Bug Summary

File:compiler-rt/lib/tsan/rtl/tsan_clock.cpp
Warning:line 606, column 16
Access to field 'blocks_' results in a dereference of a null pointer (loaded from field 'parent_')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name tsan_clock.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +sse4.2 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I projects/compiler-rt/lib/tsan -I /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan -I include -I /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include -I /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/.. -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-unused-parameter -Wno-variadic-macros -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/build-llvm -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -fno-builtin -fno-rtti -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-11-10-160236-22541-1 -x c++ /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp

/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp

1//===-- tsan_clock.cpp ----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11//===----------------------------------------------------------------------===//
12#include "tsan_clock.h"
13#include "tsan_rtl.h"
14#include "sanitizer_common/sanitizer_placement_new.h"
15
16// SyncClock and ThreadClock implement vector clocks for sync variables
17// (mutexes, atomic variables, file descriptors, etc) and threads, respectively.
18// ThreadClock contains fixed-size vector clock for maximum number of threads.
19// SyncClock contains growable vector clock for currently necessary number of
20// threads.
21// Together they implement very simple model of operations, namely:
22//
23// void ThreadClock::acquire(const SyncClock *src) {
24// for (int i = 0; i < kMaxThreads; i++)
25// clock[i] = max(clock[i], src->clock[i]);
26// }
27//
28// void ThreadClock::release(SyncClock *dst) const {
29// for (int i = 0; i < kMaxThreads; i++)
30// dst->clock[i] = max(dst->clock[i], clock[i]);
31// }
32//
33// void ThreadClock::releaseStoreAcquire(SyncClock *sc) const {
34// for (int i = 0; i < kMaxThreads; i++) {
35// tmp = clock[i];
36// clock[i] = max(clock[i], sc->clock[i]);
37// sc->clock[i] = tmp;
38// }
39// }
40//
41// void ThreadClock::ReleaseStore(SyncClock *dst) const {
42// for (int i = 0; i < kMaxThreads; i++)
43// dst->clock[i] = clock[i];
44// }
45//
46// void ThreadClock::acq_rel(SyncClock *dst) {
47// acquire(dst);
48// release(dst);
49// }
50//
51// Conformance to this model is extensively verified in tsan_clock_test.cpp.
52// However, the implementation is significantly more complex. The complexity
53// allows to implement important classes of use cases in O(1) instead of O(N).
54//
55// The use cases are:
56// 1. Singleton/once atomic that has a single release-store operation followed
57// by zillions of acquire-loads (the acquire-load is O(1)).
58// 2. Thread-local mutex (both lock and unlock can be O(1)).
59// 3. Leaf mutex (unlock is O(1)).
60// 4. A mutex shared by 2 threads (both lock and unlock can be O(1)).
61// 5. An atomic with a single writer (writes can be O(1)).
62// The implementation dynamically adopts to workload. So if an atomic is in
63// read-only phase, these reads will be O(1); if it later switches to read/write
64// phase, the implementation will correctly handle that by switching to O(N).
65//
66// Thread-safety note: all const operations on SyncClock's are conducted under
67// a shared lock; all non-const operations on SyncClock's are conducted under
68// an exclusive lock; ThreadClock's are private to respective threads and so
69// do not need any protection.
70//
71// Description of SyncClock state:
72// clk_ - variable size vector clock, low kClkBits hold timestamp,
73// the remaining bits hold "acquired" flag (the actual value is thread's
74// reused counter);
75// if acquired == thr->reused_, then the respective thread has already
76// acquired this clock (except possibly for dirty elements).
77// dirty_ - holds up to two indices in the vector clock that other threads
78// need to acquire regardless of "acquired" flag value;
79// release_store_tid_ - denotes that the clock state is a result of
80// release-store operation by the thread with release_store_tid_ index.
81// release_store_reused_ - reuse count of release_store_tid_.
82
83namespace __tsan {
84
85static atomic_uint32_t *ref_ptr(ClockBlock *cb) {
86 return reinterpret_cast<atomic_uint32_t *>(&cb->table[ClockBlock::kRefIdx]);
87}
88
89// Drop reference to the first level block idx.
90static void UnrefClockBlock(ClockCache *c, u32 idx, uptr blocks) {
91 ClockBlock *cb = ctx->clock_alloc.Map(idx);
92 atomic_uint32_t *ref = ref_ptr(cb);
93 u32 v = atomic_load(ref, memory_order_acquire);
94 for (;;) {
95 CHECK_GT(v, 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((v)); __sanitizer
::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect(!!(!
(v1 > v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 95, "(" "(v)" ") " ">" " (" "(0)" ")", v1, v2); } while (
false)
;
96 if (v == 1)
97 break;
98 if (atomic_compare_exchange_strong(ref, &v, v - 1, memory_order_acq_rel))
99 return;
100 }
101 // First level block owns second level blocks, so them as well.
