14#ifndef LLVM_ADT_SMALLVECTOR_H
15#define LLVM_ADT_SMALLVECTOR_H
27#include <initializer_list>
41template <
class Iterator>
43 typename std::iterator_traits<Iterator>::iterator_category,
44 std::input_iterator_tag>::value>;
61 return std::numeric_limits<Size_T>::max();
92 Size =
static_cast<Size_T
>(
N);
108 std::conditional_t<
sizeof(
T) < 4 &&
sizeof(
void *) >= 8,
uint64_t,
121template <
typename T,
typename =
void>
131 return const_cast<void *
>(
reinterpret_cast<const void *
>(
132 reinterpret_cast<const char *
>(
this) +
156 std::less<> LessThan;
157 return !LessThan(V,
First) && LessThan(V,
Last);
169 std::less<> LessThan;
171 !LessThan(this->
end(), Last);
182 if (NewSize <= this->
size())
183 return Elt < this->
begin() + NewSize;
192 "Attempting to reference an element of the vector in an operation "
193 "that invalidates it");
203 template <
class ItTy>
205 if constexpr (std::is_pointer_v<ItTy> &&
207 std::remove_const_t<std::remove_pointer_t<ItTy>>,
208 std::remove_const_t<T>>) {
218 if constexpr (std::is_pointer_v<ItTy> &&
219 std::is_same_v<std::remove_cv_t<std::remove_pointer_t<ItTy>>,
235 size_t NewSize = This->size() +
N;
239 bool ReferencesStorage =
false;
241 if (!U::TakesParamByValue) {
243 ReferencesStorage =
true;
244 Index = &Elt - This->begin();
248 return ReferencesStorage ? This->begin() + Index : &Elt;
330template <
typename T,
bool = (std::is_trivially_copy_constructible<T>::value) &&
331 (std::is_trivially_move_constructible<T>::value) &&
332 std::is_trivially_destructible<T>::value>
351 template<
typename It1,
typename It2>
353 std::uninitialized_move(
I,
E, Dest);
358 template<
typename It1,
typename It2>
360 std::uninitialized_copy(
I,
E, Dest);
388 return const_cast<T *
>(
399 std::uninitialized_fill_n(NewElts, NumElts, Elt);
409 ::new ((
void *)(NewElts + this->
size()))
T(std::forward<ArgTypes>(Args)...);
419 ::new ((
void *)this->
end())
T(*EltPtr);
425 ::new ((
void *)this->
end())
T(::std::move(*EltPtr));
436template <
typename T,
bool TriviallyCopyable>
444template <
typename T,
bool TriviallyCopyable>
446 size_t MinSize,
size_t &NewCapacity) {
447 return static_cast<T *
>(
449 this->
getFirstEl(), MinSize,
sizeof(
T), NewCapacity));
453template <
typename T,
bool TriviallyCopyable>
464template <
typename T,
bool TriviallyCopyable>
466 T *NewElts,
size_t NewCapacity) {
489 using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>;
498 template<
typename It1,
typename It2>
506 template <
typename It1,
typename It2>
508 if constexpr (std::is_pointer_v<It1> && std::is_pointer_v<It2> &&
510 std::remove_const_t<std::remove_pointer_t<It1>>,
511 std::remove_pointer_t<It2>>) {
517 std::memcpy(
reinterpret_cast<void *
>(Dest),
I, (
E -
I) *
sizeof(
T));
520 std::uninitialized_copy(
I,
E, Dest);
537 return const_cast<T *
>(
549 std::uninitialized_fill_n(this->
begin(), NumElts, Elt);
557 push_back(
T(std::forward<ArgTypes>(Args)...));
564 std::memcpy(
reinterpret_cast<void *
>(this->
end()), EltPtr,
sizeof(
T));
620 template <
bool ForOverwrite>
void resizeImpl(size_type
N) {
621 if (
N == this->
size())
630 for (
auto I = this->
end(),
E = this->
begin() + N;
I !=
E; ++
I)
646 assert(this->
size() >= N &&
"Cannot increase size with truncate");
652 if (
N == this->
size())
675 T Result = ::std::move(this->
back());
683 template <
typename ItTy,
typename = EnableIfConvertibleToInputIterator<ItTy>>
686 size_type NumInputs = std::distance(in_start, in_end);
695 std::uninitialized_fill_n(this->
end(), NumInputs, *EltPtr);
