Can we improve the experience of first-time
LLVM contributors?

lowRISC

Alex Bradbury
asb@lowrisc.org @asbradbury @lowRISC

LLVM Cauldron 2016, 8th September 2016

Questions for the audience

Who has used LLVM's Phabricator before?

Questions for the audience

Who has used ever submitted a patch for LLVM?

Questions for the audience

Who has submitted an LLVM patch and found it languishes
with no reviewers?

Current contribution process

e Write patch

e Submit to Phabricator
o Trytoidentify a CODE_OWNER to review
o Tag people you might know to help review

o Look at git blame, and pick on the unlucky soul who last touched the
relevant file

Potential problems

e Code owners are often busy
e Newcomers haven't yet gained “review currency” in the LLVM community
e Finding your hard work seemingly ignored can be offputting

Even if feedback is negative, it's valuable to know someone has looked at your
code.

What do others do? Case study - Rust

This Week in Rust New Contributors

« Abhishek Kumar

« Andrea Corradi

« athulappadan
06 SEP 2016 « Eugene R Gonzalez

« Fabian Zaiser

« johnthagen

« Keunhong Lee

« kingbcong

« Matt Ickstadt

« philipp

« QuietMisdreavus

« Sebastian Ullrich

What do others do? Case study - Rust

2 WE

B Add ThreadId for comparing threads Verfied | 3¢
Notifications
& [aturon was assigned by rust-highfive 8 hours ago o Sul
You're not receivir
E rust-highfive commented 8 hours ago & e T feee.,

Thanks for the pull request, and welcome! The Rust team is excited to review your changes, and you
should hear from @aturon (or someone else} soon.

If any changes to this PR are deemed necessary, please add them as extra commits. This ensures that
the reviewer can see what has changed since they last reviewed the code. Due to the way GitHub
handles out-of-date commits, this should also make it reasonably obvious what issues have or haven't
been addressed. Large or tricky changes may require several passes of review and changes.

Please see the contribution instructions for more information.

Conclusion

e Seems like a good idea - let's steal it!

e Need to provide
o Phabricator bot
o Community of volunteers to be tagged

e Potential pitfall: no use telling submitters to clean up code style if the
fundamental approach will never be accepted by code owner

e | haven't surveyed potential LLVM contributors - maybe there isn't a
problem that needs to be solved?

e Keen to hear your views - let’s discuss at the Social

