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Outline

❖ What is Tapir?

❖ Tapir’s debugging methodology

❖ Tapir’s optimization strategy
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Example: Normalizing a Vector

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

Test: random vector, n = 64M.  Machine: Amazon AWS c4.8xlarge.

Running time: 0.312 s
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A Crucial Compiler Optimization

LICM

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  double tmp = norm(in, n); 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / tmp; 
}
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Example: Normalizing a Vector in Parallel

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  cilk_for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

Cilk code for normalize()

Test: random vector, n = 64M.  Machine: Amazon AWS c4.8xlarge, 18 cores.

Running time of original serial code: TS = 0.312 s

Running time on 18 cores: T18 = 180.657 s

Running time on 1 core: T1 = 2600.287 s 

The story for OpenMP is similar, but more complicated.

Terrible work efficiency:
TS/T1 = 0.312/2600

~1/8300

Parallel code compiled using GCC 6.2.  Cilk Plus/LLVM produces worse results.
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A parallel loop replaces 
the original serial loop.



Compiling Parallel Code Today

Parallel 
code

PClang LLVM -O3 LLVM CodeGen EXE

C Clang LLVM -O3 LLVM CodeGen EXE

LLVM pipeline

LLVM pipeline for parallel code
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The front end 
translates all parallel 
language constructs.



Effect of Compiling Parallel Code

PClang

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  cilk_for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  struct args_t args = { out, in, n }; 
  __cilkrts_cilk_for(normalize_helper, args, 0, n); 
} 

void normalize_helper(struct args_t args, int i) { 
  double *out = args.out; 
  double *in = args.in; 
  int n = args.n; 
  out[i] = in[i] / norm(in, n); 
}
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Call into runtime to 
execute parallel loop.

Helper function 
encodes the loop body.

Existing optimizations cannot 
move call to norm out of the loop.



Tapir: Task-based Asymmetric Parallel IR
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Cilk PClang LLVM -O3 LLVM CodeGen EXE

Cilk Plus/LLVM pipeline

Tapir/LLVM pipeline

Cilk PClang Tapir -O3 Tapir CodeGen EXE

Tapir adds three 
instructions to LLVM 
IR that encode fork-

join parallelism.

With few changes, 
LLVM’s existing 

optimization passes 
work on parallel code.

Tapir embeds parallelism into LLVM IR.



Parallel IR: An Old Idea
Previous work on parallel IR’s:

❖ Parallel precedence graphs [SW91, SHW93]

❖ Parallel flow graphs [SG91, GS93]

❖ Concurrent SSA [LMP97, NUS98]

❖ Parallel program graphs [SS94, S98]

❖ “[LLVMdev] [RFC] Parallelization metadata and intrinsics in LLVM (for 
OpenMP, etc.)” http://lists.llvm.org/pipermail/llvm-dev/2012-August/052477.html

❖ “[LLVMdev] [RFC] Progress towards OpenMP support” http://lists.llvm.org/pipermail/llvm-
dev/2012-September/053326.html

❖ LLVM Parallel Intermediate Representation: Design and Evaluation Using 
OpenSHMEM Communications [KJIAC15] 

❖ LLVM Framework and IR Extensions for Parallelization, SIMD Vectorization 
and Offloading [TSSGMGZ16]
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❖ HPIR [ZS11, BZS13]

❖ SPIRE [KJAI12]

❖ INSPIRE [JPTKF13]

❖ LLVM’s parallel loop metadata

http://lists.llvm.org/pipermail/llvm-dev/2012-August/052477.html
http://lists.llvm.org/pipermail/llvm-dev/2012-September/053326.html
http://lists.llvm.org/pipermail/llvm-dev/2012-September/053326.html


Parallel IR: A Bad Idea?
From “[LLVMdev] LLVM Parallel IR,” 2015:

❖ “[I]ntroducing [parallelism] into a so far ‘sequential’ IR will cause severe 
breakage and headaches.”

❖ “[P]arallelism is invasive by nature and would have to influence most 
optimizations.”

❖ “[It] is not an easy problem.”

