
How to add a new target to
LLD

Peter Smith, Linaro

Introduction and assumptions
● What we are covering Today

○ Introduction to the LLD ELF linker and its structure
○ Common porting work for all architectures
○ Some thoughts on adding support for new features not in LLD

● Assumptions of familiarity
○ Object file concepts such as Sections, Symbols and Relocations
○ Static and dynamic libraries
○ SysV style dynamic linking concepts including the PLT and GOT

● About me
○ Currently adding support for ARM to the LLD ELF linker
○ Background in ARM toolchains

Linker Design Constraints
● All linkers must:

○ Gather the input objects of a program from the command line and libraries
○ Record any shared library dependencies
○ Layout the sections from the input in a well defined order
○ Create data structures such as the PLT and GOT needed by the program
○ Copy the section contents from the input objects to the output
○ Resolve the relocations between the sections
○ Write the output file

● Optionally:
○ Garbage collect unused sections
○ Merge common data and code
○ Call link-time optimizer

Linker design

.o
.o

.a
.a

.so
.so

archives

shared libraries

objects

Find and scan
input files

Global
optimizations

Linker
generated
content

Layout and
assign
addresses

Copy section
contents to
output.
Resolve
relocations

.exe or
.so

Most natural design is as a pipeline that makes the
abstract more concrete the further along we go.

LLD Introduction
● Since May 2015, 3 separate linkers in one project

○ ELF, COFF and the Atom based linker (Mach-O)
○ ELF and COFF have a similar design but don’t share code
○ Primarily designed to be system linkers

■ ELF Linker a drop in replacement for GNU ld
■ COFF linker a drop in replacement for link.exe

○ Atom based linker is a more abstract set of linker tools
■ Only supports Mach-O output

○ Uses llvm object reading libraries and core data structures

● Key design choices
○ Do not abstract file formats (c.f. BFD)
○ Emphasis on performance at the high-level, do minimal amount as late as possible.
○ Have a similar interface to existing system linkers but simplify where possible

LLD Key Data Structures
● InputFile : abstraction for input files

○ Subclasses for specific types such as object, archive
○ Own InputSections and SymbolBodies from InputFile

● InputSection : an ELF section to be aggregated
○ Typically read from objects

● OutputSection : an ELF section in the output file
○ Typically composed from one or more InputSections

● Symbol and SymbolBody
○ One Symbol per unique global symbol name. A container for SymbolBody
○ SymbolBody records details of the symbol

● TargetInfo
○ Customization point for all architectures

LLD Key Data Structure Relationship

InputSection

OutputSection

Contains
InputSections

InputFile

Defines and
references
Symbol bodies

Contains
InputSections

Symbol

Best
SymbolBody

SymbolBody

SymbolTable

Global
Symbols

LLD ELF Simplified Control Flow
Driver.cpp
1. Process command line

options
2. Create data structures
3. For each input file

a. Create InputFile
b. Read symbols into

symbol table
4. Optimizations such as GC
5. Create and call writer Writer.cpp

1. Create OutputSections
2. Create Thunks
3. Create PLT and GOT
4. Relax TLS
5. Assign addresses
6. Perform relocation
7. Write file

InputFiles.cpp
● Read symbols

LinkerScript.cpp
Can override default behaviour

● InputFiles
● Ordering of Sections
● DefineSymbols

SymbolTable.cpp
● Add files from archive to

resolve undefined symbols

Adding a new architecture to LLD
● Consult your ABI

○ Parts of the generic ELF specification that are not implemented in LLD
■ LLD only implements what its Targets need

○ All the features in the target specific ELF supplement are candidates
○ Relocation directives
○ Target specific PLT sequences and TLS relaxations
○ Target specific thunks

● Not all ABI features are created equal
○ The pareto principle applies, choose features to implement wisely

■ Most programs can be linked with only a small number of implemented features
■ A long tail of programs that (ab)use a specific feature

○ Getting hello world to run is a good first step

Porting common to all architectures
● Add a subclass to TargetInfo for your machine type

○ Creating an instance of this class in response to handle the machine type

● Add enough relocations to link your initial application
○ Hello world usually only needs a small number

● Identify your common dynamic SysV relocations identified by TargetInfo
○ R_386_COPY, R_ARM_COPY, R_MIPS_COPY ...

