
A walk through Flang OpenMP lowering:
From FIR to LLVMIR

Arnamoy Bhattacharyya*, Peixin Qiao, Bryan Chan
Huawei Technologies Canada

Presented in LLVM Workshop, within CGO 2022, Apr‘22

1

Why this talk?

• LLVM Flang (replacing Classic Flang) under active development.
• Written in C++17
• Uses MLIR

• Volunteers needed for contribution in OpenMP
• Parsing support is there for OpenMP 4.5
• Significant portion of sema checks are done

• OpenMP 1.1 support VERY soon

• OpenMP 2.5, 3.1 etc are needing active development.
• A “getting started” for lowering OpenMP code for LLVM Flang

*https://docs.google.com/spreadsheets/d/1FvHPuSkGbl4mQZRAwCIndvQx9dQboffiD-xD0oqxgU0/edit#gid=0

2

https://docs.google.com/spreadsheets/d/1FvHPuSkGbl4mQZRAwCIndvQx9dQboffiD-xD0oqxgU0/edit

Goal: Implement the lowering of basic SIMD
construct
From OpenMP5.0 standard Section 2.9.3.1
Summary The simd construct can be applied to a loop to indicate that the loop can be
transformed into a SIMD loop (that is, multiple iterations of the loop can be executed
concurrently using SIMD instructions).

*https://www.openmp.org/spec-html/5.0/openmpsu42.html

3

!$omp do simd [clause[[,] clause] ...]
do-loops

[!$omp end do simd [nowait]]

https://www.openmp.org/spec-html/5.0/openmpsu42.html

Flang compiler flow

• Parses Fortran 2018
• Performs Semantic Checks
• Lowers to high level IR FIR

• LLVM IR is too low level for
Fortran

• Uses the MLIR framework
• Converts to a lower level IR,

LLVM MLIR
• Lowers to LLVM IR

4* Picture courtesy: Kiran Chandramohan, ARM

*

Background MLIR

• Multi-level Intermediate Representation
• A new approach for building compiler infrastructure

• Can use to build SSA-based IR
• Provides a declarative system for defining IRs
• Provides common infrastructure (printing, parsing, location tracking, pass

management etc.)
• Flang compiler uses MLIR based FIR dialect as its IR
• FIR models the Fortran language portion

• Does not have a representation for OpenMP constructs
• Add a dialect in MLIR for OpenMP

• MLIR provides common framework for representing OpenMP and Fortran
• Makes OpenMP codegen reuseable

5

OpenMP IRBuilder

• Generating LLVM IR involves two important tasks
• Inserting calls to OpenMP runtime
• Outlining OpenMP regions

• Code exists in clang for these tasks
• Reuse codegen from Clang

• Refactor codegen for OpenMP constructs in Clang and move to LLVM
directory
• llvm/lib/Frontend/OpenMP

7

OpenMP plan for Flang

8

*
* Picture courtesy: Kiran Chandramohan, ARM

OMPIRBuilder support à
https://reviews.llvm.org/rG9fbd33ad623d2b576f
c563545bbdf2c257cdf709

MLIR Support à
https://reviews.llvm.org/rG0e9198c3e95adced7213
999dcd14daed4acfd16c

https://reviews.llvm.org/rG9fbd33ad623d2b576fc563545bbdf2c257cdf709
https://reviews.llvm.org/rG0e9198c3e95adced7213999dcd14daed4acfd16c

Implementation of lowering of SIMD
construct

9

Steps for implementation

1. Read about the behavior of the construct/clause from OpenMP
website (refer OpenMP spec for details)

10

About SIMD construct

11

2.9.3.1 simd Construct

Summary The simd construct can be applied to a loop to indicate that the loop can be transformed into a SIMD
loop (that is, multiple iterations of the loop can be executed concurrently using SIMD instructions).

!$omp simd
do-loops

[!$omp end simd]

Steps for implementation

1. Read about the behavior of the construct/clause from OpenMP
website

2. Identify the IR changes necessary

12

Visualize the changes necessary in the final IR

• Write a simple test case and look at the IR

13

void omp_simd() {
int i = 0;
int a[16];
#pragma omp simd
for (int i=0; i <16; i++) {

a[i] = i;
}
return;

}

Visualize the changes necessary in the final IR

14

Summary of IR changes

• Insert llvm.access.group metadata to the Memory access instructions
in the loop
• Change the llvm.loop metadata associated with the loop
• No need to insert any omp runtime calls

15

Steps for implementation

1. Read about the behavior of the construct/clause from OpenMP
website

2. Identify the IR changes necessary
3. Identify if IRBuilder support is needed, implement

16

Where is IRBuilder used?

17

Is IRBuilder support needed?

• Rule of thumb:
• If implementing lowering of new directives, the answer is most probably yes
• For implementing clauses, the answer is probably no

18

!$omp do simd
do-loops

[!$omp end do simd

!$omp do simd lastprivate(a)
do-loops

[!$omp end do simd

Directive à yes Clause à No

IRBuilder support for SIMD
• Steps necessary to support Parse tree -> LLVM IR lowering*

• Create a loop
• Add metadata

• OMPIRBuilder has an existing struct to represent canonical loop and an API to create
one.

