
Adrian Prantl
Vedant Kumar

How to update debug info
in compiler transformations

1. What is debug info?

2. Managing source locations

3. Tooling for writing debug info tests

1. What is debug info?

2. Managing source locations

3. Tooling for writing debug info tests

Source Code Binary

0x00100000:

0x00100008:

0x0010000a:

0x0010000d:

0x00100010:

0x00100018:

Users of debug info

Debuggers Profilers Coverage Instrumentation

LLVM Debug Info crash course
Kinds of debug information

Source Locations

load i32*, i32** %x.addr, !dbg !14

⋮

!14 = !DILocation(line: 22, column: 4, scope: !0)

Inlining Information

!23 = !DILocation(line: 2, column: 8, scope: !24,

 inlinedAt: !25)

Data Types

!1 = !DIBasicType(name: "int", size: 32,

 align: 32, encoding: DW_ATE_signed))Source Variables and their Locations

call void @llvm.dbg.declare(metadata i32* %X,

 metadata !11,

 !DIExpression())

⋮

!11 = !DILocalVariable(name: "X", scope: !4,

 file: !1, line: 2,

 type: !12)

Kinds of debug information

Source Locations

load i32*, i32** %x.addr, !dbg !14

⋮

!14 = !DILocation(line: 22, column: 4, scope: !0)

Inlining Information

!23 = !DILocation(line: 2, column: 8, scope: !24,

 inlinedAt: !25)

Data Types

!1 = !DIBasicType(name: "int", size: 32,

 align: 32, encoding: DW_ATE_signed))

Source Variables and their Locations
call void @llvm.dbg.declare(metadata i32* %X,

 metadata !11,

 !DIExpression())

⋮

!11 = !DILocalVariable(name: "X", scope: !4,

 file: !1, line: 2,

 type: !12)

Source Locations

load i32*, i32** %x.addr, !dbg !14

⋮

!14 = !DILocation(line: 22, column: 4, scope: !0)

Inlining Information

!23 = !DILocation(line: 2, column: 8, scope: !24,

 inlinedAt: !25)

Source Variables and their Locations
call void @llvm.dbg.declare(metadata i32* %X,

 metadata !11,

 !DIExpression())

⋮

!11 = !DILocalVariable(name: "X", scope: !4,

 file: !1, line: 2,

 type: !12)

Data Types

!1 = !DIBasicType(name: "int", size: 32,

 align: 32, encoding: DW_ATE_signed))

Kinds of debug information

Don't worry about this

Source Locations

load i32*, i32** %x.addr, !dbg !14

⋮

!14 = !DILocation(line: 22, column: 4, scope: !0)

Inlining Information

!23 = !DILocation(line: 2, column: 8, scope: !24,

 inlinedAt: !25)

Source Variables and their Locations
call void @llvm.dbg.declare(metadata i32* %X,

 metadata !11,

 !DIExpression())

⋮

!11 = !DILocalVariable(name: "X", scope: !4,

 file: !1, line: 2,

 type: !12)

Data Types

!1 = !DIBasicType(name: "int", size: 32,

 align: 32, encoding: DW_ATE_signed))

Kinds of debug information

Don't worry about this

Don't worry about this

Source Locations

load i32*, i32** %x.addr, !dbg !14

⋮

!14 = !DILocation(line: 22, column: 4, scope: !0)

Inlining Information

!23 = !DILocation(line: 2, column: 8, scope: !24,

 inlinedAt: !25)

Data Types

!1 = !DIBasicType(name: "int", size: 32,

 align: 32, encoding: DW_ATE_signed))

Source Variables and their Locations
call void @llvm.dbg.declare(metadata i32* %X,

 metadata !11,

 !DIExpression())

⋮

!11 = !DILocalVariable(name: "X", scope: !4,

 file: !1, line: 2,

 type: !12)

Kinds of debug information

Don't worry about this

Don't worry about this

Stay tuned!