● Add PLT sequences early
○ Dynamically linking against the C-library uses fewer linker features than the static C-library

● Other TargetInfo subclasses are useful guides

Implementing Relocations
● Relocations in ELF are described by:

○ Type : Identification of relocation
○ Place P : where the relocation is applied
○ Symbol S : the destination of the relocation
○ Addend A : constant encoded in the place for REL or in the relocation for RELA

● Type tells the linker what to do with P, S and A
● Relocations in TargetInfo are handled by up to 3 member functions

○ getRelExpr() : Map Type to a RelExpr
■ LLD uses RelExpr to abstract relocation processing across architectures
■ Example: R_PLT_PC = PLT(S) + A - P

○ getImplicitAddend() : for REL how to extract A from P. Not needed for RELA.
○ relocateOne() : how to encode result of relocation to P

Relocation example ARM BL
● Rel relocation with type R_ARM_CALL
● Can be indirected via a PLT
● PC-Relative, calculation is S + A - P
● Addend A is bottom 24-bits of instruction, with result

shifted left by 2 to form signed 26-bit offset
○ For ARM a relocated call always has A as -8 to

account for PC-bias
ICOND 1011 IMM24

02331

1. getImplicitAddend(), extracts A from IMM24
a. SignExtend64<26>(read32le(Buf) << 2);

2. getRelExpr() returns R_PLT_PC for R_ARM_CALL
a. LLD converts to R_PC if no PLT entry needed

3. relocateOne() checks overflow and writes back to IMM24
a. checkInt<26>(Val, Type);

b. write32le(Loc, (read32le(Loc) & ~0x00ffffff) |

((Val >> 2) & 0x00ffffff));

PLT Sequences
● Two member functions must be implemented

○ writePltHeader() : PLT[0] for the lazy binding call to the dynamic loader
○ writePLT() : PLT[N] for standard entries

● Consult your ABI and dynamic loader for the calling conventions required. For
example in ARM:

○ PLT[N] must set the IP register to the contents of .got.plt(N)
○ PLT[0] can’t use normally corruptible IP register for address of dynamic loader entry point
○ Convention that PLT[0] stacks and uses LR for address of dynamic loader entry point

■ Dynamic loader restores LR from stack

Thread local storage
● LLD has support for the standard and descriptor based TLS dialect
● Common code to identify and create dynamic relocations
● Identify dynamic relocations in TargetInfo

○ TlsModuleIndexRel (Global Dynamic, and Local Dynamic)
○ TlsOffsetRel (Global Dynamic and Local Dynamic)
○ TlsGotRel (Initial Exec)
○ TlsDescRel (Descriptor dialect)

● TcbSize selects between variant 1 and variant 2 (TcbSize == 0)
● Implement static TLS relocations
● Implement or disable TLS relaxations

The non-standard parts
● Many architectures have custom requirements. For example in ARM:

○ There are two states ARM and Thumb that the linker is responsible for interworking
■ Choice of BL or BLX made at link time depending on target state
■ Interworking thunks required for B instructions
■ Interworking thunk to PLT entries needed

○ ARM uses Itanium style exception tables with ordering dependency requirements
○ ARM TLS relocations can’t be relaxed
○ Linker responsible for range extension thunks
○ Mapping symbols needed for correct disassembly

Non standard parts continued
● Beware of phase order problems

○ Need to wait for information to become available but your phase alters information used by
some previous phrase

● Do you really need the full extension right now?
○ Can you implement a simpler subset in a way that is less disruptive to the implementation

● If the new phase could affect performance, but only for your target, make it
target specific.

