
Artur Pilipenko,  
apilipenko@azul.com 
Azul Systems

Control-flow sensitive escape
analysis in Falcon JIT

mailto:apilipenko@azul.com
mailto:apilipenko@azul.com

Agenda

• Introductions

• CaptureTracking analysis

• Falcon’s FlowSensitiveEA analysis

• FlowSensitiveEA transforms

• Performance results

• Conclusion

Agenda

• Introductions

• CaptureTracking analysis

• Falcon’s FlowSensitiveEA analysis

• FlowSensitiveEA transforms

• Performance results

• Conclusion

What is Falcon?

• JIT compiler for Java based on LLVM

• Java bytecode => native

• Inside of a running JVM

• Final tier compiler in Azul’s Zing JVM

• Compiles only the hottest methods

• Focus on performance

What is Falcon?
If you want to learn more

• LLVM Dev Meeting 15 - LLVM for a managed language: what we’ve learned 
https://llvm.org/devmtg/2015-10/#talk14

• LLVM Dev Meeting 17 - Falcon: An optimizing Java JIT 
https://llvm.org/devmtg/2017-10/#talk12

• EuroLLVM 17 - Expressing high level optimizations within LLVM 
http://llvm.org/devmtg/2017-03//2017/02/20/accepted-sessions.html#10

• EuroLLVM 18 - New PM: taming a custom pipeline of Falcon JIT 
https://llvm.org/devmtg/2018-04/talks.html#Talk_13

https://llvm.org/devmtg/2015-10/#talk14
https://llvm.org/devmtg/2017-10/#talk12
http://llvm.org/devmtg/2017-03//2017/02/20/accepted-sessions.html#10
https://llvm.org/devmtg/2018-04/talks.html#Talk_13
https://llvm.org/devmtg/2015-10/#talk14
https://llvm.org/devmtg/2017-10/#talk12
http://llvm.org/devmtg/2017-03//2017/02/20/accepted-sessions.html#10
https://llvm.org/devmtg/2018-04/talks.html#Talk_13

What is escape analysis?

• Pointer analysis to determine dynamic scope of pointers & objects

• Whether an object or a pointer is accessible outside the scope of the current
function or thread?

• This information enables various optimizations

• E.g. a lock can be eliminated if the lock object is not accessible outside of
one thread

Escape analysis for Java
Why is it important?

• Java doesn't have value types other than builtin primitive types

• Any record-like type is heap allocated by default

• As a result, idiomatic Java code has a lot of short lived allocations

• These allocations often don’t escape the thread or the method

• This opens opportunities for optimizations!

Escape analysis for Java
Typical applications

• Optimize storage for unescaped allocations

• Scalar replacement, e.g. [1]

• Stack allocation, e.g. [2]

• Downgrade of thread safe operations

• Lock elision [1, 2], atomics, etc

[1] "Escape analysis in the context of dynamic compilation and deoptimization." (Kotzmann,
Mössenböck 2005) 
[2] "Stack allocation and synchronization optimizations for Java using escape analysis." (Choi, Gupta,
et al. 2003)

https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/945885.945892
https://dl.acm.org/doi/abs/10.1145/945885.945892
https://dl.acm.org/doi/abs/10.1145/945885.945892
https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/945885.945892
https://dl.acm.org/doi/abs/10.1145/945885.945892
https://dl.acm.org/doi/abs/10.1145/945885.945892

Escape related facts
What do we need for different optimizations?

• Different optimizations need different facts

• For example:

• Constant fold comparisons involving new allocation — can the pointer be
inspected outside of the function?

• Optimize allocation storage — can the contents of the object be inspected
outside of the function?

• Downgrade atomics — can the contents of the object be inspected outside
of the thread?

Pointer value can’t be inspected outside of the function scope

=>

Contents of the object can’t be inspected outside of the function scope

 =>

Contents of the object can’t be inspected outside of the thread

Pointer value can’t be inspected outside of the function scope

=>

Contents of the object can’t be inspected outside of the function scope

 =>

Contents of the object can’t be inspected outside of the thread

Compute the stronger fact and assume weaker facts from it

Pointer value can’t be inspected outside of the function scope

We will call this property “no escape” or “no capture”

Agenda

• Introductions

• CaptureTracking analysis

• Falcon’s FlowSensitiveEA analysis

• FlowSensitiveEA transforms

• Performance results

• Conclusion

CaptureTracking analysis in LLVM

Can bits of the pointer be inspected outside of the function scope?

bool llvm::PointerMayBeCaptured(const Value *V,
 bool ReturnCaptures,
 bool StoreCaptures,
 unsigned MaxUsesToExplore)

CaptureTracking analysis in LLVM
How does it work?

