Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/llvm/tools/llvm-profdata/llvm-profdata.cpp
Warning:line 95, column 26
Moved-from object 'E' is moved

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name llvm-profdata.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/llvm-profdata -I /build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/llvm/tools/llvm-profdata -I include -I /build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-02-14-124508-141753-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/llvm/tools/llvm-profdata/llvm-profdata.cpp

/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/llvm/tools/llvm-profdata/llvm-profdata.cpp

1//===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// llvm-profdata merges .profdata files.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/SmallSet.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/ADT/StringRef.h"
16#include "llvm/DebugInfo/DWARF/DWARFContext.h"
17#include "llvm/IR/LLVMContext.h"
18#include "llvm/Object/Binary.h"
19#include "llvm/ProfileData/InstrProfCorrelator.h"
20#include "llvm/ProfileData/InstrProfReader.h"
21#include "llvm/ProfileData/InstrProfWriter.h"
22#include "llvm/ProfileData/MemProf.h"
23#include "llvm/ProfileData/ProfileCommon.h"
24#include "llvm/ProfileData/RawMemProfReader.h"
25#include "llvm/ProfileData/SampleProfReader.h"
26#include "llvm/ProfileData/SampleProfWriter.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Discriminator.h"
29#include "llvm/Support/Errc.h"
30#include "llvm/Support/FileSystem.h"
31#include "llvm/Support/Format.h"
32#include "llvm/Support/FormattedStream.h"
33#include "llvm/Support/InitLLVM.h"
34#include "llvm/Support/MemoryBuffer.h"
35#include "llvm/Support/Path.h"
36#include "llvm/Support/ThreadPool.h"
37#include "llvm/Support/Threading.h"
38#include "llvm/Support/WithColor.h"
39#include "llvm/Support/raw_ostream.h"
40#include <algorithm>
41
42using namespace llvm;
43
44enum ProfileFormat {
45 PF_None = 0,
46 PF_Text,
47 PF_Compact_Binary,
48 PF_Ext_Binary,
49 PF_GCC,
50 PF_Binary
51};
52
53static void warn(Twine Message, std::string Whence = "",
54 std::string Hint = "") {
55 WithColor::warning();
56 if (!Whence.empty())
57 errs() << Whence << ": ";
58 errs() << Message << "\n";
59 if (!Hint.empty())
60 WithColor::note() << Hint << "\n";
61}
62
63static void warn(Error E, StringRef Whence = "") {
64 if (E.isA<InstrProfError>()) {
65 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
66 warn(IPE.message(), std::string(Whence), std::string(""));
67 });
68 }
69}
70
71static void exitWithError(Twine Message, std::string Whence = "",
72 std::string Hint = "") {
73 WithColor::error();
74 if (!Whence.empty())
75 errs() << Whence << ": ";
76 errs() << Message << "\n";
77 if (!Hint.empty())
78 WithColor::note() << Hint << "\n";
79 ::exit(1);
80}
81
82static void exitWithError(Error E, StringRef Whence = "") {
83 if (E.isA<InstrProfError>()) {
5
Assuming the condition is true
6
Taking true branch
84 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
7
Calling move constructor for 'Error'
9
Returning from move constructor for 'Error'
85 instrprof_error instrError = IPE.get();
86 StringRef Hint = "";
87 if (instrError == instrprof_error::unrecognized_format) {
88 // Hint in case user missed specifying the profile type.
89 Hint = "Perhaps you forgot to use the --sample or --memory option?";
90 }
91 exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
92 });
93 }
94
95 exitWithError(toString(std::move(E)), std::string(Whence));
10
Moved-from object 'E' is moved
96}
97
98static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
99 exitWithError(EC.message(), std::string(Whence));
100}
101
102namespace {
103enum ProfileKinds { instr, sample, memory };
104enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
105}
106
107static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
108 StringRef Whence = "") {
109 if (FailMode == failIfAnyAreInvalid)
110 exitWithErrorCode(EC, Whence);
111 else
112 warn(EC.message(), std::string(Whence));
113}
114
115static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
116 StringRef WhenceFunction = "",
117 bool ShowHint = true) {
118 if (!WhenceFile.empty())
119 errs() << WhenceFile << ": ";
120 if (!WhenceFunction.empty())
121 errs() << WhenceFunction << ": ";
122
123 auto IPE = instrprof_error::success;
124 E = handleErrors(std::move(E),
125 [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
126 IPE = E->get();
127 return Error(std::move(E));
128 });
129 errs() << toString(std::move(E)) << "\n";
130
131 if (ShowHint) {
132 StringRef Hint = "";
133 if (IPE != instrprof_error::success) {
134 switch (IPE) {
135 case instrprof_error::hash_mismatch:
136 case instrprof_error::count_mismatch:
137 case instrprof_error::value_site_count_mismatch:
138 Hint = "Make sure that all profile data to be merged is generated "
139 "from the same binary.";
140 break;
141 default:
142 break;
143 }
144 }
145
146 if (!Hint.empty())
147 errs() << Hint << "\n";
148 }
149}
150
151namespace {
152/// A remapper from original symbol names to new symbol names based on a file
153/// containing a list of mappings from old name to new name.
154class SymbolRemapper {
155 std::unique_ptr<MemoryBuffer> File;
156 DenseMap<StringRef, StringRef> RemappingTable;
157
158public:
159 /// Build a SymbolRemapper from a file containing a list of old/new symbols.
160 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
161 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
162 if (!BufOrError)
163 exitWithErrorCode(BufOrError.getError(), InputFile);
164
165 auto Remapper = std::make_unique<SymbolRemapper>();
166 Remapper->File = std::move(BufOrError.get());
167
168 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
169 !LineIt.is_at_eof(); ++LineIt) {
170 std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
171 if (Parts.first.empty() || Parts.second.empty() ||
172 Parts.second.count(' ')) {
173 exitWithError("unexpected line in remapping file",
174 (InputFile + ":" + Twine(LineIt.line_number())).str(),
175 "expected 'old_symbol new_symbol'");
176 }
177 Remapper->RemappingTable.insert(Parts);
178 }
179 return Remapper;
180 }
181
182 /// Attempt to map the given old symbol into a new symbol.
183 ///
184 /// \return The new symbol, or \p Name if no such symbol was found.
185 StringRef operator()(StringRef Name) {
186 StringRef New = RemappingTable.lookup(Name);
187 return New.empty() ? Name : New;
188 }
189};
190}
191
192struct WeightedFile {
193 std::string Filename;
194 uint64_t Weight;
195};
196typedef SmallVector<WeightedFile, 5> WeightedFileVector;
197
198/// Keep track of merged data and reported errors.
199struct WriterContext {
200 std::mutex Lock;
201 InstrProfWriter Writer;
202 std::vector<std::pair<Error, std::string>> Errors;
203 std::mutex &ErrLock;
204 SmallSet<instrprof_error, 4> &WriterErrorCodes;
205
206 WriterContext(bool IsSparse, std::mutex &ErrLock,
207 SmallSet<instrprof_error, 4> &WriterErrorCodes)
208 : Writer(IsSparse), ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {
209 }
210};
211
212/// Computer the overlap b/w profile BaseFilename and TestFileName,
213/// and store the program level result to Overlap.
214static void overlapInput(const std::string &BaseFilename,
215 const std::string &TestFilename, WriterContext *WC,
216 OverlapStats &Overlap,
217 const OverlapFuncFilters &FuncFilter,
218 raw_fd_ostream &OS, bool IsCS) {
219 auto ReaderOrErr = InstrProfReader::create(TestFilename);
220 if (Error E = ReaderOrErr.takeError()) {
221 // Skip the empty profiles by returning sliently.
222 instrprof_error IPE = InstrProfError::take(std::move(E));
223 if (IPE != instrprof_error::empty_raw_profile)
224 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
225 return;
226 }
227
228 auto Reader = std::move(ReaderOrErr.get());
229 for (auto &I : *Reader) {
230 OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
231 FuncOverlap.setFuncInfo(I.Name, I.Hash);
232
233 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
234 FuncOverlap.dump(OS);
235 }
236}
237
238/// Load an input into a writer context.
239static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
240 const InstrProfCorrelator *Correlator,
241 WriterContext *WC) {
242 std::unique_lock<std::mutex> CtxGuard{WC->Lock};
243
244 // Copy the filename, because llvm::ThreadPool copied the input "const
245 // WeightedFile &" by value, making a reference to the filename within it
246 // invalid outside of this packaged task.
247 std::string Filename = Input.Filename;
248
249 auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator);
250 if (Error E = ReaderOrErr.takeError()) {
251 // Skip the empty profiles by returning sliently.
252 instrprof_error IPE = InstrProfError::take(std::move(E));
253 if (IPE != instrprof_error::empty_raw_profile)
254 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
255 return;
256 }
257
258 auto Reader = std::move(ReaderOrErr.get());
259 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
260 consumeError(std::move(E));
261 WC->Errors.emplace_back(
262 make_error<StringError>(
263 "Merge IR generated profile with Clang generated profile.",
264 std::error_code()),
265 Filename);
266 return;
267 }
268
269 for (auto &I : *Reader) {
270 if (Remapper)
271 I.Name = (*Remapper)(I.Name);
272 const StringRef FuncName = I.Name;
273 bool Reported = false;
274 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
275 if (Reported) {
276 consumeError(std::move(E));
277 return;
278 }
279 Reported = true;
280 // Only show hint the first time an error occurs.
281 instrprof_error IPE = InstrProfError::take(std::move(E));
282 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
283 bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
284 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
285 FuncName, firstTime);
286 });
287 }
288 if (Reader->hasError())
289 if (Error E = Reader->getError())
290 WC->Errors.emplace_back(std::move(E), Filename);
291}
292
293/// Merge the \p Src writer context into \p Dst.
294static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
295 for (auto &ErrorPair : Src->Errors)
296 Dst->Errors.push_back(std::move(ErrorPair));
297 Src->Errors.clear();
298
299 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
300 instrprof_error IPE = InstrProfError::take(std::move(E));
301 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
302 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
303 if (firstTime)
304 warn(toString(make_error<InstrProfError>(IPE)));
305 });
306}
307
308static void writeInstrProfile(StringRef OutputFilename,
309 ProfileFormat OutputFormat,
310 InstrProfWriter &Writer) {
311 std::error_code EC;
312 raw_fd_ostream Output(OutputFilename.data(), EC,
313 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
314 : sys::fs::OF_None);
315 if (EC)
316 exitWithErrorCode(EC, OutputFilename);
317
318 if (OutputFormat == PF_Text) {
319 if (Error E = Writer.writeText(Output))
320 warn(std::move(E));
321 } else {
322 if (Output.is_displayed())
323 exitWithError("cannot write a non-text format profile to the terminal");
324 if (Error E = Writer.write(Output))
325 warn(std::move(E));
326 }
327}
328
329static void mergeInstrProfile(const WeightedFileVector &Inputs,
330 StringRef DebugInfoFilename,
331 SymbolRemapper *Remapper,
332 StringRef OutputFilename,
333 ProfileFormat OutputFormat, bool OutputSparse,
334 unsigned NumThreads, FailureMode FailMode) {
335 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
336 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
337 exitWithError("unknown format is specified");
338
339 std::unique_ptr<InstrProfCorrelator> Correlator;
340 if (!DebugInfoFilename.empty()) {
341 if (auto Err =
342 InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator))
343 exitWithError(std::move(Err), DebugInfoFilename);
344 if (auto Err = Correlator->correlateProfileData())
345 exitWithError(std::move(Err), DebugInfoFilename);
346 }
347
348 std::mutex ErrorLock;
349 SmallSet<instrprof_error, 4> WriterErrorCodes;
350
351 // If NumThreads is not specified, auto-detect a good default.
352 if (NumThreads == 0)
353 NumThreads = std::min(hardware_concurrency().compute_thread_count(),
354 unsigned((Inputs.size() + 1) / 2));
355 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails
356 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't
357 // merged, thus the emitted file ends up with a PF_Unknown kind.
358
359 // Initialize the writer contexts.
360 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
361 for (unsigned I = 0; I < NumThreads; ++I)
362 Contexts.emplace_back(std::make_unique<WriterContext>(
363 OutputSparse, ErrorLock, WriterErrorCodes));
364
365 if (NumThreads == 1) {
366 for (const auto &Input : Inputs)
367 loadInput(Input, Remapper, Correlator.get(), Contexts[0].get());
368 } else {
369 ThreadPool Pool(hardware_concurrency(NumThreads));
370
371 // Load the inputs in parallel (N/NumThreads serial steps).
372 unsigned Ctx = 0;
373 for (const auto &Input : Inputs) {
374 Pool.async(loadInput, Input, Remapper, Correlator.get(),
375 Contexts[Ctx].get());
376 Ctx = (Ctx + 1) % NumThreads;
377 }
378 Pool.wait();
379
380 // Merge the writer contexts together (~ lg(NumThreads) serial steps).
381 unsigned Mid = Contexts.size() / 2;
382 unsigned End = Contexts.size();
383 assert(Mid > 0 && "Expected more than one context")(static_cast <bool> (Mid > 0 && "Expected more than one context"
) ? void (0) : __assert_fail ("Mid > 0 && \"Expected more than one context\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 383, __extension__
__PRETTY_FUNCTION__))
;
384 do {
385 for (unsigned I = 0; I < Mid; ++I)
386 Pool.async(mergeWriterContexts, Contexts[I].get(),
387 Contexts[I + Mid].get());
388 Pool.wait();
389 if (End & 1) {
390 Pool.async(mergeWriterContexts, Contexts[0].get(),
391 Contexts[End - 1].get());
392 Pool.wait();
393 }
394 End = Mid;
395 Mid /= 2;
396 } while (Mid > 0);
397 }
398
399 // Handle deferred errors encountered during merging. If the number of errors
400 // is equal to the number of inputs the merge failed.
401 unsigned NumErrors = 0;
402 for (std::unique_ptr<WriterContext> &WC : Contexts) {
403 for (auto &ErrorPair : WC->Errors) {
404 ++NumErrors;
405 warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
406 }
407 }
408 if (NumErrors == Inputs.size() ||
409 (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
410 exitWithError("no profile can be merged");
411
412 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
413}
414
415/// The profile entry for a function in instrumentation profile.
416struct InstrProfileEntry {
417 uint64_t MaxCount = 0;
418 float ZeroCounterRatio = 0.0;
419 InstrProfRecord *ProfRecord;
420 InstrProfileEntry(InstrProfRecord *Record);
421 InstrProfileEntry() = default;
422};
423
424InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
425 ProfRecord = Record;
426 uint64_t CntNum = Record->Counts.size();
427 uint64_t ZeroCntNum = 0;
428 for (size_t I = 0; I < CntNum; ++I) {
429 MaxCount = std::max(MaxCount, Record->Counts[I]);
430 ZeroCntNum += !Record->Counts[I];
431 }
432 ZeroCounterRatio = (float)ZeroCntNum / CntNum;
433}
434
435/// Either set all the counters in the instr profile entry \p IFE to -1
436/// in order to drop the profile or scale up the counters in \p IFP to
437/// be above hot threshold. We use the ratio of zero counters in the
438/// profile of a function to decide the profile is helpful or harmful
439/// for performance, and to choose whether to scale up or drop it.
440static void updateInstrProfileEntry(InstrProfileEntry &IFE,
441 uint64_t HotInstrThreshold,
442 float ZeroCounterThreshold) {
443 InstrProfRecord *ProfRecord = IFE.ProfRecord;
444 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
445 // If all or most of the counters of the function are zero, the
446 // profile is unaccountable and shuld be dropped. Reset all the
447 // counters to be -1 and PGO profile-use will drop the profile.
448 // All counters being -1 also implies that the function is hot so
449 // PGO profile-use will also set the entry count metadata to be
450 // above hot threshold.
451 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I)
452 ProfRecord->Counts[I] = -1;
453 return;
454 }
455
456 // Scale up the MaxCount to be multiple times above hot threshold.
457 const unsigned MultiplyFactor = 3;
458 uint64_t Numerator = HotInstrThreshold * MultiplyFactor;
459 uint64_t Denominator = IFE.MaxCount;
460 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
461 warn(toString(make_error<InstrProfError>(E)));
462 });
463}
464
465const uint64_t ColdPercentileIdx = 15;
466const uint64_t HotPercentileIdx = 11;
467
468using sampleprof::FSDiscriminatorPass;
469
470// Internal options to set FSDiscriminatorPass. Used in merge and show
471// commands.
472static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
473 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
474 cl::desc("Zero out the discriminator bits for the FS discrimiantor "
475 "pass beyond this value. The enum values are defined in "
476 "Support/Discriminator.h"),
477 cl::values(clEnumVal(Base, "Use base discriminators only")llvm::cl::OptionEnumValue { "Base", int(Base), "Use base discriminators only"
}
,
478 clEnumVal(Pass1, "Use base and pass 1 discriminators")llvm::cl::OptionEnumValue { "Pass1", int(Pass1), "Use base and pass 1 discriminators"
}
,
479 clEnumVal(Pass2, "Use base and pass 1-2 discriminators")llvm::cl::OptionEnumValue { "Pass2", int(Pass2), "Use base and pass 1-2 discriminators"
}
,
480 clEnumVal(Pass3, "Use base and pass 1-3 discriminators")llvm::cl::OptionEnumValue { "Pass3", int(Pass3), "Use base and pass 1-3 discriminators"
}
,
481 clEnumVal(PassLast, "Use all discriminator bits (default)")llvm::cl::OptionEnumValue { "PassLast", int(PassLast), "Use all discriminator bits (default)"
}
));
482
483static unsigned getDiscriminatorMask() {
484 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
485}
486
487/// Adjust the instr profile in \p WC based on the sample profile in
488/// \p Reader.
489static void
490adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
491 std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
492 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
493 unsigned InstrProfColdThreshold) {
494 // Function to its entry in instr profile.
495 StringMap<InstrProfileEntry> InstrProfileMap;
496 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
497 for (auto &PD : WC->Writer.getProfileData()) {
498 // Populate IPBuilder.
499 for (const auto &PDV : PD.getValue()) {
500 InstrProfRecord Record = PDV.second;
501 IPBuilder.addRecord(Record);
502 }
503
504 // If a function has multiple entries in instr profile, skip it.
505 if (PD.getValue().size() != 1)
506 continue;
507
508 // Initialize InstrProfileMap.
509 InstrProfRecord *R = &PD.getValue().begin()->second;
510 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R);
511 }
512
513 ProfileSummary InstrPS = *IPBuilder.getSummary();
514 ProfileSummary SamplePS = Reader->getSummary();
515
516 // Compute cold thresholds for instr profile and sample profile.
517 uint64_t ColdSampleThreshold =
518 ProfileSummaryBuilder::getEntryForPercentile(
519 SamplePS.getDetailedSummary(),
520 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
521 .MinCount;
522 uint64_t HotInstrThreshold =
523 ProfileSummaryBuilder::getEntryForPercentile(
524 InstrPS.getDetailedSummary(),
525 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
526 .MinCount;
527 uint64_t ColdInstrThreshold =
528 InstrProfColdThreshold
529 ? InstrProfColdThreshold
530 : ProfileSummaryBuilder::getEntryForPercentile(
531 InstrPS.getDetailedSummary(),
532 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
533 .MinCount;
534
535 // Find hot/warm functions in sample profile which is cold in instr profile
536 // and adjust the profiles of those functions in the instr profile.
537 for (const auto &PD : Reader->getProfiles()) {
538 auto &FContext = PD.first;
539 const sampleprof::FunctionSamples &FS = PD.second;
540 auto It = InstrProfileMap.find(FContext.toString());
541 if (FS.getHeadSamples() > ColdSampleThreshold &&
542 It != InstrProfileMap.end() &&
543 It->second.MaxCount <= ColdInstrThreshold &&
544 FS.getBodySamples().size() >= SupplMinSizeThreshold) {
545 updateInstrProfileEntry(It->second, HotInstrThreshold,
546 ZeroCounterThreshold);
547 }
548 }
549}
550
551/// The main function to supplement instr profile with sample profile.
