
ML-Compiler-Bridge: Interfacing ML and Compilers

S. VenkataKeerthy1, Siddharth Jain1,

Umesh Kalvakuntla1, G Pranav Sai1, Rajiv S Chitale1, Eugene Brevdo2, Albert Cohen2, Mircea Trofin2, Ramakrishna Upadrasta1

IIT Hyderabad1, Google2

Eighth LLVM Performance Workshop at CGO
2nd March 2024

1

● Impact of ML for hard, heuristic-based compiler optimizations

ML, ML everywhere!

2https://www.youtube.com/watch?v=w_sX9aZoZxg

Compiler 2.0 (CGO’22 & LCTES’20 Keynotes) by Prof. Saman Amarasinghe

https://www.youtube.com/watch?v=w_sX9aZoZxg

ML, ML everywhere!

3

200+ works on using ML for Compiler Optimizations in the recent years!

● Ease of designing ML based Compiler Optimizations

● End-to-End Integration of ML Compiler interaction

● Transcending from Research to Deployment

ML for Compiler Optimizations

4

Synthetic
programs

Benchmarks

Program
Generation

Fuzzers

Generate/Select Programs Choose Representations → AST/IR/PDG/… Represent programs as vectors

or/and

Zu
Zv

encode nodes

ENC(U)

ENC(V)

Original network

Embedding
space

U

V

Embeddings

Feature Selection

XX X X X X X X X

Full Feature Set

Identity Useful Features

Selected Feature Set

X

S1. i =1
S2. sum=0
P3. while i<=10 do
S4. read j
P5. if j<=0 then
S6. continue
S7. sum=sum+j
P8. if sum>100 then
S9. break
S10. i=i+1
S11. print sum

pgm

i=1
sum = 0 while

print sum

i<=10 read j if-else
sum = sum+j If -else

j<=0 if-clause

else-clausesum > 100

continue

or/and

ML for Compiler Optimizations

5

Represent programs as vectors Choose ML model(s) Perform Optimizations

Zu
Zv

encode
nodes

ENC(U)

ENC(V)
Original
network

Embedding
space

U

V

Embeddings

Feature Selection

XX X X X X X X XX

// (a) Loop1
int x[N] , y[N], a[N];
for (int i=1; i<N; ++i)
{
 x[i+1]=x[i-1]+x[i+1];
 a[i+1]=(a[i-1]+a[i])
 /2.0 ;
}

// (b) Loop1 :Distributed
int x[N],y[N],a[N];
for (int i=1; i<N; ++i)
 x[i+1] = x[i-1]+x[i+1];
for (int i=1; i<N; ++i)
 a[i+1] = (a[i-1]+a[i])

 /2.0;

6

ML-Compiler Interaction

Compiler ML Models

Optimization Query

Response

Materialize
Predictions

Opt n

Input
Program

Input
Program

Input
Program

Training /
Inference

Opt 1
Input

serialization
Input

deserialization

Querying
Output

deserialization
Output

serialization

Optimization Query

Model Output + Related Info

Compilation
 starts

7

ML-Compiler Interaction

Compiler ML Models

Optimization Query

Response

Materialize
Predictions

Opt n

Input
Program

Input
Program

Input
Program

Training /
Inference

Opt 1
Input

serialization
Input

deserialization

Querying
Output

deserialization
Output

serialization

Optimization Query

Model Output + Related Info

Compilation
 starts

Communication + Integration

8

ML-Compiler Interaction

Compiler ML Models

Materialize
Predictions

Opt n

Input
Program

Input
Program

Input
Program

Training /
Inference

Opt 1

Querying

Compilation
 starts

Communication + Integration

● Highly Important

○ Scalability

○ Compile Time Issues

○ Memory Issues

○ …

● Determines the practicality

○ Deployment

○ Usability

○ …

9

ML-Compiler Interaction

Compiler ML Models

Materialize
Predictions

Opt n

Input
Program

Input
Program

Input
Program

Training /
Inference

Opt 1

Querying

Compilation
 starts

Communication + Integration

● No single standard approach

○ Python wrappers, Compiler flags

● Model written with C++ APIs

○ Tight coupling of APIs

Current Approaches

● No deeper integration

○ High-level interfacing

Integration

Not all outputs can be
communicated via flags

Register Allocation,
Instruction Scheduling,

…

Scalability

● Python/C++ wrappers

● 6x – 100x slowdown

Phase Ordering, Loop
Distribution, …

Current Limitations

Portability

Support for diverse ML
frameworks

TF, PyTorch, JAX, …

Programmability

Models written in C++ are
not ML developer friendly

RLLib, SciPy, …

10

Current Limitations

11

...
...

