| File: | build/source/llvm/tools/llvm-objdump/llvm-objdump.cpp |
| Warning: | line 1737, column 9 Value stored to 'Index' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This program is a utility that works like binutils "objdump", that is, it |
| 10 | // dumps out a plethora of information about an object file depending on the |
| 11 | // flags. |
| 12 | // |
| 13 | // The flags and output of this program should be near identical to those of |
| 14 | // binutils objdump. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "llvm-objdump.h" |
| 19 | #include "COFFDump.h" |
| 20 | #include "ELFDump.h" |
| 21 | #include "MachODump.h" |
| 22 | #include "ObjdumpOptID.h" |
| 23 | #include "OffloadDump.h" |
| 24 | #include "SourcePrinter.h" |
| 25 | #include "WasmDump.h" |
| 26 | #include "XCOFFDump.h" |
| 27 | #include "llvm/ADT/IndexedMap.h" |
| 28 | #include "llvm/ADT/STLExtras.h" |
| 29 | #include "llvm/ADT/SetOperations.h" |
| 30 | #include "llvm/ADT/SmallSet.h" |
| 31 | #include "llvm/ADT/StringExtras.h" |
| 32 | #include "llvm/ADT/StringSet.h" |
| 33 | #include "llvm/ADT/Twine.h" |
| 34 | #include "llvm/DebugInfo/DWARF/DWARFContext.h" |
| 35 | #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" |
| 36 | #include "llvm/DebugInfo/Symbolize/Symbolize.h" |
| 37 | #include "llvm/Debuginfod/BuildIDFetcher.h" |
| 38 | #include "llvm/Debuginfod/Debuginfod.h" |
| 39 | #include "llvm/Debuginfod/HTTPClient.h" |
| 40 | #include "llvm/Demangle/Demangle.h" |
| 41 | #include "llvm/MC/MCAsmInfo.h" |
| 42 | #include "llvm/MC/MCContext.h" |
| 43 | #include "llvm/MC/MCDisassembler/MCDisassembler.h" |
| 44 | #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" |
| 45 | #include "llvm/MC/MCInst.h" |
| 46 | #include "llvm/MC/MCInstPrinter.h" |
| 47 | #include "llvm/MC/MCInstrAnalysis.h" |
| 48 | #include "llvm/MC/MCInstrInfo.h" |
| 49 | #include "llvm/MC/MCObjectFileInfo.h" |
| 50 | #include "llvm/MC/MCRegisterInfo.h" |
| 51 | #include "llvm/MC/MCSubtargetInfo.h" |
| 52 | #include "llvm/MC/MCTargetOptions.h" |
| 53 | #include "llvm/MC/TargetRegistry.h" |
| 54 | #include "llvm/Object/Archive.h" |
| 55 | #include "llvm/Object/BuildID.h" |
| 56 | #include "llvm/Object/COFF.h" |
| 57 | #include "llvm/Object/COFFImportFile.h" |
| 58 | #include "llvm/Object/ELFObjectFile.h" |
| 59 | #include "llvm/Object/ELFTypes.h" |
| 60 | #include "llvm/Object/FaultMapParser.h" |
| 61 | #include "llvm/Object/MachO.h" |
| 62 | #include "llvm/Object/MachOUniversal.h" |
| 63 | #include "llvm/Object/ObjectFile.h" |
| 64 | #include "llvm/Object/OffloadBinary.h" |
| 65 | #include "llvm/Object/Wasm.h" |
| 66 | #include "llvm/Option/Arg.h" |
| 67 | #include "llvm/Option/ArgList.h" |
| 68 | #include "llvm/Option/Option.h" |
| 69 | #include "llvm/Support/Casting.h" |
| 70 | #include "llvm/Support/Debug.h" |
| 71 | #include "llvm/Support/Errc.h" |
| 72 | #include "llvm/Support/FileSystem.h" |
| 73 | #include "llvm/Support/Format.h" |
| 74 | #include "llvm/Support/FormatVariadic.h" |
| 75 | #include "llvm/Support/GraphWriter.h" |
| 76 | #include "llvm/Support/InitLLVM.h" |
| 77 | #include "llvm/Support/MemoryBuffer.h" |
| 78 | #include "llvm/Support/SourceMgr.h" |
| 79 | #include "llvm/Support/StringSaver.h" |
| 80 | #include "llvm/Support/TargetSelect.h" |
| 81 | #include "llvm/Support/WithColor.h" |
| 82 | #include "llvm/Support/raw_ostream.h" |
| 83 | #include "llvm/TargetParser/Host.h" |
| 84 | #include "llvm/TargetParser/Triple.h" |
| 85 | #include <algorithm> |
| 86 | #include <cctype> |
| 87 | #include <cstring> |
| 88 | #include <optional> |
| 89 | #include <system_error> |
| 90 | #include <unordered_map> |
| 91 | #include <utility> |
| 92 | |
| 93 | using namespace llvm; |
| 94 | using namespace llvm::object; |
| 95 | using namespace llvm::objdump; |
| 96 | using namespace llvm::opt; |
| 97 | |
| 98 | namespace { |
| 99 | |
| 100 | class CommonOptTable : public opt::GenericOptTable { |
| 101 | public: |
| 102 | CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, |
| 103 | const char *Description) |
| 104 | : opt::GenericOptTable(OptionInfos), Usage(Usage), |
| 105 | Description(Description) { |
| 106 | setGroupedShortOptions(true); |
| 107 | } |
| 108 | |
| 109 | void printHelp(StringRef Argv0, bool ShowHidden = false) const { |
| 110 | Argv0 = sys::path::filename(Argv0); |
| 111 | opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), |
| 112 | Description, ShowHidden, ShowHidden); |
| 113 | // TODO Replace this with OptTable API once it adds extrahelp support. |
| 114 | outs() << "\nPass @FILE as argument to read options from FILE.\n"; |
| 115 | } |
| 116 | |
| 117 | private: |
| 118 | const char *Usage; |
| 119 | const char *Description; |
| 120 | }; |
| 121 | |
| 122 | // ObjdumpOptID is in ObjdumpOptID.h |
| 123 | namespace objdump_opt { |
| 124 | #define PREFIX(NAME, VALUE) \ |
| 125 | static constexpr StringLiteral NAME##_init[] = VALUE; \ |
| 126 | static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ |
| 127 | std::size(NAME##_init) - 1); |
| 128 | #include "ObjdumpOpts.inc" |
| 129 | #undef PREFIX |
| 130 | |
| 131 | static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { |
| 132 | #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ |
| 133 | HELPTEXT, METAVAR, VALUES) \ |
| 134 | {PREFIX, NAME, HELPTEXT, \ |
| 135 | METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \ |
| 136 | PARAM, FLAGS, OBJDUMP_##GROUP, \ |
| 137 | OBJDUMP_##ALIAS, ALIASARGS, VALUES}, |
| 138 | #include "ObjdumpOpts.inc" |
| 139 | #undef OPTION |
| 140 | }; |
| 141 | } // namespace objdump_opt |
| 142 | |
| 143 | class ObjdumpOptTable : public CommonOptTable { |
| 144 | public: |
| 145 | ObjdumpOptTable() |
| 146 | : CommonOptTable(objdump_opt::ObjdumpInfoTable, |
| 147 | " [options] <input object files>", |
| 148 | "llvm object file dumper") {} |
| 149 | }; |
| 150 | |
| 151 | enum OtoolOptID { |
| 152 | OTOOL_INVALID = 0, // This is not an option ID. |
| 153 | #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ |
| 154 | HELPTEXT, METAVAR, VALUES) \ |
| 155 | OTOOL_##ID, |
| 156 | #include "OtoolOpts.inc" |
| 157 | #undef OPTION |
| 158 | }; |
| 159 | |
| 160 | namespace otool { |
| 161 | #define PREFIX(NAME, VALUE) \ |
| 162 | static constexpr StringLiteral NAME##_init[] = VALUE; \ |
| 163 | static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ |
| 164 | std::size(NAME##_init) - 1); |
| 165 | #include "OtoolOpts.inc" |
| 166 | #undef PREFIX |
| 167 | |
| 168 | static constexpr opt::OptTable::Info OtoolInfoTable[] = { |
| 169 | #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ |
| 170 | HELPTEXT, METAVAR, VALUES) \ |
| 171 | {PREFIX, NAME, HELPTEXT, \ |
| 172 | METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \ |
| 173 | PARAM, FLAGS, OTOOL_##GROUP, \ |
| 174 | OTOOL_##ALIAS, ALIASARGS, VALUES}, |
| 175 | #include "OtoolOpts.inc" |
| 176 | #undef OPTION |
| 177 | }; |
| 178 | } // namespace otool |
| 179 | |
| 180 | class OtoolOptTable : public CommonOptTable { |
| 181 | public: |
| 182 | OtoolOptTable() |
| 183 | : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", |
| 184 | "Mach-O object file displaying tool") {} |
| 185 | }; |
| 186 | |
| 187 | } // namespace |
| 188 | |
| 189 | #define DEBUG_TYPE"objdump" "objdump" |
| 190 | |
| 191 | static uint64_t AdjustVMA; |
| 192 | static bool AllHeaders; |
| 193 | static std::string ArchName; |
| 194 | bool objdump::ArchiveHeaders; |
| 195 | bool objdump::Demangle; |
| 196 | bool objdump::Disassemble; |
| 197 | bool objdump::DisassembleAll; |
| 198 | bool objdump::SymbolDescription; |
| 199 | static std::vector<std::string> DisassembleSymbols; |
| 200 | static bool DisassembleZeroes; |
| 201 | static std::vector<std::string> DisassemblerOptions; |
| 202 | DIDumpType objdump::DwarfDumpType; |
| 203 | static bool DynamicRelocations; |
| 204 | static bool FaultMapSection; |
| 205 | static bool FileHeaders; |
| 206 | bool objdump::SectionContents; |
| 207 | static std::vector<std::string> InputFilenames; |
| 208 | bool objdump::PrintLines; |
| 209 | static bool MachOOpt; |
| 210 | std::string objdump::MCPU; |
| 211 | std::vector<std::string> objdump::MAttrs; |
| 212 | bool objdump::ShowRawInsn; |
| 213 | bool objdump::LeadingAddr; |
| 214 | static bool Offloading; |
| 215 | static bool RawClangAST; |
| 216 | bool objdump::Relocations; |
| 217 | bool objdump::PrintImmHex; |
| 218 | bool objdump::PrivateHeaders; |
| 219 | std::vector<std::string> objdump::FilterSections; |
| 220 | bool objdump::SectionHeaders; |
| 221 | static bool ShowAllSymbols; |
| 222 | static bool ShowLMA; |
| 223 | bool objdump::PrintSource; |
| 224 | |
| 225 | static uint64_t StartAddress; |
| 226 | static bool HasStartAddressFlag; |
| 227 | static uint64_t StopAddress = UINT64_MAX(18446744073709551615UL); |
| 228 | static bool HasStopAddressFlag; |
| 229 | |
| 230 | bool objdump::SymbolTable; |
| 231 | static bool SymbolizeOperands; |
| 232 | static bool DynamicSymbolTable; |
| 233 | std::string objdump::TripleName; |
| 234 | bool objdump::UnwindInfo; |
| 235 | static bool Wide; |
| 236 | std::string objdump::Prefix; |
| 237 | uint32_t objdump::PrefixStrip; |
| 238 | |
| 239 | DebugVarsFormat objdump::DbgVariables = DVDisabled; |
| 240 | |
| 241 | int objdump::DbgIndent = 52; |
| 242 | |
| 243 | static StringSet<> DisasmSymbolSet; |
| 244 | StringSet<> objdump::FoundSectionSet; |
| 245 | static StringRef ToolName; |
| 246 | |
| 247 | std::unique_ptr<BuildIDFetcher> BIDFetcher; |
| 248 | ExitOnError ExitOnErr; |
| 249 | |
| 250 | namespace { |
| 251 | struct FilterResult { |
| 252 | // True if the section should not be skipped. |
| 253 | bool Keep; |
| 254 | |
| 255 | // True if the index counter should be incremented, even if the section should |
| 256 | // be skipped. For example, sections may be skipped if they are not included |
| 257 | // in the --section flag, but we still want those to count toward the section |
| 258 | // count. |
| 259 | bool IncrementIndex; |
| 260 | }; |
| 261 | } // namespace |
| 262 | |
| 263 | static FilterResult checkSectionFilter(object::SectionRef S) { |
| 264 | if (FilterSections.empty()) |
| 265 | return {/*Keep=*/true, /*IncrementIndex=*/true}; |
| 266 | |
| 267 | Expected<StringRef> SecNameOrErr = S.getName(); |
| 268 | if (!SecNameOrErr) { |
| 269 | consumeError(SecNameOrErr.takeError()); |
| 270 | return {/*Keep=*/false, /*IncrementIndex=*/false}; |
| 271 | } |
| 272 | StringRef SecName = *SecNameOrErr; |
| 273 | |
| 274 | // StringSet does not allow empty key so avoid adding sections with |
| 275 | // no name (such as the section with index 0) here. |
| 276 | if (!SecName.empty()) |
| 277 | FoundSectionSet.insert(SecName); |
| 278 | |
| 279 | // Only show the section if it's in the FilterSections list, but always |
| 280 | // increment so the indexing is stable. |
| 281 | return {/*Keep=*/is_contained(FilterSections, SecName), |
| 282 | /*IncrementIndex=*/true}; |
| 283 | } |
| 284 | |
| 285 | SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, |
| 286 | uint64_t *Idx) { |
| 287 | // Start at UINT64_MAX so that the first index returned after an increment is |
| 288 | // zero (after the unsigned wrap). |
| 289 | if (Idx) |
| 290 | *Idx = UINT64_MAX(18446744073709551615UL); |
| 291 | return SectionFilter( |
| 292 | [Idx](object::SectionRef S) { |
| 293 | FilterResult Result = checkSectionFilter(S); |
| 294 | if (Idx != nullptr && Result.IncrementIndex) |
| 295 | *Idx += 1; |
| 296 | return Result.Keep; |
| 297 | }, |
| 298 | O); |
| 299 | } |
| 300 | |
| 301 | std::string objdump::getFileNameForError(const object::Archive::Child &C, |
| 302 | unsigned Index) { |
| 303 | Expected<StringRef> NameOrErr = C.getName(); |
| 304 | if (NameOrErr) |
| 305 | return std::string(NameOrErr.get()); |
| 306 | // If we have an error getting the name then we print the index of the archive |
| 307 | // member. Since we are already in an error state, we just ignore this error. |
| 308 | consumeError(NameOrErr.takeError()); |
| 309 | return "<file index: " + std::to_string(Index) + ">"; |
| 310 | } |
| 311 | |
| 312 | void objdump::reportWarning(const Twine &Message, StringRef File) { |
| 313 | // Output order between errs() and outs() matters especially for archive |
| 314 | // files where the output is per member object. |
| 315 | outs().flush(); |
| 316 | WithColor::warning(errs(), ToolName) |
| 317 | << "'" << File << "': " << Message << "\n"; |
| 318 | } |
| 319 | |
| 320 | [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { |
| 321 | outs().flush(); |
| 322 | WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; |
| 323 | exit(1); |
| 324 | } |
| 325 | |
| 326 | [[noreturn]] void objdump::reportError(Error E, StringRef FileName, |
| 327 | StringRef ArchiveName, |
| 328 | StringRef ArchitectureName) { |
| 329 | assert(E)(static_cast <bool> (E) ? void (0) : __assert_fail ("E" , "llvm/tools/llvm-objdump/llvm-objdump.cpp", 329, __extension__ __PRETTY_FUNCTION__)); |
| 330 | outs().flush(); |
| 331 | WithColor::error(errs(), ToolName); |
| 332 | if (ArchiveName != "") |
| 333 | errs() << ArchiveName << "(" << FileName << ")"; |
| 334 | else |
| 335 | errs() << "'" << FileName << "'"; |
| 336 | if (!ArchitectureName.empty()) |
| 337 | errs() << " (for architecture " << ArchitectureName << ")"; |
| 338 | errs() << ": "; |
| 339 | logAllUnhandledErrors(std::move(E), errs()); |
| 340 | exit(1); |
| 341 | } |
| 342 | |
| 343 | static void reportCmdLineWarning(const Twine &Message) { |
| 344 | WithColor::warning(errs(), ToolName) << Message << "\n"; |
| 345 | } |
| 346 | |
| 347 | [[noreturn]] static void reportCmdLineError(const Twine &Message) { |
| 348 | WithColor::error(errs(), ToolName) << Message << "\n"; |
| 349 | exit(1); |
| 350 | } |
| 351 | |
| 352 | static void warnOnNoMatchForSections() { |
| 353 | SetVector<StringRef> MissingSections; |
| 354 | for (StringRef S : FilterSections) { |
| 355 | if (FoundSectionSet.count(S)) |
| 356 | return; |
| 357 | // User may specify a unnamed section. Don't warn for it. |
| 358 | if (!S.empty()) |
| 359 | MissingSections.insert(S); |
| 360 | } |
| 361 | |
| 362 | // Warn only if no section in FilterSections is matched. |
| 363 | for (StringRef S : MissingSections) |
| 364 | reportCmdLineWarning("section '" + S + |
| 365 | "' mentioned in a -j/--section option, but not " |
| 366 | "found in any input file"); |
| 367 | } |
| 368 | |
| 369 | static const Target *getTarget(const ObjectFile *Obj) { |
| 370 | // Figure out the target triple. |
| 371 | Triple TheTriple("unknown-unknown-unknown"); |
| 372 | if (TripleName.empty()) { |
| 373 | TheTriple = Obj->makeTriple(); |
| 374 | } else { |
| 375 | TheTriple.setTriple(Triple::normalize(TripleName)); |
| 376 | auto Arch = Obj->getArch(); |
| 377 | if (Arch == Triple::arm || Arch == Triple::armeb) |
| 378 | Obj->setARMSubArch(TheTriple); |
| 379 | } |
| 380 | |
| 381 | // Get the target specific parser. |
| 382 | std::string Error; |
| 383 | const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, |
| 384 | Error); |
| 385 | if (!TheTarget) |
| 386 | reportError(Obj->getFileName(), "can't find target: " + Error); |
| 387 | |
| 388 | // Update the triple name and return the found target. |
| 389 | TripleName = TheTriple.getTriple(); |
| 390 | return TheTarget; |
| 391 | } |
| 392 | |
| 393 | bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { |
| 394 | return A.getOffset() < B.getOffset(); |
| 395 | } |
| 396 | |
| 397 | static Error getRelocationValueString(const RelocationRef &Rel, |
| 398 | SmallVectorImpl<char> &Result) { |
| 399 | const ObjectFile *Obj = Rel.getObject(); |
| 400 | if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) |
| 401 | return getELFRelocationValueString(ELF, Rel, Result); |
| 402 | if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) |
| 403 | return getCOFFRelocationValueString(COFF, Rel, Result); |
| 404 | if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) |
| 405 | return getWasmRelocationValueString(Wasm, Rel, Result); |
| 406 | if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) |
| 407 | return getMachORelocationValueString(MachO, Rel, Result); |
| 408 | if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) |
| 409 | return getXCOFFRelocationValueString(*XCOFF, Rel, Result); |
| 410 | llvm_unreachable("unknown object file format")::llvm::llvm_unreachable_internal("unknown object file format" , "llvm/tools/llvm-objdump/llvm-objdump.cpp", 410); |
| 411 | } |
| 412 | |
| 413 | /// Indicates whether this relocation should hidden when listing |
| 414 | /// relocations, usually because it is the trailing part of a multipart |
| 415 | /// relocation that will be printed as part of the leading relocation. |
| 416 | static bool getHidden(RelocationRef RelRef) { |
| 417 | auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); |
| 418 | if (!MachO) |
| 419 | return false; |
| 420 | |
| 421 | unsigned Arch = MachO->getArch(); |
| 422 | DataRefImpl Rel = RelRef.getRawDataRefImpl(); |
| 423 | uint64_t Type = MachO->getRelocationType(Rel); |
| 424 | |
| 425 | // On arches that use the generic relocations, GENERIC_RELOC_PAIR |
