
Prototyping a compiler for
homomorphic encryption
in MLIR

Juneyoung Lee (aqjune@cryptolab.co.kr)

Woosung Song (lego0901@gmail.com)
1

Homomorphic Encryption?

• An encryption method that allows operations on ciphertexts (encryted texts)

• “Homomorphic”: Encrypt(x ∗ y) = Encrypt(x) ⊛ Encrypt(y)

• Among 5 Impactful Emerging Technologies in 2022 from

+, *, ReLU, ... on encrypted data: “Private AI”

*

* https://www.gartner.com/en/articles/5-impactful-technologies-from-the-gartner-emerging-technologies-and-trends-impact-radar-for-2022

2

Why is HE Important?
It completes protection of the data

The three states of data

1. At Rest: Secure storage

2. In Transit: HTTPS

3. In Use: HE

3

• HE Libraries: CryptoLab’s HEaaN, Microsoft’s SEAL, Duality Technologies’ Palisade, ...

• Layers using HE Libraries: IBM’s HELayer, AWS’s HIT, ...

Challenge: Space & Speed

• IntPoly: A polynomial 𝑎! + 𝑎"𝑥 + ⋯+ 𝑎#$"𝑥#$" with large integer coefficients

Homomorphic Encryption 101 – CKKS scheme

m: Message
double[N]

p: Plaintext
IntPoly

c: Ciphertext
pair<IntPoly, IntPoly>Encode,

Decode
Encrypt,
Decrypt

• 0 ≤ 𝑎! < 𝑄 where 𝑄 is a large integer

• To avoid using BigInt, 𝑄 = 𝑞"×𝑞#×⋯×𝑞$%# where 𝑞& prime (uint64_t)

• Coefficient 𝑎! : uint64_t[L] which is (𝑎! % 𝑞&) - called Residual Number System

• All polynomial operations are modulo (𝑥' + 1) (“polynomial ring”)
4

(performs FP to int trunc.)

Challenge: Space & Speed

• IntPoly: A polynomial 𝑎! + 𝑎"𝑥 + ⋯+ 𝑎#$"𝑥#$" with large integer coefficients

• In C++, IntPoly is uint64_t[N][L], or equiv. uint64_t[L][N], where

Homomorphic Encryption 101 – CKKS scheme

m: Message
double[N]

p: Plaintext
IntPoly

c: Ciphertext
pair<IntPoly, IntPoly>Encode,

Decode
Encrypt,
Decrypt

5

1. N: the degree of the polynomial (~2^17)

2. L: # of prime numbers used to represent coefficients (~30)

×𝑳 or more ×𝟐

(performs FP to int trunc.)

Challenge: Space & Speed

• Given a secret key s: IntPoly

• Enc(p, s): Ciphertext = (a, -a*s + p + e) where

• Dec(c, s): Plaintext = c.second + c.first*s ~= p + e

Homomorphic Encryption 101 – CKKS scheme (En/Decryption)

p: Plaintext
IntPoly

c: Ciphertext
pair<IntPoly, IntPoly>Encrypt,

Decrypt

6

a: fresh random poly e: fresh error poly (random poly with small coeffs)

Challenge: Space & Speed

• Given a secret key s: IntPoly

• Enc(p, s): Ciphertext = (a, -a*s + p + e) where

• Dec(c, s): Plaintext = c.second + c.first*s ~= p + e

Homomorphic Encryption 101 – CKKS scheme (En/Decryption)

p: Plaintext
IntPoly

c: Ciphertext
pair<IntPoly, IntPoly>Encrypt,

Decrypt

7

a: fresh random poly e: fresh error poly (random poly with small coeffs)

1. Adding two polynomials is fast

for (i = 0 to N)
for (j = 0 to L)
res[i][j] = (as[i][j] + p[i][j]) % prime[j]