102 for (uptr i = 0; i < blocks; i++)
103 ctx->clock_alloc.Free(c, cb->table[ClockBlock::kBlockIdx - i]);
104 ctx->clock_alloc.Free(c, idx);
105}
106
107ThreadClock::ThreadClock(unsigned tid, unsigned reused)
108 : tid_(tid)
109 , reused_(reused + 1) // 0 has special meaning
110 , last_acquire_()
111 , global_acquire_()
112 , cached_idx_()
113 , cached_size_()
114 , cached_blocks_() {
115 CHECK_LT(tid, kMaxTidInClock)do { __sanitizer::u64 v1 = (__sanitizer::u64)((tid)); __sanitizer
::u64 v2 = (__sanitizer::u64)((kMaxTidInClock)); if (__builtin_expect
(!!(!(v1 < v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 115, "(" "(tid)" ") " "<" " (" "(kMaxTidInClock)" ")", v1
, v2); } while (false)
;
116 CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits)do { __sanitizer::u64 v1 = (__sanitizer::u64)((reused_)); __sanitizer
::u64 v2 = (__sanitizer::u64)((((u64)reused_ << kClkBits
) >> kClkBits)); if (__builtin_expect(!!(!(v1 == v2)), 0
)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 116, "(" "(reused_)" ") " "==" " (" "(((u64)reused_ << kClkBits) >> kClkBits)"
")", v1, v2); } while (false)
;
117 nclk_ = tid_ + 1;
118 internal_memset(clk_, 0, sizeof(clk_));
119}
120
121void ThreadClock::ResetCached(ClockCache *c) {
122 if (cached_idx_) {
123 UnrefClockBlock(c, cached_idx_, cached_blocks_);
124 cached_idx_ = 0;
125 cached_size_ = 0;
126 cached_blocks_ = 0;
127 }
128}
129
130void ThreadClock::acquire(ClockCache *c, SyncClock *src) {
131 DCHECK_LE(nclk_, kMaxTid);
132 DCHECK_LE(src->size_, kMaxTid);
133
134 // Check if it's empty -> no need to do anything.
135 const uptr nclk = src->size_;
136 if (nclk == 0)
137 return;
138
139 bool acquired = false;
140 for (unsigned i = 0; i < kDirtyTids; i++) {
141 SyncClock::Dirty dirty = src->dirty_[i];
142 unsigned tid = dirty.tid();
143 if (tid != kInvalidTid) {
144 if (clk_[tid] < dirty.epoch) {
145 clk_[tid] = dirty.epoch;
146 acquired = true;
147 }
148 }
149 }
150
151 // Check if we've already acquired src after the last release operation on src
152 if (tid_ >= nclk || src->elem(tid_).reused != reused_) {
153 // O(N) acquire.
154 nclk_ = max(nclk_, nclk);
155 u64 *dst_pos = &clk_[0];
156 for (ClockElem &src_elem : *src) {
157 u64 epoch = src_elem.epoch;
158 if (*dst_pos < epoch) {
159 *dst_pos = epoch;
160 acquired = true;
161 }
162 dst_pos++;
163 }
164
165 // Remember that this thread has acquired this clock.
166 if (nclk > tid_)
167 src->elem(tid_).reused = reused_;
168 }
169
170 if (acquired) {
171 last_acquire_ = clk_[tid_];
172 ResetCached(c);
173 }
174}
175
176void ThreadClock::releaseStoreAcquire(ClockCache *c, SyncClock *sc) {
177 DCHECK_LE(nclk_, kMaxTid);
178 DCHECK_LE(sc->size_, kMaxTid);
179
180 if (sc->size_ == 0) {
181 // ReleaseStore will correctly set release_store_tid_,
182 // which can be important for future operations.
183 ReleaseStore(c, sc);
184 return;
185 }
186
187 nclk_ = max(nclk_, (uptr) sc->size_);
188
189 // Check if we need to resize sc.
190 if (sc->size_ < nclk_)
191 sc->Resize(c, nclk_);
192
193 bool acquired = false;
194
195 sc->Unshare(c);
196 // Update sc->clk_.
197 sc->FlushDirty();
198 uptr i = 0;
199 for (ClockElem &ce : *sc) {
200 u64 tmp = clk_[i];
201 if (clk_[i] < ce.epoch) {
202 clk_[i] = ce.epoch;
203 acquired = true;
204 }
205 ce.epoch = tmp;
206 ce.reused = 0;
207 i++;
208 }
209 sc->release_store_tid_ = kInvalidTid;
210 sc->release_store_reused_ = 0;
211
212 if (acquired) {
213 last_acquire_ = clk_[tid_];
214 ResetCached(c);
215 }
216}
217
218void ThreadClock::release(ClockCache *c, SyncClock *dst) {
219 DCHECK_LE(nclk_, kMaxTid);
220 DCHECK_LE(dst->size_, kMaxTid);
221
222 if (dst->size_ == 0) {
1
Assuming field 'size_' is not equal to 0
2
Taking false branch
223 // ReleaseStore will correctly set release_store_tid_,
224 // which can be important for future operations.
225 ReleaseStore(c, dst);
226 return;
227 }
228
229 // Check if we need to resize dst.
230 if (dst->size_ < nclk_)
3
Assuming field 'size_' is >= field 'nclk_'
4
Taking false branch
231 dst->Resize(c, nclk_);
232
233 // Check if we had not acquired anything from other threads
234 // since the last release on dst. If so, we need to update
235 // only dst->elem(tid_).
