AMDZ

A Detailed Look
at the R600
Backend 4

Tom Stellard
November 7, 2013

1 | A Detailed Look at the R600 Backend | November 5, 2013

Agenda AMD1

v

What is the R600 backend?
Introduction to AMD GPUs
R600 backend overview

Future work

v

v

v

2 | A Detailed Look at the R600 Backend | November 5, 2013

What is the R600 backend? AMDZU

» Component of AMD’s Open Source GPU drivers.

» Provides implementation of several popular APls.

» All AMD GPU generations are supported.

» Collaborative effort between AMD and the Open Source
community.

Used for compiling GLSL and OpenCL™ C programs.

It is not the AMDIL backend.
» AMDIL backend used by proprietary driver for OpenCLTM
» R600 emits ISA, AMDIL emits low-level assembly language
Why is it called R6007
» We generally name our Open Source components after the
first generation they support.
Why use LLVM?

» Reduces development time.
» GPU programs are starting to look more like CPU programs.
» Testing coverage.

v

v

v

v

3 | A Detailed Look at the R600 Backend | November 5, 2013

Generic GPU Overview AMDZ

» Terms

>
>
>
>

>

Thread - A single element of execution (OpenCL™" work item).
Wave - A group of threads that are executed concurrently.
Execution Unit - Where the code is run.

Compute Unit - A collection of execution units that share
resources.

Vector component (vec.x, vec.y, vec.z vec.w).

» GPU Architecture

>

>

| 4

GPUs have hundreds or thousands of individual execution

units.

Execution units are grouped together into compute units.

Compute unit resources are shared among execution units.

» Control Flow

>

| 4

>

All threads in a wave share a program counter - branching is
not always possible.

Control flow implemented using execution masks.

Only structure control flow is supported.

4 | A Detailed Look at the R600 Backend | November 5, 2013

AMD GPU Overview AMDZ

» Two distinct architectures supported by R600 backend:
» VLIW4/VLIWS
» Graphics Core Next (GCN)
» Within each architecture there are different GPU
'generations’:
» VLIW4/VLIWS5 (R600, R700, EvergreenNI, Cayman)
» GCN (Southern Islands, Sea Islands)
» For generations with the same architecture, the ISA is 95%
the same, but not compatible.

» Each generation contains several variants.

» ISA is compatible between variants, but compiler must be
aware of differences between variants in order to achieve
optimal performance.

5 | A Detailed Look at the R600 Backend | November 5, 2013

VLIW4 /VLIW5 Control Flow Instructions AMDZ1

ALU 2, @4, KCO[CBO0:0—32], KC1[]
MEM_RAT_CACHELESS STORERAW T0.X, T1.X, 1

CF_END
PAD
ALU clause starting at 4:
ADD T0.X, KCO0[2].Z, KCO[2].W,

LSHR =« T1.X, KCO[2].Y, literal .x,
2(2.802597e—45), 0(0.000000e+00)

» Control Flow Instructions
» Handle program flow (branches, loops, function calls).
» Used for writing data to global memory.
» Can initiate a clause.
> Clause is a group of lower-level instructions.
> Three types of clauses (ALU, Texture, Vertex).
» Each clause can execute a limited number of instructions.

6 | A Detailed Look at the R600 Backend | November 5, 2013

VLIW4/VLIWS ALUs AMDZ1

BIT_ALIGN_INT T1.X, TO.W, T9.W, literal .x,

ADD_INT T1.Y, T16.W, T2.Z, BS:VEC.120/SCL_.212
ADD_INT T1.Z, PV.W, PS,

BIT_ALIGN_INT T3.W, T2.W, T2.W, literal.y, BS:VEC_.201
LSHR * T4.W, T2.W, literal .z,

7(9.809089e—45), 19(2.662467¢—44)
10(1.401298e—44), 0(0.000000e+00

v

4 or 5 wide depending on the variant.

v

Can execute 4 or b different instructions at once.
ALU.X, ALU.Y, ALU.Z, ALU.W, ALU.TRANS (VLIWS5 only).
ALU.X may only write to X component, ALU.Y to Y, etc.

v

v

v

ALU.TRANS can write to any component.

