
Finding Your Way Around 
the LLVM Dependence 
Analysis Zoo
MemorySSA and DependenceAnalysis Tutorial



Outline
- What is Dependence Analysis ? Why do we care ?
- Basic Theory
- MemorySSA, DependenceAnalysis:

- What are they ?
- Theoretical Foundation
- Important Implementation Details
- Understanding their Output



Why Do We Care About 
Dependence Analysis ?

In reordering transformations, preserve the 
dependences and you preserve the 

semantics!



What Is Dependence Analysis ? 

Gathering information about the 
dependences of a program.



Example: Read-After-Write 
(RAW)



Example: Write-After-Read 
(WAR)



Example: Write-After-Write 
(WAW)



What is a Dependence ? 

- Dependence is an ordering between two 
operations that we have to preserve.

- This arises because if we don’t, a read may 
break.

- A data dependence exists because the 
two operations access the same 
memory location.



MemorySSA



Why MemorySSA?
● Clean theory

● Minimalistic interface

● Actively used & maintained



The Idea



%x = add %a, %b

%y = mul %x, %c

%z = sub %x, %y



Def-Use Chains

%x = add %a, %b

%y = mul %x, %c

%z = sub %x, %y

x=add(a,b)

y=mul(x,c)

z=sub(x,y)



Def-Use Chains

%x = add %a, %b

%y = mul %x, %c

%z = sub %x, %y

llvm::Value *X = /* %x */
for (auto *User : X->users()) {
  print(*User)
}

// %y, %z

llvm::Instruction *Z = /* %z */
for (auto *Op : Z->operands()) {
  print(*Op)
}

// %x, %y

x=add(a,b)

y=mul(x,c)

z=sub(x,y)



Dependence

store %v, i32* %a

%y = load i32* %b

%z = load i32* %c

llvm::Instruction *Z = /* %z */
for (auto *Op : Z->operands()) {
  print(*Op)
}

// %c %y, %z



Clobber & Alias

store %v, i32* %a

%y = load i32* %b

%z = load i32* %c

Alias: Can %c point to the same memory as %a?

Clobber:
If a store happens before a load and the pointers alias.
-> the store is a clobber of the load



Clobber & Alias

store %v, i32* %a

%y = load i32* %b

%z = load i32* %c

Alias: Can %c point to the same memory as %a?

Clobber:
If a store happens before a load and the pointers alias.
-> the store is a clobber of the load

store(a)

%y = load(%b)

%z = load(%c)



SSA on versioned Memory
●                               - memory state at function entry

●                               - modify memory version y producing x   (eg for a store)

●                              - read memory version x   (eg for a load)

●                              - merge incoming memory versions at block entry

x = MemoryDef(y)

MemoryUse(x)

MemoryPhi(x,y,..)

liveOnEntry



store %v, i32* a

%y = load i32* %b

%z = load i32* %c

0=liveOnEntry

MemoryDef

MemoryUse

MemoryUse



%a = alloca i32
%b = alloca i32
%c = alloca i32

store %v, i32* %a

%y = load i32* %b

%z = load i32* %c

0=liveOnEntry

1=MemoryDef(0)

MemoryUse(0)

MemoryUse(0)



def @foo(i32* %a,i32 %i) {
  %b = getelementptr %a, %i 
  %c = alloca i32

  store %v, i32* %a

  %y = load i32* %b

  %z = load i32* %c
}

0=liveOnEntry

1=MemoryDef(0)

MemoryUse(1)

MemoryUse(0)



Memory SSA
define void @f(i32* %p, i1 %cond) {
entry:
; MemoryUse(liveOnEntry)
  %0 = load i32, i32* %p, align 4
  br i1 %cond, label %if.then, label %if.end

if.then:
; 1 = MemoryDef(liveOnEntry)
  store i32 42, i32* %p, align 4
  br label %if.end

if.end:
; 2 = MemoryPhi({entry,liveOnEntry},{if.then,1})
; MemoryUse(2)
  %1 = load i32, i32* %p, align 4
  ret void
}

0 = liveOnEntry

1 = MemoryDef

2 = MemoryPhi(0,1)

MemoryUse(2)

MemoryUse(0)



Limitations

..and how to walk past them



def @foo(i32* noalias A, i32* noalias B) {
  ...
  store i32 1, i32* %A
  ...
  store i32 2, i32* %B
  ...
  store i32 3, i32* %A
  ...
  store i32 4, i32* %B
  ...
}



def @foo(i32* noalias A, i32* noalias B) {
  ...
  store i32 1, i32* %A
  ...
  store i32 2, i32* %B
  ...
  store i32 3, i32* %A
  ...
  store i32 4, i32* %B
  ...
}

1 = MemoryDef(liveOnEntry)

2 = MemoryDef(1)

3 = MemoryDef(1)

4 = MemoryDef(3)

(not actually the Memory SSA graph)



Unique Memory State

def @foo(i32* noalias A, i32* noalias B) {
  ...
  store i32 1, i32* %A
  ...
  store i32 2, i32* %B
  ...
  store i32 3, i32* %A
  ...
  store i32 4, i32* %B
  ...
}

1 = MemoryDef(liveOnEntry)

2 = MemoryDef(1)

3 = MemoryDef(2)

4 = MemoryDef(3)

✘

✘



The Walker

def @foo(i32* noalias A, i32* noalias B) {
  ...
  store i32 1, i32* %A
  ...
  store i32 2, i32* %B
  ...
  store i32 3, i32* %A
  ...
  store i32 4, i32* %B
  ...
}

1 = MemoryDef(liveOnEntry)

2 = MemoryDef(1)

3 = MemoryDef(2)

4 = MemoryDef(3)

auto *Walker = MemorySSA->getWalker();

Walker->getClobberingMemoryAccess(/* 4 */)

// 2 = MemoryDef(1)



Conclusion
● MemorySSA: SSA on memory versions.

