Adventures with LLVM In
a magical land where
pointers are not integers

David Chisnall

Approved for public release; distribution is unlimited. This research is sponsored by the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contracts FA8750-10-C-0237 and FA8750-11-C-0249. The views,
opinions, and/or findings contained in this article/presentation are those of the author(s)/
presenter(s) and should not be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government.



What is a pointer?

* Conventional flat-memory architectures: a number
indicating an address

* C requires: An value indicating an object and an
offset that permits arithmetic

 People who write C require: Stable comparisons
between pointers to different objects, unions of
integers and pointers, other crazy stutt. ..




Fat pointers

e Fat pointers are pointers plus bounds information.
e Often implemented in software (e.g. Cyclone)

* QOurs also have permissions.



Pointers In our Processor

Memory capabilities: Atomic values identifying and
granting rights to a region of memory.

base [64]

length [64]

Permissions [32] |Type [24]

virtual address [64] (exposed as offset)




Actually, It's a bit more
complicated...

Some pointers are 64-bit integers (implicitly
capability-relative).

Some are memory capabilities.
Some compilation units use both!

Some want the stack to be a capability!



CHERI pointers in LLVM

Conventional Capability

Address space

Size 64 bits 256 bits

Round-trips via
integer?

Yes Sometimes...




Pointers in LLVIVI

Strongly typed in IR.

Can be converted (possibly lossily) to and from
integers with inttoptr /ptrtoint

All typesafe arithmetic should be done with GEPs

Casts between address spaces with
addrspacecast (added after we started, made
ife a lot easier!)



=xcept In the back end...

 iPTR is the value type for pointers.

 Back ends tell SelectionDAG which integer type
should be used for pointers (oops!)

* |Lots of pointer arithmetic done in SelectionDAG
using normal arithmetic nodes



ANnd a bit In the miadle...

e Some optimisers assume that pointers are integers.

 Some assume that they know the representation of
pointers.

* Most of these are easy to fix
e Some by not running them

e Some by teaching them that 2sizeof(pt) does not
give the size of the address space!



LLVM tor CHERI

Lots of changes throughout.
Currently 13K lines of diff (4K more in clang).

Includes 5K in the MIPS back end.

Includes changes to allow allocas in non-zero AS
(only one stack AS per module!).



Size doesn’'t imply range!

 Added methods to DatalLayout that expose the
range ot a value separate from its size.

 CHERI pointers are 256-bits, with a 64-bit range.

o Call these in 20 places in optimisations (more on
every merge from upstream)



Fixing SelectionDAG

Added three new DAG nodes: PTRTOINT,
INTTOPTR, PTRADD

Added 1FATPTR value type
Added new SelectionDAG method

Made 40 places use it! (also simplified a load of
copy-and-pasted code



Some Issues

« PTRADD is not symmetrical (pointer on left, integer
on right)

» Existing DAG folding doesn’t handle it

* Works, but generates some inetticient code



FIXIng pointer adds

SDValue SelectionDAG: :getPointerAdd(SDLoc dl, SDValue Ptr, int64_t Offset) {
EVT BasePtrVT = Ptr.getValueType();
if (BasePtrVT == MVT::iFATPTR) {
const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
// Assume that address space 0 has the range of any pointer.
MVT IntPtrTy = MVT::getIntegerVT(
TLI->getDatalLayout()->getPointerSizeInBits(0));
return getNode(ISD::PTRADD, dl, BasePtrVT, Ptr, getConstant(Offset,
IntPtrTy));
}
return getNode(ISD::ADD, dl, BasePtrVT, Ptr,
getConstant(0ffset, BasePtrVT));

- Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getConstant(IncrementSize, Ptr.getValueType()));
+ Ptr = DAG.getPointerAdd(dl, Ptr, IncrementSize);



Silly fixes

« AsmPrinter uses EmitIntValue () instead of
EmitZeros () to write constant null pointers.

e TRBuilder::getCastedInt8PtrValue()
needs a version that takes an address space.

* | ots of code in clang thinks 18* IN AS O is a
generic pointer type.



Conclusion

 LLVM IR Is pertectly happy with fat pointers.
e LLVM code... nearly is.

* Needs an in-tree target with regression tests.