3 Classes of instructions:
» Any - ALU.[XYZW)] or ALU.Trans
» Vector - ALU.[XYZW] Only
» Scalar - ALU.Trans Only

7 | A Detailed Look at the R600 Backend | November 5, 2013

v

VLIW4 /VLIWS5 Instruction Inputs AMDZ1

BIT_ALIGN_INT T1.X, TO.W, T9.W, literal .x,

ADD_INT T1.Y, T16.W, T2.Z, BS:VEC.120/SCL_.212
ADD_INT T1.Z, PV.W, PS,

BIT_ALIGN_INT T3.W, T2.W, T2.W, literal.y, BS:VEC_.201
LSHR * T4.W, T2.W, literal .z,

7(9.809089e—45), 19(2.662467¢—44)
10(1.401298e—44), 0(0.000000e+00

» Literal Constants
> Vector Registers

» 128 <4 x 32 bit> Registers

» Most instruction write to one component of the vector (e.g.

TO0.X or TO.Y).

» No data dependency between components of the same vector.
» Constant Registers

» Used to access values in the constant memory cache.

» Cache is filled at the beginning of each ALU clause.

8 | A Detailed Look at the R600 Backend | November 5, 2013

VLIW4 /VLIW5 Source Restrictions AMDZ1

BIT_ALIGN_INT T1.X, TO.W, T9.W, literal .x,

ADD_INT T1.Y, T16.W, T2.Z, BS:VEC.120/SCL_.212
ADD_INT T1.Z, PV.W, PS,

BIT_ALIGN_INT T3.W, T2.W, T2.W, literal.y, BS:VEC_.201
LSHR * T4.W, T2.W, literal .z,

7(9.809089e—45), 19(2.662467¢—44)
10(1.401298e—44), 0(0.000000e+00

There are a lot of restrictions.

v

v

Loading of inputs takes place over 3 cycles.

On each cycle only one GPR.X, GPR.Y, GPR.Z, and GPR.W
value can be read.

v

v

Order of source fetches must be specified by the compiler
writer.

9 | A Detailed Look at the R600 Backend | November 5, 2013

GPU Overview - GCN

AMDA

S_.LOAD_.DWORD SGPR2, SGPRO.SGPR1, 11

S_LOAD_.DWORD SGPR3, SGPRO.SGPR1, 12

S_.WAITCNT Igkment (0)

V_MOV_B32_e32 VGPRO, SGPR3

V_ADD_F32_e64 VGPRO, SGPR2, VGPRO, 0, 0, 0, O

S_LOAD_DWORDX2 SGPR0_-SGPR1, SGPRO.SGPR1l, 9

S_MOV_B64 SGPR4_SGPR5, 0

S_MOV_B32 SGPR6, 0

S_MOV_B32 SGPR7, 61440

S_.WAITCNT Igkment (0)

V_MOV_B32_e32 VGPR1, SGPRO

V_MOV_B32_e32 VGPR2, SGPR1

BUFFER.STORE_DWORD VGPRO, SGPR4_SGPR5_SGPR6_SGPR7 +
VGPR1_.VGPR2 + 0

S_.ENDPGM

» Differences from VLIW4/VLIW5
» Control Flow instructions replaced by "Scalar" ALU.
» Two different ALU types: "Scalar” and " Vector”.
> Scalar registers.
» Compiler manages the execution mask.
10 | A Detailed Look at the R600 Backend | November 5, 2013

GCN - ALU Types AMDZ
» SALU

One per wave.

Responsible for control flow.

Limited instruction set.

102 32-bit registers (Scalar Registers).

» VALU

» One VALU per thread in a wave (64 VALUs per wave).
» Complete instruction set.
» 256 32-bit register (Vector Registers).

vV vy vy

» Programs can intermix SALU and VALU instructions.

» Instructions are always executed in sequence regardless of
ALU type.

» VALU can directly access SALU registers.
» Copying data from VALU registers to SALU registers is not
always possible.

