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Motivation
Analytical models and compiler infrastructure a great match.

● Numeric kernels–in particular–stencils may profit from reduced memory and 
inter-cache traffic through spatial blocking

● Tedious implementation work for developer
● Block size selection requires insight into computer architecture and access 

pattern OR exhausting parameter studies
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This is work-in-progress.
We show the theory, approach, unadorned results and current problems.
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Background
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Memory Hierarchy
Loads cause misses along all caches until they “hit” 
the required data.

Each level keeps all data of the next (smaller) cache 
and replaces least-recently-used (LRU) data.

HW prefetcher loads from Main Memory (Mem) to L3.
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Main Memory

L3 – 20 MB (shared)
Inclusive RRIP?

L2D – 256KB
Inclusive PLRU

L1D – 32KB
Inclusive PLRU

per core
per socket

Registers

Illustration of Ivy Bridge Memory Hierarchy
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Offset access pattern, typically in 2D or 3D

3D 7-Point Stencil example:

● N*M*L*2 * 8 byte memory requirement (dp)
● 7 load and 1 store stream total

Stencil Example
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for(int k=1; k<L-1; k++)
  for(int j=1; j<M-1; j++)
    for(int i=1; i < N-1; i++) 
      b[k*N*M+j*N+i] = (
          a[k*N*M+(j-1)*N+i] + a[k*N*M+(j+1)*N+i] +
          a[k*N*M+j*N+(i-1)] + a[k*N*M+j*N+i] +
          a[k*N*M+j*N+(i+1)] + a[(k-1)*N*M+j*N+i] +
          a[(k+1)*N*M+j*N+i]) * s;

i →
N

k 
→

L

j →
M

How many misses?
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Layer Conditions[0] – Idea
Model assumes inclusive LRU caches.
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No cache
0 hits

(theoretical)

Reuse in 1D
2 hits

Reuse in 2D
4 hits

Reuse in 3D
6 hits

Full caching
7+1 hits

[0] Hammer et al, Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels
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Layer Conditions
Analytically derived conditions for cache hit and misse from access offsets.

1. Compile list of access offsets:
L = {1, 1, N-1, N-1, (M-1)*N, (M-1)*N, ∞, ∞}
1 from green to pink offsets
N-1 from green to grey offsets
(M-1)*N from blue to grey offsets

∞ from last access to a[] and b[]

2. For each tail t in L, we get:
If cache > (∑ { e | e ∈ L, e <= t } + | { e | e ∈ L, e > t } | * t)*s, then we expect

| { e | e ∈ L, e <= t } | hits
| { e | e ∈ L, e > t } | misses

8
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Layer Conditions
Model assumes inclusive LRU caches
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No cache
0 hits

(theoretical)

Reuse in 1D
2 hits

cache > 7*2*8 B
with tail = 1

Reuse in 2D
4 hits

cache > (6N-4)*8 B
with tail = N-1

Reuse in 3D
6 hits

cache > (4NM-2N)*8 B
with tail = (M-1)*N

Full caching
7+1 hits

cache > 2NML*8 B
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Layer Conditions – Setup
1. Collect (symbolic) accesses in loop nest (A)
2. Sort A
3. Compute access offsets (L)
4. For each array add one infinity (oo) to L
5. Sort L
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# ordered accesses from 3D-7pt
A = sorted([
    a+(k-1)*N*M+j*N+i,
    a+k*N*M+(j-1)*N+i, a+k*N*M+j*N+i-1,
    b+k*N*M+j*N+i, a+k*N*M+j*N+i+1,
    a+k*N*M+(j+1)*N+i, a+(k+1)*N*M+j*N+i ])

L = [oo]  # begin with one infty in list
for acs1, acs2 in zip(A[:-1], A[1:]):
    # offsets between “consecutive” accesses
    diff = acs2 - acs1
    if a in diff and b in diff:
        diff = oo
    L.append(diff)
L.sort()

L = [oo, oo, (N-1)*M, (N-1)*M, N-1, N-1, 1, 1]
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Layer Conditions – Evaluation
A different cache hit/miss situation is 
expected for each non-infinity tail in L:

● If cache is larger then
‘sum over all l in L with l <= tail plus 
tail times the number of l > tail’, 
than we expect to observe

● ‘number of l <= tail’ cache hits
● ‘number of l > tail’ cache misses
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https://rrze-hpc.github.io/layer-condition/

layer_conditions = []
for tail in set(L):
    if tail == oo: continue
    lc = {
        'cache_requirement': (
            # cached elements / hits
            sum([ l for l in L if l <= tail ]) +
            # uncached elements / misses
            len([ l for l in L if l > tail ])*tail
        ) * element_size,
        'cache_hits': len([ l for l in L if l <= tail ])
        'cache_misses': len([ l for l in L if l > tail ])})
    print("For caches >= {cache_requirement} bytes,
               expect {cache_hits} hits and
               {cache_misses} misses".format(**lc))
    layer_conditions.append(lc)
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Strategy to reduce memory and inter-cache traffic, by 
traversing the data in blocks (or tiles), reuse is increased.

From layer conditions:
3D: 2 misses if 32*N*M - 16*N < cache
2D: 4 misses if 48*N - 32 < cache

Choose NB and MB accordingly, while maximizing N (to 
avoid short inner-loop overheads).

3d7pt: 4 misses in  32KB L1, 2 misses in 20MB L3
NB < 682 && NB*MB < 655360

Cache Blocking
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i →
N

k 
→

L

j →
M

MB NB
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Performance Modelling
Prediction of the actual performance requires more than predictions of data 
transfers. Performance models combine memory models (e.g., layer conditions) 
with execution models (e.g., peak flops or IACA analysis) to an overall runtime.