236 if (!HasAcquiredAfterRelease(dst)) {
5
Taking false branch
237 UpdateCurrentThread(c, dst);
238 if (dst->release_store_tid_ != tid_ ||
239 dst->release_store_reused_ != reused_)
240 dst->release_store_tid_ = kInvalidTid;
241 return;
242 }
243
244 // O(N) release.
245 dst->Unshare(c);
246 // First, remember whether we've acquired dst.
247 bool acquired = IsAlreadyAcquired(dst);
248 // Update dst->clk_.
249 dst->FlushDirty();
250 uptr i = 0;
251 for (ClockElem &ce : *dst) {
6
Calling 'Iter::operator++'
14
Returning from 'Iter::operator++'
15
Calling 'Iter::operator++'
252 ce.epoch = max(ce.epoch, clk_[i]);
253 ce.reused = 0;
254 i++;
255 }
256 // Clear 'acquired' flag in the remaining elements.
257 dst->release_store_tid_ = kInvalidTid;
258 dst->release_store_reused_ = 0;
259 // If we've acquired dst, remember this fact,
260 // so that we don't need to acquire it on next acquire.
261 if (acquired)
262 dst->elem(tid_).reused = reused_;
263}
264
265void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) {
266 DCHECK_LE(nclk_, kMaxTid);
267 DCHECK_LE(dst->size_, kMaxTid);
268
269 if (dst->size_ == 0 && cached_idx_ != 0) {
270 // Reuse the cached clock.
271 // Note: we could reuse/cache the cached clock in more cases:
272 // we could update the existing clock and cache it, or replace it with the
273 // currently cached clock and release the old one. And for a shared
274 // existing clock, we could replace it with the currently cached;
275 // or unshare, update and cache. But, for simplicity, we currently reuse
276 // cached clock only when the target clock is empty.
277 dst->tab_ = ctx->clock_alloc.Map(cached_idx_);
278 dst->tab_idx_ = cached_idx_;
279 dst->size_ = cached_size_;
280 dst->blocks_ = cached_blocks_;
281 CHECK_EQ(dst->dirty_[0].tid(), kInvalidTid)do { __sanitizer::u64 v1 = (__sanitizer::u64)((dst->dirty_
[0].tid())); __sanitizer::u64 v2 = (__sanitizer::u64)((kInvalidTid
)); if (__builtin_expect(!!(!(v1 == v2)), 0)) __sanitizer::CheckFailed
("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 281, "(" "(dst->dirty_[0].tid())" ") " "==" " (" "(kInvalidTid)"
")", v1, v2); } while (false)
;
282 // The cached clock is shared (immutable),
283 // so this is where we store the current clock.
284 dst->dirty_[0].set_tid(tid_);
285 dst->dirty_[0].epoch = clk_[tid_];
286 dst->release_store_tid_ = tid_;
287 dst->release_store_reused_ = reused_;
288 // Remember that we don't need to acquire it in future.
289 dst->elem(tid_).reused = reused_;
290 // Grab a reference.
291 atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
292 return;
293 }
294
295 // Check if we need to resize dst.
296 if (dst->size_ < nclk_)
297 dst->Resize(c, nclk_);
298
299 if (dst->release_store_tid_ == tid_ &&
300 dst->release_store_reused_ == reused_ &&
301 !HasAcquiredAfterRelease(dst)) {
302 UpdateCurrentThread(c, dst);
303 return;
304 }
305
306 // O(N) release-store.
307 dst->Unshare(c);
308 // Note: dst can be larger than this ThreadClock.
309 // This is fine since clk_ beyond size is all zeros.
310 uptr i = 0;
311 for (ClockElem &ce : *dst) {
312 ce.epoch = clk_[i];
313 ce.reused = 0;
314 i++;
315 }
316 for (uptr i = 0; i < kDirtyTids; i++) dst->dirty_[i].set_tid(kInvalidTid);
317 dst->release_store_tid_ = tid_;
318 dst->release_store_reused_ = reused_;
319 // Remember that we don't need to acquire it in future.
320 dst->elem(tid_).reused = reused_;
321
322 // If the resulting clock is cachable, cache it for future release operations.
323 // The clock is always cachable if we released to an empty sync object.
324 if (cached_idx_ == 0 && dst->Cachable()) {
325 // Grab a reference to the ClockBlock.
326 atomic_uint32_t *ref = ref_ptr(dst->tab_);
327 if (atomic_load(ref, memory_order_acquire) == 1)
328 atomic_store_relaxed(ref, 2);
329 else
330 atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
331 cached_idx_ = dst->tab_idx_;
332 cached_size_ = dst->size_;
333 cached_blocks_ = dst->blocks_;
334 }
335}
336
337void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
338 acquire(c, dst);
339 ReleaseStore(c, dst);
340}
341
342// Updates only single element related to the current thread in dst->clk_.
343void ThreadClock::UpdateCurrentThread(ClockCache *c, SyncClock *dst) const {
344 // Update the threads time, but preserve 'acquired' flag.
345 for (unsigned i = 0; i < kDirtyTids; i++) {
346 SyncClock::Dirty *dirty = &dst->dirty_[i];
347 const unsigned tid = dirty->tid();
348 if (tid == tid_ || tid == kInvalidTid) {
349 dirty->set_tid(tid_);
350 dirty->epoch = clk_[tid_];
351 return;
352 }
353 }
354 // Reset all 'acquired' flags, O(N).
