LLVM 19.0.0git
Utils.cpp
Go to the documentation of this file.
1//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file This file implements the utility functions used by the GlobalISel
9/// pipeline.
10//===----------------------------------------------------------------------===//
11
13#include "llvm/ADT/APFloat.h"
14#include "llvm/ADT/APInt.h"
35#include "llvm/IR/Constants.h"
38#include <numeric>
39#include <optional>
40
41#define DEBUG_TYPE "globalisel-utils"
42
43using namespace llvm;
44using namespace MIPatternMatch;
45
47 const TargetInstrInfo &TII,
48 const RegisterBankInfo &RBI, Register Reg,
49 const TargetRegisterClass &RegClass) {
50 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
51 return MRI.createVirtualRegister(&RegClass);
52
53 return Reg;
54}
55
57 const MachineFunction &MF, const TargetRegisterInfo &TRI,
59 const RegisterBankInfo &RBI, MachineInstr &InsertPt,
60 const TargetRegisterClass &RegClass, MachineOperand &RegMO) {
61 Register Reg = RegMO.getReg();
62 // Assume physical registers are properly constrained.
63 assert(Reg.isVirtual() && "PhysReg not implemented");
64
65 // Save the old register class to check whether
66 // the change notifications will be required.
67 // TODO: A better approach would be to pass
68 // the observers to constrainRegToClass().
69 auto *OldRegClass = MRI.getRegClassOrNull(Reg);
70 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
71 // If we created a new virtual register because the class is not compatible
72 // then create a copy between the new and the old register.
73 if (ConstrainedReg != Reg) {
74 MachineBasicBlock::iterator InsertIt(&InsertPt);
75 MachineBasicBlock &MBB = *InsertPt.getParent();
76 // FIXME: The copy needs to have the classes constrained for its operands.
77 // Use operand's regbank to get the class for old register (Reg).
78 if (RegMO.isUse()) {
79 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
80 TII.get(TargetOpcode::COPY), ConstrainedReg)
81 .addReg(Reg);
82 } else {
83 assert(RegMO.isDef() && "Must be a definition");
84 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
85 TII.get(TargetOpcode::COPY), Reg)
86 .addReg(ConstrainedReg);
87 }
88 if (GISelChangeObserver *Observer = MF.getObserver()) {
89 Observer->changingInstr(*RegMO.getParent());
90 }
91 RegMO.setReg(ConstrainedReg);
92 if (GISelChangeObserver *Observer = MF.getObserver()) {
93 Observer->changedInstr(*RegMO.getParent());
94 }
95 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) {
96 if (GISelChangeObserver *Observer = MF.getObserver()) {
97 if (!RegMO.isDef()) {
98 MachineInstr *RegDef = MRI.getVRegDef(Reg);
99 Observer->changedInstr(*RegDef);
100 }
101 Observer->changingAllUsesOfReg(MRI, Reg);
102 Observer->finishedChangingAllUsesOfReg();
103 }
104 }
105 return ConstrainedReg;
106}
107
109 const MachineFunction &MF, const TargetRegisterInfo &TRI,
111 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
112 MachineOperand &RegMO, unsigned OpIdx) {
113 Register Reg = RegMO.getReg();
114 // Assume physical registers are properly constrained.
115 assert(Reg.isVirtual() && "PhysReg not implemented");
116
117 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF);
118 // Some of the target independent instructions, like COPY, may not impose any
119 // register class constraints on some of their operands: If it's a use, we can
120 // skip constraining as the instruction defining the register would constrain
121 // it.
122
123 if (OpRC) {
124 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands
125 // can have multiple regbanks for a superclass that combine different
126 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity
127 // resolved by targets during regbankselect should not be overridden.
128 if (const auto *SubRC = TRI.getCommonSubClass(
129 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI)))
130 OpRC = SubRC;
131
132 OpRC = TRI.getAllocatableClass(OpRC);
133 }
134
135 if (!OpRC) {
136 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
137 "Register class constraint is required unless either the "
138 "instruction is target independent or the operand is a use");
139 // FIXME: Just bailing out like this here could be not enough, unless we
140 // expect the users of this function to do the right thing for PHIs and
141 // COPY:
142 // v1 = COPY v0
143 // v2 = COPY v1
144 // v1 here may end up not being constrained at all. Please notice that to
145 // reproduce the issue we likely need a destination pattern of a selection
146 // rule producing such extra copies, not just an input GMIR with them as
147 // every existing target using selectImpl handles copies before calling it
148 // and they never reach this function.
149 return Reg;
150 }
151 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC,
152 RegMO);
153}
154
156 const TargetInstrInfo &TII,
157 const TargetRegisterInfo &TRI,
158 const RegisterBankInfo &RBI) {
159 assert(!isPreISelGenericOpcode(I.getOpcode()) &&
160 "A selected instruction is expected");
161 MachineBasicBlock &MBB = *I.getParent();
164
165 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
166 MachineOperand &MO = I.getOperand(OpI);
167
168 // There's nothing to be done on non-register operands.
169 if (!MO.isReg())
170 continue;
171
172 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
173 assert(MO.isReg() && "Unsupported non-reg operand");
174
175 Register Reg = MO.getReg();
176 // Physical registers don't need to be constrained.
177 if (Reg.isPhysical())
178 continue;
179
180 // Register operands with a value of 0 (e.g. predicate operands) don't need
181 // to be constrained.
182 if (Reg == 0)
183 continue;
184
185 // If the operand is a vreg, we should constrain its regclass, and only
186 // insert COPYs if that's impossible.
187 // constrainOperandRegClass does that for us.
188 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI);
189
190 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
191 // done.
192 if (MO.isUse()) {
193 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
194 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
195 I.tieOperands(DefIdx, OpI);
196 }
197 }
198 return true;
199}
200
203 // Give up if either DstReg or SrcReg is a physical register.
204 if (DstReg.isPhysical() || SrcReg.isPhysical())
205 return false;
206 // Give up if the types don't match.
207 if (MRI.getType(DstReg) != MRI.getType(SrcReg))
208 return false;
209 // Replace if either DstReg has no constraints or the register
210 // constraints match.
211 const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg);
212 if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg))
213 return true;
214
215 // Otherwise match if the Src is already a regclass that is covered by the Dst
216 // RegBank.
217 return DstRBC.is<const RegisterBank *>() && MRI.getRegClassOrNull(SrcReg) &&
218 DstRBC.get<const RegisterBank *>()->covers(
219 *MRI.getRegClassOrNull(SrcReg));
220}
221
223 const MachineRegisterInfo &MRI) {
224 // FIXME: This logical is mostly duplicated with
225 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in
226 // MachineInstr::isLabel?
227
228 // Don't delete frame allocation labels.
229 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE)
230 return false;
231 // LIFETIME markers should be preserved even if they seem dead.
232 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
233 MI.getOpcode() == TargetOpcode::LIFETIME_END)
234 return false;
235
236 // If we can move an instruction, we can remove it. Otherwise, it has
237 // a side-effect of some sort.
238 bool SawStore = false;
239 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
240 return false;
241
242 // Instructions without side-effects are dead iff they only define dead vregs.
243 for (const auto &MO : MI.all_defs()) {
244 Register Reg = MO.getReg();
245 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
246 return false;
247 }
248 return true;
249}
250
252 MachineFunction &MF,
253 const TargetPassConfig &TPC,
256 bool IsFatal = Severity == DS_Error &&
258 // Print the function name explicitly if we don't have a debug location (which
259 // makes the diagnostic less useful) or if we're going to emit a raw error.
260 if (!R.getLocation().isValid() || IsFatal)
261 R << (" (in function: " + MF.getName() + ")").str();
262
263 if (IsFatal)
264 report_fatal_error(Twine(R.getMsg()));
265 else
266 MORE.emit(R);
267}
268
273}
274
278 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
279 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
280}
281
284 const char *PassName, StringRef Msg,
285 const MachineInstr &MI) {
286 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
287 MI.getDebugLoc(), MI.getParent());
288 R << Msg;
289 // Printing MI is expensive; only do it if expensive remarks are enabled.
290 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
291 R << ": " << ore::MNV("Inst", MI);
292 reportGISelFailure(MF, TPC, MORE, R);
293}
294
295std::optional<APInt> llvm::getIConstantVRegVal(Register VReg,
296 const MachineRegisterInfo &MRI) {
297 std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough(
298 VReg, MRI, /*LookThroughInstrs*/ false);
299 assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
300 "Value found while looking through instrs");
301 if (!ValAndVReg)
302 return std::nullopt;
303 return ValAndVReg->Value;
304}
305
306std::optional<int64_t>
308 std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI);
309 if (Val && Val->getBitWidth() <= 64)
310 return Val->getSExtValue();
311 return std::nullopt;
312}
313
314namespace {
315
316// This function is used in many places, and as such, it has some
317// micro-optimizations to try and make it as fast as it can be.
318//
319// - We use template arguments to avoid an indirect call caused by passing a
320// function_ref/std::function
321// - GetAPCstValue does not return std::optional<APInt> as that's expensive.
322// Instead it returns true/false and places the result in a pre-constructed
323// APInt.
