
 Instruction scheduling for
Superscalar and VLIW platforms

Temporal perspective

Andy Trick, Apple
Sergei Larin, QuIC

Nov 07 2012

Tuesday, November 13, 12

Temporal Perspective
• The temporal perspective of workflow

specifications is through a series of
temporal constructs that may occur
when defining a process model

• This characterization is independent of
any specific modeling formalism or
approach

Tuesday, November 13, 12

What are we trying to achieve?
• Better understanding on instruction

scheduling in LLVM today
– Including timeline perspective

• Plan for the future
– Desired features and implementation

details

Tuesday, November 13, 12

Vertical Divide
(the somewhat Great Schism)

• There are really two separate sets of
requirements are present in LLVM
– Scheduling for Superscalar targets
• Less strict, more forgiving
• Less mem dep ordering sensitive
• Fine with BB scope

– Scheduling for VLIW (like) targets
• Very strict to ordering and mem

disambiguation
• Creates bundles
• Needs some form of global scheduling

Tuesday, November 13, 12

Pre-RA Instruction Scheduling
milestones

• SDNode scheduler
– Simple list scheduler (Sethi-Ullman)
– Operates on mixture of lowered instructions and

remains of SSA representation
– Simple DAG mem deps pruning
– Use DFA model for VLIW targets

• MIScheduler
– Converging List Scheduler
– Operates on Mis and mixture of virtual and physical

registers
– Simple DAG mem deps pruning
– Use DFA model for VLIW targets

• RegPressure tracking
• TargetSchedModel/MCSchedModel

Tuesday, November 13, 12

Scheduling Infrastructure Topics

• Infrastructure design goals
• Superscalar scheduling design goals
• Machine model
• Pass order
• Driver
• Register pressure infrastructure
• Scheduling strategy and heuristics
– Register pressure heuristics
– Resource balancing

6

Tuesday, November 13, 12

Infrastructure Design Goals
• Remove all dependence on

SelectionDAG scheduling
• Make instruction scheduling

completely optional
• Support out-of-order targets
• Support VLIW targets (bundling)
• Provide a place for target-specific

optimizations

7

Tuesday, November 13, 12

 Superscalar scheduling design goals

• Do no harm and preserve source order
• Model out-of-order processor

resources

8

Tuesday, November 13, 12

New machine model
• Three levels
– Coarse grain properties
– Per-opcode resources and latency
– Pipeline itineraries (primarily for VLIW)

• Free form description
– Highly customizable
– Allows incremental development
– Allows the description format to closely

match the microarchitecture spec
9

Tuesday, November 13, 12

Machine model example
Target Description

10

See TargetSchedule.td

// Define target specific SchedReadWrite types.

def WriteI; // ALU

def WriteIS; // Shift

def WriteF; // Float

def WriteL; // Load

def ReadAdr; // Memory Address

def ReadFAcc; // Accumulator

def LoadPostinc<...> : Instruction, Sched<[WriteL, WriteI, ReadAdr]>
{...}

def FMA<...> : Instruction, Sched<[WriteF, ReadFAcc]> {...}

Tuesday, November 13, 12

Machine model example
Processor description

11

// Define kinds of processor resources and quantities.

def YourProcUnitI : ProcResource<2>;

def YourProcUnitIS : ProcResource<1> { let Super = YourProcUnitI; }

def YourProcUnitLS : ProcResource<1>;

def YourProcUnitFP : ProcResource<1> { let Buffered = 0; }

// Define processor specific operand latencies and resource requirements

let SchedModel = YourProcModel in {

def : WriteRes<WriteI, [YourProcUnitI]>;

def : WriteRes<WriteF, [YourProcUnitFP]> { let Latency = 4; };

// If the result is produced by a load, we can read it one cycle before it is ready.

def : ReadAdvance<ReadA, 1, [WriteL]>

}

Tuesday, November 13, 12

Machine model example
Processor opcode override

12

// Override operations with more interesting processor specific behavior

def YourProcWriteFMovI : SchedWriteRes<[YourProcUnitF, YourProcUnitLS]> {

 let Latency = 6;

}

let SchedModel = YourProcModel in {

def : InstRW<[YourProcWriteFMovI], FMovIOpc>;

}

Tuesday, November 13, 12

Machine model example
Variants

13

// Define C++ functions to distinguish between multiple models for a single
// opcode based on immediate operand values or other modifiers.

def YourProcWriteIS : SchedWriteRes<[YourProcUnitIS]>;
def YourProcWriteExtract : SchedWriteRes<[YourProcUnitIS]> {
 let Latency = 2;
 let ResourceCycles = [2];
}

def ExtractPred : SchedPredicate<[{TII->isExtractOrDeposit(MI)}]>

def YourProcWriteIS: SchedWriteVariant<[
 SchedVar<ExtractPred, [YourProcWriteExtract],
 SchedVar<NoSchedPred, [YourProcWriteIS]>]>;

let SchedModel = YourProcModel in {

SchedAlias<WriteIS, YourProcWriteIS>

}

Tuesday, November 13, 12

Machine model example
Sequences

14

// Combine existing definitions use sequences for additive resources and latency.

def YourProcWriteShlAdd : WriteSequence<[WriteIS, WriteI]>;

let SchedModel = YourProcModel in {

def : InstRW<[YourProcWriteShlAdd], [ShlAddOpc]>;

}

Tuesday, November 13, 12

Pass order

• Subregister copies get in the way of
the scheduler.