Challenge: Space & Speed

• Given a secret key s: IntPoly

• Enc(p, s): Ciphertext = (a, -a*s + p + e) where

• Dec(c, s): Plaintext = c.second + c.first*s ~= p + e

Homomorphic Encryption 101 – CKKS scheme (En/Decryption)

p: Plaintext
IntPoly

c: Ciphertext
pair<IntPoly, IntPoly>Encrypt,

Decrypt

8

a: fresh random poly e: fresh error poly (random poly with small coeffs)

2. Multiplying two polynomials is slow! L

Naive product requires O(N^2)

Sol: Number-theoretic transformation!
Analogous to FFT

Time complexity: O(N log N)

Challenge: Space & Speed
Homomorphic Encryption 101 – CKKS scheme (Other Ops)

9

1. Add(ctxt1, ctxt2): ctxt1 + ctxt2

2. Mult(ctxt1, ctxt2): ctxt1 * ctxt2

• Needs to remove 𝑠! term: ‘evaluation key’ must be pre-calculated & used

• A scale factor multiplied by encode() is multiplicatively increased: ‘rescale’ op

3. Rotate(ctxt, i): [ctxt[i], ctxt[i+1], ..., ctxt[0], .., ctxt[i-1]]

• Needs ‘rotation keys’ that are pre-calculated

4. Bootstrap(ctxt): very slow

• ctxt cannot be used after ~L multiplications; bootstrap revives it

Challenge: Space & Speed
In a Nut Shell

10

1. Space

• Message size is multiplied by # of primes

• If a message is not packed (m.size() < N), the factor is worse

• mult, rotate, ... requires pre-calculated keys that are large

2. Speed

• Performs a lot of 64-bit (and sometimes 128-bit) int operations

• Time complexity may be larger than O(N)

• Even if O(N), it has large constant factors (L, multiple polynomials, ...)

Challenge++: HE Runs on Diverse Environments!

1. It must be fast on diverse environments

• On-premise is beneficial because op(ctxt, ptxt2) is faster than op(ctxt, ctxt2)

• Encryption & decryption must be done on the device

• GPUs are fast but less cost-effective than deep learning (no FP ops)

• High-end server CPUs have many cores & good at int benchmarks

• Ciphertexts are large: sending them to GPU is intensive

• Pre-calculated keys may not fit in GPU memory!

2. Utilizing both GPUs and CPUs brings benefits

11

... but HE Library Developers Are Busy!

12

How to efficiently pack a matrix in ciphertexts?

How to reduce the error of approximated log x?

How to use less bootstrap operations?

.....

Can we use compiler optimization techniques
to help them?

HEaaN.MLIR

• Src lang - Poly: a new lang for high-level operations on polynomial rings

• Tgt lang - {x86-64, AArch, ...} (+OpenMP) x {CUDA, ROCm, ...}

• In a developing stage; being prototyped using MLIR

• Currently, HEaaN.MLIR can:

13

Poly Lang CPU (OpenMP) + GPU

ü Compile encode+encryption (symm. & pub. key) and decryption written in Poly

ü Provide OpenMP offloading (works well) and CUDA (primitive)

The Poly Lang

14

The HE parameter: uses predefined N, L, moduli, ...

Polynomial with 30 moduli, NTT conversion applied

Polynomial with 30 moduli, no NTT

Q: %m is poly after encoding; how to do encoding?

The Poly Lang

15

The message (uses complex type in MLIR)

Now, you can write encode + encrypt!

Poly-to-tensor

• !poly.poly<L> and !poly.poly_ntt<L> are lowered into tensor<LxNxi64>

• tensor<..> and other types are kept intact

• Poly ops are lowered into Linalg + Tensor ops

• Constant tensors that are necessary for (efficient) calculation are inserted

• Operations that cannot be expressed in Linalg are temporarily represented as

external fn calls!

