
Cache-aware Scheduling and
Performance Modeling

with LLVM-Polly and Kerncraft
Julian Hammer [RRZE] <julian.hammer@fau.de>, Johannes Doerfert [UdS] <doerfert@cs.uni-saarland.de>,

Georg Hager [RRZE], Gerhard Wellein [RRZE] and Sebastian Hack [UdS]

[RRZE] Regional Computing Center Erlangen
[UdS] Saarland University

mailto:julian.hammer@fau.de
mailto:doerfert@cs.uni-saarland.de

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Outline
1. Motivation
2. Background

○ Memory Hierarchy
○ Cache Blocking
○ Layer Conditions (and example)
○ Performance Modelling & Kerncraft
○ Polyhedral Representation

3. Implementation
○ Polly Layer Conditions
○ Kerncraft Export

4. Evaluation
5. Outlook & Conclusion

2

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Motivation
Analytical models and compiler infrastructure a great match.

● Numeric kernels–in particular–stencils may profit from reduced memory and
inter-cache traffic through spatial blocking

● Tedious implementation work for developer
● Block size selection requires insight into computer architecture and access

pattern OR exhausting parameter studies

3

This is work-in-progress.
We show the theory, approach, unadorned results and current problems.

4

Background

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Memory Hierarchy
Loads cause misses along all caches until they “hit”
the required data.

Each level keeps all data of the next (smaller) cache
and replaces least-recently-used (LRU) data.

HW prefetcher loads from Main Memory (Mem) to L3.

5

Main Memory

L3 – 20 MB (shared)
Inclusive RRIP?

L2D – 256KB
Inclusive PLRU

L1D – 32KB
Inclusive PLRU

per core
per socket

Registers

Illustration of Ivy Bridge Memory Hierarchy

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Offset access pattern, typically in 2D or 3D

3D 7-Point Stencil example:

● N*M*L*2 * 8 byte memory requirement (dp)
● 7 load and 1 store stream total

Stencil Example

6

for(int k=1; k<L-1; k++)
 for(int j=1; j<M-1; j++)
 for(int i=1; i < N-1; i++)
 b[k*N*M+j*N+i] = (
 a[k*N*M+(j-1)*N+i] + a[k*N*M+(j+1)*N+i] +
 a[k*N*M+j*N+(i-1)] + a[k*N*M+j*N+i] +
 a[k*N*M+j*N+(i+1)] + a[(k-1)*N*M+j*N+i] +
 a[(k+1)*N*M+j*N+i]) * s;

i →
N

k
→

L

j →
M

How many misses?

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Layer Conditions[0] – Idea
Model assumes inclusive LRU caches.

7

No cache
0 hits

(theoretical)

Reuse in 1D
2 hits

Reuse in 2D
4 hits

Reuse in 3D
6 hits

Full caching
7+1 hits

[0] Hammer et al, Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Layer Conditions
Analytically derived conditions for cache hit and misse from access offsets.

1. Compile list of access offsets:
L = {1, 1, N-1, N-1, (M-1)*N, (M-1)*N, ∞, ∞}
1 from green to pink offsets
N-1 from green to grey offsets
(M-1)*N from blue to grey offsets

∞ from last access to a[] and b[]

2. For each tail t in L, we get:
If cache > (∑ { e | e ∈ L, e <= t } + | { e | e ∈ L, e > t } | * t)*s, then we expect

| { e | e ∈ L, e <= t } | hits
| { e | e ∈ L, e > t } | misses

8

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Layer Conditions
Model assumes inclusive LRU caches

9

No cache
0 hits

(theoretical)

Reuse in 1D
2 hits

cache > 7*2*8 B
with tail = 1

Reuse in 2D
4 hits

cache > (6N-4)*8 B
with tail = N-1

Reuse in 3D
6 hits

cache > (4NM-2N)*8 B
with tail = (M-1)*N

Full caching
7+1 hits

cache > 2NML*8 B

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Layer Conditions – Setup
1. Collect (symbolic) accesses in loop nest (A)
2. Sort A
3. Compute access offsets (L)
4. For each array add one infinity (oo) to L
5. Sort L