| 426 | // is always hidden. |
| 427 | if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) |
| 428 | return Type == MachO::GENERIC_RELOC_PAIR; |
| 429 | |
| 430 | if (Arch == Triple::x86_64) { |
| 431 | // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows |
| 432 | // an X86_64_RELOC_SUBTRACTOR. |
| 433 | if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { |
| 434 | DataRefImpl RelPrev = Rel; |
| 435 | RelPrev.d.a--; |
| 436 | uint64_t PrevType = MachO->getRelocationType(RelPrev); |
| 437 | if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) |
| 438 | return true; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | return false; |
| 443 | } |
| 444 | |
| 445 | namespace { |
| 446 | |
| 447 | /// Get the column at which we want to start printing the instruction |
| 448 | /// disassembly, taking into account anything which appears to the left of it. |
| 449 | unsigned getInstStartColumn(const MCSubtargetInfo &STI) { |
| 450 | return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; |
| 451 | } |
| 452 | |
| 453 | static bool isAArch64Elf(const ObjectFile &Obj) { |
| 454 | const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); |
| 455 | return Elf && Elf->getEMachine() == ELF::EM_AARCH64; |
| 456 | } |
| 457 | |
| 458 | static bool isArmElf(const ObjectFile &Obj) { |
| 459 | const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); |
| 460 | return Elf && Elf->getEMachine() == ELF::EM_ARM; |
| 461 | } |
| 462 | |
| 463 | static bool isCSKYElf(const ObjectFile &Obj) { |
| 464 | const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); |
| 465 | return Elf && Elf->getEMachine() == ELF::EM_CSKY; |
| 466 | } |
| 467 | |
| 468 | static bool hasMappingSymbols(const ObjectFile &Obj) { |
| 469 | return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; |
| 470 | } |
| 471 | |
| 472 | static bool isMappingSymbol(const SymbolInfoTy &Sym) { |
| 473 | return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") || |
| 474 | Sym.Name.startswith("$a") || Sym.Name.startswith("$t"); |
| 475 | } |
| 476 | |
| 477 | static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, |
| 478 | const RelocationRef &Rel, uint64_t Address, |
| 479 | bool Is64Bits) { |
| 480 | StringRef Fmt = Is64Bits ? "%016" PRIx64"l" "x" ": " : "%08" PRIx64"l" "x" ": "; |
| 481 | SmallString<16> Name; |
| 482 | SmallString<32> Val; |
| 483 | Rel.getTypeName(Name); |
| 484 | if (Error E = getRelocationValueString(Rel, Val)) |
| 485 | reportError(std::move(E), FileName); |
| 486 | OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); |
| 487 | if (LeadingAddr) |
| 488 | OS << format(Fmt.data(), Address); |
| 489 | OS << Name << "\t" << Val; |
| 490 | } |
| 491 | |
| 492 | static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, |
| 493 | raw_ostream &OS) { |
| 494 | // The output of printInst starts with a tab. Print some spaces so that |
| 495 | // the tab has 1 column and advances to the target tab stop. |
| 496 | unsigned TabStop = getInstStartColumn(STI); |
| 497 | unsigned Column = OS.tell() - Start; |
| 498 | OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); |
| 499 | } |
| 500 | |
| 501 | class PrettyPrinter { |
| 502 | public: |
| 503 | virtual ~PrettyPrinter() = default; |
| 504 | virtual void |
| 505 | printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 506 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 507 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 508 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 509 | LiveVariablePrinter &LVP) { |
| 510 | if (SP && (PrintSource || PrintLines)) |
| 511 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 512 | LVP.printBetweenInsts(OS, false); |
| 513 | |
| 514 | size_t Start = OS.tell(); |
| 515 | if (LeadingAddr) |
| 516 | OS << format("%8" PRIx64"l" "x" ":", Address.Address); |
| 517 | if (ShowRawInsn) { |
| 518 | OS << ' '; |
| 519 | dumpBytes(Bytes, OS); |
| 520 | } |
| 521 | |
| 522 | AlignToInstStartColumn(Start, STI, OS); |
| 523 | |
| 524 | if (MI) { |
| 525 | // See MCInstPrinter::printInst. On targets where a PC relative immediate |
| 526 | // is relative to the next instruction and the length of a MCInst is |
| 527 | // difficult to measure (x86), this is the address of the next |
| 528 | // instruction. |
| 529 | uint64_t Addr = |
| 530 | Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); |
| 531 | IP.printInst(MI, Addr, "", STI, OS); |
| 532 | } else |
| 533 | OS << "\t<unknown>"; |
| 534 | } |
| 535 | }; |
| 536 | PrettyPrinter PrettyPrinterInst; |
| 537 | |
| 538 | class HexagonPrettyPrinter : public PrettyPrinter { |
| 539 | public: |
| 540 | void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, |
| 541 | formatted_raw_ostream &OS) { |
| 542 | uint32_t opcode = |
| 543 | (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; |
| 544 | if (LeadingAddr) |
| 545 | OS << format("%8" PRIx64"l" "x" ":", Address); |
| 546 | if (ShowRawInsn) { |
| 547 | OS << "\t"; |
| 548 | dumpBytes(Bytes.slice(0, 4), OS); |
| 549 | OS << format("\t%08" PRIx32"x", opcode); |
| 550 | } |
| 551 | } |
| 552 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 553 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 554 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 555 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 556 | LiveVariablePrinter &LVP) override { |
| 557 | if (SP && (PrintSource || PrintLines)) |
| 558 | SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); |
| 559 | if (!MI) { |
| 560 | printLead(Bytes, Address.Address, OS); |
| 561 | OS << " <unknown>"; |
| 562 | return; |
| 563 | } |
| 564 | std::string Buffer; |
| 565 | { |
| 566 | raw_string_ostream TempStream(Buffer); |
| 567 | IP.printInst(MI, Address.Address, "", STI, TempStream); |
| 568 | } |
| 569 | StringRef Contents(Buffer); |
| 570 | // Split off bundle attributes |
| 571 | auto PacketBundle = Contents.rsplit('\n'); |
| 572 | // Split off first instruction from the rest |
| 573 | auto HeadTail = PacketBundle.first.split('\n'); |
| 574 | auto Preamble = " { "; |
| 575 | auto Separator = ""; |
| 576 | |
| 577 | // Hexagon's packets require relocations to be inline rather than |
| 578 | // clustered at the end of the packet. |
| 579 | std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); |
| 580 | std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); |
| 581 | auto PrintReloc = [&]() -> void { |
| 582 | while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { |
| 583 | if (RelCur->getOffset() == Address.Address) { |
| 584 | printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); |
| 585 | return; |
| 586 | } |
| 587 | ++RelCur; |
| 588 | } |
| 589 | }; |
| 590 | |
| 591 | while (!HeadTail.first.empty()) { |
| 592 | OS << Separator; |
| 593 | Separator = "\n"; |
| 594 | if (SP && (PrintSource || PrintLines)) |
| 595 | SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); |
| 596 | printLead(Bytes, Address.Address, OS); |
| 597 | OS << Preamble; |
| 598 | Preamble = " "; |
| 599 | StringRef Inst; |
| 600 | auto Duplex = HeadTail.first.split('\v'); |
| 601 | if (!Duplex.second.empty()) { |
| 602 | OS << Duplex.first; |
| 603 | OS << "; "; |
| 604 | Inst = Duplex.second; |
| 605 | } |
| 606 | else |
| 607 | Inst = HeadTail.first; |
| 608 | OS << Inst; |
| 609 | HeadTail = HeadTail.second.split('\n'); |
| 610 | if (HeadTail.first.empty()) |
| 611 | OS << " } " << PacketBundle.second; |
| 612 | PrintReloc(); |
| 613 | Bytes = Bytes.slice(4); |
| 614 | Address.Address += 4; |
| 615 | } |
| 616 | } |
| 617 | }; |
| 618 | HexagonPrettyPrinter HexagonPrettyPrinterInst; |
| 619 | |
| 620 | class AMDGCNPrettyPrinter : public PrettyPrinter { |
| 621 | public: |
| 622 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 623 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 624 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 625 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 626 | LiveVariablePrinter &LVP) override { |
| 627 | if (SP && (PrintSource || PrintLines)) |
| 628 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 629 | |
| 630 | if (MI) { |
| 631 | SmallString<40> InstStr; |
| 632 | raw_svector_ostream IS(InstStr); |
| 633 | |
| 634 | IP.printInst(MI, Address.Address, "", STI, IS); |
| 635 | |
| 636 | OS << left_justify(IS.str(), 60); |
| 637 | } else { |
| 638 | // an unrecognized encoding - this is probably data so represent it |
| 639 | // using the .long directive, or .byte directive if fewer than 4 bytes |
| 640 | // remaining |
| 641 | if (Bytes.size() >= 4) { |
| 642 | OS << format("\t.long 0x%08" PRIx32"x" " ", |
| 643 | support::endian::read32<support::little>(Bytes.data())); |
| 644 | OS.indent(42); |
| 645 | } else { |
| 646 | OS << format("\t.byte 0x%02" PRIx8"x", Bytes[0]); |
| 647 | for (unsigned int i = 1; i < Bytes.size(); i++) |
| 648 | OS << format(", 0x%02" PRIx8"x", Bytes[i]); |
| 649 | OS.indent(55 - (6 * Bytes.size())); |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | OS << format("// %012" PRIX64"l" "X" ":", Address.Address); |
| 654 | if (Bytes.size() >= 4) { |
| 655 | // D should be casted to uint32_t here as it is passed by format to |
| 656 | // snprintf as vararg. |
| 657 | for (uint32_t D : |
| 658 | ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), |
| 659 | Bytes.size() / 4)) |
| 660 | OS << format(" %08" PRIX32"X", D); |
| 661 | } else { |
| 662 | for (unsigned char B : Bytes) |
| 663 | OS << format(" %02" PRIX8"X", B); |
| 664 | } |
| 665 | |
| 666 | if (!Annot.empty()) |
| 667 | OS << " // " << Annot; |
| 668 | } |
| 669 | }; |
| 670 | AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; |
| 671 | |
| 672 | class BPFPrettyPrinter : public PrettyPrinter { |
| 673 | public: |
| 674 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 675 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 676 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 677 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 678 | LiveVariablePrinter &LVP) override { |
| 679 | if (SP && (PrintSource || PrintLines)) |
| 680 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 681 | if (LeadingAddr) |
| 682 | OS << format("%8" PRId64"l" "d" ":", Address.Address / 8); |
| 683 | if (ShowRawInsn) { |
| 684 | OS << "\t"; |
| 685 | dumpBytes(Bytes, OS); |
| 686 | } |
| 687 | if (MI) |
| 688 | IP.printInst(MI, Address.Address, "", STI, OS); |
| 689 | else |
| 690 | OS << "\t<unknown>"; |
| 691 | } |
| 692 | }; |
| 693 | BPFPrettyPrinter BPFPrettyPrinterInst; |
| 694 | |
| 695 | class ARMPrettyPrinter : public PrettyPrinter { |
| 696 | public: |
| 697 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 698 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 699 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 700 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 701 | LiveVariablePrinter &LVP) override { |
| 702 | if (SP && (PrintSource || PrintLines)) |
| 703 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 704 | LVP.printBetweenInsts(OS, false); |
| 705 | |
| 706 | size_t Start = OS.tell(); |
| 707 | if (LeadingAddr) |
| 708 | OS << format("%8" PRIx64"l" "x" ":", Address.Address); |
| 709 | if (ShowRawInsn) { |
| 710 | size_t Pos = 0, End = Bytes.size(); |
| 711 | if (STI.checkFeatures("+thumb-mode")) { |
| 712 | for (; Pos + 2 <= End; Pos += 2) |
| 713 | OS << ' ' |
| 714 | << format_hex_no_prefix( |
| 715 | llvm::support::endian::read<uint16_t>( |
| 716 | Bytes.data() + Pos, InstructionEndianness), |
| 717 | 4); |
| 718 | } else { |
| 719 | for (; Pos + 4 <= End; Pos += 4) |
| 720 | OS << ' ' |
| 721 | << format_hex_no_prefix( |
| 722 | llvm::support::endian::read<uint32_t>( |
| 723 | Bytes.data() + Pos, InstructionEndianness), |
| 724 | 8); |
| 725 | } |
| 726 | if (Pos < End) { |
| 727 | OS << ' '; |
| 728 | dumpBytes(Bytes.slice(Pos), OS); |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | AlignToInstStartColumn(Start, STI, OS); |
| 733 | |
| 734 | if (MI) { |
| 735 | IP.printInst(MI, Address.Address, "", STI, OS); |
| 736 | } else |
| 737 | OS << "\t<unknown>"; |
| 738 | } |
| 739 | |
| 740 | void setInstructionEndianness(llvm::support::endianness Endianness) { |
| 741 | InstructionEndianness = Endianness; |
| 742 | } |
| 743 | |
| 744 | private: |
| 745 | llvm::support::endianness InstructionEndianness = llvm::support::little; |
| 746 | }; |
| 747 | ARMPrettyPrinter ARMPrettyPrinterInst; |
| 748 | |
| 749 | class AArch64PrettyPrinter : public PrettyPrinter { |
| 750 | public: |
| 751 | void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| 752 | object::SectionedAddress Address, formatted_raw_ostream &OS, |
| 753 | StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| 754 | StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| 755 | LiveVariablePrinter &LVP) override { |
| 756 | if (SP && (PrintSource || PrintLines)) |
| 757 | SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| 758 | LVP.printBetweenInsts(OS, false); |
| 759 | |
| 760 | size_t Start = OS.tell(); |
| 761 | if (LeadingAddr) |
| 762 | OS << format("%8" PRIx64"l" "x" ":", Address.Address); |
| 763 | if (ShowRawInsn) { |
| 764 | size_t Pos = 0, End = Bytes.size(); |
| 765 | for (; Pos + 4 <= End; Pos += 4) |
| 766 | OS << ' ' |
| 767 | << format_hex_no_prefix( |
| 768 | llvm::support::endian::read<uint32_t>(Bytes.data() + Pos, |
| 769 | llvm::support::little), |
| 770 | 8); |
| 771 | if (Pos < End) { |
| 772 | OS << ' '; |
| 773 | dumpBytes(Bytes.slice(Pos), OS); |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | AlignToInstStartColumn(Start, STI, OS); |
| 778 | |
| 779 | if (MI) { |
| 780 | IP.printInst(MI, Address.Address, "", STI, OS); |
| 781 | } else |
| 782 | OS << "\t<unknown>"; |
| 783 | } |
| 784 | }; |
| 785 | AArch64PrettyPrinter AArch64PrettyPrinterInst; |
| 786 | |
| 787 | PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { |
| 788 | switch(Triple.getArch()) { |
| 789 | default: |
| 790 | return PrettyPrinterInst; |
| 791 | case Triple::hexagon: |
| 792 | return HexagonPrettyPrinterInst; |
| 793 | case Triple::amdgcn: |
| 794 | return AMDGCNPrettyPrinterInst; |
| 795 | case Triple::bpfel: |
| 796 | case Triple::bpfeb: |
| 797 | return BPFPrettyPrinterInst; |
| 798 | case Triple::arm: |
| 799 | case Triple::armeb: |
| 800 | case Triple::thumb: |
| 801 | case Triple::thumbeb: |
| 802 | return ARMPrettyPrinterInst; |
| 803 | case Triple::aarch64: |
| 804 | case Triple::aarch64_be: |
| 805 | case Triple::aarch64_32: |
| 806 | return AArch64PrettyPrinterInst; |
| 807 | } |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { |
| 812 | assert(Obj.isELF())(static_cast <bool> (Obj.isELF()) ? void (0) : __assert_fail ("Obj.isELF()", "llvm/tools/llvm-objdump/llvm-objdump.cpp", 812 , __extension__ __PRETTY_FUNCTION__)); |
| 813 | if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) |
| 814 | return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), |
| 815 | Obj.getFileName()) |
| 816 | ->getType(); |
| 817 | if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) |
| 818 | return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), |
| 819 | Obj.getFileName()) |
| 820 | ->getType(); |
| 821 | if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) |
| 822 | return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), |
| 823 | Obj.getFileName()) |
| 824 | ->getType(); |
| 825 | if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) |
| 826 | return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), |
| 827 | Obj.getFileName()) |
| 828 | ->getType(); |
| 829 | llvm_unreachable("Unsupported binary format")::llvm::llvm_unreachable_internal("Unsupported binary format" , "llvm/tools/llvm-objdump/llvm-objdump.cpp", 829); |
| 830 | } |
| 831 | |
| 832 | template <class ELFT> |
| 833 | static void |
| 834 | addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, |
| 835 | std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| 836 | for (auto Symbol : Obj.getDynamicSymbolIterators()) { |
| 837 | uint8_t SymbolType = Symbol.getELFType(); |
| 838 | if (SymbolType == ELF::STT_SECTION) |
| 839 | continue; |
| 840 | |
| 841 | uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); |
| 842 | // ELFSymbolRef::getAddress() returns size instead of value for common |
| 843 | // symbols which is not desirable for disassembly output. Overriding. |
| 844 | if (SymbolType == ELF::STT_COMMON) |
| 845 | Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), |
| 846 | Obj.getFileName()) |
| 847 | ->st_value; |
| 848 | |
| 849 | StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); |
| 850 | if (Name.empty()) |
| 851 | continue; |
| 852 | |
| 853 | section_iterator SecI = |
| 854 | unwrapOrError(Symbol.getSection(), Obj.getFileName()); |
| 855 | if (SecI == Obj.section_end()) |
| 856 | continue; |
| 857 | |
| 858 | AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | static void |
| 863 | addDynamicElfSymbols(const ELFObjectFileBase &Obj, |
| 864 | std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| 865 | if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) |
| 866 | addDynamicElfSymbols(*Elf32LEObj, AllSymbols); |