● Don’t expect reviewers to be familiar with non-standard extensions
○ Provide links to documentation
○ Reference implementations in other linkers
○ Test cases to show how features are used in practice

Summary
● The COFF and ELF LLD implementations are intended to be a drop in

replacement for link.exe and ld respectively
○ Some architectures closer to achieving this than others

● Porting a new architecture that closely resembles an existing one is
straightforward and doesn’t take much code

● Expect to take much longer for architectures with many non standard features

References
● LLD homepage
● Generic ELF Specification
● ELF for the ARM Architecture
● ELF handling for Thread Local Storage

http://lld.llvm.org/index.html
http://lld.llvm.org/index.html
http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/gabi/latest/contents.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044f/IHI0044F_aaelf.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044f/IHI0044F_aaelf.pdf
https://it.bmc.uu.se/andlov/dev/manual/Ulrich%20Drepper%20-%20TLS%20-%20ELF%20Handling%20For%20Thread-Local%20Storage%20(tls.pdf).pdf
https://it.bmc.uu.se/andlov/dev/manual/Ulrich%20Drepper%20-%20TLS%20-%20ELF%20Handling%20For%20Thread-Local%20Storage%20(tls.pdf).pdf

The End

Backup

ELF Recap
#include <stdio.h>

static int x = 10;
int y;

int function2(void)
{
 return x + y;
}

static void function1(void)
{
 rw += 1;
 printf("%d\n",
 function2());
}

.text
Type: SHT_PROGBITS
Flags: SHF_ALLOC, SHF_EXECINSTR

.data
Type: SHT_PROGBITS
Flags: SHF_ALLOC, SHF_WRITE

.bss
Type: SHT_NOBITS
Flags: SHF_ALLOC, SHF_WRITE

rel.text
Type: SHT_REL

Sections

x, STT_OBJ, STB_LOCAL, .data
y, STT_OBJ, STB_GLOBAL, .bss
function2, STT_FUNC, STB_GLOBAL, .text
function1, STT_FUNC, STB_LOCAL, .text
printf, STT_FUNC, 0 (undefined reference)

Symbols

Relocations

R_ARM_MOVW_ABS_NC rw
R_ARM_MOVT_ABS rw
R_ARM_MOVW_ABS_NC zi
R_ARM_MOVT_ABS zi
R_ARM_MOVW_ABS_NC .L.str
R_ARM_MOVT_ABS .L.str
R_ARM_CALL function2
R_ARM_CALL printf

.rodata.str1.1
Type: SHT_PROGBITS
Flags: SHF_ALLOC, SHF_MERGE,
SHF_STRINGS

Introduction to Linking: loading content

.o
.o

.a
.a

.so
.so

archives

Shared libraries

objects Load Content
● Load objects on

command line
○ Match symbol

references with
definitions

○ Maintain list of
unresolved
references

● Iterate until fixed point
○ Load symbol

definitions to
resolve
references

○ Add unresolved
references

Result
● Global symbols defined
● Input objects recorded

○ Sections
■ Relocations

○ Local Symbols
● Shared library

dependencies

RO

RW

.bss

.data

.text

Introduction to linking: Layout and address

.text (file1.o)

.text (file2.o)

SECTIONS
{
 .text : { *(.text) }
 .data : { *(.data) }
 .bss : { *(.bss) }
}

.data (file1.o)

.data (file2.o)

.bss (file1.o)

.bss (file2.o)

● Sections from objects
InputSections are assigned to
OutputSections

● Can be controlled by script or
by defaults

● OutputSections assigned an
address

● InputSections assigned
offsets within OutputSections

● Similar OutputSections are
described by segments

0x0000

0xf000

Introduction to linking: Relocation

Once final addresses of all sections are
known then relocations are fixed up. In
general for a relocation at address P

● Extract addend A from relocation
record (RELA) or from location
(REL)

● Find destination symbol address S
● Perform calculation

○ S + A for absolute
○ S + A - P for relative

● Write result to P

(P) 0x1000 .word X

(S) 0x2000 X: 0x12345678

R_ARM_ABS32 (S+A)

Position independent code via GOT

Data

Code
0x0000

0xf000

y address

.got x address

x

y

Access to X

Offset
fixed at link
time

Global Offset Table (GOT) is
constructed by the linker in
response to specific relocations

● Offset from code to data is
known

● Code loads address of
variable from GOT

● GOT filled in/relocated by
dynamic linker

Calling a function via PLT

GOT[N]:
Address of PLT[0]

PLT[0]:
Call dynamic
loader

PLT[n]:
dest = GOT[N]
Jump dest

Call f@PLT[N]

GOT[N]:
Address of f

Call f@PLT[N]

f()

Lazy binding, 1st
call

Subsequent calls

f()?