...

...

m x n problem 🙁

Our Proposal

12

ML-Compiler-Bridge

m + n 😀

ML-Compiler-Bridge

13

ML-Compiler-Bridge

14

Compiler and the ML model runs as

two concurrent processes.

● gRPC

● Unix-style Named Pipes

15

Model Runners: Medium of Communication

Two Broad Model Runners

Inter-Process Model Runners In-Process Model Runners

ML model is part of the compiler

● ONNX C++ Runtime

● TensorFlow AOT model

Designed for Training Designed for Inference

16

Inter-process Model Runners: gRPC

Compiler Pass N
gRPC ModelRunner

libgRPCModelRunner.a

Compiler Pass 1

+

<name>.proto Auto Generated
Header Files

ML Module N

ML Module 1Proto File 1

Proto File N
gRPCService 1

gRPCService N

syntax = "proto3";
// Package name for current optimization
package helloMLBridgegRPC;
// Service class RPC declarations
service HelloMLBridgeService {
 // RPC to query compiler
 rpc queryCompiler(ActionRequest) returns (TensorResponse) {}
 // RPC to get Advice from model
 rpc getAdvice(TensorResponse) returns (ActionRequest) {}
}
// Data structures for request and response messages
message TensorResponse { repeated float tensor = 1; }
message ActionRequest { int32 action = 1; }

17

gRPC Model Runner - proto description

RPC to Query
Compiler

RPC to Query
Model

Request/Response
Data Structure

RPC Service
Class

18

Inter-process Model Runners: Pipes

Pipe Model Runner - Internals

19

...
void *PipeModelRunner::evaluateUntyped() override {
 auto *data = SerDes->getSerializedData();
 send(data);
 auto *reply = receive();

 return SerDes->deserializeUntyped(reply);
}
...

Get serialized
data from
SerDes

Send data
on pipe

Deserialized
received data

and return

Read received
data on pipe
(Blocking)

In-process Model Runners: TensorFlow AOT

20

In-process Model Runners: ONNX

ONNX - Framework neutral, interoperable infrastructure for trained model integration

21
ONNX. Open Neural Network Exchange. 2017, https://github.com/onnx/onnx

Compiler Tool
Chain

ONNX Model
ONNX Runtime

ONNXModelRunner

Trained
Model

https://github.com/onnx/onnx

SerDes: Serialization-Deserialization Module

22

Data to send send(hdr+data)
{
 "embedding": [...]
}

message Data {
 repeated float embedding = 1;
}

length(data)

Protobuf

BitStream

Json

{
 'name': '...',
 'type': 'float',
 'shape': [1, 300]
}

Header
00111111101111101011111110010101011111110
01010101111111111010111101010011011010011
11111000010001001110011110100011111111001
001101100111111100111010000010110001101
00111111100011000010110100000101001111111
00010110001100000000010001111110100010101
11100100110110011111111010100110110100111
111100001000100111001111010…………………………………

Data

 Comparison of Different Model Runners

23

gRPC Pipes ONNX TF-AOT

Multithreaded
Compilation ✖ ✖ ✔ ✔

Distributed Training ✔ ✖ – –

Single process
(Model is part of the compiler) ✖ ✖ ✔ ✔

Auto-serialization ✔ ✔ – –

Communication
Robustness ✖ ✖ ✔ ✔

ML Framework
Independent ✔ ✔ ✔ ✖

#include "MLCompilerBridge/MLModelRunner.h"
#include "MLCompilerBridge/yourMLModelRunner.h"

// Instantiate the required model runner with SerDes type
MLModelRunner *MLRunner = std::make_unique<yourModelRunner>(Arg,

SerDes::Kind::yourSerDesType);
// Process Input Features
std::pair<std::string, InType> p = ... // Input
MLRunner->populateFeatures(p);
// Get ML Advice/Output
OutType advice = MLRunner->evaluate<OutType>();
// Use the obtained advice
...

Using ML-Compiler-Bridge (C++)

24

Populating
feature to be
sent to Model

Querying Model
for Advice

Creating the
Model Runner

Instance

Multi-Language Support: Python

25

import CompilerInterface as CI

Instantiate the required CompilerInterface with serdes type
interface = CI.YourCompilerInterface(Arg, yourSerdesType)
while True:
 ...
 # Populates buffer with advice
 interface.populate_buffer(advice)
 # Send buffer data to compiler and wait for next request
 response = interface.evaluate()
 ...
 # Break on condition

Populating
buffer with
advice data

Creating
CompilerInterface

Instance

Responding to
compiler with

advice

Multi-Language Support: C

26

#include "MLModelRunner/C/ONNXModelRunner.h"
#include "MLModelRunner/C/PipeModelRunner.h"

// Instantiate the required model runner with SerDes type
PipeModelRunnerWrapper *pmr = createPipeModelRunner

("plutopipe.out", "plutopipe.in", config);
// Process Input Features
float *features = ... // Input
populateFloatFeatures(pmr, "tensor", features, n);
// Get ML Advice/Output
int advice = evaluateIntFeatures(pmr);
// Use the obtained advice
...

