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● Impact of ML for hard, heuristic-based compiler optimizations

ML, ML everywhere!

2https://www.youtube.com/watch?v=w_sX9aZoZxg 

Compiler 2.0 (CGO’22 & LCTES’20 Keynotes) by Prof. Saman Amarasinghe

https://www.youtube.com/watch?v=w_sX9aZoZxg


ML, ML everywhere!
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200+ works on using ML for Compiler Optimizations in the recent years! 

● Ease of designing ML based Compiler Optimizations

● End-to-End Integration of ML Compiler interaction

● Transcending from Research to Deployment



ML for Compiler Optimizations
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S1.  i =1
S2.  sum=0
P3.  while i<=10 do
S4.   read j
P5.   if j<=0 then
S6.      continue
S7.   sum=sum+j
P8.   if sum>100 then
S9.        break
S10.  i=i+1
S11. print sum
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or/and

ML for Compiler Optimizations
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// (a) Loop1
int x[N] , y[N], a[N];
for (int i=1; i<N; ++i)
{
   x[i+1]=x[i-1]+x[i+1]; 
   a[i+1]=(a[i-1]+a[i])
           /2.0 ;
}

// (b) Loop1 :Distributed
int x[N],y[N],a[N];
for (int i=1; i<N; ++i)
  x[i+1] = x[i-1]+x[i+1]; 
for (int i=1; i<N; ++i)
   a[i+1] = (a[i-1]+a[i]) 

   /2.0;
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● Highly Important

○ Scalability

○ Compile Time Issues

○ Memory Issues

○ …

● Determines the practicality 

○ Deployment

○ Usability

○ …
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ML-Compiler Interaction

Compiler ML Models

Materialize 
Predictions

Opt n

Input 
Program

Input 
Program

Input 
Program

Training / 
Inference

Opt 1

Querying

Compilation 
     starts

Communication + Integration

● No single standard approach

○ Python wrappers, Compiler flags

● Model written with C++ APIs

○ Tight coupling of APIs

Current Approaches

● No deeper integration

○ High-level interfacing



Integration

Not all outputs can be 
communicated via flags

Register Allocation, 
Instruction Scheduling, 

…

Scalability

● Python/C++ wrappers

● 6x – 100x slowdown

Phase Ordering, Loop 
Distribution, … 

Current Limitations

Portability

Support for diverse ML 
frameworks

TF, PyTorch, JAX, …

Programmability

Models written in C++ are 
not ML developer friendly

RLLib, SciPy, …
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Current Limitations
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...
...

...

...

m x n problem 🙁



Our Proposal
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ML-Compiler-Bridge

m + n 😀



ML-Compiler-Bridge
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ML-Compiler-Bridge
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Compiler and the ML model runs as 

two concurrent processes.

● gRPC

● Unix-style Named Pipes
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Model Runners: Medium of Communication

Two Broad Model Runners

Inter-Process Model Runners In-Process Model Runners

ML model is part of the compiler

● ONNX C++ Runtime

● TensorFlow AOT model

Designed for Training Designed for Inference 
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Inter-process Model Runners: gRPC
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syntax = "proto3";
// Package name for current optimization
package helloMLBridgegRPC;
// Service class RPC declarations
service HelloMLBridgeService {
 // RPC to query compiler
 rpc queryCompiler(ActionRequest) returns (TensorResponse) {}
 // RPC to get Advice from model
 rpc getAdvice(TensorResponse) returns (ActionRequest) {}
}
// Data structures for request and response messages
message TensorResponse { repeated float tensor = 1; }
message ActionRequest { int32 action = 1; }
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gRPC Model Runner - proto description

RPC to Query 
Compiler

RPC to Query 
Model

Request/Response 
Data Structure

RPC Service 
Class
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Inter-process Model Runners: Pipes



Pipe Model Runner - Internals
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...
void *PipeModelRunner::evaluateUntyped() override {
 auto *data = SerDes->getSerializedData();
 send(data);
 auto *reply = receive();

 return SerDes->deserializeUntyped(reply);
}
...

Get serialized 
data from 
SerDes

Send data 
on pipe

Deserialized 
received data 

and return

Read received 
data on pipe
(Blocking)



In-process Model Runners: TensorFlow AOT
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In-process Model Runners: ONNX

ONNX - Framework neutral, interoperable infrastructure for trained model integration

21
ONNX. Open Neural Network Exchange. 2017, https://github.com/onnx/onnx

Compiler Tool 
Chain

ONNX Model
ONNX Runtime

ONNXModelRunner

Trained
Model

https://github.com/onnx/onnx


SerDes: Serialization-Deserialization Module

22

Data to send send(hdr+data)
{ 
  "embedding": [...] 
}

message Data {
  repeated float embedding = 1;
}

length(data)

Protobuf

BitStream

Json

{
 'name': '...',
 'type': 'float',
 'shape': [1, 300]
}

Header 
00111111101111101011111110010101011111110
01010101111111111010111101010011011010011
11111000010001001110011110100011111111001
001101100111111100111010000010110001101
00111111100011000010110100000101001111111
00010110001100000000010001111110100010101
11100100110110011111111010100110110100111
111100001000100111001111010…………………………………

Data



 Comparison of Different Model Runners
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gRPC Pipes ONNX TF-AOT

Multithreaded 
Compilation ✖ ✖ ✔ ✔

Distributed Training ✔ ✖ – –

Single process 
(Model is part of the compiler) ✖ ✖ ✔ ✔

Auto-serialization ✔ ✔ – –

Communication 
Robustness ✖ ✖ ✔ ✔

ML Framework 
Independent ✔ ✔ ✔ ✖



#include "MLCompilerBridge/MLModelRunner.h"
#include "MLCompilerBridge/yourMLModelRunner.h"

// Instantiate the required model runner with SerDes type
MLModelRunner *MLRunner = std::make_unique<yourModelRunner>(Arg, 

SerDes::Kind::yourSerDesType);
// Process Input Features
std::pair<std::string, InType> p = ... // Input
MLRunner->populateFeatures(p);
// Get ML Advice/Output
OutType advice = MLRunner->evaluate<OutType>();
// Use the obtained advice
...