❖ “[D]efining a parallel IR (with first class parallelism) is a research topic…”

Other communications, 2016–2017:

❖ “There are a lot of information needs to be represented in IR for [back end] 
transformations for OpenMP.” [Private communication]

❖ “If you support all [parallel programming features] in the IR, a *lot* [of LOC]…
would probably have to be modified in LLVM.” [[RFC] IR-level Region Annotations]

10



Implementing Tapir/LLVM
Compiler component LLVM 4.0svn (lines) Tapir/LLVM (lines)

Instructions 105,995 943

Memory behavior 21,788 445

Optimizations 152,229 380

Parallelism lowering 0 3,782

Other 3,803,831 460

Total 4,083,843 6,010

�
1,768
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Normalizing a Vector in Parallel with Tapir

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  cilk_for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

Cilk code for normalize()

Test: random vector, n = 64M.  Machine: Amazon AWS c4.8xlarge, 18 cores.

Running time of original serial code: TS = 0.312 s

Compiled with Tapir/LLVM, running time on 1 core: T1 = 0.321 s

Compiled with Tapir/LLVM, running time on 18 cores: T18 = 0.081 s

Great work efficiency:  
TS/T1 = 97%
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Summary of Performance Results
Compared to handling parallel constructs in the front end:

❖ Tapir/LLVM produces executables with higher work-
efficiency for 17 of the 20 benchmarks — as much as 10–
25% higher on a third of these benchmarks.

❖ Tapir/LLVM produces executables with at least 99% 
work-efficiency on 12 of the benchmarks, whereas the 
competition does so on 2.

❖ Tapir/LLVM produces executables with comparable or 
better parallel speedup.
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For More on Tapir…

Come to the PPoPP talk!

Tuesday, February 7  
Room 400/402

Or ask me and Billy  
after this talk.

14

x = alloca() 
br (n < 2), exit, if.else

detach det, cont

x0 = fib(n - 1) 
store x0, x 
reattach cont

y = fib(n - 2) 
sync 
x1 = load x 
add = x1 + y 
br exit

rv = φ([n,entry],[add,cont]) 
return rv

entry

if.else

det
cont

exit

A Tapir CFG
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What Is Parallel Programming?
❖ Pthreads

❖ Message passing

❖ Vectorization

❖ Task parallelism

❖ Data parallelism

❖ Dataflow

❖ Multicore

❖ HPC

❖ GPU’s

❖ Heterogeneous computing
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❖ Shared memory

❖ Distributed memory

❖ Clients and servers

❖ Races and locks

❖ Concurrency

❖ Memory models

❖ Scheduling and load balancing

❖ Work efficiency

❖ Parallel speedup

❖ Etc.

Tapir does NOT directly address ALL of these.



Focus of Tapir

❖ Multicores

❖ Task parallelism

❖ Simple and extensible

❖ Deterministic debugging

❖ Serial semantics
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❖ Simple execution model

❖ Work efficiency

❖ Parallel speedup

❖ Composable performance

❖ Parallelism, not 
concurrency

Tapir strives to make it easy for average programmers to 
write efficient programs that achieve parallel speedup.



Focus of Tapir

❖ Multicores

❖ Task parallelism

❖ Simple and extensible

❖ Deterministic debugging

❖ Serial semantics
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❖ Simple execution model

❖ Work efficiency

❖ Parallel speedup

❖ Composable performance

❖ Parallelism, not 
concurrency

Tapir strives to make it easy for average programmers to 
write efficient programs that achieve parallel speedup.



Outline

❖ What is Tapir?

❖ Tapir’s debugging methodology

❖ Tapir’s optimization strategy
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Race Bugs
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Parallel programming is strictly harder than serial 
programming because of race bugs.

__attribute__((const)) 
double norm(const double *A, int n) { 
  double sum = 0.0; 
  #pragma omp parallel for 
  for (int i = 0; i < n; ++i) 
    sum += A[i] * A[i]; 
  return sqrt(sum); 
}

Concurrent updates to sum 
can nondeterministically 
produce different results.

