LLVM 19.0.0git
ArrayRef.h
Go to the documentation of this file.
1//===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_ADT_ARRAYREF_H
10#define LLVM_ADT_ARRAYREF_H
11
12#include "llvm/ADT/Hashing.h"
14#include "llvm/ADT/STLExtras.h"
16#include <algorithm>
17#include <array>
18#include <cassert>
19#include <cstddef>
20#include <initializer_list>
21#include <iterator>
22#include <memory>
23#include <type_traits>
24#include <vector>
25
26namespace llvm {
27 template<typename T> class [[nodiscard]] MutableArrayRef;
28
29 /// ArrayRef - Represent a constant reference to an array (0 or more elements
30 /// consecutively in memory), i.e. a start pointer and a length. It allows
31 /// various APIs to take consecutive elements easily and conveniently.
32 ///
33 /// This class does not own the underlying data, it is expected to be used in
34 /// situations where the data resides in some other buffer, whose lifetime
35 /// extends past that of the ArrayRef. For this reason, it is not in general
36 /// safe to store an ArrayRef.
37 ///
38 /// This is intended to be trivially copyable, so it should be passed by
39 /// value.
40 template<typename T>
41 class LLVM_GSL_POINTER [[nodiscard]] ArrayRef {
42 public:
43 using value_type = T;
45 using const_pointer = const value_type *;
47 using const_reference = const value_type &;
50 using reverse_iterator = std::reverse_iterator<iterator>;
51 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
52 using size_type = size_t;
54
55 private:
56 /// The start of the array, in an external buffer.
57 const T *Data = nullptr;
58
59 /// The number of elements.
60 size_type Length = 0;
61
62 public:
63 /// @name Constructors
64 /// @{
65
66 /// Construct an empty ArrayRef.
67 /*implicit*/ ArrayRef() = default;
68
69 /// Construct an empty ArrayRef from std::nullopt.
70 /*implicit*/ ArrayRef(std::nullopt_t) {}
71
72 /// Construct an ArrayRef from a single element.
73 /*implicit*/ ArrayRef(const T &OneElt)
74 : Data(&OneElt), Length(1) {}
75
76 /// Construct an ArrayRef from a pointer and length.
77 constexpr /*implicit*/ ArrayRef(const T *data, size_t length)
78 : Data(data), Length(length) {}
79
80 /// Construct an ArrayRef from a range.
81 constexpr ArrayRef(const T *begin, const T *end)
82 : Data(begin), Length(end - begin) {
83 assert(begin <= end);
84 }
85
86 /// Construct an ArrayRef from a SmallVector. This is templated in order to
87 /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
88 /// copy-construct an ArrayRef.
89 template<typename U>
91 : Data(Vec.data()), Length(Vec.size()) {
92 }
93
94 /// Construct an ArrayRef from a std::vector.
95 template<typename A>
96 /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
97 : Data(Vec.data()), Length(Vec.size()) {}
98
99 /// Construct an ArrayRef from a std::array
100 template <size_t N>
101 /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
102 : Data(Arr.data()), Length(N) {}
103
104 /// Construct an ArrayRef from a C array.
105 template <size_t N>
106 /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
107
108 /// Construct an ArrayRef from a std::initializer_list.
109#if LLVM_GNUC_PREREQ(9, 0, 0)
110// Disable gcc's warning in this constructor as it generates an enormous amount
111// of messages. Anyone using ArrayRef should already be aware of the fact that
112// it does not do lifetime extension.
113#pragma GCC diagnostic push
114#pragma GCC diagnostic ignored "-Winit-list-lifetime"
115#endif
116 constexpr /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
117 : Data(Vec.begin() == Vec.end() ? (T *)nullptr : Vec.begin()),
118 Length(Vec.size()) {}
119#if LLVM_GNUC_PREREQ(9, 0, 0)
120#pragma GCC diagnostic pop
121#endif
122
123 /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
124 /// ensure that only ArrayRefs of pointers can be converted.
125 template <typename U>
127 std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
128 * = nullptr)
129 : Data(A.data()), Length(A.size()) {}
130
131 /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
132 /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
133 /// whenever we copy-construct an ArrayRef.