552/// \Inputs contains the instr profile. \p SampleFilename specifies the
553/// sample profile. \p OutputFilename specifies the output profile name.
554/// \p OutputFormat specifies the output profile format. \p OutputSparse
555/// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
556/// specifies the minimal size for the functions whose profile will be
557/// adjusted. \p ZeroCounterThreshold is the threshold to check whether
558/// a function contains too many zero counters and whether its profile
559/// should be dropped. \p InstrProfColdThreshold is the user specified
560/// cold threshold which will override the cold threshold got from the
561/// instr profile summary.
562static void supplementInstrProfile(
563 const WeightedFileVector &Inputs, StringRef SampleFilename,
564 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
565 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
566 unsigned InstrProfColdThreshold) {
567 if (OutputFilename.compare("-") == 0)
568 exitWithError("cannot write indexed profdata format to stdout");
569 if (Inputs.size() != 1)
570 exitWithError("expect one input to be an instr profile");
571 if (Inputs[0].Weight != 1)
572 exitWithError("expect instr profile doesn't have weight");
573
574 StringRef InstrFilename = Inputs[0].Filename;
575
576 // Read sample profile.
577 LLVMContext Context;
578 auto ReaderOrErr = sampleprof::SampleProfileReader::create(
579 SampleFilename.str(), Context, FSDiscriminatorPassOption);
580 if (std::error_code EC = ReaderOrErr.getError())
581 exitWithErrorCode(EC, SampleFilename);
582 auto Reader = std::move(ReaderOrErr.get());
583 if (std::error_code EC = Reader->read())
584 exitWithErrorCode(EC, SampleFilename);
585
586 // Read instr profile.
587 std::mutex ErrorLock;
588 SmallSet<instrprof_error, 4> WriterErrorCodes;
589 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
590 WriterErrorCodes);
591 loadInput(Inputs[0], nullptr, nullptr, WC.get());
592 if (WC->Errors.size() > 0)
593 exitWithError(std::move(WC->Errors[0].first), InstrFilename);
594
595 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
596 InstrProfColdThreshold);
597 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
598}
599
600/// Make a copy of the given function samples with all symbol names remapped
601/// by the provided symbol remapper.
602static sampleprof::FunctionSamples
603remapSamples(const sampleprof::FunctionSamples &Samples,
604 SymbolRemapper &Remapper, sampleprof_error &Error) {
605 sampleprof::FunctionSamples Result;
606 Result.setName(Remapper(Samples.getName()));
607 Result.addTotalSamples(Samples.getTotalSamples());
608 Result.addHeadSamples(Samples.getHeadSamples());
609 for (const auto &BodySample : Samples.getBodySamples()) {
610 uint32_t MaskedDiscriminator =
611 BodySample.first.Discriminator & getDiscriminatorMask();
612 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
613 BodySample.second.getSamples());
614 for (const auto &Target : BodySample.second.getCallTargets()) {
615 Result.addCalledTargetSamples(BodySample.first.LineOffset,
616 MaskedDiscriminator,
617 Remapper(Target.first()), Target.second);
618 }
619 }
620 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
621 sampleprof::FunctionSamplesMap &Target =
622 Result.functionSamplesAt(CallsiteSamples.first);
623 for (const auto &Callsite : CallsiteSamples.second) {
624 sampleprof::FunctionSamples Remapped =
625 remapSamples(Callsite.second, Remapper, Error);
626 MergeResult(Error,
627 Target[std::string(Remapped.getName())].merge(Remapped));
628 }
629 }
630 return Result;
631}
632
633static sampleprof::SampleProfileFormat FormatMap[] = {
634 sampleprof::SPF_None,
635 sampleprof::SPF_Text,
636 sampleprof::SPF_Compact_Binary,
637 sampleprof::SPF_Ext_Binary,
638 sampleprof::SPF_GCC,
639 sampleprof::SPF_Binary};
640
641static std::unique_ptr<MemoryBuffer>
642getInputFileBuf(const StringRef &InputFile) {
643 if (InputFile == "")
644 return {};
645
646 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
647 if (!BufOrError)
648 exitWithErrorCode(BufOrError.getError(), InputFile);
649
650 return std::move(*BufOrError);
651}
652
653static void populateProfileSymbolList(MemoryBuffer *Buffer,
654 sampleprof::ProfileSymbolList &PSL) {
655 if (!Buffer)
656 return;
657
658 SmallVector<StringRef, 32> SymbolVec;
659 StringRef Data = Buffer->getBuffer();
660 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
661
662 for (StringRef SymbolStr : SymbolVec)
663 PSL.add(SymbolStr.trim());
664}
665
666static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
667 ProfileFormat OutputFormat,
668 MemoryBuffer *Buffer,
669 sampleprof::ProfileSymbolList &WriterList,
670 bool CompressAllSections, bool UseMD5,
671 bool GenPartialProfile) {
672 populateProfileSymbolList(Buffer, WriterList);
673 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
674 warn("Profile Symbol list is not empty but the output format is not "
675 "ExtBinary format. The list will be lost in the output. ");
676
677 Writer.setProfileSymbolList(&WriterList);
678
679 if (CompressAllSections) {
680 if (OutputFormat != PF_Ext_Binary)
681 warn("-compress-all-section is ignored. Specify -extbinary to enable it");
682 else
683 Writer.setToCompressAllSections();
684 }
685 if (UseMD5) {
686 if (OutputFormat != PF_Ext_Binary)
687 warn("-use-md5 is ignored. Specify -extbinary to enable it");
688 else
689 Writer.setUseMD5();
690 }
691 if (GenPartialProfile) {
692 if (OutputFormat != PF_Ext_Binary)
693 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
694 else
695 Writer.setPartialProfile();
696 }
697}
698
699static void
700mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
701 StringRef OutputFilename, ProfileFormat OutputFormat,
702 StringRef ProfileSymbolListFile, bool CompressAllSections,
703 bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile,
704 bool SampleMergeColdContext, bool SampleTrimColdContext,
705 bool SampleColdContextFrameDepth, FailureMode FailMode) {
706 using namespace sampleprof;
707 SampleProfileMap ProfileMap;
708 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
709 LLVMContext Context;
710 sampleprof::ProfileSymbolList WriterList;
711 Optional<bool> ProfileIsProbeBased;
712 Optional<bool> ProfileIsCSFlat;
713 for (const auto &Input : Inputs) {
714 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context,
715 FSDiscriminatorPassOption);
716 if (std::error_code EC = ReaderOrErr.getError()) {
717 warnOrExitGivenError(FailMode, EC, Input.Filename);
718 continue;
719 }
720
721 // We need to keep the readers around until after all the files are
722 // read so that we do not lose the function names stored in each
723 // reader's memory. The function names are needed to write out the
724 // merged profile map.
725 Readers.push_back(std::move(ReaderOrErr.get()));
726 const auto Reader = Readers.back().get();
727 if (std::error_code EC = Reader->read()) {
728 warnOrExitGivenError(FailMode, EC, Input.Filename);
729 Readers.pop_back();
730 continue;
731 }
732
733 SampleProfileMap &Profiles = Reader->getProfiles();
734 if (ProfileIsProbeBased.hasValue() &&
735 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
736 exitWithError(
737 "cannot merge probe-based profile with non-probe-based profile");
738 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
739 if (ProfileIsCSFlat.hasValue() &&
740 ProfileIsCSFlat != FunctionSamples::ProfileIsCSFlat)
741 exitWithError("cannot merge CS profile with non-CS profile");
742 ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat;
743 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
744 I != E; ++I) {
745 sampleprof_error Result = sampleprof_error::success;
746 FunctionSamples Remapped =
747 Remapper ? remapSamples(I->second, *Remapper, Result)
748 : FunctionSamples();
749 FunctionSamples &Samples = Remapper ? Remapped : I->second;
750 SampleContext FContext = Samples.getContext();
751 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight));
752 if (Result != sampleprof_error::success) {
753 std::error_code EC = make_error_code(Result);
754 handleMergeWriterError(errorCodeToError(EC), Input.Filename,
755 FContext.toString());
756 }
757 }
758
759 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
760 Reader->getProfileSymbolList();
761 if (ReaderList)
762 WriterList.merge(*ReaderList);
763 }
764
765 if (ProfileIsCSFlat && (SampleMergeColdContext || SampleTrimColdContext)) {
766 // Use threshold calculated from profile summary unless specified.
767 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
768 auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
769 uint64_t SampleProfColdThreshold =
770 ProfileSummaryBuilder::getColdCountThreshold(
771 (Summary->getDetailedSummary()));
772
773 // Trim and merge cold context profile using cold threshold above;
774 SampleContextTrimmer(ProfileMap)
775 .trimAndMergeColdContextProfiles(
776 SampleProfColdThreshold, SampleTrimColdContext,
777 SampleMergeColdContext, SampleColdContextFrameDepth, false);
778 }
779
780 if (ProfileIsCSFlat && GenCSNestedProfile) {
781 CSProfileConverter CSConverter(ProfileMap);
782 CSConverter.convertProfiles();
783 ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat = false;
784 }
785
786 auto WriterOrErr =
787 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
788 if (std::error_code EC = WriterOrErr.getError())
789 exitWithErrorCode(EC, OutputFilename);
790
791 auto Writer = std::move(WriterOrErr.get());
792 // WriterList will have StringRef refering to string in Buffer.
793 // Make sure Buffer lives as long as WriterList.
794 auto Buffer = getInputFileBuf(ProfileSymbolListFile);
795 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
796 CompressAllSections, UseMD5, GenPartialProfile);
797 if (std::error_code EC = Writer->write(ProfileMap))
798 exitWithErrorCode(std::move(EC));
799}
800
801static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
802 StringRef WeightStr, FileName;
803 std::tie(WeightStr, FileName) = WeightedFilename.split(',');
804
805 uint64_t Weight;
806 if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
807 exitWithError("input weight must be a positive integer");
808
809 return {std::string(FileName), Weight};
810}
811
812static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
813 StringRef Filename = WF.Filename;
814 uint64_t Weight = WF.Weight;
815
816 // If it's STDIN just pass it on.
817 if (Filename == "-") {
818 WNI.push_back({std::string(Filename), Weight});
819 return;
820 }
821
822 llvm::sys::fs::file_status Status;
823 llvm::sys::fs::status(Filename, Status);
824 if (!llvm::sys::fs::exists(Status))
825 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
826 Filename);
827 // If it's a source file, collect it.
828 if (llvm::sys::fs::is_regular_file(Status)) {
829 WNI.push_back({std::string(Filename), Weight});
830 return;
831 }
832
833 if (llvm::sys::fs::is_directory(Status)) {
834 std::error_code EC;
835 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
836 F != E && !EC; F.increment(EC)) {
837 if (llvm::sys::fs::is_regular_file(F->path())) {
838 addWeightedInput(WNI, {F->path(), Weight});
839 }
840 }
841 if (EC)
842 exitWithErrorCode(EC, Filename);
843 }
844}
845
846static void parseInputFilenamesFile(MemoryBuffer *Buffer,
847 WeightedFileVector &WFV) {
848 if (!Buffer)
849 return;
850
851 SmallVector<StringRef, 8> Entries;
852 StringRef Data = Buffer->getBuffer();
853 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
854 for (const StringRef &FileWeightEntry : Entries) {
855 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
856 // Skip comments.
857 if (SanitizedEntry.startswith("#"))
858 continue;
859 // If there's no comma, it's an unweighted profile.
860 else if (!SanitizedEntry.contains(','))
861 addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
862 else
863 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
864 }
865}
866
867static int merge_main(int argc, const char *argv[]) {
868 cl::list<std::string> InputFilenames(cl::Positional,
869 cl::desc("<filename...>"));
870 cl::list<std::string> WeightedInputFilenames("weighted-input",
871 cl::desc("<weight>,<filename>"));
872 cl::opt<std::string> InputFilenamesFile(
873 "input-files", cl::init(""),
874 cl::desc("Path to file containing newline-separated "
875 "[<weight>,]<filename> entries"));
876 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
877 cl::aliasopt(InputFilenamesFile));
878 cl::opt<bool> DumpInputFileList(
879 "dump-input-file-list", cl::init(false), cl::Hidden,
880 cl::desc("Dump the list of input files and their weights, then exit"));
881 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
882 cl::desc("Symbol remapping file"));
883 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
884 cl::aliasopt(RemappingFile));
885 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
886 cl::init("-"), cl::desc("Output file"));
887 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
888 cl::aliasopt(OutputFilename));
889 cl::opt<ProfileKinds> ProfileKind(
890 cl::desc("Profile kind:"), cl::init(instr),
891 cl::values(clEnumVal(instr, "Instrumentation profile (default)")llvm::cl::OptionEnumValue { "instr", int(instr), "Instrumentation profile (default)"
}
,
892 clEnumVal(sample, "Sample profile")llvm::cl::OptionEnumValue { "sample", int(sample), "Sample profile"
}
));
893 cl::opt<ProfileFormat> OutputFormat(
894 cl::desc("Format of output profile"), cl::init(PF_Binary),
895 cl::values(
896 clEnumValN(PF_Binary, "binary", "Binary encoding (default)")llvm::cl::OptionEnumValue { "binary", int(PF_Binary), "Binary encoding (default)"
}
,
897 clEnumValN(PF_Compact_Binary, "compbinary",llvm::cl::OptionEnumValue { "compbinary", int(PF_Compact_Binary
), "Compact binary encoding" }
898 "Compact binary encoding")llvm::cl::OptionEnumValue { "compbinary", int(PF_Compact_Binary
), "Compact binary encoding" }
,
899 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding")llvm::cl::OptionEnumValue { "extbinary", int(PF_Ext_Binary), "Extensible binary encoding"
}
,
900 clEnumValN(PF_Text, "text", "Text encoding")llvm::cl::OptionEnumValue { "text", int(PF_Text), "Text encoding"
}
,
901 clEnumValN(PF_GCC, "gcc",llvm::cl::OptionEnumValue { "gcc", int(PF_GCC), "GCC encoding (only meaningful for -sample)"
}
902 "GCC encoding (only meaningful for -sample)")llvm::cl::OptionEnumValue { "gcc", int(PF_GCC), "GCC encoding (only meaningful for -sample)"
}
));
903 cl::opt<FailureMode> FailureMode(
904 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
905 cl::values(clEnumValN(failIfAnyAreInvalid, "any",llvm::cl::OptionEnumValue { "any", int(failIfAnyAreInvalid), "Fail if any profile is invalid."
}
906 "Fail if any profile is invalid.")llvm::cl::OptionEnumValue { "any", int(failIfAnyAreInvalid), "Fail if any profile is invalid."
}
,
907 clEnumValN(failIfAllAreInvalid, "all",llvm::cl::OptionEnumValue { "all", int(failIfAllAreInvalid), "Fail only if all profiles are invalid."
}
908 "Fail only if all profiles are invalid.")llvm::cl::OptionEnumValue { "all", int(failIfAllAreInvalid), "Fail only if all profiles are invalid."
}
));
909 cl::opt<bool> OutputSparse("sparse", cl::init(false),
910 cl::desc("Generate a sparse profile (only meaningful for -instr)"));
911 cl::opt<unsigned> NumThreads(
912 "num-threads", cl::init(0),
913 cl::desc("Number of merge threads to use (default: autodetect)"));
914 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
915 cl::aliasopt(NumThreads));
916 cl::opt<std::string> ProfileSymbolListFile(
917 "prof-sym-list", cl::init(""),
918 cl::desc("Path to file containing the list of function symbols "
919 "used to populate profile symbol list"));
920 cl::opt<bool> CompressAllSections(
921 "compress-all-sections", cl::init(false), cl::Hidden,
922 cl::desc("Compress all sections when writing the profile (only "
923 "meaningful for -extbinary)"));
924 cl::opt<bool> UseMD5(
925 "use-md5", cl::init(false), cl::Hidden,
926 cl::desc("Choose to use MD5 to represent string in name table (only "
927 "meaningful for -extbinary)"));
928 cl::opt<bool> SampleMergeColdContext(
929 "sample-merge-cold-context", cl::init(false), cl::Hidden,
930 cl::desc(
931 "Merge context sample profiles whose count is below cold threshold"));
932 cl::opt<bool> SampleTrimColdContext(
933 "sample-trim-cold-context", cl::init(false), cl::Hidden,
934 cl::desc(
935 "Trim context sample profiles whose count is below cold threshold"));
936 cl::opt<uint32_t> SampleColdContextFrameDepth(
937 "sample-frame-depth-for-cold-context", cl::init(1), cl::ZeroOrMore,
938 cl::desc("Keep the last K frames while merging cold profile. 1 means the "
939 "context-less base profile"));
940 cl::opt<bool> GenPartialProfile(
941 "gen-partial-profile", cl::init(false), cl::Hidden,
942 cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
943 cl::opt<std::string> SupplInstrWithSample(
944 "supplement-instr-with-sample", cl::init(""), cl::Hidden,
945 cl::desc("Supplement an instr profile with sample profile, to correct "
946 "the profile unrepresentativeness issue. The sample "
947 "profile is the input of the flag. Output will be in instr "
948 "format (The flag only works with -instr)"));
949 cl::opt<float> ZeroCounterThreshold(
950 "zero-counter-threshold", cl::init(0.7), cl::Hidden,
951 cl::desc("For the function which is cold in instr profile but hot in "
952 "sample profile, if the ratio of the number of zero counters "
953 "divided by the the total number of counters is above the "
954 "threshold, the profile of the function will be regarded as "
955 "being harmful for performance and will be dropped."));
956 cl::opt<unsigned> SupplMinSizeThreshold(
957 "suppl-min-size-threshold", cl::init(10), cl::Hidden,
958 cl::desc("If the size of a function is smaller than the threshold, "
959 "assume it can be inlined by PGO early inliner and it won't "
960 "be adjusted based on sample profile."));
961 cl::opt<unsigned> InstrProfColdThreshold(
962 "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
963 cl::desc("User specified cold threshold for instr profile which will "
964 "override the cold threshold got from profile summary. "));
965 cl::opt<bool> GenCSNestedProfile(
966 "gen-cs-nested-profile", cl::Hidden, cl::init(false),
967 cl::desc("Generate nested function profiles for CSSPGO"));
968 cl::opt<std::string> DebugInfoFilename(
969 "debug-info", cl::init(""),
970 cl::desc("Use the provided debug info to correlate the raw profile."));
971
972 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");
973
974 WeightedFileVector WeightedInputs;
975 for (StringRef Filename : InputFilenames)
976 addWeightedInput(WeightedInputs, {std::string(Filename), 1});
977 for (StringRef WeightedFilename : WeightedInputFilenames)
978 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
979
980 // Make sure that the file buffer stays alive for the duration of the
981 // weighted input vector's lifetime.
982 auto Buffer = getInputFileBuf(InputFilenamesFile);
983 parseInputFilenamesFile(Buffer.get(), WeightedInputs);
984
985 if (WeightedInputs.empty())
986 exitWithError("no input files specified. See " +
987 sys::path::filename(argv[0]) + " -help");
988
989 if (DumpInputFileList) {
990 for (auto &WF : WeightedInputs)
991 outs() << WF.Weight << "," << WF.Filename << "\n";
992 return 0;
993 }
994
995 std::unique_ptr<SymbolRemapper> Remapper;
996 if (!RemappingFile.empty())
997 Remapper = SymbolRemapper::create(RemappingFile);
998
999 if (!SupplInstrWithSample.empty()) {
1000 if (ProfileKind != instr)
1001 exitWithError(
1002 "-supplement-instr-with-sample can only work with -instr. ");
1003
1004 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
1005 OutputFormat, OutputSparse, SupplMinSizeThreshold,
1006 ZeroCounterThreshold, InstrProfColdThreshold);
1007 return 0;
1008 }
1009
1010 if (ProfileKind == instr)
1011 mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(),
1012 OutputFilename, OutputFormat, OutputSparse, NumThreads,
1013 FailureMode);
1014 else
1015 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename,
1016 OutputFormat, ProfileSymbolListFile, CompressAllSections,
1017 UseMD5, GenPartialProfile, GenCSNestedProfile,
1018 SampleMergeColdContext, SampleTrimColdContext,
1019 SampleColdContextFrameDepth, FailureMode);
1020 return 0;
1021}
1022
1023/// Computer the overlap b/w profile BaseFilename and profile TestFilename.