355 // We are going to touch dst elements, so we need to unshare it.
356 dst->Unshare(c);
357 dst->elem(tid_).epoch = clk_[tid_];
358 for (uptr i = 0; i < dst->size_; i++)
359 dst->elem(i).reused = 0;
360 dst->FlushDirty();
361}
362
363// Checks whether the current thread has already acquired src.
364bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
365 if (src->elem(tid_).reused != reused_)
366 return false;
367 for (unsigned i = 0; i < kDirtyTids; i++) {
368 SyncClock::Dirty dirty = src->dirty_[i];
369 if (dirty.tid() != kInvalidTid) {
370 if (clk_[dirty.tid()] < dirty.epoch)
371 return false;
372 }
373 }
374 return true;
375}
376
377// Checks whether the current thread has acquired anything
378// from other clocks after releasing to dst (directly or indirectly).
379bool ThreadClock::HasAcquiredAfterRelease(const SyncClock *dst) const {
380 const u64 my_epoch = dst->elem(tid_).epoch;
381 return my_epoch <= last_acquire_ ||
382 my_epoch <= atomic_load_relaxed(&global_acquire_);
383}
384
385// Sets a single element in the vector clock.
386// This function is called only from weird places like AcquireGlobal.
387void ThreadClock::set(ClockCache *c, unsigned tid, u64 v) {
388 DCHECK_LT(tid, kMaxTid);
389 DCHECK_GE(v, clk_[tid]);
390 clk_[tid] = v;
391 if (nclk_ <= tid)
392 nclk_ = tid + 1;
393 last_acquire_ = clk_[tid_];
394 ResetCached(c);
395}
396
397void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
398 printf("clock=[");
399 for (uptr i = 0; i < nclk_; i++)
400 printf("%s%llu", i == 0 ? "" : ",", clk_[i]);
401 printf("] tid=%u/%u last_acq=%llu", tid_, reused_, last_acquire_);
402}
403
404SyncClock::SyncClock() {
405 ResetImpl();
406}
407
408SyncClock::~SyncClock() {
409 // Reset must be called before dtor.
410 CHECK_EQ(size_, 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((size_)); __sanitizer
::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect(!!(!
(v1 == v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 410, "(" "(size_)" ") " "==" " (" "(0)" ")", v1, v2); } while
(false)
;
411 CHECK_EQ(blocks_, 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((blocks_)); __sanitizer
::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect(!!(!
(v1 == v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 411, "(" "(blocks_)" ") " "==" " (" "(0)" ")", v1, v2); } while
(false)
;
412 CHECK_EQ(tab_, 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((tab_)); __sanitizer
::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect(!!(!
(v1 == v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 412, "(" "(tab_)" ") " "==" " (" "(0)" ")", v1, v2); } while
(false)
;
413 CHECK_EQ(tab_idx_, 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((tab_idx_)); __sanitizer
::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect(!!(!
(v1 == v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 413, "(" "(tab_idx_)" ") " "==" " (" "(0)" ")", v1, v2); } while
(false)
;
414}
415
416void SyncClock::Reset(ClockCache *c) {
417 if (size_)
418 UnrefClockBlock(c, tab_idx_, blocks_);
419 ResetImpl();
420}
421
422void SyncClock::ResetImpl() {
423 tab_ = 0;
424 tab_idx_ = 0;
425 size_ = 0;
426 blocks_ = 0;
427 release_store_tid_ = kInvalidTid;
428 release_store_reused_ = 0;
429 for (uptr i = 0; i < kDirtyTids; i++) dirty_[i].set_tid(kInvalidTid);
430}
431
432void SyncClock::Resize(ClockCache *c, uptr nclk) {
433 Unshare(c);
434 if (nclk <= capacity()) {
435 // Memory is already allocated, just increase the size.
436 size_ = nclk;
437 return;
438 }
439 if (size_ == 0) {
440 // Grow from 0 to one-level table.
441 CHECK_EQ(size_, 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((size_)); __sanitizer
::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect(!!(!
(v1 == v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 441, "(" "(size_)" ") " "==" " (" "(0)" ")", v1, v2); } while
(false)
;
442 CHECK_EQ(blocks_, 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((blocks_)); __sanitizer
::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect(!!(!
(v1 == v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 442, "(" "(blocks_)" ") " "==" " (" "(0)" ")", v1, v2); } while
(false)
;
443 CHECK_EQ(tab_, 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((tab_)); __sanitizer
::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect(!!(!
(v1 == v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 443, "(" "(tab_)" ") " "==" " (" "(0)" ")", v1, v2); } while
(false)
;
444 CHECK_EQ(tab_idx_, 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((tab_idx_)); __sanitizer
::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect(!!(!