134 template <typename U, typename DummyT>
135 /*implicit*/ ArrayRef(
137 std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * =
138 nullptr)
139 : Data(Vec.data()), Length(Vec.size()) {}
140
141 /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
142 /// to ensure that only vectors of pointers can be converted.
143 template <typename U, typename A>
144 ArrayRef(const std::vector<U *, A> &Vec,
145 std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
146 * = nullptr)
147 : Data(Vec.data()), Length(Vec.size()) {}
148
149 /// @}
150 /// @name Simple Operations
151 /// @{
152
153 iterator begin() const { return Data; }
154 iterator end() const { return Data + Length; }
155
156 reverse_iterator rbegin() const { return reverse_iterator(end()); }
157 reverse_iterator rend() const { return reverse_iterator(begin()); }
158
159 /// empty - Check if the array is empty.
160 bool empty() const { return Length == 0; }
161
162 const T *data() const { return Data; }
163
164 /// size - Get the array size.
165 size_t size() const { return Length; }
166
167 /// front - Get the first element.
168 const T &front() const {
169 assert(!empty());
170 return Data[0];
171 }
172
173 /// back - Get the last element.
174 const T &back() const {
175 assert(!empty());
176 return Data[Length-1];
177 }
178
179 // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
180 template <typename Allocator> MutableArrayRef<T> copy(Allocator &A) {
181 T *Buff = A.template Allocate<T>(Length);
182 std::uninitialized_copy(begin(), end(), Buff);
183 return MutableArrayRef<T>(Buff, Length);
184 }
185
186 /// equals - Check for element-wise equality.
187 bool equals(ArrayRef RHS) const {
188 if (Length != RHS.Length)
189 return false;
190 return std::equal(begin(), end(), RHS.begin());
191 }
192
193 /// slice(n, m) - Chop off the first N elements of the array, and keep M
194 /// elements in the array.
195 ArrayRef<T> slice(size_t N, size_t M) const {
196 assert(N+M <= size() && "Invalid specifier");
197 return ArrayRef<T>(data()+N, M);
198 }
199
200 /// slice(n) - Chop off the first N elements of the array.
201 ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }
202
203 /// Drop the first \p N elements of the array.
204 ArrayRef<T> drop_front(size_t N = 1) const {
205 assert(size() >= N && "Dropping more elements than exist");
206 return slice(N, size() - N);
207 }
208
209 /// Drop the last \p N elements of the array.
210 ArrayRef<T> drop_back(size_t N = 1) const {
211 assert(size() >= N && "Dropping more elements than exist");
212 return slice(0, size() - N);
213 }
214
215 /// Return a copy of *this with the first N elements satisfying the
216 /// given predicate removed.
217 template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const {
218 return ArrayRef<T>(find_if_not(*this, Pred), end());
219 }
220
221 /// Return a copy of *this with the first N elements not satisfying
222 /// the given predicate removed.
223 template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const {
224 return ArrayRef<T>(find_if(*this, Pred), end());
225 }
226
227 /// Return a copy of *this with only the first \p N elements.
228 ArrayRef<T> take_front(size_t N = 1) const {
229 if (N >= size())
230 return *this;
231 return drop_back(size() - N);
232 }
233
234 /// Return a copy of *this with only the last \p N elements.
235 ArrayRef<T> take_back(size_t N = 1) const {
236 if (N >= size())
237 return *this;
238 return drop_front(size() - N);
239 }
240
241 /// Return the first N elements of this Array that satisfy the given
242 /// predicate.
243 template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const {
244 return ArrayRef<T>(begin(), find_if_not(*this, Pred));
245 }
246
247 /// Return the first N elements of this Array that don't satisfy the
248 /// given predicate.
249 template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const {
250 return ArrayRef<T>(begin(), find_if(*this, Pred));
251 }
252
253 /// @}
254 /// @name Operator Overloads
255 /// @{
256 const T &operator[](size_t Index) const {
257 assert(Index < Length && "Invalid index!");
258 return Data[Index];
259 }
260
261 /// Disallow accidental assignment from a temporary.