Creating Pipe
Model Runner

Instance

Populating
feature to be
sent to Model

Querying Model
for Advice

Adding New Model Runners + SerDes

27

#include "MLModelRunner/MLModelRunner.h"

class NewModelRunner : public
MLModelRunner {
public:
 // Custom ModelRunner Constructor
 NewModelRunner();
 virtual ~NewModelRunner();
private:
 // Function to establish communication
 void *evaluateUntyped() override;
 // Functions to send and receive data
 void send(void *data);
 void *receive();
};

#include "SerDes/baseSerDes.h"

class NewSerDes : public BaseSerDes {
public:
 NewSerDes() :BaseSerDes(BaseSerDes::Kind::NewSD){};
 void setFeature(const std::string name, const int value)
override;
 void setFeature(const std::string name, const float value)
override;

 ...
 void *getSerializedData() override;
 void cleanDataStructures() override;
 private:
 void *deserializeUntyped(void *data) override;
};

Supports Wider Use-Cases…

28

● Communication: gRPC based multiple times

● Agents: Multiple hierarchical agents

● Model Type: PyTorch (GNN + FCNN)

● Model Input: Interference graph + node embedding

● Model Output: Colour map

● Communication: Opt flag based multiple times

● Agent: Single agent

● Model Type: PyTorch (FCNN)

● Model Input: IR2Vec vectors

● Model Output: Pass sequence

RL4ReAl - Register Allocation POSET-RL - Phase Ordering

VenkataKeerthy, et al., RL4ReAl: Reinforcement Learning for Register
Allocation. CC 2023.

Jain, et al., POSET-RL: Phase ordering for Optimizing Size and Execution
Time using Reinforcement Learning. ISPASS 2022

Supports Wider Use-Cases…

29

● Communication: Python Wrapper based once at end

● Agents: Multiple agents

● Mode Type: PyTorch (GNN + FCNN)

● Model Input: IR2Vec vectors

● Model Output: Distribution sequence

● Communication: Precompiled TF model

● Agents: Single agent

● Mode Type: TensorFlow (FCNN)

● Model Input: Feature vector

● Model Output: Binary (yes/no)

Loop Distribution LLVM ML-Inliner

Trofin, et al. "MLGO: a machine learning guided compiler
optimizations framework." arXiv 2021.

Jain, et al., “Reinforcement Learning assisted Loop Distribution for
Locality and Vectorization”, LLVM-HPC 2022.

Training Time Improvements

30

RL4ReAl Multi-worker
Training Time Comparison

POSET-RL Training
Time Comparison

Compile (Inference) Time Improvements: POSET-RL

31

Support for Multi-threaded Compilation

32

● Inference time comparison with CompilerGym’s phase ordering model

● Model exported as ONNX model and queried using ONNXModelRunner

ML-Compiler-Bridge with CompilerGym

33Cummins, et al. "CompilerGym: Robust, Performant Compiler Optimization Environments for AI Research." CGO 2022.

Performance of Individual Model Runners

34

Round Trip-Times (RTT) for querying model with data of
different lengths

Support for MLIR & Pluto

35

MLIR Pluto
RTT for querying model with data of different lengths

● Scalable, Lightweight suite of model runners and serializers

○ Supports Multiple Languages

○ Compiler and ML-Framework Independent

○ Supports deeper and high-level interfacing with compilers

● Plug-and-Play approach for ML based Compiler Optimizations

● Easier transition from research to deployment

● We plan to upstream relevant portions to LLVM in addition to what is available

Summary - ML-Compiler-Bridge

36

Thank You!
 S. VenkataKeerthy | Siddharth Jain

https://svkeerthy.github.io | https://sid18996.github.io

Interested? Please get in touch with us
Visit our Poster @ C4ML (1800 hrs, Reception Area)

37

Looking for

Extensions and

Contributions
Code

https://compilers.cse.iith.ac.in/research/mlcompilerbridge

https://svkeerthy.github.io
https://dl.acm.org/doi/10.1145/3640537.3641580
https://compilers.cse.iith.ac.in/publications/mlcompilerbridge/