| 867 | else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) |
| 868 | addDynamicElfSymbols(*Elf64LEObj, AllSymbols); |
| 869 | else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) |
| 870 | addDynamicElfSymbols(*Elf32BEObj, AllSymbols); |
| 871 | else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) |
| 872 | addDynamicElfSymbols(*Elf64BEObj, AllSymbols); |
| 873 | else |
| 874 | llvm_unreachable("Unsupported binary format")::llvm::llvm_unreachable_internal("Unsupported binary format" , "llvm/tools/llvm-objdump/llvm-objdump.cpp", 874); |
| 875 | } |
| 876 | |
| 877 | static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { |
| 878 | for (auto SecI : Obj.sections()) { |
| 879 | const WasmSection &Section = Obj.getWasmSection(SecI); |
| 880 | if (Section.Type == wasm::WASM_SEC_CODE) |
| 881 | return SecI; |
| 882 | } |
| 883 | return std::nullopt; |
| 884 | } |
| 885 | |
| 886 | static void |
| 887 | addMissingWasmCodeSymbols(const WasmObjectFile &Obj, |
| 888 | std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| 889 | std::optional<SectionRef> Section = getWasmCodeSection(Obj); |
| 890 | if (!Section) |
| 891 | return; |
| 892 | SectionSymbolsTy &Symbols = AllSymbols[*Section]; |
| 893 | |
| 894 | std::set<uint64_t> SymbolAddresses; |
| 895 | for (const auto &Sym : Symbols) |
| 896 | SymbolAddresses.insert(Sym.Addr); |
| 897 | |
| 898 | for (const wasm::WasmFunction &Function : Obj.functions()) { |
| 899 | uint64_t Address = Function.CodeSectionOffset; |
| 900 | // Only add fallback symbols for functions not already present in the symbol |
| 901 | // table. |
| 902 | if (SymbolAddresses.count(Address)) |
| 903 | continue; |
| 904 | // This function has no symbol, so it should have no SymbolName. |
| 905 | assert(Function.SymbolName.empty())(static_cast <bool> (Function.SymbolName.empty()) ? void (0) : __assert_fail ("Function.SymbolName.empty()", "llvm/tools/llvm-objdump/llvm-objdump.cpp" , 905, __extension__ __PRETTY_FUNCTION__)); |
| 906 | // We use DebugName for the name, though it may be empty if there is no |
| 907 | // "name" custom section, or that section is missing a name for this |
| 908 | // function. |
| 909 | StringRef Name = Function.DebugName; |
| 910 | Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | static void addPltEntries(const ObjectFile &Obj, |
| 915 | std::map<SectionRef, SectionSymbolsTy> &AllSymbols, |
| 916 | StringSaver &Saver) { |
| 917 | auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj); |
| 918 | if (!ElfObj) |
| 919 | return; |
| 920 | std::optional<SectionRef> Plt; |
| 921 | for (const SectionRef &Section : Obj.sections()) { |
| 922 | Expected<StringRef> SecNameOrErr = Section.getName(); |
| 923 | if (!SecNameOrErr) { |
| 924 | consumeError(SecNameOrErr.takeError()); |
| 925 | continue; |
| 926 | } |
| 927 | if (*SecNameOrErr == ".plt") |
| 928 | Plt = Section; |
| 929 | } |
| 930 | if (!Plt) |
| 931 | return; |
| 932 | for (auto PltEntry : ElfObj->getPltAddresses()) { |
| 933 | if (PltEntry.first) { |
| 934 | SymbolRef Symbol(*PltEntry.first, ElfObj); |
| 935 | uint8_t SymbolType = getElfSymbolType(Obj, Symbol); |
| 936 | if (Expected<StringRef> NameOrErr = Symbol.getName()) { |
| 937 | if (!NameOrErr->empty()) |
| 938 | AllSymbols[*Plt].emplace_back( |
| 939 | PltEntry.second, Saver.save((*NameOrErr + "@plt").str()), |
| 940 | SymbolType); |
| 941 | continue; |
| 942 | } else { |
| 943 | // The warning has been reported in disassembleObject(). |
| 944 | consumeError(NameOrErr.takeError()); |
| 945 | } |
| 946 | } |
| 947 | reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) + |
| 948 | " references an invalid symbol", |
| 949 | Obj.getFileName()); |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | // Normally the disassembly output will skip blocks of zeroes. This function |
| 954 | // returns the number of zero bytes that can be skipped when dumping the |
| 955 | // disassembly of the instructions in Buf. |
| 956 | static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { |
| 957 | // Find the number of leading zeroes. |
| 958 | size_t N = 0; |
| 959 | while (N < Buf.size() && !Buf[N]) |
| 960 | ++N; |
| 961 | |
| 962 | // We may want to skip blocks of zero bytes, but unless we see |
| 963 | // at least 8 of them in a row. |
| 964 | if (N < 8) |
| 965 | return 0; |
| 966 | |
| 967 | // We skip zeroes in multiples of 4 because do not want to truncate an |
| 968 | // instruction if it starts with a zero byte. |
| 969 | return N & ~0x3; |
| 970 | } |
| 971 | |
| 972 | // Returns a map from sections to their relocations. |
| 973 | static std::map<SectionRef, std::vector<RelocationRef>> |
| 974 | getRelocsMap(object::ObjectFile const &Obj) { |
| 975 | std::map<SectionRef, std::vector<RelocationRef>> Ret; |
| 976 | uint64_t I = (uint64_t)-1; |
| 977 | for (SectionRef Sec : Obj.sections()) { |
| 978 | ++I; |
| 979 | Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); |
| 980 | if (!RelocatedOrErr) |
| 981 | reportError(Obj.getFileName(), |
| 982 | "section (" + Twine(I) + |
| 983 | "): failed to get a relocated section: " + |
| 984 | toString(RelocatedOrErr.takeError())); |
| 985 | |
| 986 | section_iterator Relocated = *RelocatedOrErr; |
| 987 | if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) |
| 988 | continue; |
| 989 | std::vector<RelocationRef> &V = Ret[*Relocated]; |
| 990 | append_range(V, Sec.relocations()); |
| 991 | // Sort relocations by address. |
| 992 | llvm::stable_sort(V, isRelocAddressLess); |
| 993 | } |
| 994 | return Ret; |
| 995 | } |
| 996 | |
| 997 | // Used for --adjust-vma to check if address should be adjusted by the |
| 998 | // specified value for a given section. |
| 999 | // For ELF we do not adjust non-allocatable sections like debug ones, |
| 1000 | // because they are not loadable. |
| 1001 | // TODO: implement for other file formats. |
| 1002 | static bool shouldAdjustVA(const SectionRef &Section) { |
| 1003 | const ObjectFile *Obj = Section.getObject(); |
| 1004 | if (Obj->isELF()) |
| 1005 | return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; |
| 1006 | return false; |
| 1007 | } |
| 1008 | |
| 1009 | |
| 1010 | typedef std::pair<uint64_t, char> MappingSymbolPair; |
| 1011 | static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, |
| 1012 | uint64_t Address) { |
| 1013 | auto It = |
| 1014 | partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { |
| 1015 | return Val.first <= Address; |
| 1016 | }); |
| 1017 | // Return zero for any address before the first mapping symbol; this means |
| 1018 | // we should use the default disassembly mode, depending on the target. |
| 1019 | if (It == MappingSymbols.begin()) |
| 1020 | return '\x00'; |
| 1021 | return (It - 1)->second; |
| 1022 | } |
| 1023 | |
| 1024 | static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, |
| 1025 | uint64_t End, const ObjectFile &Obj, |
| 1026 | ArrayRef<uint8_t> Bytes, |
| 1027 | ArrayRef<MappingSymbolPair> MappingSymbols, |
| 1028 | const MCSubtargetInfo &STI, raw_ostream &OS) { |
| 1029 | support::endianness Endian = |
| 1030 | Obj.isLittleEndian() ? support::little : support::big; |
| 1031 | size_t Start = OS.tell(); |
| 1032 | OS << format("%8" PRIx64"l" "x" ": ", SectionAddr + Index); |
| 1033 | if (Index + 4 <= End) { |
| 1034 | dumpBytes(Bytes.slice(Index, 4), OS); |
| 1035 | AlignToInstStartColumn(Start, STI, OS); |
| 1036 | OS << "\t.word\t" |
| 1037 | << format_hex(support::endian::read32(Bytes.data() + Index, Endian), |
| 1038 | 10); |
| 1039 | return 4; |
| 1040 | } |
| 1041 | if (Index + 2 <= End) { |
| 1042 | dumpBytes(Bytes.slice(Index, 2), OS); |
| 1043 | AlignToInstStartColumn(Start, STI, OS); |
| 1044 | OS << "\t.short\t" |
| 1045 | << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); |
| 1046 | return 2; |
| 1047 | } |
| 1048 | dumpBytes(Bytes.slice(Index, 1), OS); |
| 1049 | AlignToInstStartColumn(Start, STI, OS); |
| 1050 | OS << "\t.byte\t" << format_hex(Bytes[Index], 4); |
| 1051 | return 1; |
| 1052 | } |
| 1053 | |
| 1054 | static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, |
| 1055 | ArrayRef<uint8_t> Bytes) { |
| 1056 | // print out data up to 8 bytes at a time in hex and ascii |
| 1057 | uint8_t AsciiData[9] = {'\0'}; |
| 1058 | uint8_t Byte; |
| 1059 | int NumBytes = 0; |
| 1060 | |
| 1061 | for (; Index < End; ++Index) { |
| 1062 | if (NumBytes == 0) |
| 1063 | outs() << format("%8" PRIx64"l" "x" ":", SectionAddr + Index); |
| 1064 | Byte = Bytes.slice(Index)[0]; |
| 1065 | outs() << format(" %02x", Byte); |
| 1066 | AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; |
| 1067 | |
| 1068 | uint8_t IndentOffset = 0; |
| 1069 | NumBytes++; |
| 1070 | if (Index == End - 1 || NumBytes > 8) { |
| 1071 | // Indent the space for less than 8 bytes data. |
| 1072 | // 2 spaces for byte and one for space between bytes |
| 1073 | IndentOffset = 3 * (8 - NumBytes); |
| 1074 | for (int Excess = NumBytes; Excess < 8; Excess++) |
| 1075 | AsciiData[Excess] = '\0'; |
| 1076 | NumBytes = 8; |
| 1077 | } |
| 1078 | if (NumBytes == 8) { |
| 1079 | AsciiData[8] = '\0'; |
| 1080 | outs() << std::string(IndentOffset, ' ') << " "; |
| 1081 | outs() << reinterpret_cast<char *>(AsciiData); |
| 1082 | outs() << '\n'; |
| 1083 | NumBytes = 0; |
| 1084 | } |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, |
| 1089 | const SymbolRef &Symbol) { |
| 1090 | const StringRef FileName = Obj.getFileName(); |
| 1091 | const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); |
| 1092 | const StringRef Name = unwrapOrError(Symbol.getName(), FileName); |
| 1093 | |
| 1094 | if (Obj.isXCOFF() && SymbolDescription) { |
| 1095 | const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); |
| 1096 | DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); |
| 1097 | |
| 1098 | const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); |
| 1099 | std::optional<XCOFF::StorageMappingClass> Smc = |
| 1100 | getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); |
| 1101 | return SymbolInfoTy(Addr, Name, Smc, SymbolIndex, |
| 1102 | isLabel(XCOFFObj, Symbol)); |
| 1103 | } else if (Obj.isXCOFF()) { |
| 1104 | const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); |
| 1105 | return SymbolInfoTy(Addr, Name, SymType, true); |
| 1106 | } else |
| 1107 | return SymbolInfoTy(Addr, Name, |
| 1108 | Obj.isELF() ? getElfSymbolType(Obj, Symbol) |
| 1109 | : (uint8_t)ELF::STT_NOTYPE); |
| 1110 | } |
| 1111 | |
| 1112 | static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, |
| 1113 | const uint64_t Addr, StringRef &Name, |
| 1114 | uint8_t Type) { |
| 1115 | if (Obj.isXCOFF() && SymbolDescription) |
| 1116 | return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false); |
| 1117 | else |
| 1118 | return SymbolInfoTy(Addr, Name, Type); |
| 1119 | } |
| 1120 | |
| 1121 | static void |
| 1122 | collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, |
| 1123 | uint64_t SectionAddr, uint64_t Start, uint64_t End, |
| 1124 | std::unordered_map<uint64_t, std::vector<std::string>> &Labels) { |
| 1125 | if (AddrToBBAddrMap.empty()) |
| 1126 | return; |
| 1127 | Labels.clear(); |
| 1128 | uint64_t StartAddress = SectionAddr + Start; |
| 1129 | uint64_t EndAddress = SectionAddr + End; |
| 1130 | auto Iter = AddrToBBAddrMap.find(StartAddress); |
| 1131 | if (Iter == AddrToBBAddrMap.end()) |
| 1132 | return; |
| 1133 | for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) { |
| 1134 | uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr; |
| 1135 | if (BBAddress >= EndAddress) |
| 1136 | continue; |
| 1137 | Labels[BBAddress].push_back(("BB" + Twine(I)).str()); |
| 1138 | } |
| 1139 | } |
| 1140 | |
| 1141 | static void collectLocalBranchTargets( |
| 1142 | ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm, |
| 1143 | MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr, |
| 1144 | uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) { |
| 1145 | // So far only supports PowerPC and X86. |
| 1146 | if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) |
| 1147 | return; |
| 1148 | |
| 1149 | Labels.clear(); |
| 1150 | unsigned LabelCount = 0; |
| 1151 | Start += SectionAddr; |
| 1152 | End += SectionAddr; |
| 1153 | uint64_t Index = Start; |
| 1154 | while (Index < End) { |
| 1155 | // Disassemble a real instruction and record function-local branch labels. |
| 1156 | MCInst Inst; |
| 1157 | uint64_t Size; |
| 1158 | ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); |
| 1159 | bool Disassembled = |
| 1160 | DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); |
| 1161 | if (Size == 0) |
| 1162 | Size = std::min<uint64_t>(ThisBytes.size(), |
| 1163 | DisAsm->suggestBytesToSkip(ThisBytes, Index)); |
| 1164 | |
| 1165 | if (Disassembled && MIA) { |
| 1166 | uint64_t Target; |
| 1167 | bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); |
| 1168 | // On PowerPC, if the address of a branch is the same as the target, it |
| 1169 | // means that it's a function call. Do not mark the label for this case. |
| 1170 | if (TargetKnown && (Target >= Start && Target < End) && |
| 1171 | !Labels.count(Target) && |
| 1172 | !(STI->getTargetTriple().isPPC() && Target == Index)) |
| 1173 | Labels[Target] = ("L" + Twine(LabelCount++)).str(); |
| 1174 | } |
| 1175 | Index += Size; |
| 1176 | } |
| 1177 | } |
| 1178 | |
| 1179 | // Create an MCSymbolizer for the target and add it to the MCDisassembler. |
| 1180 | // This is currently only used on AMDGPU, and assumes the format of the |
| 1181 | // void * argument passed to AMDGPU's createMCSymbolizer. |
| 1182 | static void addSymbolizer( |
| 1183 | MCContext &Ctx, const Target *Target, StringRef TripleName, |
| 1184 | MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, |
| 1185 | SectionSymbolsTy &Symbols, |
| 1186 | std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { |
| 1187 | |
| 1188 | std::unique_ptr<MCRelocationInfo> RelInfo( |
| 1189 | Target->createMCRelocationInfo(TripleName, Ctx)); |
| 1190 | if (!RelInfo) |
| 1191 | return; |
| 1192 | std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( |
| 1193 | TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); |
| 1194 | MCSymbolizer *SymbolizerPtr = &*Symbolizer; |
| 1195 | DisAsm->setSymbolizer(std::move(Symbolizer)); |
| 1196 | |
| 1197 | if (!SymbolizeOperands) |
| 1198 | return; |
| 1199 | |
| 1200 | // Synthesize labels referenced by branch instructions by |
| 1201 | // disassembling, discarding the output, and collecting the referenced |
| 1202 | // addresses from the symbolizer. |
| 1203 | for (size_t Index = 0; Index != Bytes.size();) { |
| 1204 | MCInst Inst; |
| 1205 | uint64_t Size; |
| 1206 | ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); |
| 1207 | const uint64_t ThisAddr = SectionAddr + Index; |
| 1208 | DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); |
| 1209 | if (Size == 0) |
| 1210 | Size = std::min<uint64_t>(ThisBytes.size(), |
| 1211 | DisAsm->suggestBytesToSkip(ThisBytes, Index)); |
| 1212 | Index += Size; |
| 1213 | } |
| 1214 | ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); |
| 1215 | // Copy and sort to remove duplicates. |
| 1216 | std::vector<uint64_t> LabelAddrs; |
| 1217 | LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), |
| 1218 | LabelAddrsRef.end()); |
| 1219 | llvm::sort(LabelAddrs); |
| 1220 | LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - |
| 1221 | LabelAddrs.begin()); |
| 1222 | // Add the labels. |
| 1223 | for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { |
| 1224 | auto Name = std::make_unique<std::string>(); |
| 1225 | *Name = (Twine("L") + Twine(LabelNum)).str(); |
| 1226 | SynthesizedLabelNames.push_back(std::move(Name)); |
| 1227 | Symbols.push_back(SymbolInfoTy( |
| 1228 | LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); |
| 1229 | } |
| 1230 | llvm::stable_sort(Symbols); |
| 1231 | // Recreate the symbolizer with the new symbols list. |
| 1232 | RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); |
| 1233 | Symbolizer.reset(Target->createMCSymbolizer( |
| 1234 | TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); |
| 1235 | DisAsm->setSymbolizer(std::move(Symbolizer)); |
| 1236 | } |
| 1237 | |
| 1238 | static StringRef getSegmentName(const MachOObjectFile *MachO, |
| 1239 | const SectionRef &Section) { |
| 1240 | if (MachO) { |
| 1241 | DataRefImpl DR = Section.getRawDataRefImpl(); |
| 1242 | StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); |
| 1243 | return SegmentName; |
| 1244 | } |
| 1245 | return ""; |
| 1246 | } |
| 1247 | |
| 1248 | static void emitPostInstructionInfo(formatted_raw_ostream &FOS, |
| 1249 | const MCAsmInfo &MAI, |
| 1250 | const MCSubtargetInfo &STI, |
| 1251 | StringRef Comments, |
| 1252 | LiveVariablePrinter &LVP) { |
| 1253 | do { |
| 1254 | if (!Comments.empty()) { |
| 1255 | // Emit a line of comments. |
| 1256 | StringRef Comment; |
| 1257 | std::tie(Comment, Comments) = Comments.split('\n'); |
| 1258 | // MAI.getCommentColumn() assumes that instructions are printed at the |
| 1259 | // position of 8, while getInstStartColumn() returns the actual position. |
