Clang-tidy for
Customized Checkers
and Large Scale
Refactoring

Vince Bridgers

Overview

Why use tools like Syntax and Static Analyzers?

How do these tools fit into a process flow?

Examples of text matchers using clang-query, compare and contrast with analysis

Simple example clang-tidy check — “soup to nuts”

References for “homework” ©

Why tools like Clang-tidy?: Cost of Software Development

Notice most bugs are introduced
early in the development process,
and are coding and design
problems.

w— O Defects
introduced n
ths phase

Percentage

o f
of Bugs b Defects

found in
ths phase

? = The cost of fixing bugs grow
S o G exponentially after release

in this phase

= Conclusion: The earlier the bugs
found, and more bugs found
ror o e e — earlier in the development process
Test Test Test Release translates to less cost

I

Source: Applied Software Measurement, Caspers Jones, 1996

Four Pillars of Program Analysis

Compiler Linters, style Static Analysis Dynamic Analysis
diagnostics checkers

Examples Clang, gcc, cl Lint, clang-tidy, Cppcheck, gcc Valgrind, gcc
Clang-format, 0+, clang and clang
indent, sparse
False positives No Yes es Not likely, but
possible
Inner Workings Programmatic | Text/AST Symbolic Execution Injection of runtime
checks matching checks, library
Compile and None Extra compile step Extra compile step Extra compile step,
Runtime affects extended run times

Typical Cl Loop with Automated Analysis

Code Change

Ready to commit

Report coding errors

‘ @ Quick Feedback

Syntax, Semantic, and Analysis Checks:

Can analyze properties of code that cannot be tested (coding style)!
Automates and offloads portions of manual code review

Tightens up CI loop for many issues

LLVM/Clang Compiler Flow

Source Code

Front End

/ Parser
|
Clang AST
|
Optimizer
|
Code Generator Clang
CodeGen
|
LLVM IR

C/IC++
Source
code

Abstract
Syntax

Tree

Abstract
Assembly
Language

https://www.youtube.com/watch?v=m8G S5LwITo — LLVM IR Tutorial

https://www.youtube.com/watch?v=m8G_S5LwlTo

Clang-tidy & Static Analyzers — Compare and Contrast

= Clang Static Analysis uses Symbolic Execution

= Clang-tidy uses AST Matchers

= Finds patterns, optionally replace/add/remove patterns

= Both use the AST

AST Matcher compared to Symbolic Execution

= How to find all instances of possible division by zero before run time?

#define ZERO O
int function(int b)

{

int a,c;

switch
case
case
case

=

return

(b
1:
2
4

) {

v QO Y W

binaryOperator (hasOperatorName ("/"),
hasRHS (integerLiteral (equals (0)) .bind (KEY NODE))) ;

Found!

Found! All preprocessor

statements are resolved

- b/0;| breakg Not found by an AST
=|b/ZERQO;| break matcher

= b-4;

=|b/c;| break;

Clang Static Analyzer — Symbolic Execution

= Finds bugs without running the code switch(b)

= Path sensitive analysis case 4

= CFGs used to create exploded graphs of

simulated control flows * $b=[1,1] $b=[4,4]
_ Return c=b-4
| | | Compiler Garbage value
int function(int b) { warns here
int a, c;
switch (b) { / va:b/O Sb=a.4]
case 1: a = b / 0; break; b: $b —L
case 4: ¢ = b — 4;
= b/c; break; a=bl/c

a
} e —— Static Divide by 0
return a; Analyzer

J warns here o
Divide by O

Source: Clang Static Analysis - Gabor Horvath - Meeting C++ 2016

Clang-tidy

= Now with this perspective, shifting focus to clang-tidy

A Clang based C++ Linting tool framework

Full access to the AST and preprocessor

Clang-tidy is extensible — custom checks are possible

More than 200 existing checks
= Readability, efficiency, correctness, modernization
= Highly configurable

= Can automatically fix the code in many place

See http://clang.llvm.org/extra/clang-tidy, list of checks here https://clang.llvm.org/extra/clang-tidy/checks/list.html.