1. What is debug info?

2. Managing source locations

3. Tooling for writing debug info tests

• Debug info maps instructions to source locations

• An instruction DebugLoc contains file, line/column, scope and inline
information

• Represented as DILocation LLVM metadata

Source Locations

load i32*, i32** %x.addr, !dbg !14

⋮

!14 = !DILocation(line: 22, column: 4, scope: !0)

Debug info in optimized programs

• Compiler's job is to delete, reorder, merge, sink/hoist, clone, & create
instructions to maximize performance.

How to keep a meaningful mapping to the source code?

• Spoiler alert. It's not generally possible to unambiguously map source
location to optimized code.

• Different consumers have different priorities.

• Treat debug info preservation as an optimization problem.

Principles for updating debug info

Principles for updating debug info

1. Make no misleading statements about the program

• An optimized version of a program should appear to take the same conditions as the
unoptimized version (assuming full determinism)

• Don't speculate! No info is better than info that is only correct sometimes.

Principles for updating debug info

1. Make no misleading statements about the program

• An optimized version of a program should appear to take the same conditions as the
unoptimized version (assuming full determinism)

• Don't speculate! No info is better than info that is only correct sometimes.

2. Provide as much information as possible

• When it's not misleading to preserve a source location, do so!

What can the compiler do?
Our menu of options

🗑 Delete

⚗ Merge

🤗 Keep the original location

What can the compiler do?
Our menu of options

🤗 Keep the original location

⚗ Merge

🗑 Delete

What can the compiler do?
Our menu of options

🤗 Keep the original location

⚗ Merge

🗑 Delete

!DILocation(line: , column: , scope: !25)22 4

!DILocation(line: , column: , scope: !25)25 8

!DILocation(line: , column: , scope: !25)
∩

 0 0

Lines start counting at 1.

Line 0 denotes «no source location».

Scopes correspond to nested {} in C++

and determine which variables are visible.

What can the compiler do?
Our menu of options

⚗ Merge

🗑 Delete

🤗 Keep the original location

%foo = add i32 %i, i32 1, !dbg !15

Block-local transformations

✅ Profilers
⚠ Debuggers

Replace or Expand

(add)x x

!dbg !1

(shl)x 1

(ctpop)x0..127

!dbg !1

(add (ctpop)

 (ctpop))

x0..63
x64..127

?

? ?

?

Examples taken from DAGCombine and Legalizer.

Replace or Expand

(add)x x

!dbg !1

(shl)x 1

(ctpop)x0..127

!dbg !1

(add (ctpop)

 (ctpop))

x0..63
x64..127

?

? ?

?

Try to keep the debug location. 1. Keep

2. Merge

3. Delete

Possible Actions

Replace or Expand

(add)x x

1. Keep

2. Merge

3. Delete

!dbg !1

(shl)x 1

(ctpop)x0..127

!dbg !1

(add (ctpop)

 (ctpop))

x0..63
x64..127

!dbg !1

Possible Actions

Try to keep the debug location.

!dbg !1 !dbg !1

!dbg !1

Would keeping create misleading information?
1. Don't mislead!

2. Preserve!

Principles

Replace or Expand

(add)x x

!dbg !1

(shl)x 1

(ctpop)x0..127

!dbg !1

(add (ctpop)

 (ctpop))

x0..63
x64..127

!dbg !1

Try to keep the debug location.

!dbg !1 !dbg !1

!dbg !1

Does not change conditions which appear taken. Preserve!
1. Don't mislead!

2. Preserve!

Principles

1. Keep

2. Merge

3. Delete

Possible Actions

Instruction reordering

%sum = add i32 %x, %y

⋮

%prod = mul i32 %x, %x

!dbg !1

!dbg !2

%prod = mul i32 %x, %x

⋮

%sum = add i32 %x, %y

?

?

Example taken from the MI instruction scheduler.

Instruction reordering
Try to keep the debug location.

%sum = add i32 %x, %y

⋮

%prod = mul i32 %x, %x

!dbg !1

!dbg !2

%prod = mul i32 %x, %x

⋮

%sum = add i32 %x, %y

?

?

