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Why this talk?

• LLVM Flang (replacing Classic Flang) under active development.
• Written in C++17
• Uses MLIR

• Volunteers needed for contribution in OpenMP
• Parsing support is there for OpenMP 4.5
• Significant portion of sema checks are done

• OpenMP 1.1 support VERY soon

• OpenMP 2.5, 3.1 etc are needing active development.  
• A “getting started” for lowering OpenMP code for LLVM Flang

*https://docs.google.com/spreadsheets/d/1FvHPuSkGbl4mQZRAwCIndvQx9dQboffiD-xD0oqxgU0/edit#gid=0
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https://docs.google.com/spreadsheets/d/1FvHPuSkGbl4mQZRAwCIndvQx9dQboffiD-xD0oqxgU0/edit


Goal: Implement the lowering of basic SIMD 
construct
From OpenMP5.0 standard Section 2.9.3.1
Summary The simd construct can be applied to a loop to indicate that the loop can be 
transformed into a SIMD loop (that is, multiple iterations of the loop can be executed 
concurrently using SIMD instructions).

*https://www.openmp.org/spec-html/5.0/openmpsu42.html
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!$omp do simd [clause[ [,] clause] ... ]
do-loops

[!$omp end do simd [nowait] ]

https://www.openmp.org/spec-html/5.0/openmpsu42.html


Flang compiler flow

• Parses Fortran 2018
• Performs Semantic Checks
• Lowers to high level IR FIR

• LLVM IR is too low level for 
Fortran

• Uses the MLIR framework
• Converts to a lower level IR, 

LLVM MLIR
• Lowers to LLVM IR

4* Picture courtesy: Kiran Chandramohan, ARM
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Background MLIR

• Multi-level Intermediate Representation
• A new approach for building compiler infrastructure

• Can use to build SSA-based IR
• Provides a declarative system for defining IRs
• Provides common infrastructure (printing, parsing, location tracking, pass 

management etc.)
• Flang compiler uses MLIR based FIR dialect as its IR
• FIR models the Fortran language portion

• Does not have a representation for OpenMP constructs
• Add a dialect in MLIR for OpenMP

• MLIR provides common framework for representing OpenMP and Fortran
• Makes OpenMP codegen reuseable
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OpenMP IRBuilder

• Generating LLVM IR involves two important tasks
• Inserting calls to OpenMP runtime
• Outlining OpenMP regions

• Code exists in clang for these tasks
• Reuse codegen from Clang

• Refactor codegen for OpenMP constructs in Clang and move to LLVM 
directory
• llvm/lib/Frontend/OpenMP
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OpenMP plan for Flang
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*
* Picture courtesy: Kiran Chandramohan, ARM

OMPIRBuilder support à
https://reviews.llvm.org/rG9fbd33ad623d2b576f
c563545bbdf2c257cdf709

MLIR Support à
https://reviews.llvm.org/rG0e9198c3e95adced7213
999dcd14daed4acfd16c

https://reviews.llvm.org/rG9fbd33ad623d2b576fc563545bbdf2c257cdf709
https://reviews.llvm.org/rG0e9198c3e95adced7213999dcd14daed4acfd16c


Implementation of lowering of SIMD 
construct
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Steps for implementation

1. Read about the behavior of the construct/clause from OpenMP
website (refer OpenMP spec for details)
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About SIMD construct
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2.9.3.1 simd Construct

Summary  The simd construct can be applied to a loop to indicate that the loop can be transformed into a SIMD 
loop (that is, multiple iterations of the loop can be executed concurrently using SIMD instructions).

!$omp simd
do-loops

[!$omp end simd]



Steps for implementation

1. Read about the behavior of the construct/clause from OpenMP
website

2. Identify the IR changes necessary
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Visualize the changes necessary in the final IR

• Write a simple test case and look at the IR
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void omp_simd() {
int i = 0;
int a[16];
#pragma omp simd
for (int i=0; i <16; i++) {

a[i] = i;
}
return;

}



Visualize the changes necessary in the final IR
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Summary of IR changes

• Insert llvm.access.group metadata to the Memory access instructions 
in the loop
• Change the llvm.loop metadata associated with the loop
• No need to insert any omp runtime calls
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Steps for implementation

1. Read about the behavior of the construct/clause from OpenMP
website

2. Identify the IR changes necessary
3. Identify if IRBuilder support is needed, implement

16



Where is IRBuilder used?
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Is IRBuilder support needed?

• Rule of thumb: 
• If implementing lowering of new directives, the answer is most probably yes
• For implementing clauses, the answer is probably no
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!$omp do simd
do-loops

[!$omp end do simd

!$omp do simd lastprivate(a)
do-loops

[!$omp end do simd

Directive à yes Clause à No



IRBuilder support for SIMD
• Steps necessary to support Parse tree -> LLVM IR lowering*

• Create a loop
• Add metadata

• OMPIRBuilder has an existing struct to represent canonical loop and an API to create 
one.                                              

* for Clang
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Strategy for IRBuilder support

• When we encounter SIMD directive in the parse tree, create a 
canonical loop CL first using the API
• In clang/lib/CodeGen/CGStmt.cpp

• Define a function that can take the newly created CL and apply the 
metadata changes necessary.

void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CL) 

• In llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp
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1. Creating the canonical loop

• clang/lib/CodeGen/CGStmt.cpp à code to emit LLVM 
code from AST Stmt nodes
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void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
…..

