Structured Bindings and
How to Analyze Them

Domjan Daniel



Structured binding declaration

auto [id,, id,, ..., id,] = initializer;

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Cases of
structured bindings



Case 1: binding an array

arr; int tmp_arr[3] = {
::;> arr[0], arr[1l], arr[2]

¥

#define x tmp_arr[0]
#define y tmp_arr[1]
#define z tmp_arr[2]

auto [x, vy, z]

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 1: binding an array

auto &[x, y, z] = arr; > int(&tmp_arr)[3] = arr;
#define x tmp_arr[0]

#define y tmp_arr[1]
#define z tmp_arr[2]

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 2: binding to data members

auto [x, y] = s;

-

S tmp_s

#define
#define

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM

X

tmp s.a
tmp s.b



Case 3: binding a tuple-like type

auto [x, y] = p; jl> std::pair<int, float> tmp p = p;

std: :tuple_element<
0, std::pair<int, float>
>::type x = std::get<o>(tmp _p);

std: :tuple_element<
1, std::pair<int, float>
>::type y = std::get<1>(tmp _p);

#define x x
#define y y

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 3: binding a tuple-like type

auto &[x, y] = p; jl> std::pair<int, float> &tmp p = p;

std: :tuple_element<
0, std::pair<int, float>
>::type &« = std::get<o>(tmp p);

std: :tuple_element<
1, std::pair<int, float>
>::type &y = std::get<1>(tmp p);

#define x x
#define y y

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



The Clang
Static Analyzer



The Clang Static Analyzer

void toy example() {
int x;
int y = x;

}

warning: Assigned value is garbage or undefined [core.uninitialized.Assign]
int y = x;

~

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



The Clang Static Analyzer

-DeclStmt ...
“-VarDecl ... x 'int' [B1]

int Xx; -DeclStmt ... %E ;nt %
int y = x; “-VarDecl ... y 'int' ... 3. [81.2] (...)
T-ImplicitCastExpr ... 4- int vo= xs
*-DeclRefExpr ... 'x' ' y =%

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



The Clang Static Analyzer

[B1]
1: int x;
2: X
3: [B1.2] (...)
4: int y = x;

-

State 1

DeclStmt int x;
DeclRefExpr X

State 3

ImplicitCastExpr X

int x;

\ 4

@ 'x' declared...

State 4

DeclStmt inty=x;
core.uninitialized.Assign

int y = x;

@ Assigned value...

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM




Why support
structured bindings?



False positives

QPair<int, QSharedPointer<int>> foo() {
return {42, nullptr};
}

int main() {

auto [x, p] = foo();
auto p2 = p;

}

warning: 1st function call argument is an uninitialized value [core.CallAndMessage]
void deref() noexcept { deref(d); }

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



False negatives

int main() {
int arr[2];

auto [x, y] = arr;

int a = Xx;

}

warning: Value stored to 'a' during its initialization is never read [deadcode.DeadStores]
int a = x;

N ~

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



How to analyze them



How to analyze them

DeclStmt ...
" -DecompositionDecl ...

| -<tmp init> [B1]
auto [bl, b2] = init > | -BindingDecl ... bl ... > 1: <tmp init>
|

" -<bound expession> 2: auto = init;
-BindingDecl ... b2 ...
" -<bound expession>

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 1: binding an array

-DeclStmt ...
auto [bl, b2] = init; > " -DecompositionDecl ...
-ArrayInitLoopExpr ...
bl;
-BindingDecl ... bl ...
" -ArraySubscriptExpr ...
| -ImplicitCastExpr ...
| ~-DeclRefExpr ... Decomposition
"-IntegerLiteral ... ©
" -BindingDecl ... b2 ...

" -DeclRefExpr ... Binding ... 'bl'

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 1: binding an array

-DeclStmt ...

" -DecompositionDecl ...

-ArrayInitLoopExpr ...

-BindingDecl ... bl ... [B1]

" -ArraySubscriptExpr ... .
| -ImplicitCastExpr ... X: ArrayInltlLoopExpr
| ~-DeclRefExpr ... Decomposition :::> 8: auto = {init[*]};
"-IntegerLiteral ... © 9: bl

" -BindingDecl ... b2 ...

" -DeclRefExpr ... Binding ... 'bl'

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 1: binding an array

\ 4

DeclRefExp

\ 4

DeclRefExpr bl
A
ArraySubscriptExpr

BindingDecl

DecompositionDecl

\ 4

IntegerLiteral

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM




Case 2: binding to data members

-DeclStmt ...
auto [bl, b2] = init; > " -DecompositionDecl ...
-CXXConstructExpr ...
bl;
-BindingDecl ... bl ...
" -MemberExpr ... FO ...
" -DeclRefExpr ... Decomposition
" -BindingDecl ... b2 ...