10

ordered accesses from 3D-7pt
A = sorted([
 a+(k-1)*N*M+j*N+i,
 a+k*N*M+(j-1)*N+i, a+k*N*M+j*N+i-1,
 b+k*N*M+j*N+i, a+k*N*M+j*N+i+1,
 a+k*N*M+(j+1)*N+i, a+(k+1)*N*M+j*N+i])

L = [oo] # begin with one infty in list
for acs1, acs2 in zip(A[:-1], A[1:]):
 # offsets between “consecutive” accesses
 diff = acs2 - acs1
 if a in diff and b in diff:
 diff = oo
 L.append(diff)
L.sort()

L = [oo, oo, (N-1)*M, (N-1)*M, N-1, N-1, 1, 1]

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Layer Conditions – Evaluation
A different cache hit/miss situation is
expected for each non-infinity tail in L:

● If cache is larger then
‘sum over all l in L with l <= tail plus
tail times the number of l > tail’,
than we expect to observe

● ‘number of l <= tail’ cache hits
● ‘number of l > tail’ cache misses

11

https://rrze-hpc.github.io/layer-condition/

layer_conditions = []
for tail in set(L):
 if tail == oo: continue
 lc = {
 'cache_requirement': (
 # cached elements / hits
 sum([l for l in L if l <= tail]) +
 # uncached elements / misses
 len([l for l in L if l > tail])*tail
) * element_size,
 'cache_hits': len([l for l in L if l <= tail])
 'cache_misses': len([l for l in L if l > tail])})
 print("For caches >= {cache_requirement} bytes,
 expect {cache_hits} hits and
 {cache_misses} misses".format(**lc))
 layer_conditions.append(lc)

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Strategy to reduce memory and inter-cache traffic, by
traversing the data in blocks (or tiles), reuse is increased.

From layer conditions:
3D: 2 misses if 32*N*M - 16*N < cache
2D: 4 misses if 48*N - 32 < cache

Choose NB and MB accordingly, while maximizing N (to
avoid short inner-loop overheads).

3d7pt: 4 misses in 32KB L1, 2 misses in 20MB L3
NB < 682 && NB*MB < 655360

Cache Blocking

12

i →
N

k
→

L

j →
M

MB NB

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Performance Modelling
Prediction of the actual performance requires more than predictions of data
transfers. Performance models combine memory models (e.g., layer conditions)
with execution models (e.g., peak flops or IACA analysis) to an overall runtime.

Execution-Cache-Memory and Roofline models allows classification into
memory and compute bound, to avoid tiling overheads.

13

-> Future work / to be implemented

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Kerncraft[1]

14

Automatic performance model
toolkit, based on static analysis
and cache simulation.

Predicts loop runtime based on
Roofline and ECM model.

[1] https://github.com/RRZE-HPC/kerncraft

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Polyhedral Representation

15

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Polyhedral Representation

16

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Polyhedral Representation

17

Implementation

18

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Polly Kerncraft Exporter

Use Polly to automatically
detect and extract kernel
descriptions in large source
bases.

Starting point for manual
analysis and modelling.

19

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Polly Layer Conditions

20

❖ Replacement for Polly’s “fixed tiling strategy”

➢ 32 is not always the best option

❖ Tiling can improve but also regress performance

➢ Versioning for in-cache and in-memory tile size selection

❖ “Delinearization” severely limits polyhedral recognition

➢ manual inspection tedious and hard

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Tile Size Selection Algorithm – In-Cache
Goal: Minimize misses in fastest cache and maximize inner loop iterations

For each cache evaluate layer conditions with maximum tail, until LC and a
minimum-iterations-requirement is fulfilled.

Minimum iterations are defined as 100 for inner loop and 10 for all other.

