
OpenMP* Support in Clang/LLVM:
Status Update and Future Directions
2014 LLVM Developers' Meeting

Alexey Bataev, Zinovy Nis

Intel

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

1. Intro

2. Status

3. Runtime Library

4. Coprocessor/Accelerator Support

5. SIMD Features & Status

2

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

http://www.openmp.org/

 Industry-wide standard for shared memory multiprocessing
programming in C/C++ and Fortran

 Vendor-neutral, platform-neutral, portable, pragma based,
managed by an independent consortium

 Very important in High Performance Computing (HPC)

 OpenMP Version 3.1 (July 2011)

 Implemented in GCC*, ICC, Oracle Solaris Studio*, PGI* …

 OpenMP Version 4.0 (July 2013)

 Adds support for coprocessors/accelerators, SIMD, error
handling, thread affinity, user defined reductions

 Implemented in GCC*, ICC …

3

What is OpenMP*?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

“OpenMP* in Clang/LLVM” Team

4

Driving collaboration and implementation

 Implementation of OpenMP in Clang/LLVM

 Coprocessor/accelerator support

 Test coverage

 Code reviews

Current participation from

AMD*,

Argonne National Laboratory,

IBM*,

Intel,

Micron*,

Texas Instruments*,

University of Houston

Talk to us if you want to be involved!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 Uses “early” outlining

 Parallel and task regions are outlined as functions, all other
regions are emitted as is

 Pragmas are just regular AST nodes with associated structured
code block

 Executable directives are Stmts

 Declarative directives are Decls

 CodeGen follows regular rules for Stmts and Decls nodes

 Uses libiomp5 runtime library, targets Intel OpenMP* API

 Calls to runtime functions are generated in frontend

 No LLVM IR extensions are required

5

OpenMP* Support in Clang

Support in Clang/LLVM is under development

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

6

OpenMP Constructs Representation

#pragma omp parallel if (<condition>)
<body>

OMPParallelDirective

OMPExecutableDirective

Stmt

CapturedStmt (with <body>)

OMPClause

OMPIfClause <condition> Expr

OMPClause

OMPClause

…

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 Clang/LLVM 3.5 Release

 Parsing and semantic analysis for OpenMP* 3.1 (except for
‘ordered’ and ‘atomic’ directives)

 CodeGen for ‘parallel’ and ‘simd’ directives, ‘safelen’ clause

 First release with libiomp5 OpenMP runtime library!

 Clang/LLVM Trunk

 Complete parsing and semantic analysis for OpenMP 3.1
and partial for OpenMP 4.0

 CodeGen for ‘critical’ directive, ‘if’, ‘num_threads’,
‘firstprivate’, ‘private’, ‘aligned’ and ‘collapse’ clauses

 No support in driver yet, use -Xclang -fopenmp=libiomp5

 Planning full OpenMP 3.1 support in Clang/LLVM 3.6 Release,
most of OpenMP 4.0 in Clang/LLVM 3.7 Release

7

Current Status

Depends on the speed of code review!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

http://clang-omp.github.io/

 Full OpenMP* 3.1 + part of OpenMP 4.0 support

 Coprocessor/accelerator support is under development

 OpenMP Validation Suite from OpenUH* test suite

 Passed 119 tests of 123

 Supported on Linux* and Mac OS X*

 x86, x86-64, PowerPC*, ARM*

 Based on Clang/LLVM 3.5 Release

 Includes trunk-based version (maintained by Hal Finkel)

 Use -fopenmp driver option

8

Current Status: clang-omp Repo

You can try it right now!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Current Status: Summary

9

Features
Parsing/Sema
(clang-omp)

CodeGen
(clang-omp)

Parsing/Sema
(Trunk)

CodeGen
(Trunk)

Parallel Yes Yes Yes Partially

Worksharing Yes Yes Yes No

Tasking Yes Yes Yes No

Other
(OpenMP* 3.1)

Yes Yes Yes No

SIMD
(OpenMP 4.0)

Yes Yes Partially Partially

Coprocessor/
Accelerator

(OpenMP 4.0)
Yes Partially Partially No

Other
(OpenMP 4.0)

Yes Yes No No

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

http://openmp.llvm.org

 Supports OpenMP 4.0 (though not all features are yet in Clang)

 Supported on Windows*, Linux* and Mac OS X*

 x86, x86-64, PowerPC*, ARM*

 Can be built by Clang, GCC*, ICC

 Two build bots configured (libiomp5-clang-x86_64-linux-
debian, libiomp5-gcc-x86_64-linux-debian)

10

OpenMP* Runtime Library libiomp5

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 Required for support of OpenMP 4.0 target constructs

 Under development by Intel, IBM*, TI*, etc. in clang-omp
repository

 Plan to support x86, x86-64, PowerPC* and ARM* as hosts ,
multiple targets (Intel® Xeon Phi™ coprocessor, GPUs, FPGAs, …)

11

OpenMP* Coprocessor/Accelerator
Support Library

HOST

LLVM
generated
host code

libomptarget.so

Phi offload
RTL

Phi

GPUData

Phi code

GPU code

GPU offload
RTL

Fat binary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 Coprocessors/Accelerators
– brand-new #pragma omp target

 Threads
– good old #pragma omp parallel for

 SIMD
– OpenMP with SIMD flavor #pragma omp simd

12

OpenMP*: Levels of Parallelism

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 How to run faster?