324//
325// Please change this function carefully and benchmark your changes.
326template <bool (*IsConstantOpcode)(const MachineInstr *),
327 bool (*GetAPCstValue)(const MachineInstr *MI, APInt &)>
328std::optional<ValueAndVReg>
329getConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI,
330 bool LookThroughInstrs = true,
331 bool LookThroughAnyExt = false) {
334
335 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) &&
336 LookThroughInstrs) {
337 switch (MI->getOpcode()) {
338 case TargetOpcode::G_ANYEXT:
339 if (!LookThroughAnyExt)
340 return std::nullopt;
341 [[fallthrough]];
342 case TargetOpcode::G_TRUNC:
343 case TargetOpcode::G_SEXT:
344 case TargetOpcode::G_ZEXT:
345 SeenOpcodes.push_back(std::make_pair(
346 MI->getOpcode(),
347 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
348 VReg = MI->getOperand(1).getReg();
349 break;
350 case TargetOpcode::COPY:
351 VReg = MI->getOperand(1).getReg();
352 if (VReg.isPhysical())
353 return std::nullopt;
354 break;
355 case TargetOpcode::G_INTTOPTR:
356 VReg = MI->getOperand(1).getReg();
357 break;
358 default:
359 return std::nullopt;
360 }
361 }
362 if (!MI || !IsConstantOpcode(MI))
363 return std::nullopt;
364
365 APInt Val;
366 if (!GetAPCstValue(MI, Val))
367 return std::nullopt;
368 for (auto &Pair : reverse(SeenOpcodes)) {
369 switch (Pair.first) {
370 case TargetOpcode::G_TRUNC:
371 Val = Val.trunc(Pair.second);
372 break;
373 case TargetOpcode::G_ANYEXT:
374 case TargetOpcode::G_SEXT:
375 Val = Val.sext(Pair.second);
376 break;
377 case TargetOpcode::G_ZEXT:
378 Val = Val.zext(Pair.second);
379 break;
380 }
381 }
382
383 return ValueAndVReg{std::move(Val), VReg};
384}
385
386bool isIConstant(const MachineInstr *MI) {
387 if (!MI)
388 return false;
389 return MI->getOpcode() == TargetOpcode::G_CONSTANT;
390}
391
392bool isFConstant(const MachineInstr *MI) {
393 if (!MI)
394 return false;
395 return MI->getOpcode() == TargetOpcode::G_FCONSTANT;
396}
397
398bool isAnyConstant(const MachineInstr *MI) {
399 if (!MI)
400 return false;
401 unsigned Opc = MI->getOpcode();
402 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT;
403}
404
405bool getCImmAsAPInt(const MachineInstr *MI, APInt &Result) {
406 const MachineOperand &CstVal = MI->getOperand(1);
407 if (!CstVal.isCImm())
408 return false;
409 Result = CstVal.getCImm()->getValue();
410 return true;
411}
412
413bool getCImmOrFPImmAsAPInt(const MachineInstr *MI, APInt &Result) {
414 const MachineOperand &CstVal = MI->getOperand(1);
415 if (CstVal.isCImm())
416 Result = CstVal.getCImm()->getValue();
417 else if (CstVal.isFPImm())
419 else
420 return false;
421 return true;
422}
423
424} // end anonymous namespace
425
427 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
428 return getConstantVRegValWithLookThrough<isIConstant, getCImmAsAPInt>(
429 VReg, MRI, LookThroughInstrs);
430}
431
433 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
434 bool LookThroughAnyExt) {
435 return getConstantVRegValWithLookThrough<isAnyConstant,
436 getCImmOrFPImmAsAPInt>(
437 VReg, MRI, LookThroughInstrs, LookThroughAnyExt);
438}
439
440std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough(
441 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
442 auto Reg =
443 getConstantVRegValWithLookThrough<isFConstant, getCImmOrFPImmAsAPInt>(
444 VReg, MRI, LookThroughInstrs);
445 if (!Reg)
446 return std::nullopt;
448 Reg->VReg};
449}
450
451const ConstantFP *
453 MachineInstr *MI = MRI.getVRegDef(VReg);
454 if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
455 return nullptr;
456 return MI->getOperand(1).getFPImm();
457}
458
459std::optional<DefinitionAndSourceRegister>
461 Register DefSrcReg = Reg;
462 auto *DefMI = MRI.getVRegDef(Reg);
463 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
464 if (!DstTy.isValid())
465 return std::nullopt;
466 unsigned Opc = DefMI->getOpcode();
467 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) {
468 Register SrcReg = DefMI->getOperand(1).getReg();
469 auto SrcTy = MRI.getType(SrcReg);
470 if (!SrcTy.isValid())
471 break;
472 DefMI = MRI.getVRegDef(SrcReg);
473 DefSrcReg = SrcReg;
474 Opc = DefMI->getOpcode();
475 }
476 return DefinitionAndSourceRegister{DefMI, DefSrcReg};
477}
478
480 const MachineRegisterInfo &MRI) {
481 std::optional<DefinitionAndSourceRegister> DefSrcReg =
483 return DefSrcReg ? DefSrcReg->MI : nullptr;
484}
485
487 const MachineRegisterInfo &MRI) {
488 std::optional<DefinitionAndSourceRegister> DefSrcReg =
490 return DefSrcReg ? DefSrcReg->Reg : Register();
491}
492
493void llvm::extractParts(Register Reg, LLT Ty, int NumParts,
495 MachineIRBuilder &MIRBuilder,
497 for (int i = 0; i < NumParts; ++i)
498 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
499 MIRBuilder.buildUnmerge(VRegs, Reg);
500}
501
502bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy,
504 SmallVectorImpl<Register> &LeftoverRegs,
505 MachineIRBuilder &MIRBuilder,
507 assert(!LeftoverTy.isValid() && "this is an out argument");
508
509 unsigned RegSize = RegTy.getSizeInBits();
510 unsigned MainSize = MainTy.getSizeInBits();
511 unsigned NumParts = RegSize / MainSize;
512 unsigned LeftoverSize = RegSize - NumParts * MainSize;
513
514 // Use an unmerge when possible.
515 if (LeftoverSize == 0) {
516 for (unsigned I = 0; I < NumParts; ++I)
517 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
518 MIRBuilder.buildUnmerge(VRegs, Reg);
519 return true;
520 }
521
522 // Try to use unmerge for irregular vector split where possible
523 // For example when splitting a <6 x i32> into <4 x i32> with <2 x i32>
524 // leftover, it becomes:
525 // <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1
526 // <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3
527 if (RegTy.isVector() && MainTy.isVector()) {
528 unsigned RegNumElts = RegTy.getNumElements();
529 unsigned MainNumElts = MainTy.getNumElements();
530 unsigned LeftoverNumElts = RegNumElts % MainNumElts;
531 // If can unmerge to LeftoverTy, do it
532 if (MainNumElts % LeftoverNumElts == 0 &&
533 RegNumElts % LeftoverNumElts == 0 &&
534 RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() &&
535 LeftoverNumElts > 1) {
536 LeftoverTy =
537 LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits());
538
539 // Unmerge the SrcReg to LeftoverTy vectors
540 SmallVector<Register, 4> UnmergeValues;
541 extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues,
542 MIRBuilder, MRI);
543
544 // Find how many LeftoverTy makes one MainTy
545 unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts;
546 unsigned NumOfLeftoverVal =
547 ((RegNumElts % MainNumElts) / LeftoverNumElts);
548
549 // Create as many MainTy as possible using unmerged value
550 SmallVector<Register, 4> MergeValues;
551 for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) {
552 MergeValues.push_back(UnmergeValues[I]);
553 if (MergeValues.size() == LeftoverPerMain) {
554 VRegs.push_back(
555 MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0));
556 MergeValues.clear();
557 }
558 }
559 // Populate LeftoverRegs with the leftovers
560 for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal;
561 I < UnmergeValues.size(); I++) {
562 LeftoverRegs.push_back(UnmergeValues[I]);
563 }
564 return true;
565 }
566 }
567 // Perform irregular split. Leftover is last element of RegPieces.
568 if (MainTy.isVector()) {
569 SmallVector<Register, 8> RegPieces;
570 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder,
571 MRI);
572 for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
573 VRegs.push_back(RegPieces[i]);
574 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
575 LeftoverTy = MRI.getType(LeftoverRegs[0]);
576 return true;
577 }
578
579 LeftoverTy = LLT::scalar(LeftoverSize);
580 // For irregular sizes, extract the individual parts.
581 for (unsigned I = 0; I != NumParts; ++I) {
582 Register NewReg = MRI.createGenericVirtualRegister(MainTy);
583 VRegs.push_back(NewReg);
584 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
585 }
586
587 for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
588 Offset += LeftoverSize) {
589 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
590 LeftoverRegs.push_back(NewReg);
591 MIRBuilder.buildExtract(NewReg, Reg, Offset);
592 }
593
594 return true;
595}
596
597void llvm::extractVectorParts(Register Reg, unsigned NumElts,
599 MachineIRBuilder &MIRBuilder,
601 LLT RegTy = MRI.getType(Reg);
602 assert(RegTy.isVector() && "Expected a vector type");
603
604 LLT EltTy = RegTy.getElementType();
605 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
606 unsigned RegNumElts = RegTy.getNumElements();
607 unsigned LeftoverNumElts = RegNumElts % NumElts;
608 unsigned NumNarrowTyPieces = RegNumElts / NumElts;
609
610 // Perfect split without leftover
611 if (LeftoverNumElts == 0)
612 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder,
613 MRI);
614
615 // Irregular split. Provide direct access to all elements for artifact
616 // combiner using unmerge to elements. Then build vectors with NumElts
617 // elements. Remaining element(s) will be (used to build vector) Leftover.
