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Homomorphic Encryption?

• An encryption method that allows operations on ciphertexts (encryted texts)

• “Homomorphic”: Encrypt(x ∗ y) = Encrypt(x) ⊛ Encrypt(y)

• Among 5 Impactful Emerging Technologies in 2022 from 

+, *, ReLU, ... on encrypted data: “Private AI”

*

* https://www.gartner.com/en/articles/5-impactful-technologies-from-the-gartner-emerging-technologies-and-trends-impact-radar-for-2022
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Why is HE Important?
It completes protection of the data

The three states of data

1. At Rest: Secure storage

2. In Transit: HTTPS

3. In Use: HE
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• HE Libraries: CryptoLab’s HEaaN, Microsoft’s SEAL, Duality Technologies’ Palisade, ...

• Layers using HE Libraries: IBM’s HELayer, AWS’s HIT, ...



Challenge: Space & Speed

• IntPoly: A polynomial 𝑎! + 𝑎"𝑥 + ⋯+ 𝑎#$"𝑥#$" with large integer coefficients

Homomorphic Encryption 101 – CKKS scheme

m: Message
double[N]

p: Plaintext
IntPoly

c: Ciphertext
pair<IntPoly, IntPoly>Encode,

Decode
Encrypt,
Decrypt

• 0 ≤ 𝑎! < 𝑄 where 𝑄 is a large integer

• To avoid using BigInt, 𝑄 = 𝑞"×𝑞#×⋯×𝑞$%# where 𝑞& prime (uint64_t)

• Coefficient 𝑎! : uint64_t[L] which is (𝑎! % 𝑞&) - called Residual Number System

• All polynomial operations are modulo (𝑥' + 1) (“polynomial ring”)
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(performs FP to int trunc.)



Challenge: Space & Speed

• IntPoly: A polynomial 𝑎! + 𝑎"𝑥 + ⋯+ 𝑎#$"𝑥#$" with large integer coefficients

• In C++, IntPoly is uint64_t[N][L], or equiv. uint64_t[L][N], where

Homomorphic Encryption 101 – CKKS scheme

m: Message
double[N]

p: Plaintext
IntPoly

c: Ciphertext
pair<IntPoly, IntPoly>Encode,

Decode
Encrypt,
Decrypt
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1. N: the degree of the polynomial (~2^17)

2. L: # of prime numbers used to represent coefficients (~30)

×𝑳 or more ×𝟐

(performs FP to int trunc.)



Challenge: Space & Speed

• Given a secret key s: IntPoly

• Enc(p, s): Ciphertext = (a, -a*s + p + e) where

• Dec(c, s): Plaintext = c.second + c.first*s ~= p + e

Homomorphic Encryption 101 – CKKS scheme (En/Decryption)

p: Plaintext
IntPoly

c: Ciphertext
pair<IntPoly, IntPoly>Encrypt,

Decrypt
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a: fresh random poly        e: fresh error poly (random poly with small coeffs)
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a: fresh random poly        e: fresh error poly (random poly with small coeffs)

1. Adding two polynomials is fast

for (i = 0 to N)
for (j = 0 to L)
res[i][j] = (as[i][j] + p[i][j]) % prime[j]



Challenge: Space & Speed

• Given a secret key s: IntPoly

• Enc(p, s): Ciphertext = (a, -a*s + p + e) where

• Dec(c, s): Plaintext = c.second + c.first*s ~= p + e
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a: fresh random poly        e: fresh error poly (random poly with small coeffs)

2. Multiplying two polynomials is slow! L

Naive product requires O(N^2)

Sol: Number-theoretic transformation!
Analogous to FFT

Time complexity: O(N log N)



Challenge: Space & Speed
Homomorphic Encryption 101 – CKKS scheme (Other Ops)
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1. Add(ctxt1, ctxt2): ctxt1 + ctxt2

2. Mult(ctxt1, ctxt2): ctxt1 * ctxt2

• Needs to remove 𝑠! term: ‘evaluation key’ must be pre-calculated & used

• A scale factor multiplied by encode() is multiplicatively increased: ‘rescale’ op

3. Rotate(ctxt, i): [ctxt[i], ctxt[i+1], ..., ctxt[0], .., ctxt[i-1]]

• Needs ‘rotation keys’ that are pre-calculated

4. Bootstrap(ctxt): very slow

• ctxt cannot be used after ~L multiplications; bootstrap revives it



Challenge: Space & Speed
In a Nut Shell
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1. Space

• Message size is multiplied by # of primes

• If a message is not packed (m.size() < N), the factor is worse

• mult, rotate, ... requires pre-calculated keys that are large

2. Speed

• Performs a lot of 64-bit (and sometimes 128-bit) int operations

• Time complexity may be larger than O(N)

• Even if O(N), it has large constant factors (L, multiple polynomials, ...)



Challenge++: HE Runs on Diverse Environments!