1. Keep

2. Merge

3. Delete

Possible Actions

%sum = add i32 %x, %y

⋮

%prod = mul i32 %x, %x

!dbg !1

!dbg !2

%prod = mul i32 %x, %x

⋮

%sum = add i32 %x, %y

Instruction reordering
Try to keep the debug location.

!dbg !2

!dbg !1

Would keeping create misleading information?
1. Don't mislead!

2. Preserve!

Principles

1. Keep

2. Merge

3. Delete

Possible Actions

Instruction reordering
Try to keep the debug location.

Does not change conditions which appear taken. Preserve!

%sum = add i32 %x, %y

⋮

%prod = mul i32 %x, %x

!dbg !1

!dbg !2

%prod = mul i32 %x, %x

⋮

%sum = add i32 %x, %y

!dbg !2

!dbg !1

1. Don't mislead!

2. Preserve!

Principles

1. Keep

2. Merge

3. Delete

Possible Actions

Inter-block transformations

⚠ Profilers
⚠ Debuggers

B_PRAGM

Fold block into unique predecessor

⋮

br label %A

A:

store i32 1, i32* %x

⋮

!dbg !1

⋮

store i32 1, i32* %x

⋮

?

Example taken from SimplifyCFG.

Fold block into unique predecessor
Try to keep the debug location.

1. Don't mislead!

2. Preserve!

Principles

1. Keep

2. Merge

3. Delete

Possible Actions

⋮

br label %A

⋮

store i32 1, i32* %x

⋮

!dbg !1

A:

store i32 1, i32* %x

⋮

!dbg !1

Fold block into unique predecessor
Try to keep the debug location.

Does not change conditions which appear taken. Preserve!
1. Don't mislead!

2. Preserve!

Principles

1. Keep

2. Merge

3. Delete

Possible Actions

⋮

br label %A

⋮

store i32 1, i32* %x

⋮

!dbg !1

A:

store i32 1, i32* %x

⋮

!dbg !1

Merging loads/stores

br i1 %cond, label %A, label %B

store i32 1, i32* %x

⋮

br label %exit

store i32 1, i32* %x

⋮

br label %exit

exit:

⋮

!dbg !1 !dbg !2

br i1 %cond, label %A, label %B

⋮

br label %exit

⋮

br label %exit

exit:

 store i32 1, i32* %x

?

Example taken from MergedLoadStoreMotion.

Merging loads/stores 1. Keep

2. Merge

3. Delete

Possible Actions

Try to keep the debug locations.

br i1 %cond, label %A, label %B

store i32 1, i32* %x

⋮

br label %exit

store i32 1, i32* %x

⋮

br label %exit

exit:

⋮

!dbg !1 !dbg !2

br i1 %cond, label %A, label %B

⋮

br label %exit

⋮

br label %exit

exit:

 store i32 1, i32* %x

?

exit:

 store i32 1, i32* %x

Merging loads/stores 1. Keep

2. Merge

3. Delete

Possible Actions

Try to keep the debug locations.

Can't do it yet.

Debug info consumers need to pick one location.

store i32 1, i32* %x

⋮

br label %exit

store i32 1, i32* %x

⋮

br label %exit

exit:

⋮

!dbg !1 !dbg !2

⋮

br label %exit

⋮

br label %exit

!dbg !1 !dbg !2

1. Don't mislead!

2. Preserve!

Principles

br i1 %cond, label %A, label %B br i1 %cond, label %A, label %B

exit:

 store i32 1, i32* %x

Use Instruction::applyMergedLocation().

Merging loads/stores 1. Keep

2. Merge

3. Delete

Possible Actions

Try to merge the debug locations.

store i32 1, i32* %x

⋮

br label %exit

store i32 1, i32* %x

⋮

br label %exit

exit:

⋮

!dbg !1 !dbg !2

⋮

br label %exit

⋮

br label %exit

!dbg !3

1. Don't mislead!

2. Preserve!

Principles

br i1 %cond, label %A, label %B br i1 %cond, label %A, label %B

Speculative execution

start:

 br i1 %cond, label %A, label %B

A:

 %and = and i1 %cond, %mask

 br label %B

B:

 %phi = phi i1 [%and, %A], [%cond, %start]

start:

 %and = and i1 %cond, %mask

 %sel = select i1 %cond,

 i1 %and,

 i1 %cond

!dbg !1

Example taken from SimplifyCFG.