Execution-Cache-Memory and Roofline models allows classification into 
memory and compute bound, to avoid tiling overheads.

13

-> Future work / to be implemented
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Kerncraft[1]
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Automatic performance model 
toolkit, based on static analysis 
and cache simulation.

Predicts loop runtime based on 
Roofline and ECM model.

[1] https://github.com/RRZE-HPC/kerncraft
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Polyhedral Representation
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Polyhedral Representation
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Polyhedral Representation
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Implementation
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Polly Kerncraft Exporter

Use Polly to automatically 
detect and extract kernel 
descriptions in large source 
bases.

Starting point for manual 
analysis and modelling.
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Polly Layer Conditions
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❖ Replacement for Polly’s “fixed tiling strategy”

➢ 32 is not always the best option

❖ Tiling can improve but also regress performance

➢ Versioning for in-cache and in-memory tile size selection

❖ “Delinearization” severely limits polyhedral recognition

➢ manual inspection tedious and hard
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Tile Size Selection Algorithm – In-Cache
Goal: Minimize misses in fastest cache and maximize inner loop iterations

For each cache evaluate layer conditions with maximum tail, until LC and a 
minimum-iterations-requirement is fulfilled.

Minimum iterations are defined as 100 for inner loop and 10 for all other.
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Tile Size Selection Algorithm – In-Cache (Example)
3D LC: 2 misses if 32*N*M - 16*N < cache_size
2D LC: 4 misses if 48*N - 32 < cache_size
1D LC 6 misses if 112 < cache_size
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3D LC 2D LC 1D LC

32 KB L1 2*N*M-N < 2048 N < 682 fulfilled

256 KB L2 2*N*M-N < 16384 N < 5460 fulfilled

20MB L3 2*N*M-N < 1311360 N < 436906 fulfilled

NB = 681

MB = 2 

NB = 100
MB = 9
MB = 11
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Tile Size Selection Algorithm – In-Memory
Minimize cache misses for half of L3 and maximize inner blocking factor

Add outer loop blocking with constant factor of 16

23

Reduced cacheline & prefetcher impact

Assuming smaller cache, to accommodate overhead

Outer loop blocking 
reduces interface area



Evaluation
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Used Benchmarks and System
● 3D 7pt and 3D “well conditioned”
● polybench[2] stencils v2.4.1
● OptEWE[3]

● Harris [PolyMage benchmarks][4]

● 172.mgrid [SPEC CPU2000]
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[2] http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
[3] https://github.com/mohamso/optewe
[4] Mullapudi et al., PolyMage: Automatic Optimization for Image Processing Pipelines
[5] http://accc.riken.jp/en/supercom/himenobmt/

Environment:
  Intel Xeon CPU E5-2660 v2 @ 2.20GHz (fixed, no turbo)
  (patched) LLVM 6.0, clang, flang, (patched) Polly
  LIKWID instrumentation for L2, L3 and Memory volumes
  Pinned all processes

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/mohamso/optewe
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3D 7pt
Performance gain for large N

Reduced data volume in cache 
and memory

Data volume is not everything...

26
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3D “well conditioned”
Performance gains overall 
measured N

Slightly reduced L3 volume

Speedup comes also from 
polly-enabled vectorization, but 
plain polly kills it again with tiny 
blocks

27
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Polybench Stencils
● heat-3d
● heat-3d_nmk
● fdtd-2d
● jacobi-1d
● jacobi-2d
● seidel-2d

Speed up, without regression!

28
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OptEWE
Only few kernels have reuse and 
could benefit from tiling.

Speed downs, in particular 
compute_vx, need to be 
investigated.

29
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Himeno
As described in [6], spatial block will not 
yield performance gains.

30
[6] https://blogs.fau.de/hager/archives/7850



Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

PolyMage Image Processing Pipelines

Harris corner detection
- 12 arrays, 11 loop nests (each 2D), 65 memory accesses

 
 

3151 runs, default input, Intel(R) Core(TM) i7-4800MQ

Sequential (arith. avg/median) Parallel (arith. avg/median)

Regular (no tiling) 168.7ms / 170.5ms 77.6ms / 76.8 ms

Polly tiling 249.8ms / 252.7ms 94.6ms / 92.9ms

Polly-LC tiling 167.6ms / 165.3ms 78.0ms / 77.2ms

Polly-LC (in-memory) 169.9ms / 170.8ms 82.1ms / 80.5ms

Polly-LC (in-cache) 169.3ms / 168.9ms 118.0ms / 116.3ms
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172.mgrid [SPEC CPU2000]
 
20% reduced L3 volume and slightly reduced main memory volume, but no 
performance increase. Possibly computation bound.
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Runtime Mem. volume L3 volume L2 volume

Regular (no tiling) 61 s 252 GB 418 GB 446 GB

Polly tiling 73 s 257 GB 690 GB 632 GB

Polly-LC tiling 61 s 248 GB 346 GB 472 GB

reference input



Outlook & Conclusion
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Outlook
● OpenMP shared cache support
● Tweak heuristics parameters
● Support for strided accesses (cache lines!)
● Runtime tile size variation
● Predict if kernel is memory/cache or compute bound

34
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Conclusion

35

● Approached trade-off between minimal loop length and cache usage
● For suited codes, speedups over regular LLVM and Polly are significant
● Generally, fewer and less regressions compared to Polly
● Basis for further analytical model-driven optimationzations

Thanks
Questions?
Discussion!