619 extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI);
620
621 unsigned Offset = 0;
622 // Requested sub-vectors of NarrowTy.
623 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
624 ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
625 VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0));
626 }
627
628 // Leftover element(s).
629 if (LeftoverNumElts == 1) {
630 VRegs.push_back(Elts[Offset]);
631 } else {
632 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
633 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
634 VRegs.push_back(
635 MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0));
636 }
637}
638
640 const MachineRegisterInfo &MRI) {
642 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
643}
644
645APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
646 if (Size == 32)
647 return APFloat(float(Val));
648 if (Size == 64)
649 return APFloat(Val);
650 if (Size != 16)
651 llvm_unreachable("Unsupported FPConstant size");
652 bool Ignored;
653 APFloat APF(Val);
654 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
655 return APF;
656}
657
658std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode,
659 const Register Op1,
660 const Register Op2,
661 const MachineRegisterInfo &MRI) {
662 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false);
663 if (!MaybeOp2Cst)
664 return std::nullopt;
665
666 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false);
667 if (!MaybeOp1Cst)
668 return std::nullopt;
669
670 const APInt &C1 = MaybeOp1Cst->Value;
671 const APInt &C2 = MaybeOp2Cst->Value;
672 switch (Opcode) {
673 default:
674 break;
675 case TargetOpcode::G_ADD:
676 return C1 + C2;
677 case TargetOpcode::G_PTR_ADD:
678 // Types can be of different width here.
679 // Result needs to be the same width as C1, so trunc or sext C2.
680 return C1 + C2.sextOrTrunc(C1.getBitWidth());
681 case TargetOpcode::G_AND:
682 return C1 & C2;
683 case TargetOpcode::G_ASHR:
684 return C1.ashr(C2);
685 case TargetOpcode::G_LSHR:
686 return C1.lshr(C2);
687 case TargetOpcode::G_MUL:
688 return C1 * C2;
689 case TargetOpcode::G_OR:
690 return C1 | C2;
691 case TargetOpcode::G_SHL:
692 return C1 << C2;
693 case TargetOpcode::G_SUB:
694 return C1 - C2;
695 case TargetOpcode::G_XOR:
696 return C1 ^ C2;
697 case TargetOpcode::G_UDIV:
698 if (!C2.getBoolValue())
699 break;
700 return C1.udiv(C2);
701 case TargetOpcode::G_SDIV:
702 if (!C2.getBoolValue())
703 break;
704 return C1.sdiv(C2);
705 case TargetOpcode::G_UREM:
706 if (!C2.getBoolValue())
707 break;
708 return C1.urem(C2);
709 case TargetOpcode::G_SREM:
710 if (!C2.getBoolValue())
711 break;
712 return C1.srem(C2);
713 case TargetOpcode::G_SMIN:
714 return APIntOps::smin(C1, C2);
715 case TargetOpcode::G_SMAX:
716 return APIntOps::smax(C1, C2);
717 case TargetOpcode::G_UMIN:
718 return APIntOps::umin(C1, C2);
719 case TargetOpcode::G_UMAX:
720 return APIntOps::umax(C1, C2);
721 }
722
723 return std::nullopt;
724}
725
726std::optional<APFloat>
727llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1,
728 const Register Op2, const MachineRegisterInfo &MRI) {
729 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
730 if (!Op2Cst)
731 return std::nullopt;
732
733 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
734 if (!Op1Cst)
735 return std::nullopt;
736
737 APFloat C1 = Op1Cst->getValueAPF();
738 const APFloat &C2 = Op2Cst->getValueAPF();
739 switch (Opcode) {
740 case TargetOpcode::G_FADD:
741 C1.add(C2, APFloat::rmNearestTiesToEven);
742 return C1;
743 case TargetOpcode::G_FSUB:
744 C1.subtract(C2, APFloat::rmNearestTiesToEven);
745 return C1;
746 case TargetOpcode::G_FMUL:
747 C1.multiply(C2, APFloat::rmNearestTiesToEven);
748 return C1;
749 case TargetOpcode::G_FDIV:
750 C1.divide(C2, APFloat::rmNearestTiesToEven);
751 return C1;
752 case TargetOpcode::G_FREM:
753 C1.mod(C2);
754 return C1;
755 case TargetOpcode::G_FCOPYSIGN:
756 C1.copySign(C2);
757 return C1;
758 case TargetOpcode::G_FMINNUM:
759 return minnum(C1, C2);
760 case TargetOpcode::G_FMAXNUM:
761 return maxnum(C1, C2);
762 case TargetOpcode::G_FMINIMUM:
763 return minimum(C1, C2);
764 case TargetOpcode::G_FMAXIMUM:
765 return maximum(C1, C2);
766 case TargetOpcode::G_FMINNUM_IEEE:
767 case TargetOpcode::G_FMAXNUM_IEEE:
768 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not
769 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax,
770 // and currently there isn't a nice wrapper in APFloat for the version with
771 // correct snan handling.
772 break;
773 default:
774 break;
775 }
776
777 return std::nullopt;
778}
779
781llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1,
782 const Register Op2,
783 const MachineRegisterInfo &MRI) {
784 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI);
785 if (!SrcVec2)
786 return SmallVector<APInt>();
787
788 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI);
789 if (!SrcVec1)
790 return SmallVector<APInt>();
791
792 SmallVector<APInt> FoldedElements;
793 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) {
794 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx),
795 SrcVec2->getSourceReg(Idx), MRI);
796 if (!MaybeCst)
797 return SmallVector<APInt>();
798 FoldedElements.push_back(*MaybeCst);
799 }
800 return FoldedElements;
801}
802
804 bool SNaN) {
805 const MachineInstr *DefMI = MRI.getVRegDef(Val);
806 if (!DefMI)
807 return false;
808
809 const TargetMachine& TM = DefMI->getMF()->getTarget();
810 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath)
811 return true;
812
813 // If the value is a constant, we can obviously see if it is a NaN or not.
814 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) {
815 return !FPVal->getValueAPF().isNaN() ||
816 (SNaN && !FPVal->getValueAPF().isSignaling());
817 }
818
819 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
820 for (const auto &Op : DefMI->uses())
821 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN))
822 return false;
823 return true;
824 }
825
826 switch (DefMI->getOpcode()) {
827 default:
828 break;
829 case TargetOpcode::G_FADD:
830 case TargetOpcode::G_FSUB:
831 case TargetOpcode::G_FMUL:
832 case TargetOpcode::G_FDIV:
833 case TargetOpcode::G_FREM:
834 case TargetOpcode::G_FSIN:
835 case TargetOpcode::G_FCOS:
836 case TargetOpcode::G_FMA:
837 case TargetOpcode::G_FMAD:
838 if (SNaN)
839 return true;
840
841 // TODO: Need isKnownNeverInfinity
842 return false;
843 case TargetOpcode::G_FMINNUM_IEEE:
844 case TargetOpcode::G_FMAXNUM_IEEE: {
845 if (SNaN)
846 return true;
847 // This can return a NaN if either operand is an sNaN, or if both operands
848 // are NaN.
849 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) &&
853 }
854 case TargetOpcode::G_FMINNUM:
855 case TargetOpcode::G_FMAXNUM: {
856 // Only one needs to be known not-nan, since it will be returned if the
857 // other ends up being one.
858 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) ||
860 }
861 }
862
863 if (SNaN) {
864 // FP operations quiet. For now, just handle the ones inserted during
865 // legalization.
866 switch (DefMI->getOpcode()) {
867 case TargetOpcode::G_FPEXT:
868 case TargetOpcode::G_FPTRUNC:
869 case TargetOpcode::G_FCANONICALIZE:
870 return true;
871 default:
872 return false;
873 }
874 }
875
876 return false;
877}
878
880 const MachinePointerInfo &MPO) {
881 auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V);
882 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
883 MachineFrameInfo &MFI = MF.getFrameInfo();
884 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
885 MPO.Offset);
886 }
887
888 if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) {
889 const Module *M = MF.getFunction().getParent();
890 return V->getPointerAlignment(M->getDataLayout());
891 }
892
893 return Align(1);
894}
895
897 const TargetInstrInfo &TII,
898 MCRegister PhysReg,
899 const TargetRegisterClass &RC,
900 const DebugLoc &DL, LLT RegTy) {
901 MachineBasicBlock &EntryMBB = MF.front();
903 Register LiveIn = MRI.getLiveInVirtReg(PhysReg);
904 if (LiveIn) {
905 MachineInstr *Def = MRI.getVRegDef(LiveIn);
906 if (Def) {
907 // FIXME: Should the verifier check this is in the entry block?
