SYRMIA

Milena VujosSevié¢ Janici¢

Extending Clang for checking
compliance with automotive coding

standards
Syrmia LLC



SYRMIA

Overview of the talk

Autosar, problem analysis and objectives
Autosar guidelines for C++14 language
Checking compliance with automotive co-
ding standards

Clang's support and interfaces
Support within Clang
Interfaces for semantic analyses
Sophisticated static analysis

AutoCheck
Implementation details
Results
Comparison to Clang-Tidy

Conclusions and Further Work



Autosar, problem analysis and objectives

Clang's support and interfaces AutoCheck Conclusions and Further Work
@000 (e]e] 000 (o]e]
(e]e} 00000000 000
[e] [e]
. . V4
I Autosar guidelines for C4++14 language SYRMIA

e Autosar guidelines are tailored to improve security, safety and quality of
software in critical and safety-related systems (primarily automotive, but these

guidelines can be used in other embedded application sectors)
® 402 rules:

® ~ 200 derived/based on the existing C++ standards

® ~ 150 adopted without modifications from MISRA C++:2008 (64% of MISRA is
adopted without modifications)

® ~ 60 based on research papers, other literature or other resources

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 1/26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work
000 oo 000 00
00 00000000 000
o o

I Autosar guidelines for C+414 language SYRMIA

Rule classification according to
® Obligation level: required and advisory

e Allocated target: implementation, verification, toolchain and infrastructure
e Enforcement by static code analysis tools
® Automated: rules that are automatically enforceable by means of static analysis.
® Partially automated: rules that can be supported by static code analysis, e.g. by
heuristic or by covering some error scenarios (as a support for a manual code review)

® Non-automated: rules where the static analysis cannot provide any reasonable
support

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 2/26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck
00e0 oo 000
00 00000000 000

o o

I Autosar guidelines for C+414 language

Our focus: ~ 340 rules
® Implementation based rules
® Rules that can be automated

® Rules that are required or advisory

SYRMIA — AutoCheck

Milena Vujosevi¢ Janici¢

Conclusions and Further Work

(o]e]

SYRMIA

llvm-dev '20

3/26



Autosar, problem analysis and objectives

Clang's support and interfaces AutoCheck Conclusions and Further Work
oooe [e]e) 000 e]e]
[o]e] 00000000 000
o] o]

I Examples SYRMIA

® Simple decidable rules:
® Trigraphs shall not be used (-Wtrigraphs)
e Literal suffixes shall be upper case.

® Decidable rules:

e Different identifiers shall be typographically unambiguous
® The continue statement shall only be used within a well-formed for loop.
¢ Undecidable rules (run-time features):

® A project shall not contain unreachable code (-Wunreachable-code).

® The right hand operand of the integer division or remainder operators shall not be
equal to zero (-Wdivision-by-zero).

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 4 /26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work

0000 (e]e] 000 (o]e]
[ 1o} 00000000 000
[e] [e]

I Problem analysis SYRMIA

Big number of rules (~ 340)

Big differences between rules: some are easy to check while some are very complex

False alarms vs undiscovered violations

® Existing support:

® Clang,

® Clang's AST Visitors and AST Matchers,

® Clang-tidy, as a framework for using AST Matchers,
® (Clang Static Analyzer

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 5/ 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work
0000
oe

(e]e] 000 (o]e]
00000000 000
[e] [e]

I Objectives SYRMIA

No undiscovered violations

Efficient and precise analysis

User friendly: like compiler warnings, but with additional control over reporting
mechanism

Good design principles: easy to maintain and verify

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 6 /26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck
0000 [ o) 000
[o]e] 00000000 000
o] o]

I Existing support within Clang

® 44 rules that are supported or partially supported by Clang:
Examples:
® Supported:
- Trigraphs shall not be used (-Wtrigraphs).
® Partially supported:

Conclusions and Further Work

(o]e]

SYRMIA

- The form of delete operator shall match the form of new operator used to allocate

the memory (-Wmismatched-new-delete).

- The right hand operand of the integer division or remainder operators shall not be

equal to zero (-Wdivision-by-zero).