1024static void overlapInstrProfile(const std::string &BaseFilename,
1025 const std::string &TestFilename,
1026 const OverlapFuncFilters &FuncFilter,
1027 raw_fd_ostream &OS, bool IsCS) {
1028 std::mutex ErrorLock;
1029 SmallSet<instrprof_error, 4> WriterErrorCodes;
1030 WriterContext Context(false, ErrorLock, WriterErrorCodes);
1031 WeightedFile WeightedInput{BaseFilename, 1};
1032 OverlapStats Overlap;
1033 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1034 if (E)
1035 exitWithError(std::move(E), "error in getting profile count sums");
1036 if (Overlap.Base.CountSum < 1.0f) {
1037 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1038 exit(0);
1039 }
1040 if (Overlap.Test.CountSum < 1.0f) {
1041 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1042 exit(0);
1043 }
1044 loadInput(WeightedInput, nullptr, nullptr, &Context);
1045 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1046 IsCS);
1047 Overlap.dump(OS);
1048}
1049
1050namespace {
1051struct SampleOverlapStats {
1052 SampleContext BaseName;
1053 SampleContext TestName;
1054 // Number of overlap units
1055 uint64_t OverlapCount;
1056 // Total samples of overlap units
1057 uint64_t OverlapSample;
1058 // Number of and total samples of units that only present in base or test
1059 // profile
1060 uint64_t BaseUniqueCount;
1061 uint64_t BaseUniqueSample;
1062 uint64_t TestUniqueCount;
1063 uint64_t TestUniqueSample;
1064 // Number of units and total samples in base or test profile
1065 uint64_t BaseCount;
1066 uint64_t BaseSample;
1067 uint64_t TestCount;
1068 uint64_t TestSample;
1069 // Number of and total samples of units that present in at least one profile
1070 uint64_t UnionCount;
1071 uint64_t UnionSample;
1072 // Weighted similarity
1073 double Similarity;
1074 // For SampleOverlapStats instances representing functions, weights of the
1075 // function in base and test profiles
1076 double BaseWeight;
1077 double TestWeight;
1078
1079 SampleOverlapStats()
1080 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
1081 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
1082 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
1083 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
1084};
1085} // end anonymous namespace
1086
1087namespace {
1088struct FuncSampleStats {
1089 uint64_t SampleSum;
1090 uint64_t MaxSample;
1091 uint64_t HotBlockCount;
1092 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
1093 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1094 uint64_t HotBlockCount)
1095 : SampleSum(SampleSum), MaxSample(MaxSample),
1096 HotBlockCount(HotBlockCount) {}
1097};
1098} // end anonymous namespace
1099
1100namespace {
1101enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1102
1103// Class for updating merging steps for two sorted maps. The class should be
1104// instantiated with a map iterator type.
1105template <class T> class MatchStep {
1106public:
1107 MatchStep() = delete;
1108
1109 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1110 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1111 SecondEnd(SecondEnd), Status(MS_None) {}
1112
1113 bool areBothFinished() const {
1114 return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1115 }
1116
1117 bool isFirstFinished() const { return FirstIter == FirstEnd; }
1118
1119 bool isSecondFinished() const { return SecondIter == SecondEnd; }
1120
1121 /// Advance one step based on the previous match status unless the previous
1122 /// status is MS_None. Then update Status based on the comparison between two
1123 /// container iterators at the current step. If the previous status is
1124 /// MS_None, it means two iterators are at the beginning and no comparison has
1125 /// been made, so we simply update Status without advancing the iterators.
1126 void updateOneStep();
1127
1128 T getFirstIter() const { return FirstIter; }
1129
1130 T getSecondIter() const { return SecondIter; }
1131
1132 MatchStatus getMatchStatus() const { return Status; }
1133
1134private:
1135 // Current iterator and end iterator of the first container.
1136 T FirstIter;
1137 T FirstEnd;
1138 // Current iterator and end iterator of the second container.
1139 T SecondIter;
1140 T SecondEnd;
1141 // Match status of the current step.
1142 MatchStatus Status;
1143};
1144} // end anonymous namespace
1145
1146template <class T> void MatchStep<T>::updateOneStep() {
1147 switch (Status) {
1148 case MS_Match:
1149 ++FirstIter;
1150 ++SecondIter;
1151 break;
1152 case MS_FirstUnique:
1153 ++FirstIter;
1154 break;
1155 case MS_SecondUnique:
1156 ++SecondIter;
1157 break;
1158 case MS_None:
1159 break;
1160 }
1161
1162 // Update Status according to iterators at the current step.
1163 if (areBothFinished())
1164 return;
1165 if (FirstIter != FirstEnd &&
1166 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1167 Status = MS_FirstUnique;
1168 else if (SecondIter != SecondEnd &&
1169 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1170 Status = MS_SecondUnique;
1171 else
1172 Status = MS_Match;
1173}
1174
1175// Return the sum of line/block samples, the max line/block sample, and the
1176// number of line/block samples above the given threshold in a function
1177// including its inlinees.
1178static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1179 FuncSampleStats &FuncStats,
1180 uint64_t HotThreshold) {
1181 for (const auto &L : Func.getBodySamples()) {
1182 uint64_t Sample = L.second.getSamples();
1183 FuncStats.SampleSum += Sample;
1184 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1185 if (Sample >= HotThreshold)
1186 ++FuncStats.HotBlockCount;
1187 }
1188
1189 for (const auto &C : Func.getCallsiteSamples()) {
1190 for (const auto &F : C.second)
1191 getFuncSampleStats(F.second, FuncStats, HotThreshold);
1192 }
1193}
1194
1195/// Predicate that determines if a function is hot with a given threshold. We
1196/// keep it separate from its callsites for possible extension in the future.
1197static bool isFunctionHot(const FuncSampleStats &FuncStats,
1198 uint64_t HotThreshold) {
1199 // We intentionally compare the maximum sample count in a function with the
1200 // HotThreshold to get an approximate determination on hot functions.
1201 return (FuncStats.MaxSample >= HotThreshold);
1202}
1203
1204namespace {
1205class SampleOverlapAggregator {
1206public:
1207 SampleOverlapAggregator(const std::string &BaseFilename,
1208 const std::string &TestFilename,
1209 double LowSimilarityThreshold, double Epsilon,
1210 const OverlapFuncFilters &FuncFilter)
1211 : BaseFilename(BaseFilename), TestFilename(TestFilename),
1212 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1213 FuncFilter(FuncFilter) {}
1214
1215 /// Detect 0-sample input profile and report to output stream. This interface
1216 /// should be called after loadProfiles().
1217 bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1218
1219 /// Write out function-level similarity statistics for functions specified by
1220 /// options --function, --value-cutoff, and --similarity-cutoff.
1221 void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1222
1223 /// Write out program-level similarity and overlap statistics.
1224 void dumpProgramSummary(raw_fd_ostream &OS) const;
1225
1226 /// Write out hot-function and hot-block statistics for base_profile,
1227 /// test_profile, and their overlap. For both cases, the overlap HO is
1228 /// calculated as follows:
1229 /// Given the number of functions (or blocks) that are hot in both profiles
1230 /// HCommon and the number of functions (or blocks) that are hot in at
1231 /// least one profile HUnion, HO = HCommon / HUnion.
1232 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1233
1234 /// This function tries matching functions in base and test profiles. For each
1235 /// pair of matched functions, it aggregates the function-level
1236 /// similarity into a profile-level similarity. It also dump function-level
1237 /// similarity information of functions specified by --function,
1238 /// --value-cutoff, and --similarity-cutoff options. The program-level
1239 /// similarity PS is computed as follows:
1240 /// Given function-level similarity FS(A) for all function A, the
1241 /// weight of function A in base profile WB(A), and the weight of function
1242 /// A in test profile WT(A), compute PS(base_profile, test_profile) =
1243 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1244 /// meaning no-overlap.
1245 void computeSampleProfileOverlap(raw_fd_ostream &OS);
1246
1247 /// Initialize ProfOverlap with the sum of samples in base and test
1248 /// profiles. This function also computes and keeps the sum of samples and
1249 /// max sample counts of each function in BaseStats and TestStats for later
1250 /// use to avoid re-computations.
1251 void initializeSampleProfileOverlap();
1252
1253 /// Load profiles specified by BaseFilename and TestFilename.
1254 std::error_code loadProfiles();
1255
1256 using FuncSampleStatsMap =
1257 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
1258
1259private:
1260 SampleOverlapStats ProfOverlap;
1261 SampleOverlapStats HotFuncOverlap;
1262 SampleOverlapStats HotBlockOverlap;
1263 std::string BaseFilename;
1264 std::string TestFilename;
1265 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
1266 std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
1267 // BaseStats and TestStats hold FuncSampleStats for each function, with
1268 // function name as the key.
1269 FuncSampleStatsMap BaseStats;
1270 FuncSampleStatsMap TestStats;
1271 // Low similarity threshold in floating point number
1272 double LowSimilarityThreshold;
1273 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
1274 // for tracking hot blocks.
1275 uint64_t BaseHotThreshold;
1276 uint64_t TestHotThreshold;
1277 // A small threshold used to round the results of floating point accumulations
1278 // to resolve imprecision.
1279 const double Epsilon;
1280 std::multimap<double, SampleOverlapStats, std::greater<double>>
1281 FuncSimilarityDump;
1282 // FuncFilter carries specifications in options --value-cutoff and
1283 // --function.
1284 OverlapFuncFilters FuncFilter;
1285 // Column offsets for printing the function-level details table.
1286 static const unsigned int TestWeightCol = 15;
1287 static const unsigned int SimilarityCol = 30;
1288 static const unsigned int OverlapCol = 43;
1289 static const unsigned int BaseUniqueCol = 53;
1290 static const unsigned int TestUniqueCol = 67;
1291 static const unsigned int BaseSampleCol = 81;
1292 static const unsigned int TestSampleCol = 96;
1293 static const unsigned int FuncNameCol = 111;
1294
1295 /// Return a similarity of two line/block sample counters in the same
1296 /// function in base and test profiles. The line/block-similarity BS(i) is
1297 /// computed as follows:
1298 /// For an offsets i, given the sample count at i in base profile BB(i),
1299 /// the sample count at i in test profile BT(i), the sum of sample counts
1300 /// in this function in base profile SB, and the sum of sample counts in
1301 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
1302 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
1303 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
1304 const SampleOverlapStats &FuncOverlap) const;
1305
1306 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
1307 uint64_t HotBlockCount);
1308
1309 void getHotFunctions(const FuncSampleStatsMap &ProfStats,
1310 FuncSampleStatsMap &HotFunc,
1311 uint64_t HotThreshold) const;
1312
1313 void computeHotFuncOverlap();
1314
1315 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1316 /// Difference for two sample units in a matched function according to the
1317 /// given match status.
1318 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
1319 uint64_t HotBlockCount,
1320 SampleOverlapStats &FuncOverlap,
1321 double &Difference, MatchStatus Status);
1322
1323 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1324 /// Difference for unmatched callees that only present in one profile in a
1325 /// matched caller function.
1326 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
1327 SampleOverlapStats &FuncOverlap,
1328 double &Difference, MatchStatus Status);
1329
1330 /// This function updates sample overlap statistics of an overlap function in
1331 /// base and test profile. It also calculates a function-internal similarity
1332 /// FIS as follows:
1333 /// For offsets i that have samples in at least one profile in this
1334 /// function A, given BS(i) returned by computeBlockSimilarity(), compute
1335 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
1336 /// 0.0 meaning no overlap.
1337 double computeSampleFunctionInternalOverlap(
1338 const sampleprof::FunctionSamples &BaseFunc,
1339 const sampleprof::FunctionSamples &TestFunc,
1340 SampleOverlapStats &FuncOverlap);
1341
1342 /// Function-level similarity (FS) is a weighted value over function internal
1343 /// similarity (FIS). This function computes a function's FS from its FIS by
1344 /// applying the weight.
1345 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
1346 uint64_t TestFuncSample) const;
1347
1348 /// The function-level similarity FS(A) for a function A is computed as
1349 /// follows:
1350 /// Compute a function-internal similarity FIS(A) by
1351 /// computeSampleFunctionInternalOverlap(). Then, with the weight of
1352 /// function A in base profile WB(A), and the weight of function A in test
1353 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
1354 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
1355 double
1356 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
1357 const sampleprof::FunctionSamples *TestFunc,
1358 SampleOverlapStats *FuncOverlap,
1359 uint64_t BaseFuncSample,
1360 uint64_t TestFuncSample);
1361
1362 /// Profile-level similarity (PS) is a weighted aggregate over function-level
1363 /// similarities (FS). This method weights the FS value by the function
1364 /// weights in the base and test profiles for the aggregation.
1365 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
1366 uint64_t TestFuncSample) const;
1367};
1368} // end anonymous namespace
1369
1370bool SampleOverlapAggregator::detectZeroSampleProfile(
1371 raw_fd_ostream &OS) const {
1372 bool HaveZeroSample = false;
1373 if (ProfOverlap.BaseSample == 0) {
1374 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
1375 HaveZeroSample = true;
1376 }
1377 if (ProfOverlap.TestSample == 0) {
1378 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
1379 HaveZeroSample = true;
1380 }
1381 return HaveZeroSample;
1382}
1383
1384double SampleOverlapAggregator::computeBlockSimilarity(
1385 uint64_t BaseSample, uint64_t TestSample,
1386 const SampleOverlapStats &FuncOverlap) const {
1387 double BaseFrac = 0.0;
1388 double TestFrac = 0.0;
1389 if (FuncOverlap.BaseSample > 0)
1390 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
1391 if (FuncOverlap.TestSample > 0)
1392 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
1393 return 1.0 - std::fabs(BaseFrac - TestFrac);
1394}
1395
1396void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
1397 uint64_t TestSample,
1398 uint64_t HotBlockCount) {
1399 bool IsBaseHot = (BaseSample >= BaseHotThreshold);
1400 bool IsTestHot = (TestSample >= TestHotThreshold);
1401 if (!IsBaseHot && !IsTestHot)
1402 return;
1403
1404 HotBlockOverlap.UnionCount += HotBlockCount;
1405 if (IsBaseHot)
1406 HotBlockOverlap.BaseCount += HotBlockCount;
1407 if (IsTestHot)
1408 HotBlockOverlap.TestCount += HotBlockCount;
1409 if (IsBaseHot && IsTestHot)
1410 HotBlockOverlap.OverlapCount += HotBlockCount;
1411}
1412
1413void SampleOverlapAggregator::getHotFunctions(
1414 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
1415 uint64_t HotThreshold) const {
1416 for (const auto &F : ProfStats) {
1417 if (isFunctionHot(F.second, HotThreshold))
1418 HotFunc.emplace(F.first, F.second);
1419 }
1420}
1421
1422void SampleOverlapAggregator::computeHotFuncOverlap() {
1423 FuncSampleStatsMap BaseHotFunc;
1424 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
1425 HotFuncOverlap.BaseCount = BaseHotFunc.size();
1426
1427 FuncSampleStatsMap TestHotFunc;
1428 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
1429 HotFuncOverlap.TestCount = TestHotFunc.size();
1430 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
1431
1432 for (const auto &F : BaseHotFunc) {
1433 if (TestHotFunc.count(F.first))
1434 ++HotFuncOverlap.OverlapCount;
1435 else
1436 ++HotFuncOverlap.UnionCount;
1437 }
1438}
1439
1440void SampleOverlapAggregator::updateOverlapStatsForFunction(
1441 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
1442 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
1443 assert(Status != MS_None &&(static_cast <bool> (Status != MS_None && "Match status should be updated before updating overlap statistics"
) ? void (0) : __assert_fail ("Status != MS_None && \"Match status should be updated before updating overlap statistics\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1444, __extension__
__PRETTY_FUNCTION__))
1444 "Match status should be updated before updating overlap statistics")(static_cast <bool> (Status != MS_None && "Match status should be updated before updating overlap statistics"
) ? void (0) : __assert_fail ("Status != MS_None && \"Match status should be updated before updating overlap statistics\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1444, __extension__
__PRETTY_FUNCTION__))
;
1445 if (Status == MS_FirstUnique) {
1446 TestSample = 0;
1447 FuncOverlap.BaseUniqueSample += BaseSample;
1448 } else if (Status == MS_SecondUnique) {
1449 BaseSample = 0;
1450 FuncOverlap.TestUniqueSample += TestSample;
1451 } else {
1452 ++FuncOverlap.OverlapCount;
1453 }
1454
1455 FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
1456 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
1457 Difference +=
1458 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
1459 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
1460}
1461
1462void SampleOverlapAggregator::updateForUnmatchedCallee(
1463 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
1464 double &Difference, MatchStatus Status) {
1465 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&(static_cast <bool> ((Status == MS_FirstUnique || Status
== MS_SecondUnique) && "Status must be either of the two unmatched cases"
) ? void (0) : __assert_fail ("(Status == MS_FirstUnique || Status == MS_SecondUnique) && \"Status must be either of the two unmatched cases\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1466, __extension__
__PRETTY_FUNCTION__))
1466 "Status must be either of the two unmatched cases")(static_cast <bool> ((Status == MS_FirstUnique || Status
== MS_SecondUnique) && "Status must be either of the two unmatched cases"
) ? void (0) : __assert_fail ("(Status == MS_FirstUnique || Status == MS_SecondUnique) && \"Status must be either of the two unmatched cases\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1466, __extension__
__PRETTY_FUNCTION__))
;
1467 FuncSampleStats FuncStats;
1468 if (Status == MS_FirstUnique) {
1469 getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
1470 updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
1471 FuncStats.HotBlockCount, FuncOverlap,
1472 Difference, Status);
1473 } else {
1474 getFuncSampleStats(Func, FuncStats, TestHotThreshold);
1475 updateOverlapStatsForFunction(0, FuncStats.SampleSum,
1476 FuncStats.HotBlockCount, FuncOverlap,
1477 Difference, Status);
1478 }
1479}
1480
1481double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
1482 const sampleprof::FunctionSamples &BaseFunc,
1483 const sampleprof::FunctionSamples &TestFunc,
1484 SampleOverlapStats &FuncOverlap) {
1485
1486 using namespace sampleprof;
1487
1488 double Difference = 0;
1489
1490 // Accumulate Difference for regular line/block samples in the function.
1491 // We match them through sort-merge join algorithm because
1492 // FunctionSamples::getBodySamples() returns a map of sample counters ordered
1493 // by their offsets.
1494 MatchStep<BodySampleMap::const_iterator> BlockIterStep(
1495 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
1496 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
1497 BlockIterStep.updateOneStep();
1498 while (!BlockIterStep.areBothFinished()) {
1499 uint64_t BaseSample =
1500 BlockIterStep.isFirstFinished()
1501 ? 0
1502 : BlockIterStep.getFirstIter()->second.getSamples();
1503 uint64_t TestSample =
1504 BlockIterStep.isSecondFinished()
1505 ? 0
1506 : BlockIterStep.getSecondIter()->second.getSamples();
1507 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
1508 Difference, BlockIterStep.getMatchStatus());
1509
1510 BlockIterStep.updateOneStep();
1511 }
1512
1513 // Accumulate Difference for callsite lines in the function. We match
1514 // them through sort-merge algorithm because
1515 // FunctionSamples::getCallsiteSamples() returns a map of callsite records
1516 // ordered by their offsets.