908 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block");
909 return LiveIn;
910 }
911
912 // It's possible the incoming argument register and copy was added during
913 // lowering, but later deleted due to being/becoming dead. If this happens,
914 // re-insert the copy.
915 } else {
916 // The live in register was not present, so add it.
917 LiveIn = MF.addLiveIn(PhysReg, &RC);
918 if (RegTy.isValid())
919 MRI.setType(LiveIn, RegTy);
920 }
921
922 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn)
923 .addReg(PhysReg);
924 if (!EntryMBB.isLiveIn(PhysReg))
925 EntryMBB.addLiveIn(PhysReg);
926 return LiveIn;
927}
928
929std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode,
930 const Register Op1, uint64_t Imm,
931 const MachineRegisterInfo &MRI) {
932 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI);
933 if (MaybeOp1Cst) {
934 switch (Opcode) {
935 default:
936 break;
937 case TargetOpcode::G_SEXT_INREG: {
938 LLT Ty = MRI.getType(Op1);
939 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits());
940 }
941 }
942 }
943 return std::nullopt;
944}
945
946std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy,
947 const Register Op0,
948 const MachineRegisterInfo &MRI) {
949 std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI);
950 if (!Val)
951 return Val;
952
953 const unsigned DstSize = DstTy.getScalarSizeInBits();
954
955 switch (Opcode) {
956 case TargetOpcode::G_SEXT:
957 return Val->sext(DstSize);
958 case TargetOpcode::G_ZEXT:
959 case TargetOpcode::G_ANYEXT:
960 // TODO: DAG considers target preference when constant folding any_extend.
961 return Val->zext(DstSize);
962 default:
963 break;
964 }
965
966 llvm_unreachable("unexpected cast opcode to constant fold");
967}
968
969std::optional<APFloat>
970llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src,
971 const MachineRegisterInfo &MRI) {
972 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP);
973 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) {
974 APFloat DstVal(getFltSemanticForLLT(DstTy));
975 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP,
976 APFloat::rmNearestTiesToEven);
977 return DstVal;
978 }
979 return std::nullopt;
980}
981
982std::optional<SmallVector<unsigned>>
984 std::function<unsigned(APInt)> CB) {
985 LLT Ty = MRI.getType(Src);
986 SmallVector<unsigned> FoldedCTLZs;
987 auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> {
988 auto MaybeCst = getIConstantVRegVal(R, MRI);
989 if (!MaybeCst)
990 return std::nullopt;
991 return CB(*MaybeCst);
992 };
993 if (Ty.isVector()) {
994 // Try to constant fold each element.
995 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI);
996 if (!BV)
997 return std::nullopt;
998 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
999 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) {
1000 FoldedCTLZs.emplace_back(*MaybeFold);
1001 continue;
1002 }
1003 return std::nullopt;
1004 }
1005 return FoldedCTLZs;
1006 }
1007 if (auto MaybeCst = tryFoldScalar(Src)) {
1008 FoldedCTLZs.emplace_back(*MaybeCst);
1009 return FoldedCTLZs;
1010 }
1011 return std::nullopt;
1012}
1013
1014std::optional<SmallVector<APInt>>
1015llvm::ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2,
1016 const MachineRegisterInfo &MRI) {
1017 LLT Ty = MRI.getType(Op1);
1018 if (Ty != MRI.getType(Op2))
1019 return std::nullopt;
1020
1021 auto TryFoldScalar = [&MRI, Pred](Register LHS,
1022 Register RHS) -> std::optional<APInt> {
1023 auto LHSCst = getIConstantVRegVal(LHS, MRI);
1024 auto RHSCst = getIConstantVRegVal(RHS, MRI);
1025 if (!LHSCst || !RHSCst)
1026 return std::nullopt;
1027
1028 switch (Pred) {
1029 case CmpInst::Predicate::ICMP_EQ:
1030 return APInt(/*numBits=*/1, LHSCst->eq(*RHSCst));
1031 case CmpInst::Predicate::ICMP_NE:
1032 return APInt(/*numBits=*/1, LHSCst->ne(*RHSCst));
1033 case CmpInst::Predicate::ICMP_UGT:
1034 return APInt(/*numBits=*/1, LHSCst->ugt(*RHSCst));
1035 case CmpInst::Predicate::ICMP_UGE:
1036 return APInt(/*numBits=*/1, LHSCst->uge(*RHSCst));
1037 case CmpInst::Predicate::ICMP_ULT:
1038 return APInt(/*numBits=*/1, LHSCst->ult(*RHSCst));
1039 case CmpInst::Predicate::ICMP_ULE:
1040 return APInt(/*numBits=*/1, LHSCst->ule(*RHSCst));
1041 case CmpInst::Predicate::ICMP_SGT:
1042 return APInt(/*numBits=*/1, LHSCst->sgt(*RHSCst));
1043 case CmpInst::Predicate::ICMP_SGE:
1044 return APInt(/*numBits=*/1, LHSCst->sge(*RHSCst));
1045 case CmpInst::Predicate::ICMP_SLT:
1046 return APInt(/*numBits=*/1, LHSCst->slt(*RHSCst));
1047 case CmpInst::Predicate::ICMP_SLE:
1048 return APInt(/*numBits=*/1, LHSCst->sle(*RHSCst));
1049 default:
1050 return std::nullopt;
1051 }
1052 };
1053
1054 SmallVector<APInt> FoldedICmps;
1055
1056 if (Ty.isVector()) {
1057 // Try to constant fold each element.
1058 auto *BV1 = getOpcodeDef<GBuildVector>(Op1, MRI);
1059 auto *BV2 = getOpcodeDef<GBuildVector>(Op2, MRI);
1060 if (!BV1 || !BV2)
1061 return std::nullopt;
1062 assert(BV1->getNumSources() == BV2->getNumSources() && "Invalid vectors");
1063 for (unsigned I = 0; I < BV1->getNumSources(); ++I) {
1064 if (auto MaybeFold =
1065 TryFoldScalar(BV1->getSourceReg(I), BV2->getSourceReg(I))) {
1066 FoldedICmps.emplace_back(*MaybeFold);
1067 continue;
1068 }
1069 return std::nullopt;
1070 }
1071 return FoldedICmps;
1072 }
1073
1074 if (auto MaybeCst = TryFoldScalar(Op1, Op2)) {
1075 FoldedICmps.emplace_back(*MaybeCst);
1076 return FoldedICmps;
1077 }
1078
1079 return std::nullopt;
1080}
1081
1083 GISelKnownBits *KB) {
1084 std::optional<DefinitionAndSourceRegister> DefSrcReg =
1086 if (!DefSrcReg)
1087 return false;
1088
1089 const MachineInstr &MI = *DefSrcReg->MI;
1090 const LLT Ty = MRI.getType(Reg);
1091
1092 switch (MI.getOpcode()) {
1093 case TargetOpcode::G_CONSTANT: {
1094 unsigned BitWidth = Ty.getScalarSizeInBits();
1095 const ConstantInt *CI = MI.getOperand(1).getCImm();
1096 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2();
1097 }
1098 case TargetOpcode::G_SHL: {
1099 // A left-shift of a constant one will have exactly one bit set because
1100 // shifting the bit off the end is undefined.
1101
1102 // TODO: Constant splat
1103 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
1104 if (*ConstLHS == 1)
1105 return true;
1106 }
1107
1108 break;
1109 }
1110 case TargetOpcode::G_LSHR: {
1111 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
1112 if (ConstLHS->isSignMask())
1113 return true;
1114 }
1115
1116 break;
1117 }
1118 case TargetOpcode::G_BUILD_VECTOR: {
1119 // TODO: Probably should have a recursion depth guard since you could have
1120 // bitcasted vector elements.
1121 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
1122 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB))
1123 return false;
1124
1125 return true;
1126 }
1127 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1128 // Only handle constants since we would need to know if number of leading
1129 // zeros is greater than the truncation amount.
1130 const unsigned BitWidth = Ty.getScalarSizeInBits();
1131 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1132 auto Const = getIConstantVRegVal(MO.getReg(), MRI);
1133 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2())
1134 return false;
1135 }
1136
1137 return true;
1138 }
1139 default:
1140 break;
1141 }
1142
1143 if (!KB)
1144 return false;
1145
1146 // More could be done here, though the above checks are enough
1147 // to handle some common cases.
1148
1149 // Fall back to computeKnownBits to catch other known cases.
1150 KnownBits Known = KB->getKnownBits(Reg);
1151 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
1152}
1153
1156}
1157
1158LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) {
1159 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits())
1160 return OrigTy;
1161
1162 if (OrigTy.isVector() && TargetTy.isVector()) {
1163 LLT OrigElt = OrigTy.getElementType();
1164 LLT TargetElt = TargetTy.getElementType();
1165
1166 // TODO: The docstring for this function says the intention is to use this
1167 // function to build MERGE/UNMERGE instructions. It won't be the case that
1168 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We
1169 // could implement getLCMType between the two in the future if there was a
1170 // need, but it is not worth it now as this function should not be used in
1171 // that way.