699 void append(std::initializer_list<T> IL) {
700 append(IL.begin(), IL.end());
713 std::fill_n(this->
begin(), std::min(NumElts, this->
size()), Elt);
714 if (NumElts > this->
size())
715 std::uninitialized_fill_n(this->
end(), NumElts - this->
size(), Elt);
716 else if (NumElts < this->
size())
724 template <
typename ItTy,
typename = EnableIfConvertibleToInputIterator<ItTy>>
731 void assign(std::initializer_list<T> IL) {
738 template <
typename U,
739 typename = std::enable_if_t<std::is_convertible_v<U, T>>>
752 std::move(
I+1, this->
end(), I);
778 std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
780 "ArgType must be derived from T!");
782 if (
I == this->
end()) {
783 this->
push_back(::std::forward<ArgType>(Elt));
784 return this->
end()-1;
790 size_t Index =
I - this->
begin();
791 std::remove_reference_t<ArgType> *EltPtr =
793 I = this->
begin() + Index;
797 std::move_backward(
I, this->
end()-1, this->
end());
803 "ArgType must be 'T' when taking by value!");
807 *
I = ::
std::forward<ArgType>(*EltPtr);
822 size_t InsertElt =
I - this->
begin();
824 if (I == this->
end()) {
826 return this->
begin()+InsertElt;
836 I = this->
begin()+InsertElt;
842 if (
size_t(this->
end()-I) >= NumToInsert) {
843 T *OldEnd = this->
end();
844 append(std::move_iterator<iterator>(this->
end() - NumToInsert),
845 std::move_iterator<iterator>(this->
end()));
848 std::move_backward(
I, OldEnd-NumToInsert, OldEnd);
853 EltPtr += NumToInsert;
855 std::fill_n(
I, NumToInsert, *EltPtr);
863 T *OldEnd = this->
end();
865 size_t NumOverwritten = OldEnd-
I;
871 EltPtr += NumToInsert;
874 std::fill_n(
I, NumOverwritten, *EltPtr);
877 std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
881 template <
typename ItTy,
typename = EnableIfConvertibleToInputIterator<ItTy>>
884 size_t InsertElt =
I - this->
begin();
886 if (I == this->
end()) {
888 return this->
begin()+InsertElt;
896 size_t NumToInsert = std::distance(From, To);
902 I = this->
begin()+InsertElt;
908 if (
size_t(this->
end()-I) >= NumToInsert) {
909 T *OldEnd = this->
end();
910 append(std::move_iterator<iterator>(this->
end() - NumToInsert),
911 std::move_iterator<iterator>(this->
end()));
914 std::move_backward(
I, OldEnd-NumToInsert, OldEnd);
916 std::copy(From, To,
I);
924 T *OldEnd = this->
end();
926 size_t NumOverwritten = OldEnd-
I;
930 for (
T *J =
I; NumOverwritten > 0; --NumOverwritten) {
941 insert(
I, IL.begin(), IL.end());
948 ::new ((
void *)this->
end())
T(std::forward<ArgTypes>(Args)...);
958 if (this->
size() != RHS.
size())
return false;
962 return !(*
this ==
RHS);
966 return std::lexicographical_compare(this->
begin(), this->
end(),
976 if (
this == &
RHS)
return;
989 size_t NumShared = this->
size();
990 if (NumShared >
RHS.size()) NumShared =
RHS.size();
991 for (
size_type i = 0; i != NumShared; ++i)
996 size_t EltDiff = this->
size() - RHS.
size();
998 RHS.set_size(
RHS.size() + EltDiff);
1001 }
else if (
RHS.size() > this->size()) {
1002 size_t EltDiff =
RHS.size() - this->
size();
1006 RHS.set_size(NumShared);
1010template <
typename T>
1014 if (
this == &
RHS)
return *
this;
1018 size_t RHSSize =
RHS.size();
1019 size_t CurSize = this->
size();
1020 if (CurSize >= RHSSize) {
1024 NewEnd = std::copy(
RHS.begin(),
RHS.begin()+RHSSize, this->begin());
1026 NewEnd = this->
begin();
1043 this->
grow(RHSSize);
1044 }
else if (CurSize) {
1046 std::copy(
RHS.begin(),
RHS.begin()+CurSize, this->begin());
1051 this->begin()+CurSize);
1058template <
typename T>
1061 if (
this == &
RHS)
return *
this;
1064 if (!