262 ///
263 /// The declaration here is extra complicated so that "arrayRef = {}"
264 /// continues to select the move assignment operator.
265 template <typename U>
266 std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
267 operator=(U &&Temporary) = delete;
268
269 /// Disallow accidental assignment from a temporary.
270 ///
271 /// The declaration here is extra complicated so that "arrayRef = {}"
272 /// continues to select the move assignment operator.
273 template <typename U>
274 std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
275 operator=(std::initializer_list<U>) = delete;
276
277 /// @}
278 /// @name Expensive Operations
279 /// @{
280 std::vector<T> vec() const {
281 return std::vector<T>(Data, Data+Length);
282 }
283
284 /// @}
285 /// @name Conversion operators
286 /// @{
287 operator std::vector<T>() const {
288 return std::vector<T>(Data, Data+Length);
289 }
290
291 /// @}
292 };
293
294 /// MutableArrayRef - Represent a mutable reference to an array (0 or more
295 /// elements consecutively in memory), i.e. a start pointer and a length. It
296 /// allows various APIs to take and modify consecutive elements easily and
297 /// conveniently.
298 ///
299 /// This class does not own the underlying data, it is expected to be used in
300 /// situations where the data resides in some other buffer, whose lifetime
301 /// extends past that of the MutableArrayRef. For this reason, it is not in
302 /// general safe to store a MutableArrayRef.
303 ///
304 /// This is intended to be trivially copyable, so it should be passed by
305 /// value.
306 template<typename T>
307 class [[nodiscard]] MutableArrayRef : public ArrayRef<T> {
308 public:
309 using value_type = T;
311 using const_pointer = const value_type *;
316 using reverse_iterator = std::reverse_iterator<iterator>;
317 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
318 using size_type = size_t;
320
321 /// Construct an empty MutableArrayRef.
322 /*implicit*/ MutableArrayRef() = default;
323
324 /// Construct an empty MutableArrayRef from std::nullopt.
325 /*implicit*/ MutableArrayRef(std::nullopt_t) : ArrayRef<T>() {}
326
327 /// Construct a MutableArrayRef from a single element.
328 /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
329
330 /// Construct a MutableArrayRef from a pointer and length.
331 /*implicit*/ MutableArrayRef(T *data, size_t length)
332 : ArrayRef<T>(data, length) {}
333
334 /// Construct a MutableArrayRef from a range.
335 MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
336
337 /// Construct a MutableArrayRef from a SmallVector.
339 : ArrayRef<T>(Vec) {}
340
341 /// Construct a MutableArrayRef from a std::vector.
342 /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
343 : ArrayRef<T>(Vec) {}
344
345 /// Construct a MutableArrayRef from a std::array
346 template <size_t N>
347 /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr)
348 : ArrayRef<T>(Arr) {}
349
350 /// Construct a MutableArrayRef from a C array.
351 template <size_t N>
352 /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {}
353
354 T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
355
356 iterator begin() const { return data(); }
357 iterator end() const { return data() + this->size(); }
358
359 reverse_iterator rbegin() const { return reverse_iterator(end()); }
360 reverse_iterator rend() const { return reverse_iterator(begin()); }
361
362 /// front - Get the first element.
363 T &front() const {
364 assert(!this->empty());
365 return data()[0];
366 }
367
368 /// back - Get the last element.
369 T &back() const {
370 assert(!this->empty());
371 return data()[this->size()-1];
372 }
373
374 /// slice(n, m) - Chop off the first N elements of the array, and keep M
375 /// elements in the array.
376 MutableArrayRef<T> slice(size_t N, size_t M) const {
377 assert(N + M <= this->size() && "Invalid specifier");
378 return MutableArrayRef<T>(this->data() + N, M);
379 }
380
381 /// slice(n) - Chop off the first N elements of the array.
382 MutableArrayRef<T> slice(size_t N) const {
383 return slice(N, this->size() - N);
384 }
385
386 /// Drop the first \p N elements of the array.