1517 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
1518 BaseFunc.getCallsiteSamples().cbegin(),
1519 BaseFunc.getCallsiteSamples().cend(),
1520 TestFunc.getCallsiteSamples().cbegin(),
1521 TestFunc.getCallsiteSamples().cend());
1522 CallsiteIterStep.updateOneStep();
1523 while (!CallsiteIterStep.areBothFinished()) {
1524 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
1525 assert(CallsiteStepStatus != MS_None &&(static_cast <bool> (CallsiteStepStatus != MS_None &&
"Match status should be updated before entering loop body") ?
void (0) : __assert_fail ("CallsiteStepStatus != MS_None && \"Match status should be updated before entering loop body\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1526, __extension__
__PRETTY_FUNCTION__))
1526 "Match status should be updated before entering loop body")(static_cast <bool> (CallsiteStepStatus != MS_None &&
"Match status should be updated before entering loop body") ?
void (0) : __assert_fail ("CallsiteStepStatus != MS_None && \"Match status should be updated before entering loop body\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1526, __extension__
__PRETTY_FUNCTION__))
;
1527
1528 if (CallsiteStepStatus != MS_Match) {
1529 auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
1530 ? CallsiteIterStep.getFirstIter()
1531 : CallsiteIterStep.getSecondIter();
1532 for (const auto &F : Callsite->second)
1533 updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
1534 CallsiteStepStatus);
1535 } else {
1536 // There may be multiple inlinees at the same offset, so we need to try
1537 // matching all of them. This match is implemented through sort-merge
1538 // algorithm because callsite records at the same offset are ordered by
1539 // function names.
1540 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
1541 CallsiteIterStep.getFirstIter()->second.cbegin(),
1542 CallsiteIterStep.getFirstIter()->second.cend(),
1543 CallsiteIterStep.getSecondIter()->second.cbegin(),
1544 CallsiteIterStep.getSecondIter()->second.cend());
1545 CalleeIterStep.updateOneStep();
1546 while (!CalleeIterStep.areBothFinished()) {
1547 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
1548 if (CalleeStepStatus != MS_Match) {
1549 auto Callee = (CalleeStepStatus == MS_FirstUnique)
1550 ? CalleeIterStep.getFirstIter()
1551 : CalleeIterStep.getSecondIter();
1552 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
1553 CalleeStepStatus);
1554 } else {
1555 // An inlined function can contain other inlinees inside, so compute
1556 // the Difference recursively.
1557 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
1558 CalleeIterStep.getFirstIter()->second,
1559 CalleeIterStep.getSecondIter()->second,
1560 FuncOverlap);
1561 }
1562 CalleeIterStep.updateOneStep();
1563 }
1564 }
1565 CallsiteIterStep.updateOneStep();
1566 }
1567
1568 // Difference reflects the total differences of line/block samples in this
1569 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
1570 // reflect the similarity between function profiles in [0.0f to 1.0f].
1571 return (2.0 - Difference) / 2;
1572}
1573
1574double SampleOverlapAggregator::weightForFuncSimilarity(
1575 double FuncInternalSimilarity, uint64_t BaseFuncSample,
1576 uint64_t TestFuncSample) const {
1577 // Compute the weight as the distance between the function weights in two
1578 // profiles.
1579 double BaseFrac = 0.0;
1580 double TestFrac = 0.0;
1581 assert(ProfOverlap.BaseSample > 0 &&(static_cast <bool> (ProfOverlap.BaseSample > 0 &&
"Total samples in base profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.BaseSample > 0 && \"Total samples in base profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1582, __extension__
__PRETTY_FUNCTION__))
1582 "Total samples in base profile should be greater than 0")(static_cast <bool> (ProfOverlap.BaseSample > 0 &&
"Total samples in base profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.BaseSample > 0 && \"Total samples in base profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1582, __extension__
__PRETTY_FUNCTION__))
;
1583 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
1584 assert(ProfOverlap.TestSample > 0 &&(static_cast <bool> (ProfOverlap.TestSample > 0 &&
"Total samples in test profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.TestSample > 0 && \"Total samples in test profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1585, __extension__
__PRETTY_FUNCTION__))
1585 "Total samples in test profile should be greater than 0")(static_cast <bool> (ProfOverlap.TestSample > 0 &&
"Total samples in test profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.TestSample > 0 && \"Total samples in test profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1585, __extension__
__PRETTY_FUNCTION__))
;
1586 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
1587 double WeightDistance = std::fabs(BaseFrac - TestFrac);
1588
1589 // Take WeightDistance into the similarity.
1590 return FuncInternalSimilarity * (1 - WeightDistance);
1591}
1592
1593double
1594SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
1595 uint64_t BaseFuncSample,
1596 uint64_t TestFuncSample) const {
1597
1598 double BaseFrac = 0.0;
1599 double TestFrac = 0.0;
1600 assert(ProfOverlap.BaseSample > 0 &&(static_cast <bool> (ProfOverlap.BaseSample > 0 &&
"Total samples in base profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.BaseSample > 0 && \"Total samples in base profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1601, __extension__
__PRETTY_FUNCTION__))
1601 "Total samples in base profile should be greater than 0")(static_cast <bool> (ProfOverlap.BaseSample > 0 &&
"Total samples in base profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.BaseSample > 0 && \"Total samples in base profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1601, __extension__
__PRETTY_FUNCTION__))
;
1602 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
1603 assert(ProfOverlap.TestSample > 0 &&(static_cast <bool> (ProfOverlap.TestSample > 0 &&
"Total samples in test profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.TestSample > 0 && \"Total samples in test profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1604, __extension__
__PRETTY_FUNCTION__))
1604 "Total samples in test profile should be greater than 0")(static_cast <bool> (ProfOverlap.TestSample > 0 &&
"Total samples in test profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.TestSample > 0 && \"Total samples in test profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1604, __extension__
__PRETTY_FUNCTION__))
;
1605 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
1606 return FuncSimilarity * (BaseFrac + TestFrac);
1607}
1608
1609double SampleOverlapAggregator::computeSampleFunctionOverlap(
1610 const sampleprof::FunctionSamples *BaseFunc,
1611 const sampleprof::FunctionSamples *TestFunc,
1612 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
1613 uint64_t TestFuncSample) {
1614 // Default function internal similarity before weighted, meaning two functions
1615 // has no overlap.
1616 const double DefaultFuncInternalSimilarity = 0;
1617 double FuncSimilarity;
1618 double FuncInternalSimilarity;
1619
1620 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
1621 // In this case, we use DefaultFuncInternalSimilarity as the function internal
1622 // similarity.
1623 if (!BaseFunc || !TestFunc) {
1624 FuncInternalSimilarity = DefaultFuncInternalSimilarity;
1625 } else {
1626 assert(FuncOverlap != nullptr &&(static_cast <bool> (FuncOverlap != nullptr && "FuncOverlap should be provided in this case"
) ? void (0) : __assert_fail ("FuncOverlap != nullptr && \"FuncOverlap should be provided in this case\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1627, __extension__
__PRETTY_FUNCTION__))
1627 "FuncOverlap should be provided in this case")(static_cast <bool> (FuncOverlap != nullptr && "FuncOverlap should be provided in this case"
) ? void (0) : __assert_fail ("FuncOverlap != nullptr && \"FuncOverlap should be provided in this case\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1627, __extension__
__PRETTY_FUNCTION__))
;
1628 FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
1629 *BaseFunc, *TestFunc, *FuncOverlap);
1630 // Now, FuncInternalSimilarity may be a little less than 0 due to
1631 // imprecision of floating point accumulations. Make it zero if the
1632 // difference is below Epsilon.
1633 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
1634 ? 0
1635 : FuncInternalSimilarity;
1636 }
1637 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
1638 BaseFuncSample, TestFuncSample);
1639 return FuncSimilarity;
1640}
1641
1642void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
1643 using namespace sampleprof;
1644
1645 std::unordered_map<SampleContext, const FunctionSamples *,
1646 SampleContext::Hash>
1647 BaseFuncProf;
1648 const auto &BaseProfiles = BaseReader->getProfiles();
1649 for (const auto &BaseFunc : BaseProfiles) {
1650 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
1651 }
1652 ProfOverlap.UnionCount = BaseFuncProf.size();
1653
1654 const auto &TestProfiles = TestReader->getProfiles();
1655 for (const auto &TestFunc : TestProfiles) {
1656 SampleOverlapStats FuncOverlap;
1657 FuncOverlap.TestName = TestFunc.second.getContext();
1658 assert(TestStats.count(FuncOverlap.TestName) &&(static_cast <bool> (TestStats.count(FuncOverlap.TestName
) && "TestStats should have records for all functions in test profile "
"except inlinees") ? void (0) : __assert_fail ("TestStats.count(FuncOverlap.TestName) && \"TestStats should have records for all functions in test profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1660, __extension__
__PRETTY_FUNCTION__))
1659 "TestStats should have records for all functions in test profile "(static_cast <bool> (TestStats.count(FuncOverlap.TestName
) && "TestStats should have records for all functions in test profile "
"except inlinees") ? void (0) : __assert_fail ("TestStats.count(FuncOverlap.TestName) && \"TestStats should have records for all functions in test profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1660, __extension__
__PRETTY_FUNCTION__))
1660 "except inlinees")(static_cast <bool> (TestStats.count(FuncOverlap.TestName
) && "TestStats should have records for all functions in test profile "
"except inlinees") ? void (0) : __assert_fail ("TestStats.count(FuncOverlap.TestName) && \"TestStats should have records for all functions in test profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1660, __extension__
__PRETTY_FUNCTION__))
;
1661 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
1662
1663 bool Matched = false;
1664 const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
1665 if (Match == BaseFuncProf.end()) {
1666 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
1667 ++ProfOverlap.TestUniqueCount;
1668 ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
1669 FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
1670
1671 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
1672
1673 double FuncSimilarity = computeSampleFunctionOverlap(
1674 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
1675 ProfOverlap.Similarity +=
1676 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
1677
1678 ++ProfOverlap.UnionCount;
1679 ProfOverlap.UnionSample += FuncStats.SampleSum;
1680 } else {
1681 ++ProfOverlap.OverlapCount;
1682
1683 // Two functions match with each other. Compute function-level overlap and
1684 // aggregate them into profile-level overlap.
1685 FuncOverlap.BaseName = Match->second->getContext();
1686 assert(BaseStats.count(FuncOverlap.BaseName) &&(static_cast <bool> (BaseStats.count(FuncOverlap.BaseName
) && "BaseStats should have records for all functions in base profile "
"except inlinees") ? void (0) : __assert_fail ("BaseStats.count(FuncOverlap.BaseName) && \"BaseStats should have records for all functions in base profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1688, __extension__
__PRETTY_FUNCTION__))
1687 "BaseStats should have records for all functions in base profile "(static_cast <bool> (BaseStats.count(FuncOverlap.BaseName
) && "BaseStats should have records for all functions in base profile "
"except inlinees") ? void (0) : __assert_fail ("BaseStats.count(FuncOverlap.BaseName) && \"BaseStats should have records for all functions in base profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1688, __extension__
__PRETTY_FUNCTION__))
1688 "except inlinees")(static_cast <bool> (BaseStats.count(FuncOverlap.BaseName
) && "BaseStats should have records for all functions in base profile "
"except inlinees") ? void (0) : __assert_fail ("BaseStats.count(FuncOverlap.BaseName) && \"BaseStats should have records for all functions in base profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1688, __extension__
__PRETTY_FUNCTION__))
;
1689 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
1690
1691 FuncOverlap.Similarity = computeSampleFunctionOverlap(
1692 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
1693 FuncOverlap.TestSample);
1694 ProfOverlap.Similarity +=
1695 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
1696 FuncOverlap.TestSample);
1697 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
1698 ProfOverlap.UnionSample += FuncOverlap.UnionSample;
1699
1700 // Accumulate the percentage of base unique and test unique samples into
1701 // ProfOverlap.
1702 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
1703 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
1704
1705 // Remove matched base functions for later reporting functions not found
1706 // in test profile.
1707 BaseFuncProf.erase(Match);
1708 Matched = true;
1709 }
1710
1711 // Print function-level similarity information if specified by options.
1712 assert(TestStats.count(FuncOverlap.TestName) &&(static_cast <bool> (TestStats.count(FuncOverlap.TestName
) && "TestStats should have records for all functions in test profile "
"except inlinees") ? void (0) : __assert_fail ("TestStats.count(FuncOverlap.TestName) && \"TestStats should have records for all functions in test profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1714, __extension__
__PRETTY_FUNCTION__))
1713 "TestStats should have records for all functions in test profile "(static_cast <bool> (TestStats.count(FuncOverlap.TestName
) && "TestStats should have records for all functions in test profile "
"except inlinees") ? void (0) : __assert_fail ("TestStats.count(FuncOverlap.TestName) && \"TestStats should have records for all functions in test profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1714, __extension__
__PRETTY_FUNCTION__))
1714 "except inlinees")(static_cast <bool> (TestStats.count(FuncOverlap.TestName
) && "TestStats should have records for all functions in test profile "
"except inlinees") ? void (0) : __assert_fail ("TestStats.count(FuncOverlap.TestName) && \"TestStats should have records for all functions in test profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1714, __extension__
__PRETTY_FUNCTION__))
;
1715 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
1716 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
1717 (Matched && !FuncFilter.NameFilter.empty() &&
1718 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
1719 std::string::npos)) {
1720 assert(ProfOverlap.BaseSample > 0 &&(static_cast <bool> (ProfOverlap.BaseSample > 0 &&
"Total samples in base profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.BaseSample > 0 && \"Total samples in base profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1721, __extension__
__PRETTY_FUNCTION__))
1721 "Total samples in base profile should be greater than 0")(static_cast <bool> (ProfOverlap.BaseSample > 0 &&
"Total samples in base profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.BaseSample > 0 && \"Total samples in base profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1721, __extension__
__PRETTY_FUNCTION__))
;
1722 FuncOverlap.BaseWeight =
1723 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
1724 assert(ProfOverlap.TestSample > 0 &&(static_cast <bool> (ProfOverlap.TestSample > 0 &&
"Total samples in test profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.TestSample > 0 && \"Total samples in test profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1725, __extension__
__PRETTY_FUNCTION__))
1725 "Total samples in test profile should be greater than 0")(static_cast <bool> (ProfOverlap.TestSample > 0 &&
"Total samples in test profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.TestSample > 0 && \"Total samples in test profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1725, __extension__
__PRETTY_FUNCTION__))
;
1726 FuncOverlap.TestWeight =
1727 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
1728 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
1729 }
1730 }
1731
1732 // Traverse through functions in base profile but not in test profile.
1733 for (const auto &F : BaseFuncProf) {
1734 assert(BaseStats.count(F.second->getContext()) &&(static_cast <bool> (BaseStats.count(F.second->getContext
()) && "BaseStats should have records for all functions in base profile "
"except inlinees") ? void (0) : __assert_fail ("BaseStats.count(F.second->getContext()) && \"BaseStats should have records for all functions in base profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1736, __extension__
__PRETTY_FUNCTION__))
1735 "BaseStats should have records for all functions in base profile "(static_cast <bool> (BaseStats.count(F.second->getContext
()) && "BaseStats should have records for all functions in base profile "
"except inlinees") ? void (0) : __assert_fail ("BaseStats.count(F.second->getContext()) && \"BaseStats should have records for all functions in base profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1736, __extension__
__PRETTY_FUNCTION__))
1736 "except inlinees")(static_cast <bool> (BaseStats.count(F.second->getContext
()) && "BaseStats should have records for all functions in base profile "
"except inlinees") ? void (0) : __assert_fail ("BaseStats.count(F.second->getContext()) && \"BaseStats should have records for all functions in base profile \" \"except inlinees\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1736, __extension__
__PRETTY_FUNCTION__))
;
1737 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
1738 ++ProfOverlap.BaseUniqueCount;
1739 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
1740
1741 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
1742
1743 double FuncSimilarity = computeSampleFunctionOverlap(
1744 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
1745 ProfOverlap.Similarity +=
1746 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
1747
1748 ProfOverlap.UnionSample += FuncStats.SampleSum;
1749 }
1750
1751 // Now, ProfSimilarity may be a little greater than 1 due to imprecision
1752 // of floating point accumulations. Make it 1.0 if the difference is below
1753 // Epsilon.