| 1260 | unsigned CommentColumn = |
| 1261 | MAI.getCommentColumn() - 8 + getInstStartColumn(STI); |
| 1262 | FOS.PadToColumn(CommentColumn); |
| 1263 | FOS << MAI.getCommentString() << ' ' << Comment; |
| 1264 | } |
| 1265 | LVP.printAfterInst(FOS); |
| 1266 | FOS << '\n'; |
| 1267 | } while (!Comments.empty()); |
| 1268 | FOS.flush(); |
| 1269 | } |
| 1270 | |
| 1271 | static void createFakeELFSections(ObjectFile &Obj) { |
| 1272 | assert(Obj.isELF())(static_cast <bool> (Obj.isELF()) ? void (0) : __assert_fail ("Obj.isELF()", "llvm/tools/llvm-objdump/llvm-objdump.cpp", 1272 , __extension__ __PRETTY_FUNCTION__)); |
| 1273 | if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) |
| 1274 | Elf32LEObj->createFakeSections(); |
| 1275 | else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) |
| 1276 | Elf64LEObj->createFakeSections(); |
| 1277 | else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) |
| 1278 | Elf32BEObj->createFakeSections(); |
| 1279 | else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) |
| 1280 | Elf64BEObj->createFakeSections(); |
| 1281 | else |
| 1282 | llvm_unreachable("Unsupported binary format")::llvm::llvm_unreachable_internal("Unsupported binary format" , "llvm/tools/llvm-objdump/llvm-objdump.cpp", 1282); |
| 1283 | } |
| 1284 | |
| 1285 | // Tries to fetch a more complete version of the given object file using its |
| 1286 | // Build ID. Returns std::nullopt if nothing was found. |
| 1287 | static std::optional<OwningBinary<Binary>> |
| 1288 | fetchBinaryByBuildID(const ObjectFile &Obj) { |
| 1289 | object::BuildIDRef BuildID = getBuildID(&Obj); |
| 1290 | if (BuildID.empty()) |
| 1291 | return std::nullopt; |
| 1292 | std::optional<std::string> Path = BIDFetcher->fetch(BuildID); |
| 1293 | if (!Path) |
| 1294 | return std::nullopt; |
| 1295 | Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); |
| 1296 | if (!DebugBinary) { |
| 1297 | reportWarning(toString(DebugBinary.takeError()), *Path); |
| 1298 | return std::nullopt; |
| 1299 | } |
| 1300 | return std::move(*DebugBinary); |
| 1301 | } |
| 1302 | |
| 1303 | static void disassembleObject(const Target *TheTarget, ObjectFile &Obj, |
| 1304 | const ObjectFile &DbgObj, MCContext &Ctx, |
| 1305 | MCDisassembler *PrimaryDisAsm, |
| 1306 | MCDisassembler *SecondaryDisAsm, |
| 1307 | const MCInstrAnalysis *MIA, MCInstPrinter *IP, |
| 1308 | const MCSubtargetInfo *PrimarySTI, |
| 1309 | const MCSubtargetInfo *SecondarySTI, |
| 1310 | PrettyPrinter &PIP, SourcePrinter &SP, |
| 1311 | bool InlineRelocs) { |
| 1312 | const MCSubtargetInfo *STI = PrimarySTI; |
| 1313 | MCDisassembler *DisAsm = PrimaryDisAsm; |
| 1314 | bool PrimaryIsThumb = false; |
| 1315 | if (isArmElf(Obj)) |
| 1316 | PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); |
| 1317 | |
| 1318 | std::map<SectionRef, std::vector<RelocationRef>> RelocMap; |
| 1319 | if (InlineRelocs) |
| 1320 | RelocMap = getRelocsMap(Obj); |
| 1321 | bool Is64Bits = Obj.getBytesInAddress() > 4; |
| 1322 | |
| 1323 | // Create a mapping from virtual address to symbol name. This is used to |
| 1324 | // pretty print the symbols while disassembling. |
| 1325 | std::map<SectionRef, SectionSymbolsTy> AllSymbols; |
| 1326 | SectionSymbolsTy AbsoluteSymbols; |
| 1327 | const StringRef FileName = Obj.getFileName(); |
| 1328 | const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); |
| 1329 | for (const SymbolRef &Symbol : Obj.symbols()) { |
| 1330 | Expected<StringRef> NameOrErr = Symbol.getName(); |
| 1331 | if (!NameOrErr) { |
| 1332 | reportWarning(toString(NameOrErr.takeError()), FileName); |
| 1333 | continue; |
| 1334 | } |
| 1335 | if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) |
| 1336 | continue; |
| 1337 | |
| 1338 | if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION) |
| 1339 | continue; |
| 1340 | |
| 1341 | if (MachO) { |
| 1342 | // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special |
| 1343 | // symbols that support MachO header introspection. They do not bind to |
| 1344 | // code locations and are irrelevant for disassembly. |
| 1345 | if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) |
| 1346 | continue; |
| 1347 | // Don't ask a Mach-O STAB symbol for its section unless you know that |
| 1348 | // STAB symbol's section field refers to a valid section index. Otherwise |
| 1349 | // the symbol may error trying to load a section that does not exist. |
| 1350 | DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); |
| 1351 | uint8_t NType = (MachO->is64Bit() ? |
| 1352 | MachO->getSymbol64TableEntry(SymDRI).n_type: |
| 1353 | MachO->getSymbolTableEntry(SymDRI).n_type); |
| 1354 | if (NType & MachO::N_STAB) |
| 1355 | continue; |
| 1356 | } |
| 1357 | |
| 1358 | section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); |
| 1359 | if (SecI != Obj.section_end()) |
| 1360 | AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); |
| 1361 | else |
| 1362 | AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); |
| 1363 | } |
| 1364 | |
| 1365 | if (AllSymbols.empty() && Obj.isELF()) |
| 1366 | addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); |
| 1367 | |
| 1368 | if (Obj.isWasm()) |
| 1369 | addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); |
| 1370 | |
| 1371 | if (Obj.isELF() && Obj.sections().empty()) |
| 1372 | createFakeELFSections(Obj); |
| 1373 | |
| 1374 | BumpPtrAllocator A; |
| 1375 | StringSaver Saver(A); |
| 1376 | addPltEntries(Obj, AllSymbols, Saver); |
| 1377 | |
| 1378 | // Create a mapping from virtual address to section. An empty section can |
| 1379 | // cause more than one section at the same address. Sort such sections to be |
| 1380 | // before same-addressed non-empty sections so that symbol lookups prefer the |
| 1381 | // non-empty section. |
| 1382 | std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; |
| 1383 | for (SectionRef Sec : Obj.sections()) |
| 1384 | SectionAddresses.emplace_back(Sec.getAddress(), Sec); |
| 1385 | llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { |
| 1386 | if (LHS.first != RHS.first) |
| 1387 | return LHS.first < RHS.first; |
| 1388 | return LHS.second.getSize() < RHS.second.getSize(); |
| 1389 | }); |
| 1390 | |
| 1391 | // Linked executables (.exe and .dll files) typically don't include a real |
| 1392 | // symbol table but they might contain an export table. |
| 1393 | if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { |
| 1394 | for (const auto &ExportEntry : COFFObj->export_directories()) { |
| 1395 | StringRef Name; |
| 1396 | if (Error E = ExportEntry.getSymbolName(Name)) |
| 1397 | reportError(std::move(E), Obj.getFileName()); |
| 1398 | if (Name.empty()) |
| 1399 | continue; |
| 1400 | |
| 1401 | uint32_t RVA; |
| 1402 | if (Error E = ExportEntry.getExportRVA(RVA)) |
| 1403 | reportError(std::move(E), Obj.getFileName()); |
| 1404 | |
| 1405 | uint64_t VA = COFFObj->getImageBase() + RVA; |
| 1406 | auto Sec = partition_point( |
| 1407 | SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { |
| 1408 | return O.first <= VA; |
| 1409 | }); |
| 1410 | if (Sec != SectionAddresses.begin()) { |
| 1411 | --Sec; |
| 1412 | AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); |
| 1413 | } else |
| 1414 | AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); |
| 1415 | } |
| 1416 | } |
| 1417 | |
| 1418 | // Sort all the symbols, this allows us to use a simple binary search to find |
| 1419 | // Multiple symbols can have the same address. Use a stable sort to stabilize |
| 1420 | // the output. |
| 1421 | StringSet<> FoundDisasmSymbolSet; |
| 1422 | for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) |
| 1423 | llvm::stable_sort(SecSyms.second); |
| 1424 | llvm::stable_sort(AbsoluteSymbols); |
| 1425 | |
| 1426 | std::unique_ptr<DWARFContext> DICtx; |
| 1427 | LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI); |
| 1428 | |
| 1429 | if (DbgVariables != DVDisabled) { |
| 1430 | DICtx = DWARFContext::create(DbgObj); |
| 1431 | for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) |
| 1432 | LVP.addCompileUnit(CU->getUnitDIE(false)); |
| 1433 | } |
| 1434 | |
| 1435 | LLVM_DEBUG(LVP.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("objdump")) { LVP.dump(); } } while (false); |
| 1436 | |
| 1437 | std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; |
| 1438 | auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = |
| 1439 | std::nullopt) { |
| 1440 | AddrToBBAddrMap.clear(); |
| 1441 | if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { |
| 1442 | auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex); |
| 1443 | if (!BBAddrMapsOrErr) { |
| 1444 | reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); |
| 1445 | return; |
| 1446 | } |
| 1447 | for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr) |
| 1448 | AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr, |
| 1449 | std::move(FunctionBBAddrMap)); |
| 1450 | } |
| 1451 | }; |
| 1452 | |
| 1453 | // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a |
| 1454 | // single mapping, since they don't have any conflicts. |
| 1455 | if (SymbolizeOperands && !Obj.isRelocatableObject()) |
| 1456 | ReadBBAddrMap(); |
| 1457 | |
| 1458 | for (const SectionRef &Section : ToolSectionFilter(Obj)) { |
| 1459 | if (FilterSections.empty() && !DisassembleAll && |
| 1460 | (!Section.isText() || Section.isVirtual())) |
| 1461 | continue; |
| 1462 | |
| 1463 | uint64_t SectionAddr = Section.getAddress(); |
| 1464 | uint64_t SectSize = Section.getSize(); |
| 1465 | if (!SectSize) |
| 1466 | continue; |
| 1467 | |
| 1468 | // For relocatable object files, read the LLVM_BB_ADDR_MAP section |
| 1469 | // corresponding to this section, if present. |
| 1470 | if (SymbolizeOperands && Obj.isRelocatableObject()) |
| 1471 | ReadBBAddrMap(Section.getIndex()); |
| 1472 | |
| 1473 | // Get the list of all the symbols in this section. |
| 1474 | SectionSymbolsTy &Symbols = AllSymbols[Section]; |
| 1475 | std::vector<MappingSymbolPair> MappingSymbols; |
| 1476 | if (hasMappingSymbols(Obj)) { |
| 1477 | for (const auto &Symb : Symbols) { |
| 1478 | uint64_t Address = Symb.Addr; |
| 1479 | StringRef Name = Symb.Name; |
| 1480 | if (Name.startswith("$d")) |
| 1481 | MappingSymbols.emplace_back(Address - SectionAddr, 'd'); |
| 1482 | if (Name.startswith("$x")) |
| 1483 | MappingSymbols.emplace_back(Address - SectionAddr, 'x'); |
| 1484 | if (Name.startswith("$a")) |
| 1485 | MappingSymbols.emplace_back(Address - SectionAddr, 'a'); |
| 1486 | if (Name.startswith("$t")) |
| 1487 | MappingSymbols.emplace_back(Address - SectionAddr, 't'); |
| 1488 | } |
| 1489 | } |
| 1490 | |
| 1491 | llvm::sort(MappingSymbols); |
| 1492 | |
| 1493 | ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( |
| 1494 | unwrapOrError(Section.getContents(), Obj.getFileName())); |
| 1495 | |
| 1496 | std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; |
| 1497 | if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { |
| 1498 | // AMDGPU disassembler uses symbolizer for printing labels |
| 1499 | addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes, |
| 1500 | Symbols, SynthesizedLabelNames); |
| 1501 | } |
| 1502 | |
| 1503 | StringRef SegmentName = getSegmentName(MachO, Section); |
| 1504 | StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); |
| 1505 | // If the section has no symbol at the start, just insert a dummy one. |
| 1506 | if (Symbols.empty() || Symbols[0].Addr != 0) { |
| 1507 | Symbols.insert(Symbols.begin(), |
| 1508 | createDummySymbolInfo(Obj, SectionAddr, SectionName, |
| 1509 | Section.isText() ? ELF::STT_FUNC |
| 1510 | : ELF::STT_OBJECT)); |
| 1511 | } |
| 1512 | |
| 1513 | SmallString<40> Comments; |
| 1514 | raw_svector_ostream CommentStream(Comments); |
| 1515 | |
| 1516 | uint64_t VMAAdjustment = 0; |
| 1517 | if (shouldAdjustVA(Section)) |
| 1518 | VMAAdjustment = AdjustVMA; |
| 1519 | |
| 1520 | // In executable and shared objects, r_offset holds a virtual address. |
| 1521 | // Subtract SectionAddr from the r_offset field of a relocation to get |
| 1522 | // the section offset. |
| 1523 | uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; |
| 1524 | uint64_t Size; |
| 1525 | uint64_t Index; |
| 1526 | bool PrintedSection = false; |
| 1527 | std::vector<RelocationRef> Rels = RelocMap[Section]; |
| 1528 | std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); |
| 1529 | std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); |
| 1530 | |
| 1531 | // Loop over each chunk of code between two points where at least |
| 1532 | // one symbol is defined. |
| 1533 | for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { |
| 1534 | // Advance SI past all the symbols starting at the same address, |
| 1535 | // and make an ArrayRef of them. |
| 1536 | unsigned FirstSI = SI; |
| 1537 | uint64_t Start = Symbols[SI].Addr; |
| 1538 | ArrayRef<SymbolInfoTy> SymbolsHere; |
| 1539 | while (SI != SE && Symbols[SI].Addr == Start) |
| 1540 | ++SI; |
| 1541 | SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); |
| 1542 | |
| 1543 | // Get the demangled names of all those symbols. We end up with a vector |
| 1544 | // of StringRef that holds the names we're going to use, and a vector of |
| 1545 | // std::string that stores the new strings returned by demangle(), if |
| 1546 | // any. If we don't call demangle() then that vector can stay empty. |
| 1547 | std::vector<StringRef> SymNamesHere; |
| 1548 | std::vector<std::string> DemangledSymNamesHere; |
| 1549 | if (Demangle) { |
| 1550 | // Fetch the demangled names and store them locally. |
| 1551 | for (const SymbolInfoTy &Symbol : SymbolsHere) |
| 1552 | DemangledSymNamesHere.push_back(demangle(Symbol.Name.str())); |
| 1553 | // Now we've finished modifying that vector, it's safe to make |
| 1554 | // a vector of StringRefs pointing into it. |
| 1555 | SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), |
| 1556 | DemangledSymNamesHere.end()); |
| 1557 | } else { |
| 1558 | for (const SymbolInfoTy &Symbol : SymbolsHere) |
| 1559 | SymNamesHere.push_back(Symbol.Name); |
| 1560 | } |
| 1561 | |
| 1562 | // Distinguish ELF data from code symbols, which will be used later on to |
| 1563 | // decide whether to 'disassemble' this chunk as a data declaration via |
| 1564 | // dumpELFData(), or whether to treat it as code. |
| 1565 | // |
| 1566 | // If data _and_ code symbols are defined at the same address, the code |
| 1567 | // takes priority, on the grounds that disassembling code is our main |
| 1568 | // purpose here, and it would be a worse failure to _not_ interpret |
| 1569 | // something that _was_ meaningful as code than vice versa. |
| 1570 | // |
| 1571 | // Any ELF symbol type that is not clearly data will be regarded as code. |
| 1572 | // In particular, one of the uses of STT_NOTYPE is for branch targets |
| 1573 | // inside functions, for which STT_FUNC would be inaccurate. |
| 1574 | // |
| 1575 | // So here, we spot whether there's any non-data symbol present at all, |
| 1576 | // and only set the DisassembleAsData flag if there isn't. Also, we use |
| 1577 | // this distinction to inform the decision of which symbol to print at |
| 1578 | // the head of the section, so that if we're printing code, we print a |
| 1579 | // code-related symbol name to go with it. |
| 1580 | bool DisassembleAsData = false; |
| 1581 | size_t DisplaySymIndex = SymbolsHere.size() - 1; |
| 1582 | if (Obj.isELF() && !DisassembleAll && Section.isText()) { |
| 1583 | DisassembleAsData = true; // unless we find a code symbol below |
| 1584 | |
| 1585 | for (size_t i = 0; i < SymbolsHere.size(); ++i) { |
| 1586 | uint8_t SymTy = SymbolsHere[i].Type; |
| 1587 | if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { |
| 1588 | DisassembleAsData = false; |
| 1589 | DisplaySymIndex = i; |
| 1590 | } |
| 1591 | } |
| 1592 | } |
| 1593 | |
| 1594 | // Decide which symbol(s) from this collection we're going to print. |
| 1595 | std::vector<bool> SymsToPrint(SymbolsHere.size(), false); |
| 1596 | // If the user has given the --disassemble-symbols option, then we must |
| 1597 | // display every symbol in that set, and no others. |
| 1598 | if (!DisasmSymbolSet.empty()) { |
| 1599 | bool FoundAny = false; |
| 1600 | for (size_t i = 0; i < SymbolsHere.size(); ++i) { |
| 1601 | if (DisasmSymbolSet.count(SymNamesHere[i])) { |
| 1602 | SymsToPrint[i] = true; |
| 1603 | FoundAny = true; |
| 1604 | } |
| 1605 | } |
| 1606 | |
| 1607 | // And if none of the symbols here is one that the user asked for, skip |
| 1608 | // disassembling this entire chunk of code. |
| 1609 | if (!FoundAny) |
| 1610 | continue; |
| 1611 | } else { |
| 1612 | // Otherwise, print whichever symbol at this location is last in the |
| 1613 | // Symbols array, because that array is pre-sorted in a way intended to |
| 1614 | // correlate with priority of which symbol to display. |
| 1615 | SymsToPrint[DisplaySymIndex] = true; |
| 1616 | } |
| 1617 | |
| 1618 | // Now that we know we're disassembling this section, override the choice |
| 1619 | // of which symbols to display by printing _all_ of them at this address |
| 1620 | // if the user asked for all symbols. |