387 MutableArrayRef<T> drop_front(size_t N = 1) const {
388 assert(this->size() >= N && "Dropping more elements than exist");
389 return slice(N, this->size() - N);
390 }
391
392 MutableArrayRef<T> drop_back(size_t N = 1) const {
393 assert(this->size() >= N && "Dropping more elements than exist");
394 return slice(0, this->size() - N);
395 }
396
397 /// Return a copy of *this with the first N elements satisfying the
398 /// given predicate removed.
399 template <class PredicateT>
401 return MutableArrayRef<T>(find_if_not(*this, Pred), end());
402 }
403
404 /// Return a copy of *this with the first N elements not satisfying
405 /// the given predicate removed.
406 template <class PredicateT>
408 return MutableArrayRef<T>(find_if(*this, Pred), end());
409 }
410
411 /// Return a copy of *this with only the first \p N elements.
412 MutableArrayRef<T> take_front(size_t N = 1) const {
413 if (N >= this->size())
414 return *this;
415 return drop_back(this->size() - N);
416 }
417
418 /// Return a copy of *this with only the last \p N elements.
419 MutableArrayRef<T> take_back(size_t N = 1) const {
420 if (N >= this->size())
421 return *this;
422 return drop_front(this->size() - N);
423 }
424
425 /// Return the first N elements of this Array that satisfy the given
426 /// predicate.
427 template <class PredicateT>
429 return MutableArrayRef<T>(begin(), find_if_not(*this, Pred));
430 }
431
432 /// Return the first N elements of this Array that don't satisfy the
433 /// given predicate.
434 template <class PredicateT>
436 return MutableArrayRef<T>(begin(), find_if(*this, Pred));
437 }
438
439 /// @}
440 /// @name Operator Overloads
441 /// @{
442 T &operator[](size_t Index) const {
443 assert(Index < this->size() && "Invalid index!");
444 return data()[Index];
445 }
446 };
447
448 /// This is a MutableArrayRef that owns its array.
449 template <typename T> class OwningArrayRef : public MutableArrayRef<T> {
450 public:
451 OwningArrayRef() = default;
453
455 : MutableArrayRef<T>(new T[Data.size()], Data.size()) {
456 std::copy(Data.begin(), Data.end(), this->begin());
457 }
458
459 OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); }
460
462 delete[] this->data();
464 Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>());
465 return *this;
466 }
467
468 ~OwningArrayRef() { delete[] this->data(); }
469 };
470
471 /// @name ArrayRef Deduction guides
472 /// @{
473 /// Deduction guide to construct an ArrayRef from a single element.
474 template <typename T> ArrayRef(const T &OneElt) -> ArrayRef<T>;
475
476 /// Deduction guide to construct an ArrayRef from a pointer and length
477 template <typename T> ArrayRef(const T *data, size_t length) -> ArrayRef<T>;
478
479 /// Deduction guide to construct an ArrayRef from a range
480 template <typename T> ArrayRef(const T *data, const T *end) -> ArrayRef<T>;
481
482 /// Deduction guide to construct an ArrayRef from a SmallVector
483 template <typename T> ArrayRef(const SmallVectorImpl<T> &Vec) -> ArrayRef<T>;
484
485 /// Deduction guide to construct an ArrayRef from a SmallVector
486 template <typename T, unsigned N>
488
489 /// Deduction guide to construct an ArrayRef from a std::vector
490 template <typename T> ArrayRef(const std::vector<T> &Vec) -> ArrayRef<T>;
491
492 /// Deduction guide to construct an ArrayRef from a std::array
493 template <typename T, std::size_t N>
494 ArrayRef(const std::array<T, N> &Vec) -> ArrayRef<T>;
495
496 /// Deduction guide to construct an ArrayRef from an ArrayRef (const)
497 template <typename T> ArrayRef(const ArrayRef<T> &Vec) -> ArrayRef<T>;
498
499 /// Deduction guide to construct an ArrayRef from an ArrayRef
500 template <typename T> ArrayRef(ArrayRef<T> &Vec) -> ArrayRef<T>;
501
502 /// Deduction guide to construct an ArrayRef from a C array.