1172 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) ||
1173 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) &&
1174 "getLCMType not implemented between fixed and scalable vectors.");
1175
1176 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
1177 int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(),
1178 TargetTy.getElementCount().getKnownMinValue());
1179 // Prefer the original element type.
1181 TargetTy.getElementCount().getKnownMinValue());
1182 return LLT::vector(Mul.divideCoefficientBy(GCDMinElts),
1183 OrigTy.getElementType());
1184 }
1185 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(),
1186 TargetTy.getSizeInBits().getKnownMinValue());
1187 return LLT::vector(
1188 ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()),
1189 OrigElt);
1190 }
1191
1192 // One type is scalar, one type is vector
1193 if (OrigTy.isVector() || TargetTy.isVector()) {
1194 LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy;
1195 LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy;
1196 LLT EltTy = VecTy.getElementType();
1197 LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy;
1198
1199 // Prefer scalar type from OrigTy.
1200 if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits())
1201 return LLT::vector(VecTy.getElementCount(), OrigEltTy);
1202
1203 // Different size scalars. Create vector with the same total size.
1204 // LCM will take fixed/scalable from VecTy.
1205 unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() *
1207 ScalarTy.getSizeInBits().getFixedValue());
1208 // Prefer type from OrigTy
1209 return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(),
1210 VecTy.getElementCount().isScalable()),
1211 OrigEltTy);
1212 }
1213
1214 // At this point, both types are scalars of different size
1215 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(),
1216 TargetTy.getSizeInBits().getFixedValue());
1217 // Preserve pointer types.
1218 if (LCM == OrigTy.getSizeInBits())
1219 return OrigTy;
1220 if (LCM == TargetTy.getSizeInBits())
1221 return TargetTy;
1222 return LLT::scalar(LCM);
1223}
1224
1225LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) {
1226
1227 if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) ||
1228 (OrigTy.isFixedVector() && TargetTy.isScalableVector()))
1230 "getCoverTy not implemented between fixed and scalable vectors.");
1231
1232 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy ||
1233 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits()))
1234 return getLCMType(OrigTy, TargetTy);
1235
1236 unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue();
1237 unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue();
1238 if (OrigTyNumElts % TargetTyNumElts == 0)
1239 return OrigTy;
1240
1241 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts);
1243 OrigTy.getElementType());
1244}
1245
1246LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
1247 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits())
1248 return OrigTy;
1249
1250 if (OrigTy.isVector() && TargetTy.isVector()) {
1251 LLT OrigElt = OrigTy.getElementType();
1252
1253 // TODO: The docstring for this function says the intention is to use this
1254 // function to build MERGE/UNMERGE instructions. It won't be the case that
1255 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We
1256 // could implement getGCDType between the two in the future if there was a
1257 // need, but it is not worth it now as this function should not be used in
1258 // that way.
1259 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) ||
1260 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) &&
1261 "getGCDType not implemented between fixed and scalable vectors.");
1262
1263 unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(),
1264 TargetTy.getSizeInBits().getKnownMinValue());
1265 if (GCD == OrigElt.getSizeInBits())
1267 OrigElt);
1268
1269 // Cannot produce original element type, but both have vscale in common.
1270 if (GCD < OrigElt.getSizeInBits())
1272 GCD);
1273
1274 return LLT::vector(
1276 OrigTy.isScalable()),
1277 OrigElt);
1278 }
1279
1280 // If one type is vector and the element size matches the scalar size, then
1281 // the gcd is the scalar type.
1282 if (OrigTy.isVector() &&
1283 OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits())
1284 return OrigTy.getElementType();
1285 if (TargetTy.isVector() &&
1286 TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits())
1287 return OrigTy;
1288
1289 // At this point, both types are either scalars of different type or one is a
1290 // vector and one is a scalar. If both types are scalars, the GCD type is the
1291 // GCD between the two scalar sizes. If one is vector and one is scalar, then
1292 // the GCD type is the GCD between the scalar and the vector element size.
1293 LLT OrigScalar = OrigTy.getScalarType();
1294 LLT TargetScalar = TargetTy.getScalarType();
1295 unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(),
1296 TargetScalar.getSizeInBits().getFixedValue());
1297 return LLT::scalar(GCD);
1298}
1299
1301 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
1302 "Only G_SHUFFLE_VECTOR can have a splat index!");
1303 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
1304 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
1305
1306 // If all elements are undefined, this shuffle can be considered a splat.
1307 // Return 0 for better potential for callers to simplify.
1308 if (FirstDefinedIdx == Mask.end())
1309 return 0;
1310
1311 // Make sure all remaining elements are either undef or the same
1312 // as the first non-undef value.
1313 int SplatValue = *FirstDefinedIdx;
1314 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
1315 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
1316 return std::nullopt;
1317
1318 return SplatValue;
1319}
1320
1321static bool isBuildVectorOp(unsigned Opcode) {
1322 return Opcode == TargetOpcode::G_BUILD_VECTOR ||
1323 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC;
1324}
1325
1326namespace {
1327
1328std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg,
1329 const MachineRegisterInfo &MRI,
1330 bool AllowUndef) {
1332 if (!MI)
1333 return std::nullopt;
1334
1335 bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS;
1336 if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp)
1337 return std::nullopt;
1338
1339 std::optional<ValueAndVReg> SplatValAndReg;
1340 for (MachineOperand &Op : MI->uses()) {
1341 Register Element = Op.getReg();
1342 // If we have a G_CONCAT_VECTOR, we recursively look into the
1343 // vectors that we're concatenating to see if they're splats.
1344 auto ElementValAndReg =
1345 isConcatVectorsOp
1346 ? getAnyConstantSplat(Element, MRI, AllowUndef)
1348
1349 // If AllowUndef, treat undef as value that will result in a constant splat.
1350 if (!ElementValAndReg) {
1351 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element)))
1352 continue;
1353 return std::nullopt;
1354 }
1355
1356 // Record splat value
1357 if (!SplatValAndReg)
1358 SplatValAndReg = ElementValAndReg;
1359
1360 // Different constant than the one already recorded, not a constant splat.
1361 if (SplatValAndReg->Value != ElementValAndReg->Value)
1362 return std::nullopt;
1363 }
1364
1365 return SplatValAndReg;
1366}
1367
1368} // end anonymous namespace
1369
1371 const MachineRegisterInfo &MRI,
1372 int64_t SplatValue, bool AllowUndef) {
1373 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef))
1374 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue));
1375 return false;
1376}
1377
1379 const MachineRegisterInfo &MRI,
1380 int64_t SplatValue, bool AllowUndef) {
1381 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue,
1382 AllowUndef);
1383}
1384
1385std::optional<APInt>
1387 if (auto SplatValAndReg =
1388 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) {
1389 if (std::optional<ValueAndVReg> ValAndVReg =
1390 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI))
1391 return ValAndVReg->Value;
1392 }
1393
1394 return std::nullopt;
1395}
1396
1397std::optional<APInt>
1399 const MachineRegisterInfo &MRI) {
1400 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI);
1401}
1402
1403std::optional<int64_t>
1405 const MachineRegisterInfo &MRI) {
1406 if (auto SplatValAndReg =
1407 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false))
1408 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI);
1409 return std::nullopt;
1410}
1411
1412std::optional<int64_t>
1414 const MachineRegisterInfo &MRI) {
1415 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI);
1416}
1417
1418std::optional<FPValueAndVReg>
1420 bool AllowUndef) {
1421 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef))
1422 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
1423 return std::nullopt;
1424}
1425
1427 const MachineRegisterInfo &MRI,
1428 bool AllowUndef) {
1429 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef);
1430}
1431
1433 const MachineRegisterInfo &MRI,
1434 bool AllowUndef) {
1435 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef);
1436}
1437
1438std::optional<RegOrConstant>
1440 unsigned Opc = MI.getOpcode();
1441 if (!isBuildVectorOp(Opc))
1442 return std::nullopt;
1443 if (auto Splat = getIConstantSplatSExtVal(MI, MRI))
1444 return RegOrConstant(*Splat);
1445 auto Reg = MI.getOperand(1).getReg();
1446 if (any_of(drop_begin(MI.operands(), 2),
1447 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; }))
1448 return std::nullopt;
1449 return RegOrConstant(Reg);
1450}
1451
1453 const MachineRegisterInfo &MRI,
1454 bool AllowFP = true,
1455 bool AllowOpaqueConstants = true) {
1456 switch (MI.getOpcode()) {
1457 case TargetOpcode::G_CONSTANT:
1458 case TargetOpcode::G_IMPLICIT_DEF:
1459 return true;
1460 case TargetOpcode::G_FCONSTANT:
1461 return AllowFP;
1462 case TargetOpcode::G_GLOBAL_VALUE:
1463 case TargetOpcode::G_FRAME_INDEX:
1464 case TargetOpcode::G_BLOCK_ADDR:
1465 case TargetOpcode::G_JUMP_TABLE:
1466 return AllowOpaqueConstants;
1467 default:
1468 return false;
1469 }
1470}
1471
1473 const MachineRegisterInfo &MRI) {
1474 Register Def = MI.getOperand(0).getReg();
1475 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
1476 return true;
1477 GBuildVector *BV = dyn_cast<GBuildVector>(&MI);