" -DeclRefExpr ... Binding ... 'bl'

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 2: binding to data members

-DeclStmt ...
" -DecompositionDecl ... [B1]
-CXXConstructExpr ...
-BindingDecl ... bl ...
" -MemberExpr ... FO ... i
" -DeclRefExpr ... Decomposition ——:>' g: £5%641 §g§¥FonstructExpr,
. = )

-BindingDecl ... b2 ... 7. bl

" -DeclRefExpr ... Binding ... 'bl'

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 2: binding to data members

DeclRefExpr

State 7

bl

DeclRefExp

MemberExpr

BindingDecl

FieldDecl

DecompositionDecl

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM




Case 3: binding a tuple-like type

auto [bl, b2] = init; > " -DecompositionDecl ...
-CXXConstructExpr ...
-BindingDecl ... bl ...
| -varDecl ... bl ...
| ~-...
" -DeclRefExpr ... Var ... '

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 3: binding a tuple-like type

" -DecompositionDecl ...
-CXXConstructExpr ...

| -varDecl ... bl ...

~
L]

-BindingDecl ... bl ...

" -DeclRefExpr ... Var ...

-

5

6

7

8

9:

'bl1' ... 10:
11:

12

[B1.4] (CXXConstructExpr,

: auto = init;
: get<ouUL>

[B1.7] (ImplicitCastExpr,

[B1.9] (ImplicitCastExpr,
[B1.8]([B1.10])
. bl = get<oUL>();

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 3: binding a tuple-like type

DeclRefExpr bl
DeclRefExp » BindingDecl > VarDecl

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Implementation details



ArraylnitLoopEXxpr

Used in the implicit copy/move constructor
for a class with an array member

Used when a lambda-expression captures
an array by value

Used when a decomposition declaration
decomposes an array

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



ArraylnitLoopEXxpr

ArrayInitLoopExpr ... [B1]

| -OpaqueValueExpr ... 1: source_array

| ~-DeclRefExpr ...'source_array' 2: [B1.1] (ImplicitCastExpr,

3: %
"-ImplicitCastExpr ... 4: [B1.2][[B1.3]]
" -ArraySubscriptExpr ... 5: [B1.4] (ImplicitCastExpr,

| -ImplicitCastExpr ...
| ~-OpaqueValueExpr ... 7: {[Bl1.6]}

| " -DeclRefExpr ... 'source_array'
"-ArrayInitIndexExpr 'unsigned long'

The loop is not unrolled in the CFG!

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



ArraylnitLoopEXxpr

For POD arrays a member-wise copy, or a
LazyCompoundValue is created

For other arrays the constructor calls are
repeated, or conservative evaluation is used

POD array evaluation selected based on the
value of -region-store-small-array-limit
(defaults to 5)

Constructor evaluation selected based on the
value of -analyzer-max-loop (defaults to 4)

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



ArraylnitLoopEXxpr

State X + 1
CXXConstructExpr array[* State X + 2
CXXConstructExpr array[*] P y[*]

ArraylnitLoopExpr {array[*]}

O

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Non-POD array construction

State X + 1
State X

CXXConstructExpr
CXXConstructExpr Q P

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Non-POD array destruction

State X
State X + 1

DestructorCall
(DestructorCall) Q (DestructorCall)

The initial index is determined using the DynamicExtent API!

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Holding variables

[B1] [B1]
4: auto = tuple; : auto = tuple;

: get<ouL>

[B1.5] (ImplicitCastExpr, ...)

-

[B1.7] (ImplicitCastExpr, ...)
[B1.6]([B1.8])

: std::tuple_element

<0, ...>::type a = get<oUL>();

O VOO NO UV DN

The variables have also been introduced to liveness analysis!

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Do you have
any questions?



Summary

Support for structured bindings is Some parts of the implementation are
introduced also used by DataFlow analysis
The analyzer can properly model The changes are live since Clang 15

small non-POD arrays

The analyzer supports arrays
inside lambda captures

The analyzer can reason about
array fields after copy- or move
construction

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Thank you



	Structured Bindings and How to Analyze Them
	Structured binding declaration
	Cases of �structured bindings
	Case 1: binding an array
	Case 1: binding an array
	Case 2: binding to data members
	Case 3: binding a tuple-like type
	Case 3: binding a tuple-like type
	The Clang �Static Analyzer
	The Clang Static Analyzer
	The Clang Static Analyzer
	The Clang Static Analyzer
	Why support�structured bindings?
	False positives
	False negatives
	How to analyze them
	How to analyze them
	Case 1: binding an array
	Case 1: binding an array
	Case 1: binding an array
	Case 2: binding to data members
	Case 2: binding to data members
	Case 2: binding to data members
	Case 3: binding a tuple-like type
	Case 3: binding a tuple-like type
	Case 3: binding a tuple-like type
	Implementation details
	ArrayInitLoopExpr
	ArrayInitLoopExpr
	ArrayInitLoopExpr
	ArrayInitLoopExpr
	Non-POD array construction
	Non-POD array destruction
	Holding variables
	Do you have �any questions?
	Summary
	Thank you

