Carnegie Mellon University

Improving LLVM Instrumentation Overheads
LLVM-Performance @ €GO 2017

Dr. Brian P. Railing

Carnegie Mellon University

Overview of Talk

m Contech’s Task Graph representation
m General instrumentation approach for Contech
m Overhead reduction techniques

Carnegie Mellon University

Objectives of Parallel Program Representation

m A common representation needs

= What was executed
= What was accessed
= |n what order did threads execute

m Generate the representation with no user intervention
= Without constraint of language, library, or structure

m Without recording architecture / runtime effects
= (ontext switches

= (Consistency model
= (ache Effects

Carnegie Mellon University

Contech’s Task Graph Representation

m Task Graphs are directed, acyclic graphs containing
= Nodes partitioned based on type
= Edges as scheduling dependencies
= Nodes contain lists of actions and data
= (ther graph annotations such as start / end time

Carnegie Mellon University

Task Graph Legend

Create Task

Dependency
‘.
Work Task
......... A
Context ID. Sequence ID

Task Graph Example

int fib(int n) {
1f (n < 2)
return n;
int a = cilk spawn fib(n-1);
int b = £fib(n-2) ;
cilk sync;

return a + b;

Carnegie Mellon University

Task Graph Example

int fib(int n) {
1f (n < 2)
return n;
int a = cilk spawn fib(n-1);
int b = £fib(n-2) ;
cilk sync;

return a + b;

fib (2) ;

Carnegie Mellon University

Carnegie Mellon University

Task Graph Example

int fib(int n) {
1f (n < 2)
return n; @
int a = cilk spawn fib(n-1) ;
int b = £fib(n-2) ;

cilk sync;
return a + b; @ o

fib (2) ;

Carnegie Mellon University

Task Graph Example

int fib(int n) {
1f (n < 2)
return n;
int a = cilk spawn fib(n-1);
int b = £fib(n-2) ;
cilk sync;

return a + b;

fib (2) ;

Task Graph Example

int fib(int n) {
1f (n < 2)
return n;
int a = cilk spawn fib(n-1);
int b = £fib(n-2) ;
cilk sync;

return a + b;

fib (2) ;

Carnegie Mellon University

10

Carnegie Mellon University

Parallel Program Diversity

m Language Diversity
= (, C++, Fortran, Java, Go, Rust, X10, ...

m Runtime Diversity
= Pthreads, OpenMP, MPI, (ilk, Galois, Legion, CnC, ...

m Pattern Diversity
= Regqular, pipelines, graphs, Map-reduce, Gather-scatter, ...

m Architecture Diversity
= 32-/64-bit x86, ARM, MIPS, Power, ...

11

Carnegie Mellon University

Overview of Talk

m Contech’s Task Graph representation
m General instrumentation approach for Contech
m Overhead reduction techniques

12

Carnegie Mellon University

LLVM Instrumentation Design

m Compile the source lanquage into LLVM IR

m Instrument each basic block

= Record its execution (i.e. control flow)
= Record memory operations
= Record other operations

13

Instrumentation Design

Instrumented x86 Assembly

Pseudo Code Instrumentation

I

Find position in buffer

Store BBID into buffer _/,,///”’//*
M

Store MEM 0 .. N-1 ~

\

Update position - *

\

mov $fs:0xffffffffffffffe8, Srax
mov (%rax),
movl $0x14e00,0x18 (%rax, 1)

Carnegie Mellon University

thread —
local buffer

movg $0x51cfal,0x1b (%rax , 1)
mov 0x115467 (%5rip) , $rdx

lea (%rdx,%rl5,8),%rsi

mov %$rsi,0x21 (%rax, 1) — |
mov (%rdx,%rl5,8),%rbx
addl $OxOf, |

14

Carnegie Mellon University

Buffer Checking and Queuing

m Thread local buffer capacity checks

= (heck for 0.1% space remaining (1KB)
= Only put checks in some basic blocks

m Queuing buffer into global list

= Global lock and push back buffer
= Allocate a new buffer (or reuse)

m Queued buffers will grow to use memory

15

Carnegie Mellon University

Overview of Talk

m Contech’s Task Graph representation
m General instrumentation approach for Contech
m Overhead reduction techniques

16

Carnegie Mellon University

Presentation Thesis

m Memory traffic from instrumentation dominates overheads
m Eachinstrumented thread generates 1T00MB/s — 1GB/s

m Basicblocks are 90+% of trace
= And each basic block event is mostly memory operations

17

Recording a Memory Operation

m What can a memory operation trace record

= |oad/Store
= Address
= Size /Type
= Value

Carnegie Mellon University

18

Carnegie Mellon University

Prior Static Analysis in Contech

m Basicblocks are consistent in memory operations

= |fwe record basic blocks, then load/store and size/type is unchanged on each execution
= Record the load/store and size/type once in basic block info table

m 64-bit Addresses are only 6 bytes

00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05 06 07

19

Carnegie Mellon University

Current Static Analysis

m Notall addresses are required.