RHS.isSmall()) {
1071 size_t RHSSize =
RHS.size();
1072 size_t CurSize = this->
size();
1073 if (CurSize >= RHSSize) {
1077 NewEnd = std::move(
RHS.begin(),
RHS.end(), NewEnd);
1097 this->
grow(RHSSize);
1098 }
else if (CurSize) {
1100 std::move(
RHS.begin(),
RHS.begin()+CurSize, this->begin());
1105 this->begin()+CurSize);
1116template <
typename T,
unsigned N>
1170 "You are trying to use a default number of inlined elements for "
1171 "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
1172 "explicit number of inlined elements with `SmallVector<T, N>` to make "
1173 "sure you really want that much inline storage.");
1200template <
typename T,
1222 template <
typename ItTy,
typename = EnableIfConvertibleToInputIterator<ItTy>>
1227 template <
typename RangeTy>
1230 this->
append(R.begin(), R.end());
1237 template <
typename U,
1238 typename = std::enable_if_t<std::is_convertible_v<U, T>>>
1292template <
typename T,
unsigned N>
1294 return X.capacity_in_bytes();
1297template <
typename RangeType>
1299 std::remove_const_t<detail::ValueOfRange<RangeType>>;
1304template <
unsigned Size,
typename R>
1308template <
typename R>
1313template <
typename Out,
unsigned Size,
typename R>
1324#if SIZE_MAX > UINT32_MAX
1353 template<
typename T>
1360 template<
typename T,
unsigned N>
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_UNLIKELY(EXPR)
#define LLVM_GSL_OWNER
LLVM_GSL_OWNER - Apply this to owning classes like SmallVector to enable lifetime warnings.
#define LLVM_LIKELY(EXPR)
This file defines DenseMapInfo traits for DenseMap.
#define offsetof(TYPE, MEMBER)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
This is all the stuff common to all SmallVectors.
LLVM_ABI void grow_pod(void *FirstEl, size_t MinSize, size_t TSize)
This is an implementation of the grow() method which only works on POD-like data types and is out of ...
LLVM_ABI void * mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize, size_t &NewCapacity)
This is a helper for grow() that's out of line to reduce code duplication.
void set_allocation_range(void *Begin, size_t N)
Set the array data pointer to Begin and capacity to N.
SmallVectorSizeType< T > Capacity
SmallVectorSizeType< T > Size
SmallVectorBase(void *FirstEl, size_t TotalCapacity)
void set_size(size_t N)
Set the array size to N, which the current array must have enough capacity for.
static constexpr size_t SizeTypeMax()
The maximum value of the Size_T used.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void resize_for_overwrite(size_type N)
Like resize, but T is POD, the new values won't be initialized.
void append(const SmallVectorImpl &RHS)
void pop_back_n(size_type NumItems)
void assign(const SmallVectorImpl &RHS)
SmallVectorImpl(const SmallVectorImpl &)=delete
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
bool operator==(const SmallVectorImpl &RHS) const
void reserve(size_type N)
typename SuperClass::reference reference
iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt)
iterator erase(const_iterator CI)
iterator insert(iterator I, ItTy From, ItTy To)
typename SuperClass::const_iterator const_iterator
void assignRemote(SmallVectorImpl &&RHS)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void resize(size_type N, ValueParamT NV)
iterator insert(iterator I, MemoryLocation &&Elt)
bool operator>(const SmallVectorImpl &RHS) const
bool operator<(const SmallVectorImpl &RHS) const
iterator erase(const_iterator CS, const_iterator CE)
bool operator!=(const SmallVectorImpl &RHS) const
void truncate(size_type N)
Like resize, but requires that N is less than size().
void assign(ItTy in_start, ItTy in_end)
void assign(std::initializer_list< T > IL)
void assign(ArrayRef< U > AR)
SmallVectorImpl(unsigned N)
void swap(SmallVectorImpl &RHS)
typename SuperClass::iterator iterator
bool operator<=(const SmallVectorImpl &RHS) const
typename SuperClass::size_type size_type
void append(std::initializer_list< T > IL)
void append(size_type NumInputs, ValueParamT Elt)
Append NumInputs copies of Elt to the end.