10

http://clang.llvm.org/extra/clang-tidy
https://clang.llvm.org/extra/clang-tidy/checks/list.html

Clang-tidy Quick Demo (demol)

= Dump AST : clang —ccl —ast-dump init.cpp

= clang-tidy —list-checks

= clang-tidy —list-checks —checks=*

= clang-tidy --checks=-*,cppcoreguidelines-init-variables init.cpp --

= clang-tidy --checks=-*,cppcoreguidelines-init-variables --fix init.cpp —

11

Clang-tidy Uses

Implement checks and changes that require semantic knowledge of the language
Implement specialized checks for your organization

Create acceptance tests for delivery of third-party work product

Large scale refactoring

Used by developers interactively during development & test

Integration into your CI flow — Automated and repeatable

= Moves subjectivity of the code review process to objective computer automation

12

Clang-tidy Notes

Not all checkers have “Fix™s. See list of existing checkers for an example.

Why would not all checkers have fixes?
= Some checks are not perfect, but “good enough” — 80% rule.
= Highlight certain patterns for further scrutiny

= Custom checks

Can pass compiler commands to the compiler, example ...

= clang-tidy --extra-arg="-DMY SWEET DEFINE=1" --checks=-*,cppcoreguidelines-init-variables init.cpp

What's that “--” at the end?

= Says that we’re not using a compile_commands.json — more on that later.

See http://clang.llvm.org/extra/clang-tidy, list of checks here https://clang.llvm.org/extra/clang-tidy/checks/list.html.

http://clang.llvm.org/extra/clang-tidy
https://clang.llvm.org/extra/clang-tidy/checks/list.html

Clang-tidy check dev process

|dentify Code to Check/Port

Create Matcher

Implement Checks

Optional: Implement FixIt

Finished!

14

Imagine your manager wants a new API

= You have this cool new processor architecture that needs a “special” allocator because of a
bug in first silicon (This has *never* happened before \\\ ©).

= Change all instances of “void *malloc(size t)"to"void *acme zalloc(size t)”
In a test repo of about 10,000 files spread across maybe 50 directories.

= Don’t look for a new job yet — there’s an opportunity to be a “hero”, get that “cup of coffee” bonus
your manager pays out for extraordinary accomplishments

= Ok, maybe you really can do this with a simple shell or Python script — but imagine this as a
first step, and you don’t know what other problems the hardware guys left in store for you.

= S0, we'll use the clang tools Python script to create boilerplate for this ...

15

Clang-tidy Adding a Check (demo?2)

= cd to <root>/clang-tools-extra/clang-tidy

Jadd_new _check.py misc change-malloc (See output)

Rebuild ...

Check listed checkers — new one should show up!

= clang-tidy --list-checks —checks=* | grep change

= clang-tidy --checks=-*misc-change-malloc file.c

= clang-tidy --checks=-*,misc-change-malloc --fix file.c

To run the new checker (not yet though, we need a few changes) ...

16

We’'ll need to explore a code sample

#include <stdlib.h>
void *acme zalloc(size t s) { _ Our new implementation
void *ptr = malloc(s);

) . Don’t touch this one (I'll show ya)
void * foo(int s) {

return malloc(s) ;_ Change to acme_zalloc()
}

Let’s see what the AST looks like first ... (demo3)

memset (ptr, 0, s);
return ptr;

17

Extending clang-tidy ...

= See https://clang.llvm.org/docs/LIbASTMatchersReference.html

= Many existing matchers, and can be extended (subject for another day)

= If you're overwhelmed so far — no worries! This *is* difficult. Hang in there, we’ll go through
some simple examples to get started.

= We're driving towards our simple tutorial example — best place to start!

18

https://clang.llvm.org/docs/LibASTMatchersReference.html

Clang AST for our sample (demo3)

#include <stdlib.h> = For demo purposes, I'll use this code, we'll come back to our

#include <memory.h>

int

int

int

int

manager’s code

foo (void) {

void *ptr = malloc(d); » See references at the end for Intro to AST, and AST matchers.
free(ptr); . -
return 0; = I'll go through a few example explorations specific to the problem

posed with some hints for optimizing your explorations.

fee (int 1) {
return 1i*2;

gee (int i) {
return 1/2;

anError (int 1) {
return 1/0;

19

Step 1: Replace “malloc”

Most of the difficult work is done — we have a basic matcher expression we can use.