● Better results with The Walker.

● Use it! Clean, maintained, actively used, evolving



Stuff I didn’t talk about
● How does MemorySSA know what aliases what?

○ -> AliasAnalysis

● Custom Walkers

● MayAlias, MustAlias, ModRef, ..



DependenceAnalysis

DependenceAnalysis analyzes dependences between pairs of 
memory accesses. Currently, it is an (incomplete) implementation 
of the approach described in:

           Practical Dependence Testing
     Goff, Kennedy, Tseng

           PLDI 1991



Loops Are Especially 
Interesting

Loop-Specific Dependences:

- Loop-Independent 
- Loop-Carried



Example: Loop-Independent 
Dependence

Any single iteration of the loop has this 
dependence.



Example: Loop-Carried 
Dependence

Exists exactly because of the loop. 
One iteration depends on another.



Example: Loop-Carried 
Dependence (Unrolled)

Statements in 
lines 3 and 8 are 
dependent.



Distance / Direction Vectors

How many iterations from one access to
another (on the same memory location) ?



Example: Dependence 
Distance

The distance is 
(usually) constant.



Multi-Dimensional Distance / 
Direction Vectors



Dependence Tests

How can the compiler deduce 
(in)dependences in some automatic, yet 

precise way ?



Indices and Subscripts

Indices of the loop nest: i, j, k
Subscripts of the access pair: 
(i, i), (j, k)



Subscript Classification

1) Complexity
2) Separability



Subscript Complexity

How many indices each subscript uses ?



Subscript Separability

How many subscripts use the 
same index ?



This is all good but...

LLVM IR does not have indices, 
subscripts or C-style 
multi-dimensional array accesses.

Quick answer: SCEV everywhere. 



Multi-dimensional accesses in C: 
Multi-Indirection Pointers

Difficult to deal with because 
of no aliasing guarantees.



Multi-dimensional accesses in C:
“Multi-Dimensional” Arrays

A multi-dimensional access is just 
syntactic sugar for a linear access.



Multi-dimensional accesses in C:
“Multi-Dimensional” Arrays

We have to use SCEV Delinearization
to turn A[i*M + j] back to A[i][j], 
which is not always perfect.



Multi-dimensional accesses in C:
“Multi-Dimensional” Arrays

Because it’s actually a linear access, 
there are no in-bounds guarantees 
for each dimension.



Returning to our question: How 
do we come up with automatic 

dependence tests ?
Quick answer: Look at 
the subscripts.



ZIV (Zero Index Variable) Test

No indices used in the 
subscript. Two cases: 
They’re either equal or 
they’re not.



ZIV (Zero Index Variable) Test

They are equal. We can squash their 
dimension.



ZIV (Zero Index Variable) Test

Equivalent subscripts.



ZIV (Zero Index Variable) Test

They’re not equal. We always access 
different columns, so no dependence.



ZIV (Zero Index Variable) Test

The ZIV subscripts can be complex as 
long as they’re loop-nest-invariant.



SIV (Single Index Variable) 
Subscript Test

Exactly one index used in the 
subscript. Hard to solve in full 
generality. We show 2 
common subcases.



Strong SIV Test: 
(ai + c1, ai + c2)

a is usually the step.



Strong SIV Test: 
(ai + c1, ai + c2)

Dependence Distance: d = 
c1 - c2

a

You have to cover c1 - c2 
distance by moving in steps of a.



Strong SIV Test: 
(ai + c1, ai + c2)

Dependence Distance: d = 
c1 - c2

a

A dependence exists if and only if d 
is an integer and |d| <= U - L, 
where U and L are the loop upper 
and lower bounds.



Weak SIV Subscripts: 
(a1*i + c1, a2*i + c2)

Now a1 != a2 ! Again, it’s 
hard to solve it in full 
generality but we show 2 
common subcases.



Weak-Zero SIV Subscripts: 
(a1*i + c1, a2*i + c2)

Subcases:

- (Weak-Zero) a1 = 0 or a2 = 0
- (Weak-Crossing) a1 = -a2



Weak-Zero SIV Test:
(a1*i + c1, a2*i + c2)

a1 = 0 or a2 = 0. Assume a2 = 0.

It finds dependences caused by a 

particular iteration i =

Again, i needs to be an integer 
and within loop bounds for 
a dependence to exist.

c2 - c1

a1



Weak-Zero SIV Test:
(a1*i + c1, a2*i + c2)

A[1][N] causes a dependence from the first 
iteration to all others. Similarly, A[N][N] 
causes a dependence from all iterations 
to the last. We can peel those two!



Peel the first and last iterations



Weak-Crossing SIV Test:
(a1*i + c1, a2*i + c2)

a1 = -a2. It finds dependences meeting at a 
particular iteration: 

i =

Why 2 is there ? And what the 
condition for a dependence is ?

c2 - c1

2*a1



Weak SIV Subscripts: 
(a1*i + c1, a2*i + c2)

In general, we can view the 
SIV tests as line tests.



Geometric View of SIV Tests