1478 if (!BV)
1479 return false;
1480 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
1482 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI))
1483 continue;
1484 return false;
1485 }
1486 return true;
1487}
1488
1490 const MachineRegisterInfo &MRI,
1491 bool AllowFP, bool AllowOpaqueConstants) {
1492 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants))
1493 return true;
1494
1495 if (!isBuildVectorOp(MI.getOpcode()))
1496 return false;
1497
1498 const unsigned NumOps = MI.getNumOperands();
1499 for (unsigned I = 1; I != NumOps; ++I) {
1500 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg());
1501 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants))
1502 return false;
1503 }
1504
1505 return true;
1506}
1507
1508std::optional<APInt>
1510 const MachineRegisterInfo &MRI) {
1511 Register Def = MI.getOperand(0).getReg();
1512 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
1513 return C->Value;
1514 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI);
1515 if (!MaybeCst)
1516 return std::nullopt;
1517 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits();
1518 return APInt(ScalarSize, *MaybeCst, true);
1519}
1520
1522 const MachineRegisterInfo &MRI, bool AllowUndefs) {
1523 switch (MI.getOpcode()) {
1524 case TargetOpcode::G_IMPLICIT_DEF:
1525 return AllowUndefs;
1526 case TargetOpcode::G_CONSTANT:
1527 return MI.getOperand(1).getCImm()->isNullValue();
1528 case TargetOpcode::G_FCONSTANT: {
1529 const ConstantFP *FPImm = MI.getOperand(1).getFPImm();
1530 return FPImm->isZero() && !FPImm->isNegative();
1531 }
1532 default:
1533 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already
1534 return false;
1535 return isBuildVectorAllZeros(MI, MRI);
1536 }
1537}
1538
1540 const MachineRegisterInfo &MRI,
1541 bool AllowUndefs) {
1542 switch (MI.getOpcode()) {
1543 case TargetOpcode::G_IMPLICIT_DEF:
1544 return AllowUndefs;
1545 case TargetOpcode::G_CONSTANT:
1546 return MI.getOperand(1).getCImm()->isAllOnesValue();
1547 default:
1548 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already
1549 return false;
1550 return isBuildVectorAllOnes(MI, MRI);
1551 }
1552}
1553
1555 const MachineRegisterInfo &MRI, Register Reg,
1556 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) {
1557
1558 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
1559 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
1560 return Match(nullptr);
1561
1562 // TODO: Also handle fconstant
1563 if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
1564 return Match(Def->getOperand(1).getCImm());
1565
1566 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
1567 return false;
1568
1569 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
1570 Register SrcElt = Def->getOperand(I).getReg();
1571 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI);
1572 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) {
1573 if (!Match(nullptr))
1574 return false;
1575 continue;
1576 }
1577
1578 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT ||
1579 !Match(SrcDef->getOperand(1).getCImm()))
1580 return false;
1581 }
1582
1583 return true;
1584}
1585
1586bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
1587 bool IsFP) {
1588 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1589 case TargetLowering::UndefinedBooleanContent:
1590 return Val & 0x1;
1591 case TargetLowering::ZeroOrOneBooleanContent:
1592 return Val == 1;
1593 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1594 return Val == -1;
1595 }
1596 llvm_unreachable("Invalid boolean contents");
1597}
1598
1599bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val,
1600 bool IsVector, bool IsFP) {
1601 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1602 case TargetLowering::UndefinedBooleanContent:
1603 return ~Val & 0x1;
1604 case TargetLowering::ZeroOrOneBooleanContent:
1605 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1606 return Val == 0;
1607 }
1608 llvm_unreachable("Invalid boolean contents");
1609}
1610
1611int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector,
1612 bool IsFP) {
1613 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1614 case TargetLowering::UndefinedBooleanContent:
1615 case TargetLowering::ZeroOrOneBooleanContent:
1616 return 1;
1617 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1618 return -1;
1619 }
1620 llvm_unreachable("Invalid boolean contents");
1621}
1622
1625 const auto &F = MBB.getParent()->getFunction();
1626 return F.hasOptSize() || F.hasMinSize() ||
1628}
1629
1631 LostDebugLocObserver *LocObserver,
1632 SmallInstListTy &DeadInstChain) {
1633 for (MachineOperand &Op : MI.uses()) {
1634 if (Op.isReg() && Op.getReg().isVirtual())
1635 DeadInstChain.insert(MRI.getVRegDef(Op.getReg()));
1636 }
1637 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n");
1638 DeadInstChain.remove(&MI);
1639 MI.eraseFromParent();
1640 if (LocObserver)
1641 LocObserver->checkpoint(false);
1642}
1643
1646 LostDebugLocObserver *LocObserver) {
1647 SmallInstListTy DeadInstChain;
1648 for (MachineInstr *MI : DeadInstrs)
1649 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain);
1650
1651 while (!DeadInstChain.empty()) {
1652 MachineInstr *Inst = DeadInstChain.pop_back_val();
1653 if (!isTriviallyDead(*Inst, MRI))
1654 continue;
1655 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain);
1656 }
1657}
1658
1660 LostDebugLocObserver *LocObserver) {
1661 return eraseInstrs({&MI}, MRI, LocObserver);
1662}
1663
1665 for (auto &Def : MI.defs()) {
1666 assert(Def.isReg() && "Must be a reg");
1667
1669 for (auto &MOUse : MRI.use_operands(Def.getReg())) {
1670 MachineInstr *DbgValue = MOUse.getParent();
1671 // Ignore partially formed DBG_VALUEs.
1672 if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) {
1673 DbgUsers.push_back(&MOUse);
1674 }
1675 }
1676
1677 if (!DbgUsers.empty()) {
1679 }
1680 }
1681}
1682
1684 switch (Opc) {
1685 case TargetOpcode::G_FABS:
1686 case TargetOpcode::G_FADD:
1687 case TargetOpcode::G_FCANONICALIZE:
1688 case TargetOpcode::G_FCEIL:
1689 case TargetOpcode::G_FCONSTANT:
1690 case TargetOpcode::G_FCOPYSIGN:
1691 case TargetOpcode::G_FCOS:
1692 case TargetOpcode::G_FDIV:
1693 case TargetOpcode::G_FEXP2:
1694 case TargetOpcode::G_FEXP:
1695 case TargetOpcode::G_FFLOOR:
1696 case TargetOpcode::G_FLOG10:
1697 case TargetOpcode::G_FLOG2:
1698 case TargetOpcode::G_FLOG:
1699 case TargetOpcode::G_FMA:
1700 case TargetOpcode::G_FMAD:
1701 case TargetOpcode::G_FMAXIMUM:
1702 case TargetOpcode::G_FMAXNUM:
1703 case TargetOpcode::G_FMAXNUM_IEEE:
1704 case TargetOpcode::G_FMINIMUM:
1705 case TargetOpcode::G_FMINNUM:
1706 case TargetOpcode::G_FMINNUM_IEEE:
1707 case TargetOpcode::G_FMUL:
1708 case TargetOpcode::G_FNEARBYINT:
1709 case TargetOpcode::G_FNEG:
1710 case TargetOpcode::G_FPEXT:
1711 case TargetOpcode::G_FPOW:
1712 case TargetOpcode::G_FPTRUNC:
1713 case TargetOpcode::G_FREM:
1714 case TargetOpcode::G_FRINT:
1715 case TargetOpcode::G_FSIN:
1716 case TargetOpcode::G_FSQRT:
1717 case TargetOpcode::G_FSUB:
1718 case TargetOpcode::G_INTRINSIC_ROUND:
1719 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
1720 case TargetOpcode::G_INTRINSIC_TRUNC:
1721 return true;
1722 default:
1723 return false;
1724 }
1725}
1726
1727namespace {
1728enum class UndefPoisonKind {
1729 PoisonOnly = (1 << 0),
1730 UndefOnly = (1 << 1),
1732};
1733}
1734
1735[[maybe_unused]] static bool includesPoison(UndefPoisonKind Kind) {
1736 return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0;
1737}
1738
1739[[maybe_unused]] static bool includesUndef(UndefPoisonKind Kind) {
1740 return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0;
1741}
1742
1744 bool ConsiderFlagsAndMetadata,
1745 UndefPoisonKind Kind) {
1746 MachineInstr *RegDef = MRI.getVRegDef(Reg);
1747
1748 switch (RegDef->getOpcode()) {
1749 case TargetOpcode::G_FREEZE:
1750 return false;
1751 default:
1752 return true;
1753 }
1754}
1755
1757 const MachineRegisterInfo &MRI,
1758 unsigned Depth,
1759 UndefPoisonKind Kind) {
1761 return false;
1762
1763 MachineInstr *RegDef = MRI.getVRegDef(Reg);
1764
1765 switch (RegDef->getOpcode()) {
1766 case TargetOpcode::G_FREEZE:
1767 return true;
1768 case TargetOpcode::G_IMPLICIT_DEF:
1769 return !includesUndef(Kind);
1770 default:
1771 return false;
1772 }
1773}
1774
1776 bool ConsiderFlagsAndMetadata) {
1777 return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata,
1779}
1780
1782 bool ConsiderFlagsAndMetadata = true) {
1783 return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata,
1785}
1786
1788 const MachineRegisterInfo &MRI,
1789 unsigned Depth) {
1790 return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
1792}
1793
1795 const MachineRegisterInfo &MRI,
1796 unsigned Depth) {
1797 return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
1799}
1800
1802 const MachineRegisterInfo &MRI,
1803 unsigned Depth) {
1804 return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
1806}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder MachineInstrBuilder & DefMI
unsigned RegSize
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
basic Basic Alias true
static bool canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI, bool ConsiderFlagsAndMetadata, UndefPoisonKind Kind)
Definition: Utils.cpp:1743
static bool isGuaranteedNotToBeUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI, unsigned Depth, UndefPoisonKind Kind)
Definition: Utils.cpp:1756
static bool includesPoison(UndefPoisonKind Kind)
Definition: Utils.cpp:1735
static bool includesUndef(UndefPoisonKind Kind)
Definition: Utils.cpp:1739
static void reportGISelDiagnostic(DiagnosticSeverity Severity, MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R)
Definition: Utils.cpp:251
bool canCreatePoison(Register Reg, const MachineRegisterInfo &MRI, bool ConsiderFlagsAndMetadata=true)
Definition: Utils.cpp:1781
static bool isBuildVectorOp(unsigned Opcode)
Definition: Utils.cpp:1321
static bool isConstantScalar(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowFP=true, bool AllowOpaqueConstants=true)
Definition: Utils.cpp:1452
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Size
This contains common code to allow clients to notify changes to machine instr.