Example: A buggy norm() function

How do I find a race if 
I’m “lucky” enough to 

never see different 
results?

How do I spot these 
bugs in my million-

line codebase?

What if the 
compiler 

creates the race?



A Compiler Writer’s Nightmare
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✔1 run

✔10 runs

✔1000 runs

Despite the programmer’s 
assertion, multiple runs 
indicate no problem.

❖ Is the compiler buggy?

❖ Is the programmer wrong?

 
  Parallel test case  (text/plain)
   2017-02-04, Angry Hacker 

Created attachment 12345 
Parallel test case

My parallel code is race free, but 
the compiler put a race in it!!  
>:(

Compiled program

Attachments

  Angry Hacker      2017-02-04

Add an attachment

Bug 55555 - Transformation 
puts race into race-free code



Debugging Tapir/LLVM
Tapir/LLVM contains a provably good race detector for 
verifying the existence of race bugs deterministically.

❖ Given a program and an input — e.g., a regression test 
— the race-detection algorithm guarantees to find a race 
if one exists or certify that no races exist [FL99, UAFL16].

❖ The race-detection algorithm introduces approximately 
constant overhead.

❖ We used the race detector together with opt to pinpoint 
optimization passes that incorrectly introduce races.
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What about Thread Sanitizer?
Efficient race detectors have been developed, including 
FastTrack [FF09] and Thread Sanitizer [KPIV11].

❖ These detectors are best effort: they are not guaranteed 
to find a race if one exists.

❖ These detectors are designed to handle a few parallel 
threads, comparable to the number of processors.

❖ Task-parallel languages are designed to get parallel 
speedup by exposing orders of magnitude more 
parallel tasks than processors.
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Outline

❖ What is Tapir?

❖ Tapir’s debugging methodology

❖ Tapir’s optimization strategy
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Example: Normalizing a Vector with OpenMP

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  #pragma omp parallel for 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

OpenMP code for normalize()

Test: random vector, n = 64M.  Machine: Amazon AWS c4.8xlarge, 18 cores.

Running time of original serial code: TS = 0.312 s

Compiled with LLVM 4.0, running time on 1 core: T1 = 0.329 s

Compiled with LLVM 4.0, running time on 18 cores: T18 = 0.205 s
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Great work efficiency without Tapir?



Work Analysis of Serial Normalize

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}
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T(norm) = O(n)

T(normalize) = 
n * T(norm) + O(n) = 

O(n2)



Work Analysis After LICM

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  double tmp = norm(in, n); 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / tmp; 
}
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T(normalize) = 
T(norm) + O(n) = 

O(n)

T(norm) = O(n)



Compiling OpenMP Normalize
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PClang

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  #pragma omp parallel for 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  __kmpc_fork_call(omp_outlined, n, out, in); 
} 

void omp_outlined(int n, double *restrict out, 
                  const double *restrict in) { 
  int local_n = n; double *local_out = out, *local_in = in; 
  __kmpc_for_static_init(&local_n, &local_out, &local_in); 
  double tmp = norm(in, n); 
  for (int i = 0; i < local_n; ++i) 
    local_out[i] = local_in[i] / tmp; 
  __kmpc_for_static_fini(); 
}

-O3 Each processor 
runs the helper 
function once.

Helper function 
contains a serial copy 
of the original loop.



Work Analysis of OpenMP Normalize

29

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  __kmpc_fork_call(omp_outlined, n, out, in); 
} 

void omp_outlined(int n, double *restrict out, 
                  const double *restrict in) { 
  int local_n = n; double *local_out = out, *local_in = in; 
  __kmpc_for_static_init(&local_n, &local_out, &local_in); 
  double tmp = norm(in, n); 
  for (int i = 0; i < local_n; ++i) 
    local_out[i] = local_in[i] / tmp; 
  __kmpc_for_static_fini(); 
}

How much work (total computation outside of 
scheduling) does this code do?

T1(omp_outlined) = 
T1(norm) + O(local_n) = 

O(n)

T(normalize) = 
P * T1(omp_outlined) = 

O(n * P)

T1(norm) = O(n)

Let P be the number of processors.



