Branch Coverage: Squeezing more out of
LLVM Source-based Code Coverage

Alan Phipps, Texas Instruments

2020 LLVM Developers’ Meeting

W3 TEXAS INSTRUMENTS

What is Source-based Code Coverage?

« A measurement for how thoroughly code has been executed during testing
— Ideally all sections of code have an associated test
— Un-executed code may be at higher risk of having lurking bugs

« Supported Coverage criteria (in increasing level of granularity)
— Function
» Percentage of code functions executed at least once
— Line
» Percentage of code lines executed at least once
— Region
» Percentage of code statements executed at least once

2

Wip TEXAS INSTRUMENTS

Basic Phases (High Level)

!
Test Execution

— 3

W3 TEXAS INSTRUMENTS

Counter Region Mapping and Instrumentation

» Counters are inserted into basic blocks of generated code mapped to source

line

line

line
line
line
line

9: bool foo(int x, int y) {

10:

11:
12:
13:
14:

Counterl++

}

if ((x > 0) && (y > 9))

Counter3++
return true;

return false;

~Counter2++

Counterl instrumented to track
Region (9:24 - 10:23)
Function (line 9 — foo())

Line (line 10)
Statement: if-stmt

Counter2 instrumented to track
Region (10:18 - 10:25)
Statement (y > 0)

Counter3 instrumented to track
Region (11:0 - 11:12)
Line coverage (line 11)

(Counterl — Counter3) tracks
Region (12:0 - 14:0)

Line coverage (line 13)
4

Wip TEXAS INSTRUMENTS

LLVM Coverage Visualization

* LLVM Coverage Utility (Ilvm-cov) » Text (llvm-cov)

Line Count Source (jump to first uncovered line) 8| |
% W _ S 9| 2|bool foo (int x, int y) {
g 2 bool foo (int x, int y) { 1e| 2| i_F ((X > e) && (y > 9))
18 2 if ({(x > 9) && (y » 8)) Al
= CRIUER TN ; 11| 0| return true;
12 4 12| 2|
13 2 return false; 13| 2| return false;
14 2 43 14| 2|}

Coverage Report

Created: 2020-09-09 15:28

Click here for information about interpreting this report.

Filename Function Coverage Line Coverage Region Coverage
scratch/aphipps/llvmtest/cov/demo/brdemo.cc 189.88% (2/2) 96.15% (25/26) 99.88% (9/18)
Totals 160.80% (2/2) 96.15% (25/286) 99.80% (9/18)

Generated by livm-cov - livm version 12.0.0git

5

W3 TEXAS INSTRUMENTS

Why is branch Coverage Important?

Line | Cnt |
9| |bool foo(int x, int y) { Line | Cnt |
10| 4] if ((x > @) && (y > 9)) 9| |bool foo(int x, int y)
A1 10| 4{
11| 1] return true; 11| 4| return ((x > @) & (y > 9));
12| | "1
13| 3| return false; 12| 4|}
14| 3|}

» There are two conditions on line 10 that form a decision: (x > @), (y > 0)

« Line 11 shows that “return true” was executed once
— What was the execution path through the control flow that facilitated this?
— What was the execution path through the control flow around this?
— If we don’t know, we can’t be sure we are executing all paths!

« Branch Coverage tells us this!
— How many times is each condition taken (True) or not taken (False)?

6

Wip TEXAS INSTRUMENTS

LLVM Coverage Visualization + Branch Coverage

* LLVM Coverage Utility (Ilvm-cov)

* Text (llvm-cov)

Line Count Scurce (jump to first uncovered line) 9| 2|bool foo (int x, int y) {
a 2 bool foo (int x, int y) { 10| 2] if ((x > 0) && (y > 9))
18 2 if ((x»>9)8&& ({y>@8)) | mememememmsm--——------

Branch (18:7): [True: 1, False: 1] | Branch (10:7): [True: 1, False: 1]
Branch (18:18): [True: 9, False: 1] | Branch (10:18): [True: @, False: 1]
11 d retuen true; 0 mEmEmEEmmEETmEEEEETT
s , 11| 0| return true;
R < 12| 2|
13 4 return talse;
3 £ [l 13| 2| return false;
o 14| 2]}
Coverage Report
Created: 2020-09-02 17:42
Click here for information about interpreting this report.
Filename Function Coverage Line Coverage Region Coverage Branch Coverage
scratch/aphipps/llvmtest/cov/demo/brdemo.cc 189.89% (2/2) 96.15% (25/26) 99.89% (9/18) 83.33% (5/8)
Totals 100.00% (2/2) 96.15% (25/26) 99.80% (9/18) 83.33% (5/6)

Generated by livm-cov - livm version 12.0.0git

7

Wip TEXAS INSTRUMENTS

Goal: Ensure 100% Branch Coverage

» C short-circuit semantics on logical operators
— Testing all individual conditions also tests corresponding decisions

foo(1l, 9): (x > @) = true

. . (y > 9) = false

bool foo(int x, int y) { (x > @) 8& (y > 0) = false

if ((x > 9) && (y > 0))
return true;
foo(9, 1): (x > @) = false
. (y > @) = .. not executed!

