
Simon Cook Ed Jones

simon.cook@embecosm.com ed.jones@embecosm.com

Current in-tree architectures

Arch Server Desktop Embedded MCU DSP GPU Hardware Reg size

AArch64 ✓ ✓ ✓ ✓ 64

AMDGPU ✓ 32

ARM ✓ ✓ ✓ ✓ 32

BPF 64

Hexagon ✓ 32

Lanai ? ? 32

Mips ✓ ✓ 32, 64

MSP430 ✓ ✓ ✓ 16

NVPTX ✓ 16, 32, 64

PowerPC ✓ ✓ ✓ ✓ 32, 64

Sparc ✓ ✓ ✓ ✓ 64

SystemZ ✓ ✓ 32, 64

WebAsm 32, 64

X86 ✓ ✓ ✓ ✓ 16, 32, 64

XCore ✓ ✓ 32

AVR ✓ ✓ ✓ 8

RISC-V ✓ ✓ ✓ ✓ 32

Out-of-tree Architectures

• MCUs, DSPs

• 8/16/24/40 bit registers, >8 bit bytes

• Novel addressing modes

• Complex register constraints

• Size > performance

• Can't always upstream

 Exposes confidential hardware details

 Only internal use

 Lots of generic changes

AAP

• Community driven, incrementally update
architecture to solve community needs

• Aim to be in-tree to avoid bit-rot

• Smooth the path for other back-ends to come
in-tree

• RISC with MCU and DSP features

Arch Server Desktop Embedded MCU DSP GPU Hardware Register

size

AAP ✓ ✓ ✓ ✓ 16

AAP Design

AAP Design

AAP exists to improve LLVM. Some areas we’re
looking at:

• Non-octet chars

• Non-power of 2 registers

• Multiple function pointer sizes

• Finer-grained control over legalization

• Stack cheaper than registers

Non-octet Chars

Very common in DSPs, but 8-bit chars are hardcoded in a
few places in LLVM/Clang

• getPointerSizeInBits

• getTypeStoreSize/getTypeStoreSizeInBits

• ….

Has appeared a couple of times in the mailing list
(including /w patches). But patches never made it in.

Non-power of 2 registers

Also very common in DSPs. Generic LLVM only
has power-of-2 in the MVT.

Support for common DSP register sizes would be
nice (i24)

Again, patches have appeared on the mailing list.

Understandably, with no in-tree targets the
patches weren't included.

Multiple function pointer sizes

Some architectures have code which lives in
different address spaces.

Function pointers may be different sizes

• And different size pointers may point to the same function

Call and return instructions used may differ
depending on pointer type

Can expand meaning of address_space in
LLVM to work for functions.

Finer-grained legalization control

• Some architectures have multiple register sizes

• May only be able to do a subset of operations
on the larger register

• But if the larger register is legal, then LLVM will
use it liberally.

• Can occur if your address registers are larger
than your data registers.

Stack cheaper than registers

• Some architectures can perform operations on
the stack directly.

• May be cheaper than registers:

 For a subset of stack locations

 For a subset of operations

• Want to sometimes treat stack slots like
registers.

load r0, sp+2
add r0, r1
store sp+2, r0 add sp+2, r1

Stack cheaper than registers

• Cost of spilling a register varies

 Free if subsequent uses of the value can operate directly on
the stack

• Stack slot allocation varies

 Allocate cheap stack slots to minimize number of loads into
registers

• Instruction selection varies

 Choose instructions to prefer operations which can use the
stack

D23665 – ELF Definitions
D23666 – Backend Stub

D23667 – Tablegen
D23771 – MC

D23772 – AsmParser
D23773 – InstPrinter

Differential Patches

embecosm.com

