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• Instruction Combiner a critical pass in all modern compilers

• Thousands of instruction-combining patterns 

• Patterns need to be frequently updated  over time as software coding 
patterns/idioms/applications evolve

• IC is the most frequently updated component in the LLVM compiler [Zhou et 
al. 2020].

• Considerable human effort, high software maintenance costs

Is it possible to replace traditional IC with a machine learnt model? 

Motivation



• Can we replace the hand-coded rule driven pattern matching IC pass with a 
machine learnable IC pass?

• Modelled as monolingual machine translation task

• Neural Machine Translation (NMT) translates from source to target language

• Both source and target languages are LLVM Instruction IR

• We leverage neural Seq2Seq models for this task

• State of art models using LSTMs and Transformers

Learning to Combine Instructions



• What should be the input sentence encoding for Seq2Seq model?

• How can we find/build a dataset for this task?

• How do we integrate a machine learnt IC module into the overall pipeline?

• How do we validate the IR generated from NIC?

Design choices for NIC



• NIC has three major components

• NIC inputter: (non-ML) creates an encoded representation from LLVM IR 
instruction corresponding to a basic block

• NIC Converter: (Seq2Seq Neural network model) takes the output from NIC 
Inputter and generates an equivalent optimized encoded instruction 
sequence

• NIC Outputter: (non-ML) converts the NIC Converter output back to full-
fledged LLVM IR instruction sequence of a basic block. It also performs a set of 
IR verification checks and translation validity checking 

Neural Instruction Combiner (NIC) 
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Overview of Seq2Seq Models
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• Vanilla Seq2Seq models have the information bottleneck problem due to 
single encoder output vector

• Attention provides a solution to the bottleneck problem

• Core idea: on each step of the decoder, use direct  connection to the encoder 
to focus on a particular part of  the source sequence

• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the  source
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Attention Mechanism



• Seq2Seq models typically contain an 
encoder, decoder and attention mechanism

• Encoder creates a distilled representation of 
input.

• Decoder generates the output based on the 
encoder outputs and each previously 
generated output symbol

• Attention weights  selectively weigh the 
encoder outputs 

• Each encoder/decoder block can be a RNN 
(LSTM) or a transformer block (Multihead
Attention)

Seq2Seq Model with Attention



• NIC inputter is the input (non-ML) module for NIC
• Creates a distilled representation of the  IR instruction sequence for each BB

• NIC Converter (ML Module)
• Model trained offline and employed in inference mode in optimizer pipeline
• Two variants: RNN based  and Transformer based
• NIC Converter uses two attention mechanisms

• Standard attention mechanism of Seq2Seq models
• A novel Compiler guided attention mechanism 

• NIC outputter is the output module (non-ML) for NIC
• Takes the NIC converter output along with source BB instruction list
• Validates the instruction stream and emits the optimized IR instruction list

NIC Building Blocks



NIC Converter – RNN Based



NIC Converter – Transformer Based
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• Leverage the compiler knowledge in improving the soft attention alignments

• During training data generation,  a compiler guided attention matrix CA is 
created 

• CA matrix terms are fixed attention scores provided by the compiler and are 
not learnt during training.

• Each element CA[i, j] corresponds to the probability of whether the ih token in 
target sentence maps to jth token in source sentence. 

• Force the learnt attention weights  to be closer to CA during the training 
process

• by adding an additional loss term to the training objective 

Compiler Guided Attention



• Created 300K samples dataset from 
LLVM application test suite & 
AnghaBench

• Trained the NIC seq2seq models using 
mini-batch gradient descent

• standard cross-entropy loss and Adam 
optimizer

• The trained NIC converter was then 
deployed in inference mode in the 
optimizer pipeline

• Evaluated with test data set

Model Description

A LSTM 3-layer bidirectional stacked encoder 
with 3-layer unidirectional greedy decoder. 

B Transformer: num_layers = 4, d_model = 128, 
dff = 512, num_heads = 8, dropout_rate = 0.1

C Transformer: num_layers = 6, d_model = 512,  
dff = 2048, num_heads = 8, dropout_rate = 0.1

D Same as B, with num layers = 2

E Same as B, with No POS Embedding

F Same as B, with 16 heads

G Model A with compiler guided attention

H Model B with compiler guided attention

Experimental Evaluation   



• Standard Machine Translation metrics are Bleu s& Rouge Scores

• BLEU  evaluates the quality of translation, a number between 0 to 1

• 1 -> machine translation and human translation were identical. 

• Bleu precision evaluated at multiple n-gram level with average across all n-gram levels being reported 
as a single final score.

• Rouge-n score represents the  n-gram overlap between the machine generated 
and ground truth reference translations

• Task specific metric is Exact Match (EM) comparison results

• for each BB between the predicted sequence and the ground truth

• Reported separately for optimized and unoptimized sequences

Model Performance Metrics



Experimental Results   

Metric A B C D E F G H

Bleu precision 0.93 0.94 0.91 0.93 0.94 0.93 0.93 0.94

Rouge-1 r score 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Rouge-1 p score 0.90 0.90 0.90 0.90 0.90 0.90 0.89 0.90

Rouge-2 r score 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Rouge-2 p score 0.91 0.91 0.91 0.91 0.92 0.91 0.91 0.92

Rouge-l r score 0.97 0.97 0.96 0.97 0.97 0.97 0.96 0.97

Rouge-l p score 0.93 0.94 0.93 0.94 0.94 0.93 0.94 0.93

Exact Match (un-opt) 0.93 0.94 0.93 0.93 0.94 0.94 0.93 0.94

Exact Match (opt) 0.68 0.72 0.71 0.70 0.70 0.71 0.70 0.72



• NIC  correctly fixes up the uses
of the replaced opcode with the 
newly generated opcode

• For frequent/unique constants (Shift 
instructions), the model outputs the 
correct constants  

• Mistakes in generating correct values 
for synthesized constants

• such as GEP and Alloca operands  

• ends up reproducing the memorized 
frequent constant values

Exact Match Error Analysis 

Type of error Occurrence

Incorrect Constant 42.3%

Opcode Mismatch 34.9%

Type issue
(Sign/Zero extension) 

6.7%

Operand swap
(canonicalizaton)

1.4%

Others 14.7%



• Recent work in applying deep learning techniques to compilers
• Optimization phase ordering 

• selection of optimization heuristics  

• Compiler cost models

• Building super optimizers for binaries [Bansal 2006]
• Creating a database of possible optimized sequences from the binaries 

• Limited to X86 binaries

• Incur high overheads due to huge candidate search space

• Improving Super Optimizers [Schkufza2013, Bunel 2017]

Related Work   



• Only 72% of optimization opportunities are realized by NIC

• Correctness checks for NIC generated code sequences

• IR and CFG Validation Checks

• Use of ALIVE2 for translation validity checking

• Automatic NMT post editing techniques/Program repair techniques in future? 

• Expanding the dataset for training NIC

• Currently learning from the traditional IC (behavioral cloning)

• Leverage super optimizer identified instances in future?

Open Issues & Future work   