21

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Tile Size Selection Algorithm – In-Cache (Example)
3D LC: 2 misses if 32*N*M - 16*N < cache_size
2D LC: 4 misses if 48*N - 32 < cache_size
1D LC 6 misses if 112 < cache_size

22

3D LC 2D LC 1D LC

32 KB L1 2*N*M-N < 2048 N < 682 fulfilled

256 KB L2 2*N*M-N < 16384 N < 5460 fulfilled

20MB L3 2*N*M-N < 1311360 N < 436906 fulfilled

NB = 681

MB = 2

NB = 100
MB = 9
MB = 11

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Tile Size Selection Algorithm – In-Memory
Minimize cache misses for half of L3 and maximize inner blocking factor

Add outer loop blocking with constant factor of 16

23

Reduced cacheline & prefetcher impact

Assuming smaller cache, to accommodate overhead

Outer loop blocking
reduces interface area

Evaluation

24

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Used Benchmarks and System
● 3D 7pt and 3D “well conditioned”
● polybench[2] stencils v2.4.1
● OptEWE[3]

● Harris [PolyMage benchmarks][4]

● 172.mgrid [SPEC CPU2000]

25

[2] http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
[3] https://github.com/mohamso/optewe
[4] Mullapudi et al., PolyMage: Automatic Optimization for Image Processing Pipelines
[5] http://accc.riken.jp/en/supercom/himenobmt/

Environment:
 Intel Xeon CPU E5-2660 v2 @ 2.20GHz (fixed, no turbo)
 (patched) LLVM 6.0, clang, flang, (patched) Polly
 LIKWID instrumentation for L2, L3 and Memory volumes
 Pinned all processes

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/mohamso/optewe

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

3D 7pt
Performance gain for large N

Reduced data volume in cache
and memory

Data volume is not everything...

26

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

3D “well conditioned”
Performance gains overall
measured N

Slightly reduced L3 volume

Speedup comes also from
polly-enabled vectorization, but
plain polly kills it again with tiny
blocks

27

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Polybench Stencils
● heat-3d
● heat-3d_nmk
● fdtd-2d
● jacobi-1d
● jacobi-2d
● seidel-2d

Speed up, without regression!

28

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

OptEWE
Only few kernels have reuse and
could benefit from tiling.

Speed downs, in particular
compute_vx, need to be
investigated.

29

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Himeno
As described in [6], spatial block will not
yield performance gains.

30
[6] https://blogs.fau.de/hager/archives/7850

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

PolyMage Image Processing Pipelines

Harris corner detection
- 12 arrays, 11 loop nests (each 2D), 65 memory accesses

3151 runs, default input, Intel(R) Core(TM) i7-4800MQ

Sequential (arith. avg/median) Parallel (arith. avg/median)

Regular (no tiling) 168.7ms / 170.5ms 77.6ms / 76.8 ms

Polly tiling 249.8ms / 252.7ms 94.6ms / 92.9ms

Polly-LC tiling 167.6ms / 165.3ms 78.0ms / 77.2ms

Polly-LC (in-memory) 169.9ms / 170.8ms 82.1ms / 80.5ms

Polly-LC (in-cache) 169.3ms / 168.9ms 118.0ms / 116.3ms

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

172.mgrid [SPEC CPU2000]

20% reduced L3 volume and slightly reduced main memory volume, but no
performance increase. Possibly computation bound.

32

Runtime Mem. volume L3 volume L2 volume

Regular (no tiling) 61 s 252 GB 418 GB 446 GB

Polly tiling 73 s 257 GB 690 GB 632 GB

Polly-LC tiling 61 s 248 GB 346 GB 472 GB

reference input

Outlook & Conclusion

33

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Outlook
● OpenMP shared cache support
● Tweak heuristics parameters
● Support for strided accesses (cache lines!)
● Runtime tile size variation
● Predict if kernel is memory/cache or compute bound

34

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Conclusion

35

● Approached trade-off between minimal loop length and cache usage
● For suited codes, speedups over regular LLVM and Polly are significant
● Generally, fewer and less regressions compared to Polly
● Basis for further analytical model-driven optimationzations

Thanks
Questions?
Discussion!