* for Clang

19

Strategy for IRBuilder support

• When we encounter SIMD directive in the parse tree, create a
canonical loop CL first using the API
• In clang/lib/CodeGen/CGStmt.cpp

• Define a function that can take the newly created CL and apply the
metadata changes necessary.

void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CL)

• In llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp

20

1. Creating the canonical loop

• clang/lib/CodeGen/CGStmt.cpp à code to emit LLVM
code from AST Stmt nodes

21

void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
…..

…

switch (S->getStmtClass()) {

case Stmt::OMPSimdDirectiveClass:
EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
break;

1. Creating the canonical loop

22

Function that is called while lowering the SIMD
directive

Check is compiler is using OMPIRBuilder, also check
for any condition e.g. unsupported clauses

Lambda call

Lowering code

CGM à per module state

Uses createCanonicalLoop()

2. Attaching the metadata (applySimd())

23

• Getting the llvm::Loop from the CanonicalLoopInfo
struct
• A bit hacky currently.

• Extracting the Basic blocks which needs to be modified with new
metadata
• Find memref instructions in the BasicBlocks and attach metadata.

2. Attaching the metadata

24

Getting the LLVM Loop from the
CanonicalLoopInfo struct

Extracting the blocks
which will be
modified with new
metadata

2. Attaching the metadata

25

2. Attaching the metadata

26

Make sure that the access group metadata is unique to each
SIMD loop

Add test cases

clang/test/OpenMP/
irbuilder_simd.cpp

à llvm-lit test to check
if the expected IR is
generated by clang

27

Add test cases

• llvm/unittests/Frontend/
OpenMPIRBuilderTest.cpp

• à Calls your implemented
functions then verifies
modules etc.

28

Steps for implementation

1. Read about the behavior of the construct/clause from OpenMP
website

2. Identify the IR changes necessary
3. Identify if IRBuilder support is needed, implement
4. Define/modify OpenMP MLIR Op

29

MLIR Operation definition

30

MLIR Operation definition

• Declaratively define OpenMP operations
• Uses tablegen

• Can define input and output operands
• Whether operations have regions inside them
• Generic or custom printers and parser
• In the file
mlir/include/mlir/Dialect/OpenMP/OpenMPOps.td

31

SIMD Operation
definition

32

Parser, Custom
printer and
verifier

• mlir/lib/Dialect/OpenMP/IR/
OpenMPDialect.cpp

33

omp.simdloop (%i1, %i2) : i32 = (%c0, %c0)
to (%c10, %c10) step (%c1, %c1) {

…
}

Parser, Custom
printer and
verifier

34

omp.simdloop (%i1, %i2) : i32=
(%c0, %c0) to (%c10, %c10)

step (%c1, %c1) {
…

}

Steps for implementation

1. Read about the behavior of the construct/clause from OpenMP
website

2. Identify the IR changes necessary
3. Identify if IRBuilder support is needed, implement
4. Define/modify OpenMP MLIR Op
5. Verify definition by implementing lowering

35

Verify definition by implementing lowering

36

Verifying your MLIR definition
• flang/lib/lower/OpenMP.cpp

• genOMP() function works on various
Fortran::parser::<Construct>
types

37

Check the parse tree for construct type

38

Creating the SimdLoop operation in genOMP()

39

• Extract lowerbound, upperbound, step (optional) from the
parse tree
• Use the extracted info to create a new SimdLoopOp
• Generate the body (region) that b.elongs inside the SimdLoopOp

Creating the SimdLoop operation in genOMP()

40

omp.simdloop (%i1) : i32= (%c1) to (%c19) step (%c1) {
<region>

}

MLIR Verification final step

41

OpenMP MLIR <-> FIR co-existence

42

Lowering the MLIR to LLVMIR

43

Lowering the MLIR to LLVMIR

• OpenMPToLLVMIRTranslation.cpp

44

Lowering the MLIR to LLVMIR

45

• Extract lower, upper bound and step from the MLIR SimdLoopOp
• Use the extracted values to generate LLVM IR using the
createCanonicalLoop() API
• Add metadata using the applySimd() API from OMPIRBuilder.

MLIR -> LLVM IR

46

Lowering to LLVMIR: TestCases
• Check for invalid operations (e.g. check if lb, ub and step has same

type of not) à mlir/test/Dialect/OpenMP/invalid.mlir

• Check if printing etc is looking good à
mlir/test/Dialect/OpenMP/ops.mlir

47

Lowering to LLVMIR: TestCases

• Check if the MLIR->LLVM IR translation is looking good
• mlir/test/Target/LLVMIR/openmp-llvm.mlir (uses mlir-translate)

48

Summary of lowering process

• Study up the operation
• Write a simple test case and look at the generated IR
• Check if OMPIRBuilder support is necessary (both clang and flang

uses it) (patch 1)
• Define/modify OpenMP MLIR Op definitions, implement lowering

(patch 2)
• Write proper test cases for both patches

49

Thank you, Questions?

• Getting in touch
• Technical calls
• flang-dev mailing list
• Join our slack channel flang-compiler.slack.com
• Check this webpage for links

(https://prereleases.llvm.org/11.0.0/rc3/tools/flang/docs/GettingInvolved.ht
ml)

50

flang-compiler.slack.com
https://prereleases.llvm.org/11.0.0/rc3/tools/flang/docs/GettingInvolved.html