 Run instructions simultaneously
– Thread-level parallelism

– #pragma omp parallel for

 Handle the data simultaneously
– Data-level parallelism

– SIMD, Single Instruction Multiple Data,
vector instructions

– #pragma omp simd

 Do Both
– #pragma omp parallel for simd

13

SIMD: What is It?
Instruction

Input
Output

Core

Core CoreCore

64 128
256

512

MMX SSE AVX AVX-512

Vector width evolution

Vector widthStill 1 instruction

Core

Core Core Core

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

14

SIMD: How to Use

…

float *A, *B, *C;

...

#pragma omp simd

for(int i…)

C[i] = A[i] + B[i];

$> clang –O2 –Xclang – fopenmp=…

E
xp

li
ci

t
M

a
n

u
a

l

…

float *A, *B, *C;

...

for(int i…)

C[i] = A[i] + B[i];

$> clang –O2 …

A
u

to

• High and transparent portability
• High and transparent scalability
• No development cost
• Unpredictable performance

• Max performance
• Low portability
• High development cost
• Low scalability

• Expresses desired vectorization
• High and transparent portability
• High and transparent scalability
• Low development cost
• Predictable performance #include "xmmintrin.h“

…

float *A, *B, *C;

__m128 a, b, c;

...

for(int i…)

{

a = _mm_load_ps(A + i*4);

b = _mm_load_ps(B + i*4);

c = _mm_add_ps(a, b);

_mm_store_ps(C+i * 4, c);

}

$> clang …

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 Autovectorization in LLVM fails if:

 cost heuristic says “no”

 non-trivial data dependencies

 overhead is high for run-time checks

 loop is not innermost

 OpenMP* SIMD pragmas:

 vectorize, don’t check!

15

SIMD: Autovectorization vs Pragmas
// RT pointer aliasing checks: float*

void doThings(float *a, float *b,
float *c, float *d, float *e,
unsigned N, unsigned K)

{

for(int i = 0; i < N; ++i) // not innermost

for(int j = 0; j < N; ++j)

// non-trivial data-deps due to unknown K

a[i + j] = b[i + K] + c[i + K] +

d[i + K] + e[i + K];

}

$> clang -mllvm -debug-only=loop-vectorize …

LV: Checking a loop in "doThings" from test.c:4:3

...

LV: Found a runtime check ptr: %arrayidx18.us = …

LV: We need to do 4 pointer comparisons

LV: We can't vectorize because we can't find the array bounds

LV: Can't vectorize due to memory conflicts

$> clang -mllvm -debug-only=loop-vectorize –Xclang –fopenmp=…

LV: Checking a loop in "doThings" from test.c:4:3

LV: Loop hints: force=enabled width=0 unroll=0

LV: A loop annotated parallel, ignore memory dependency checks.

LV: We can vectorize this loop!

// the only change

#pragma omp simd collapse(2)

for(int i = 0; i < N; ++i)

for(int j = 0; j < N; ++j)

a[i + j] = …

…

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 OpenMP SIMD requires support from both frontend and
backend

 Frontend parses OpenMP SIMD pragmas and creates LLVM IR
metadata hints, which are then used by vectorizer

 In case of collapse clause frontend creates a new loop,
collapsing the existing loop nest into single loop

16

OpenMP* SIMD: Status in Clang

LV: Checking a loop in …

LV: Loop hints: force=enabled width=4 unroll=0

…

!42 = metadata !{metadata !"llvm.loop.vectorize.enable", i1 true}

!43 = metadata !{metadata !"llvm.loop.vectorize.width", i32 4}

#pragma omp simd safelen(4)

for(int i = 0; i < N; ++i) …

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 LLVM loop vectorizer recognizes loop vectorizing
metadata

 Collapse, safelen and aligned clauses are ready to use

 Other clauses and constructs are under development

 TODO:

 Vectorizing metadata must be propagated through all
the passes prior to the vectorizer

 Compile-time memory checks must be disabled in the
presence of OpenMP SIMD pragmas

17

OpenMP* SIMD: Status in LLVM backend

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Questions?
OpenMP* Support in Clang/LLVM: Status Update and Future Directions

Alexey Bataev, Zinovy Nis

18

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

19

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Backup

20

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

21

OpenMP Constructs Representation:
Continued

OMPParallelDirective

CapturedStmt

OMPIFClause

br i1 <condition>, label %omp.if.then, label%omp.if.else
omp.if.else:
<body>
br label %omp.if.end
omp.if.then:

%3 = bitcast %struct.anon* %agg.captured to i8*
call void @__kmpc_fork_call(<loc>, i32 1, void (i32*, i32*, ...)* bitcast (void (i32*,

i32*, i8*)* @.omp_microtask. to void (i32*, i32*, ...)*), i8* <captured_vars>)
br label %omp.if.end

omp.if.end:
…

define internal void @.omp_microtask.(i32*, i32*, i8*) #0 {
%.gtid. = load i32* %0
<body>
call i32 @__kmpc_cancel_barrier(<loc>, i32 %.gtid.)

}

<condition> Expr

<body> Stmt