) return false; (x > 0) & (y > 9) = false
foo(1l, 1): (x > @) = true

(y > 9) = true

(x >0) && (y > @) = true

8

Wip TEXAS INSTRUMENTS

How Is Branch Coverage implemented?

Wip TEXAS INSTRUMENTS

Clang Source Region Creation

— - Regions created based on AST walk

!
Test Execution

ot visiaizaion | |

W3 TEXAS INSTRUMENTS

CounterMappingRegion

struct CounterMappingRegion {
enum RegionKind {

CounterMappingRegion

/// A CodeRegion associates some code with a counter. aSSOCiateS a source range Wlth a
CodeRegion, counter. It uses RegionKind to
/// An ExpansionRegion represents a file expansion region that associates identify how to interpl’et its data.

/// a source range with the expansion of a virtual source file, such as
/// for a macro instantiation or #include file.
ExpansionRegion,

/// A SkippedRegion represents a source range with code that was skipped
/// by a preprocessor or similar means.
SkippedRegion,

/// A GapRegion is like a CodeRegion, but its count is only set as the

/// line execution count when its the only region in the line.

GapRegion, . . i

1.) Extend RegionKind to include a
/// A Br‘ar.lchRegic.)n represents leaf-level boolean_expr‘essions and is' new BranchRegion kind to
/// associated with two counters, each representing the number of times the .
/// expression evaluates to true or false. represent branch-generatlng

BranchRegion conditions

s

2.) Use existing Counter to
represent “True” BranchRegion
counts

/// Primary Counter that is also used for Branch Regions (TrueCount).
Counter Count;

/// Secondary Counter used for Branch Regions (FalseCount).

Counter FalseCount; 3.) Add a second Counter to
unsigned FileID, ExpandedFileID; represent “False” BranchRegion
unsigned LineStart, ColumnStart, LineEnd, ColumnEnd; counts 1

Wip TEXAS INSTRUMENTS

Counter Region Mapping (clang)

* Instrumentation profile Counters are already created for statement regions
— We can trivially reuse them to calculate Branch condition counts!
— A Counter can also refer to an arithmetic expression between two counters

SRRz « Counterl maps to “Parent” region
if (C){
T « Counter2 maps to If-Stmt “Then” region
 For BranchRegion(C)
* C.TrueCounter = Counter2
} * C.FalseCounter = Counterl — Counter2

This is true for all control-flow statements: if, for, while, switch, ternary ?:

12

Wip TEXAS INSTRUMENTS

Clang Counter Instrumentation

ASTs lowered to LLVM IR
- Since we reuse counters,

no special instrumentation
1 needed! ... except ...

Test Execution

ot visiaizaion | |

W3 TEXAS INSTRUMENTS

Counter Instrumentation for Logical Operators

New

Counterl++ '

bool X = C1 || C2/|| Counter3++

N Counter2++

Counterl maps to “Parent” region

Counter2 maps to “C2”, the right-hand-side,
representing C2 execution count

C short-circuit semantics on logical operators
* Counter2 increments only when C1 is false

For BranchRegion(C1)
« (Cl.FalseCounter = Counter2
e C1.TrueCounter = Counterl — Counter2

For BranchRegion(C2)
« (C2.FalseCounter = Counter3
e C2.TrueCounter = Counter2 — Counter3

| have to instrument a new counter (Counter3) to track C2’s counts

14

Wip TEXAS INSTRUMENTS

Data Visualization

\’

Test Execution

Data
Decoded
and
Statistics
Calculated

- 15

W3 TEXAS INSTRUMENTS

Visualization (llvm-cov)

Decode mapping regions and filter based on
Function and Macro Expansion

Function (foo)

line 9: bool foo(int x, int y) { - CodeRegionl (9:24-10:23)

line 10: if ((x > @) && (y > 9)) - CodeReg}onz (11:0-11:12)

line 11: return true; ‘ - CodeRegion3 (12:0-14:0)

line 12: BranchRegions:

line 13: return false; - BranchRegionl (10:5-10:11)

line 14: } - BranchRegion2 (10:16-10:22)
Expansion (MAX)

line 18: #define MAX(x,y) ((x) > (y) ? (x) : (y)) - CodeRegionl (18:18-18:49)

BranchRegions:
- BranchRegionl (18:19-18:24)

line 19: bool bar(int x, int y) {
line 20: return MAX(X,y);
line 24: }

Function (bar)
- CodeRegionl (19:24-24:0)
- ExpansionRegionl (20:10-20:13)

i

16

Wip TEXAS INSTRUMENTS

Visualization (llvm-cov) SubViews

« Extend notion of region SubView to include branches
— SubViews are demarcated nested views in the source-code
— Branches on the same line are grouped into the same SubView