(v1 == v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 444, "(" "(tab_idx_)" ") " "==" " (" "(0)" ")", v1, v2); } while
(false)
;
445 tab_idx_ = ctx->clock_alloc.Alloc(c);
446 tab_ = ctx->clock_alloc.Map(tab_idx_);
447 internal_memset(tab_, 0, sizeof(*tab_));
448 atomic_store_relaxed(ref_ptr(tab_), 1);
449 size_ = 1;
450 } else if (size_ > blocks_ * ClockBlock::kClockCount) {
451 u32 idx = ctx->clock_alloc.Alloc(c);
452 ClockBlock *new_cb = ctx->clock_alloc.Map(idx);
453 uptr top = size_ - blocks_ * ClockBlock::kClockCount;
454 CHECK_LT(top, ClockBlock::kClockCount)do { __sanitizer::u64 v1 = (__sanitizer::u64)((top)); __sanitizer
::u64 v2 = (__sanitizer::u64)((ClockBlock::kClockCount)); if (
__builtin_expect(!!(!(v1 < v2)), 0)) __sanitizer::CheckFailed
("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 454, "(" "(top)" ") " "<" " (" "(ClockBlock::kClockCount)"
")", v1, v2); } while (false)
;
455 const uptr move = top * sizeof(tab_->clock[0]);
456 internal_memcpy(&new_cb->clock[0], tab_->clock, move);
457 internal_memset(&new_cb->clock[top], 0, sizeof(*new_cb) - move);
458 internal_memset(tab_->clock, 0, move);
459 append_block(idx);
460 }
461 // At this point we have first level table allocated and all clock elements
462 // are evacuated from it to a second level block.
463 // Add second level tables as necessary.
464 while (nclk > capacity()) {
465 u32 idx = ctx->clock_alloc.Alloc(c);
466 ClockBlock *cb = ctx->clock_alloc.Map(idx);
467 internal_memset(cb, 0, sizeof(*cb));
468 append_block(idx);
469 }
470 size_ = nclk;
471}
472
473// Flushes all dirty elements into the main clock array.
474void SyncClock::FlushDirty() {
475 for (unsigned i = 0; i < kDirtyTids; i++) {
476 Dirty *dirty = &dirty_[i];
477 if (dirty->tid() != kInvalidTid) {
478 CHECK_LT(dirty->tid(), size_)do { __sanitizer::u64 v1 = (__sanitizer::u64)((dirty->tid(
))); __sanitizer::u64 v2 = (__sanitizer::u64)((size_)); if (__builtin_expect
(!!(!(v1 < v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 478, "(" "(dirty->tid())" ") " "<" " (" "(size_)" ")"
, v1, v2); } while (false)
;
479 elem(dirty->tid()).epoch = dirty->epoch;
480 dirty->set_tid(kInvalidTid);
481 }
482 }
483}
484
485bool SyncClock::IsShared() const {
486 if (size_ == 0)
487 return false;
488 atomic_uint32_t *ref = ref_ptr(tab_);
489 u32 v = atomic_load(ref, memory_order_acquire);
490 CHECK_GT(v, 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((v)); __sanitizer
::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect(!!(!
(v1 > v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 490, "(" "(v)" ") " ">" " (" "(0)" ")", v1, v2); } while
(false)
;
491 return v > 1;
492}
493
494// Unshares the current clock if it's shared.
495// Shared clocks are immutable, so they need to be unshared before any updates.
496// Note: this does not apply to dirty entries as they are not shared.
497void SyncClock::Unshare(ClockCache *c) {
498 if (!IsShared())
499 return;
500 // First, copy current state into old.
501 SyncClock old;
502 old.tab_ = tab_;
503 old.tab_idx_ = tab_idx_;
504 old.size_ = size_;
505 old.blocks_ = blocks_;
506 old.release_store_tid_ = release_store_tid_;
507 old.release_store_reused_ = release_store_reused_;
508 for (unsigned i = 0; i < kDirtyTids; i++)
509 old.dirty_[i] = dirty_[i];
510 // Then, clear current object.
511 ResetImpl();
512 // Allocate brand new clock in the current object.
513 Resize(c, old.size_);
514 // Now copy state back into this object.
515 Iter old_iter(&old);
516 for (ClockElem &ce : *this) {
517 ce = *old_iter;
518 ++old_iter;
519 }
520 release_store_tid_ = old.release_store_tid_;
521 release_store_reused_ = old.release_store_reused_;
522 for (unsigned i = 0; i < kDirtyTids; i++)
523 dirty_[i] = old.dirty_[i];
524 // Drop reference to old and delete if necessary.
525 old.Reset(c);
526}
527
528// Can we cache this clock for future release operations?
529ALWAYS_INLINEinline __attribute__((always_inline)) bool SyncClock::Cachable() const {
530 if (size_ == 0)
531 return false;
532 for (unsigned i = 0; i < kDirtyTids; i++) {
533 if (dirty_[i].tid() != kInvalidTid)
534 return false;
535 }
536 return atomic_load_relaxed(ref_ptr(tab_)) == 1;
537}
538
539// elem linearizes the two-level structure into linear array.
540// Note: this is used only for one time accesses, vector operations use
541// the iterator as it is much faster.
542ALWAYS_INLINEinline __attribute__((always_inline)) ClockElem &SyncClock::elem(unsigned tid) const {
543 DCHECK_LT(tid, size_);
544 const uptr block = tid / ClockBlock::kClockCount;
545 DCHECK_LE(block, blocks_);
546 tid %= ClockBlock::kClockCount;
547 if (block == blocks_)
548 return tab_->clock[tid];
549 u32 idx = get_block(block);
550 ClockBlock *cb = ctx->clock_alloc.Map(idx);
551 return cb->clock[tid];
552}
553
554ALWAYS_INLINEinline __attribute__((always_inline)) uptr SyncClock::capacity() const {
555 if (size_ == 0)
556 return 0;
557 uptr ratio = sizeof(ClockBlock::clock[0]) / sizeof(ClockBlock::table[0]);
558 // How many clock elements we can fit into the first level block.
