
OpenMP* Support in Clang/LLVM:
Status Update and Future Directions
2014 LLVM Developers' Meeting

Alexey Bataev, Zinovy Nis

Intel



Copyright ©  2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

1. Intro

2. Status

3. Runtime Library

4. Coprocessor/Accelerator Support

5. SIMD Features & Status

2

Agenda



Copyright ©  2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

http://www.openmp.org/

 Industry-wide standard for shared memory multiprocessing 
programming in C/C++ and Fortran

 Vendor-neutral, platform-neutral, portable, pragma based, 
managed by an independent consortium

 Very important in High Performance Computing (HPC)

 OpenMP Version 3.1 (July 2011)

 Implemented in GCC*, ICC, Oracle Solaris Studio*, PGI* …

 OpenMP Version 4.0 (July 2013)

 Adds support for coprocessors/accelerators, SIMD, error 
handling, thread affinity, user defined reductions

 Implemented in GCC*, ICC …
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What is OpenMP*?
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“OpenMP* in Clang/LLVM” Team
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Driving collaboration and implementation

 Implementation of OpenMP in Clang/LLVM

 Coprocessor/accelerator support

 Test coverage

 Code reviews

Current participation from 

AMD*, 

Argonne National Laboratory, 

IBM*, 

Intel,

Micron*, 

Texas Instruments*, 

University of Houston

Talk to us if you want to be involved!
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 Uses “early” outlining

 Parallel and task regions are outlined as functions, all other 
regions are emitted as is

 Pragmas are just regular AST nodes with associated structured 
code block

 Executable directives are Stmts

 Declarative directives are Decls

 CodeGen follows regular rules for Stmts and Decls nodes

 Uses libiomp5 runtime library, targets Intel OpenMP* API

 Calls to runtime functions are generated in frontend

 No LLVM IR extensions are required
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OpenMP* Support in Clang

Support in Clang/LLVM is under development
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OpenMP Constructs Representation

#pragma omp parallel if (<condition>)
<body>

OMPParallelDirective

OMPExecutableDirective

Stmt

CapturedStmt (with <body>)

OMPClause

OMPIfClause <condition> Expr

OMPClause

OMPClause

…
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 Clang/LLVM 3.5 Release

 Parsing and semantic analysis for OpenMP* 3.1 (except for 
‘ordered’ and ‘atomic’ directives)

 CodeGen for ‘parallel’ and ‘simd’ directives, ‘safelen’ clause

 First release with libiomp5 OpenMP runtime library!

 Clang/LLVM Trunk

 Complete parsing and semantic analysis for OpenMP 3.1 
and partial for OpenMP 4.0

 CodeGen for ‘critical’  directive, ‘if’, ‘num_threads’, 
‘firstprivate’, ‘private’, ‘aligned’ and ‘collapse’ clauses

 No support in driver yet, use -Xclang -fopenmp=libiomp5

 Planning full OpenMP 3.1 support in Clang/LLVM 3.6 Release, 
most of OpenMP 4.0 in Clang/LLVM 3.7 Release
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Current Status

Depends on the speed of code review!
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http://clang-omp.github.io/

 Full OpenMP* 3.1 + part of OpenMP 4.0 support

 Coprocessor/accelerator support is under development

 OpenMP Validation Suite from OpenUH* test suite

 Passed 119 tests of 123

 Supported on Linux* and Mac OS X*

 x86, x86-64, PowerPC*, ARM*

 Based on Clang/LLVM 3.5 Release

 Includes trunk-based version (maintained by Hal Finkel)

 Use -fopenmp driver option 
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Current Status: clang-omp Repo

You can try it right now!
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Current Status: Summary
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Features
Parsing/Sema
(clang-omp)

CodeGen
(clang-omp)

Parsing/Sema
(Trunk)

CodeGen
(Trunk)

Parallel Yes Yes Yes Partially

Worksharing Yes Yes Yes No

Tasking Yes Yes Yes No

Other
(OpenMP* 3.1)

Yes Yes Yes No

SIMD 
(OpenMP 4.0)

Yes Yes Partially Partially

Coprocessor/
Accelerator

(OpenMP 4.0)
Yes Partially Partially No

Other
(OpenMP 4.0)

Yes Yes No No
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http://openmp.llvm.org

 Supports OpenMP 4.0 (though not all features are yet in Clang)

 Supported on Windows*, Linux* and Mac OS X*

 x86, x86-64, PowerPC*, ARM*

 Can be built by Clang, GCC*, ICC

 Two build bots configured (libiomp5-clang-x86_64-linux-
debian, libiomp5-gcc-x86_64-linux-debian) 
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OpenMP* Runtime Library libiomp5
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 Required for support of OpenMP 4.0 target constructs

 Under development by Intel, IBM*, TI*, etc. in clang-omp
repository

 Plan to support x86, x86-64, PowerPC* and ARM* as hosts , 
multiple targets (Intel® Xeon Phi™ coprocessor, GPUs, FPGAs, …)
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OpenMP* Coprocessor/Accelerator 
Support Library

HOST

LLVM
generated
host code

libomptarget.so

Phi offload
RTL

Phi

GPUData

Phi code

GPU code

GPU offload
RTL

Fat binary



Copyright ©  2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 Coprocessors/Accelerators 
– brand-new #pragma omp target

 Threads 
– good old #pragma omp parallel for

 SIMD
– OpenMP with SIMD flavor #pragma omp simd
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OpenMP*: Levels of Parallelism
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 How to run faster?