Provides analysis for querying information about KnownBits during GISel passes.
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
Tracks DebugLocs between checkpoints and verifies that they are transferred.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
===- MachineOptimizationRemarkEmitter.h - Opt Diagnostics -*- C++ -*-—===//
unsigned const TargetRegisterInfo * TRI
const char LLVMTargetMachineRef TM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file describes how to lower LLVM code to machine code.
Target-Independent Code Generator Pass Configuration Options pass.
UndefPoisonKind
static const char PassName[]
Value * RHS
Value * LHS
BinaryOperator * Mul
Class recording the (high level) value of a variable.
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition: APFloat.h:1069
void copySign(const APFloat &RHS)
Definition: APFloat.h:1163
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition: APFloat.cpp:5191
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition: APFloat.h:1051
opStatus add(const APFloat &RHS, roundingMode RM)
Definition: APFloat.h:1042
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition: APFloat.h:1193
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition: APFloat.h:1060
APInt bitcastToAPInt() const
Definition: APFloat.h:1210
opStatus mod(const APFloat &RHS)
Definition: APFloat.h:1087
Class for arbitrary precision integers.
Definition: APInt.h:76
APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition: APInt.cpp:1543
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:981
APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:1002
APInt trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:906
APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition: APInt.cpp:1636
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1446
APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition: APInt.cpp:1614
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition: APInt.cpp:1010
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:805
APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition: APInt.cpp:1706
APInt sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:954
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:418
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:829
Represent the analysis usage information of a pass.
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:268
const APFloat & getValueAPF() const
Definition: Constants.h:311
bool isNegative() const
Return true if the sign bit is set.
Definition: Constants.h:318
bool isZero() const
Return true if the value is positive or negative zero.
Definition: Constants.h:315
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:145
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:308
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition: TypeSize.h:314
Represents a G_BUILD_VECTOR.
Abstract class that contains various methods for clients to notify about changes.
KnownBits getKnownBits(Register R)
void insert(MachineInstr *I)
Add the specified instruction to the worklist if it isn't already in it.
Definition: GISelWorkList.h:74
MachineInstr * pop_back_val()
bool empty() const
Definition: GISelWorkList.h:38
void remove(const MachineInstr *I)
Remove I from the worklist if it exists.
Definition: GISelWorkList.h:83
Register getSourceReg(unsigned I) const
Returns the I'th source register.
unsigned getNumSources() const
Returns the number of source registers.
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:655
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
Definition: LowLevelType.h:182
constexpr unsigned getScalarSizeInBits() const
Definition: LowLevelType.h:267
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
Definition: LowLevelType.h:64
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
Definition: LowLevelType.h:42
constexpr bool isValid() const
Definition: LowLevelType.h:145
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
Definition: LowLevelType.h:159
constexpr bool isVector() const
Definition: LowLevelType.h:148
constexpr bool isScalable() const
Returns true if the LLT is a scalable vector.
Definition: LowLevelType.h:170
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
Definition: LowLevelType.h:193
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
Definition: LowLevelType.h:290
constexpr ElementCount getElementCount() const
Definition: LowLevelType.h:184
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
Definition: LowLevelType.h:100
constexpr bool isFixedVector() const
Returns true if the LLT is a fixed vector.
Definition: LowLevelType.h:178
constexpr LLT getScalarType() const
Definition: LowLevelType.h:208
static constexpr LLT scalarOrVector(ElementCount EC, LLT ScalarTy)
Definition: LowLevelType.h:124
void checkpoint(bool CheckDebugLocs=true)
Call this to indicate that it's a good point to assess whether locations have been lost.
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getOpcode() const
Return the opcode number for this descriptor.
Definition: MCInstrDesc.h:230
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
bool isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask=LaneBitmask::getAll()) const
Return true if the specified register is in the live in set.
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFunctionProperties & set(Property P)
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
GISelChangeObserver * getObserver() const
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineFunctionProperties & getProperties() const
Get the function properties.
const MachineBasicBlock & front() const
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
Helper class to build MachineInstr.
MachineInstrBuilder buildUnmerge(ArrayRef< LLT > Res, const SrcOp &Op)
Build and insert Res0, ... = G_UNMERGE_VALUES Op.
MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index)
Build and insert Res0, ... = G_EXTRACT Src, Idx0.
MachineInstrBuilder buildMergeLikeInstr(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_MERGE_VALUES Op0, ... or Res = G_BUILD_VECTOR Op0, ... or Res = G_CONCAT_VEC...
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:558
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:341
bool getFlag(MIFlag Flag) const
Return whether an MI flag is set.
Definition: MachineInstr.h:391
iterator_range< mop_iterator > uses()
Returns a range that includes all operands that are register uses.
Definition: MachineInstr.h:722
const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:487
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:568
MachineOperand class - Representation of each machine instruction operand.
const ConstantInt * getCImm() const
bool isCImm() const
isCImm - Test if this is a MO_CImmediate operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setReg(Register Reg)
Change the register this operand corresponds to.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
Register getReg() const
getReg - Returns the register number.
const ConstantFP * getFPImm() const
bool isFPImm() const
isFPImm - Tests if this is a MO_FPImmediate operand.
Diagnostic information for missed-optimization remarks.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Analysis providing profile information.
Represents a value which can be a Register or a constant.
Definition: Utils.h:391
Holds all the information related to register banks.
static const TargetRegisterClass * constrainGenericRegister(Register Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI)
Constrain the (possibly generic) virtual register Reg to RC.
This class implements the register bank concept.
Definition: RegisterBank.h:28
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition: Register.h:95
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:950
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetInstrInfo - Interface to description of machine instruction set.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:76
Target-Independent Code Generator Pass Configuration Options.
bool isGlobalISelAbortEnabled() const
Check whether or not GlobalISel should abort on error.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
LLVM Value Representation.
Definition: Value.h:74
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:199
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition: TypeSize.h:255
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:168
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition: APInt.h:2185
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition: APInt.h:2190
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition: APInt.h:2195
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition: APInt.h:2200
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
SpecificConstantMatch m_SpecificICst(int64_t RequestedValue)
Matches a constant equal to RequestedValue.
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
DiagnosticInfoMIROptimization::MachineArgument MNV
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
Register getFunctionLiveInPhysReg(MachineFunction &MF, const TargetInstrInfo &TII, MCRegister PhysReg, const TargetRegisterClass &RC, const DebugLoc &DL, LLT RegTy=LLT())
Return a virtual register corresponding to the incoming argument register PhysReg.
Definition: Utils.cpp:896
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
@ Offset
Definition: DWP.cpp:456
bool isBuildVectorAllZeros(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndef=false)
Return true if the specified instruction is a G_BUILD_VECTOR or G_BUILD_VECTOR_TRUNC where all of the...
Definition: Utils.cpp:1426
Register constrainOperandRegClass(const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const TargetRegisterClass &RegClass, MachineOperand &RegMO)
Constrain the Register operand OpIdx, so that it is now constrained to the TargetRegisterClass passed...
Definition: Utils.cpp:56
MachineInstr * getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI)
See if Reg is defined by an single def instruction that is Opcode.
Definition: Utils.cpp:639
const ConstantFP * getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI)
Definition: Utils.cpp:452
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
std::optional< APInt > getIConstantVRegVal(Register VReg, const MachineRegisterInfo &MRI)
If VReg is defined by a G_CONSTANT, return the corresponding value.