503 template <typename T, size_t N> ArrayRef(const T (&Arr)[N]) -> ArrayRef<T>;
504
505 /// @}
506
507 /// @name MutableArrayRef Deduction guides
508 /// @{
509 /// Deduction guide to construct a `MutableArrayRef` from a single element
510 template <class T> MutableArrayRef(T &OneElt) -> MutableArrayRef<T>;
511
512 /// Deduction guide to construct a `MutableArrayRef` from a pointer and
513 /// length.
514 template <class T>
515 MutableArrayRef(T *data, size_t length) -> MutableArrayRef<T>;
516
517 /// Deduction guide to construct a `MutableArrayRef` from a `SmallVector`.
518 template <class T>
520
521 template <class T, unsigned N>
523
524 /// Deduction guide to construct a `MutableArrayRef` from a `std::vector`.
525 template <class T> MutableArrayRef(std::vector<T> &Vec) -> MutableArrayRef<T>;
526
527 /// Deduction guide to construct a `MutableArrayRef` from a `std::array`.
528 template <class T, std::size_t N>
529 MutableArrayRef(std::array<T, N> &Vec) -> MutableArrayRef<T>;
530
531 /// Deduction guide to construct a `MutableArrayRef` from a C array.
532 template <typename T, size_t N>
534
535 /// @}
536 /// @name ArrayRef Comparison Operators
537 /// @{
538
539 template<typename T>
541 return LHS.equals(RHS);
542 }
543
544 template <typename T>
546 return ArrayRef<T>(LHS).equals(RHS);
547 }
548
549 template <typename T>
551 return !(LHS == RHS);
552 }
553
554 template <typename T>
556 return !(LHS == RHS);
557 }
558
559 /// @}
560
561 template <typename T> hash_code hash_value(ArrayRef<T> S) {
562 return hash_combine_range(S.begin(), S.end());
563 }
564
565 // Provide DenseMapInfo for ArrayRefs.
566 template <typename T> struct DenseMapInfo<ArrayRef<T>, void> {
567 static inline ArrayRef<T> getEmptyKey() {
568 return ArrayRef<T>(
569 reinterpret_cast<const T *>(~static_cast<uintptr_t>(0)), size_t(0));
570 }
571
572 static inline ArrayRef<T> getTombstoneKey() {
573 return ArrayRef<T>(
574 reinterpret_cast<const T *>(~static_cast<uintptr_t>(1)), size_t(0));
575 }
576
577 static unsigned getHashValue(ArrayRef<T> Val) {
578 assert(Val.data() != getEmptyKey().data() &&
579 "Cannot hash the empty key!");
580 assert(Val.data() != getTombstoneKey().data() &&
581 "Cannot hash the tombstone key!");
582 return (unsigned)(hash_value(Val));
583 }
584
586 if (RHS.data() == getEmptyKey().data())
587 return LHS.data() == getEmptyKey().data();
588 if (RHS.data() == getTombstoneKey().data())
589 return LHS.data() == getTombstoneKey().data();
590 return LHS == RHS;
591 }
592 };
593
594} // end namespace llvm
595
596#endif // LLVM_ADT_ARRAYREF_H
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_GSL_POINTER
LLVM_GSL_POINTER - Apply this to non-owning classes like StringRef to enable lifetime warnings.
Definition: Compiler.h:326
uint32_t Index
uint64_t Size
#define T
Basic Register Allocator
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
constexpr ArrayRef(const T(&Arr)[N])
Construct an ArrayRef from a C array.
Definition: ArrayRef.h:106
std::enable_if_t< std::is_same< U, T >::value, ArrayRef< T > > & operator=(std::initializer_list< U >)=delete
Disallow accidental assignment from a temporary.
size_t size_type
Definition: ArrayRef.h:52
std::vector< T > vec() const
Definition: ArrayRef.h:280
bool equals(ArrayRef RHS) const
equals - Check for element-wise equality.
Definition: ArrayRef.h:187
ArrayRef< T > drop_while(PredicateT Pred) const
Return a copy of *this with the first N elements satisfying the given predicate removed.
Definition: ArrayRef.h:217
const T & back() const
back - Get the last element.
Definition: ArrayRef.h:174
constexpr ArrayRef(const T *data, size_t length)
Construct an ArrayRef from a pointer and length.