Using ML-Compiler-Bridge (C++)
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Multi-Language Support: Python
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import CompilerInterface as CI

# Instantiate the required CompilerInterface with serdes type
interface = CI.YourCompilerInterface(Arg, yourSerdesType)
while True:
   ...
   # Populates buffer with advice 
   interface.populate_buffer(advice)
   # Send buffer data to compiler and wait for next request
   response = interface.evaluate()
   ...
   # Break on condition

Populating 
buffer with 
advice data

Creating 
CompilerInterface 

Instance

Responding to 
compiler with 

advice



Multi-Language Support: C

26

#include "MLModelRunner/C/ONNXModelRunner.h"
#include "MLModelRunner/C/PipeModelRunner.h"

// Instantiate the required model runner with SerDes type
PipeModelRunnerWrapper *pmr = createPipeModelRunner

("plutopipe.out", "plutopipe.in", config);
// Process Input Features
float *features = ... // Input
populateFloatFeatures(pmr, "tensor", features, n);
// Get ML Advice/Output
int advice = evaluateIntFeatures(pmr);
// Use the obtained advice
...

Creating Pipe 
Model Runner 

Instance

Populating 
feature to be 
sent to Model

Querying Model 
for Advice



Adding New Model Runners + SerDes
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#include "MLModelRunner/MLModelRunner.h"

class NewModelRunner : public 
MLModelRunner {
public:
 // Custom ModelRunner Constructor
 NewModelRunner();
 virtual ~NewModelRunner();
private:
 // Function to establish communication
 void *evaluateUntyped() override;
 // Functions to send and receive data
 void send(void *data);
 void *receive(); 
};

#include "SerDes/baseSerDes.h"

class NewSerDes : public BaseSerDes {
public:
 NewSerDes() :BaseSerDes(BaseSerDes::Kind::NewSD){};
 void setFeature(const std::string name, const int value) 
override;
 void setFeature(const std::string name, const float value) 
override;

 ...
 void *getSerializedData() override;
 void cleanDataStructures() override;
 private:
 void *deserializeUntyped(void *data) override;
};



Supports Wider Use-Cases…
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● Communication: gRPC based multiple times

● Agents: Multiple hierarchical agents

● Model Type: PyTorch (GNN + FCNN)

● Model Input: Interference graph + node embedding

● Model Output: Colour map

● Communication: Opt flag based multiple times

● Agent: Single agent

● Model Type: PyTorch (FCNN)

● Model Input: IR2Vec vectors

● Model Output: Pass sequence

RL4ReAl - Register Allocation POSET-RL - Phase Ordering

VenkataKeerthy, et al., RL4ReAl: Reinforcement Learning for Register 
Allocation. CC 2023.

Jain, et al., POSET-RL: Phase ordering for Optimizing Size and Execution 
Time using Reinforcement Learning. ISPASS 2022



Supports Wider Use-Cases…
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● Communication: Python Wrapper based once at end

● Agents: Multiple agents

● Mode Type: PyTorch (GNN + FCNN)

● Model Input: IR2Vec vectors

● Model Output: Distribution sequence

● Communication: Precompiled TF model

● Agents: Single agent

● Mode Type: TensorFlow (FCNN)

● Model Input: Feature vector

● Model Output: Binary (yes/no)

Loop Distribution LLVM ML-Inliner

Trofin, et al. "MLGO: a machine learning guided compiler 
optimizations framework." arXiv 2021.

Jain, et al., “Reinforcement Learning assisted Loop Distribution for 
Locality and Vectorization”, LLVM-HPC 2022.



Training Time Improvements
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RL4ReAl Multi-worker 
Training Time Comparison

POSET-RL Training 
Time Comparison



Compile (Inference) Time Improvements: POSET-RL
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Support for Multi-threaded Compilation
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● Inference time comparison with CompilerGym’s phase ordering model

● Model exported as ONNX model and queried using ONNXModelRunner

ML-Compiler-Bridge with CompilerGym

33Cummins, et al. "CompilerGym: Robust, Performant Compiler Optimization Environments for AI Research." CGO 2022.



Performance of Individual Model Runners
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Round Trip-Times (RTT) for querying model with data of 
different lengths



Support for MLIR & Pluto
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MLIR Pluto
RTT for querying model with data of different lengths



● Scalable, Lightweight suite of model runners and serializers 

○ Supports Multiple Languages

○ Compiler and ML-Framework Independent

○ Supports deeper and high-level interfacing with compilers

● Plug-and-Play approach for ML based Compiler Optimizations

● Easier transition from research to deployment

● We plan to upstream relevant portions to LLVM in addition to what is available

Summary - ML-Compiler-Bridge
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Thank You!
           S. VenkataKeerthy | Siddharth Jain

https://svkeerthy.github.io | https://sid18996.github.io

Interested? Please get in touch with us
Visit our  Poster @ C4ML (1800 hrs, Reception Area)
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Looking for 

Extensions and 

Contributions 
Code

https://compilers.cse.iith.ac.in/research/mlcompilerbridge

https://svkeerthy.github.io
https://dl.acm.org/doi/10.1145/3640537.3641580
https://compilers.cse.iith.ac.in/publications/mlcompilerbridge/