1754 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
1755 ? 1
1756 : ProfOverlap.Similarity;
1757
1758 computeHotFuncOverlap();
1759}
1760
1761void SampleOverlapAggregator::initializeSampleProfileOverlap() {
1762 const auto &BaseProf = BaseReader->getProfiles();
1763 for (const auto &I : BaseProf) {
1764 ++ProfOverlap.BaseCount;
1765 FuncSampleStats FuncStats;
1766 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
1767 ProfOverlap.BaseSample += FuncStats.SampleSum;
1768 BaseStats.emplace(I.second.getContext(), FuncStats);
1769 }
1770
1771 const auto &TestProf = TestReader->getProfiles();
1772 for (const auto &I : TestProf) {
1773 ++ProfOverlap.TestCount;
1774 FuncSampleStats FuncStats;
1775 getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
1776 ProfOverlap.TestSample += FuncStats.SampleSum;
1777 TestStats.emplace(I.second.getContext(), FuncStats);
1778 }
1779
1780 ProfOverlap.BaseName = StringRef(BaseFilename);
1781 ProfOverlap.TestName = StringRef(TestFilename);
1782}
1783
1784void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
1785 using namespace sampleprof;
1786
1787 if (FuncSimilarityDump.empty())
1788 return;
1789
1790 formatted_raw_ostream FOS(OS);
1791 FOS << "Function-level details:\n";
1792 FOS << "Base weight";
1793 FOS.PadToColumn(TestWeightCol);
1794 FOS << "Test weight";
1795 FOS.PadToColumn(SimilarityCol);
1796 FOS << "Similarity";
1797 FOS.PadToColumn(OverlapCol);
1798 FOS << "Overlap";
1799 FOS.PadToColumn(BaseUniqueCol);
1800 FOS << "Base unique";
1801 FOS.PadToColumn(TestUniqueCol);
1802 FOS << "Test unique";
1803 FOS.PadToColumn(BaseSampleCol);
1804 FOS << "Base samples";
1805 FOS.PadToColumn(TestSampleCol);
1806 FOS << "Test samples";
1807 FOS.PadToColumn(FuncNameCol);
1808 FOS << "Function name\n";
1809 for (const auto &F : FuncSimilarityDump) {
1810 double OverlapPercent =
1811 F.second.UnionSample > 0
1812 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
1813 : 0;
1814 double BaseUniquePercent =
1815 F.second.BaseSample > 0
1816 ? static_cast<double>(F.second.BaseUniqueSample) /
1817 F.second.BaseSample
1818 : 0;
1819 double TestUniquePercent =
1820 F.second.TestSample > 0
1821 ? static_cast<double>(F.second.TestUniqueSample) /
1822 F.second.TestSample
1823 : 0;
1824
1825 FOS << format("%.2f%%", F.second.BaseWeight * 100);
1826 FOS.PadToColumn(TestWeightCol);
1827 FOS << format("%.2f%%", F.second.TestWeight * 100);
1828 FOS.PadToColumn(SimilarityCol);
1829 FOS << format("%.2f%%", F.second.Similarity * 100);
1830 FOS.PadToColumn(OverlapCol);
1831 FOS << format("%.2f%%", OverlapPercent * 100);
1832 FOS.PadToColumn(BaseUniqueCol);
1833 FOS << format("%.2f%%", BaseUniquePercent * 100);
1834 FOS.PadToColumn(TestUniqueCol);
1835 FOS << format("%.2f%%", TestUniquePercent * 100);
1836 FOS.PadToColumn(BaseSampleCol);
1837 FOS << F.second.BaseSample;
1838 FOS.PadToColumn(TestSampleCol);
1839 FOS << F.second.TestSample;
1840 FOS.PadToColumn(FuncNameCol);
1841 FOS << F.second.TestName.toString() << "\n";
1842 }
1843}
1844
1845void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
1846 OS << "Profile overlap infomation for base_profile: "
1847 << ProfOverlap.BaseName.toString()
1848 << " and test_profile: " << ProfOverlap.TestName.toString()
1849 << "\nProgram level:\n";
1850
1851 OS << " Whole program profile similarity: "
1852 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
1853
1854 assert(ProfOverlap.UnionSample > 0 &&(static_cast <bool> (ProfOverlap.UnionSample > 0 &&
"Total samples in two profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.UnionSample > 0 && \"Total samples in two profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1855, __extension__
__PRETTY_FUNCTION__))
1855 "Total samples in two profile should be greater than 0")(static_cast <bool> (ProfOverlap.UnionSample > 0 &&
"Total samples in two profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.UnionSample > 0 && \"Total samples in two profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1855, __extension__
__PRETTY_FUNCTION__))
;
1856 double OverlapPercent =
1857 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
1858 assert(ProfOverlap.BaseSample > 0 &&(static_cast <bool> (ProfOverlap.BaseSample > 0 &&
"Total samples in base profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.BaseSample > 0 && \"Total samples in base profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1859, __extension__
__PRETTY_FUNCTION__))
1859 "Total samples in base profile should be greater than 0")(static_cast <bool> (ProfOverlap.BaseSample > 0 &&
"Total samples in base profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.BaseSample > 0 && \"Total samples in base profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1859, __extension__
__PRETTY_FUNCTION__))
;
1860 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
1861 ProfOverlap.BaseSample;
1862 assert(ProfOverlap.TestSample > 0 &&(static_cast <bool> (ProfOverlap.TestSample > 0 &&
"Total samples in test profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.TestSample > 0 && \"Total samples in test profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1863, __extension__
__PRETTY_FUNCTION__))
1863 "Total samples in test profile should be greater than 0")(static_cast <bool> (ProfOverlap.TestSample > 0 &&
"Total samples in test profile should be greater than 0") ? void
(0) : __assert_fail ("ProfOverlap.TestSample > 0 && \"Total samples in test profile should be greater than 0\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1863, __extension__
__PRETTY_FUNCTION__))
;
1864 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
1865 ProfOverlap.TestSample;
1866
1867 OS << " Whole program sample overlap: "
1868 << format("%.3f%%", OverlapPercent * 100) << "\n";
1869 OS << " percentage of samples unique in base profile: "
1870 << format("%.3f%%", BaseUniquePercent * 100) << "\n";
1871 OS << " percentage of samples unique in test profile: "
1872 << format("%.3f%%", TestUniquePercent * 100) << "\n";
1873 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n"
1874 << " total samples in test profile: " << ProfOverlap.TestSample << "\n";
1875
1876 assert(ProfOverlap.UnionCount > 0 &&(static_cast <bool> (ProfOverlap.UnionCount > 0 &&
"There should be at least one function in two input profiles"
) ? void (0) : __assert_fail ("ProfOverlap.UnionCount > 0 && \"There should be at least one function in two input profiles\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1877, __extension__
__PRETTY_FUNCTION__))
1877 "There should be at least one function in two input profiles")(static_cast <bool> (ProfOverlap.UnionCount > 0 &&
"There should be at least one function in two input profiles"
) ? void (0) : __assert_fail ("ProfOverlap.UnionCount > 0 && \"There should be at least one function in two input profiles\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1877, __extension__
__PRETTY_FUNCTION__))
;
1878 double FuncOverlapPercent =
1879 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
1880 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
1881 << "\n";
1882 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n";
1883 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount
1884 << "\n";
1885 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount
1886 << "\n";
1887}
1888
1889void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
1890 raw_fd_ostream &OS) const {
1891 assert(HotFuncOverlap.UnionCount > 0 &&(static_cast <bool> (HotFuncOverlap.UnionCount > 0 &&
"There should be at least one hot function in two input profiles"
) ? void (0) : __assert_fail ("HotFuncOverlap.UnionCount > 0 && \"There should be at least one hot function in two input profiles\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1892, __extension__
__PRETTY_FUNCTION__))
1892 "There should be at least one hot function in two input profiles")(static_cast <bool> (HotFuncOverlap.UnionCount > 0 &&
"There should be at least one hot function in two input profiles"
) ? void (0) : __assert_fail ("HotFuncOverlap.UnionCount > 0 && \"There should be at least one hot function in two input profiles\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1892, __extension__
__PRETTY_FUNCTION__))
;
1893 OS << " Hot-function overlap: "
1894 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
1895 HotFuncOverlap.UnionCount * 100)
1896 << "\n";
1897 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
1898 OS << " hot functions unique in base profile: "
1899 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
1900 OS << " hot functions unique in test profile: "
1901 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
1902
1903 assert(HotBlockOverlap.UnionCount > 0 &&(static_cast <bool> (HotBlockOverlap.UnionCount > 0 &&
"There should be at least one hot block in two input profiles"
) ? void (0) : __assert_fail ("HotBlockOverlap.UnionCount > 0 && \"There should be at least one hot block in two input profiles\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1904, __extension__
__PRETTY_FUNCTION__))
1904 "There should be at least one hot block in two input profiles")(static_cast <bool> (HotBlockOverlap.UnionCount > 0 &&
"There should be at least one hot block in two input profiles"
) ? void (0) : __assert_fail ("HotBlockOverlap.UnionCount > 0 && \"There should be at least one hot block in two input profiles\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 1904, __extension__
__PRETTY_FUNCTION__))
;
1905 OS << " Hot-block overlap: "
1906 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
1907 HotBlockOverlap.UnionCount * 100)
1908 << "\n";
1909 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
1910 OS << " hot blocks unique in base profile: "
1911 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
1912 OS << " hot blocks unique in test profile: "
1913 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
1914}
1915
1916std::error_code SampleOverlapAggregator::loadProfiles() {
1917 using namespace sampleprof;
1918
1919 LLVMContext Context;
1920 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context,
1921 FSDiscriminatorPassOption);
1922 if (std::error_code EC = BaseReaderOrErr.getError())
1923 exitWithErrorCode(EC, BaseFilename);
1924
1925 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context,
1926 FSDiscriminatorPassOption);
1927 if (std::error_code EC = TestReaderOrErr.getError())
1928 exitWithErrorCode(EC, TestFilename);
1929
1930 BaseReader = std::move(BaseReaderOrErr.get());
1931 TestReader = std::move(TestReaderOrErr.get());
1932
1933 if (std::error_code EC = BaseReader->read())
1934 exitWithErrorCode(EC, BaseFilename);
1935 if (std::error_code EC = TestReader->read())
1936 exitWithErrorCode(EC, TestFilename);
1937 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
1938 exitWithError(
1939 "cannot compare probe-based profile with non-probe-based profile");
1940 if (BaseReader->profileIsCSFlat() != TestReader->profileIsCSFlat())
1941 exitWithError("cannot compare CS profile with non-CS profile");
1942
1943 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
1944 // profile summary.
1945 ProfileSummary &BasePS = BaseReader->getSummary();
1946 ProfileSummary &TestPS = TestReader->getSummary();
1947 BaseHotThreshold =
1948 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
1949 TestHotThreshold =
1950 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
1951
1952 return std::error_code();
1953}
1954
1955void overlapSampleProfile(const std::string &BaseFilename,
1956 const std::string &TestFilename,
1957 const OverlapFuncFilters &FuncFilter,
1958 uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
1959 using namespace sampleprof;
1960
1961 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
1962 // report 2--3 places after decimal point in percentage numbers.
1963 SampleOverlapAggregator OverlapAggr(
1964 BaseFilename, TestFilename,
1965 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
1966 if (std::error_code EC = OverlapAggr.loadProfiles())
1967 exitWithErrorCode(EC);
1968
1969 OverlapAggr.initializeSampleProfileOverlap();
1970 if (OverlapAggr.detectZeroSampleProfile(OS))
1971 return;
1972
1973 OverlapAggr.computeSampleProfileOverlap(OS);
1974
1975 OverlapAggr.dumpProgramSummary(OS);
1976 OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
1977 OverlapAggr.dumpFuncSimilarity(OS);
1978}
1979
1980static int overlap_main(int argc, const char *argv[]) {
1981 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
1982 cl::desc("<base profile file>"));
1983 cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
1984 cl::desc("<test profile file>"));
1985 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
1986 cl::desc("Output file"));
1987 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
1988 cl::opt<bool> IsCS(
1989 "cs", cl::init(false),
1990 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."));
1991 cl::opt<unsigned long long> ValueCutoff(
1992 "value-cutoff", cl::init(-1),
1993 cl::desc(
1994 "Function level overlap information for every function (with calling "
1995 "context for csspgo) in test "
1996 "profile with max count value greater then the parameter value"));
1997 cl::opt<std::string> FuncNameFilter(
1998 "function",
1999 cl::desc("Function level overlap information for matching functions. For "
2000 "CSSPGO this takes a a function name with calling context"));
2001 cl::opt<unsigned long long> SimilarityCutoff(
2002 "similarity-cutoff", cl::init(0),
2003 cl::desc("For sample profiles, list function names (with calling context "
2004 "for csspgo) for overlapped functions "
2005 "with similarities below the cutoff (percentage times 10000)."));
2006 cl::opt<ProfileKinds> ProfileKind(
2007 cl::desc("Profile kind:"), cl::init(instr),
2008 cl::values(clEnumVal(instr, "Instrumentation profile (default)")llvm::cl::OptionEnumValue { "instr", int(instr), "Instrumentation profile (default)"
}
,
2009 clEnumVal(sample, "Sample profile")llvm::cl::OptionEnumValue { "sample", int(sample), "Sample profile"
}
));
2010 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");
2011
2012 std::error_code EC;
2013 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF);
2014 if (EC)
2015 exitWithErrorCode(EC, Output);
2016
2017 if (ProfileKind == instr)
2018 overlapInstrProfile(BaseFilename, TestFilename,
2019 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
2020 IsCS);
2021 else
2022 overlapSampleProfile(BaseFilename, TestFilename,
2023 OverlapFuncFilters{ValueCutoff, FuncNameFilter},
2024 SimilarityCutoff, OS);
2025
2026 return 0;
2027}
2028
2029namespace {
2030struct ValueSitesStats {
2031 ValueSitesStats()
2032 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
2033 TotalNumValues(0) {}
2034 uint64_t TotalNumValueSites;
2035 uint64_t TotalNumValueSitesWithValueProfile;
2036 uint64_t TotalNumValues;
2037 std::vector<unsigned> ValueSitesHistogram;
2038};
2039} // namespace
2040
2041static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2042 ValueSitesStats &Stats, raw_fd_ostream &OS,
2043 InstrProfSymtab *Symtab) {
2044 uint32_t NS = Func.getNumValueSites(VK);
2045 Stats.TotalNumValueSites += NS;
2046 for (size_t I = 0; I < NS; ++I) {
2047 uint32_t NV = Func.getNumValueDataForSite(VK, I);
2048 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
2049 Stats.TotalNumValues += NV;
2050 if (NV) {
2051 Stats.TotalNumValueSitesWithValueProfile++;
2052 if (NV > Stats.ValueSitesHistogram.size())
2053 Stats.ValueSitesHistogram.resize(NV, 0);
2054 Stats.ValueSitesHistogram[NV - 1]++;
2055 }
2056
2057 uint64_t SiteSum = 0;
2058 for (uint32_t V = 0; V < NV; V++)
2059 SiteSum += VD[V].Count;
2060 if (SiteSum == 0)
2061 SiteSum = 1;
2062
2063 for (uint32_t V = 0; V < NV; V++) {
2064 OS << "\t[ " << format("%2u", I) << ", ";
2065 if (Symtab == nullptr)
2066 OS << format("%4" PRIu64"l" "u", VD[V].Value);
2067 else
2068 OS << Symtab->getFuncName(VD[V].Value);
2069 OS << ", " << format("%10" PRId64"l" "d", VD[V].Count) << " ] ("
2070 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
2071 }
2072 }
2073}
2074
2075static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2076 ValueSitesStats &Stats) {
2077 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n";
2078 OS << " Total number of sites with values: "
2079 << Stats.TotalNumValueSitesWithValueProfile << "\n";
2080 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n";
2081
2082 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n";
2083 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2084 if (Stats.ValueSitesHistogram[I] > 0)
2085 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2086 }
2087}
2088
2089static int showInstrProfile(const std::string &Filename, bool ShowCounts,
2090 uint32_t TopN, bool ShowIndirectCallTargets,
2091 bool ShowMemOPSizes, bool ShowDetailedSummary,
2092 std::vector<uint32_t> DetailedSummaryCutoffs,
2093 bool ShowAllFunctions, bool ShowCS,
2094 uint64_t ValueCutoff, bool OnlyListBelow,
2095 const std::string &ShowFunction, bool TextFormat,
2096 bool ShowBinaryIds, bool ShowCovered,
2097 raw_fd_ostream &OS) {
2098 auto ReaderOrErr = InstrProfReader::create(Filename);
2099 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2100 if (ShowDetailedSummary && Cutoffs.empty()) {
1
Assuming 'ShowDetailedSummary' is false
2101 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990};
2102 }
2103 InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2104 if (Error E = ReaderOrErr.takeError())
2
Assuming the condition is true
3
Taking true branch
2105 exitWithError(std::move(E), Filename);
4
Calling 'exitWithError'
2106
2107 auto Reader = std::move(ReaderOrErr.get());
2108 bool IsIRInstr = Reader->isIRLevelProfile();
2109 size_t ShownFunctions = 0;
2110 size_t BelowCutoffFunctions = 0;
2111 int NumVPKind = IPVK_Last - IPVK_First + 1;
2112 std::vector<ValueSitesStats> VPStats(NumVPKind);
2113
2114 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2115 const std::pair<std::string, uint64_t> &v2) {
2116 return v1.second > v2.second;
2117 };
2118
2119 std::priority_queue<std::pair<std::string, uint64_t>,
2120 std::vector<std::pair<std::string, uint64_t>>,
2121 decltype(MinCmp)>
2122 HottestFuncs(MinCmp);
2123
2124 if (!TextFormat && OnlyListBelow) {
2125 OS << "The list of functions with the maximum counter less than "
2126 << ValueCutoff << ":\n";
2127 }
2128
2129 // Add marker so that IR-level instrumentation round-trips properly.
2130 if (TextFormat && IsIRInstr)
2131 OS << ":ir\n";
2132
2133 for (const auto &Func : *Reader) {
2134 if (Reader->isIRLevelProfile()) {
2135 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2136 if (FuncIsCS != ShowCS)
2137 continue;
2138 }
2139 bool Show = ShowAllFunctions ||
2140 (!ShowFunction.empty() && Func.Name.contains(ShowFunction));
2141
2142 bool doTextFormatDump = (Show && TextFormat);
2143
2144 if (doTextFormatDump) {
2145 InstrProfSymtab &Symtab = Reader->getSymtab();
2146 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2147 OS);
2148 continue;
2149 }
2150
2151 assert(Func.Counts.size() > 0 && "function missing entry counter")(static_cast <bool> (Func.Counts.size() > 0 &&
"function missing entry counter") ? void (0) : __assert_fail
("Func.Counts.size() > 0 && \"function missing entry counter\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 2151, __extension__
__PRETTY_FUNCTION__))
;
2152 Builder.addRecord(Func);
2153
2154 if (ShowCovered) {
2155 if (std::any_of(Func.Counts.begin(), Func.Counts.end(),
2156 [](uint64_t C) { return C; }))
2157 OS << Func.Name << "\n";
2158 continue;
2159 }
2160
2161 uint64_t FuncMax = 0;
2162 uint64_t FuncSum = 0;
2163 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2164 if (Func.Counts[I] == (uint64_t)-1)
2165 continue;
2166 FuncMax = std::max(FuncMax, Func.Counts[I]);
2167 FuncSum += Func.Counts[I];
2168 }
2169
2170 if (FuncMax < ValueCutoff) {
2171 ++BelowCutoffFunctions;
2172 if (OnlyListBelow) {
2173 OS << " " << Func.Name << ": (Max = " << FuncMax
2174 << " Sum = " << FuncSum << ")\n";
2175 }
2176 continue;
2177 } else if (OnlyListBelow)
2178 continue;
2179
2180 if (TopN) {
2181 if (HottestFuncs.size() == TopN) {
2182 if (HottestFuncs.top().second < FuncMax) {
2183 HottestFuncs.pop();
2184 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2185 }
2186 } else
2187 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2188 }
2189
2190 if (Show) {
2191 if (!ShownFunctions)
2192 OS << "Counters:\n";
2193
2194 ++ShownFunctions;
2195
2196 OS << " " << Func.Name << ":\n"
2197 << " Hash: " << format("0x%016" PRIx64"l" "x", Func.Hash) << "\n"
2198 << " Counters: " << Func.Counts.size() << "\n";
2199 if (!IsIRInstr)
2200 OS << " Function count: " << Func.Counts[0] << "\n";
2201
2202 if (ShowIndirectCallTargets)
2203 OS << " Indirect Call Site Count: "
2204 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2205
2206 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2207 if (ShowMemOPSizes && NumMemOPCalls > 0)
2208 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls
2209 << "\n";
2210
2211 if (ShowCounts) {
2212 OS << " Block counts: [";
2213 size_t Start = (IsIRInstr ? 0 : 1);
2214 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2215 OS << (I == Start ? "" : ", ") << Func.Counts[I];
2216 }
2217 OS << "]\n";
2218 }
2219
2220 if (ShowIndirectCallTargets) {
2221 OS << " Indirect Target Results:\n";
2222 traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2223 VPStats[IPVK_IndirectCallTarget], OS,
2224 &(Reader->getSymtab()));
2225 }
2226
2227 if (ShowMemOPSizes && NumMemOPCalls > 0) {
2228 OS << " Memory Intrinsic Size Results:\n";
2229 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2230 nullptr);
2231 }
2232 }
2233 }
2234 if (Reader->hasError())
2235 exitWithError(Reader->getError(), Filename);
2236
2237 if (TextFormat || ShowCovered)
2238 return 0;
2239 std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2240 bool IsIR = Reader->isIRLevelProfile();
2241 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2242 if (IsIR)
2243 OS << " entry_first = " << Reader->instrEntryBBEnabled();
2244 OS << "\n";
2245 if (ShowAllFunctions || !ShowFunction.empty())
2246 OS << "Functions shown: " << ShownFunctions << "\n";
2247 OS << "Total functions: " << PS->getNumFunctions() << "\n";
2248 if (ValueCutoff > 0) {
2249 OS << "Number of functions with maximum count (< " << ValueCutoff
2250 << "): " << BelowCutoffFunctions << "\n";
2251 OS << "Number of functions with maximum count (>= " << ValueCutoff
2252 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2253 }
2254 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2255 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2256
2257 if (TopN) {
2258 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2259 while (!HottestFuncs.empty()) {
2260 SortedHottestFuncs.emplace_back(HottestFuncs.top());
2261 HottestFuncs.pop();
2262 }
2263 OS << "Top " << TopN
2264 << " functions with the largest internal block counts: \n";
2265 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2266 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2267 }
2268
2269 if (ShownFunctions && ShowIndirectCallTargets) {
2270 OS << "Statistics for indirect call sites profile:\n";
2271 showValueSitesStats(OS, IPVK_IndirectCallTarget,
2272 VPStats[IPVK_IndirectCallTarget]);
2273 }
2274
2275 if (ShownFunctions && ShowMemOPSizes) {
2276 OS << "Statistics for memory intrinsic calls sizes profile:\n";
2277 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
2278 }
2279
2280 if (ShowDetailedSummary) {
2281 OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
2282 OS << "Total count: " << PS->getTotalCount() << "\n";
2283 PS->printDetailedSummary(OS);
2284 }
2285
2286 if (ShowBinaryIds)
2287 if (Error E = Reader->printBinaryIds(OS))
2288 exitWithError(std::move(E), Filename);
2289
2290 return 0;
2291}
2292
2293static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
2294 raw_fd_ostream &OS) {
2295 if (!Reader->dumpSectionInfo(OS)) {
2296 WithColor::warning() << "-show-sec-info-only is only supported for "
2297 << "sample profile in extbinary format and is "
2298 << "ignored for other formats.\n";
2299 return;
2300 }
2301}
2302
2303namespace {
2304struct HotFuncInfo {
2305 std::string FuncName;
2306 uint64_t TotalCount;
2307 double TotalCountPercent;
2308 uint64_t MaxCount;
2309 uint64_t EntryCount;
2310
2311 HotFuncInfo()
2312 : TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {}
2313
2314 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
2315 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
2316 MaxCount(MS), EntryCount(ES) {}
2317};
2318} // namespace
2319
2320// Print out detailed information about hot functions in PrintValues vector.
2321// Users specify titles and offset of every columns through ColumnTitle and
2322// ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
2323// and at least 4. Besides, users can optionally give a HotFuncMetric string to
2324// print out or let it be an empty string.
