
Adventures with LLVM in
a magical land where

pointers are not integers
David Chisnall

Approved for public release; distribution is unlimited. This research is sponsored by the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contracts FA8750-10-C-0237 and FA8750-11-C-0249. The views,
opinions, and/or findings contained in this article/presentation are those of the author(s)/
presenter(s) and should not be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government.

What is a pointer?
• Conventional flat-memory architectures: a number

indicating an address

• C requires: An value indicating an object and an
offset that permits arithmetic

• People who write C require: Stable comparisons
between pointers to different objects, unions of
integers and pointers, other crazy stuff…

Fat pointers

• Fat pointers are pointers plus bounds information.

• Often implemented in software (e.g. Cyclone)

• Ours also have permissions.

Pointers in our processor
Memory capabilities: Atomic values identifying and

granting rights to a region of memory.

base	
 [64]

length	
 [64]

Permissions	
 [32] Type	
 [24] Reserved	
 [8]

virtual	
 address	
 [64]	
 (exposed	
 as	
 offset)

Actually, it’s a bit more
complicated…

• Some pointers are 64-bit integers (implicitly
capability-relative).

• Some are memory capabilities.

• Some compilation units use both!

• Some want the stack to be a capability!

CHERI pointers in LLVM
Conventional Capability

Address space 0 200

Size 64 bits 256 bits

Round-trips via
integer? Yes Sometimes…

Pointers in LLVM
• Strongly typed in IR.

• Can be converted (possibly lossily) to and from
integers with inttoptr / ptrtoint

• All typesafe arithmetic should be done with GEPs

• Casts between address spaces with
addrspacecast (added after we started, made
life a lot easier!)

Except in the back end…

• iPTR is the value type for pointers.

• Back ends tell SelectionDAG which integer type
should be used for pointers (oops!)

• Lots of pointer arithmetic done in SelectionDAG
using normal arithmetic nodes

And a bit in the middle…
• Some optimisers assume that pointers are integers.

• Some assume that they know the representation of
pointers.

• Most of these are easy to fix

• Some by not running them

• Some by teaching them that 2sizeof(ptr) does not
give the size of the address space!

LLVM for CHERI

• Lots of changes throughout.

• Currently 13K lines of diff (4K more in clang).

• Includes 5K in the MIPS back end.

• Includes changes to allow allocas in non-zero AS
(only one stack AS per module!).

Size doesn’t imply range!

• Added methods to DataLayout that expose the
range of a value separate from its size.

• CHERI pointers are 256-bits, with a 64-bit range.

• Call these in 20 places in optimisations (more on
every merge from upstream)

Fixing SelectionDAG

• Added three new DAG nodes: PTRTOINT,
INTTOPTR, PTRADD

• Added iFATPTR value type

• Added new SelectionDAG method

• Made 40 places use it! (also simplified a load of
copy-and-pasted code

Some issues

• PTRADD is not symmetrical (pointer on left, integer
on right)

• Existing DAG folding doesn’t handle it

• Works, but generates some inefficient code

Fixing pointer adds

- Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getConstant(IncrementSize, Ptr.getValueType()));
+ Ptr = DAG.getPointerAdd(dl, Ptr, IncrementSize);

SDValue SelectionDAG::getPointerAdd(SDLoc dl, SDValue Ptr, int64_t Offset) {
 EVT BasePtrVT = Ptr.getValueType();
 if (BasePtrVT == MVT::iFATPTR) {
 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
 // Assume that address space 0 has the range of any pointer.
 MVT IntPtrTy = MVT::getIntegerVT(
 TLI->getDataLayout()->getPointerSizeInBits(0));
 return getNode(ISD::PTRADD, dl, BasePtrVT, Ptr, getConstant(Offset,
 IntPtrTy));
 }
 return getNode(ISD::ADD, dl, BasePtrVT, Ptr,
 getConstant(Offset, BasePtrVT));
}

Silly fixes

• AsmPrinter uses EmitIntValue() instead of
EmitZeros() to write constant null pointers.

• IRBuilder::getCastedInt8PtrValue()
needs a version that takes an address space.

• Lots of code in clang thinks i8* in AS 0 is a
generic pointer type.

Conclusion

• LLVM IR is perfectly happy with fat pointers.

• LLVM code… nearly is.

• Needs an in-tree target with regression tests.