SmallVectorImpl & operator=(const SmallVectorImpl &RHS)
void insert(iterator I, std::initializer_list< T > IL)
SmallVectorImpl & operator=(SmallVectorImpl &&RHS)
typename SuperClass::ValueParamT ValueParamT
bool operator>=(const SmallVectorImpl &RHS) const
iterator insert(iterator I, const T &Elt)
static void uninitialized_copy(It1 I, It1 E, It2 Dest)
Copy the range [I, E) onto the uninitialized memory starting with "Dest", constructing elements into ...
static void uninitialized_move(It1 I, It1 E, It2 Dest)
Move the range [I, E) onto the uninitialized memory starting with "Dest", constructing elements into ...
std::conditional_t< TakesParamByValue, T, const T & > ValueParamT
Either const T& or T, depending on whether it's cheap enough to take parameters by value.
SmallVectorTemplateBase(size_t Size)
const T * reserveForParamAndGetAddress(const T &Elt, size_t N=1)
Reserve enough space to add one element, and return the updated element pointer in case it was a refe...
void push_back(ValueParamT Elt)
static void destroy_range(T *, T *)
T * reserveForParamAndGetAddress(T &Elt, size_t N=1)
Reserve enough space to add one element, and return the updated element pointer in case it was a refe...
static ValueParamT forward_value_param(ValueParamT V)
Copy V or return a reference, depending on ValueParamT.
T & growAndEmplaceBack(ArgTypes &&... Args)
static constexpr bool TakesParamByValue
True if it's cheap enough to take parameters by value.
void growAndAssign(size_t NumElts, T Elt)
void grow(size_t MinSize=0)
Double the size of the allocated memory, guaranteeing space for at least one more element or MinSize ...
void moveElementsForGrow(T *NewElts)
Move existing elements over to the new allocation NewElts, the middle section of grow().
static void uninitialized_copy(It1 I, It1 E, It2 Dest)
Copy the range [I, E) onto the uninitialized memory starting with "Dest", constructing elements as ne...
static T && forward_value_param(T &&V)
static void destroy_range(T *S, T *E)
T * mallocForGrow(size_t MinSize, size_t &NewCapacity)
Create a new allocation big enough for MinSize and pass back its size in NewCapacity.
static constexpr bool TakesParamByValue
SmallVectorTemplateBase(size_t Size)
T * reserveForParamAndGetAddress(T &Elt, size_t N=1)
Reserve enough space to add one element, and return the updated element pointer in case it was a refe...
void takeAllocationForGrow(T *NewElts, size_t NewCapacity)
Transfer ownership of the allocation, finishing up grow().
void growAndAssign(size_t NumElts, const T &Elt)
static const T & forward_value_param(const T &V)
static void uninitialized_move(It1 I, It1 E, It2 Dest)
Move the range [I, E) into the uninitialized memory starting with "Dest", constructing elements as ne...
void grow(size_t MinSize=0)
Grow the allocated memory (without initializing new elements), doubling the size of the allocated mem...
const T * reserveForParamAndGetAddress(const T &Elt, size_t N=1)
Reserve enough space to add one element, and return the updated element pointer in case it was a refe...