Definition: Utils.cpp:295
std::optional< APFloat > ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src, const MachineRegisterInfo &MRI)
Definition: Utils.cpp:970
std::optional< APInt > getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI)
Definition: Utils.cpp:1386
bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition: Utils.cpp:1539
const llvm::fltSemantics & getFltSemanticForLLT(LLT Ty)
Get the appropriate floating point arithmetic semantic based on the bit size of the given scalar LLT.
std::optional< APFloat > ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI)
Definition: Utils.cpp:727
void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition: Utils.cpp:1664
bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
Mutate the newly-selected instruction I to constrain its (possibly generic) virtual register operands...
Definition: Utils.cpp:155
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
Definition: TargetOpcodes.h:30
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
std::optional< SmallVector< unsigned > > ConstantFoldCountZeros(Register Src, const MachineRegisterInfo &MRI, std::function< unsigned(APInt)> CB)
Tries to constant fold a counting-zero operation (G_CTLZ or G_CTTZ) on Src.
Definition: Utils.cpp:983
std::optional< APInt > ConstantFoldExtOp(unsigned Opcode, const Register Op1, uint64_t Imm, const MachineRegisterInfo &MRI)
Definition: Utils.cpp:929
std::optional< RegOrConstant > getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI)
Definition: Utils.cpp:1439
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition: APFloat.h:1436
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to have exactly one bit set when defined.
std::optional< APInt > isConstantOrConstantSplatVector(MachineInstr &MI, const MachineRegisterInfo &MRI)
Determines if MI defines a constant integer or a splat vector of constant integers.
Definition: Utils.cpp:1509
bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition: Utils.cpp:1521
MachineInstr * getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the def instruction for Reg, folding away any trivial copies.
Definition: Utils.cpp:479
bool matchUnaryPredicate(const MachineRegisterInfo &MRI, Register Reg, std::function< bool(const Constant *ConstVal)> Match, bool AllowUndefs=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant G_B...
Definition: Utils.cpp:1554
bool isPreISelGenericOptimizationHint(unsigned Opcode)
Definition: TargetOpcodes.h:42
bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
bool isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP)
Returns true if given the TargetLowering's boolean contents information, the value Val contains a tru...
Definition: Utils.cpp:1586
LLVM_READNONE LLT getLCMType(LLT OrigTy, LLT TargetTy)
Return the least common multiple type of OrigTy and TargetTy, by changing the number of vector elemen...
Definition: Utils.cpp:1158
std::optional< int64_t > getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI)
If VReg is defined by a G_CONSTANT fits in int64_t returns it.
Definition: Utils.cpp:307
std::optional< APInt > ConstantFoldBinOp(unsigned Opcode, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI)
Definition: Utils.cpp:658
bool shouldOptForSize(const MachineBasicBlock &MBB, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
Returns true if the given block should be optimized for size.
Definition: Utils.cpp:1623
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2019 maximumNumber semantics.
Definition: APFloat.h:1410
bool isConstantOrConstantVector(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowFP=true, bool AllowOpaqueConstants=true)
Return true if the specified instruction is known to be a constant, or a vector of constants.
Definition: Utils.cpp:1489
constexpr unsigned MaxAnalysisRecursionDepth
Definition: ValueTracking.h:48
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
bool canReplaceReg(Register DstReg, Register SrcReg, MachineRegisterInfo &MRI)
Check if DstReg can be replaced with SrcReg depending on the register constraints.
Definition: Utils.cpp:201
void saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver, SmallInstListTy &DeadInstChain)
Definition: Utils.cpp:1630
void reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R)
Report an ISel error as a missed optimization remark to the LLVMContext's diagnostic stream.
Definition: Utils.cpp:275
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:156
std::optional< SmallVector< APInt > > ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI)
Definition: Utils.cpp:1015
std::optional< ValueAndVReg > getAnyConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true, bool LookThroughAnyExt=false)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT or G_FCONST...
Definition: Utils.cpp:432
bool isBuildVectorAllOnes(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndef=false)
Return true if the specified instruction is a G_BUILD_VECTOR or G_BUILD_VECTOR_TRUNC where all of the...
Definition: Utils.cpp:1432
bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
SmallVector< APInt > ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI)
Tries to constant fold a vector binop with sources Op1 and Op2.
Definition: Utils.cpp:781
std::optional< FPValueAndVReg > getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI, bool AllowUndef=true)
Returns a floating point scalar constant of a build vector splat if it exists.
Definition: Utils.cpp:1419
std::optional< APInt > ConstantFoldCastOp(unsigned Opcode, LLT DstTy, const Register Op0, const MachineRegisterInfo &MRI)
Definition: Utils.cpp:946
void extractParts(Register Reg, LLT Ty, int NumParts, SmallVectorImpl< Register > &VRegs, MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
Helper function to split a wide generic register into bitwise blocks with the given Type (which impli...
Definition: Utils.cpp:493
void getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU)
Modify analysis usage so it preserves passes required for the SelectionDAG fallback.
Definition: Utils.cpp:1154
LLVM_READNONE LLT getCoverTy(LLT OrigTy, LLT TargetTy)
Return smallest type that covers both OrigTy and TargetTy and is multiple of TargetTy.
Definition: Utils.cpp:1225
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2019 minimumNumber semantics.
Definition: APFloat.h:1396
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
bool isTargetSpecificOpcode(unsigned Opcode)
Check whether the given Opcode is a target-specific opcode.
Definition: TargetOpcodes.h:36
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
std::optional< FPValueAndVReg > getFConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_FCONSTANT returns it...
Definition: Utils.cpp:440
bool isConstFalseVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP)
Definition: Utils.cpp:1599
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
APFloat getAPFloatFromSize(double Val, unsigned Size)
Returns an APFloat from Val converted to the appropriate size.
Definition: Utils.cpp:645
bool isBuildVectorConstantSplat(const Register Reg, const MachineRegisterInfo &MRI, int64_t SplatValue, bool AllowUndef)
Return true if the specified register is defined by G_BUILD_VECTOR or G_BUILD_VECTOR_TRUNC where all ...
Definition: Utils.cpp:1370
void eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver=nullptr)
Definition: Utils.cpp:1659
DiagnosticSeverity
Defines the different supported severity of a diagnostic.
@ DS_Warning
@ DS_Error
Register constrainRegToClass(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, Register Reg, const TargetRegisterClass &RegClass)
Try to constrain Reg to the specified register class.
Definition: Utils.cpp:46
int64_t getICmpTrueVal(const TargetLowering &TLI, bool IsVector, bool IsFP)
Returns an integer representing true, as defined by the TargetBooleanContents.
Definition: Utils.cpp:1611
std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
Definition: Utils.cpp:426
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1749
bool isPreISelGenericFloatingPointOpcode(unsigned Opc)
Returns whether opcode Opc is a pre-isel generic floating-point opcode, having only floating-point op...
Definition: Utils.cpp:1683
bool isKnownNeverSNaN(Register Val, const MachineRegisterInfo &MRI)
Returns true if Val can be assumed to never be a signaling NaN.
Definition: Utils.h:334
std::optional< DefinitionAndSourceRegister > getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the def instruction for Reg, and underlying value Register folding away any copies.
Definition: Utils.cpp:460
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition: Alignment.h:212
void eraseInstrs(ArrayRef< MachineInstr * > DeadInstrs, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver=nullptr)
Definition: Utils.cpp:1644
void salvageDebugInfoForDbgValue(const MachineRegisterInfo &MRI, MachineInstr &MI, ArrayRef< MachineOperand * > DbgUsers)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
bool isKnownNeverNaN(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
Register getSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the source register for Reg, folding away any trivial copies.
Definition: Utils.cpp:486
LLVM_READNONE LLT getGCDType(LLT OrigTy, LLT TargetTy)
Return a type where the total size is the greatest common divisor of OrigTy and TargetTy.
Definition: Utils.cpp:1246
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition: APFloat.h:1423
std::optional< int64_t > getIConstantSplatSExtVal(const Register Reg, const MachineRegisterInfo &MRI)
Definition: Utils.cpp:1404
void extractVectorParts(Register Reg, unsigned NumElts, SmallVectorImpl< Register > &VRegs, MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
Version which handles irregular sub-vector splits.
Definition: Utils.cpp:597
int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
Check whether an instruction MI is dead: it only defines dead virtual registers, and doesn't have oth...
Definition: Utils.cpp:222
Align inferAlignFromPtrInfo(MachineFunction &MF, const MachinePointerInfo &MPO)
Definition: Utils.cpp:879
void reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R)
Report an ISel warning as a missed optimization remark to the LLVMContext's diagnostic stream.
Definition: Utils.cpp:269
#define MORE()
Definition: regcomp.c:252
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Simple struct used to hold a Register value and the instruction which defines it.
Definition: Utils.h:224
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition: KnownBits.h:285
unsigned countMinPopulation() const
Returns the number of bits known to be one.
Definition: KnownBits.h:282
This class contains a discriminated union of information about pointers in memory operands,...
int64_t Offset
Offset - This is an offset from the base Value*.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
Simple struct used to hold a constant integer value and a virtual register.
Definition: Utils.h:183