| 1621 | // |
| 1622 | // That way, '--show-all-symbols --disassemble-symbol=foo' will print |
| 1623 | // only the chunk of code headed by 'foo', but also show any other |
| 1624 | // symbols defined at that address, such as aliases for 'foo', or the ARM |
| 1625 | // mapping symbol preceding its code. |
| 1626 | if (ShowAllSymbols) { |
| 1627 | for (size_t i = 0; i < SymbolsHere.size(); ++i) |
| 1628 | SymsToPrint[i] = true; |
| 1629 | } |
| 1630 | |
| 1631 | if (Start < SectionAddr || StopAddress <= Start) |
| 1632 | continue; |
| 1633 | |
| 1634 | for (size_t i = 0; i < SymbolsHere.size(); ++i) |
| 1635 | FoundDisasmSymbolSet.insert(SymNamesHere[i]); |
| 1636 | |
| 1637 | // The end is the section end, the beginning of the next symbol, or |
| 1638 | // --stop-address. |
| 1639 | uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); |
| 1640 | if (SI < SE) |
| 1641 | End = std::min(End, Symbols[SI].Addr); |
| 1642 | if (Start >= End || End <= StartAddress) |
| 1643 | continue; |
| 1644 | Start -= SectionAddr; |
| 1645 | End -= SectionAddr; |
| 1646 | |
| 1647 | if (!PrintedSection) { |
| 1648 | PrintedSection = true; |
| 1649 | outs() << "\nDisassembly of section "; |
| 1650 | if (!SegmentName.empty()) |
| 1651 | outs() << SegmentName << ","; |
| 1652 | outs() << SectionName << ":\n"; |
| 1653 | } |
| 1654 | |
| 1655 | outs() << '\n'; |
| 1656 | |
| 1657 | for (size_t i = 0; i < SymbolsHere.size(); ++i) { |
| 1658 | if (!SymsToPrint[i]) |
| 1659 | continue; |
| 1660 | |
| 1661 | const SymbolInfoTy &Symbol = SymbolsHere[i]; |
| 1662 | const StringRef SymbolName = SymNamesHere[i]; |
| 1663 | |
| 1664 | if (LeadingAddr) |
| 1665 | outs() << format(Is64Bits ? "%016" PRIx64"l" "x" " " : "%08" PRIx64"l" "x" " ", |
| 1666 | SectionAddr + Start + VMAAdjustment); |
| 1667 | if (Obj.isXCOFF() && SymbolDescription) { |
| 1668 | outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; |
| 1669 | } else |
| 1670 | outs() << '<' << SymbolName << ">:\n"; |
| 1671 | } |
| 1672 | |
| 1673 | // Don't print raw contents of a virtual section. A virtual section |
| 1674 | // doesn't have any contents in the file. |
| 1675 | if (Section.isVirtual()) { |
| 1676 | outs() << "...\n"; |
| 1677 | continue; |
| 1678 | } |
| 1679 | |
| 1680 | // See if any of the symbols defined at this location triggers target- |
| 1681 | // specific disassembly behavior, e.g. of special descriptors or function |
| 1682 | // prelude information. |
| 1683 | // |
| 1684 | // We stop this loop at the first symbol that triggers some kind of |
| 1685 | // interesting behavior (if any), on the assumption that if two symbols |
| 1686 | // defined at the same address trigger two conflicting symbol handlers, |
| 1687 | // the object file is probably confused anyway, and it would make even |
| 1688 | // less sense to present the output of _both_ handlers, because that |
| 1689 | // would describe the same data twice. |
| 1690 | for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { |
| 1691 | SymbolInfoTy Symbol = SymbolsHere[SHI]; |
| 1692 | |
| 1693 | auto Status = |
| 1694 | DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start), |
| 1695 | SectionAddr + Start, CommentStream); |
| 1696 | |
| 1697 | if (!Status) { |
| 1698 | // If onSymbolStart returns std::nullopt, that means it didn't trigger |
| 1699 | // any interesting handling for this symbol. Try the other symbols |
| 1700 | // defined at this address. |
| 1701 | continue; |
| 1702 | } |
| 1703 | |
| 1704 | if (*Status == MCDisassembler::Fail) { |
| 1705 | // If onSymbolStart returns Fail, that means it identified some kind |
| 1706 | // of special data at this address, but wasn't able to disassemble it |
| 1707 | // meaningfully. So we fall back to disassembling the failed region |
| 1708 | // as bytes, assuming that the target detected the failure before |
| 1709 | // printing anything. |
| 1710 | // |
| 1711 | // Return values Success or SoftFail (i.e no 'real' failure) are |
| 1712 | // expected to mean that the target has emitted its own output. |
| 1713 | // |
| 1714 | // Either way, 'Size' will have been set to the amount of data |
| 1715 | // covered by whatever prologue the target identified. So we advance |
| 1716 | // our own position to beyond that. Sometimes that will be the entire |
| 1717 | // distance to the next symbol, and sometimes it will be just a |
| 1718 | // prologue and we should start disassembling instructions from where |
| 1719 | // it left off. |
| 1720 | outs() << "// Error in decoding " << SymNamesHere[SHI] |
| 1721 | << " : Decoding failed region as bytes.\n"; |
| 1722 | for (uint64_t I = 0; I < Size; ++I) { |
| 1723 | outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) |
| 1724 | << "\n"; |
| 1725 | } |
| 1726 | } |
| 1727 | Start += Size; |
| 1728 | break; |
| 1729 | } |
| 1730 | |
| 1731 | Index = Start; |
| 1732 | if (SectionAddr < StartAddress) |
| 1733 | Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); |
| 1734 | |
| 1735 | if (DisassembleAsData) { |
| 1736 | dumpELFData(SectionAddr, Index, End, Bytes); |
| 1737 | Index = End; |
Value stored to 'Index' is never read | |
| 1738 | continue; |
| 1739 | } |
| 1740 | |
| 1741 | bool DumpARMELFData = false; |
| 1742 | formatted_raw_ostream FOS(outs()); |
| 1743 | |
| 1744 | std::unordered_map<uint64_t, std::string> AllLabels; |
| 1745 | std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels; |
| 1746 | if (SymbolizeOperands) { |
| 1747 | collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI, |
| 1748 | SectionAddr, Index, End, AllLabels); |
| 1749 | collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End, |
| 1750 | BBAddrMapLabels); |
| 1751 | } |
| 1752 | |
| 1753 | while (Index < End) { |
| 1754 | // ARM and AArch64 ELF binaries can interleave data and text in the |
| 1755 | // same section. We rely on the markers introduced to understand what |
| 1756 | // we need to dump. If the data marker is within a function, it is |
| 1757 | // denoted as a word/short etc. |
| 1758 | if (!MappingSymbols.empty()) { |
| 1759 | char Kind = getMappingSymbolKind(MappingSymbols, Index); |
| 1760 | DumpARMELFData = Kind == 'd'; |
| 1761 | if (SecondarySTI) { |
| 1762 | if (Kind == 'a') { |
| 1763 | STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; |
| 1764 | DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; |
| 1765 | } else if (Kind == 't') { |
| 1766 | STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; |
| 1767 | DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; |
| 1768 | } |
| 1769 | } |
| 1770 | } |
| 1771 | |
| 1772 | if (DumpARMELFData) { |
| 1773 | Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, |
| 1774 | MappingSymbols, *STI, FOS); |
| 1775 | } else { |
| 1776 | // When -z or --disassemble-zeroes are given we always dissasemble |
| 1777 | // them. Otherwise we might want to skip zero bytes we see. |
| 1778 | if (!DisassembleZeroes) { |
| 1779 | uint64_t MaxOffset = End - Index; |
| 1780 | // For --reloc: print zero blocks patched by relocations, so that |
| 1781 | // relocations can be shown in the dump. |
| 1782 | if (RelCur != RelEnd) |
| 1783 | MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, |
| 1784 | MaxOffset); |
| 1785 | |
| 1786 | if (size_t N = |
| 1787 | countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { |
| 1788 | FOS << "\t\t..." << '\n'; |
| 1789 | Index += N; |
| 1790 | continue; |
| 1791 | } |
| 1792 | } |
| 1793 | |
| 1794 | // Print local label if there's any. |
| 1795 | auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); |
| 1796 | if (Iter1 != BBAddrMapLabels.end()) { |
| 1797 | for (StringRef Label : Iter1->second) |
| 1798 | FOS << "<" << Label << ">:\n"; |
| 1799 | } else { |
| 1800 | auto Iter2 = AllLabels.find(SectionAddr + Index); |
| 1801 | if (Iter2 != AllLabels.end()) |
| 1802 | FOS << "<" << Iter2->second << ">:\n"; |
| 1803 | } |
| 1804 | |
| 1805 | // Disassemble a real instruction or a data when disassemble all is |
| 1806 | // provided |
| 1807 | MCInst Inst; |
| 1808 | ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); |
| 1809 | uint64_t ThisAddr = SectionAddr + Index; |
| 1810 | bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes, |
| 1811 | ThisAddr, CommentStream); |
| 1812 | if (Size == 0) |
| 1813 | Size = std::min<uint64_t>( |
| 1814 | ThisBytes.size(), |
| 1815 | DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); |
| 1816 | |
| 1817 | LVP.update({Index, Section.getIndex()}, |
| 1818 | {Index + Size, Section.getIndex()}, Index + Size != End); |
| 1819 | |
| 1820 | IP->setCommentStream(CommentStream); |
| 1821 | |
| 1822 | PIP.printInst( |
| 1823 | *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), |
| 1824 | {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, |
| 1825 | "", *STI, &SP, Obj.getFileName(), &Rels, LVP); |
| 1826 | |
| 1827 | IP->setCommentStream(llvm::nulls()); |
| 1828 | |
| 1829 | // If disassembly has failed, avoid analysing invalid/incomplete |
| 1830 | // instruction information. Otherwise, try to resolve the target |
| 1831 | // address (jump target or memory operand address) and print it on the |
| 1832 | // right of the instruction. |
| 1833 | if (Disassembled && MIA) { |
| 1834 | // Branch targets are printed just after the instructions. |
| 1835 | llvm::raw_ostream *TargetOS = &FOS; |
| 1836 | uint64_t Target; |
| 1837 | bool PrintTarget = |
| 1838 | MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target); |
| 1839 | if (!PrintTarget) |
| 1840 | if (std::optional<uint64_t> MaybeTarget = |
| 1841 | MIA->evaluateMemoryOperandAddress( |
| 1842 | Inst, STI, SectionAddr + Index, Size)) { |
| 1843 | Target = *MaybeTarget; |
| 1844 | PrintTarget = true; |
| 1845 | // Do not print real address when symbolizing. |
| 1846 | if (!SymbolizeOperands) { |
| 1847 | // Memory operand addresses are printed as comments. |
| 1848 | TargetOS = &CommentStream; |
| 1849 | *TargetOS << "0x" << Twine::utohexstr(Target); |
| 1850 | } |
| 1851 | } |
| 1852 | if (PrintTarget) { |
| 1853 | // In a relocatable object, the target's section must reside in |
| 1854 | // the same section as the call instruction or it is accessed |
| 1855 | // through a relocation. |
| 1856 | // |
| 1857 | // In a non-relocatable object, the target may be in any section. |
| 1858 | // In that case, locate the section(s) containing the target |
| 1859 | // address and find the symbol in one of those, if possible. |
| 1860 | // |
| 1861 | // N.B. We don't walk the relocations in the relocatable case yet. |
| 1862 | std::vector<const SectionSymbolsTy *> TargetSectionSymbols; |
| 1863 | if (!Obj.isRelocatableObject()) { |
| 1864 | auto It = llvm::partition_point( |
| 1865 | SectionAddresses, |
| 1866 | [=](const std::pair<uint64_t, SectionRef> &O) { |
| 1867 | return O.first <= Target; |
| 1868 | }); |
| 1869 | uint64_t TargetSecAddr = 0; |
| 1870 | while (It != SectionAddresses.begin()) { |
| 1871 | --It; |
| 1872 | if (TargetSecAddr == 0) |
| 1873 | TargetSecAddr = It->first; |
| 1874 | if (It->first != TargetSecAddr) |
| 1875 | break; |
| 1876 | TargetSectionSymbols.push_back(&AllSymbols[It->second]); |
| 1877 | } |
| 1878 | } else { |
| 1879 | TargetSectionSymbols.push_back(&Symbols); |
| 1880 | } |
| 1881 | TargetSectionSymbols.push_back(&AbsoluteSymbols); |
| 1882 | |
| 1883 | // Find the last symbol in the first candidate section whose |
| 1884 | // offset is less than or equal to the target. If there are no |
| 1885 | // such symbols, try in the next section and so on, before finally |
| 1886 | // using the nearest preceding absolute symbol (if any), if there |
| 1887 | // are no other valid symbols. |
| 1888 | const SymbolInfoTy *TargetSym = nullptr; |
| 1889 | for (const SectionSymbolsTy *TargetSymbols : |
| 1890 | TargetSectionSymbols) { |
| 1891 | auto It = llvm::partition_point( |
| 1892 | *TargetSymbols, |
| 1893 | [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); |
| 1894 | while (It != TargetSymbols->begin()) { |
| 1895 | --It; |
| 1896 | // Skip mapping symbols to avoid possible ambiguity as they |
| 1897 | // do not allow uniquely identifying the target address. |
| 1898 | if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) { |
| 1899 | TargetSym = &*It; |
| 1900 | break; |
| 1901 | } |
| 1902 | } |
| 1903 | if (TargetSym) |
| 1904 | break; |
| 1905 | } |
| 1906 | |
| 1907 | // Print the labels corresponding to the target if there's any. |
| 1908 | bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); |
| 1909 | bool LabelAvailable = AllLabels.count(Target); |
| 1910 | if (TargetSym != nullptr) { |
| 1911 | uint64_t TargetAddress = TargetSym->Addr; |
| 1912 | uint64_t Disp = Target - TargetAddress; |
| 1913 | std::string TargetName = TargetSym->Name.str(); |
| 1914 | if (Demangle) |
| 1915 | TargetName = demangle(TargetName); |
| 1916 | |
| 1917 | *TargetOS << " <"; |
| 1918 | if (!Disp) { |
| 1919 | // Always Print the binary symbol precisely corresponding to |
| 1920 | // the target address. |
| 1921 | *TargetOS << TargetName; |
| 1922 | } else if (BBAddrMapLabelAvailable) { |
| 1923 | *TargetOS << BBAddrMapLabels[Target].front(); |
| 1924 | } else if (LabelAvailable) { |
| 1925 | *TargetOS << AllLabels[Target]; |
| 1926 | } else { |
| 1927 | // Always Print the binary symbol plus an offset if there's no |
| 1928 | // local label corresponding to the target address. |
| 1929 | *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); |
| 1930 | } |
| 1931 | *TargetOS << ">"; |
| 1932 | } else if (BBAddrMapLabelAvailable) { |
| 1933 | *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">"; |
| 1934 | } else if (LabelAvailable) { |
| 1935 | *TargetOS << " <" << AllLabels[Target] << ">"; |
| 1936 | } |
| 1937 | // By convention, each record in the comment stream should be |
| 1938 | // terminated. |
| 1939 | if (TargetOS == &CommentStream) |
| 1940 | *TargetOS << "\n"; |
| 1941 | } |
| 1942 | } |
| 1943 | } |
| 1944 | |
| 1945 | assert(Ctx.getAsmInfo())(static_cast <bool> (Ctx.getAsmInfo()) ? void (0) : __assert_fail ("Ctx.getAsmInfo()", "llvm/tools/llvm-objdump/llvm-objdump.cpp" , 1945, __extension__ __PRETTY_FUNCTION__)); |
| 1946 | emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI, |
| 1947 | CommentStream.str(), LVP); |
| 1948 | Comments.clear(); |
| 1949 | |
| 1950 | // Hexagon does this in pretty printer |
| 1951 | if (Obj.getArch() != Triple::hexagon) { |
| 1952 | // Print relocation for instruction and data. |
| 1953 | while (RelCur != RelEnd) { |
| 1954 | uint64_t Offset = RelCur->getOffset() - RelAdjustment; |
| 1955 | // If this relocation is hidden, skip it. |
| 1956 | if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { |
| 1957 | ++RelCur; |
| 1958 | continue; |
| 1959 | } |
| 1960 | |
| 1961 | // Stop when RelCur's offset is past the disassembled |
| 1962 | // instruction/data. Note that it's possible the disassembled data |
| 1963 | // is not the complete data: we might see the relocation printed in |
| 1964 | // the middle of the data, but this matches the binutils objdump |
| 1965 | // output. |
| 1966 | if (Offset >= Index + Size) |
| 1967 | break; |
| 1968 | |
| 1969 | // When --adjust-vma is used, update the address printed. |
| 1970 | if (RelCur->getSymbol() != Obj.symbol_end()) { |
| 1971 | Expected<section_iterator> SymSI = |
| 1972 | RelCur->getSymbol()->getSection(); |
| 1973 | if (SymSI && *SymSI != Obj.section_end() && |
| 1974 | shouldAdjustVA(**SymSI)) |
| 1975 | Offset += AdjustVMA; |
| 1976 | } |
| 1977 | |
| 1978 | printRelocation(FOS, Obj.getFileName(), *RelCur, |
| 1979 | SectionAddr + Offset, Is64Bits); |
| 1980 | LVP.printAfterOtherLine(FOS, true); |
| 1981 | ++RelCur; |
| 1982 | } |
| 1983 | } |
| 1984 | |
| 1985 | Index += Size; |
| 1986 | } |
| 1987 | } |
| 1988 | } |
| 1989 | StringSet<> MissingDisasmSymbolSet = |
| 1990 | set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); |
| 1991 | for (StringRef Sym : MissingDisasmSymbolSet.keys()) |
| 1992 | reportWarning("failed to disassemble missing symbol " + Sym, FileName); |
| 1993 | } |
| 1994 | |
| 1995 | static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { |
| 1996 | // If information useful for showing the disassembly is missing, try to find a |
| 1997 | // more complete binary and disassemble that instead. |
| 1998 | OwningBinary<Binary> FetchedBinary; |
| 1999 | if (Obj->symbols().empty()) { |
| 2000 | if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = |
| 2001 | fetchBinaryByBuildID(*Obj)) { |
| 2002 | if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { |
| 2003 | if (!O->symbols().empty() || |
| 2004 | (!O->sections().empty() && Obj->sections().empty())) { |
| 2005 | FetchedBinary = std::move(*FetchedBinaryOpt); |
| 2006 | Obj = O; |
| 2007 | } |
| 2008 | } |
| 2009 | } |
| 2010 | } |
| 2011 | |
| 2012 | const Target *TheTarget = getTarget(Obj); |
| 2013 | |
| 2014 | // Package up features to be passed to target/subtarget |
| 2015 | Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); |
| 2016 | if (!FeaturesValue) |
| 2017 | reportError(FeaturesValue.takeError(), Obj->getFileName()); |