• Analyze uses of the pointer

• Each use either

• Captures — e.g. pointer is stored into a global

• Doesn’t capture — e.g. pointer is passed as an nocapture argument

• Produces an alias — need to analyze uses of the alias as well

• E.g. getelementptr, bitcast, addrspacecast

Users of CaptureTracking in LLVM

• Used either via BasicAliasAnalysis

• GVN, EarlyCSE, LICM, DSE, etc

• Or directly

• LICM, InstSimplify, ThreadSanitizer, etc

• Often used as a conservative approximation of weaker facts

EA optimizations in Falcon

• Initial implementation of EA-based optimizations used CaptureTracking

• Identified a few limitations

• Handling of unescaped object graphs

• Limited control-flow sensitivity

• Compile time impact

• Eventually had to build our own analysis

a = new A
b = new B
; Doesn’t capture!
a.field = b
; Can be eliminated!
monitor_enter(b)
b.value = 5
; Can be eliminated!
monitor_exit(b)

Handling of unescaped graphs

• CaptureTracking considers any
store as capture

• In fact a store to unescaped
memory doesn’t escape or
capture

• This is an unused StoreCapture
parameter and >10 year old
TODO

What is missing in CaptureTracking?

Handling of unescaped graphs

• Can work around some cases by
iterative optimizations

• E.g. scalarize leaf allocation a
first

What is missing in CaptureTracking?

b = new B
; Not a store anymore!
a_field = b
; Can be eliminated!
monitor_enter(b)
b.value = 5
; Can be eliminated!
monitor_exit(b)

Handling of unescaped graphs

• Doesn’t work if there are cycles
in unescaped object graphs

• Doubly-linked list kind of
structures

• Unfortunately, appears in the
standard library in Java :(

What is missing in CaptureTracking?

a = new A
b = new B
; Doesn’t capture!
a.field = b
; Doesn’t capture!
b.field = a
; Can be eliminated!
monitor_enter(b)
b.value = 5
; Can be eliminated!
monitor_exit(b)

What is missing in CaptureTracking?
Limited control-flow sensitivity

• Even if the allocation escapes we want to optimize the code before escape

• E.g. thread safe initialization before escape,

• or slow-path escapes

• CaptureTracking has limited control flow sensitivity

• Prune uses which are not relevant for the given context in the function

• Conservatively using DominatorTree and isPotentiallyReachableFrom

• Often too conservative

What is missing in CaptureTracking?
Compile time impact

• CaptureTracking is a non-caching analysis

• Scanning allocation uses on every query

• As a mitigation has a cutoff on the maximum number of uses to scan

• 20 by default

• We have seen unescaped allocations with thousands of uses

Agenda

• Introductions

• CaptureTracking analysis

• Falcon’s FlowSensitiveEA analysis

• FlowSensitiveEA transforms

• Performance results

• Conclusion

Falcon’s FlowSensitiveEA

• Flow-sensitive analysis which models points-to graph of unescaped object by
abstract interpretation

• Tracked state is points-to graph of unescaped allocations

• Traverse CFG in reverse-post order

• Scan through instructions modeling their effects on the tracked state

• Similar to [1] but intentionally separate analysis and transformations

[1] “Partial escape analysis and scalar replacement for Java" (Stadler, Würthinger, Mössenböck 2014)

https://dl.acm.org/doi/abs/10.1145/2544137.2544157
https://dl.acm.org/doi/abs/10.1145/2544137.2544157

Falcon’s FlowSensitiveEA

• Downstream analysis and transformations

• Relies on some of the downstream concepts

• Potentially can be upstreamed with some work

Tracked allocations

Keep track of allocations which
haven't yet escaped

State tracking
; empty state
a = new A
; alloc: %a, type=A
b = new B
; alloc: %a, type=A
; alloc: %b, type=B
escape(a)
; alloc: %b, type=B
escape(b)
; empty state

Tracked allocations
State tracking

; empty state
a = new A
; alloc: %a, type=A
b = new B
; alloc: %a, type=A
; alloc: %b, type=B
escape(a)
; alloc: %b, type=B
escape(b)
; empty state