…

switch (S->getStmtClass()) {

case Stmt::OMPSimdDirectiveClass:
EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
break;



1. Creating the canonical loop
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Function that is called while lowering the SIMD 
directive

Check is compiler is using OMPIRBuilder, also check 
for any condition e.g. unsupported clauses

Lambda call

Lowering code

CGM à per module state

Uses createCanonicalLoop()



2. Attaching the metadata (applySimd())
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• Getting the llvm::Loop from the CanonicalLoopInfo
struct
• A bit hacky currently.

• Extracting the Basic blocks which needs to be modified with new 
metadata
• Find memref instructions in the BasicBlocks and attach metadata.



2. Attaching the metadata
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Getting the LLVM Loop from the 
CanonicalLoopInfo struct

Extracting the blocks 
which will be 
modified with new 
metadata



2. Attaching the metadata
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2. Attaching the metadata
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Make sure that the access group metadata is unique to each 
SIMD loop



Add test cases

clang/test/OpenMP/
irbuilder_simd.cpp

à llvm-lit test to check 
if the expected IR is 
generated by clang
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Add test cases

• llvm/unittests/Frontend/
OpenMPIRBuilderTest.cpp 

• à Calls your implemented 
functions then verifies 
modules etc.
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Steps for implementation

1. Read about the behavior of the construct/clause from OpenMP
website

2. Identify the IR changes necessary
3. Identify if IRBuilder support is needed, implement
4. Define/modify OpenMP MLIR Op
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MLIR Operation definition
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MLIR Operation definition

• Declaratively define OpenMP operations
• Uses tablegen

• Can define input and output operands
• Whether operations have regions inside them
• Generic or custom printers and parser
• In the file 
mlir/include/mlir/Dialect/OpenMP/OpenMPOps.td
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SIMD Operation 
definition
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Parser, Custom 
printer and 
verifier

• mlir/lib/Dialect/OpenMP/IR/
OpenMPDialect.cpp
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omp.simdloop (%i1, %i2) : i32 = (%c0, %c0) 
to (%c10, %c10) step (%c1, %c1) {

…      
}



Parser, Custom 
printer and 
verifier
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omp.simdloop (%i1, %i2) : i32=
(%c0, %c0) to (%c10, %c10) 

step (%c1, %c1) {
…      

}



Steps for implementation

1. Read about the behavior of the construct/clause from OpenMP
website

2. Identify the IR changes necessary
3. Identify if IRBuilder support is needed, implement
4. Define/modify OpenMP MLIR Op
5. Verify definition by implementing lowering
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Verify definition by implementing lowering
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Verifying your MLIR definition
• flang/lib/lower/OpenMP.cpp

• genOMP() function works on various 
Fortran::parser::<Construct> 
types
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Check the parse tree for construct type
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Creating the SimdLoop operation in genOMP()
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• Extract lowerbound, upperbound, step (optional) from the 
parse tree
• Use the extracted info to create a new SimdLoopOp
• Generate the body (region) that b.elongs inside the SimdLoopOp



Creating the SimdLoop operation in genOMP()
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omp.simdloop (%i1) : i32=  (%c1) to (%c19) step (%c1) {
<region>

}



MLIR Verification final step
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OpenMP MLIR <-> FIR co-existence
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Lowering the MLIR to LLVMIR
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Lowering the MLIR to LLVMIR

• OpenMPToLLVMIRTranslation.cpp

44



Lowering the MLIR to LLVMIR
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• Extract lower, upper bound and step from the MLIR SimdLoopOp
• Use the extracted values to generate LLVM IR using the 
createCanonicalLoop() API
• Add metadata using the applySimd() API from OMPIRBuilder.



MLIR -> LLVM IR
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Lowering to LLVMIR: TestCases
• Check for invalid operations (e.g. check if lb, ub and step has same 

type of not) à mlir/test/Dialect/OpenMP/invalid.mlir

• Check if printing etc is looking good à
mlir/test/Dialect/OpenMP/ops.mlir
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Lowering to LLVMIR: TestCases

• Check if the MLIR->LLVM IR translation is looking good 
• mlir/test/Target/LLVMIR/openmp-llvm.mlir (uses mlir-translate)
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Summary of lowering process

• Study up the operation
• Write a simple test case and look at the generated IR
• Check if OMPIRBuilder support is necessary (both clang and flang

uses it) (patch 1)
• Define/modify OpenMP MLIR Op definitions, implement lowering 

(patch 2)
• Write proper test cases for both patches
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Thank you, Questions?

• Getting in touch
• Technical calls 
• flang-dev mailing list
• Join our slack channel flang-compiler.slack.com
• Check this webpage for links 

(https://prereleases.llvm.org/11.0.0/rc3/tools/flang/docs/GettingInvolved.ht
ml )
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flang-compiler.slack.com
https://prereleases.llvm.org/11.0.0/rc3/tools/flang/docs/GettingInvolved.html