559 // +1 for ref counter.
560 uptr top = ClockBlock::kClockCount - RoundUpTo(blocks_ + 1, ratio) / ratio;
561 return blocks_ * ClockBlock::kClockCount + top;
562}
563
564ALWAYS_INLINEinline __attribute__((always_inline)) u32 SyncClock::get_block(uptr bi) const {
565 DCHECK(size_);
566 DCHECK_LT(bi, blocks_);
567 return tab_->table[ClockBlock::kBlockIdx - bi];
568}
569
570ALWAYS_INLINEinline __attribute__((always_inline)) void SyncClock::append_block(u32 idx) {
571 uptr bi = blocks_++;
572 CHECK_EQ(get_block(bi), 0)do { __sanitizer::u64 v1 = (__sanitizer::u64)((get_block(bi))
); __sanitizer::u64 v2 = (__sanitizer::u64)((0)); if (__builtin_expect
(!!(!(v1 == v2)), 0)) __sanitizer::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.cpp"
, 572, "(" "(get_block(bi))" ") " "==" " (" "(0)" ")", v1, v2
); } while (false)
;
573 tab_->table[ClockBlock::kBlockIdx - bi] = idx;
574}
575
576// Used only by tests.
577u64 SyncClock::get(unsigned tid) const {
578 for (unsigned i = 0; i < kDirtyTids; i++) {
579 Dirty dirty = dirty_[i];
580 if (dirty.tid() == tid)
581 return dirty.epoch;
582 }
583 return elem(tid).epoch;
584}
585
586// Used only by Iter test.
587u64 SyncClock::get_clean(unsigned tid) const {
588 return elem(tid).epoch;
589}
590
591void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
592 printf("clock=[");
593 for (uptr i = 0; i < size_; i++)
594 printf("%s%llu", i == 0 ? "" : ",", elem(i).epoch);
595 printf("] reused=[");
596 for (uptr i = 0; i < size_; i++)
597 printf("%s%llu", i == 0 ? "" : ",", elem(i).reused);
598 printf("] release_store_tid=%d/%d dirty_tids=%d[%llu]/%d[%llu]",
599 release_store_tid_, release_store_reused_, dirty_[0].tid(),
600 dirty_[0].epoch, dirty_[1].tid(), dirty_[1].epoch);
601}
602
603void SyncClock::Iter::Next() {
604 // Finished with the current block, move on to the next one.
605 block_++;
606 if (block_ < parent_->blocks_) {
10
Assuming field 'block_' is >= field 'blocks_'
19
Access to field 'blocks_' results in a dereference of a null pointer (loaded from field 'parent_')
607 // Iterate over the next second level block.
608 u32 idx = parent_->get_block(block_);
609 ClockBlock *cb = ctx->clock_alloc.Map(idx);
610 pos_ = &cb->clock[0];
611 end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
612 ClockBlock::kClockCount);
613 return;
614 }
615 if (block_ == parent_->blocks_ &&
11
Assuming field 'block_' is not equal to field 'blocks_'
616 parent_->size_ > parent_->blocks_ * ClockBlock::kClockCount) {
617 // Iterate over elements in the first level block.
618 pos_ = &parent_->tab_->clock[0];
619 end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
620 ClockBlock::kClockCount);
621 return;
622 }
623 parent_ = nullptr; // denotes end
12
Null pointer value stored to '__begin1.parent_'
624}
625} // namespace __tsan

/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.h

1//===-- tsan_clock.h --------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11//===----------------------------------------------------------------------===//
12#ifndef TSAN_CLOCK_H
13#define TSAN_CLOCK_H
14
15#include "tsan_defs.h"
16#include "tsan_dense_alloc.h"
17
18namespace __tsan {
19
20typedef DenseSlabAlloc<ClockBlock, 1 << 22, 1 << 10> ClockAlloc;
21typedef DenseSlabAllocCache ClockCache;
22
23// The clock that lives in sync variables (mutexes, atomics, etc).
24class SyncClock {
25 public:
26 SyncClock();
27 ~SyncClock();
28
29 uptr size() const;
30
31 // These are used only in tests.
32 u64 get(unsigned tid) const;
33 u64 get_clean(unsigned tid) const;
34
35 void Resize(ClockCache *c, uptr nclk);
36 void Reset(ClockCache *c);
37
38 void DebugDump(int(*printf)(const char *s, ...));
39
40 // Clock element iterator.
41 // Note: it iterates only over the table without regard to dirty entries.
42 class Iter {
43 public:
44 explicit Iter(SyncClock* parent);
45 Iter& operator++();
46 bool operator!=(const Iter& other);
47 ClockElem &operator*();
48
49 private:
50 SyncClock *parent_;
51 // [pos_, end_) is the current continuous range of clock elements.
52 ClockElem *pos_;
53 ClockElem *end_;
54 int block_; // Current number of second level block.