Keep track of allocations which
haven't yet escaped

Tracked allocations
State tracking

; empty state
a = new A
; alloc: %a, type=A
b = new B
; alloc: %a, type=A
; alloc: %b, type=B
escape(a)
; alloc: %b, type=B
escape(b)
; empty state

Keep track of allocations which
haven't yet escaped

Tracked pointers
State tracking

a = new A
; alloc: %a, type=A
a.8 = getelementptr a, 8
; alloc: %a, type=A
; alias: %a.8 - %a +8
a.8.i32 = bitcast a.8 to i32*
; alloc: %a, type=A
; alias: %a.8 - %a +8
; alias: %a.8.i32 - %a +8

• Keep track of all pointers to
tracked allocations

• Including derived pointers

Tracked pointers

• Keep track of all pointers to
tracked allocations

• Including derived pointers

State tracking

a = new A
; alloc: %a, type=A
a.8 = getelementptr a, 8
; alloc: %a, type=A
; alias: %a.8 - %a +8
a.8.i32 = bitcast a.8 to i32*
; alloc: %a, type=A
; alias: %a.8 - %a +8
; alias: %a.8.i32 - %a +8

Points-to graph

• Tracked pointers can be stored
in unescaped objects

• Need to track these pointers

• For example:

• Object can escape if the
holder object escapes

State tracking
a = new A
; alloc: %a, type=A
b = new B
; alloc: %a, type=A
; alloc: %b, type=B
a.field = b ; b doesn't escape
; alloc: %a, type=A
; field = %b
; alloc: %b, type=B
escape(a);
; both a and b escaped

Points-to graph

• Tracked pointers can be stored
in unescaped objects

• Need to track these pointers

• For example:

• Object can escape if the
holder object escapes

State tracking
a = new A
; alloc: %a, type=A
b = new B
; alloc: %a, type=A
; alloc: %b, type=B
a.field = b ; b doesn't escape
; alloc: %a, type=A
; field = %b
; alloc: %b, type=B
escape(a);
; both a and b escaped

Points-to graph
State tracking

a = new A
; alloc: %a, type=A
b = new B
; alloc: %a, type=A
; alloc: %b, type=B
a.field = b
; alloc: %a, type=A
; field = %b
; alloc: %b, type=B
b' = a.field
; alloc: %a, type=A
; field = %b
; alloc: %b, type=B
; alias: %b'

• Tracked pointers can be stored
in unescaped objects

• Need to track these pointers

• For example:

• Load from an unescaped
object might be an alias to
another allocation

Points-to graph
State tracking

a = new A
; alloc: %a, type=A
b = new B
; alloc: %a, type=A
; alloc: %b, type=B
a.field = b
; alloc: %a, type=A
; field = %b
; alloc: %b, type=B
b' = a.field
; alloc: %a, type=A
; field = %b
; alloc: %b, type=B
; alias: %b'

• Tracked pointers can be stored
in unescaped objects

• Need to track these pointers

• For example:

• Load from an unescaped
object might be an alias to
another allocation

Allocation state
State tracking

a = new A
; alloc: %a, type=A
a.field = b
; alloc: %a, type=A
; field = %b
a.int = 5
; alloc: %a, type=A
; field = %b
; int = 5

For escape analysis we only need
pointer fields, but our
implementation tracks all fields

Example
Compute block out states

a = new A
b = new B
; alloc: %a, type=A
; alloc: %b, type=B

a.f = 4
escape(b)
; escaped allocation %b
; alloc: %a, type=A
; f = 4

a.f = 5
; alloc: %a, type=A
; f = 5
; alloc: %b, type=B

Merge incoming states
Example

a.f = 4
escape(b)
; escaped allocation %b
; alloc: %a, type=A
; f = 4

a.f = 5
; alloc: %a, type=A
; f = 5
; alloc: %b, type=B

?

Merge incoming states

Take an intersection of tracked allocations across all incoming paths

If there is a path where an allocation escaped — the allocation is escaped in the
merge state as well

MergedState . TrackedAllocations = ⋃
S∈IncomingStates

S . TrackedAllocations

Merge incoming states
For every allocation in the intersection

• Compute tracked pointers

• Produce merged allocation state

• For every field in the allocation produce a value describing merged field value

