
ISPC: clang-based front-end
2014 LLVM Developers' Meeting, Oct 28-29

Dmitry Babokin
James Brodman

*Other names and brands

may be claimed as the
property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS

INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the

results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and
the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.

Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Legal Disclaimer

ISPC is a C-based language built on the SPMD (single program, multiple data) programming model.

The ISPC programming model efficiently maps to the SIMD vector units of modern CPUs without the need

for complex analysis and autovectorization. The key concept for achieving this is varying data types, which

in cases of built-in types are simply equivalent to vectors of built-in types. For user-defined data types, ISPC

generates Structure-of-Arrays style data layout that better maps to SIMD hardware. Varying data types are

also allowed in control-flow statements (such as if statements), triggering “varying control flow”.

ISPC Language

Varying types

• Varying types get a separate copy for each

SIMD lane, while uniform types are shared by all

instances.

• Varying structures propagate variability to their

members, producing Structure-Of-Arrays style

types, which are optimal for vector code.

• Structures may have members with bound

variability.

Varying control flow

• SIMD hardware has to do the same thing in each

lane, by definition.

• Conditional statements based on varying values

may have different results in each lane. When this

occurs, control flow is divergent because different

lanes might take different paths.

• ISPC transforms divergent control flow into data

flow. An execution mask is used to only commit

results in lanes that are actively participating in

computation.

• Masking is also used in foreach statements for

any remainder iterations when the total number of

iterations is not even divisible by the vector width.

• ISPC language definition is derived from “CPlusPlus”.
• Implicit casts / overloading

• Type system tweaks:

• Variability is a new property of Type class, but not a new type in the Type hierarchy.

• Variability may be varying/uniform/unbound.

• Variability is “enabled” only for selected types, when it makes sense (BuiltinType, PointerType, etc)

• All structs/classes are parsed as templates with implicit variability arguments

• ISPC Code Generation

Implementation of ISPC concepts in clang

x x0 x1 x2 x3

x

y

z

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

c

x

y

z

c

varying int i, j;

…

if (i > 0) {

 j++;

}

else {

 j--;

}

oldMask = Mask;

test = (i > 0);

Mask = oldMask & test;

if (Any(Mask)) {

 j = select(Mask, j+1, j);

}

Mask = oldMask & ~test;

if (Any(Mask)) {

 j = select(Mask, j-1, j);

}

Mask = oldMask;

ISPC Language Concepts

struct Point { float x, y, z; };

uniform Point uP; varying Point vP;

uniform float x; varying float x;

struct Point2 {

 uniform int c; // bound to uniform

 float x, y, z; // unbound variability

};

uniform Point2 uP2; varying Point2 vP2;

step 1: Lvalue Transformation

step 2: Promotion or Conversion

step 2’: Varying Splat

step 3: Qualification Adjustment

Category Rank

Lvalue Transformation

Quality Adjustment
Exact Match

Varying Splat Varying Splat

Promotion Promotion

Conversion Conversion

CodeGenFunction

ISPC Function

Runtime

Function
entry:

varying.if:

….

%MaskPtr = alloca %MaskType

store %MaskAllOn, %MaskPtr

%OldMask = load %MaskPtr

%Mask&test = and %OldMask, %test

store %Mask&test, %MaskPtr

TranslationUnitDecl

|-ClassTemplateDecl S

| |-VariabilityTemplateParmDecl variability

| |-CXXRecordDecl struct S definition
| | |-CXXRecordDecl struct S

| | `-FieldDecl int_field 'unbound int'

| `-ClassTemplateSpecializationDecl struct S definition

| |-TemplateArgument expr

| | `-CXXBoolLiteralExpr '_Bool' false

| |-CXXRecordDecl prev struct S

| |-FieldDecl int_field 'varying int'

| |-CXXConstructorDecl S 'void (void)'

| | `-CompoundStmt

| `-CXXConstructorDecl S 'void (const struct S<varying> &)'

| `-ParmVarDecl 'const struct S<varying> &'

`-VarDecl varying_s 'struct S<varying>':'struct S<varying>'

 `-CXXConstructExpr 'struct S<varying>':'struct S<varying>' 'void (void)'

struct S {

 int int_field; // unbound

};

varying struct S varying_s;