55
56 NOINLINE__attribute__((noinline)) void Next();
57 };
58
59 Iter begin();
60 Iter end();
61
62 private:
63 friend class ThreadClock;
64 friend class Iter;
65 static const uptr kDirtyTids = 2;
66
67 struct Dirty {
68 u32 tid() const { return tid_ == kShortInvalidTid ? kInvalidTid : tid_; }
69 void set_tid(u32 tid) {
70 tid_ = tid == kInvalidTid ? kShortInvalidTid : tid;
71 }
72 u64 epoch : kClkBits;
73
74 private:
75 // Full kInvalidTid won't fit into Dirty::tid.
76 static const u64 kShortInvalidTid = (1ull << (64 - kClkBits)) - 1;
77 u64 tid_ : 64 - kClkBits; // kInvalidId if not active
78 };
79
80 static_assert(sizeof(Dirty) == 8, "Dirty is not 64bit");
81
82 unsigned release_store_tid_;
83 unsigned release_store_reused_;
84 Dirty dirty_[kDirtyTids];
85 // If size_ is 0, tab_ is nullptr.
86 // If size <= 64 (kClockCount), tab_ contains pointer to an array with
87 // 64 ClockElem's (ClockBlock::clock).
88 // Otherwise, tab_ points to an array with up to 127 u32 elements,
89 // each pointing to the second-level 512b block with 64 ClockElem's.
90 // Unused space in the first level ClockBlock is used to store additional
91 // clock elements.
92 // The last u32 element in the first level ClockBlock is always used as
93 // reference counter.
94 //
95 // See the following scheme for details.
96 // All memory blocks are 512 bytes (allocated from ClockAlloc).
97 // Clock (clk) elements are 64 bits.
98 // Idx and ref are 32 bits.
99 //
100 // tab_
101 // |
102 // \/
103 // +----------------------------------------------------+
104 // | clk128 | clk129 | ...unused... | idx1 | idx0 | ref |
105 // +----------------------------------------------------+
106 // | |
107 // | \/
108 // | +----------------+
109 // | | clk0 ... clk63 |
110 // | +----------------+
111 // \/
112 // +------------------+
113 // | clk64 ... clk127 |
114 // +------------------+
115 //
116 // Note: dirty entries, if active, always override what's stored in the clock.
117 ClockBlock *tab_;
118 u32 tab_idx_;
119 u16 size_;
120 u16 blocks_; // Number of second level blocks.
121
122 void Unshare(ClockCache *c);
123 bool IsShared() const;
124 bool Cachable() const;
125 void ResetImpl();
126 void FlushDirty();
127 uptr capacity() const;
128 u32 get_block(uptr bi) const;
129 void append_block(u32 idx);
130 ClockElem &elem(unsigned tid) const;
131};
132
133// The clock that lives in threads.
134class ThreadClock {
135 public:
136 typedef DenseSlabAllocCache Cache;
137
138 explicit ThreadClock(unsigned tid, unsigned reused = 0);
139
140 u64 get(unsigned tid) const;
141 void set(ClockCache *c, unsigned tid, u64 v);
142 void set(u64 v);
143 void tick();
144 uptr size() const;
145
146 void acquire(ClockCache *c, SyncClock *src);
147 void releaseStoreAcquire(ClockCache *c, SyncClock *src);
148 void release(ClockCache *c, SyncClock *dst);
149 void acq_rel(ClockCache *c, SyncClock *dst);
150 void ReleaseStore(ClockCache *c, SyncClock *dst);
151 void ResetCached(ClockCache *c);
152 void NoteGlobalAcquire(u64 v);
153
154 void DebugReset();
155 void DebugDump(int(*printf)(const char *s, ...));
156
157 private:
158 static const uptr kDirtyTids = SyncClock::kDirtyTids;
159 // Index of the thread associated with he clock ("current thread").
160 const unsigned tid_;
161 const unsigned reused_; // tid_ reuse count.
162 // Current thread time when it acquired something from other threads.
163 u64 last_acquire_;
164
165 // Last time another thread has done a global acquire of this thread's clock.
166 // It helps to avoid problem described in:
167 // https://github.com/golang/go/issues/39186
168 // See test/tsan/java_finalizer2.cpp for a regression test.
169 // Note the failuire is _extremely_ hard to hit, so if you are trying
170 // to reproduce it, you may want to run something like:
171 // $ go get golang.org/x/tools/cmd/stress
172 // $ stress -p=64 ./a.out
173 //
174 // The crux of the problem is roughly as follows.
175 // A number of O(1) optimizations in the clocks algorithm assume proper
176 // transitive cumulative propagation of clock values. The AcquireGlobal
177 // operation may produce an inconsistent non-linearazable view of
178 // thread clocks. Namely, it may acquire a later value from a thread
179 // with a higher ID, but fail to acquire an earlier value from a thread
180 // with a lower ID. If a thread that executed AcquireGlobal then releases
181 // to a sync clock, it will spoil the sync clock with the inconsistent
182 // values. If another thread later releases to the sync clock, the optimized
183 // algorithm may break.
184 //
185 // The exact sequence of events that leads to the failure.