= Addresses are constant
= (rare constant offsets from other addresses.

20

Carnegie Mellon University

Detecting Similar Addresses

m For each basicblock

= For each memory operation
= Check if any prior operation in this basic block has a similar address calculation

m Similar Address Calculations
= s it this a getelementptr instruction?
= Does each component match?
" |f not, is the component a constant value?
= Accumulate constant differences

m Store memory operation indices and constant differences into basic
block info table

21

Carnegie Mellon University

Similar Address Problem (barnes)

m Conditional code in one path if (p != Local[ProcessId].pmem) {
. . SUBV (Local [ProcessId] .dr,
m Load/Store in tail block Pos (p) ,

Local [ProcessId] .posO0) ;
DOTVP (Local [ProcessId] .drsq,

Local [ProcessId] .dr,

Local[ProcessId] .dr) ;

}
Local [ProcessId] .drsq += epssq;

I\ drabs = sqrt((double) Local[ProcessId] .drsq)

T
~._

22

Carnegie Mellon University

Tail Duplication

m Duplicate the tail block to enlarge the scope for finding similar addresses
m Merge it with each of the predecessor blocks

T
\/

23

Carnegie Mellon University

Tail Duplication Algorithm

m Determine if the tail block is valid for duplication

= Not the return block
= No address taken
" Etc.

m Determine that each predecessor is valid
= Unconditional branch to tail block

m Duplicate and Merge

= Duplicate the tail block
= (reate / update PHI nodes as appropriate

24

Carnegie Mellon University

Instrumentation Performance Comparison

25

Carnegie Mellon University

Instrumentation Performance Comparison

B Contech TACO

/
6

26

Carnegie Mellon University

Instrumentation Performance Comparison

8 B Contech TACO

; B Memory Duplication

6

5

4

3

),

0

> N g o d
¥ & & & & ¢ & & S
& & ¥ .@Q@ S \w N>/ @";\\ @W § @‘\' &Q\\ & \?Q ?@

N O & ® S xQ
D & %

27

Carnegie Mellon University

Instrumentation Performance Comparison

% \{3 = > Q®
/

& < - g/ Q/

S >
NS

B Contech TACO
B Memory Duplication

M Tail Duplication

S ‘g

28

Carnegie Mellon University

Instrumentation Overhead

500%

450%

400%

350%

300%

250%

200%

150%

100%

50%

0 % I I I I I I I I I I I

29

Carnegie Mellon University

Instrumentation Overhead

500%

450%

400%

350%

300%

250%

200%

150%

100%

50%

0%

W Instrumentation
i - = _ l ll_JJl
o o N\ Q - A S S N Q Q
F ¥ & TS F & & & L& &S
D N Q A\ 02 & < N Q N S A
N < Q N N\ Q Q Q R R
S € N N Q > N\ 3 <
& S & > &7 &
A ® S N >

30

Carnegie Mellon University

Instrumentation Overhead

500%

450%

400%
’ Bl Data Writes

350% .
B Instrumentation

300%

250%

200%

150%

100%

50%

0%

31

Carnegie Mellon University

Instrumentation Overhead

500%
450%
’ 1 Buffer Checks
400% .
B Data Writes
350%

B Instrumentation

300%

250%

200%

150%

100%

50%

0%

32

Carnegie Mellon University

Instrumentation Overhead

5009%
’ B Queuing Buffers
450%
’ 1 Buffer Checks
400% .
B Data Writes
350%

B Instrumentation

300%

250%

200%

150%

100%

50%

0%

33

Carnegie Mellon University

Conclusion

m Prior work reduced instrumentation instructions required

m Prior work minimized instrumented thread interactions

= Tickets to order locks and barrier operations
= Maximize usage of buffers

m Instrumentation performance is often memory bandwidth
constrained

= Minimize the size of records
= Find redundant data and elide

m LTOisveryvaluable

34

Carnegie Mellon University

Future Work

m Global Variables
= Address is known at link time, how to record this

m Memory Operationsin a Loop
= Base pointer + offset function to reconstruct addresses

m Release set of collected task graphs

35

Carnegie Mellon University

Code Available

m http://bprail.github.io/contech/

36

Carnegie Mellon University

Hardware Configuration

m Intel Xeon E3-1240v5 (Skylake)
= 3.50 GHz Quad-core, 2-way Hyperthreading

m 32 GB Main Memory
m 256 GB NVMe M.2 PCle SSD

= minimal speedup versus tmpfs or local storage

37