From our exploration ...

= Matcher -> callExpr (callee (functionDecl (hasName ("malloc"))))

How to translate to code? In our registerMatchers override ...

void ChangeMallocCheck: :registerMatchers (MatchFinder *Finder) {
Finder->addMatcher (callExpr (callee (functionDecl (hasName ("malloc”)))) .bind("malloc") ,this) ,
}

This adds a matcher and binds to a name “malloc” for us to use in our check override.

20

Step 1: Replace “malloc” ...

= |In our “check” override ...

void ChangeMallocCheck: :check(const MatchFinder::MatchResult &Result) {
const CallExpr *callExpr = Result.Nodes.getNodeAs<CallExpr>("malloc");
if (callExpr) {
auto start = callExpr->getBeginLoc();
auto Diag = diag(start, "use acme zalloc() instead of malloc()")
<< FixItHint::CreateReplacement (SourceRange (start, start.getLocWithOffset (strlen("malloc")-1)),
"acme zalloc");
}
}

= This code uses our match, and creates a replacement for “malloc”, with a diagnostic, and an
optional “fix”

= What are these calls for Source Range and BeginLoc()?

21

Source location

clang: :FunctionDecl

= There exists methods to help with source replacement
int someFunc(bool b, float f)

T = Each AST node has location associated with it that can

getLocation () be retrieved.
getBeginLoc () getEndLoc ()

= |'ll not spend too much time on this, but there’s more to
explore and learn here.

= Let's compile the example and try it out!

22

Step 2: “If you give a mouse a cookie ...”

= Someone discovered we need to change a few thousand files to use a new API

= This is contrived, | know — please suspend logic for now, this is a tutorial after all ©

= Transform “void *malloc(size t)”->"“void *acme zalloc(size t, int)”, and
“void free(void *)”->%%oid acme free(void **)”. Let's assume all of our files

include a single top level include that we can add new interface prototypes and defines too.

= First step — extend the matchers ...

void ChangeMallocCheck: :registerMatchers (MatchFinder *Finder) {

Finder->addMatcher (callExpr (callee (functionDecl (hasName ("malloc”)))) .bind("malloc") ,this) ,

Finder->addMatcher (callExpr (callee (functionDecl (hasName (“free')))) .bind(“free") 6 this),
}

23

Step 2: Replace “free”, extend “malloc”

void ChangeMallocCheck: :check(const MatchFinder::MatchResult &Result) {
SmallString<64> NewArgument;,
const CallExpr *callExpr = Result.Nodes.getNodeAs<CallExpr>("malloc");
if (callExpr) {
auto start = callExpr->getBeginLoc ()
auto Diag = diag(start, "use acme zalloc() instead of malloc()")

<< FixItHint::CreateReplacement (SourceRange (start, start.getLocWithOffset (strlen("malloc")-1)),
"acme zalloc");

NewArgument = Twine (", ZERO INITIALIZE").str();
const auto InsertNewArgument = FixItHint::CreatelInsertion (callExpr->getEndLoc (), NewArgument)
Diag << InsertNewArgument,
}
callExpr = Result.Nodes.getNodeAs<CallExpr>('free"),
if (callExpr) f{
auto start = callExpr->getBeginLoc(),
auto Diag = diag(start, "use acme free() instead of free()")
<< FixItHint::CreateReplacement (SourceRange (start, start.getLocWithOffset (strlen("free")-1)),
"acme free');
Diag << FixItHint::CreateInsertion (callExpr->getArg(0)->getBeginLoc (), " (void **)&'"),
}

24

Demo3 — Repeat with new changes

= Rebuild, retry ...

25

Clang-tidy for Projects

Examples shown so far are for clang-tidy for
one file.

What if we want to process multiple files across
a source repo?

filel.cpp, hl.h, and h2.h are modified first step.