T & growAndEmplaceBack(ArgTypes &&... Args)
void push_back(const T &Elt)
bool isSmall() const
Return true if this is a smallvector which has not had dynamic memory allocated for it.
const_iterator end() const
reverse_iterator rbegin()
static const T * reserveForParamAndGetAddressImpl(U *This, const T &Elt, size_t N)
Reserve enough space to add one element, and return the updated element pointer in case it was a refe...
const T & const_reference
SmallVectorTemplateCommon(size_t Size)
const_reference operator[](size_type idx) const
void resetToSmall()
Put this vector in a state of being small.
bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize)
Return true unless Elt will be invalidated by resizing the vector to NewSize.
std::reverse_iterator< const_iterator > const_reverse_iterator
pointer data()
Return a pointer to the vector's buffer, even if empty().
bool isReferenceToRange(const void *V, const void *First, const void *Last) const
Return true if V is an internal reference to the given range.
void grow_pod(size_t MinSize, size_t TSize)
const_reverse_iterator rbegin() const
const_iterator begin() const
reference operator[](size_type idx)
size_t capacity_in_bytes() const
size_type size_in_bytes() const
ptrdiff_t difference_type
size_type max_size() const
bool isReferenceToStorage(const void *V) const
Return true if V is an internal reference to this vector.
const_reference back() const
bool isRangeInStorage(const void *First, const void *Last) const
Return true if First and Last form a valid (possibly empty) range in this vector's storage.
const_reference front() const
void assertSafeToAdd(const void *Elt, size_t N=1)
Check whether Elt will be invalidated by increasing the size of the vector by N.
void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize)
Check whether Elt will be invalidated by resizing the vector to NewSize.
void assertSafeToAddRange(ItTy From, ItTy To)
Check whether any part of the range will be invalidated by growing.
std::reverse_iterator< iterator > reverse_iterator
void assertSafeToReferenceAfterClear(ItTy From, ItTy To)
Check whether any part of the range will be invalidated by clearing.
const_reverse_iterator rend() const
const_pointer data() const
Return a pointer to the vector's buffer, even if empty().
void * getFirstEl() const
Find the address of the first element.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
SmallVector(std::initializer_list< T > IL)
SmallVector(SmallVectorImpl< T > &&RHS)
SmallVector(ArrayRef< U > A)
SmallVector(size_t Size, const T &Value)
SmallVector & operator=(const SmallVector &RHS)
SmallVector(const iterator_range< RangeTy > &R)
SmallVector & operator=(std::initializer_list< T > IL)
SmallVector(ItTy S, ItTy E)
SmallVector(SmallVector &&RHS)
SmallVector & operator=(SmallVector &&RHS)
SmallVector(const SmallVector &RHS)
SmallVector & operator=(SmallVectorImpl< T > &&RHS)
LLVM Value Representation.
A range adaptor for a pair of iterators.
This is an optimization pass for GlobalISel generic memory operations.
std::remove_const_t< detail::ValueOfRange< RangeType > > ValueTypeFromRangeType
constexpr auto adl_begin(RangeT &&range) -> decltype(adl_detail::begin_impl(std::forward< RangeT >(range)))
Returns the begin iterator to range using std::begin and function found through Argument-Dependent Lo...
std::enable_if_t< std::is_convertible< typename std::iterator_traits< Iterator >::iterator_category, std::input_iterator_tag >::value > EnableIfConvertibleToInputIterator
BitVector::size_type capacity_in_bytes(const BitVector &X)
constexpr auto adl_end(RangeT &&range) -> decltype(adl_detail::end_impl(std::forward< RangeT >(range)))
Returns the end iterator to range using std::end and functions found through Argument-Dependent Looku...
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
std::conditional_t< sizeof(T)< 4 &&sizeof(void *) >=8, uint64_t, uint32_t > SmallVectorSizeType
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
SmallVector< Out, Size > to_vector_of(R &&Range)
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Helper class for calculating the default number of inline elements for SmallVector<T>.
static constexpr size_t kPreferredSmallVectorSizeof
static constexpr size_t value
static constexpr size_t NumElementsThatFit
static constexpr size_t PreferredInlineBytes
static bool isEqual(const SmallVector< T, N > &LHS, const SmallVector< T, N > &RHS)
static SmallVector< T, N > getTombstoneKey()
static SmallVector< T, N > getEmptyKey()
static unsigned getHashValue(const SmallVector< T, N > &V)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Figure out the offset of the first element.
char Base[sizeof(SmallVectorBase< SmallVectorSizeType< T > >)]
Storage for the SmallVector elements.
char InlineElts[N *sizeof(T)]