• If different values come from different paths produce a (virtual) PHI value

• Don’t materialize PHINodes in the IR during analysis

MergedState . TrackedPointers = ⋂
S∈IncomingStates

S . TrackedPointers

Merge incoming states
Example

a.f = 4
escape(b)
; escaped allocation %b
; alloc: %a, type=A
; f = 4

a.f = 5
; alloc: %a, type=A
; f = 5
; alloc: %b, type=B

; escaped allocation %b
; alloc: %a, type=A
; f = vphi 5, 4

• If there is a cycle the back edge
state will be unknown

• Perform optimistic merge

• Assume the back edge doesn’t
affect the merged state

• Once the back edge state is
available re-evaluate the merge

• The tracked state is supposed to be
a lattice, so the iteration eventually
converges

Handling CFG cycles
a = new A
; alloc: %a, type=A

a.f = 1

• If there is a cycle the back edge
state will be unknown

• Perform optimistic merge

• Assume the back edge doesn’t
affect the merged state

• Once the back edge state is
available re-evaluate the merge

• The tracked state is supposed to be
a lattice, so the iteration eventually
converges

Handling CFG cycles
a = new A
; alloc: %a, type=A

; alloc: %a, type=A
a.f = 1
; alloc: %a, type=A
; f = 1

• If there is a cycle the back edge
state will be unknown

• Perform optimistic merge

• Assume the back edge doesn’t
affect the merged state

• Once the back edge state is
available re-evaluate the merge

• The tracked state is supposed to be
a lattice, so the iteration eventually
converges

Handling CFG cycles
a = new A
; alloc: %a, type=A

; alloc: %a, type=A
; f = vphi 0, 1
a.f = 1
; alloc: %a, type=A
; f = 1

Agenda

• Introductions

• CaptureTracking analysis

• Falcon’s FlowSensitiveEA analysis

• FlowSensitiveEA transforms

• Performance results

• Conclusion

Analysis invalidation/update

• Analysis maintains non-trivial state

• Allocations with all of their fields

• Currently doesn’t support updates as the IR is transformed

• Usually it’s hard to get it right

Analysis invalidation/update

• Instead we collect the transformations based on EA and then apply

1. Build EA

2. Collect transforms

3. Discard EA

4. Apply transforms

• Only care about update/invalidation of individual transforms

• ValueHandles do the job

FlowSensitiveEA users

• Currently is organized as a single pass which does various transforms using the
analysis

• Scalar replacement as a series of transforms like

• Store-load forwarding for unescapes objects

• Constant folding of comparisons

• Dematerialization in deopt states

• Downgrade of thread safe operations - e.g. locks/atomics

• Dead store elimination for unescaped objects

Integrate with AliasAnalysis

• We have ad-hoc transforms for unescapes allocations

• Store-load forwarding, dead store elimination, etc

• LLVM already has these optimizations, we just need to feed the results of the
analysis to the existing transforms

• It’s hard because we need to solve update/invalidation problem

Agenda

• Introductions

• CaptureTracking analysis

• Falcon’s FlowSensitiveEA analysis

• FlowSensitiveEA transforms

• Scalar replacement example

• Performance results

• Conclusion

• If an allocation doesn’t escape
we want to

• Scalarize its fields

• Eliminate the allocation

Scalar replacement

a = new A
a.f = 5
b = foo()
x = a.f
if (a == b) ...

Rewrite allocation uses

• Store-load forwarding to
scalarize the fields

Scalar replacement

a = new A
a.f = 5
b = foo()
; alloc: %a, type=A
; f = 5
x = a.f
if (a == b) ...

Rewrite allocation uses

• Store-load forwarding to
scalarize the fields

Scalar replacement

a = new A
a.f = 5
b = foo()
x = 5
if (a == b) ...

Rewrite allocation uses

• Store-load forwarding to
scalarize the fields

• Note: this can also be done by
EarlyCSE/GVN

• But they don’t benefit from flow-
sensitive EA facts, so are less
powerful

Scalar replacement

a = new A
a.f = 5
b = foo()
x = 5
if (a == b) ...

Rewrite allocation uses

• Constant fold comparisons of
unescapes pointers

Scalar replacement

a = new A
a.f = 5
b = foo()
x = 5
; alloc: %a, type=A
; f = 5
if (a == b) ...

Rewrite allocation uses

• Constant fold comparisons of
unescapes pointers

Scalar replacement

a = new A
a.f = 5
b = foo()
x = 5
if (false) ...

Rewrite allocation uses

• Constant fold comparisons of
unescapes pointers

• Note: this can also be done by
InstSimplify

• But again, it doesn’t have access
to EA facts

Scalar replacement

a = new A
a.f = 5
b = foo()
x = 5
if (false) ...

