
Learning to Combine
Instructions in LLVM

Compiler
LLVM Performance Workshop at CGO 2022

Sandya Mannarswamy
sandya.mannarswamy@intel.com

Dibyendu Das

Dibyendu.das@intel.com

Presenters

• Instruction Combiner a critical pass in all modern compilers

• Thousands of instruction-combining patterns

• Patterns need to be frequently updated over time as software coding
patterns/idioms/applications evolve

• IC is the most frequently updated component in the LLVM compiler [Zhou et
al. 2020].

• Considerable human effort, high software maintenance costs

Is it possible to replace traditional IC with a machine learnt model?

Motivation

• Can we replace the hand-coded rule driven pattern matching IC pass with a
machine learnable IC pass?

• Modelled as monolingual machine translation task

• Neural Machine Translation (NMT) translates from source to target language

• Both source and target languages are LLVM Instruction IR

• We leverage neural Seq2Seq models for this task

• State of art models using LSTMs and Transformers

Learning to Combine Instructions

• What should be the input sentence encoding for Seq2Seq model?

• How can we find/build a dataset for this task?

• How do we integrate a machine learnt IC module into the overall pipeline?

• How do we validate the IR generated from NIC?

Design choices for NIC

• NIC has three major components

• NIC inputter: (non-ML) creates an encoded representation from LLVM IR
instruction corresponding to a basic block

• NIC Converter: (Seq2Seq Neural network model) takes the output from NIC
Inputter and generates an equivalent optimized encoded instruction
sequence

• NIC Outputter: (non-ML) converts the NIC Converter output back to full-
fledged LLVM IR instruction sequence of a basic block. It also performs a set of
IR verification checks and translation validity checking

Neural Instruction Combiner (NIC)

7

Overview of Seq2Seq Models

En
co

d
er

R
N

N

<START> he

Source sentence (input)

il a m’ entarté

Target sentence (output)

D
eco

d
er

R
N

N

Encoder produces an
encoding of the source

sentence.

Encoding of the source sentence.
Provides initial hidden state

for Decoder .

Decoder is a Language Model that generates
target sentence, conditioned on encoding.

he hit me

ar
gm

ax

ar
gm

ax

hit me

ar
gm

ax

Note: This diagram shows test time behavior:
decoder output is fed in as next step’s input

with a pie <END>

with a pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

• Vanilla Seq2Seq models have the information bottleneck problem due to
single encoder output vector

• Attention provides a solution to the bottleneck problem

• Core idea: on each step of the decoder, use direct connection to the encoder
to focus on a particular part of the source sequence

• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the source

8

Attention Mechanism

• Seq2Seq models typically contain an
encoder, decoder and attention mechanism

• Encoder creates a distilled representation of
input.

• Decoder generates the output based on the
encoder outputs and each previously
generated output symbol

• Attention weights selectively weigh the
encoder outputs

• Each encoder/decoder block can be a RNN
(LSTM) or a transformer block (Multihead
Attention)

Seq2Seq Model with Attention

• NIC inputter is the input (non-ML) module for NIC
• Creates a distilled representation of the IR instruction sequence for each BB

• NIC Converter (ML Module)
• Model trained offline and employed in inference mode in optimizer pipeline
• Two variants: RNN based and Transformer based
• NIC Converter uses two attention mechanisms

• Standard attention mechanism of Seq2Seq models
• A novel Compiler guided attention mechanism

• NIC outputter is the output module (non-ML) for NIC
• Takes the NIC converter output along with source BB instruction list
• Validates the instruction stream and emits the optimized IR instruction list

NIC Building Blocks

NIC Converter – RNN Based

NIC Converter – Transformer Based

LLVM Optimization Pipeline

LLVM
Front
End

High level
Language

Source
File

Optimizer
Pass #1

Optimizer
Pass #2

Traditiona
l

Instructio
n

Optimizer
Pass #N

NIC Inputter

Training Data
NIC

Converter
Training

LLVM
Back
End

Source
Sentence

Target
Sentence

Un-optimized
IR

Optimized
IR

Optimizer
Pass #1

Optimizer
Pass #2

Traditional
Instruction
Combiner

Optimizer
Pass #N

NIC Converter Training

LLVM Optimization Pipeline

LLVM
Front
End

High level
Language

Source
File

LLVM
Back
EndNIC

Inputter
NIC

Outputter

NIC
Converter
Inference

OptimizerP
ass #1

Optimizer
Pass #2

Neural
Instruction
Combiner

Optimizer
Pass #N

NIC Converter Inference

• Leverage the compiler knowledge in improving the soft attention alignments

• During training data generation, a compiler guided attention matrix CA is
created

• CA matrix terms are fixed attention scores provided by the compiler and are
not learnt during training.