| 2018 | SubtargetFeatures Features = *FeaturesValue; |
| 2019 | if (!MAttrs.empty()) { |
| 2020 | for (unsigned I = 0; I != MAttrs.size(); ++I) |
| 2021 | Features.AddFeature(MAttrs[I]); |
| 2022 | } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { |
| 2023 | Features.AddFeature("+all"); |
| 2024 | } |
| 2025 | |
| 2026 | std::unique_ptr<const MCRegisterInfo> MRI( |
| 2027 | TheTarget->createMCRegInfo(TripleName)); |
| 2028 | if (!MRI) |
| 2029 | reportError(Obj->getFileName(), |
| 2030 | "no register info for target " + TripleName); |
| 2031 | |
| 2032 | // Set up disassembler. |
| 2033 | MCTargetOptions MCOptions; |
| 2034 | std::unique_ptr<const MCAsmInfo> AsmInfo( |
| 2035 | TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); |
| 2036 | if (!AsmInfo) |
| 2037 | reportError(Obj->getFileName(), |
| 2038 | "no assembly info for target " + TripleName); |
| 2039 | |
| 2040 | if (MCPU.empty()) |
| 2041 | MCPU = Obj->tryGetCPUName().value_or("").str(); |
| 2042 | |
| 2043 | if (isArmElf(*Obj)) { |
| 2044 | // When disassembling big-endian Arm ELF, the instruction endianness is |
| 2045 | // determined in a complex way. In relocatable objects, AAELF32 mandates |
| 2046 | // that instruction endianness matches the ELF file endianness; in |
| 2047 | // executable images, that's true unless the file header has the EF_ARM_BE8 |
| 2048 | // flag, in which case instructions are little-endian regardless of data |
| 2049 | // endianness. |
| 2050 | // |
| 2051 | // We must set the big-endian-instructions SubtargetFeature to make the |
| 2052 | // disassembler read the instructions the right way round, and also tell |
| 2053 | // our own prettyprinter to retrieve the encodings the same way to print in |
| 2054 | // hex. |
| 2055 | const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); |
| 2056 | |
| 2057 | if (Elf32BE && (Elf32BE->isRelocatableObject() || |
| 2058 | !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { |
| 2059 | Features.AddFeature("+big-endian-instructions"); |
| 2060 | ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big); |
| 2061 | } else { |
| 2062 | ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little); |
| 2063 | } |
| 2064 | } |
| 2065 | |
| 2066 | std::unique_ptr<const MCSubtargetInfo> STI( |
| 2067 | TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); |
| 2068 | if (!STI) |
| 2069 | reportError(Obj->getFileName(), |
| 2070 | "no subtarget info for target " + TripleName); |
| 2071 | std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); |
| 2072 | if (!MII) |
| 2073 | reportError(Obj->getFileName(), |
| 2074 | "no instruction info for target " + TripleName); |
| 2075 | MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); |
| 2076 | // FIXME: for now initialize MCObjectFileInfo with default values |
| 2077 | std::unique_ptr<MCObjectFileInfo> MOFI( |
| 2078 | TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); |
| 2079 | Ctx.setObjectFileInfo(MOFI.get()); |
| 2080 | |
| 2081 | std::unique_ptr<MCDisassembler> DisAsm( |
| 2082 | TheTarget->createMCDisassembler(*STI, Ctx)); |
| 2083 | if (!DisAsm) |
| 2084 | reportError(Obj->getFileName(), "no disassembler for target " + TripleName); |
| 2085 | |
| 2086 | // If we have an ARM object file, we need a second disassembler, because |
| 2087 | // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. |
| 2088 | // We use mapping symbols to switch between the two assemblers, where |
| 2089 | // appropriate. |
| 2090 | std::unique_ptr<MCDisassembler> SecondaryDisAsm; |
| 2091 | std::unique_ptr<const MCSubtargetInfo> SecondarySTI; |
| 2092 | if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) { |
| 2093 | if (STI->checkFeatures("+thumb-mode")) |
| 2094 | Features.AddFeature("-thumb-mode"); |
| 2095 | else |
| 2096 | Features.AddFeature("+thumb-mode"); |
| 2097 | SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, |
| 2098 | Features.getString())); |
| 2099 | SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); |
| 2100 | } |
| 2101 | |
| 2102 | std::unique_ptr<const MCInstrAnalysis> MIA( |
| 2103 | TheTarget->createMCInstrAnalysis(MII.get())); |
| 2104 | |
| 2105 | int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); |
| 2106 | std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( |
| 2107 | Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); |
| 2108 | if (!IP) |
| 2109 | reportError(Obj->getFileName(), |
| 2110 | "no instruction printer for target " + TripleName); |
| 2111 | IP->setPrintImmHex(PrintImmHex); |
| 2112 | IP->setPrintBranchImmAsAddress(true); |
| 2113 | IP->setSymbolizeOperands(SymbolizeOperands); |
| 2114 | IP->setMCInstrAnalysis(MIA.get()); |
| 2115 | |
| 2116 | PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); |
| 2117 | |
| 2118 | const ObjectFile *DbgObj = Obj; |
| 2119 | if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { |
| 2120 | if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = |
| 2121 | fetchBinaryByBuildID(*Obj)) { |
| 2122 | if (auto *FetchedObj = |
| 2123 | dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { |
| 2124 | if (FetchedObj->hasDebugInfo()) { |
| 2125 | FetchedBinary = std::move(*DebugBinaryOpt); |
| 2126 | DbgObj = FetchedObj; |
| 2127 | } |
| 2128 | } |
| 2129 | } |
| 2130 | } |
| 2131 | |
| 2132 | std::unique_ptr<object::Binary> DSYMBinary; |
| 2133 | std::unique_ptr<MemoryBuffer> DSYMBuf; |
| 2134 | if (!DbgObj->hasDebugInfo()) { |
| 2135 | if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { |
| 2136 | DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), |
| 2137 | DSYMBinary, DSYMBuf); |
| 2138 | if (!DbgObj) |
| 2139 | return; |
| 2140 | } |
| 2141 | } |
| 2142 | |
| 2143 | SourcePrinter SP(DbgObj, TheTarget->getName()); |
| 2144 | |
| 2145 | for (StringRef Opt : DisassemblerOptions) |
| 2146 | if (!IP->applyTargetSpecificCLOption(Opt)) |
| 2147 | reportError(Obj->getFileName(), |
| 2148 | "Unrecognized disassembler option: " + Opt); |
| 2149 | |
| 2150 | disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(), |
| 2151 | SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(), |
| 2152 | SecondarySTI.get(), PIP, SP, InlineRelocs); |
| 2153 | } |
| 2154 | |
| 2155 | void objdump::printRelocations(const ObjectFile *Obj) { |
| 2156 | StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64"l" "x" : |
| 2157 | "%08" PRIx64"l" "x"; |
| 2158 | |
| 2159 | // Build a mapping from relocation target to a vector of relocation |
| 2160 | // sections. Usually, there is an only one relocation section for |
| 2161 | // each relocated section. |
| 2162 | MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; |
| 2163 | uint64_t Ndx; |
| 2164 | for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { |
| 2165 | if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) |
| 2166 | continue; |
| 2167 | if (Section.relocation_begin() == Section.relocation_end()) |
| 2168 | continue; |
| 2169 | Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); |
| 2170 | if (!SecOrErr) |
| 2171 | reportError(Obj->getFileName(), |
| 2172 | "section (" + Twine(Ndx) + |
| 2173 | "): unable to get a relocation target: " + |
| 2174 | toString(SecOrErr.takeError())); |
| 2175 | SecToRelSec[**SecOrErr].push_back(Section); |
| 2176 | } |
| 2177 | |
| 2178 | for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { |
| 2179 | StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); |
| 2180 | outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; |
| 2181 | uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); |
| 2182 | uint32_t TypePadding = 24; |
| 2183 | outs() << left_justify("OFFSET", OffsetPadding) << " " |
| 2184 | << left_justify("TYPE", TypePadding) << " " |
| 2185 | << "VALUE\n"; |
| 2186 | |
| 2187 | for (SectionRef Section : P.second) { |
| 2188 | for (const RelocationRef &Reloc : Section.relocations()) { |
| 2189 | uint64_t Address = Reloc.getOffset(); |
| 2190 | SmallString<32> RelocName; |
| 2191 | SmallString<32> ValueStr; |
| 2192 | if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) |
| 2193 | continue; |
| 2194 | Reloc.getTypeName(RelocName); |
| 2195 | if (Error E = getRelocationValueString(Reloc, ValueStr)) |
| 2196 | reportError(std::move(E), Obj->getFileName()); |
| 2197 | |
| 2198 | outs() << format(Fmt.data(), Address) << " " |
| 2199 | << left_justify(RelocName, TypePadding) << " " << ValueStr |
| 2200 | << "\n"; |
| 2201 | } |
| 2202 | } |
| 2203 | } |
| 2204 | } |
| 2205 | |
| 2206 | void objdump::printDynamicRelocations(const ObjectFile *Obj) { |
| 2207 | // For the moment, this option is for ELF only |
| 2208 | if (!Obj->isELF()) |
| 2209 | return; |
| 2210 | |
| 2211 | const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); |
| 2212 | if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) { |
| 2213 | return Sec.getType() == ELF::SHT_DYNAMIC; |
| 2214 | })) { |
| 2215 | reportError(Obj->getFileName(), "not a dynamic object"); |
| 2216 | return; |
| 2217 | } |
| 2218 | |
| 2219 | std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); |
| 2220 | if (DynRelSec.empty()) |
| 2221 | return; |
| 2222 | |
| 2223 | outs() << "\nDYNAMIC RELOCATION RECORDS\n"; |
| 2224 | const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); |
| 2225 | const uint32_t TypePadding = 24; |
| 2226 | outs() << left_justify("OFFSET", OffsetPadding) << ' ' |
| 2227 | << left_justify("TYPE", TypePadding) << " VALUE\n"; |
| 2228 | |
| 2229 | StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64"l" "x" : "%08" PRIx64"l" "x"; |
| 2230 | for (const SectionRef &Section : DynRelSec) |
| 2231 | for (const RelocationRef &Reloc : Section.relocations()) { |
| 2232 | uint64_t Address = Reloc.getOffset(); |
| 2233 | SmallString<32> RelocName; |
| 2234 | SmallString<32> ValueStr; |
| 2235 | Reloc.getTypeName(RelocName); |
| 2236 | if (Error E = getRelocationValueString(Reloc, ValueStr)) |
| 2237 | reportError(std::move(E), Obj->getFileName()); |
| 2238 | outs() << format(Fmt.data(), Address) << ' ' |
| 2239 | << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n'; |
| 2240 | } |
| 2241 | } |
| 2242 | |
| 2243 | // Returns true if we need to show LMA column when dumping section headers. We |
| 2244 | // show it only when the platform is ELF and either we have at least one section |
| 2245 | // whose VMA and LMA are different and/or when --show-lma flag is used. |
| 2246 | static bool shouldDisplayLMA(const ObjectFile &Obj) { |
| 2247 | if (!Obj.isELF()) |
| 2248 | return false; |
| 2249 | for (const SectionRef &S : ToolSectionFilter(Obj)) |
| 2250 | if (S.getAddress() != getELFSectionLMA(S)) |
| 2251 | return true; |
| 2252 | return ShowLMA; |
| 2253 | } |
| 2254 | |
| 2255 | static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { |
| 2256 | // Default column width for names is 13 even if no names are that long. |
| 2257 | size_t MaxWidth = 13; |
| 2258 | for (const SectionRef &Section : ToolSectionFilter(Obj)) { |
| 2259 | StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); |
| 2260 | MaxWidth = std::max(MaxWidth, Name.size()); |
| 2261 | } |
| 2262 | return MaxWidth; |
| 2263 | } |
| 2264 | |
| 2265 | void objdump::printSectionHeaders(ObjectFile &Obj) { |
| 2266 | if (Obj.isELF() && Obj.sections().empty()) |
| 2267 | createFakeELFSections(Obj); |
| 2268 | |
| 2269 | size_t NameWidth = getMaxSectionNameWidth(Obj); |
| 2270 | size_t AddressWidth = 2 * Obj.getBytesInAddress(); |
| 2271 | bool HasLMAColumn = shouldDisplayLMA(Obj); |
| 2272 | outs() << "\nSections:\n"; |
| 2273 | if (HasLMAColumn) |
| 2274 | outs() << "Idx " << left_justify("Name", NameWidth) << " Size " |
| 2275 | << left_justify("VMA", AddressWidth) << " " |
| 2276 | << left_justify("LMA", AddressWidth) << " Type\n"; |
| 2277 | else |
| 2278 | outs() << "Idx " << left_justify("Name", NameWidth) << " Size " |
| 2279 | << left_justify("VMA", AddressWidth) << " Type\n"; |
| 2280 | |
| 2281 | uint64_t Idx; |
| 2282 | for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { |
| 2283 | StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); |
| 2284 | uint64_t VMA = Section.getAddress(); |
| 2285 | if (shouldAdjustVA(Section)) |
| 2286 | VMA += AdjustVMA; |
| 2287 | |
| 2288 | uint64_t Size = Section.getSize(); |
| 2289 | |
| 2290 | std::string Type = Section.isText() ? "TEXT" : ""; |
| 2291 | if (Section.isData()) |
| 2292 | Type += Type.empty() ? "DATA" : ", DATA"; |
| 2293 | if (Section.isBSS()) |
| 2294 | Type += Type.empty() ? "BSS" : ", BSS"; |
| 2295 | if (Section.isDebugSection()) |
| 2296 | Type += Type.empty() ? "DEBUG" : ", DEBUG"; |
| 2297 | |
| 2298 | if (HasLMAColumn) |
| 2299 | outs() << format("%3" PRIu64"l" "u" " %-*s %08" PRIx64"l" "x" " ", Idx, NameWidth, |
| 2300 | Name.str().c_str(), Size) |
| 2301 | << format_hex_no_prefix(VMA, AddressWidth) << " " |
| 2302 | << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) |
| 2303 | << " " << Type << "\n"; |
| 2304 | else |
| 2305 | outs() << format("%3" PRIu64"l" "u" " %-*s %08" PRIx64"l" "x" " ", Idx, NameWidth, |
| 2306 | Name.str().c_str(), Size) |
| 2307 | << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; |
| 2308 | } |
| 2309 | } |
| 2310 | |
| 2311 | void objdump::printSectionContents(const ObjectFile *Obj) { |
| 2312 | const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); |
| 2313 | |
| 2314 | for (const SectionRef &Section : ToolSectionFilter(*Obj)) { |
| 2315 | StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); |
| 2316 | uint64_t BaseAddr = Section.getAddress(); |
| 2317 | uint64_t Size = Section.getSize(); |
| 2318 | if (!Size) |
| 2319 | continue; |
| 2320 | |
| 2321 | outs() << "Contents of section "; |
| 2322 | StringRef SegmentName = getSegmentName(MachO, Section); |
| 2323 | if (!SegmentName.empty()) |
| 2324 | outs() << SegmentName << ","; |
| 2325 | outs() << Name << ":\n"; |
| 2326 | if (Section.isBSS()) { |
| 2327 | outs() << format("<skipping contents of bss section at [%04" PRIx64"l" "x" |
| 2328 | ", %04" PRIx64"l" "x" ")>\n", |
| 2329 | BaseAddr, BaseAddr + Size); |
| 2330 | continue; |
| 2331 | } |
| 2332 | |
| 2333 | StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); |
| 2334 | |
| 2335 | // Dump out the content as hex and printable ascii characters. |
| 2336 | for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { |
| 2337 | outs() << format(" %04" PRIx64"l" "x" " ", BaseAddr + Addr); |
| 2338 | // Dump line of hex. |
| 2339 | for (std::size_t I = 0; I < 16; ++I) { |
| 2340 | if (I != 0 && I % 4 == 0) |
| 2341 | outs() << ' '; |
| 2342 | if (Addr + I < End) |
| 2343 | outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) |
| 2344 | << hexdigit(Contents[Addr + I] & 0xF, true); |
| 2345 | else |
| 2346 | outs() << " "; |
| 2347 | } |
| 2348 | // Print ascii. |
| 2349 | outs() << " "; |
| 2350 | for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { |
| 2351 | if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) |
| 2352 | outs() << Contents[Addr + I]; |
| 2353 | else |
| 2354 | outs() << "."; |
| 2355 | } |
| 2356 | outs() << "\n"; |
| 2357 | } |
| 2358 | } |
| 2359 | } |
| 2360 | |
| 2361 | void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName, |
| 2362 | StringRef ArchitectureName, bool DumpDynamic) { |
| 2363 | if (O.isCOFF() && !DumpDynamic) { |
| 2364 | outs() << "\nSYMBOL TABLE:\n"; |
| 2365 | printCOFFSymbolTable(cast<const COFFObjectFile>(O)); |
| 2366 | return; |
| 2367 | } |
| 2368 | |
| 2369 | const StringRef FileName = O.getFileName(); |
| 2370 | |
| 2371 | if (!DumpDynamic) { |
| 2372 | outs() << "\nSYMBOL TABLE:\n"; |
| 2373 | for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) |
| 2374 | printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName, |
| 2375 | DumpDynamic); |
| 2376 | return; |
| 2377 | } |
| 2378 | |
| 2379 | outs() << "\nDYNAMIC SYMBOL TABLE:\n"; |
| 2380 | if (!O.isELF()) { |
| 2381 | reportWarning( |
| 2382 | "this operation is not currently supported for this file format", |
| 2383 | FileName); |
| 2384 | return; |
| 2385 | } |
| 2386 | |
| 2387 | const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); |
| 2388 | auto Symbols = ELF->getDynamicSymbolIterators(); |
| 2389 | Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = |
| 2390 | ELF->readDynsymVersions(); |
| 2391 | if (!SymbolVersionsOrErr) { |
| 2392 | reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); |
| 2393 | SymbolVersionsOrErr = std::vector<VersionEntry>(); |
| 2394 | (void)!SymbolVersionsOrErr; |
| 2395 | } |
| 2396 | for (auto &Sym : Symbols) |
| 2397 | printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName, |
| 2398 | ArchitectureName, DumpDynamic); |
| 2399 | } |
| 2400 | |
| 2401 | void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol, |
| 2402 | ArrayRef<VersionEntry> SymbolVersions, |
| 2403 | StringRef FileName, StringRef ArchiveName, |
| 2404 | StringRef ArchitectureName, bool DumpDynamic) { |
| 2405 | const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); |
| 2406 | uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, |
| 2407 | ArchitectureName); |
| 2408 | if ((Address < StartAddress) || (Address > StopAddress)) |
| 2409 | return; |
| 2410 | SymbolRef::Type Type = |