Definition: ArrayRef.h:77
ArrayRef(const std::vector< U *, A > &Vec, std::enable_if_t< std::is_convertible< U *const *, T const * >::value > *=nullptr)
Construct an ArrayRef<const T*> from std::vector<T*>.
Definition: ArrayRef.h:144
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
Definition: ArrayRef.h:228
ArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:73
MutableArrayRef< T > copy(Allocator &A)
Definition: ArrayRef.h:180
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition: ArrayRef.h:204
ArrayRef< T > slice(size_t N) const
slice(n) - Chop off the first N elements of the array.
Definition: ArrayRef.h:201
reverse_iterator rend() const
Definition: ArrayRef.h:157
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:168
ArrayRef< T > take_while(PredicateT Pred) const
Return the first N elements of this Array that satisfy the given predicate.
Definition: ArrayRef.h:243
std::reverse_iterator< const_iterator > const_reverse_iterator
Definition: ArrayRef.h:51
iterator end() const
Definition: ArrayRef.h:154
ArrayRef< T > take_until(PredicateT Pred) const
Return the first N elements of this Array that don't satisfy the given predicate.
Definition: ArrayRef.h:249
ArrayRef< T > drop_until(PredicateT Pred) const
Return a copy of *this with the first N elements not satisfying the given predicate removed.
Definition: ArrayRef.h:223
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
ArrayRef()=default
Construct an empty ArrayRef.
ArrayRef(std::nullopt_t)
Construct an empty ArrayRef from std::nullopt.
Definition: ArrayRef.h:70
ArrayRef(const ArrayRef< U * > &A, std::enable_if_t< std::is_convertible< U *const *, T const * >::value > *=nullptr)
Construct an ArrayRef<const T*> from ArrayRef<T*>.
Definition: ArrayRef.h:126
std::reverse_iterator< iterator > reverse_iterator
Definition: ArrayRef.h:50
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
Definition: ArrayRef.h:210
iterator begin() const
Definition: ArrayRef.h:153
constexpr ArrayRef(const std::array< T, N > &Arr)
Construct an ArrayRef from a std::array.
Definition: ArrayRef.h:101
ArrayRef< T > take_back(size_t N=1) const
Return a copy of *this with only the last N elements.
Definition: ArrayRef.h:235
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
ArrayRef(const SmallVectorTemplateCommon< U *, DummyT > &Vec, std::enable_if_t< std::is_convertible< U *const *, T const * >::value > *=nullptr)
Construct an ArrayRef<const T*> from a SmallVector<T*>.
Definition: ArrayRef.h:135
const T & operator[](size_t Index) const
Definition: ArrayRef.h:256
constexpr ArrayRef(const std::initializer_list< T > &Vec)
Construct an ArrayRef from a std::initializer_list.
Definition: ArrayRef.h:116
ArrayRef(const std::vector< T, A > &Vec)
Construct an ArrayRef from a std::vector.
Definition: ArrayRef.h:96
const T * data() const
Definition: ArrayRef.h:162
std::enable_if_t< std::is_same< U, T >::value, ArrayRef< T > > & operator=(U &&Temporary)=delete
Disallow accidental assignment from a temporary.
reverse_iterator rbegin() const
Definition: ArrayRef.h:156
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition: ArrayRef.h:195
constexpr ArrayRef(const T *begin, const T *end)
Construct an ArrayRef from a range.
Definition: ArrayRef.h:81
ArrayRef(const SmallVectorTemplateCommon< T, U > &Vec)
Construct an ArrayRef from a SmallVector.
Definition: ArrayRef.h:90
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:307
T * data() const
Definition: ArrayRef.h:354
MutableArrayRef< T > take_until(PredicateT Pred) const
Return the first N elements of this Array that don't satisfy the given predicate.
Definition: ArrayRef.h:435
MutableArrayRef(T &OneElt)
Construct a MutableArrayRef from a single element.
Definition: ArrayRef.h:328
MutableArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition: ArrayRef.h:387
MutableArrayRef< T > take_back(size_t N=1) const
Return a copy of *this with only the last N elements.