11 | A Detailed Look at the R600 Backend | November 5, 2013

GCN

AMDA

S_.LOAD_.DWORD SGPR2, SGPRO.SGPR1, 11

S_LOAD_.DWORD SGPR3, SGPRO.SGPR1, 12

S_.WAITCNT Igkment (0)

V_MOV_B32_e32 VGPRO, SGPR3

V_ADD_F32_e64 VGPRO, SGPR2, VGPRO, 0, 0, 0, O

S_LOAD_DWORDX2 SGPR0_-SGPR1, SGPRO.SGPR1l, 9

S_MOV_B64 SGPR4_SGPR5, 0

S_MOV_B32 SGPR6, 0

S_MOV_B32 SGPR7, 61440

S_.WAITCNT Igkment (0)

V_MOV_B32_e32 VGPR1, SGPRO

V_MOV_B32_e32 VGPR2, SGPR1

BUFFER.STORE_DWORD VGPRO, SGPR4_SGPR5_SGPR6_SGPR7 +
VGPR1_.VGPR2 + 0

S_.ENDPGM

» Variable pointer sizes.
» 64-bit for global / constant memory.
» 32-bit for local memory (LDS).
» 128-bit, 256-bit, 512-bit resource descriptors for texture /
buffer instructions.

12 | A Detailed Look at the R600 Backend | November 5, 2013

Instruction Operands AMDZ1

UEM: $update_exec_mask , UP:$update_pred, WRITE: $write ,

OMOD: $omod , REL: $dst_rel , CLAMP: $clamp ,

R600_Reg32: $srcO , NEG: $srcO_neg , REL: $srcO_rel ,
ABS: $src0_abs , SEL: $srcO_sel ,

R600_Reg32: $srcl , NEG: $srcl_neg, REL: $srcl_rel ,
ABS: $srcl_abs , SEL: $srcl_sel ,

LAST: $last , R600_Pred: $pred_sel ,

LITERAL: $literal , BANK_SWIZZLE: $bank_swizzle),

» VLIW4/VLIWS5 instructions have a large number of operands.

» Most operands are configuration bits for the instruction:
» Modifiers for instruction inputs outputs:
> Inputs: ABS, NEG
» Output: CLAMP, OMOD (Multiply floating-point result by a
power of two)
> Predicate bits
> Indirect addressing bits

13 | A Detailed Look at the R600 Backend | November 5, 2013

Instruction Operands AMDZ1

UEM: $update_exec_mask , UP:$update_pred, WRITE: $write ,

OMOD: $omod , REL: $dst_rel , CLAMP: $clamp ,

R600_Reg32: $srcO , NEG: $srcO_neg , REL: $srcO_rel ,
ABS: $src0_abs , SEL: $srcO_sel ,

R600_Reg32: $srcl , NEG: $srcl_neg, REL: $srcl_rel ,
ABS: $srcl_abs , SEL: $srcl_sel ,

LAST: $last , R600_Pred: $pred_sel ,

LITERAL: $literal , BANK_SWIZZLE: $bank_swizzle),

» How to match instructions with so many operands?

Operand<ty> {
dag DefaultOps = defaultops;

}

class OperandWithDefaultOps<ValueType ty,dag defaultops>

def MUL.LINT24_.cm : R600.20P <0x5B, "MUL_INT24",
[(set i32:%dst, (mul 124:%srcO0, 124:%srcl))], VecALU
>,

14 | A Detailed Look at the R600 Backend | November 5, 2013

How to efficiently set ABS, NEG bits? AMDZ

> Use ComplexPatterns 7

bool AMDGPUISeIDAGToDAG:: SelectSrc (SDValue Src,
SDValue &Reg, SDValue &Abs, SDValue &Neg) const;

» This would be the ideal solution, however...
> |t breaks instruction encoding.
» Does not work with stand-alone patterns.

» Post-process the DAG?

» This is what the R600 backend does

It works, but...

We need to write a lot of a custom code.

Most of the code is duplicating things TableGen could do for
us.

v vy

15 | A Detailed Look at the R600 Backend | November 5, 2013

Accessing Operands AMD1

» How to figure which operand index maps to a configuration
bit?
» Configuration bits may have a different index depending on the
instruction.

» Solution:

let UseNamedOperandTable = 1;

» Generates getNamedOperandldx() function:

intl6_t getNamedOperandldx(uintl6_t Opcode,
uintl6_t Namedldx);

» You can query the operand index using the operand names

defined in TableGen.
int Absldx = AMDGPU:: getNamedOperandldx (

AMDGPU : : ADD,
AMDGPU: : OpName:: srcO_abs);

MI. getOperand (Absldx).setlmm (1);

16 | A Detailed Look at the R600 Backend | November 5, 2013

Indirect Addressing AMD1

» Instructions may use the address registers to indirectly access
any register.