| 2411 | unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); |
| 2412 | uint32_t Flags = |
| 2413 | unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); |
| 2414 | |
| 2415 | // Don't ask a Mach-O STAB symbol for its section unless you know that |
| 2416 | // STAB symbol's section field refers to a valid section index. Otherwise |
| 2417 | // the symbol may error trying to load a section that does not exist. |
| 2418 | bool IsSTAB = false; |
| 2419 | if (MachO) { |
| 2420 | DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); |
| 2421 | uint8_t NType = |
| 2422 | (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type |
| 2423 | : MachO->getSymbolTableEntry(SymDRI).n_type); |
| 2424 | if (NType & MachO::N_STAB) |
| 2425 | IsSTAB = true; |
| 2426 | } |
| 2427 | section_iterator Section = IsSTAB |
| 2428 | ? O.section_end() |
| 2429 | : unwrapOrError(Symbol.getSection(), FileName, |
| 2430 | ArchiveName, ArchitectureName); |
| 2431 | |
| 2432 | StringRef Name; |
| 2433 | if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { |
| 2434 | if (Expected<StringRef> NameOrErr = Section->getName()) |
| 2435 | Name = *NameOrErr; |
| 2436 | else |
| 2437 | consumeError(NameOrErr.takeError()); |
| 2438 | |
| 2439 | } else { |
| 2440 | Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, |
| 2441 | ArchitectureName); |
| 2442 | } |
| 2443 | |
| 2444 | bool Global = Flags & SymbolRef::SF_Global; |
| 2445 | bool Weak = Flags & SymbolRef::SF_Weak; |
| 2446 | bool Absolute = Flags & SymbolRef::SF_Absolute; |
| 2447 | bool Common = Flags & SymbolRef::SF_Common; |
| 2448 | bool Hidden = Flags & SymbolRef::SF_Hidden; |
| 2449 | |
| 2450 | char GlobLoc = ' '; |
| 2451 | if ((Section != O.section_end() || Absolute) && !Weak) |
| 2452 | GlobLoc = Global ? 'g' : 'l'; |
| 2453 | char IFunc = ' '; |
| 2454 | if (O.isELF()) { |
| 2455 | if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) |
| 2456 | IFunc = 'i'; |
| 2457 | if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) |
| 2458 | GlobLoc = 'u'; |
| 2459 | } |
| 2460 | |
| 2461 | char Debug = ' '; |
| 2462 | if (DumpDynamic) |
| 2463 | Debug = 'D'; |
| 2464 | else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) |
| 2465 | Debug = 'd'; |
| 2466 | |
| 2467 | char FileFunc = ' '; |
| 2468 | if (Type == SymbolRef::ST_File) |
| 2469 | FileFunc = 'f'; |
| 2470 | else if (Type == SymbolRef::ST_Function) |
| 2471 | FileFunc = 'F'; |
| 2472 | else if (Type == SymbolRef::ST_Data) |
| 2473 | FileFunc = 'O'; |
| 2474 | |
| 2475 | const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64"l" "x" : "%08" PRIx64"l" "x"; |
| 2476 | |
| 2477 | outs() << format(Fmt, Address) << " " |
| 2478 | << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' |
| 2479 | << (Weak ? 'w' : ' ') // Weak? |
| 2480 | << ' ' // Constructor. Not supported yet. |
| 2481 | << ' ' // Warning. Not supported yet. |
| 2482 | << IFunc // Indirect reference to another symbol. |
| 2483 | << Debug // Debugging (d) or dynamic (D) symbol. |
| 2484 | << FileFunc // Name of function (F), file (f) or object (O). |
| 2485 | << ' '; |
| 2486 | if (Absolute) { |
| 2487 | outs() << "*ABS*"; |
| 2488 | } else if (Common) { |
| 2489 | outs() << "*COM*"; |
| 2490 | } else if (Section == O.section_end()) { |
| 2491 | if (O.isXCOFF()) { |
| 2492 | XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( |
| 2493 | Symbol.getRawDataRefImpl()); |
| 2494 | if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) |
| 2495 | outs() << "*DEBUG*"; |
| 2496 | else |
| 2497 | outs() << "*UND*"; |
| 2498 | } else |
| 2499 | outs() << "*UND*"; |
| 2500 | } else { |
| 2501 | StringRef SegmentName = getSegmentName(MachO, *Section); |
| 2502 | if (!SegmentName.empty()) |
| 2503 | outs() << SegmentName << ","; |
| 2504 | StringRef SectionName = unwrapOrError(Section->getName(), FileName); |
| 2505 | outs() << SectionName; |
| 2506 | if (O.isXCOFF()) { |
| 2507 | std::optional<SymbolRef> SymRef = |
| 2508 | getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); |
| 2509 | if (SymRef) { |
| 2510 | |
| 2511 | Expected<StringRef> NameOrErr = SymRef->getName(); |
| 2512 | |
| 2513 | if (NameOrErr) { |
| 2514 | outs() << " (csect:"; |
| 2515 | std::string SymName(NameOrErr.get()); |
| 2516 | |
| 2517 | if (Demangle) |
| 2518 | SymName = demangle(SymName); |
| 2519 | |
| 2520 | if (SymbolDescription) |
| 2521 | SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), |
| 2522 | SymName); |
| 2523 | |
| 2524 | outs() << ' ' << SymName; |
| 2525 | outs() << ") "; |
| 2526 | } else |
| 2527 | reportWarning(toString(NameOrErr.takeError()), FileName); |
| 2528 | } |
| 2529 | } |
| 2530 | } |
| 2531 | |
| 2532 | if (Common) |
| 2533 | outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); |
| 2534 | else if (O.isXCOFF()) |
| 2535 | outs() << '\t' |
| 2536 | << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( |
| 2537 | Symbol.getRawDataRefImpl())); |
| 2538 | else if (O.isELF()) |
| 2539 | outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); |
| 2540 | |
| 2541 | if (O.isELF()) { |
| 2542 | if (!SymbolVersions.empty()) { |
| 2543 | const VersionEntry &Ver = |
| 2544 | SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; |
| 2545 | std::string Str; |
| 2546 | if (!Ver.Name.empty()) |
| 2547 | Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; |
| 2548 | outs() << ' ' << left_justify(Str, 12); |
| 2549 | } |
| 2550 | |
| 2551 | uint8_t Other = ELFSymbolRef(Symbol).getOther(); |
| 2552 | switch (Other) { |
| 2553 | case ELF::STV_DEFAULT: |
| 2554 | break; |
| 2555 | case ELF::STV_INTERNAL: |
| 2556 | outs() << " .internal"; |
| 2557 | break; |
| 2558 | case ELF::STV_HIDDEN: |
| 2559 | outs() << " .hidden"; |
| 2560 | break; |
| 2561 | case ELF::STV_PROTECTED: |
| 2562 | outs() << " .protected"; |
| 2563 | break; |
| 2564 | default: |
| 2565 | outs() << format(" 0x%02x", Other); |
| 2566 | break; |
| 2567 | } |
| 2568 | } else if (Hidden) { |
| 2569 | outs() << " .hidden"; |
| 2570 | } |
| 2571 | |
| 2572 | std::string SymName(Name); |
| 2573 | if (Demangle) |
| 2574 | SymName = demangle(SymName); |
| 2575 | |
| 2576 | if (O.isXCOFF() && SymbolDescription) |
| 2577 | SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); |
| 2578 | |
| 2579 | outs() << ' ' << SymName << '\n'; |
| 2580 | } |
| 2581 | |
| 2582 | static void printUnwindInfo(const ObjectFile *O) { |
| 2583 | outs() << "Unwind info:\n\n"; |
| 2584 | |
| 2585 | if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) |
| 2586 | printCOFFUnwindInfo(Coff); |
| 2587 | else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) |
| 2588 | printMachOUnwindInfo(MachO); |
| 2589 | else |
| 2590 | // TODO: Extract DWARF dump tool to objdump. |
| 2591 | WithColor::error(errs(), ToolName) |
| 2592 | << "This operation is only currently supported " |
| 2593 | "for COFF and MachO object files.\n"; |
| 2594 | } |
| 2595 | |
| 2596 | /// Dump the raw contents of the __clangast section so the output can be piped |
| 2597 | /// into llvm-bcanalyzer. |
| 2598 | static void printRawClangAST(const ObjectFile *Obj) { |
| 2599 | if (outs().is_displayed()) { |
| 2600 | WithColor::error(errs(), ToolName) |
| 2601 | << "The -raw-clang-ast option will dump the raw binary contents of " |
| 2602 | "the clang ast section.\n" |
| 2603 | "Please redirect the output to a file or another program such as " |
| 2604 | "llvm-bcanalyzer.\n"; |
| 2605 | return; |
| 2606 | } |
| 2607 | |
| 2608 | StringRef ClangASTSectionName("__clangast"); |
| 2609 | if (Obj->isCOFF()) { |
| 2610 | ClangASTSectionName = "clangast"; |
| 2611 | } |
| 2612 | |
| 2613 | std::optional<object::SectionRef> ClangASTSection; |
| 2614 | for (auto Sec : ToolSectionFilter(*Obj)) { |
| 2615 | StringRef Name; |
| 2616 | if (Expected<StringRef> NameOrErr = Sec.getName()) |
| 2617 | Name = *NameOrErr; |
| 2618 | else |
| 2619 | consumeError(NameOrErr.takeError()); |
| 2620 | |
| 2621 | if (Name == ClangASTSectionName) { |
| 2622 | ClangASTSection = Sec; |
| 2623 | break; |
| 2624 | } |
| 2625 | } |
| 2626 | if (!ClangASTSection) |
| 2627 | return; |
| 2628 | |
| 2629 | StringRef ClangASTContents = |
| 2630 | unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); |
| 2631 | outs().write(ClangASTContents.data(), ClangASTContents.size()); |
| 2632 | } |
| 2633 | |
| 2634 | static void printFaultMaps(const ObjectFile *Obj) { |
| 2635 | StringRef FaultMapSectionName; |
| 2636 | |
| 2637 | if (Obj->isELF()) { |
| 2638 | FaultMapSectionName = ".llvm_faultmaps"; |
| 2639 | } else if (Obj->isMachO()) { |
| 2640 | FaultMapSectionName = "__llvm_faultmaps"; |
| 2641 | } else { |
| 2642 | WithColor::error(errs(), ToolName) |
| 2643 | << "This operation is only currently supported " |
| 2644 | "for ELF and Mach-O executable files.\n"; |
| 2645 | return; |
| 2646 | } |
| 2647 | |
| 2648 | std::optional<object::SectionRef> FaultMapSection; |
| 2649 | |
| 2650 | for (auto Sec : ToolSectionFilter(*Obj)) { |
| 2651 | StringRef Name; |
| 2652 | if (Expected<StringRef> NameOrErr = Sec.getName()) |
| 2653 | Name = *NameOrErr; |
| 2654 | else |
| 2655 | consumeError(NameOrErr.takeError()); |
| 2656 | |
| 2657 | if (Name == FaultMapSectionName) { |
| 2658 | FaultMapSection = Sec; |
| 2659 | break; |
| 2660 | } |
| 2661 | } |
| 2662 | |
| 2663 | outs() << "FaultMap table:\n"; |
| 2664 | |
| 2665 | if (!FaultMapSection) { |
| 2666 | outs() << "<not found>\n"; |
| 2667 | return; |
| 2668 | } |
| 2669 | |
| 2670 | StringRef FaultMapContents = |
| 2671 | unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); |
| 2672 | FaultMapParser FMP(FaultMapContents.bytes_begin(), |
| 2673 | FaultMapContents.bytes_end()); |
| 2674 | |
| 2675 | outs() << FMP; |
| 2676 | } |
| 2677 | |
| 2678 | static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { |
| 2679 | if (O->isELF()) { |
| 2680 | printELFFileHeader(O); |
| 2681 | printELFDynamicSection(O); |
| 2682 | printELFSymbolVersionInfo(O); |
| 2683 | return; |
| 2684 | } |
| 2685 | if (O->isCOFF()) |
| 2686 | return printCOFFFileHeader(cast<object::COFFObjectFile>(*O)); |
| 2687 | if (O->isWasm()) |
| 2688 | return printWasmFileHeader(O); |
| 2689 | if (O->isMachO()) { |
| 2690 | printMachOFileHeader(O); |
| 2691 | if (!OnlyFirst) |
| 2692 | printMachOLoadCommands(O); |
| 2693 | return; |
| 2694 | } |
| 2695 | reportError(O->getFileName(), "Invalid/Unsupported object file format"); |
| 2696 | } |
| 2697 | |
| 2698 | static void printFileHeaders(const ObjectFile *O) { |
| 2699 | if (!O->isELF() && !O->isCOFF()) |
| 2700 | reportError(O->getFileName(), "Invalid/Unsupported object file format"); |
| 2701 | |
| 2702 | Triple::ArchType AT = O->getArch(); |
| 2703 | outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; |
| 2704 | uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); |
| 2705 | |
| 2706 | StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64"l" "x" : "%08" PRIx64"l" "x"; |
| 2707 | outs() << "start address: " |
| 2708 | << "0x" << format(Fmt.data(), Address) << "\n"; |
| 2709 | } |
| 2710 | |
| 2711 | static void printArchiveChild(StringRef Filename, const Archive::Child &C) { |
| 2712 | Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); |
| 2713 | if (!ModeOrErr) { |
| 2714 | WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; |
| 2715 | consumeError(ModeOrErr.takeError()); |
| 2716 | return; |
| 2717 | } |
| 2718 | sys::fs::perms Mode = ModeOrErr.get(); |
| 2719 | outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); |
| 2720 | outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); |
| 2721 | outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); |
| 2722 | outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); |
| 2723 | outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); |
| 2724 | outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); |
| 2725 | outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); |
| 2726 | outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); |
| 2727 | outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); |
| 2728 | |
| 2729 | outs() << " "; |
| 2730 | |
| 2731 | outs() << format("%d/%d %6" PRId64"l" "d" " ", unwrapOrError(C.getUID(), Filename), |
| 2732 | unwrapOrError(C.getGID(), Filename), |
| 2733 | unwrapOrError(C.getRawSize(), Filename)); |
| 2734 | |
| 2735 | StringRef RawLastModified = C.getRawLastModified(); |
| 2736 | unsigned Seconds; |
| 2737 | if (RawLastModified.getAsInteger(10, Seconds)) |
| 2738 | outs() << "(date: \"" << RawLastModified |
| 2739 | << "\" contains non-decimal chars) "; |
| 2740 | else { |
| 2741 | // Since ctime(3) returns a 26 character string of the form: |
| 2742 | // "Sun Sep 16 01:03:52 1973\n\0" |
| 2743 | // just print 24 characters. |
| 2744 | time_t t = Seconds; |
| 2745 | outs() << format("%.24s ", ctime(&t)); |
| 2746 | } |
| 2747 | |
| 2748 | StringRef Name = ""; |
| 2749 | Expected<StringRef> NameOrErr = C.getName(); |
| 2750 | if (!NameOrErr) { |
| 2751 | consumeError(NameOrErr.takeError()); |
| 2752 | Name = unwrapOrError(C.getRawName(), Filename); |
| 2753 | } else { |
| 2754 | Name = NameOrErr.get(); |
| 2755 | } |
| 2756 | outs() << Name << "\n"; |
| 2757 | } |
| 2758 | |
| 2759 | // For ELF only now. |
| 2760 | static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { |
| 2761 | if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { |
| 2762 | if (Elf->getEType() != ELF::ET_REL) |
| 2763 | return true; |
| 2764 | } |
| 2765 | return false; |
| 2766 | } |
| 2767 | |
| 2768 | static void checkForInvalidStartStopAddress(ObjectFile *Obj, |
| 2769 | uint64_t Start, uint64_t Stop) { |
| 2770 | if (!shouldWarnForInvalidStartStopAddress(Obj)) |
| 2771 | return; |
| 2772 | |
| 2773 | for (const SectionRef &Section : Obj->sections()) |
| 2774 | if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { |
| 2775 | uint64_t BaseAddr = Section.getAddress(); |
| 2776 | uint64_t Size = Section.getSize(); |
| 2777 | if ((Start < BaseAddr + Size) && Stop > BaseAddr) |
| 2778 | return; |
| 2779 | } |
| 2780 | |
| 2781 | if (!HasStartAddressFlag) |
| 2782 | reportWarning("no section has address less than 0x" + |
| 2783 | Twine::utohexstr(Stop) + " specified by --stop-address", |
| 2784 | Obj->getFileName()); |
| 2785 | else if (!HasStopAddressFlag) |
| 2786 | reportWarning("no section has address greater than or equal to 0x" + |
| 2787 | Twine::utohexstr(Start) + " specified by --start-address", |
| 2788 | Obj->getFileName()); |
| 2789 | else |
| 2790 | reportWarning("no section overlaps the range [0x" + |
| 2791 | Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + |
| 2792 | ") specified by --start-address/--stop-address", |
| 2793 | Obj->getFileName()); |
| 2794 | } |
| 2795 | |
| 2796 | static void dumpObject(ObjectFile *O, const Archive *A = nullptr, |
| 2797 | const Archive::Child *C = nullptr) { |
| 2798 | // Avoid other output when using a raw option. |
| 2799 | if (!RawClangAST) { |
| 2800 | outs() << '\n'; |
| 2801 | if (A) |
| 2802 | outs() << A->getFileName() << "(" << O->getFileName() << ")"; |
| 2803 | else |
| 2804 | outs() << O->getFileName(); |
| 2805 | outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; |
| 2806 | } |
| 2807 | |
| 2808 | if (HasStartAddressFlag || HasStopAddressFlag) |
| 2809 | checkForInvalidStartStopAddress(O, StartAddress, StopAddress); |
| 2810 | |
| 2811 | // Note: the order here matches GNU objdump for compatability. |
| 2812 | StringRef ArchiveName = A ? A->getFileName() : ""; |
| 2813 | if (ArchiveHeaders && !MachOOpt && C) |
| 2814 | printArchiveChild(ArchiveName, *C); |
| 2815 | if (FileHeaders) |
| 2816 | printFileHeaders(O); |
| 2817 | if (PrivateHeaders || FirstPrivateHeader) |
| 2818 | printPrivateFileHeaders(O, FirstPrivateHeader); |
| 2819 | if (SectionHeaders) |
| 2820 | printSectionHeaders(*O); |
| 2821 | if (SymbolTable) |
| 2822 | printSymbolTable(*O, ArchiveName); |
| 2823 | if (DynamicSymbolTable) |
| 2824 | printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"", |
| 2825 | /*DumpDynamic=*/true); |
| 2826 | if (DwarfDumpType != DIDT_Null) { |
| 2827 | std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); |
| 2828 | // Dump the complete DWARF structure. |
| 2829 | DIDumpOptions DumpOpts; |
| 2830 | DumpOpts.DumpType = DwarfDumpType; |
| 2831 | DICtx->dump(outs(), DumpOpts); |
| 2832 | } |
| 2833 | if (Relocations && !Disassemble) |
| 2834 | printRelocations(O); |
| 2835 | if (DynamicRelocations) |
| 2836 | printDynamicRelocations(O); |
| 2837 | if (SectionContents) |
| 2838 | printSectionContents(O); |
| 2839 | if (Disassemble) |
| 2840 | disassembleObject(O, Relocations); |
| 2841 | if (UnwindInfo) |
| 2842 | printUnwindInfo(O); |
| 2843 | |
| 2844 | // Mach-O specific options: |
| 2845 | if (ExportsTrie) |
| 2846 | printExportsTrie(O); |
| 2847 | if (Rebase) |
| 2848 | printRebaseTable(O); |
| 2849 | if (Bind) |
| 2850 | printBindTable(O); |
| 2851 | if (LazyBind) |
| 2852 | printLazyBindTable(O); |
| 2853 | if (WeakBind) |
| 2854 | printWeakBindTable(O); |
| 2855 | |
| 2856 | // Other special sections: |
| 2857 | if (RawClangAST) |
| 2858 | printRawClangAST(O); |