• Each element CA[i, j] corresponds to the probability of whether the ih token in
target sentence maps to jth token in source sentence.

• Force the learnt attention weights to be closer to CA during the training
process

• by adding an additional loss term to the training objective

Compiler Guided Attention

• Created 300K samples dataset from
LLVM application test suite &
AnghaBench

• Trained the NIC seq2seq models using
mini-batch gradient descent

• standard cross-entropy loss and Adam
optimizer

• The trained NIC converter was then
deployed in inference mode in the
optimizer pipeline

• Evaluated with test data set

Model Description

A LSTM 3-layer bidirectional stacked encoder
with 3-layer unidirectional greedy decoder.

B Transformer: num_layers = 4, d_model = 128,
dff = 512, num_heads = 8, dropout_rate = 0.1

C Transformer: num_layers = 6, d_model = 512,
dff = 2048, num_heads = 8, dropout_rate = 0.1

D Same as B, with num layers = 2

E Same as B, with No POS Embedding

F Same as B, with 16 heads

G Model A with compiler guided attention

H Model B with compiler guided attention

Experimental Evaluation

• Standard Machine Translation metrics are Bleu s& Rouge Scores

• BLEU evaluates the quality of translation, a number between 0 to 1

• 1 -> machine translation and human translation were identical.

• Bleu precision evaluated at multiple n-gram level with average across all n-gram levels being reported
as a single final score.

• Rouge-n score represents the n-gram overlap between the machine generated
and ground truth reference translations

• Task specific metric is Exact Match (EM) comparison results

• for each BB between the predicted sequence and the ground truth

• Reported separately for optimized and unoptimized sequences

Model Performance Metrics

Experimental Results

Metric A B C D E F G H

Bleu precision 0.93 0.94 0.91 0.93 0.94 0.93 0.93 0.94

Rouge-1 r score 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Rouge-1 p score 0.90 0.90 0.90 0.90 0.90 0.90 0.89 0.90

Rouge-2 r score 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Rouge-2 p score 0.91 0.91 0.91 0.91 0.92 0.91 0.91 0.92

Rouge-l r score 0.97 0.97 0.96 0.97 0.97 0.97 0.96 0.97

Rouge-l p score 0.93 0.94 0.93 0.94 0.94 0.93 0.94 0.93

Exact Match (un-opt) 0.93 0.94 0.93 0.93 0.94 0.94 0.93 0.94

Exact Match (opt) 0.68 0.72 0.71 0.70 0.70 0.71 0.70 0.72

• NIC correctly fixes up the uses
of the replaced opcode with the
newly generated opcode

• For frequent/unique constants (Shift
instructions), the model outputs the
correct constants

• Mistakes in generating correct values
for synthesized constants

• such as GEP and Alloca operands

• ends up reproducing the memorized
frequent constant values

Exact Match Error Analysis

Type of error Occurrence

Incorrect Constant 42.3%

Opcode Mismatch 34.9%

Type issue
(Sign/Zero extension)

6.7%

Operand swap
(canonicalizaton)

1.4%

Others 14.7%

• Recent work in applying deep learning techniques to compilers
• Optimization phase ordering

• selection of optimization heuristics

• Compiler cost models

• Building super optimizers for binaries [Bansal 2006]
• Creating a database of possible optimized sequences from the binaries

• Limited to X86 binaries

• Incur high overheads due to huge candidate search space

• Improving Super Optimizers [Schkufza2013, Bunel 2017]

Related Work

• Only 72% of optimization opportunities are realized by NIC

• Correctness checks for NIC generated code sequences

• IR and CFG Validation Checks

• Use of ALIVE2 for translation validity checking

• Automatic NMT post editing techniques/Program repair techniques in future?

• Expanding the dataset for training NIC

• Currently learning from the traditional IC (behavioral cloning)

• Leverage super optimizer identified instances in future?

Open Issues & Future work