» For Example: ADD To0.X, T[3 + ADDR].X, TO.
> Used for accessing arrays stored in registers.

» Makes optimization difficult.
» Solution 1:

» Assign a virtual register to each item in they array.

> If an instruction uses indirect addressing for its result have it
implicitly define all items in the array.

» If its uses indirect addressing for sources, implicitly use all
items.

» Use REG_SEQUENCE to fit the array into GPRs.

» Advantage: Produces highly optimized code.

» Disadvantages: Requires tracking uses and defs through basic
blocks.

17 | A Detailed Look at the R600 Backend | November 5, 2013

Indirect Addressing AMD1

» Solution 2:
> Reserve a block of GPRs for a 'register address space’.
» Use loads and stores to model indirect addressing.
» Lower loads and stores to ALU instructions after register
allocation.
» Advantage: Easy to implement.
» Disadvantage: Produces inefficient code.
» This is the solution we are using for OpenCLTIVI C programs

» Solution 3:
» Model arrays using vectors, rather than alloca, load, store.
» Advantages:
» We can accurately track the live range for arrays.
> Register allocator can allocate registers for arrays.

» Disadvantage:

™
» For OpenCL ~ C, we must convert array allocas to vectors.
> We require larger vector sizes than TableGen supports.

» We are using this solution for GLSL shaders on GCN hardware.

18 | A Detailed Look at the R600 Backend | November 5, 2013

GCN - SALU / VALU Instruction Selection AMDZ1

» Problem:
» Two ALUs (SALU and VALU) with different by intersecting
instruction sets.
» Data flows only one way: SALU to VALU.
» How do we tell the ISel pass which instructions to use?
» Best solution would be if 1Sel could select the instruction
based on the register classes.
» Current solution:

» Only write TableGen patterns for SALU instructions.
» Add a pass to move instruction from VALU to SALU to satisfy
data dependencies.

19 | A Detailed Look at the R600 Backend | November 5, 2013

R600 Scheduling AMD1

» Scheduling is complicated due to:

» VLIW packet source restrictions.

» Different kinds of instruction clauses (Alu, Vertex, Texture).
» Minimizing register usage is very important.

» There is one register pool per compute unit.
The hardware allocates registers for each thread from this pool.
A thread can use at most 128 <4 x 32 bit> registers, but...
There are not enough registers for all threads to use the
maximum.
» For optimal utilization of compute units, the maximum

number of registers is much smaller.

» The actual number depends on the variant.

v

v

v

20 | A Detailed Look at the R600 Backend | November 5, 2013

R600 Scheduling AMD1

» We need to switch scheduling strategies once we reach the
'utilization maximum’.
» We have basic register pressure tracking to help us schedule
texture/vertex instructions.
» We do not currently take advantage of MachineScheduler’s
register pressure tracking.

21 | A Detailed Look at the R600 Backend | November 5, 2013

Future Work AMDZ1

» Support for new hardware.

» Full support for GPU programming languages: OpenCL™ C,
GLSL.

» Other ideas:

MachineScheduler for GCN

Common intrinsics for GLSL (LunarGLASS?)
SelectionDAG replacement?

Backend error reporting

Performance Improvements

» More GPU backends in LLVM!

v

vV vy VvVYyy

22 | A Detailed Look at the R600 Backend | November 5, 2013

Resources AMDZ1

Installation guide for Open Source compute with R600 backend:
> http://dri.freedesktop.org/wiki/GalliumCompute/
GPU ISA Documentation
» http://www.x.org/docs/AMD/
Mesa3D (Userspace driver):
» http://www.mesa3d.org/
LunarGlass:
» http://www.lunarglass.org/
Where to ask questions:
» Mesa mailing list - mesa-dev@lists.freedesktop.org
» Mesa IRC channels - #radeon, #dri-devel on irc.freenode.net
> LLVM mailing list - llvmdev@cs.uiuc.edu
» LLVM IRC channel - #llvm on irc.oftc.net

23 | A Detailed Look at the R600 Backend | November 5, 2013