2325static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
2326 const std::vector<int> &ColumnOffset,
2327 const std::vector<HotFuncInfo> &PrintValues,
2328 uint64_t HotFuncCount, uint64_t TotalFuncCount,
2329 uint64_t HotProfCount, uint64_t TotalProfCount,
2330 const std::string &HotFuncMetric,
2331 uint32_t TopNFunctions, raw_fd_ostream &OS) {
2332 assert(ColumnOffset.size() == ColumnTitle.size() &&(static_cast <bool> (ColumnOffset.size() == ColumnTitle
.size() && "ColumnOffset and ColumnTitle should have the same size"
) ? void (0) : __assert_fail ("ColumnOffset.size() == ColumnTitle.size() && \"ColumnOffset and ColumnTitle should have the same size\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 2333, __extension__
__PRETTY_FUNCTION__))
2333 "ColumnOffset and ColumnTitle should have the same size")(static_cast <bool> (ColumnOffset.size() == ColumnTitle
.size() && "ColumnOffset and ColumnTitle should have the same size"
) ? void (0) : __assert_fail ("ColumnOffset.size() == ColumnTitle.size() && \"ColumnOffset and ColumnTitle should have the same size\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 2333, __extension__
__PRETTY_FUNCTION__))
;
2334 assert(ColumnTitle.size() >= 4 &&(static_cast <bool> (ColumnTitle.size() >= 4 &&
"ColumnTitle should have at least 4 elements") ? void (0) : __assert_fail
("ColumnTitle.size() >= 4 && \"ColumnTitle should have at least 4 elements\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 2335, __extension__
__PRETTY_FUNCTION__))
2335 "ColumnTitle should have at least 4 elements")(static_cast <bool> (ColumnTitle.size() >= 4 &&
"ColumnTitle should have at least 4 elements") ? void (0) : __assert_fail
("ColumnTitle.size() >= 4 && \"ColumnTitle should have at least 4 elements\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 2335, __extension__
__PRETTY_FUNCTION__))
;
2336 assert(TotalFuncCount > 0 &&(static_cast <bool> (TotalFuncCount > 0 && "There should be at least one function in the profile"
) ? void (0) : __assert_fail ("TotalFuncCount > 0 && \"There should be at least one function in the profile\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 2337, __extension__
__PRETTY_FUNCTION__))
2337 "There should be at least one function in the profile")(static_cast <bool> (TotalFuncCount > 0 && "There should be at least one function in the profile"
) ? void (0) : __assert_fail ("TotalFuncCount > 0 && \"There should be at least one function in the profile\""
, "llvm/tools/llvm-profdata/llvm-profdata.cpp", 2337, __extension__
__PRETTY_FUNCTION__))
;
2338 double TotalProfPercent = 0;
2339 if (TotalProfCount > 0)
2340 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
2341
2342 formatted_raw_ostream FOS(OS);
2343 FOS << HotFuncCount << " out of " << TotalFuncCount
2344 << " functions with profile ("
2345 << format("%.2f%%",
2346 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
2347 << ") are considered hot functions";
2348 if (!HotFuncMetric.empty())
2349 FOS << " (" << HotFuncMetric << ")";
2350 FOS << ".\n";
2351 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
2352 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
2353
2354 for (size_t I = 0; I < ColumnTitle.size(); ++I) {
2355 FOS.PadToColumn(ColumnOffset[I]);
2356 FOS << ColumnTitle[I];
2357 }
2358 FOS << "\n";
2359
2360 uint32_t Count = 0;
2361 for (const auto &R : PrintValues) {
2362 if (TopNFunctions && (Count++ == TopNFunctions))
2363 break;
2364 FOS.PadToColumn(ColumnOffset[0]);
2365 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
2366 FOS.PadToColumn(ColumnOffset[1]);
2367 FOS << R.MaxCount;
2368 FOS.PadToColumn(ColumnOffset[2]);
2369 FOS << R.EntryCount;
2370 FOS.PadToColumn(ColumnOffset[3]);
2371 FOS << R.FuncName << "\n";
2372 }
2373}
2374
2375static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
2376 ProfileSummary &PS, uint32_t TopN,
2377 raw_fd_ostream &OS) {
2378 using namespace sampleprof;
2379
2380 const uint32_t HotFuncCutoff = 990000;
2381 auto &SummaryVector = PS.getDetailedSummary();
2382 uint64_t MinCountThreshold = 0;
2383 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
2384 if (SummaryEntry.Cutoff == HotFuncCutoff) {
2385 MinCountThreshold = SummaryEntry.MinCount;
2386 break;
2387 }
2388 }
2389
2390 // Traverse all functions in the profile and keep only hot functions.
2391 // The following loop also calculates the sum of total samples of all
2392 // functions.
2393 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
2394 std::greater<uint64_t>>
2395 HotFunc;
2396 uint64_t ProfileTotalSample = 0;
2397 uint64_t HotFuncSample = 0;
2398 uint64_t HotFuncCount = 0;
2399
2400 for (const auto &I : Profiles) {
2401 FuncSampleStats FuncStats;
2402 const FunctionSamples &FuncProf = I.second;
2403 ProfileTotalSample += FuncProf.getTotalSamples();
2404 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
2405
2406 if (isFunctionHot(FuncStats, MinCountThreshold)) {
2407 HotFunc.emplace(FuncProf.getTotalSamples(),
2408 std::make_pair(&(I.second), FuncStats.MaxSample));
2409 HotFuncSample += FuncProf.getTotalSamples();
2410 ++HotFuncCount;
2411 }
2412 }
2413
2414 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
2415 "Entry sample", "Function name"};
2416 std::vector<int> ColumnOffset{0, 24, 42, 58};
2417 std::string Metric =
2418 std::string("max sample >= ") + std::to_string(MinCountThreshold);
2419 std::vector<HotFuncInfo> PrintValues;
2420 for (const auto &FuncPair : HotFunc) {
2421 const FunctionSamples &Func = *FuncPair.second.first;
2422 double TotalSamplePercent =
2423 (ProfileTotalSample > 0)
2424 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
2425 : 0;
2426 PrintValues.emplace_back(HotFuncInfo(
2427 Func.getContext().toString(), Func.getTotalSamples(),
2428 TotalSamplePercent, FuncPair.second.second, Func.getEntrySamples()));
2429 }
2430 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
2431 Profiles.size(), HotFuncSample, ProfileTotalSample,
2432 Metric, TopN, OS);
2433
2434 return 0;
2435}
2436
2437static int showSampleProfile(const std::string &Filename, bool ShowCounts,
2438 uint32_t TopN, bool ShowAllFunctions,
2439 bool ShowDetailedSummary,
2440 const std::string &ShowFunction,
2441 bool ShowProfileSymbolList,
2442 bool ShowSectionInfoOnly, bool ShowHotFuncList,
2443 raw_fd_ostream &OS) {
2444 using namespace sampleprof;
2445 LLVMContext Context;
2446 auto ReaderOrErr =
2447 SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption);
2448 if (std::error_code EC = ReaderOrErr.getError())
2449 exitWithErrorCode(EC, Filename);
2450
2451 auto Reader = std::move(ReaderOrErr.get());
2452 if (ShowSectionInfoOnly) {
2453 showSectionInfo(Reader.get(), OS);
2454 return 0;
2455 }
2456
2457 if (std::error_code EC = Reader->read())
2458 exitWithErrorCode(EC, Filename);
2459
2460 if (ShowAllFunctions || ShowFunction.empty())
2461 Reader->dump(OS);
2462 else
2463 // TODO: parse context string to support filtering by contexts.
2464 Reader->dumpFunctionProfile(StringRef(ShowFunction), OS);
2465
2466 if (ShowProfileSymbolList) {
2467 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
2468 Reader->getProfileSymbolList();
2469 ReaderList->dump(OS);
2470 }
2471
2472 if (ShowDetailedSummary) {
2473 auto &PS = Reader->getSummary();
2474 PS.printSummary(OS);
2475 PS.printDetailedSummary(OS);
2476 }
2477
2478 if (ShowHotFuncList || TopN)
2479 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS);
2480
2481 return 0;
2482}
2483
2484static int showMemProfProfile(const std::string &Filename,
2485 const std::string &ProfiledBinary,
2486 raw_fd_ostream &OS) {
2487 auto ReaderOr =
2488 llvm::memprof::RawMemProfReader::create(Filename, ProfiledBinary);
2489 if (Error E = ReaderOr.takeError())
2490 // Since the error can be related to the profile or the binary we do not
2491 // pass whence. Instead additional context is provided where necessary in
2492 // the error message.
2493 exitWithError(std::move(E), /*Whence*/ "");
2494
2495 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
2496 ReaderOr.get().release());
2497
2498 Reader->printYAML(OS);
2499 return 0;
2500}
2501
2502static int showDebugInfoCorrelation(const std::string &Filename,
2503 bool ShowDetailedSummary,
2504 bool ShowProfileSymbolList,
2505 raw_fd_ostream &OS) {
2506 std::unique_ptr<InstrProfCorrelator> Correlator;
2507 if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator))
2508 exitWithError(std::move(Err), Filename);
2509 if (auto Err = Correlator->correlateProfileData())
2510 exitWithError(std::move(Err), Filename);
2511
2512 InstrProfSymtab Symtab;
2513 if (auto Err = Symtab.create(
2514 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
2515 exitWithError(std::move(Err), Filename);
2516
2517 if (ShowProfileSymbolList)
2518 Symtab.dumpNames(OS);
2519 // TODO: Read "Profile Data Type" from debug info to compute and show how many
2520 // counters the section holds.
2521 if (ShowDetailedSummary)
2522 OS << "Counters section size: 0x"
2523 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
2524 OS << "Found " << Correlator->getDataSize() << " functions\n";
2525
2526 return 0;
2527}
2528
2529static int show_main(int argc, const char *argv[]) {
2530 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"));
2531
2532 cl::opt<bool> ShowCounts("counts", cl::init(false),
2533 cl::desc("Show counter values for shown functions"));
2534 cl::opt<bool> TextFormat(
2535 "text", cl::init(false),
2536 cl::desc("Show instr profile data in text dump format"));
2537 cl::opt<bool> ShowIndirectCallTargets(
2538 "ic-targets", cl::init(false),
2539 cl::desc("Show indirect call site target values for shown functions"));
2540 cl::opt<bool> ShowMemOPSizes(
2541 "memop-sizes", cl::init(false),
2542 cl::desc("Show the profiled sizes of the memory intrinsic calls "
2543 "for shown functions"));
2544 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
2545 cl::desc("Show detailed profile summary"));
2546 cl::list<uint32_t> DetailedSummaryCutoffs(
2547 cl::CommaSeparated, "detailed-summary-cutoffs",
2548 cl::desc(
2549 "Cutoff percentages (times 10000) for generating detailed summary"),
2550 cl::value_desc("800000,901000,999999"));
2551 cl::opt<bool> ShowHotFuncList(
2552 "hot-func-list", cl::init(false),
2553 cl::desc("Show profile summary of a list of hot functions"));
2554 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
2555 cl::desc("Details for every function"));
2556 cl::opt<bool> ShowCS("showcs", cl::init(false),
2557 cl::desc("Show context sensitive counts"));
2558 cl::opt<std::string> ShowFunction("function",
2559 cl::desc("Details for matching functions"));
2560
2561 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
2562 cl::init("-"), cl::desc("Output file"));
2563 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
2564 cl::aliasopt(OutputFilename));
2565 cl::opt<ProfileKinds> ProfileKind(
2566 cl::desc("Profile kind:"), cl::init(instr),
2567 cl::values(clEnumVal(instr, "Instrumentation profile (default)")llvm::cl::OptionEnumValue { "instr", int(instr), "Instrumentation profile (default)"
}
,
2568 clEnumVal(sample, "Sample profile")llvm::cl::OptionEnumValue { "sample", int(sample), "Sample profile"
}
,
2569 clEnumVal(memory, "MemProf memory access profile")llvm::cl::OptionEnumValue { "memory", int(memory), "MemProf memory access profile"
}
));
2570 cl::opt<uint32_t> TopNFunctions(
2571 "topn", cl::init(0),
2572 cl::desc("Show the list of functions with the largest internal counts"));
2573 cl::opt<uint32_t> ValueCutoff(
2574 "value-cutoff", cl::init(0),
2575 cl::desc("Set the count value cutoff. Functions with the maximum count "
2576 "less than this value will not be printed out. (Default is 0)"));
2577 cl::opt<bool> OnlyListBelow(
2578 "list-below-cutoff", cl::init(false),
2579 cl::desc("Only output names of functions whose max count values are "
2580 "below the cutoff value"));
2581 cl::opt<bool> ShowProfileSymbolList(
2582 "show-prof-sym-list", cl::init(false),
2583 cl::desc("Show profile symbol list if it exists in the profile. "));
2584 cl::opt<bool> ShowSectionInfoOnly(
2585 "show-sec-info-only", cl::init(false),
2586 cl::desc("Show the information of each section in the sample profile. "
2587 "The flag is only usable when the sample profile is in "
2588 "extbinary format"));
2589 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
2590 cl::desc("Show binary ids in the profile. "));
2591 cl::opt<std::string> DebugInfoFilename(
2592 "debug-info", cl::init(""),
2593 cl::desc("Read and extract profile metadata from debug info and show "
2594 "the functions it found."));
2595 cl::opt<bool> ShowCovered(
2596 "covered", cl::init(false),
2597 cl::desc("Show only the functions that have been executed."));
2598 cl::opt<std::string> ProfiledBinary(
2599 "profiled-binary", cl::init(""),
2600 cl::desc("Path to binary from which the profile was collected."));
2601
2602 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");
2603
2604 if (Filename.empty() && DebugInfoFilename.empty())
2605 exitWithError(
2606 "the positional argument '<profdata-file>' is required unless '--" +
2607 DebugInfoFilename.ArgStr + "' is provided");
2608
2609 if (Filename == OutputFilename) {
2610 errs() << sys::path::filename(argv[0])
2611 << ": Input file name cannot be the same as the output file name!\n";
2612 return 1;
2613 }
2614
2615 std::error_code EC;
2616 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2617 if (EC)
2618 exitWithErrorCode(EC, OutputFilename);
2619
2620 if (ShowAllFunctions && !ShowFunction.empty())
2621 WithColor::warning() << "-function argument ignored: showing all functions\n";
2622
2623 if (!DebugInfoFilename.empty())
2624 return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary,
2625 ShowProfileSymbolList, OS);
2626
2627 if (ProfileKind == instr)
2628 return showInstrProfile(
2629 Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets,
2630 ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs,
2631 ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction,
2632 TextFormat, ShowBinaryIds, ShowCovered, OS);
2633 if (ProfileKind == sample)
2634 return showSampleProfile(Filename, ShowCounts, TopNFunctions,
2635 ShowAllFunctions, ShowDetailedSummary,
2636 ShowFunction, ShowProfileSymbolList,
2637 ShowSectionInfoOnly, ShowHotFuncList, OS);
2638 return showMemProfProfile(Filename, ProfiledBinary, OS);
2639}
2640
2641int main(int argc, const char *argv[]) {
2642 InitLLVM X(argc, argv);
2643
2644 StringRef ProgName(sys::path::filename(argv[0]));
2645 if (argc > 1) {
2646 int (*func)(int, const char *[]) = nullptr;
2647
2648 if (strcmp(argv[1], "merge") == 0)
2649 func = merge_main;
2650 else if (strcmp(argv[1], "show") == 0)
2651 func = show_main;
2652 else if (strcmp(argv[1], "overlap") == 0)
2653 func = overlap_main;
2654
2655 if (func) {
2656 std::string Invocation(ProgName.str() + " " + argv[1]);
2657 argv[1] = Invocation.c_str();
2658 return func(argc - 1, argv + 1);
2659 }
2660
2661 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
2662 strcmp(argv[1], "--help") == 0) {
2663
2664 errs() << "OVERVIEW: LLVM profile data tools\n\n"
2665 << "USAGE: " << ProgName << " <command> [args...]\n"
2666 << "USAGE: " << ProgName << " <command> -help\n\n"
2667 << "See each individual command --help for more details.\n"
2668 << "Available commands: merge, show, overlap\n";
2669 return 0;
2670 }
2671 }
2672
2673 if (argc < 2)
2674 errs() << ProgName << ": No command specified!\n";
2675 else
2676 errs() << ProgName << ": Unknown command!\n";
2677
2678 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
2679 return 1;
2680}

/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/llvm/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/Config/abi-breaking.h"
21#include "llvm/Support/AlignOf.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/ErrorOr.h"
26#include "llvm/Support/Format.h"
27#include "llvm/Support/raw_ostream.h"
28#include <cassert>
29#include <cstdint>
30#include <cstdlib>
31#include <functional>
32#include <memory>
33#include <new>
34#include <string>
35#include <system_error>
36#include <type_traits>
37#include <utility>
38#include <vector>
39
40namespace llvm {
41
42class ErrorSuccess;
43
44/// Base class for error info classes. Do not extend this directly: Extend
45/// the ErrorInfo template subclass instead.
46class ErrorInfoBase {
47public:
48 virtual ~ErrorInfoBase() = default;
49
50 /// Print an error message to an output stream.
51 virtual void log(raw_ostream &OS) const = 0;
52
53 /// Return the error message as a string.
54 virtual std::string message() const {
55 std::string Msg;
56 raw_string_ostream OS(Msg);
57 log(OS);
58 return OS.str();
59 }
60
61 /// Convert this error to a std::error_code.
62 ///
63 /// This is a temporary crutch to enable interaction with code still
64 /// using std::error_code. It will be removed in the future.
65 virtual std::error_code convertToErrorCode() const = 0;
66
67 // Returns the class ID for this type.
68 static const void *classID() { return &ID; }
69
70 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
71 virtual const void *dynamicClassID() const = 0;
72
73 // Check whether this instance is a subclass of the class identified by
74 // ClassID.
75 virtual bool isA(const void *const ClassID) const {
76 return ClassID == classID();
77 }
78
79 // Check whether this instance is a subclass of ErrorInfoT.
80 template <typename ErrorInfoT> bool isA() const {
81 return isA(ErrorInfoT::classID());
82 }
83
84private:
85 virtual void anchor();
86
87 static char ID;
88};
89
90/// Lightweight error class with error context and mandatory checking.
91///
92/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
93/// are represented by setting the pointer to a ErrorInfoBase subclass
94/// instance containing information describing the failure. Success is
95/// represented by a null pointer value.
96///
97/// Instances of Error also contains a 'Checked' flag, which must be set
98/// before the destructor is called, otherwise the destructor will trigger a
99/// runtime error. This enforces at runtime the requirement that all Error
100/// instances be checked or returned to the caller.
101///
102/// There are two ways to set the checked flag, depending on what state the
103/// Error instance is in. For Error instances indicating success, it
104/// is sufficient to invoke the boolean conversion operator. E.g.:
105///
106/// @code{.cpp}
107/// Error foo(<...>);
108///
109/// if (auto E = foo(<...>))
110/// return E; // <- Return E if it is in the error state.
111/// // We have verified that E was in the success state. It can now be safely
112/// // destroyed.
113/// @endcode
114///
115/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
116/// without testing the return value will raise a runtime error, even if foo
117/// returns success.
118///
119/// For Error instances representing failure, you must use either the
120/// handleErrors or handleAllErrors function with a typed handler. E.g.:
121///
122/// @code{.cpp}
123/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
124/// // Custom error info.
125/// };
126///
127/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
128///
129/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
130/// auto NewE =
131/// handleErrors(E,
132/// [](const MyErrorInfo &M) {
133/// // Deal with the error.
134/// },
135/// [](std::unique_ptr<OtherError> M) -> Error {
136/// if (canHandle(*M)) {
137/// // handle error.
138/// return Error::success();
139/// }
140/// // Couldn't handle this error instance. Pass it up the stack.
141/// return Error(std::move(M));
142/// );
143/// // Note - we must check or return NewE in case any of the handlers
144/// // returned a new error.
