Carte++: An LLVM SRC Computers, LLC SRC Series J MAP Processor What is an FPGA?

14.4 GBIs
sustained payload

» Founded by Seymour Cray in 1996 7.2 GBIs per pair)

.
B as e d C o m I I e r » Creation of a new, highly efficient computer
architecture

» Field Programmable Gate Arrays
» In essence, a digital logic “blank canvas”

» A large mesh of configurable logic elements,

» Reconfigurable processor that adapts to the needs 4.2 4.2 . .
B . GB/s GB/s || | memories, and interconnect system
of the application. <—— Controller <+—>
a r e I n s — 16 coe TS > “Programmed” using hardware description languages
» History of successful execution HH "each (HDLs) such as Verilog and VHDL
» Invention and deployment of innovative computer TR » Takes hours to place and route, producing a bitstream
. - y systems _— : :
Authors: Lisa Krause, Matt O Connor, | @ | L. Hmsfs 3 > Take.s mllll.seconds to .conﬁ.gure a FPGA chip at
_ ff » Three generations of SRC® reconfigurable systems (16 ports) runtime with an existing bitstream
Jon Steldel! and Je rey Hammes > Twelve generations of SRC reconfigurable MAP® OnBE AR ey ERION Card
Processors Lanulzy
SRC ComPUte rs, LLC ' £ ight © 2014 SRCC t LLC ALL RIGHTS RESERMED & :
C/C++ Source Language Why is Compiling C++ to Compilation Modes Anatomy of a Program Carte++ MAP Compilation Process
- - - FPGAs Hard? ¥ Fare &Py made; » Each MAP function goes in its own file
» Previous compiler allowed a restricted subset of C N
> UnCOHStraiHEd by ﬁXEd |SA » Compiled with Clang++/LLVM to CPU executable . . .
» Clang++ provides us with C and C++ Y — > Then during compilation, Carte++ generates a
G | is to i | . h of C ibl 3 COmpiler must brldge wide nglf between C++ and » Provides a fast development environment running entirely on the cpu wrapper function around the MAP function that
» Goal is to implement as much of C as possible digital logic gates R o sets up and transfers control to the FPGA
B Templates in C++ offer a clean way to exXpress > Clock frequencies are typlcally in hundreds of » Compiled with Carte++ to instantiations of Verilog modules, which are then 3 This makes the execution of a MAP function F e Clang++ | /_k M) | » Place

executed by Verilog simulator.

variable width data streams with a single interface

. . - ; a nd T1Le
MHz, so performance must come from parallelism call look like any other function call LLVM R to route | *Make |

No MAP resources : :
Not yet supported: | . . . : verilog (Altera) object
> . y | pp S FPGAS have lncredlb[e para[[e[lsm (everyth]ng can » Allows easier performance analysis of code compared to MAP hardware e (SRC) ' |\ file
. . E main.cpp — compiled with Clang++ ' 5
4 SESIIRIon | execute on every clock tick) but C++ is sequential » Production mode: — Q Perutes on an FRGA
» C & C++ standard library » Compiled with Carte++ to instantiations of Verilog modules then Altera EURCHBRAL cﬁ-mﬂﬂ“ﬂﬂﬁ(:) {
» Variable Length Arrays (VLASs) place-and-route tools, creating a MAP bitstream which is combined with the Function call ransfers | 3
_ _ _ CPU object files to create a unified executable J SRS EHICNRL ARl
P Lnrestuicted TUnction, pointens » Executes on CPU and MAP hardware J J
LLVM IR to Dataflow Graph Hand-Written Verilog Components Parallelism Carte++ Pipelining Data Streams
» The library of Verilog modules is hand-crafted for | - » Hardware pipelining uses
- mplicit o . -
> LLVM IR is transformed to performance and efficient FPGA routing . I; pipelined Verilog modules D[i] = A[i] + B[i] * C[il; > Athread-safe queue
» Overlapping instructions : ' '
datatlow nodes » Two kinds of Verilog modules: pp. 5 | » On each clock tick, a new 1MULTJLSHIF£REG ° . EFOVIdes ahdea; way to communicate data
» SSA representation makes - " > Functional units (e.g. float adder, etc.) h verapping Resic blocks iteration’s values are dropped ~ “f o T etween threads
transformation easier » infrastractorseomponenisde.g. directs conirol-flow; eku.) » Simultaneous accesses to different memories in B S » Allows simultaneous loads and stores
» Each node instantiated as ¢ » The functional units correspond to LLVM IR instructions ™ L0 pIpSsIg > In this examkple,fthe h[\UL;' IS, . RN, S » Can produce a data value on every clock tick to
; : operation takes four cloc S, | mMunT | [SHIFT REG| iter @ ; N1
an independent Verilog 7 » The infrastructure components determine what kind of Explicit pd the Add tak s m B support loop pipelining
module concurrency can take place (concurrent basic blocks P EXplic]] = dhsa Bl l l ’
y p , - _ _ , C_EmEmEE » Flow control allows a stream’s consumer and
pipelined loops, etc.) » Threading via Pthreads » The four-stage shift register is l producer to be loosely-coupled, i.e. they can
A=B+C*D: o | o | | : T W , 1.€.
E-C+ [K > The compiler’s job is to instantiate modules from this > Ili)ata s’_cre?_ms allow users to asynchronously connect needed for 'path balancing o — Iﬁﬁﬁﬁﬁﬁﬁﬁﬁéﬁiﬁ%ﬁﬁﬁiﬁ%I;z: accept or produce data values at their own
E;é{r Eé- library and interconnect them according to the dataflow O0p pipelines » Results begin ’Fo appear on the e :;;;z: speeds with a buffer in the FPGA coupling them
’ graph output after five clock ticks L
Pointer & Memory Analysis Code Example - MAP Functions Future Work
static inted_t Sum, M; woid fwriter (woid *arg) |
» Goal is_to connect loads/sto!‘es only to e e » Pipelining loops
potentially accessed memories Sl for ket 12051 < o1 e
N = s et a e » Space optimizations
» Requires pointer tracing and analysis WritefSum +=D (0] + D[1]+ D2+ D3] _ _
| o | | stream<bits288> ; SoputD} » More complete Pthreads implementation
» Requires visibility into the entire program being :
compiled pthread_t 10, T1; S3put(0,0,0,0,1) » Better memory allocation/deallocation support
p Statically assign an address range for each pihread_create(8T0, 0, writer, &5);) » Components of the C & C++ standard libraries
pthread_create[&T1, 0, reader, &5); p woid *reader{void*arg) {
external and local memory » Other languages
» LLVM IR and supporting infrastructure (e.g. e s i
- . . while (D [4]) {
Value) simplifies the analysis . i S ®
1 [r = S-»geti);
i
| oSRC COVMPUTERS, LLC
Copyrght @ 2014 SRC Computers, LLC ALL RIGHTS RESERVED WA, SFCCompUters, com Copyrght @ 2014 SRC Computers, LLC ALL RIGHTS RESERVED WAy, SFCCompUters, com Copyright @ 2014 SRC Computers, LLC ALL RIGHTS RESERVED Wi, SFCComputers, com y