What Does This Analysis Mean?
❖ This code is only work-

efficient on one processor.

❖ Only minimal parallel 
speedup is possible.

❖ The problem persists 
whether norm is serial or 
parallel.

❖ This code slows down 
when not all processors 
are available.
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__attribute__((const)) 
double norm(const double *A, int n); 

void normalize(double *restrict out,  
               const double *restrict in, 
               int n) { 
  #pragma omp parallel for 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

T(normalize) = O(n * P)

Original serial running time: TS = 0.312 s

1-core running time: T1 = 0.329 s 

18-core running time: T18 = 0.205 s



Tapir’s Optimization Strategy 

Tapir strives to optimize parallel code according the work-
first principle:

❖ First optimize the work, not the parallel execution.

❖ Sacrifice minimal work to support parallel execution.

The work-first principle helps to ensure that parallel codes 
can achieve speedup in all runtime environments.
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Status of Tapir
❖ Try Tapir/LLVM yourself! 

git clone —recursive https://github.com/wsmoses/Tapir-Meta.git
❖ We have a prototype front end for Tapir/LLVM that is substantially 

compliant with the Intel Cilk Plus language specification.

❖ Tapir/LLVM achieves comparable or better performance with GCC, ICC, 
and Cilk Plus/LLVM, and is becoming comparably robust.

❖ Last fall, a software performance-engineering class at MIT with ~100 
undergrads used Tapir/LLVM as their compiler.

❖ Tapir’s race detector is available for debugging parallel programs.

❖ We’re continuing to enhance Tapir/LLVM with bug fixes,  
new compiler optimizations, and other new features.
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https://github.com/wsmoses/Tapir-Meta.git


Question?

❖ Multicores

❖ Task parallelism

❖ Simple and extensible

❖ Deterministic debugging

❖ Serial semantics

33

❖ Simple execution model

❖ Work efficiency

❖ Parallel speedup

❖ Composable performance

❖ Parallelism, not 
concurrency

Recap: Foci of Tapir



Backup Slides



Multicores Are The Bargain Component

Multicores are pervasive in today’s computing ecosystem.

Average programmers are writing code for multicores.
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Smartphones Laptops Servers in the cloud



Multicores Are Powerful
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But getting performance out of a 
multicore today requires software 

performance engineering.



Task Parallelism
Task parallelism provides simple linguistics for average 
programmers to write parallel code.
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void qsort(int64_t array[], size_t l,  
           size_t h) { 
  if (h - l < BASE) 
    return qsort_base(array, l, h); 
  size_t part = partition(array, l, h); 
  qsort(array, l, part); 
  qsort(array, part, h); 
}

void pqsort(int64_t array[], size_t l,  
            size_t h) { 
  if (h - l < COARSENING) 
    return qsort_base(array, l, h); 
  size_t part = partition(array, l, h); 
  cilk_spawn pqsort(array, l, part); 
  pqsort(array, part, h); 
  cilk_sync; 
}

Example: parallel quicksort The child function is allowed 
(but not required) to execute in 
parallel with the parent caller.

Control cannot pass this 
point until all spawned 
children have returned.



Advantages of Fork-Join
Fork-join parallelism provides a simple, low-level model 
of parallelism.
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McCool et al., 2012Many higher-level parallel constructs can 
be encoded in the fork-join model [MRR12].

❖ Map

❖ Recursion

Efficient parallel runtimes exist that 
support fork-join parallelism.

❖ Reduction

❖ Scan

❖ Stencil



What About Everything Else?
Fork-join doesn’t cover all parallel patterns, but it can be 
extended (e.g., [LLSSZ15]).

Tapir itself is meant to be extensible.

❖ For now, a front-end can still insert runtime calls to 
handle parallel constructs that don’t have explicit IR 
support.

❖ New extensions for additional parallel constructs 
should be able interoperate with Tapir.
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How Can We Be Sure?

We are currently developing formal semantics for Tapir.

❖ An early draft of Tapir’s semantics can be found in Tao 
B. Schardl’s Ph.D. thesis.