| 2859 | if (FaultMapSection) |
| 2860 | printFaultMaps(O); |
| 2861 | if (Offloading) |
| 2862 | dumpOffloadBinary(*O); |
| 2863 | } |
| 2864 | |
| 2865 | static void dumpObject(const COFFImportFile *I, const Archive *A, |
| 2866 | const Archive::Child *C = nullptr) { |
| 2867 | StringRef ArchiveName = A ? A->getFileName() : ""; |
| 2868 | |
| 2869 | // Avoid other output when using a raw option. |
| 2870 | if (!RawClangAST) |
| 2871 | outs() << '\n' |
| 2872 | << ArchiveName << "(" << I->getFileName() << ")" |
| 2873 | << ":\tfile format COFF-import-file" |
| 2874 | << "\n\n"; |
| 2875 | |
| 2876 | if (ArchiveHeaders && !MachOOpt && C) |
| 2877 | printArchiveChild(ArchiveName, *C); |
| 2878 | if (SymbolTable) |
| 2879 | printCOFFSymbolTable(*I); |
| 2880 | } |
| 2881 | |
| 2882 | /// Dump each object file in \a a; |
| 2883 | static void dumpArchive(const Archive *A) { |
| 2884 | Error Err = Error::success(); |
| 2885 | unsigned I = -1; |
| 2886 | for (auto &C : A->children(Err)) { |
| 2887 | ++I; |
| 2888 | Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); |
| 2889 | if (!ChildOrErr) { |
| 2890 | if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) |
| 2891 | reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); |
| 2892 | continue; |
| 2893 | } |
| 2894 | if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) |
| 2895 | dumpObject(O, A, &C); |
| 2896 | else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) |
| 2897 | dumpObject(I, A, &C); |
| 2898 | else |
| 2899 | reportError(errorCodeToError(object_error::invalid_file_type), |
| 2900 | A->getFileName()); |
| 2901 | } |
| 2902 | if (Err) |
| 2903 | reportError(std::move(Err), A->getFileName()); |
| 2904 | } |
| 2905 | |
| 2906 | /// Open file and figure out how to dump it. |
| 2907 | static void dumpInput(StringRef file) { |
| 2908 | // If we are using the Mach-O specific object file parser, then let it parse |
| 2909 | // the file and process the command line options. So the -arch flags can |
| 2910 | // be used to select specific slices, etc. |
| 2911 | if (MachOOpt) { |
| 2912 | parseInputMachO(file); |
| 2913 | return; |
| 2914 | } |
| 2915 | |
| 2916 | // Attempt to open the binary. |
| 2917 | OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); |
| 2918 | Binary &Binary = *OBinary.getBinary(); |
| 2919 | |
| 2920 | if (Archive *A = dyn_cast<Archive>(&Binary)) |
| 2921 | dumpArchive(A); |
| 2922 | else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) |
| 2923 | dumpObject(O); |
| 2924 | else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) |
| 2925 | parseInputMachO(UB); |
| 2926 | else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) |
| 2927 | dumpOffloadSections(*OB); |
| 2928 | else |
| 2929 | reportError(errorCodeToError(object_error::invalid_file_type), file); |
| 2930 | } |
| 2931 | |
| 2932 | template <typename T> |
| 2933 | static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, |
| 2934 | T &Value) { |
| 2935 | if (const opt::Arg *A = InputArgs.getLastArg(ID)) { |
| 2936 | StringRef V(A->getValue()); |
| 2937 | if (!llvm::to_integer(V, Value, 0)) { |
| 2938 | reportCmdLineError(A->getSpelling() + |
| 2939 | ": expected a non-negative integer, but got '" + V + |
| 2940 | "'"); |
| 2941 | } |
| 2942 | } |
| 2943 | } |
| 2944 | |
| 2945 | static object::BuildID parseBuildIDArg(const opt::Arg *A) { |
| 2946 | StringRef V(A->getValue()); |
| 2947 | object::BuildID BID = parseBuildID(V); |
| 2948 | if (BID.empty()) |
| 2949 | reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + |
| 2950 | V + "'"); |
| 2951 | return BID; |
| 2952 | } |
| 2953 | |
| 2954 | void objdump::invalidArgValue(const opt::Arg *A) { |
| 2955 | reportCmdLineError("'" + StringRef(A->getValue()) + |
| 2956 | "' is not a valid value for '" + A->getSpelling() + "'"); |
| 2957 | } |
| 2958 | |
| 2959 | static std::vector<std::string> |
| 2960 | commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { |
| 2961 | std::vector<std::string> Values; |
| 2962 | for (StringRef Value : InputArgs.getAllArgValues(ID)) { |
| 2963 | llvm::SmallVector<StringRef, 2> SplitValues; |
| 2964 | llvm::SplitString(Value, SplitValues, ","); |
| 2965 | for (StringRef SplitValue : SplitValues) |
| 2966 | Values.push_back(SplitValue.str()); |
| 2967 | } |
| 2968 | return Values; |
| 2969 | } |
| 2970 | |
| 2971 | static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { |
| 2972 | MachOOpt = true; |
| 2973 | FullLeadingAddr = true; |
| 2974 | PrintImmHex = true; |
| 2975 | |
| 2976 | ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); |
| 2977 | LinkOptHints = InputArgs.hasArg(OTOOL_C); |
| 2978 | if (InputArgs.hasArg(OTOOL_d)) |
| 2979 | FilterSections.push_back("__DATA,__data"); |
| 2980 | DylibId = InputArgs.hasArg(OTOOL_D); |
| 2981 | UniversalHeaders = InputArgs.hasArg(OTOOL_f); |
| 2982 | DataInCode = InputArgs.hasArg(OTOOL_G); |
| 2983 | FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); |
| 2984 | IndirectSymbols = InputArgs.hasArg(OTOOL_I); |
| 2985 | ShowRawInsn = InputArgs.hasArg(OTOOL_j); |
| 2986 | PrivateHeaders = InputArgs.hasArg(OTOOL_l); |
| 2987 | DylibsUsed = InputArgs.hasArg(OTOOL_L); |
| 2988 | MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); |
| 2989 | ObjcMetaData = InputArgs.hasArg(OTOOL_o); |
| 2990 | DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); |
| 2991 | InfoPlist = InputArgs.hasArg(OTOOL_P); |
| 2992 | Relocations = InputArgs.hasArg(OTOOL_r); |
| 2993 | if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { |
| 2994 | auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); |
| 2995 | FilterSections.push_back(Filter); |
| 2996 | } |
| 2997 | if (InputArgs.hasArg(OTOOL_t)) |
| 2998 | FilterSections.push_back("__TEXT,__text"); |
| 2999 | Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || |
| 3000 | InputArgs.hasArg(OTOOL_o); |
| 3001 | SymbolicOperands = InputArgs.hasArg(OTOOL_V); |
| 3002 | if (InputArgs.hasArg(OTOOL_x)) |
| 3003 | FilterSections.push_back(",__text"); |
| 3004 | LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); |
| 3005 | |
| 3006 | ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); |
| 3007 | DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); |
| 3008 | |
| 3009 | InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); |
| 3010 | if (InputFilenames.empty()) |
| 3011 | reportCmdLineError("no input file"); |
| 3012 | |
| 3013 | for (const Arg *A : InputArgs) { |
| 3014 | const Option &O = A->getOption(); |
| 3015 | if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { |
| 3016 | reportCmdLineWarning(O.getPrefixedName() + |
| 3017 | " is obsolete and not implemented"); |
| 3018 | } |
| 3019 | } |
| 3020 | } |
| 3021 | |
| 3022 | static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { |
| 3023 | parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); |
| 3024 | AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); |
| 3025 | ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); |
| 3026 | ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); |
| 3027 | Demangle = InputArgs.hasArg(OBJDUMP_demangle); |
| 3028 | Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); |
| 3029 | DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); |
| 3030 | SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); |
| 3031 | DisassembleSymbols = |
| 3032 | commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); |
| 3033 | DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); |
| 3034 | if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { |
| 3035 | DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) |
| 3036 | .Case("frames", DIDT_DebugFrame) |
| 3037 | .Default(DIDT_Null); |
| 3038 | if (DwarfDumpType == DIDT_Null) |
| 3039 | invalidArgValue(A); |
| 3040 | } |
| 3041 | DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); |
| 3042 | FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); |
| 3043 | Offloading = InputArgs.hasArg(OBJDUMP_offloading); |
| 3044 | FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); |
| 3045 | SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); |
| 3046 | PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); |
| 3047 | InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); |
| 3048 | MachOOpt = InputArgs.hasArg(OBJDUMP_macho); |
| 3049 | MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); |
| 3050 | MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); |
| 3051 | ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); |
| 3052 | LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); |
| 3053 | RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); |
| 3054 | Relocations = InputArgs.hasArg(OBJDUMP_reloc); |
| 3055 | PrintImmHex = |
| 3056 | InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); |
| 3057 | PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); |
| 3058 | FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); |
| 3059 | SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); |
| 3060 | ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); |
| 3061 | ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); |
| 3062 | PrintSource = InputArgs.hasArg(OBJDUMP_source); |
| 3063 | parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); |
| 3064 | HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); |
| 3065 | parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); |
| 3066 | HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); |
| 3067 | SymbolTable = InputArgs.hasArg(OBJDUMP_syms); |
| 3068 | SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); |
| 3069 | DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); |
| 3070 | TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); |
| 3071 | UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); |
| 3072 | Wide = InputArgs.hasArg(OBJDUMP_wide); |
| 3073 | Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); |
| 3074 | parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); |
| 3075 | if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { |
| 3076 | DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) |
| 3077 | .Case("ascii", DVASCII) |
| 3078 | .Case("unicode", DVUnicode) |
| 3079 | .Default(DVInvalid); |
| 3080 | if (DbgVariables == DVInvalid) |
| 3081 | invalidArgValue(A); |
| 3082 | } |
| 3083 | parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); |
| 3084 | |
| 3085 | parseMachOOptions(InputArgs); |
| 3086 | |
| 3087 | // Parse -M (--disassembler-options) and deprecated |
| 3088 | // --x86-asm-syntax={att,intel}. |
| 3089 | // |
| 3090 | // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the |
| 3091 | // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is |
| 3092 | // called too late. For now we have to use the internal cl::opt option. |
| 3093 | const char *AsmSyntax = nullptr; |
| 3094 | for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, |
| 3095 | OBJDUMP_x86_asm_syntax_att, |
| 3096 | OBJDUMP_x86_asm_syntax_intel)) { |
| 3097 | switch (A->getOption().getID()) { |
| 3098 | case OBJDUMP_x86_asm_syntax_att: |
| 3099 | AsmSyntax = "--x86-asm-syntax=att"; |
| 3100 | continue; |
| 3101 | case OBJDUMP_x86_asm_syntax_intel: |
| 3102 | AsmSyntax = "--x86-asm-syntax=intel"; |
| 3103 | continue; |
| 3104 | } |
| 3105 | |
| 3106 | SmallVector<StringRef, 2> Values; |
| 3107 | llvm::SplitString(A->getValue(), Values, ","); |
| 3108 | for (StringRef V : Values) { |
| 3109 | if (V == "att") |
| 3110 | AsmSyntax = "--x86-asm-syntax=att"; |
| 3111 | else if (V == "intel") |
| 3112 | AsmSyntax = "--x86-asm-syntax=intel"; |
| 3113 | else |
| 3114 | DisassemblerOptions.push_back(V.str()); |
| 3115 | } |
| 3116 | } |
| 3117 | if (AsmSyntax) { |
| 3118 | const char *Argv[] = {"llvm-objdump", AsmSyntax}; |
| 3119 | llvm::cl::ParseCommandLineOptions(2, Argv); |
| 3120 | } |
| 3121 | |
| 3122 | // Look up any provided build IDs, then append them to the input filenames. |
| 3123 | for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { |
| 3124 | object::BuildID BuildID = parseBuildIDArg(A); |
| 3125 | std::optional<std::string> Path = BIDFetcher->fetch(BuildID); |
| 3126 | if (!Path) { |
| 3127 | reportCmdLineError(A->getSpelling() + ": could not find build ID '" + |
| 3128 | A->getValue() + "'"); |
| 3129 | } |
| 3130 | InputFilenames.push_back(std::move(*Path)); |
| 3131 | } |
| 3132 | |
| 3133 | // objdump defaults to a.out if no filenames specified. |
| 3134 | if (InputFilenames.empty()) |
| 3135 | InputFilenames.push_back("a.out"); |
| 3136 | } |
| 3137 | |
| 3138 | int main(int argc, char **argv) { |
| 3139 | using namespace llvm; |
| 3140 | InitLLVM X(argc, argv); |
| 3141 | |
| 3142 | ToolName = argv[0]; |
| 3143 | std::unique_ptr<CommonOptTable> T; |
| 3144 | OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; |
| 3145 | |
| 3146 | StringRef Stem = sys::path::stem(ToolName); |
| 3147 | auto Is = [=](StringRef Tool) { |
| 3148 | // We need to recognize the following filenames: |
| 3149 | // |
| 3150 | // llvm-objdump -> objdump |
| 3151 | // llvm-otool-10.exe -> otool |
| 3152 | // powerpc64-unknown-freebsd13-objdump -> objdump |
| 3153 | auto I = Stem.rfind_insensitive(Tool); |
| 3154 | return I != StringRef::npos && |
| 3155 | (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); |
| 3156 | }; |
| 3157 | if (Is("otool")) { |
| 3158 | T = std::make_unique<OtoolOptTable>(); |
| 3159 | Unknown = OTOOL_UNKNOWN; |
| 3160 | HelpFlag = OTOOL_help; |
| 3161 | HelpHiddenFlag = OTOOL_help_hidden; |
| 3162 | VersionFlag = OTOOL_version; |
| 3163 | } else { |
| 3164 | T = std::make_unique<ObjdumpOptTable>(); |
| 3165 | Unknown = OBJDUMP_UNKNOWN; |
| 3166 | HelpFlag = OBJDUMP_help; |
| 3167 | HelpHiddenFlag = OBJDUMP_help_hidden; |
| 3168 | VersionFlag = OBJDUMP_version; |
| 3169 | } |
| 3170 | |
| 3171 | BumpPtrAllocator A; |
| 3172 | StringSaver Saver(A); |
| 3173 | opt::InputArgList InputArgs = |
| 3174 | T->parseArgs(argc, argv, Unknown, Saver, |
| 3175 | [&](StringRef Msg) { reportCmdLineError(Msg); }); |
| 3176 | |
| 3177 | if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { |
| 3178 | T->printHelp(ToolName); |
| 3179 | return 0; |
| 3180 | } |
| 3181 | if (InputArgs.hasArg(HelpHiddenFlag)) { |
| 3182 | T->printHelp(ToolName, /*ShowHidden=*/true); |
| 3183 | return 0; |
| 3184 | } |
| 3185 | |
| 3186 | // Initialize targets and assembly printers/parsers. |
| 3187 | InitializeAllTargetInfos(); |
| 3188 | InitializeAllTargetMCs(); |
| 3189 | InitializeAllDisassemblers(); |
| 3190 | |
| 3191 | if (InputArgs.hasArg(VersionFlag)) { |
| 3192 | cl::PrintVersionMessage(); |
| 3193 | if (!Is("otool")) { |
| 3194 | outs() << '\n'; |
| 3195 | TargetRegistry::printRegisteredTargetsForVersion(outs()); |
| 3196 | } |
| 3197 | return 0; |
| 3198 | } |
| 3199 | |
| 3200 | // Initialize debuginfod. |
| 3201 | const bool ShouldUseDebuginfodByDefault = |
| 3202 | InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod(); |
| 3203 | std::vector<std::string> DebugFileDirectories = |
| 3204 | InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); |
| 3205 | if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, |
| 3206 | ShouldUseDebuginfodByDefault)) { |
| 3207 | HTTPClient::initialize(); |
| 3208 | BIDFetcher = |
| 3209 | std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); |
| 3210 | } else { |
| 3211 | BIDFetcher = |
| 3212 | std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); |
| 3213 | } |
| 3214 | |
| 3215 | if (Is("otool")) |
| 3216 | parseOtoolOptions(InputArgs); |
| 3217 | else |
| 3218 | parseObjdumpOptions(InputArgs); |
| 3219 | |
| 3220 | if (StartAddress >= StopAddress) |
| 3221 | reportCmdLineError("start address should be less than stop address"); |
| 3222 | |
| 3223 | // Removes trailing separators from prefix. |
| 3224 | while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) |
| 3225 | Prefix.pop_back(); |
| 3226 | |
| 3227 | if (AllHeaders) |
| 3228 | ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = |
| 3229 | SectionHeaders = SymbolTable = true; |
| 3230 | |
| 3231 | if (DisassembleAll || PrintSource || PrintLines || |
| 3232 | !DisassembleSymbols.empty()) |
| 3233 | Disassemble = true; |
| 3234 | |
| 3235 | if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && |
| 3236 | !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && |
| 3237 | !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && |
| 3238 | !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && |
| 3239 | !(MachOOpt && |
| 3240 | (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || |
| 3241 | DylibsUsed || ExportsTrie || FirstPrivateHeader || |
| 3242 | FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || |
| 3243 | InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || |
| 3244 | Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { |
| 3245 | T->printHelp(ToolName); |
| 3246 | return 2; |
| 3247 | } |
| 3248 | |
| 3249 | DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); |
| 3250 | |
| 3251 | llvm::for_each(InputFilenames, dumpInput); |
| 3252 | |
| 3253 | warnOnNoMatchForSections(); |
| 3254 | |
| 3255 | return EXIT_SUCCESS0; |
| 3256 | } |