Rewrite allocation uses

Are we done yet?

Scalar replacement

a = new A
a.f = 5
b = foo()
x = 5
if (false) ...

Rewrite allocation uses

Deopt bundle use prevents
elimination of the allocation!

Scalar replacement

a = new A
a.f = 5
b = foo() [deopt(a)]
x = 5
if (false) ...

Deoptimizations
Side note

• Falcon uses speculative assumptions about the world to optimize the code

• E.g. constant fold a load from a global field assuming it will never change

• We rely on runtime to check and invalidate the assumptions

• If any of the assumptions is invalidated the compiled code is no longer
correct and should be deoptimized

• If we are currently executing the code the execution is resumed in the
interpreter

Side note

• Any call can invalidate some of
the speculative assumptions of
the caller

• In this case we can’t resume
execution of the compiler code
on return

• Instead jump to runtime to
deoptimize and resume
execution in the interpreter

Deoptimizations

b = invoke foo()

normal
return

unwind
return

deoptimize
return

Side note

• Deopt state contains the values
describing the abstract state to
resume execution from

• Interpreter expression stack,
locals, etc.

• Only used if deoptimization
occurs

=> doesn’t caputre/escape

Deoptimizations

normal
return

unwind
return

deoptimize
return

b = invoke foo() [deopt(a)]

Dematerialization

• Replace the allocation value with
symbolic description on how to
materialize the same allocation
on deopt path [1]

• Effectively sinking the allocation
into deoptimization path

Scalar replacement

a = new A
a.f = 5
b = foo() [deopt(a)]
x = 5
if (false) ...

[1] "Run-time support for optimizations based on escape analysis." (Kotzmann, Mössenböck 2007)

https://ieeexplore.ieee.org/abstract/document/4145104
https://ieeexplore.ieee.org/abstract/document/4145104

Dematerialization

• Use allocation state to produce
symbolic descrption

• We know the exact state of the
allocation, i.e. we know values
for all fields

Scalar replacement

a = new A
a.f = 5
; alloc: %a, type=A
; f = 5
b = foo() [deopt(a)]
x = 5

Dematerialization

• Use allocation state to produce
symbolic descrption

• We know the exact state of the
allocation, i.e. we know values
for all fields

Scalar replacement

a = new A
a.f = 5
; alloc: %a, type=A
; f = 5
b = foo() [
 lazy_object #1 {new A(), f=5},
 deopt(#1)]
x = 5

Eliminate unused allocations

• Now the allocation becomes
removable

• Has only initializing uses

Scalar replacement

a = new A
a.f = 5
b = foo() [
 lazy_object #1 {new A(), f=5},
 deopt(#1)]
x = 5

Eliminate unused allocations

• Now the allocation becomes
removable

• Has only initializing uses

Scalar replacement

b = foo() [
 lazy_object #1 {new A(), f=5},
 deopt(#1)]
x = 5

Agenda

• Introductions

• CaptureTracking analysis

• Falcon’s FlowSensitiveEA analysis

• FlowSensitiveEA transforms

• EA-driven loop unroll example

• Performance results

• Conclusion

• Newly allocated unescaped
linked-list-like structure

• While loop iterating over the
structure

• This loop is non-analyzable!

EA-driven loop unroll node3 = new ListNode()
node3.f = 3
node3.next = null
node2 = new ListNode()
node2.f = 2
node2.next = node3
node1 = new ListNode()
node1.f = 1
node1.next = node2

summ = 0
current = node3
while (current != null) {
 summ += current.f
 current = current.next
}

EA-driven loop unroll
; alloc: %node3, type=ListNode
; next = %node2
; alloc: %node2, type=ListNode
; next = %node1
; alloc: %node1, type=ListNode
; next = null

summ = 0
current = node3
while (current != null) {
 summ += current
 current = current.next
}

• FlowSensitiveEA effectively
models the object graph for this
structure

• This model can be used to
rewrite the loop

• And make it analyzable/
unrollable

; alloc: %node3, type=ListNode
; next = %node2
; alloc: %node2, type=ListNode
; next = %node1
; alloc: %node1, type=ListNode
; next = null

loop:
 %curr = phi [%node3, %incoming], [%next, %backedge]
 %cont = icmp eq, %curr, null
 br %cont, %exit, %cont

cont:
 ...
 %next = load %curr.next
 br %loop

exit:

; alloc: %node3, type=ListNode
; next = %node2
; alloc: %node2, type=ListNode
; next = %node1
; alloc: %node1, type=ListNode
; next = null

loop:
 %curr = phi [%node3, %incoming], [%next, %backedge]
 %cont = icmp eq, %curr, null
 br %cont, %exit, %cont

cont:
 ...
 %next = load %curr.next
 br %loop

exit:

Identify iteration over
linked-list-like structure

loop:
 %curr = phi [%node3, %incoming], [%next, %backedge]
 %cont = icmp eq, %curr, null
 br %cont, %exit, %cont

cont:
 ...
 %next = load %curr.next
 br %loop

exit:

next=%node2

%node3

next=%node1 next=null

%node2 %node1

loop:
 %curr = phi [%node3, %incoming], [%next, %backedge]
 %canonical.iv = phi [0, %incoming], [%iv.next, %backedge]
 %cont = icmp eq, %canonical.iv, 3
 br %cont, %exit, %cont

cont:
 ...
 %iv.next = add %canonical.iv, 1
 %next = load %curr.next
 br %loop

exit:

next=%node2

%node3

next=%node1 next=null

%node2 %node1

Insert canonical IV

Rewrite the exit in term of
the canonical IV

Now the loop exit is analyzable!

• The loop is now analyzable and
unrollable

EA-driven loop unroll
node3 = new ListNode()
node3.f = 3
node3.next = null
node2 = new ListNode()
node2.f = 2
node2.next = node3
node1 = new ListNode()
node1.f = 1
node1.next = node2
summ = 0
; Unrolled loop
summ += node3.f
summ += node2.f
summ += node1.f

• The loop is now analyzable and
unrollable

• After unrolling store-load
forwarding kicks in

EA-driven loop unroll
node3 = new ListNode()
node3.f = 3
node3.next = null
node2 = new ListNode()
node2.f = 2
node2.next = node3
node1 = new ListNode()
node1.f = 1
node1.next = node2
summ = 0
; Unrolled loop
summ += node3.f
summ += node2.f
summ += node1.f

• The loop is now analyzable and
unrollable

• After unrolling store-load
forwarding kicks in

EA-driven loop unroll
node3 = new ListNode()
node3.f = 3
node3.next = null
node2 = new ListNode()
node2.f = 2
node2.next = node3
node1 = new ListNode()
node1.f = 1
node1.next = node2
summ = 0
; Unrolled loop
summ += 3
summ += 2
summ += 1

• The loop is now analyzable and
unrollable

• After unrolling store-load
forwarding kicks in

• The allocations become
removable

EA-driven loop unroll

node3 = new ListNode()
node3.f = 3
node3.next = null
node2 = new ListNode()
node2.f = 2
node2.next = node3
node1 = new ListNode()
node1.f = 1
node1.next = node2
summ = 6

• The loop is now analyzable and
unrollable

• After unrolling store-load
forwarding kicks in

• The allocations become
removable

EA-driven loop unroll

summ = 6

Agenda

• Introductions

• CaptureTracking analysis

• Falcon’s FlowSensitiveEA analysis

• FlowSensitiveEA transforms

• Performance results

• Conclusion

Performance results

• Compare default (with FlowSensitiveEA enabled) with

• Disabled allocation state tracking (no points-to graph)

• Object graphs are still handled by iterative optimization

• Disabled FlowSensitiveEA pass

-100

-75

-50

-25

0

25

50

FlowSensitiveEA disabled 
46/234 regression >5% 

(19% of all tests) 
-16.4% geomean

No allocation state tracking
36/234 regression >5% 

(15% of all tests)
-3.6% geomean

SpecJVM 2008, SpecJBB 2015, Dacapo, Renaissance and others

-90

-67.5

-45

-22.5

0

22.5

45

FlowSensitiveEA disabled 
140/240 regression >5% 

(58% of all tests) 
-32.4% geomean

No allocation state tracking
90/240 regression >5% 

(38% of all tests)
-19.5% geomean

java.util.stream API benchmarks

Agenda

• Introductions

• CaptureTracking analysis

• Falcon’s FlowSensitiveEA analysis

• FlowSensitiveEA transforms

• Performance results

• Conclusion

Conclusion

• Java code has a lot of opportunities for EA

• We identified some limitations in CaptureTracking

• E.g. handling of unescaped object graphs

• We implemented downstream analysis and transforms to solve those
limitations

• As a result observed substantial performance gains

• Integration with existing passes in non-trivial due to update/invalidation
problem

Questions?