❖ Current Goal: Prove that all serial code transformations 
are safe to perform on both race-free and racy Tapir 
programs.
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Three Traits of Parallel Programs

❖ A parallel program has serial semantics if a 1-processor 
execution of the program is valid.

❖ A parallel program is a faithful extension of a serial 
program if eliding the parallel constructs yields a serial 
program with the original program’s serial semantics.

❖ A parallel program is deterministic if all (serial and 
parallel) executions have the same semantics.
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Serial Semantics vs. Faithful Extension
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int main(void) 
{ 
  int i = 0; 
#pragma omp parallel for private(i) 
  for (int j = 1; j < 10; ++j) { 
    i += j * j; 
    printf("i = %d\n", i); 
  } 
  printf("i = %d\n", i); 

  return 0; 
}

Some languages, such 
as OpenMP, allow 
programs that are not 
faithful extensions.

❖ Tapir doesn’t care 
about whether the 
program source is a 
faithful extension.

Example: OpenMP code with private construct

The private construct 
ensures that updates to i are 
not retained after the loop.



Serial Semantics vs. Determinism

❖ A Tapir program can contain races, even though it has 
serial semantics.

❖ If the execution of a Tapir program contains no 
determinacy races [FL99], then it is deterministic.

❖ When optimizing a Tapir program, the compiler strives 
to preserve the program’s serial semantics and avoid 
introducing new races.
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Simple Model of Computation
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A

B

The logical control structure of a Tapir program execution 
can be modeled as a directed acyclic graph, or dag.

Strand: Serial 
chain of executed 

instructions.

Dependency: Strand B 
cannot execute until 

after strand A.

Fork

Join



Work/Span Analysis
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Using the dag model, parallel performance can be 
understood in terms of work and span.

Work, T1, is the 
serial running 
time of the 
program.

Example:  
T1 = 18

Span, T∞, is the 
length of a 
longest path in 
the dag.

Example:  
T∞ = 9



Parallel Speedup

Parallel speedup on P processors can be understood in 
terms of work and span.

❖ Work Law: TP ≥ T1/P

❖ Span Law: TP ≥ T∞
❖ Modern parallel runtime systems are guaranteed to 

execute a parallel program on P processors in time TP ≤ 
T1/P + O(T∞) [BL99].
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Concurrency Is Complicated
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a = 1; if (x.load(RLX))
  if (a)
    y.store(1, RLX);

if (y.load(RLX))
  x.store(1, RLX);

Thread 1 Thread 2 Thread 3

Interactions between threads can confound traditional 
compiler optimizations.

This program produces different results 
under the C11 memory model if Threads 1 

and 2 are sequentialized [VBCMN15].



Parallelism Sans Concurrency
Conceptually, Tapir introduces task-parallelism for 
speeding up a single thread of control.
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__attribute__((const)) 
double norm(const double *A, int n); 

void normalize(double *restrict out, 
               const double *restrict in, 
               int n) { 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

__attribute__((const)) 
double norm(const double *A, int n); 

void normalize(double *restrict out, 
               const double *restrict in, 
               int n) { 
  cilk_for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

Cilk code for normalize()C code for normalize()

Same control, but cilk_for indicates 
an opportunity to speed up execution 

using parallel processors.



Weak Memory Models and Tapir
Tapir’s task-parallel model, with a serial elision, helps 
ensure that standard optimizations are legal.
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cilk_spawn { a = 1; }

cilk_spawn {
  if (x.load(RLX))
    if (a)
      y.store(1, RLX);
}

cilk_spawn {
  if (y.load(RLX))
    x.store(1, RLX);
}

C11 optimization example,  
written in Cilk pseudocode

The serial semantics of 
cilk_spawn ensures that 

sequentialization is 
always allowed.



A Sweet Spot for Compiler Optimizations

❖ When optimizing across threads, standard compiler 
optimizations are not always legal.

❖ By enabling parallelism for a single thread of control, 
Tapir’s model is amenable to standard compiler 
optimizations.

❖ Vectorization is another example of where compilers 
use parallelism to speed up a single thread of control.
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