16

o Ex: NTT conversion loop: cannot be represented in Linalg.generic’s reduction loop

o Simply insert `call @__external_forward_NTT(..)` & lower it into SCF at a later pass

Pipeline of HEaaN.MLIR for CPU Code Gen

17

Poly

Tensor + Linalg

MemRef + Linalg MemRef + Affine

MemRef + SCF

MemRef + Std
+ OpenMP

MemRef + SCF
+ OpenMP

LLVM IR

Comprehensive
Bufferization

Loop fusion,
Optimize heap alloc for sampling,

Mark loops as parallelizable,
Super vectorization

OpenMP offloading

External calls
into SCF loops

Bare pointer
conv.

Loop Fusion: Collects Low-Hanging Fruits

• Benefit 1: Reduces the size of working sets by L in best cases.

• Benefit 2: Facilitates memory optimization à removes dead heap allocs

• Benefit 3: Removes synchronization points of OpenMP offloaded loops

18

for (i = 0 to L)
for (j = 0 to N)
B[i][j] = op(A[i][j]);

// sync. barrier

for (i = 0 to L)
for (j = 0 to N)
C[i][j] = op’(B[i][j]);

// B is now dead alloc.
for (i = 0 to L)
for (j = 0 to N)

C[i][j] =
op’(op(A[i][j]));

Implementing Algorithms in MLIR

• Forward/backward NTT, FFT

• Barrett reduction

• Random sampling, ZO sampling, Gaussian sampling

• Many loops that are specifically necessary for encoding/decoding

19

Special thanks to Woosung for doing a lot of things from these!!

For Better Debugging Experience

• It is tricky to debug the generated code in terms of correctness & performance.

• To facilitate debugging, we:

20

1. Defined a debug dialect and used it: assertion, printer, timer

2. Added a ‘sanitizer’ mode: insert bounds-checking assertions

whenever creating memory accessing ops (memref.load/store)

Experimental Results

• Competitor: HEaaN (CryptoLab’s proprietary HE library, use HEXL)

• 3 processors: AMD Ryzen 2990WX, AMD Ryzen 3700, 2 Intel(R) Xeon(R) Gold 6242s

• # Threads: 1 vs. full cores (for Gold: 1 vs. 10 vs. 80)

• Ran 50 times & calculated averages

• Disabled ASLR, set CPU to performance mode, ...

21

Experimental Results

22

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

2990WX 2990WX (32
Thr.)

3700 3700 (32 Thr.) Gold 6242 Hold 6242 (10
Thr.)

Hold 6242 (80
Thr.)

Elapsed Time, Encode-and-encrypt (Pub key.)

HEaaN.MLIR HEaaN

(usec.)

• Single core results

• Performance benefit was not clear

• Gold 6242 has AVX512DQ:

Intel HEXL gets benefit

• Multi core results

• Parallelization was successful

• Consistently got 40% speedups!

Experimental Results

23

0

2000

4000

6000

8000

10000

12000

14000

16000

2990WX 2990WX (32
Thr.)

3700 3700 (32
Thr.)

Gold 6242 Hold 6242
(10 Thr.)

Hold 6242
(80 Thr.)

Elapsed Time, Decrypt

HEaaN.MLIR HEaaN

0

50000

100000

150000

200000

250000

300000

2990WX 2990WX
(32 Thr.)

3700 3700 (32
Thr.)

Gold 6242 Hold 6242
(10 Thr.)

Hold 6242
(80 Thr.)

Elapsed Time, Encode-and-encrypt (Symm Key.)

HEaaN.MLIR HEaaN

(usec.) (usec.)

Future Works

• Faster NTT conversion: directly invoke Intel HEXL if beneficial

• Fully enable GPU offloading: utilize GPUs in smartphones for en/decryption

• Support more HE ops: primary target is rotation!

• Correctness of compilation: can we formally verify it?

24

• For some benchmarks, about ½ of running time of matmul in HE is from rotations.

• SMT-based validation of transformations on structured loops seems to work well.

• MLIR-TV*: another on-going (personal) project

* https://github.com/aqjune/mlir-tv

Thank you!

25

