by calling this function |
| 5356 | // 3) Error check the return value |
| 5357 | // 4) Use non-OpenMP parallelization |
| 5358 | // 5) Reset the affinity to what was stored in step 1) |
| 5359 | #ifdef __cplusplus201703L |
| 5360 | extern "C" |
| 5361 | #endif |
| 5362 | int |
| 5363 | kmp_set_thread_affinity_mask_initial() |
| 5364 | // the function returns 0 on success, |
| 5365 | // -1 if we cannot bind thread |
| 5366 | // >0 (errno) if an error happened during binding |
| 5367 | { |
| 5368 | int gtid = __kmp_get_gtid()__kmp_get_global_thread_id(); |
| 5369 | if (gtid < 0) { |
| 5370 | // Do not touch non-omp threads |
| 5371 | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: " "non-omp thread, returning\n"); } |
| 5372 | "non-omp thread, returning\n"))if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: " "non-omp thread, returning\n"); }; |
| 5373 | return -1; |
| 5374 | } |
| 5375 | if (!KMP_AFFINITY_CAPABLE()(__kmp_affin_mask_size > 0) || !__kmp_init_middle) { |
| 5376 | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: " "affinity not initialized, returning\n"); } |
| 5377 | "affinity not initialized, returning\n"))if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: " "affinity not initialized, returning\n"); }; |
| 5378 | return -1; |
| 5379 | } |
| 5380 | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: " "set full mask for thread %d\n", gtid); } |
| 5381 | "set full mask for thread %d\n",if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: " "set full mask for thread %d\n", gtid); } |
| 5382 | gtid))if (kmp_a_debug >= 30) { __kmp_debug_printf ("kmp_set_thread_affinity_mask_initial: " "set full mask for thread %d\n", gtid); }; |
| 5383 | KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL)if (!(__kmp_affin_fullMask != __null)) { __kmp_debug_assert("__kmp_affin_fullMask != __null" , "openmp/runtime/src/kmp_affinity.cpp", 5383); }; |
| 5384 | return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE)(__kmp_affin_fullMask)->set_system_affinity(0); |
| 5385 | } |
| 5386 | #endif |
| 5387 | |
| 5388 | #endif // KMP_AFFINITY_SUPPORTED |