?

start:

 %and = and i1 %cond, %mask

 %sel = select i1 %cond,

 i1 %and,

 i1 %cond

Speculative execution 1. Keep

2. Merge

3. Delete

Possible Actions

Try to keep the debug location.

Must not do it.

Makes it look like %cond is always true!

!dbg !1

1. Don't mislead!

2. Preserve!

Principles

start:

 br i1 %cond, label %A, label %B

A:

 %and = and i1 %cond, %mask

 br label %B

B:

 %phi = phi i1 [%and, %A], [%cond, %start]

!dbg !1

start:

 %and = and i1 %cond, %mask

 %sel = select i1 %cond,

 i1 %and,

 i1 %cond

Speculative execution 1. Keep

2. Merge

3. Delete

Possible Actions

Try to merge the debug location.

Can't do it.

Nothing to merge the location with.

?

start:

 br i1 %cond, label %A, label %B

A:

 %and = and i1 %cond, %mask

 br label %B

B:

 %phi = phi i1 [%and, %A], [%cond, %start]

!dbg !1

Speculative execution 1. Keep

2. Merge

3. Delete

Possible Actions

Try to merge the debug location.

Drop the location.

Use Instruction::dropLocation().

start:

 %and = and i1 %cond, %mask

 %sel = select i1 %cond,

 i1 %and,

 i1 %cond

1. Don't mislead!

2. Preserve!

Principles

start:

 br i1 %cond, label %A, label %B

A:

 %and = and i1 %cond, %mask

 br label %B

B:

 %phi = phi i1 [%and, %A], [%cond, %start]

!dbg !1

1. What is debug info?

2. Managing source locations

3. Tooling for writing debug info tests

Requirements for a debug info test

• A debug info test validates source locations after a transformation

• Requires reduced IR to exercise the correct transformation

• Requires reduced debug info metadata (possibly initially generated by a
frontend)

Converting tests into debug info tests

• Easier than ever to test IR or MIR transformations with debug info present

• Use opt -debugify to attach debug info metadata to IR instructions

• Use llc -run-pass=mir-debugify to do the same to MIR instructions

• MIR debugify can also be applied during GlobalISel

• Documentation

• https://llvm.org/docs/HowToUpdateDebugInfo.html

define void @f(i32* %x) {

 store i32 1, i32* %x

 ret void

}

Pre-debugify IR

define void @f(i32* %x) !dbg !7 {

 store i32 1, i32* %x, !dbg !8

 ret void, !dbg !9

}

!7 = !DISubprogram(name: "f", ...)

!8 = !DILocation(line: 1, ...)

!9 = !DILocation(line: 2, ...)

After opt -debugify -debugify-level=locations

Writing a good debug info test

• Check that the correct location is used, not just any location

• Do not hardcode metadata numbers into CHECK lines (they change!)

• Minimize the amount of metadata present (debugify helps with this)

• Try opt -strip -debugify to pare down to synthetic locations only

define void @f(i32* %x) !dbg !7 {

 ; CHECK: store i32 1, i32* %x, !dbg !8

 store i32 1, i32* %x, !dbg !8

 ret void, !dbg !9

}

define void @f(i32* %x) !dbg !7 {

 ; CHECK: store i32 1, i32* %x, !dbg ![[storeLoc:[0-9]+]]

 store i32 1, i32* %x, !dbg !8

 ret void, !dbg !9

}

; CHECK: ![[storeLoc]] = !DILocation(line: 1

Recap

• Debug info has a large and diverse set of applications

• Every transformation can affect the source location mapping

• Simple guidelines available to help manage source locations

• Tools available to help write clean IR or MIR-based debug info tests

 https://llvm.org/docs/HowToUpdateDebugInfo.html