— SubViews are also used to demarcate macro expansions
* Macro expansions can be recursive
* Macro expansions can contain conditions

a6 2 if (BRANCH MACRO(=rgl, argl))
Line Count Source
#define BRANCH_MACRO(x, y) (x == y)

Branch (9:28): [True: 2, False: 2]

a7 . printf("This executes on a3 macro expansion\n"};

« Extend summary reports to include Branch Coverage BranchCoverageInfo _
— Add BranchCoveragelnfo class - Total # of Branches (2 per region)
- # Branches executed at least once

17

Wip TEXAS INSTRUMENTS

Branch Coverage Future Optimizations

» Better counter reuse for logical operators
— Nested conditions: bool myval = (C1 && C2 && (C3 || C4));

« Enable HTML ToolTip “hover” capability on source conditions
— Hovering will reveal actual True/False Branch Counts
— Similar to how region coverage counts show up today

 Better identification of special branch regions
— Identify an implicit default Case in a switch statement
— ldentify the sense of constant-folded conditions: always True or never True

18

Wip TEXAS INSTRUMENTS

What’s Next: MC/DC

« Ultimate Goal: Modified Condition/Decision Coverage (MC/DC)
— Percentage of all condition outcomes that independently affect a decision outcome
— Built on top of branch-coverage

» Usually involves emitting a truth table to confirm all possibilities

19

Wip TEXAS INSTRUMENTS

Observations on GCC Branch Coverage

- GCC HTML (LCOV) » True/False Branch Data shown
— “+” 5 Executed at least once
— “” 2 Not Executed (i.e. “0”)

2 : bool foo (int x, int y) { — Hover to see counts
if (x> 0) & (y > 9)

Branch data Line data Source code
3
9 .
10+ + 1[0 + 1:

11
12

= : S « Difficult to tie branches to source

14 : Pl — Which branch goes with which condition?

« GCC Text (GCOV) — Which branch represents taken vs not taken?
function _Z3fooii called 2 returned 100% blocks executed 80%

2: 9:bool foo (int x, int y) { * |n other contexts...

2: 10: if ((x > @) && (y > 9)) N o
branch @ taken 1 (fallthrough) — May see additional branches that aren’t visible
branch 1 taken 1 ;
branch 2 taken @ (fallthrough) in source code
branch 3 taken 1 — Some branches may be removed

A 11: t t 5

- 12: return true » GCC advises against using optimization with

2: 13: return false; code coverage

- 14:}

20

Wip TEXAS INSTRUMENTS

GCCvs. LLVM

« GCC HTML (LCOV)

Branch data

3

11
12
13
14

Line data Source code

2 : bool foo (int x, int y) {

9 :
10+ + 1[0 + 1: 2 : ifiix>0i&&(y>0))

2 : return false;
Y
S |

- GCC Text (GCOV)

function _Z3fooii called 2 returned 100% blocks executed 80%

2

2

branch ©
branch 1
branch 2
branch 3
it

2:

9:
10:

taken
taken
taken
taken

11:
12:
13:
14:

bool foo (int x, int y) {
if ((x > 0) && (y > 0))
1 (fallthrough)
1
@ (fallthrough)
1
return true;

return false;

}

* LLVM HTML

Line Count

Source (jump to first uncovered line)

9 2 bool foo (int x, int y) {

14 2 if ((x > 9) & {y > 8))

Branch (18:7): [True: 1, False: 1]
Branch (18:18): [True: 9, False: 1]
11 d return true;

12 2
13 2
14

LVM Text

return false;

9| 2|bool foo (int x, int y) {

10| 2] if ((x > 9) && (y > 9))
| Branch (10:7): [True: 1, False: 1]
| Branch (10:18): [True: 0, False: 1]

11| 0| return true;
12| 2|

13| 2| return false;
14| 2}

Wip TEXAS INSTRUMENTS

21

Current State of LLVM Branch Coverage

* Implementation is complete -- in the process of upstreaming the work!
— Phabricator Review https://reviews.llvm.org/D84467

« Should be included with stock LLVM Source-based Code Coverage

A lot of ways to improve branch coverage! Want to be involved?
— Contact me! a-phipps@ti.com

22

Wip TEXAS INSTRUMENTS

https://reviews.llvm.org/D84467
mailto:a-phipps@ti.com
mailto:a-phipps@ti.com
mailto:a-phipps@ti.com

Thank you!

» Acknowledgements
— Vedant Kumar, Apple
— Cody Addison, Nvidia
— Alan Davis, Texas Instruments

23

W3 TEXAS INSTRUMENTS