Then file2.cpp is modified, but could falil to
compile properly.

How to address?

There is a solution!

filel.cpp file2.cpp

clang-tidy

26

Clang-tidy for Projects

= filel.cpp, hl.h, and h2.h are processed, and
modifications stored in a yaml file.

= file2.cpp is processed, changes stored to a
yaml file.

filel.cpp

clang-tidy

file2.cpp

— @l

Clang-tidy
Replacements
database

27

Clang-tidy for Projects

= The clang-apply-replacements tool will process
the changes after clang-tidy is complete.

= No problem!

= clang-tidy/tool/run-clang-tidy.py
= Runs clang-tidy in parallel
= Can use matching patterns

= Handles deferred replacements

filel.cpp

clang-

file2.cpp

o —

Clang-tidy
Replacements
database

28

Example — Transforming Large Scale Project

= In this case — cmake based. Cmake supports
compile_commands.json generation.

= Application directory and library directory.

= Build: cd build & ...

- ’. Top: CMakelLists.txt
= cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=0ON -G Ninja ../

: : E appbDemo
= Clang-tidy checks on project A
= run-clang-tidy.py -header-filter="*' -checks="'-*, misc-change-malloc’ E appLibrary
= Apply our fixes — use —fix I build

= Avoid applying multiple fixes simultaneously — use just one
at a time, test, commit then repeat iteratively.

Compile commands JSON: https://sarcasm.qgithub.io/notes/dev/compilation-database.html#how-to-generate-a-json-compilation-database 29

https://sarcasm.github.io/notes/dev/compilation-database.html#how-to-generate-a-json-compilation-database

Example — Transforming Large Scale Project

= Demo4

E Top: CMakelLists.txt
E appDemo

E appLibrary
Ia build

30

Supporting LIT Test case

// RUN: %check clang tidy %s misc-change-malloc %t
void f() {
void *p=malloc (1) ;
// CHECK-MESSAGES: warning: use acme zalloc () instead of malloc ()
// CHECK-FIXES: void *p=acme zalloc(l, ZERO INITIALIZE);
free(p);
// CHECK-MESSAGES: warning: use acme free() instead of free()
// CHECK-FIXES: acme free ((void **)é&p);
}

= We *always* want a supporting LIT test case for every new checker.

= Positive and *negative* use cases

[misc-change-malloc]

31

Supporting LIT Test case

= Demo5 — LIT test case

32

Conclusion

= “Soup to nuts” — how to build a simple clang-tidy base checkers and refactoring tool.
= Not covered today — Preprocessor callbacks, adding include files

= Lot’s to explore!
= Resources in the references

= Try clang-query using different source examples. Get creative with AST matcher
expressions.

= Improve the LIT tests presented

= Try adding your own category of checkers (not inserted into “misc”)

33

References

« Introduction to the Clang AST - https://clang.llvm.org/docs/IntroductionToTheClangAST.html

« Matching the Clang AST - https://clang.llvm.org/docs/LIbASTMatchers.html

« AST Matcher Reference - https://clang.llvm.org/docs/LibASTMatchersReference.html

« Stephen Kelly’s blog - https://devblogs.microsoft.com/cppblog/author/stkellyms/,
https://steveire.wordpress.com/

« Tutorial source - https://github.com/vabridgers/LLVM-Virtual-Tutorial-2020.qgit

« The complete compile_commands.json reference - https://sarcasm.github.io/notes/dev/compilation-
database.html

« See http://clang.llvm.org/extra/clang-tidy, list of checks here https://clang.llvm.org/extra/clang-
tidy/checks/list.html

34

https://clang.llvm.org/docs/IntroductionToTheClangAST.html
https://clang.llvm.org/docs/LibASTMatchers.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://devblogs.microsoft.com/cppblog/author/stkellyms/
https://steveire.wordpress.com/
https://github.com/vabridgers/LLVM-Virtual-Tutorial-2020.git
https://sarcasm.github.io/notes/dev/compilation-database.html
http://clang.llvm.org/extra/clang-tidy
https://clang.llvm.org/extra/clang-tidy/checks/list.html

Thank you for attending!

35