186 // - thread 1 executes AcquireGlobal
187 // - thread 1 acquires value 1 for thread 2
188 // - thread 2 increments clock to 2
189 // - thread 2 releases to sync object 1
190 // - thread 3 at time 1
191 // - thread 3 acquires from sync object 1
192 // - thread 3 increments clock to 2
193 // - thread 1 acquires value 2 for thread 3
194 // - thread 1 releases to sync object 2
195 // - sync object 2 clock has 1 for thread 2 and 2 for thread 3
196 // - thread 3 releases to sync object 2
197 // - thread 3 sees value 2 in the clock for itself
198 // and decides that it has already released to the clock
199 // and did not acquire anything from other threads after that
200 // (the last_acquire_ check in release operation)
201 // - thread 3 does not update the value for thread 2 in the clock from 1 to 2
202 // - thread 4 acquires from sync object 2
203 // - thread 4 detects a false race with thread 2
204 // as it should have been synchronized with thread 2 up to time 2,
205 // but because of the broken clock it is now synchronized only up to time 1
206 //
207 // The global_acquire_ value helps to prevent this scenario.
208 // Namely, thread 3 will not trust any own clock values up to global_acquire_
209 // for the purposes of the last_acquire_ optimization.
210 atomic_uint64_t global_acquire_;
211
212 // Cached SyncClock (without dirty entries and release_store_tid_).
213 // We reuse it for subsequent store-release operations without intervening
214 // acquire operations. Since it is shared (and thus constant), clock value
215 // for the current thread is then stored in dirty entries in the SyncClock.
216 // We host a reference to the table while it is cached here.
217 u32 cached_idx_;
218 u16 cached_size_;
219 u16 cached_blocks_;
220
221 // Number of active elements in the clk_ table (the rest is zeros).
222 uptr nclk_;
223 u64 clk_[kMaxTidInClock]; // Fixed size vector clock.
224
225 bool IsAlreadyAcquired(const SyncClock *src) const;
226 bool HasAcquiredAfterRelease(const SyncClock *dst) const;
227 void UpdateCurrentThread(ClockCache *c, SyncClock *dst) const;
228};
229
230ALWAYS_INLINEinline __attribute__((always_inline)) u64 ThreadClock::get(unsigned tid) const {
231 DCHECK_LT(tid, kMaxTidInClock);
232 return clk_[tid];
233}
234
235ALWAYS_INLINEinline __attribute__((always_inline)) void ThreadClock::set(u64 v) {
236 DCHECK_GE(v, clk_[tid_]);
237 clk_[tid_] = v;
238}
239
240ALWAYS_INLINEinline __attribute__((always_inline)) void ThreadClock::tick() {
241 clk_[tid_]++;
242}
243
244ALWAYS_INLINEinline __attribute__((always_inline)) uptr ThreadClock::size() const {
245 return nclk_;
246}
247
248ALWAYS_INLINEinline __attribute__((always_inline)) void ThreadClock::NoteGlobalAcquire(u64 v) {
249 // Here we rely on the fact that AcquireGlobal is protected by
250 // ThreadRegistryLock, thus only one thread at a time executes it
251 // and values passed to this function should not go backwards.
252 CHECK_LE(atomic_load_relaxed(&global_acquire_), v)do { __sanitizer::u64 v1 = (__sanitizer::u64)((atomic_load_relaxed
(&global_acquire_))); __sanitizer::u64 v2 = (__sanitizer::
u64)((v)); if (__builtin_expect(!!(!(v1 <= v2)), 0)) __sanitizer
::CheckFailed("/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/compiler-rt/lib/tsan/rtl/tsan_clock.h"
, 252, "(" "(atomic_load_relaxed(&global_acquire_))" ") "
"<=" " (" "(v)" ")", v1, v2); } while (false)
;
253 atomic_store_relaxed(&global_acquire_, v);
254}
255
256ALWAYS_INLINEinline __attribute__((always_inline)) SyncClock::Iter SyncClock::begin() {
257 return Iter(this);
258}
259
260ALWAYS_INLINEinline __attribute__((always_inline)) SyncClock::Iter SyncClock::end() {
261 return Iter(nullptr);
262}
263
264ALWAYS_INLINEinline __attribute__((always_inline)) uptr SyncClock::size() const {
265 return size_;
266}
267
268ALWAYS_INLINEinline __attribute__((always_inline)) SyncClock::Iter::Iter(SyncClock* parent)
269 : parent_(parent)
270 , pos_(nullptr)
271 , end_(nullptr)
272 , block_(-1) {
273 if (parent)
274 Next();
275}
276
277ALWAYS_INLINEinline __attribute__((always_inline)) SyncClock::Iter& SyncClock::Iter::operator++() {
278 pos_++;
279 if (UNLIKELY(pos_ >= end_)__builtin_expect(!!(pos_ >= end_), 0))
7
Assuming the condition is true
8
Taking true branch
16
Assuming the condition is true
17
Taking true branch
280 Next();
9
Calling 'Iter::Next'
13
Returning from 'Iter::Next'
18
Calling 'Iter::Next'
281 return *this;
282}
283
284ALWAYS_INLINEinline __attribute__((always_inline)) bool SyncClock::Iter::operator!=(const SyncClock::Iter& other) {
285 return parent_ != other.parent_;
286}
287
288ALWAYS_INLINEinline __attribute__((always_inline)) ClockElem &SyncClock::Iter::operator*() {
289 return *pos_;
290}
291} // namespace __tsan
292
293#endif // TSAN_CLOCK_H