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Structured binding declaration

auto [id,, id,, ..., id,] = initializer;
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Cases of
structured bindings



Case 1: binding an array

arr; int tmp_arr[3] = {
::;> arr[0], arr[1l], arr[2]

¥

#define x tmp_arr[0]
#define y tmp_arr[1]
#define z tmp_arr[2]

auto [x, vy, z]
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Case 1: binding an array

auto &[x, y, z] = arr; > int(&tmp_arr)[3] = arr;
#define x tmp_arr[0]

#define y tmp_arr[1]
#define z tmp_arr[2]
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Case 2: binding to data members

auto [x, y] = s;

-

S tmp_s

#define
#define
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tmp s.a
tmp s.b



Case 3: binding a tuple-like type

auto [x, y] = p; jl> std::pair<int, float> tmp p = p;

std: :tuple_element<
0, std::pair<int, float>
>::type x = std::get<o>(tmp _p);

std: :tuple_element<
1, std::pair<int, float>
>::type y = std::get<1>(tmp _p);

#define x x
#define y y
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Case 3: binding a tuple-like type

auto &[x, y] = p; jl> std::pair<int, float> &tmp p = p;

std: :tuple_element<
0, std::pair<int, float>
>::type &« = std::get<o>(tmp p);

std: :tuple_element<
1, std::pair<int, float>
>::type &y = std::get<1>(tmp p);

#define x x
#define y y
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The Clang
Static Analyzer



The Clang Static Analyzer

void toy example() {
int x;
int y = x;

}

warning: Assigned value is garbage or undefined [core.uninitialized.Assign]
int y = x;

~
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The Clang Static Analyzer

-DeclStmt ...
“-VarDecl ... x 'int' [B1]

int Xx; -DeclStmt ... %E ;nt %
int y = x; “-VarDecl ... y 'int' ... 3. [81.2] (...)
T-ImplicitCastExpr ... 4- int vo= xs
*-DeclRefExpr ... 'x' ' y =%
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The Clang Static Analyzer

[B1]
1: int x;
2: X
3: [B1.2] (...)
4: int y = x;

-

State 1

DeclStmt int x;
DeclRefExpr X

State 3

ImplicitCastExpr X

int x;

\ 4

@ 'x' declared...

State 4

DeclStmt inty=x;
core.uninitialized.Assign

int y = x;

@ Assigned value...
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Why support
structured bindings?



False positives

QPair<int, QSharedPointer<int>> foo() {
return {42, nullptr};
}

int main() {

auto [x, p] = foo();
auto p2 = p;

}

warning: 1st function call argument is an uninitialized value [core.CallAndMessage]
void deref() noexcept { deref(d); }
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False negatives

int main() {
int arr[2];

auto [x, y] = arr;

int a = Xx;

}

warning: Value stored to 'a' during its initialization is never read [deadcode.DeadStores]
int a = x;

N ~
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How to analyze them



How to analyze them

DeclStmt ...
" -DecompositionDecl ...

| -<tmp init> [B1]
auto [bl, b2] = init > | -BindingDecl ... bl ... > 1: <tmp init>
|

" -<bound expession> 2: auto = init;
-BindingDecl ... b2 ...
" -<bound expession>
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Case 1: binding an array

-DeclStmt ...
auto [bl, b2] = init; > " -DecompositionDecl ...
-ArrayInitLoopExpr ...
bl;
-BindingDecl ... bl ...
" -ArraySubscriptExpr ...
| -ImplicitCastExpr ...
| ~-DeclRefExpr ... Decomposition
"-IntegerLiteral ... ©
" -BindingDecl ... b2 ...

" -DeclRefExpr ... Binding ... 'bl'
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Case 1: binding an array

-DeclStmt ...

" -DecompositionDecl ...

-ArrayInitLoopExpr ...

-BindingDecl ... bl ... [B1]

" -ArraySubscriptExpr ... .
| -ImplicitCastExpr ... X: ArrayInltlLoopExpr
| ~-DeclRefExpr ... Decomposition :::> 8: auto = {init[*]};
"-IntegerLiteral ... © 9: bl

" -BindingDecl ... b2 ...