145/// @endcode
146///
147/// The handleAllErrors function is identical to handleErrors, except
148/// that it has a void return type, and requires all errors to be handled and
149/// no new errors be returned. It prevents errors (assuming they can all be
150/// handled) from having to be bubbled all the way to the top-level.
151///
152/// *All* Error instances must be checked before destruction, even if
153/// they're moved-assigned or constructed from Success values that have already
154/// been checked. This enforces checking through all levels of the call stack.
155class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
156 // ErrorList needs to be able to yank ErrorInfoBase pointers out of Errors
157 // to add to the error list. It can't rely on handleErrors for this, since
158 // handleErrors does not support ErrorList handlers.
159 friend class ErrorList;
160
161 // handleErrors needs to be able to set the Checked flag.
162 template <typename... HandlerTs>
163 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
164
165 // Expected<T> needs to be able to steal the payload when constructed from an
166 // error.
167 template <typename T> friend class Expected;
168
169 // wrap needs to be able to steal the payload.
170 friend LLVMErrorRef wrap(Error);
171
172protected:
173 /// Create a success value. Prefer using 'Error::success()' for readability
174 Error() {
175 setPtr(nullptr);
176 setChecked(false);
177 }
178
179public:
180 /// Create a success value.
181 static ErrorSuccess success();
182
183 // Errors are not copy-constructable.
184 Error(const Error &Other) = delete;
185
186 /// Move-construct an error value. The newly constructed error is considered
187 /// unchecked, even if the source error had been checked. The original error
188 /// becomes a checked Success value, regardless of its original state.
189 Error(Error &&Other) {
190 setChecked(true);
191 *this = std::move(Other);
8
Object 'E' is moved
192 }
193
194 /// Create an error value. Prefer using the 'make_error' function, but
195 /// this constructor can be useful when "re-throwing" errors from handlers.
196 Error(std::unique_ptr<ErrorInfoBase> Payload) {
197 setPtr(Payload.release());
198 setChecked(false);
199 }
200
201 // Errors are not copy-assignable.
202 Error &operator=(const Error &Other) = delete;
203
204 /// Move-assign an error value. The current error must represent success, you
205 /// you cannot overwrite an unhandled error. The current error is then
206 /// considered unchecked. The source error becomes a checked success value,
207 /// regardless of its original state.
208 Error &operator=(Error &&Other) {
209 // Don't allow overwriting of unchecked values.
210 assertIsChecked();
211 setPtr(Other.getPtr());
212
213 // This Error is unchecked, even if the source error was checked.
214 setChecked(false);
215
216 // Null out Other's payload and set its checked bit.
217 Other.setPtr(nullptr);
218 Other.setChecked(true);
219
220 return *this;
221 }
222
223 /// Destroy a Error. Fails with a call to abort() if the error is
224 /// unchecked.
225 ~Error() {
226 assertIsChecked();
227 delete getPtr();
228 }
229
230 /// Bool conversion. Returns true if this Error is in a failure state,
231 /// and false if it is in an accept state. If the error is in a Success state
232 /// it will be considered checked.
233 explicit operator bool() {
234 setChecked(getPtr() == nullptr);
235 return getPtr() != nullptr;
236 }
237
238 /// Check whether one error is a subclass of another.
239 template <typename ErrT> bool isA() const {
240 return getPtr() && getPtr()->isA(ErrT::classID());
241 }
242
243 /// Returns the dynamic class id of this error, or null if this is a success
244 /// value.
245 const void* dynamicClassID() const {
246 if (!getPtr())
247 return nullptr;
248 return getPtr()->dynamicClassID();
249 }
250
251private:
252#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
253 // assertIsChecked() happens very frequently, but under normal circumstances
254 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
255 // of debug prints can cause the function to be too large for inlining. So
256 // it's important that we define this function out of line so that it can't be
257 // inlined.
258 [[noreturn]] void fatalUncheckedError() const;
259#endif
260
261 void assertIsChecked() {
262#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
263 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
264 fatalUncheckedError();
265#endif
266 }
267
268 ErrorInfoBase *getPtr() const {
269#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
270 return reinterpret_cast<ErrorInfoBase*>(
271 reinterpret_cast<uintptr_t>(Payload) &
272 ~static_cast<uintptr_t>(0x1));
273#else
274 return Payload;
275#endif
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
299 Payload = reinterpret_cast<ErrorInfoBase*>(
300 (reinterpret_cast<uintptr_t>(Payload) &
301 ~static_cast<uintptr_t>(0x1)) |
302 (V ? 0 : 1));
303#endif
304 }
305
306 std::unique_ptr<ErrorInfoBase> takePayload() {
307 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
308 setPtr(nullptr);
309 setChecked(true);
310 return Tmp;
311 }
312
313 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
314 if (auto *P = E.getPtr())
315 P->log(OS);
316 else
317 OS << "success";
318 return OS;
319 }
320
321 ErrorInfoBase *Payload = nullptr;
322};
323
324/// Subclass of Error for the sole purpose of identifying the success path in
325/// the type system. This allows to catch invalid conversion to Expected<T> at
326/// compile time.
327class ErrorSuccess final : public Error {};
328
329inline ErrorSuccess Error::success() { return ErrorSuccess(); }
330
331/// Make a Error instance representing failure using the given error info
332/// type.
333template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
334 return Error(std::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
335}
336
337/// Base class for user error types. Users should declare their error types
338/// like:
339///
340/// class MyError : public ErrorInfo<MyError> {
341/// ....
342/// };
343///
344/// This class provides an implementation of the ErrorInfoBase::kind
345/// method, which is used by the Error RTTI system.
346template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
347class ErrorInfo : public ParentErrT {
348public:
349 using ParentErrT::ParentErrT; // inherit constructors
350
351 static const void *classID() { return &ThisErrT::ID; }
352
353 const void *dynamicClassID() const override { return &ThisErrT::ID; }
354
355 bool isA(const void *const ClassID) const override {
356 return ClassID == classID() || ParentErrT::isA(ClassID);
357 }
358};
359
360/// Special ErrorInfo subclass representing a list of ErrorInfos.
361/// Instances of this class are constructed by joinError.
362class ErrorList final : public ErrorInfo<ErrorList> {
363 // handleErrors needs to be able to iterate the payload list of an
364 // ErrorList.
365 template <typename... HandlerTs>
366 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
367
368 // joinErrors is implemented in terms of join.
369 friend Error joinErrors(Error, Error);
370
371public:
372 void log(raw_ostream &OS) const override {
373 OS << "Multiple errors:\n";
374 for (const auto &ErrPayload : Payloads) {
375 ErrPayload->log(OS);
376 OS << "\n";
377 }
378 }
379
380 std::error_code convertToErrorCode() const override;
381
382 // Used by ErrorInfo::classID.
383 static char ID;
384
385private:
386 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
387 std::unique_ptr<ErrorInfoBase> Payload2) {
388 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&(static_cast <bool> (!Payload1->isA<ErrorList>
() && !Payload2->isA<ErrorList>() &&
"ErrorList constructor payloads should be singleton errors")
? void (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "llvm/include/llvm/Support/Error.h", 389, __extension__ __PRETTY_FUNCTION__
))
389 "ErrorList constructor payloads should be singleton errors")(static_cast <bool> (!Payload1->isA<ErrorList>
() && !Payload2->isA<ErrorList>() &&
"ErrorList constructor payloads should be singleton errors")
? void (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "llvm/include/llvm/Support/Error.h", 389, __extension__ __PRETTY_FUNCTION__
))
;
390 Payloads.push_back(std::move(Payload1));
391 Payloads.push_back(std::move(Payload2));
392 }
393
394 static Error join(Error E1, Error E2) {
395 if (!E1)
396 return E2;
397 if (!E2)
398 return E1;
399 if (E1.isA<ErrorList>()) {
400 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
401 if (E2.isA<ErrorList>()) {
402 auto E2Payload = E2.takePayload();
403 auto &E2List = static_cast<ErrorList &>(*E2Payload);
404 for (auto &Payload : E2List.Payloads)
405 E1List.Payloads.push_back(std::move(Payload));
406 } else
407 E1List.Payloads.push_back(E2.takePayload());
408
409 return E1;
410 }
411 if (E2.isA<ErrorList>()) {
412 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
413 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
414 return E2;
415 }
416 return Error(std::unique_ptr<ErrorList>(
417 new ErrorList(E1.takePayload(), E2.takePayload())));
418 }
419
420 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
421};
422
423/// Concatenate errors. The resulting Error is unchecked, and contains the
424/// ErrorInfo(s), if any, contained in E1, followed by the
425/// ErrorInfo(s), if any, contained in E2.
426inline Error joinErrors(Error E1, Error E2) {
427 return ErrorList::join(std::move(E1), std::move(E2));
428}
429
430/// Tagged union holding either a T or a Error.
431///
432/// This class parallels ErrorOr, but replaces error_code with Error. Since
433/// Error cannot be copied, this class replaces getError() with
434/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
435/// error class type.
436///
437/// Example usage of 'Expected<T>' as a function return type:
438///
439/// @code{.cpp}
440/// Expected<int> myDivide(int A, int B) {
441/// if (B == 0) {
442/// // return an Error
443/// return createStringError(inconvertibleErrorCode(),
444/// "B must not be zero!");
445/// }
446/// // return an integer
447/// return A / B;
448/// }
449/// @endcode
450///
451/// Checking the results of to a function returning 'Expected<T>':
452/// @code{.cpp}
453/// if (auto E = Result.takeError()) {
454/// // We must consume the error. Typically one of:
455/// // - return the error to our caller
456/// // - toString(), when logging
457/// // - consumeError(), to silently swallow the error
458/// // - handleErrors(), to distinguish error types
459/// errs() << "Problem with division " << toString(std::move(E)) << "\n";
460/// return;
461/// }
462/// // use the result
463/// outs() << "The answer is " << *Result << "\n";
464/// @endcode
465///
466/// For unit-testing a function returning an 'Expceted<T>', see the
467/// 'EXPECT_THAT_EXPECTED' macros in llvm/Testing/Support/Error.h
468
469template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
470 template <class T1> friend class ExpectedAsOutParameter;
471 template <class OtherT> friend class Expected;
472
473 static constexpr bool isRef = std::is_reference<T>::value;
474
475 using wrap = std::reference_wrapper<std::remove_reference_t<T>>;
476
477 using error_type = std::unique_ptr<ErrorInfoBase>;
478
479public:
480 using storage_type = std::conditional_t<isRef, wrap, T>;
481 using value_type = T;
482
483private:
484 using reference = std::remove_reference_t<T> &;
485 using const_reference = const std::remove_reference_t<T> &;
486 using pointer = std::remove_reference_t<T> *;
487 using const_pointer = const std::remove_reference_t<T> *;
488
489public:
490 /// Create an Expected<T> error value from the given Error.
491 Expected(Error Err)
492 : HasError(true)
493#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
494 // Expected is unchecked upon construction in Debug builds.
495 , Unchecked(true)
496#endif
497 {
498 assert(Err && "Cannot create Expected<T> from Error success value.")(static_cast <bool> (Err && "Cannot create Expected<T> from Error success value."
) ? void (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "llvm/include/llvm/Support/Error.h", 498, __extension__ __PRETTY_FUNCTION__
))
;
499 new (getErrorStorage()) error_type(Err.takePayload());
500 }
501
502 /// Forbid to convert from Error::success() implicitly, this avoids having
503 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
504 /// but triggers the assertion above.
505 Expected(ErrorSuccess) = delete;
506
507 /// Create an Expected<T> success value from the given OtherT value, which
508 /// must be convertible to T.
509 template <typename OtherT>
510 Expected(OtherT &&Val,
511 std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr)
512 : HasError(false)
513#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
514 // Expected is unchecked upon construction in Debug builds.
515 ,
516 Unchecked(true)
517#endif
518 {
519 new (getStorage()) storage_type(std::forward<OtherT>(Val));
520 }
521
522 /// Move construct an Expected<T> value.
523 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
524
525 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
526 /// must be convertible to T.
527 template <class OtherT>
528 Expected(
529 Expected<OtherT> &&Other,
530 std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr) {
531 moveConstruct(std::move(Other));
532 }
533
534 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
535 /// isn't convertible to T.
536 template <class OtherT>
537 explicit Expected(
538 Expected<OtherT> &&Other,
539 std::enable_if_t<!std::is_convertible<OtherT, T>::value> * = nullptr) {
540 moveConstruct(std::move(Other));
541 }
542
543 /// Move-assign from another Expected<T>.
544 Expected &operator=(Expected &&Other) {
545 moveAssign(std::move(Other));
546 return *this;
547 }
548
549 /// Destroy an Expected<T>.
550 ~Expected() {
551 assertIsChecked();
552 if (!HasError)
553 getStorage()->~storage_type();
554 else
555 getErrorStorage()->~error_type();
556 }
557
558 /// Return false if there is an error.
559 explicit operator bool() {
560#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
561 Unchecked = HasError;
562#endif
563 return !HasError;
564 }
565
566 /// Returns a reference to the stored T value.
567 reference get() {
568 assertIsChecked();
569 return *getStorage();
570 }
571
572 /// Returns a const reference to the stored T value.
573 const_reference get() const {
574 assertIsChecked();
575 return const_cast<Expected<T> *>(this)->get();
576 }
577
578 /// Returns \a takeError() after moving the held T (if any) into \p V.
579 template <class OtherT>
580 Error moveInto(OtherT &Value,
581 std::enable_if_t<std::is_assignable<OtherT &, T &&>::value> * =
582 nullptr) && {
583 if (*this)
584 Value = std::move(get());
585 return takeError();
586 }
587
588 /// Check that this Expected<T> is an error of type ErrT.
589 template <typename ErrT> bool errorIsA() const {
590 return HasError && (*getErrorStorage())->template isA<ErrT>();
591 }
592
593 /// Take ownership of the stored error.
594 /// After calling this the Expected<T> is in an indeterminate state that can
595 /// only be safely destructed. No further calls (beside the destructor) should
596 /// be made on the Expected<T> value.
597 Error takeError() {
598#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
599 Unchecked = false;
600#endif
601 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
602 }
603
604 /// Returns a pointer to the stored T value.
605 pointer operator->() {
606 assertIsChecked();
607 return toPointer(getStorage());
608 }
609
610 /// Returns a const pointer to the stored T value.
611 const_pointer operator->() const {
612 assertIsChecked();
613 return toPointer(getStorage());
614 }
615
616 /// Returns a reference to the stored T value.
617 reference operator*() {
618 assertIsChecked();
619 return *getStorage();
620 }
621
622 /// Returns a const reference to the stored T value.
623 const_reference operator*() const {
624 assertIsChecked();
625 return *getStorage();
626 }
627
628private:
629 template <class T1>
630 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
631 return &a == &b;
632 }
633
634 template <class T1, class T2>
635 static bool compareThisIfSameType(const T1 &, const T2 &) {
636 return false;
637 }
638
639 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
640 HasError = Other.HasError;
641#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
642 Unchecked = true;
643 Other.Unchecked = false;
644#endif
645
646 if (!HasError)
647 new (getStorage()) storage_type(std::move(*Other.getStorage()));
648 else
649 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
650 }
651
652 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
653 assertIsChecked();
654
655 if (compareThisIfSameType(*this, Other))
656 return;
657
658 this->~Expected();
659 new (this) Expected(std::move(Other));
660 }
661
662 pointer toPointer(pointer Val) { return Val; }
663
664 const_pointer toPointer(const_pointer Val) const { return Val; }
665
666 pointer toPointer(wrap *Val) { return &Val->get(); }
667
668 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
669
670 storage_type *getStorage() {
671 assert(!HasError && "Cannot get value when an error exists!")(static_cast <bool> (!HasError && "Cannot get value when an error exists!"
) ? void (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "llvm/include/llvm/Support/Error.h", 671, __extension__ __PRETTY_FUNCTION__
))
;
672 return reinterpret_cast<storage_type *>(&TStorage);
673 }
674
675 const storage_type *getStorage() const {
676 assert(!HasError && "Cannot get value when an error exists!")(static_cast <bool> (!HasError && "Cannot get value when an error exists!"
) ? void (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "llvm/include/llvm/Support/Error.h", 676, __extension__ __PRETTY_FUNCTION__
))
;
677 return reinterpret_cast<const storage_type *>(&TStorage);
678 }
679
680 error_type *getErrorStorage() {
681 assert(HasError && "Cannot get error when a value exists!")(static_cast <bool> (HasError && "Cannot get error when a value exists!"
) ? void (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "llvm/include/llvm/Support/Error.h", 681, __extension__ __PRETTY_FUNCTION__
))
;
682 return reinterpret_cast<error_type *>(&ErrorStorage);
683 }
684
685 const error_type *getErrorStorage() const {
686 assert(HasError && "Cannot get error when a value exists!")(static_cast <bool> (HasError && "Cannot get error when a value exists!"
) ? void (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "llvm/include/llvm/Support/Error.h", 686, __extension__ __PRETTY_FUNCTION__
))
;
687 return reinterpret_cast<const error_type *>(&ErrorStorage);
688 }
689
690 // Used by ExpectedAsOutParameter to reset the checked flag.
691 void setUnchecked() {
692#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
693 Unchecked = true;
694#endif
695 }
696
697#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
698 [[noreturn]] LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline)) void fatalUncheckedExpected() const {
699 dbgs() << "Expected<T> must be checked before access or destruction.\n";
700 if (HasError) {
701 dbgs() << "Unchecked Expected<T> contained error:\n";
702 (*getErrorStorage())->log(dbgs());
703 } else
704 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
705 "values in success mode must still be checked prior to being "
706 "destroyed).\n";
707 abort();
708 }
709#endif
710
711 void assertIsChecked() const {
712#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
713 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
714 fatalUncheckedExpected();
715#endif
716 }
717
718 union {
719 AlignedCharArrayUnion<storage_type> TStorage;
720 AlignedCharArrayUnion<error_type> ErrorStorage;
721 };
722 bool HasError : 1;
723#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
724 bool Unchecked : 1;
725#endif
726};
727
728/// Report a serious error, calling any installed error handler. See
729/// ErrorHandling.h.
730[[noreturn]] void report_fatal_error(Error Err, bool gen_crash_diag = true);
731
732/// Report a fatal error if Err is a failure value.
733///
734/// This function can be used to wrap calls to fallible functions ONLY when it
735/// is known that the Error will always be a success value. E.g.
736///
737/// @code{.cpp}
738/// // foo only attempts the fallible operation if DoFallibleOperation is
739/// // true. If DoFallibleOperation is false then foo always returns
740/// // Error::success().
741/// Error foo(bool DoFallibleOperation);
742///
743/// cantFail(foo(false));
744/// @endcode
745inline void cantFail(Error Err, const char *Msg = nullptr) {
746 if (Err) {
747 if (!Msg)
748 Msg = "Failure value returned from cantFail wrapped call";
749#ifndef NDEBUG
750 std::string Str;
751 raw_string_ostream OS(Str);
752 OS << Msg << "\n" << Err;
753 Msg = OS.str().c_str();
754#endif
755 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "llvm/include/llvm/Support/Error.h"
, 755)
;
756 }
757}
758
759/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
760/// returns the contained value.
761///
762/// This function can be used to wrap calls to fallible functions ONLY when it
763/// is known that the Error will always be a success value. E.g.
764///
765/// @code{.cpp}
766/// // foo only attempts the fallible operation if DoFallibleOperation is
767/// // true. If DoFallibleOperation is false then foo always returns an int.
768/// Expected<int> foo(bool DoFallibleOperation);
769///
770/// int X = cantFail(foo(false));
771/// @endcode
772template <typename T>
773T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
774 if (ValOrErr)
775 return std::move(*ValOrErr);
776 else {
777 if (!Msg)
778 Msg = "Failure value returned from cantFail wrapped call";
779#ifndef NDEBUG
780 std::string Str;
781 raw_string_ostream OS(Str);
782 auto E = ValOrErr.takeError();
783 OS << Msg << "\n" << E;
784 Msg = OS.str().c_str();
785#endif
786 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "llvm/include/llvm/Support/Error.h"
, 786)
;
787 }
788}
789
790/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
791/// returns the contained reference.