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck

llvm-dev '20 7/ 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work
0000 oce 000 e]e]
[o]e] 00000000 000
o] o]
f Clang's di ' SYRMIA
Improvements of Clang's diagnostics FA

e |t is possible to directly improve Clangs's diagnostics by adding support for some
simple checks when appropriate

e Definition of appropriate: whenever that does not affect Clang's efficiency and
whenever it is easy to maintain the extended code between different versions of

Clang
e We keep Clang's behavior unchanged, unless our flags are present

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 8/ 26



AutoCheck Conclusions and Further Work

000 (o]e]
000
[e]

Autosar, problem analysis and objectives Clang's support and interfaces

0000 (e]e]
(e]e} ®0000000
[e]

I Semantic analyses via AST Visitors and AST Matchers SYRMIA

® Two interfaces for semantic analysis:
® AST Matchers — provide a simple, powerful, and concise way to describe specific

patterns in the AST.
® AST Visitors — provide using the full power of the Clang AST

® Pros and cons: matchers should be easier to implement and maintain, but do not
always give you a full control over the AST, Clang-Tidy gives a valuable framework
for writing code-style checks by AST Matchers, efficiency issues

® Experimental analysis

SYRMIA — AutoCheck llvm-dev '20 9 /26

Milena Vujosevi¢ Janici¢



Clang's support and interfaces AutoCheck Conclusions and Further Work
0o 000 00

0®000000 000
o o

Autosar, problem analysis and objectives
0000
[o]e]

I AST Visitors vs AST Matchers SYRMIA

Example:
A8-4-1 Functions shall not be defined using the ellipsis notation.

void functioni(int a, ...) {
/! ...
}
AST:
‘-FunctionDecl 0x12223e8 <48.cpp:18:1, co0l:29> col:6 functionl ’void (int, ...)’

| -ParmVarDecl 0x1222310 <col:16, col:20> col:20 a ’int’
¢-CompoundStmt 0x12224d8 <col:28, col:29>

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 10 / 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work

0000 (e]e] 000 (o]e]
(e]e} 00®00000 000
[e] [e]

I Matchers are easier to implement and maintain SYRMIA

Example:

A8-4-1 Functions shall not be defined using the ellipsis notation.
Visitor:

bool VisitFunctionDecl(const FunctionDecl *FD) {
if (FD->isVariadic()) {
// report warning
¥
return true;

}
Matcher:

functionDecl(isVariadic())

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 11/ 26



Clang's support and interfaces AutoCheck Conclusions and Further Work
0o 000 00

00080000 000
o o

Autosar, problem analysis and objectives
0000
[o]e]

I AST Visitors vs AST Matchers SYRMIA

Example:
Rule 6-6—5 A function shall have a single point of exit at the end of the

function.
Visitor:

bool VisitReturnStmt(const ReturnStmt *RS) {
++returnCount;
if (returnCount > 1) { /*report warning*/ }
return true;

}
Matcher:

functionDecl (hasDescendant (returnStmt () .bind("return")),
hasDescendant (returnStmt (unless (equalsBoundNode ("return")))));

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 12 / 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work

0000 (e]e] 000 (o]e]
(e]e} 0000e000 000
[e] [e]

I AST Visitors vs AST Matchers SYRMIA

e Counting becomes tiresome if we count for more than just two

® |n addition, matchers do not naturally solve the problems concerning the order of
statements that is important in some rules (like in: The goto statement shall jump
to a label declared later in the same function body), especially if that is important
as a part of some sub-goal within the rule

® There are also additional examples when Matchers are not the first choice

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 13 /26



Autosar, problem analysis and objectives

0000
(e]e}

Clang's support and interfaces AutoCheck Conclusions and Further Work
0o 000 00
00000000 000
o o
. . .. (4
Experimental setup for measuring efficiency SYRMIA

® Write several AST Matchers and AST Visitors checking the same property
® Generate code that

® Contains only the expected structure that is checked
® Does not contain any of the expected structure that is checked
¢ Contains approximately 5% of code with the expected structure

® Vary size of the generated code: 100, 500, 1000, 2000, 5000, 10000 LOC
® Measure 100 times and take the average

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20

14 / 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work
000 e]e]

0000 (e]e]
(e]e} 00000000 000
[e] [e]

SYRMIA

I Experimental setup

® Measure the efficiency also on Automotive Grade Linux open source code, which
serves as an industry standard to enable rapid development of new features and
technologies

e AGL contains a code base with many sub-projects and we use several sub-projects

as testing benchmarks

SYRMIA — AutoCheck llvm-dev '20 15 / 26

Milena Vujosevi¢ Janici¢



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work
0000
00

(e]e] 000 (o]e]
0000000e 000
[e] [e]

I Results SYRMIA

No big differences between different sizes of code and between different checks
The smallest difference — no expected structure that is checked:
® Visitors are as fast as matchers, i.e. there are no big differences
The biggest difference — only the expected structure that is checked
® Visitors are faster compared to matchers between 3.1 and 5.1 times
On code with 5 percent of expected structure
® Visitors are faster compared to matchers between 1.2 and 1.5 times

On AGL code

® Visitors are faster compared to matchers between 2 and 3 times

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 16 / 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work
0000 [e]e) 000 e]e]
[o]e] 00000000 000

[ ] o]

I Static Analyzer SYRMIA

Source code analysis tool for bug finding

Takes into account CFG, not only AST

Based on bounded model checking and considers loops with just a few loop

unrollings, and therefore should not report false positive results but can have false
negatives