1. It must be fast on diverse environments 

• On-premise is beneficial because op(ctxt, ptxt2) is faster than op(ctxt, ctxt2)

• Encryption & decryption must be done on the device

• GPUs are fast but less cost-effective than deep learning (no FP ops)

• High-end server CPUs have many cores & good at int benchmarks

• Ciphertexts are large: sending them to GPU is intensive

• Pre-calculated keys may not fit in GPU memory!

2. Utilizing both GPUs and CPUs brings benefits
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... but HE Library Developers Are Busy!
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How to efficiently pack a matrix in ciphertexts?

How to reduce the error of approximated log x?

How to use less bootstrap operations?

.....

Can we use compiler optimization techniques
to help them?



HEaaN.MLIR

• Src lang - Poly: a new lang for high-level operations on polynomial rings

• Tgt lang - {x86-64, AArch, ...} (+OpenMP) x {CUDA, ROCm, ...}

• In a developing stage; being prototyped using MLIR

• Currently, HEaaN.MLIR can:
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Poly Lang CPU (OpenMP) + GPU

ü Compile encode+encryption (symm. & pub. key) and decryption written in Poly

ü Provide OpenMP offloading (works well) and CUDA (primitive)



The Poly Lang

14

The HE parameter: uses predefined N, L, moduli, ...

Polynomial with 30 moduli, NTT conversion applied

Polynomial with 30 moduli, no NTT 

Q: %m is poly after encoding; how to do encoding?



The Poly Lang
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The message (uses complex type in MLIR)

Now, you can write encode + encrypt!



Poly-to-tensor

• !poly.poly<L> and !poly.poly_ntt<L> are lowered into tensor<LxNxi64>

• tensor<..> and other types are kept intact

• Poly ops are lowered into Linalg + Tensor ops

• Constant tensors that are necessary for (efficient) calculation are inserted

• Operations that cannot be expressed in Linalg are temporarily represented as

external fn calls!
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o Ex: NTT conversion loop: cannot be represented in Linalg.generic’s reduction loop

o Simply insert `call @__external_forward_NTT(..)` & lower it into SCF at a later pass



Pipeline of HEaaN.MLIR for CPU Code Gen
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Poly

Tensor + Linalg

MemRef + Linalg MemRef + Affine

MemRef + SCF

MemRef + Std
+ OpenMP

MemRef + SCF
+ OpenMP

LLVM IR

Comprehensive
Bufferization

Loop fusion,
Optimize heap alloc for sampling,

Mark loops as parallelizable,
Super vectorization

OpenMP offloading

External calls
into SCF loops

Bare pointer
conv.



Loop Fusion: Collects Low-Hanging Fruits

• Benefit 1: Reduces the size of working sets by L in best cases.

• Benefit 2: Facilitates memory optimization à removes dead heap allocs

• Benefit 3: Removes synchronization points of OpenMP offloaded loops
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for (i = 0 to L)
for (j = 0 to N)
B[i][j] = op(A[i][j]);

// sync. barrier

for (i = 0 to L)
for (j = 0 to N)
C[i][j] = op’(B[i][j]);

// B is now dead alloc.
for (i = 0 to L)
for (j = 0 to N)

C[i][j] = 
op’(op(A[i][j]));



Implementing Algorithms in MLIR

• Forward/backward NTT, FFT

• Barrett reduction

• Random sampling, ZO sampling, Gaussian sampling

• Many loops that are specifically necessary for encoding/decoding
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Special thanks to Woosung for doing a lot of things from these!!



For Better Debugging Experience

• It is tricky to debug the generated code in terms of correctness & performance.

• To facilitate debugging, we:
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1. Defined a debug dialect and used it: assertion, printer, timer

2. Added a ‘sanitizer’ mode: insert bounds-checking assertions

whenever creating memory accessing ops (memref.load/store)



Experimental Results

• Competitor: HEaaN (CryptoLab’s proprietary HE library, use HEXL)

• 3 processors: AMD Ryzen 2990WX, AMD Ryzen 3700, 2 Intel(R) Xeon(R) Gold 6242s

• # Threads: 1 vs. full cores (for Gold: 1 vs. 10 vs. 80)

• Ran 50 times & calculated averages

• Disabled ASLR, set CPU to performance mode, ...
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Experimental Results
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• Single core results

• Performance benefit was not clear

• Gold 6242 has AVX512DQ:

Intel HEXL gets benefit

• Multi core results

• Parallelization was successful

• Consistently got 40% speedups!



Experimental Results
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Future Works

• Faster NTT conversion: directly invoke Intel HEXL if beneficial

• Fully enable GPU offloading: utilize GPUs in smartphones for en/decryption

• Support more HE ops: primary target is rotation!

• Correctness of compilation: can we formally verify it?
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• For some benchmarks, about ½ of running time of matmul in HE is from rotations.

• SMT-based validation of transformations on structured loops seems to work well.

• MLIR-TV*: another on-going (personal) project

* https://github.com/aqjune/mlir-tv



Thank you!
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