792///
793/// This function can be used to wrap calls to fallible functions ONLY when it
794/// is known that the Error will always be a success value. E.g.
795///
796/// @code{.cpp}
797/// // foo only attempts the fallible operation if DoFallibleOperation is
798/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
799/// Expected<Bar&> foo(bool DoFallibleOperation);
800///
801/// Bar &X = cantFail(foo(false));
802/// @endcode
803template <typename T>
804T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
805 if (ValOrErr)
806 return *ValOrErr;
807 else {
808 if (!Msg)
809 Msg = "Failure value returned from cantFail wrapped call";
810#ifndef NDEBUG
811 std::string Str;
812 raw_string_ostream OS(Str);
813 auto E = ValOrErr.takeError();
814 OS << Msg << "\n" << E;
815 Msg = OS.str().c_str();
816#endif
817 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "llvm/include/llvm/Support/Error.h"
, 817)
;
818 }
819}
820
821/// Helper for testing applicability of, and applying, handlers for
822/// ErrorInfo types.
823template <typename HandlerT>
824class ErrorHandlerTraits
825 : public ErrorHandlerTraits<decltype(
826 &std::remove_reference<HandlerT>::type::operator())> {};
827
828// Specialization functions of the form 'Error (const ErrT&)'.
829template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
830public:
831 static bool appliesTo(const ErrorInfoBase &E) {
832 return E.template isA<ErrT>();
833 }
834
835 template <typename HandlerT>
836 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
837 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "llvm/include/llvm/Support/Error.h", 837, __extension__ __PRETTY_FUNCTION__
))
;
838 return H(static_cast<ErrT &>(*E));
839 }
840};
841
842// Specialization functions of the form 'void (const ErrT&)'.
843template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
844public:
845 static bool appliesTo(const ErrorInfoBase &E) {
846 return E.template isA<ErrT>();
847 }
848
849 template <typename HandlerT>
850 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
851 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "llvm/include/llvm/Support/Error.h", 851, __extension__ __PRETTY_FUNCTION__
))
;
852 H(static_cast<ErrT &>(*E));
853 return Error::success();
854 }
855};
856
857/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
858template <typename ErrT>
859class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
860public:
861 static bool appliesTo(const ErrorInfoBase &E) {
862 return E.template isA<ErrT>();
863 }
864
865 template <typename HandlerT>
866 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
867 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "llvm/include/llvm/Support/Error.h", 867, __extension__ __PRETTY_FUNCTION__
))
;
868 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
869 return H(std::move(SubE));
870 }
871};
872
873/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
874template <typename ErrT>
875class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
876public:
877 static bool appliesTo(const ErrorInfoBase &E) {
878 return E.template isA<ErrT>();
879 }
880
881 template <typename HandlerT>
882 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
883 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "llvm/include/llvm/Support/Error.h", 883, __extension__ __PRETTY_FUNCTION__
))
;
884 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
885 H(std::move(SubE));
886 return Error::success();
887 }
888};
889
890// Specialization for member functions of the form 'RetT (const ErrT&)'.
891template <typename C, typename RetT, typename ErrT>
892class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
893 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
894
895// Specialization for member functions of the form 'RetT (const ErrT&) const'.
896template <typename C, typename RetT, typename ErrT>
897class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
898 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
899
900// Specialization for member functions of the form 'RetT (const ErrT&)'.
901template <typename C, typename RetT, typename ErrT>
902class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
903 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
904
905// Specialization for member functions of the form 'RetT (const ErrT&) const'.
906template <typename C, typename RetT, typename ErrT>
907class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
908 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
909
910/// Specialization for member functions of the form
911/// 'RetT (std::unique_ptr<ErrT>)'.
912template <typename C, typename RetT, typename ErrT>
913class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
914 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
915
916/// Specialization for member functions of the form
917/// 'RetT (std::unique_ptr<ErrT>) const'.
918template <typename C, typename RetT, typename ErrT>
919class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
920 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
921
922inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
923 return Error(std::move(Payload));
924}
925
926template <typename HandlerT, typename... HandlerTs>
927Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
928 HandlerT &&Handler, HandlerTs &&... Handlers) {
929 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
930 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
931 std::move(Payload));
932 return handleErrorImpl(std::move(Payload),
933 std::forward<HandlerTs>(Handlers)...);
934}
935
936/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
937/// unhandled errors (or Errors returned by handlers) are re-concatenated and
938/// returned.
939/// Because this function returns an error, its result must also be checked
940/// or returned. If you intend to handle all errors use handleAllErrors
941/// (which returns void, and will abort() on unhandled errors) instead.
942template <typename... HandlerTs>
943Error handleErrors(Error E, HandlerTs &&... Hs) {
944 if (!E)
945 return Error::success();
946
947 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
948
949 if (Payload->isA<ErrorList>()) {
950 ErrorList &List = static_cast<ErrorList &>(*Payload);
951 Error R;
952 for (auto &P : List.Payloads)
953 R = ErrorList::join(
954 std::move(R),
955 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
956 return R;
957 }
958
959 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
960}
961
962/// Behaves the same as handleErrors, except that by contract all errors
963/// *must* be handled by the given handlers (i.e. there must be no remaining
964/// errors after running the handlers, or llvm_unreachable is called).
965template <typename... HandlerTs>
966void handleAllErrors(Error E, HandlerTs &&... Handlers) {
967 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
968}
969
970/// Check that E is a non-error, then drop it.
971/// If E is an error, llvm_unreachable will be called.
972inline void handleAllErrors(Error E) {
973 cantFail(std::move(E));
974}
975
976/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
977///
978/// If the incoming value is a success value it is returned unmodified. If it
979/// is a failure value then it the contained error is passed to handleErrors.
980/// If handleErrors is able to handle the error then the RecoveryPath functor
981/// is called to supply the final result. If handleErrors is not able to
982/// handle all errors then the unhandled errors are returned.
983///
984/// This utility enables the follow pattern:
985///
986/// @code{.cpp}
987/// enum FooStrategy { Aggressive, Conservative };
988/// Expected<Foo> foo(FooStrategy S);
989///
990/// auto ResultOrErr =
991/// handleExpected(
992/// foo(Aggressive),
993/// []() { return foo(Conservative); },
994/// [](AggressiveStrategyError&) {
995/// // Implicitly conusme this - we'll recover by using a conservative
996/// // strategy.
997/// });
998///
999/// @endcode
1000template <typename T, typename RecoveryFtor, typename... HandlerTs>
1001Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
1002 HandlerTs &&... Handlers) {
1003 if (ValOrErr)
1004 return ValOrErr;
1005
1006 if (auto Err = handleErrors(ValOrErr.takeError(),
1007 std::forward<HandlerTs>(Handlers)...))
1008 return std::move(Err);
1009
1010 return RecoveryPath();
1011}
1012
1013/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
1014/// will be printed before the first one is logged. A newline will be printed
1015/// after each error.
1016///
1017/// This function is compatible with the helpers from Support/WithColor.h. You
1018/// can pass any of them as the OS. Please consider using them instead of
1019/// including 'error: ' in the ErrorBanner.
1020///
1021/// This is useful in the base level of your program to allow clean termination
1022/// (allowing clean deallocation of resources, etc.), while reporting error
1023/// information to the user.
1024void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
1025
1026/// Write all error messages (if any) in E to a string. The newline character
1027/// is used to separate error messages.
1028inline std::string toString(Error E) {
1029 SmallVector<std::string, 2> Errors;
1030 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
1031 Errors.push_back(EI.message());
1032 });
1033 return join(Errors.begin(), Errors.end(), "\n");
1034}
1035
1036/// Consume a Error without doing anything. This method should be used
1037/// only where an error can be considered a reasonable and expected return
1038/// value.
1039///
1040/// Uses of this method are potentially indicative of design problems: If it's
1041/// legitimate to do nothing while processing an "error", the error-producer
1042/// might be more clearly refactored to return an Optional<T>.
1043inline void consumeError(Error Err) {
1044 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
1045}
1046
1047/// Convert an Expected to an Optional without doing anything. This method
1048/// should be used only where an error can be considered a reasonable and
1049/// expected return value.
1050///
1051/// Uses of this method are potentially indicative of problems: perhaps the
1052/// error should be propagated further, or the error-producer should just
1053/// return an Optional in the first place.
1054template <typename T> Optional<T> expectedToOptional(Expected<T> &&E) {
1055 if (E)
1056 return std::move(*E);
1057 consumeError(E.takeError());
1058 return None;
1059}
1060
1061/// Helper for converting an Error to a bool.
1062///
1063/// This method returns true if Err is in an error state, or false if it is
1064/// in a success state. Puts Err in a checked state in both cases (unlike
1065/// Error::operator bool(), which only does this for success states).
1066inline bool errorToBool(Error Err) {
1067 bool IsError = static_cast<bool>(Err);
1068 if (IsError)
1069 consumeError(std::move(Err));
1070 return IsError;
1071}
1072
1073/// Helper for Errors used as out-parameters.
1074///
1075/// This helper is for use with the Error-as-out-parameter idiom, where an error
1076/// is passed to a function or method by reference, rather than being returned.
1077/// In such cases it is helpful to set the checked bit on entry to the function
1078/// so that the error can be written to (unchecked Errors abort on assignment)
1079/// and clear the checked bit on exit so that clients cannot accidentally forget
1080/// to check the result. This helper performs these actions automatically using
1081/// RAII:
1082///
1083/// @code{.cpp}
1084/// Result foo(Error &Err) {
1085/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1086/// // <body of foo>
1087/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1088/// }
1089/// @endcode
1090///
1091/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1092/// used with optional Errors (Error pointers that are allowed to be null). If
1093/// ErrorAsOutParameter took an Error reference, an instance would have to be
1094/// created inside every condition that verified that Error was non-null. By
1095/// taking an Error pointer we can just create one instance at the top of the
1096/// function.
1097class ErrorAsOutParameter {
1098public:
1099 ErrorAsOutParameter(Error *Err) : Err(Err) {
1100 // Raise the checked bit if Err is success.
1101 if (Err)
1102 (void)!!*Err;
1103 }
1104
1105 ~ErrorAsOutParameter() {
1106 // Clear the checked bit.
1107 if (Err && !*Err)
1108 *Err = Error::success();
1109 }
1110
1111private:
1112 Error *Err;
1113};
1114
1115/// Helper for Expected<T>s used as out-parameters.
1116///
1117/// See ErrorAsOutParameter.
1118template <typename T>
1119class ExpectedAsOutParameter {
1120public:
1121 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1122 : ValOrErr(ValOrErr) {
1123 if (ValOrErr)
1124 (void)!!*ValOrErr;
1125 }
1126
1127 ~ExpectedAsOutParameter() {
1128 if (ValOrErr)
1129 ValOrErr->setUnchecked();
1130 }
1131
1132private:
1133 Expected<T> *ValOrErr;
1134};
1135
1136/// This class wraps a std::error_code in a Error.
1137///
1138/// This is useful if you're writing an interface that returns a Error
1139/// (or Expected) and you want to call code that still returns
1140/// std::error_codes.
1141class ECError : public ErrorInfo<ECError> {
1142 friend Error errorCodeToError(std::error_code);
1143
1144 virtual void anchor() override;
1145
1146public:
1147 void setErrorCode(std::error_code EC) { this->EC = EC; }
1148 std::error_code convertToErrorCode() const override { return EC; }
1149 void log(raw_ostream &OS) const override { OS << EC.message(); }
1150
1151 // Used by ErrorInfo::classID.
1152 static char ID;
1153
1154protected:
1155 ECError() = default;
1156 ECError(std::error_code EC) : EC(EC) {}
1157
1158 std::error_code EC;
1159};
1160
1161/// The value returned by this function can be returned from convertToErrorCode
1162/// for Error values where no sensible translation to std::error_code exists.
1163/// It should only be used in this situation, and should never be used where a
1164/// sensible conversion to std::error_code is available, as attempts to convert
1165/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1166/// error to try to convert such a value).
1167std::error_code inconvertibleErrorCode();
1168
1169/// Helper for converting an std::error_code to a Error.
1170Error errorCodeToError(std::error_code EC);
1171
1172/// Helper for converting an ECError to a std::error_code.
1173///
1174/// This method requires that Err be Error() or an ECError, otherwise it
1175/// will trigger a call to abort().
1176std::error_code errorToErrorCode(Error Err);
1177
1178/// Convert an ErrorOr<T> to an Expected<T>.
1179template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1180 if (auto EC = EO.getError())
1181 return errorCodeToError(EC);
1182 return std::move(*EO);
1183}
1184
1185/// Convert an Expected<T> to an ErrorOr<T>.
1186template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1187 if (auto Err = E.takeError())
1188 return errorToErrorCode(std::move(Err));
1189 return std::move(*E);
1190}
1191
1192/// This class wraps a string in an Error.
1193///
1194/// StringError is useful in cases where the client is not expected to be able
1195/// to consume the specific error message programmatically (for example, if the
1196/// error message is to be presented to the user).
1197///
1198/// StringError can also be used when additional information is to be printed
1199/// along with a error_code message. Depending on the constructor called, this
1200/// class can either display:
1201/// 1. the error_code message (ECError behavior)
1202/// 2. a string
1203/// 3. the error_code message and a string
1204///
1205/// These behaviors are useful when subtyping is required; for example, when a
1206/// specific library needs an explicit error type. In the example below,
1207/// PDBError is derived from StringError:
1208///
1209/// @code{.cpp}
1210/// Expected<int> foo() {
1211/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1212/// "Additional information");
1213/// }
1214/// @endcode
1215///
1216class StringError : public ErrorInfo<StringError> {
1217public:
1218 static char ID;
1219
1220 // Prints EC + S and converts to EC
1221 StringError(std::error_code EC, const Twine &S = Twine());
1222
1223 // Prints S and converts to EC
1224 StringError(const Twine &S, std::error_code EC);
1225
1226 void log(raw_ostream &OS) const override;
1227 std::error_code convertToErrorCode() const override;
1228
1229 const std::string &getMessage() const { return Msg; }
1230
1231private:
1232 std::string Msg;
1233 std::error_code EC;
1234 const bool PrintMsgOnly = false;
1235};
1236
1237/// Create formatted StringError object.
1238template <typename... Ts>
1239inline Error createStringError(std::error_code EC, char const *Fmt,
1240 const Ts &... Vals) {
1241 std::string Buffer;
1242 raw_string_ostream Stream(Buffer);
1243 Stream << format(Fmt, Vals...);
1244 return make_error<StringError>(Stream.str(), EC);
1245}
1246
1247Error createStringError(std::error_code EC, char const *Msg);
1248
1249inline Error createStringError(std::error_code EC, const Twine &S) {
1250 return createStringError(EC, S.str().c_str());
1251}
1252
1253template <typename... Ts>
1254inline Error createStringError(std::errc EC, char const *Fmt,
1255 const Ts &... Vals) {
1256 return createStringError(std::make_error_code(EC), Fmt, Vals...);
1257}
1258
1259/// This class wraps a filename and another Error.
1260///
1261/// In some cases, an error needs to live along a 'source' name, in order to
1262/// show more detailed information to the user.
1263class FileError final : public ErrorInfo<FileError> {
1264
1265 friend Error createFileError(const Twine &, Error);
1266 friend Error createFileError(const Twine &, size_t, Error);
1267
1268public:
1269 void log(raw_ostream &OS) const override {
1270 assert(Err && "Trying to log after takeError().")(static_cast <bool> (Err && "Trying to log after takeError()."
) ? void (0) : __assert_fail ("Err && \"Trying to log after takeError().\""
, "llvm/include/llvm/Support/Error.h", 1270, __extension__ __PRETTY_FUNCTION__
))
;
1271 OS << "'" << FileName << "': ";
1272 if (Line.hasValue())
1273 OS << "line " << Line.getValue() << ": ";
1274 Err->log(OS);
1275 }
1276
1277 std::string messageWithoutFileInfo() const {
1278 std::string Msg;
1279 raw_string_ostream OS(Msg);
1280 Err->log(OS);
1281 return OS.str();
1282 }
1283
1284 StringRef getFileName() { return FileName; }
1285
1286 Error takeError() { return Error(std::move(Err)); }
1287
1288 std::error_code convertToErrorCode() const override;
1289
1290 // Used by ErrorInfo::classID.
1291 static char ID;
1292
1293private:
1294 FileError(const Twine &F, Optional<size_t> LineNum,
1295 std::unique_ptr<ErrorInfoBase> E) {
1296 assert(E && "Cannot create FileError from Error success value.")(static_cast <bool> (E && "Cannot create FileError from Error success value."
) ? void (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "llvm/include/llvm/Support/Error.h", 1296, __extension__ __PRETTY_FUNCTION__
))
;
1297 FileName = F.str();
1298 Err = std::move(E);
1299 Line = std::move(LineNum);
1300 }
1301
1302 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1303 std::unique_ptr<ErrorInfoBase> Payload;
1304 handleAllErrors(std::move(E),
1305 [&](std::unique_ptr<ErrorInfoBase> EIB) -> Error {
1306 Payload = std::move(EIB);
1307 return Error::success();
1308 });
1309 return Error(
1310 std::unique_ptr<FileError>(new FileError(F, Line, std::move(Payload))));
1311 }
1312
1313 std::string FileName;
1314 Optional<size_t> Line;
1315 std::unique_ptr<ErrorInfoBase> Err;
1316};
1317
1318/// Concatenate a source file path and/or name with an Error. The resulting
1319/// Error is unchecked.
1320inline Error createFileError(const Twine &F, Error E) {
1321 return FileError::build(F, Optional<size_t>(), std::move(E));
1322}
1323
1324/// Concatenate a source file path and/or name with line number and an Error.
1325/// The resulting Error is unchecked.
1326inline Error createFileError(const Twine &F, size_t Line, Error E) {
1327 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1328}
1329
1330/// Concatenate a source file path and/or name with a std::error_code
1331/// to form an Error object.
1332inline Error createFileError(const Twine &F, std::error_code EC) {
1333 return createFileError(F, errorCodeToError(EC));
1334}
1335
1336/// Concatenate a source file path and/or name with line number and
1337/// std::error_code to form an Error object.
1338inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1339 return createFileError(F, Line, errorCodeToError(EC));
1340}
1341
1342Error createFileError(const Twine &F, ErrorSuccess) = delete;
1343
1344/// Helper for check-and-exit error handling.
1345///
1346/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1347///
1348class ExitOnError {
1349public:
1350 /// Create an error on exit helper.
1351 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1352 : Banner(std::move(Banner)),
1353 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1354
1355 /// Set the banner string for any errors caught by operator().
1356 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1357
1358 /// Set the exit-code mapper function.
1359 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1360 this->GetExitCode = std::move(GetExitCode);
1361 }
1362
1363 /// Check Err. If it's in a failure state log the error(s) and exit.
1364 void operator()(Error Err) const { checkError(std::move(Err)); }
1365
1366 /// Check E. If it's in a success state then return the contained value. If
1367 /// it's in a failure state log the error(s) and exit.
1368 template <typename T> T operator()(Expected<T> &&E) const {
1369 checkError(E.takeError());
1370 return std::move(*E);
1371 }
1372
1373 /// Check E. If it's in a success state then return the contained reference. If
1374 /// it's in a failure state log the error(s) and exit.
1375 template <typename T> T& operator()(Expected<T&> &&E) const {
1376 checkError(E.takeError());
1377 return *E;
1378 }
1379
1380private:
1381 void checkError(Error Err) const {
1382 if (Err) {
1383 int ExitCode = GetExitCode(Err);
1384 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1385 exit(ExitCode);
1386 }
1387 }
1388
1389 std::string Banner;
1390 std::function<int(const Error &)> GetExitCode;
1391};
1392
1393/// Conversion from Error to LLVMErrorRef for C error bindings.
1394inline LLVMErrorRef wrap(Error Err) {
1395 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1396}
1397
1398/// Conversion from LLVMErrorRef to Error for C error bindings.
1399inline Error unwrap(LLVMErrorRef ErrRef) {
1400 return Error(std::unique_ptr<ErrorInfoBase>(
1401 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1402}
1403
1404} // end namespace llvm
1405
1406#endif // LLVM_SUPPORT_ERROR_H