 Run instructions simultaneously
– Thread-level parallelism

– #pragma omp parallel for

 Handle the data simultaneously
– Data-level parallelism 

– SIMD, Single Instruction Multiple Data, 
vector instructions

– #pragma omp simd

 Do Both
– #pragma omp parallel for simd
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SIMD: What is It?
Instruction

Input 
Output

Core

Core CoreCore

64 128
256

512

MMX SSE AVX AVX-512

Vector width evolution

Vector widthStill 1 instruction

Core

Core Core Core
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SIMD: How to Use

…

float *A, *B, *C;

...

#pragma omp simd

for(int i…)

C[i] = A[i] + B[i];

$> clang –O2 –Xclang – fopenmp=…

E
xp

li
ci

t
M

a
n

u
a

l

…

float *A, *B, *C;

...

for(int i…)

C[i] = A[i] + B[i];

$> clang –O2 …

A
u

to

• High and transparent portability
• High and transparent scalability
• No development cost
• Unpredictable performance

• Max performance
• Low portability
• High development cost
• Low scalability 

• Expresses desired vectorization
• High and transparent portability
• High and transparent scalability
• Low development cost
• Predictable performance #include "xmmintrin.h“

…

float *A, *B, *C;

__m128 a, b, c;

...

for(int i…)

{

a = _mm_load_ps(A + i*4);

b = _mm_load_ps(B + i*4);

c = _mm_add_ps(a, b);

_mm_store_ps(C+i * 4, c);

}

$> clang …
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 Autovectorization in LLVM fails if:

 cost heuristic says “no”

 non-trivial data dependencies 

 overhead is high for run-time checks

 loop is not innermost

 OpenMP* SIMD pragmas: 

 vectorize, don’t check!
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SIMD: Autovectorization vs Pragmas
// RT pointer aliasing checks: float*

void doThings(float *a, float *b, 
float *c, float *d, float *e, 
unsigned N, unsigned K)

{

for(int i = 0; i < N; ++i) // not innermost

for(int j = 0; j < N; ++j)

// non-trivial data-deps due to unknown K

a[i + j] = b[i + K] + c[i + K] + 

d[i + K] + e[i + K];

}

$> clang -mllvm -debug-only=loop-vectorize …

LV: Checking a loop in "doThings" from test.c:4:3

...

LV: Found a runtime check ptr:  %arrayidx18.us = …

LV: We need to do 4 pointer comparisons

LV: We can't vectorize because we can't find the array bounds

LV: Can't vectorize due to memory conflicts

$> clang -mllvm -debug-only=loop-vectorize –Xclang –fopenmp=…

LV: Checking a loop in "doThings" from test.c:4:3

LV: Loop hints: force=enabled width=0 unroll=0

LV: A loop annotated parallel, ignore memory dependency checks.

LV: We can vectorize this loop!

// the only change

#pragma omp simd collapse(2)

for(int i = 0; i < N; ++i)

for(int j = 0; j < N; ++j)

a[i + j] = …

…
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 OpenMP SIMD requires support from both frontend and 
backend

 Frontend parses OpenMP SIMD pragmas and creates LLVM IR 
metadata hints, which are then used by vectorizer

 In case of collapse clause frontend creates a new loop, 
collapsing the existing loop nest into single loop

16

OpenMP* SIMD: Status in Clang

LV: Checking a loop in …

LV: Loop hints: force=enabled width=4 unroll=0

…

!42 = metadata !{metadata !"llvm.loop.vectorize.enable", i1 true}

!43 = metadata !{metadata !"llvm.loop.vectorize.width", i32 4}

#pragma omp simd safelen(4)

for(int i = 0; i < N; ++i) …
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 LLVM loop vectorizer recognizes loop vectorizing
metadata

 Collapse, safelen and aligned clauses are ready to use

 Other clauses and constructs are under development

 TODO:

 Vectorizing metadata must be propagated through all 
the passes prior to the vectorizer

 Compile-time memory checks must be disabled in the 
presence of OpenMP SIMD pragmas
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OpenMP* SIMD: Status in LLVM backend
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Questions?
OpenMP* Support in Clang/LLVM: Status Update and Future Directions

Alexey Bataev, Zinovy Nis
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OpenMP Constructs Representation: 
Continued

OMPParallelDirective

CapturedStmt

OMPIFClause

br i1 <condition>, label %omp.if.then, label%omp.if.else
omp.if.else:
<body>
br label %omp.if.end
omp.if.then:

%3 = bitcast %struct.anon* %agg.captured to i8*
call void @__kmpc_fork_call(<loc>, i32 1, void (i32*, i32*, ...)* bitcast (void (i32*, 

i32*, i8*)* @.omp_microtask. to void (i32*, i32*, ...)*), i8* <captured_vars>)
br label %omp.if.end

omp.if.end:
…

define internal void @.omp_microtask.(i32*, i32*, i8*) #0 {
%.gtid. = load i32* %0
<body>
call i32 @__kmpc_cancel_barrier(<loc>, i32 %.gtid.)

}

<condition> Expr

<body> Stmt