Much slower than compilation (visitors or matchers)

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 17 / 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work
00

I AutoCheck SYRMIA

® Implemented 190 rules from Autosar C++14 guidelines

® Some of these rules are language independent or can be used on C code as well
(~ 120 rules)

® Some rules are implemented directly within Clang (~ 80 rules), others are
implemented through AST Visitors

® Visitors are grouped into clusters that maximize efficiency

® Four rules are additionally supported by more precise analysis through Static
Analyzer (division by zero, null pointer dereferencing, pointer arithmetic, recursive
function calls)

e Autocheck uses llvm'’s infrastructure for testing (each rule is covered with several
positive/negative test cases), and also AGL code

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 18 / 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work

0000 (e]e] oeo (o]e]
(e]e} 00000000 000
[e] [e]

I Usage SYRMIA

e AutoCheck is used internally on projects that require compliance with Autosar
guidelines

® The obtained feedback is used for guiding the development of the tool

e AutoCheck is an extension of Clang so plugins for Clang's integration within
different software development environments can be used

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 19 / 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work

0000
(e]e}

(e]e] ooe (o]e]
00000000 000
[e] [e]

Controlling the output SYRMIA

® New options that differ to standard compiler options
® Limit the number of warnings issued for each violated rule and stop performing the
analysis for each rule after its limit is reached:
option -autocheck-1imit=N
® Analyze and report warnings only between some specific lines
-autocheck-between-lines=<from-line>,<to-line>
® Suppress warnings corresponding to macro extensions
-autocheck-dont-check-macro-expansions

e Disable checks within headers
-autocheck-dont-check-headers

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 20 / 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work

0000 (e]e] 000 (o]e]
(e]e} 00000000 @00
[e] [e]

I Automotive Grade Linux open source code SYRMIA

® The efficiency of AutoCheck is measured on different corpora
e When building AGL subprojects:

® |f only options that are implemented directly within Clang are included, time that
AutoCheck takes is bigger between 1.1 and 1.7 times (compared to Clang)

® |f all visitors are also included, time that AutoCheck takes is bigger between 1.7 and
9.2 times (compared to Clang)

® These differences depend on number of violated rules and on number of times the
rule is violated.

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 21 /26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work

0000 (e]e] 000 (o]e]
(e]e} 00000000 oeo
[e] [e]

I Automotive Grade Linux open source code SYRMIA

® QOptions -autocheck-1imit and -autocheck-dont-check-headers reduce
significantly these time differences

e Examples:

® In gqrc_hvac.cpp, there are 11 different rules that are violated
~ 15K times (headers included),
~ 3K times (headers not included)

® |In qrc_images.cpp, there are 11 different rules that are violated
~ 97K times (headers included),
~ 23K times (headers not included)

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 22 /26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work

0000 (e]e] 000 (o]e]
(e]e} 00000000 ooe
[e] [e]

I Clang's code base SYRMIA

® There are 129 rules violated within Clang's code base

® 8 rules are violated less than 10 times

11 rules are violated between 10 and 100 times

9 rules are violated between 100 and 1.000 times

25 rules are violated between 1.000 and 10.000 times
37 rules are violated between 10.000 and 100.000 times
39 rules are violated more than 100.000 times

® The biggest number of warnings
fixed width integer types from <cstdint>, indicating the size and
signedness, shall be used in place of the basic numerical types

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 23 /26



Autosar, problem analysis and objectives

Clang's support and interfaces AutoCheck Conclusions and Further Work
0000 [e]e) 000 e]e]
[o]e] 00000000 [e]e]e}
o] [ ]

I Comparison to Clang-Tidy SYRMIA

e Clang-Tidy

® is a C++ "linter” tool, support for different coding conventions and an interface for

adding new checks
® is LibTooling-based tool, uses AST Matchers
® can run Static analyzer

e AutoCheck

® support for C++14 Autosar guidelines, custom tailored solution

® can be invoked as a Clang option, is based on Clang and AST Visitors
® can run Static analyzer

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 24 / 26



Autosar, problem analysis and objectives Clang's support and interfaces AutoCheck Conclusions and Further Work

0000 (e]e] 000 0
(e]e} 00000000 000
[e] [e]

I Conclusions and Further work SYRMIA

¢ LLVM/Clang give several frameworks for implementing syntax and semantic
analysis

e We had many different decisions to make on our road, that were explained and
commented during this talk

® We successfully implemented 190 rules from Autosar guidelines, together with
different options controlling the output in the user friendly way

® Further work: implement the rest of the rules

Milena Vujosevi¢ Janici¢ SYRMIA — AutoCheck llvm-dev '20 25 /26



SYRMIA

Contact us

SYRMIA
Belgrade Office Park
Porda Stanojevica 12

Belgrade 11070

Serbia