• The scheduler can easily recover from
register coalescing within a block.

• Some targets require scheduling/
bundling after coalescing (VLIW).

15

SSA Opts
-> Register Coalescing
-> Machine Scheduling
-> Register Allocation

Tuesday, November 13, 12

Machine scheduling driver
• Target configuration can replace the

misched pass with a target scheduler
• The target may reuse the misched pass

and misched driver, but register a new
scheduler implementation (VLIW
approach)

• The target may reuse the misched
implementation but plugin its own
MachineSchedStrategy for heuristics

16

Tuesday, November 13, 12

Register pressure
• RegClass -> (Pressure Sets, Unit Weight)
• PressureSet -> Limit
• x86 example

17

 AH in {GR8, GR8_NOREX, GR8+GR64...}, weight = 1

 AX in {GR64}, weight = 2

GR8_NOREX limit=8

GR64 limit=34 (17 including RIP)

• ARM example
 S0 in {DPR, SPR}, weight=1

 D0 in {DPR}, weight=2

SPR limit=32

DPR limit=64

Tuesday, November 13, 12

Scheduling Direction
• Some targets may want top-down

scheduling (VLIW). So it's useful to
have an infrastructure support both.

• It's also handy to experiment with new
scheduler heuristics.

18

Tuesday, November 13, 12

Bidirectional heuristics for
superscalar

• Bidirectional support is mainly intended to
handle medium-size blocks with odd
scheduling problems. The solution is to
proceed in the direction in which choices
are more limited, or clearly beneficial.

• For large blocks, bidirectional scheduling
is intended to result in more symmetrical
schedules, without jamming like-resource
consumers at one end, or oddly shuffling
code.

19

Tuesday, November 13, 12

Current register pressure heuristics

• Greedy pressure backoff
– 3 levels: excess pressure, critical pressure,

max pressure
• Adjacent def-uses fallback

20

Tuesday, November 13, 12

Potential register pressure heuristics

• Pressure avoidance using subtree
detection

• Pressure avoidance using sethi-ullman
numbers

• Greedy pressure reduction using
intervals

• Pressure avoidance using precomputed
lineages

• Example: matmul

21

Tuesday, November 13, 12

Resource balancing heuristics
• Reduce/demand resources
• ShouldIncreaseILP
• Example: blowfish

22

Tuesday, November 13, 12

Nearly there
• Macro-fusion support (cmp+jmp)
• Load/store clustering
• Incremental improvement to the

register coalescer algorithm.
• Performance analysis an the necessary

platforms to make it the default

23

Tuesday, November 13, 12

Around the corner
• Better API for live intervals
• Move local target-specific peephole opts

into the sched pass
• Local live range splitting in the coalescer
• Expression height reduction (not

actually in the scheduler)
• Target-specific folding/unfolding (e.g.

postinc load formation)

24

Tuesday, November 13, 12

Looking ahead
• Finalize general scheduling framework
• Back-tracking scheduling?
• Early bundle formation
• Global scheduling
– Any change to IR is needed?
– Any relationship to sophisticated predication

support?
• DAG construction determinism
• Post-RA Scheduler?

Tuesday, November 13, 12

Common MI Sched heuristics
(backup slide)

• The current (experimental) MI scheduler implements a 3-level "back-off":
– 1) Respect the target's register limits at all times.
– 2) Indentify critical register classes (pressure sets) before scheduling

• Track pressure within the currently scheduled region
• Avoid increasing scheduled pressure for critical registers

– 3) Avoid exceeding the max pressure of the region prior to scheduling (don't make things
locally worse)

• All of the heuristics that I have planned are greedy
– some require precomputing register lineages (dependence chains that reuse a single register)
– MI scheduler can alternate between top-up and bottom-down, which doesn't fundamentally

change the problem, but avoids the common cases in which greedy schedulers "get stuck"
• Plan for the near future

– SpillCost: Map register units onto a spill cost that is more meaningful for heuristics
– Pressure Query: (compile time) Redesign the pressure tracker to summarize information at

the instruction level for fast queries during scheduling
– Pressure Range: Before scheduling, compute the high pressure region as a range of

instructions
• If the scheduler is not currently under pressure, prioritize instructions from within the range

– Register Lineages: Before scheduling, use a heuristic to select desirable lineages
• Select the longest lineage from the queue
• After scheduling an instruction, look at the next instruction in the lineage. If it has an unscheduled

operand, mark that operand's lineage as pending, and prioritize the head of that lineage
• This solves some interesting cases where a greedy scheduler is normally unable to choose among a set

of identical looking instructions by knowing how their dependence chain relates to any already
scheduled instructions

Tuesday, November 13, 12