" -DeclRefExpr ... Binding ... 'bl'
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Case 1: binding an array

\ 4

DeclRefExp

\ 4

DeclRefExpr bl
A
ArraySubscriptExpr

BindingDecl

DecompositionDecl

\ 4

IntegerLiteral
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Case 2: binding to data members

-DeclStmt ...
auto [bl, b2] = init; > " -DecompositionDecl ...
-CXXConstructExpr ...
bl;
-BindingDecl ... bl ...
" -MemberExpr ... FO ...
" -DeclRefExpr ... Decomposition
" -BindingDecl ... b2 ...

" -DeclRefExpr ... Binding ... 'bl'
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Case 2: binding to data members

-DeclStmt ...
" -DecompositionDecl ... [B1]
-CXXConstructExpr ...
-BindingDecl ... bl ...
" -MemberExpr ... FO ... i
" -DeclRefExpr ... Decomposition ——:>' g: £5%641 §g§¥FonstructExpr,
. = )

-BindingDecl ... b2 ... 7. bl

" -DeclRefExpr ... Binding ... 'bl'
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Case 2: binding to data members

DeclRefExpr

State 7

bl

DeclRefExp

MemberExpr

BindingDecl

FieldDecl

DecompositionDecl
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Case 3: binding a tuple-like type

auto [bl, b2] = init; > " -DecompositionDecl ...
-CXXConstructExpr ...
-BindingDecl ... bl ...
| -varDecl ... bl ...
| ~-...
" -DeclRefExpr ... Var ... '
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Case 3: binding a tuple-like type

" -DecompositionDecl ...
-CXXConstructExpr ...

| -varDecl ... bl ...

~
L]

-BindingDecl ... bl ...

" -DeclRefExpr ... Var ...

-

5

6

7

8

9:

'bl1' ... 10:
11:

12

[B1.4] (CXXConstructExpr,

: auto = init;
: get<ouUL>

[B1.7] (ImplicitCastExpr,

[B1.9] (ImplicitCastExpr,
[B1.8]([B1.10])
. bl = get<oUL>();

STRUCTURED BINDINGS AND HOW TO ANALYZE THEM



Case 3: binding a tuple-like type

DeclRefExpr bl
DeclRefExp » BindingDecl > VarDecl
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Implementation details



ArraylnitLoopEXxpr

Used in the implicit copy/move constructor
for a class with an array member

Used when a lambda-expression captures
an array by value

Used when a decomposition declaration
decomposes an array
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ArraylnitLoopEXxpr

ArrayInitLoopExpr ... [B1]

| -OpaqueValueExpr ... 1: source_array

| ~-DeclRefExpr ...'source_array' 2: [B1.1] (ImplicitCastExpr,

3: %
"-ImplicitCastExpr ... 4: [B1.2][[B1.3]]
" -ArraySubscriptExpr ... 5: [B1.4] (ImplicitCastExpr,

| -ImplicitCastExpr ...
| ~-OpaqueValueExpr ... 7: {[Bl1.6]}

| " -DeclRefExpr ... 'source_array'
"-ArrayInitIndexExpr 'unsigned long'

The loop is not unrolled in the CFG!
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ArraylnitLoopEXxpr

For POD arrays a member-wise copy, or a
LazyCompoundValue is created

For other arrays the constructor calls are
repeated, or conservative evaluation is used

POD array evaluation selected based on the
value of -region-store-small-array-limit
(defaults to 5)

Constructor evaluation selected based on the
value of -analyzer-max-loop (defaults to 4)
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ArraylnitLoopEXxpr

State X + 1
CXXConstructExpr array[* State X + 2
CXXConstructExpr array[*] P y[*]

ArraylnitLoopExpr {array[*]}

O
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Non-POD array construction

State X + 1
State X

CXXConstructExpr
CXXConstructExpr Q P
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Non-POD array destruction

State X
State X + 1

DestructorCall
(DestructorCall) Q (DestructorCall)

The initial index is determined using the DynamicExtent API!
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Holding variables

[B1] [B1]
4: auto = tuple; : auto = tuple;

: get<ouL>

[B1.5] (ImplicitCastExpr, ...)

-

[B1.7] (ImplicitCastExpr, ...)
[B1.6]([B1.8])

: std::tuple_element

<0, ...>::type a = get<oUL>();

O VOO NO UV DN

The variables have also been introduced to liveness analysis!
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Do you have
any questions?



Summary

Support for structured bindings is Some parts of the implementation are
introduced also used by DataFlow analysis
The analyzer can properly model The changes are live since Clang 15

small non-POD arrays

The analyzer supports arrays
inside lambda captures

The analyzer can reason about
array fields after copy- or move
construction
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Thank you
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