Definition: ArrayRef.h:419
reverse_iterator rbegin() const
Definition: ArrayRef.h:359
MutableArrayRef(T *begin, T *end)
Construct a MutableArrayRef from a range.
Definition: ArrayRef.h:335
MutableArrayRef< T > slice(size_t N) const
slice(n) - Chop off the first N elements of the array.
Definition: ArrayRef.h:382
MutableArrayRef(T *data, size_t length)
Construct a MutableArrayRef from a pointer and length.
Definition: ArrayRef.h:331
MutableArrayRef()=default
Construct an empty MutableArrayRef.
constexpr MutableArrayRef(std::array< T, N > &Arr)
Construct a MutableArrayRef from a std::array.
Definition: ArrayRef.h:347
T & front() const
front - Get the first element.
Definition: ArrayRef.h:363
std::reverse_iterator< const_iterator > const_reverse_iterator
Definition: ArrayRef.h:317
iterator end() const
Definition: ArrayRef.h:357
iterator begin() const
Definition: ArrayRef.h:356
T & operator[](size_t Index) const
Definition: ArrayRef.h:442
T & back() const
back - Get the last element.
Definition: ArrayRef.h:369
MutableArrayRef(std::vector< T > &Vec)
Construct a MutableArrayRef from a std::vector.
Definition: ArrayRef.h:342
constexpr MutableArrayRef(T(&Arr)[N])
Construct a MutableArrayRef from a C array.
Definition: ArrayRef.h:352
MutableArrayRef(SmallVectorImpl< T > &Vec)
Construct a MutableArrayRef from a SmallVector.
Definition: ArrayRef.h:338
MutableArrayRef< T > drop_back(size_t N=1) const
Definition: ArrayRef.h:392
MutableArrayRef< T > take_while(PredicateT Pred) const
Return the first N elements of this Array that satisfy the given predicate.
Definition: ArrayRef.h:428
MutableArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition: ArrayRef.h:376
MutableArrayRef< T > drop_while(PredicateT Pred) const
Return a copy of *this with the first N elements satisfying the given predicate removed.
Definition: ArrayRef.h:400
reverse_iterator rend() const
Definition: ArrayRef.h:360
MutableArrayRef< T > drop_until(PredicateT Pred) const
Return a copy of *this with the first N elements not satisfying the given predicate removed.
Definition: ArrayRef.h:407
MutableArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
Definition: ArrayRef.h:412
MutableArrayRef(std::nullopt_t)
Construct an empty MutableArrayRef from std::nullopt.
Definition: ArrayRef.h:325
std::reverse_iterator< iterator > reverse_iterator
Definition: ArrayRef.h:316
This is a MutableArrayRef that owns its array.
Definition: ArrayRef.h:449
OwningArrayRef & operator=(OwningArrayRef &&Other)
Definition: ArrayRef.h:461
OwningArrayRef(OwningArrayRef &&Other)
Definition: ArrayRef.h:459
OwningArrayRef()=default
OwningArrayRef(ArrayRef< T > Data)
Definition: ArrayRef.h:454
OwningArrayRef(size_t Size)
Definition: ArrayRef.h:452
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
This is the part of SmallVectorTemplateBase which does not depend on whether the type T is a POD.
Definition: SmallVector.h:134
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An opaque object representing a hash code.
Definition: Hashing.h:74
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Length
Definition: DWP.cpp:456
hash_code hash_value(const FixedPointSemantics &Val)
Definition: APFixedPoint.h:128
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1689
bool operator!=(uint64_t V1, const APInt &V2)
Definition: APInt.h:2043
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
auto find_if_not(R &&Range, UnaryPredicate P)
Definition: STLExtras.h:1763
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
@ Other
Any other memory.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1758
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition: Hashing.h:491
#define N
static bool isEqual(ArrayRef< T > LHS, ArrayRef< T > RHS)
Definition: ArrayRef.h:585
static ArrayRef< T > getTombstoneKey()
Definition: ArrayRef.h:572
static unsigned getHashValue(ArrayRef< T > Val)
Definition: ArrayRef.h:577
static ArrayRef< T > getEmptyKey()
Definition: ArrayRef.h:567
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:50